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Abstract

We present new results on the Relaxed Dimensional Factorization (RDF) preconditioner
for solving saddle point problems from incompressible flow simulations, first introduced
in @] This method contains a parameter a@ > 0, to be chosen by the user. Previous
works provided an estimate of a in the 2D case using Local Fourier Analysis. A novel
algebraic estimation technique for finding a suitable value of the RDF parameter in both
the 2D and the 3D case with arbitrary geometries is proposed. This technique is tested
on a variety of discrete saddle point problems arising from the approximation of the
Navier—Stokes equations using a Marker-and-Cell scheme and a finite element one. We
also show results for a large-scale problem relevant for hemodynamics simulation that we
solve in parallel using up to 8196 cores.

Keywords: scalable parallel preconditioners, finite element method, high performance
computing, Navier—Stokes equations, hemodynamics applications, dimensional splitting
preconditioner

1. Introduction

In the last decade, many techniques have been proposed for preconditioning linear
systems of equations in saddle point form, like those arising from the discretization
of the Navier—Stokes equations. Among the most successful, we mention the Pressure
Convection-Diffusion (PCD) preconditioner E, E, @], which makes the GMRES iterations
converge with a rate independent of the mesh, at least when the viscosity is sufficiently
large.

An alternative to PCD is represented by the so-called Least—Squares Commutator
(LSC) preconditioner ﬂﬂ, , @], which can be built automatically, albeit with higher com-
putational cost. The convergence rate of LSC is independent of the mesh size and mildly
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dependent on the viscosity. A version for stabilized finite element discretizations has
been introduced in [d].

In [7], an Augmented Lagrangian (AL) preconditioner is introduced starting from
the augmented Lagrangian formulation of the underlying saddle point problem. The
corresponding convergence rate is independent of the mesh size ﬂé], mildly dependent on
the viscosity, and robust when anisotropic meshes are considered.

In ﬂQ], the Modified Augmented Lagrangian (MAL) preconditioner is introduced to
make the action of the AL method cheaper and easier to implement, particularly on
unstructured grids. When using the MAL preconditioner, the rate of convergence shows
a mild dependence on the viscosity and is independent of the mesh size ﬂE] Like the AL
preconditioner, MAL is robust when anisotropic meshes are used HE]

More recently, the so—called Relaxed Dimensional Factorization (RDF) preconditioner
has been introduced in [1] as an improvement to the Dimensional Splitting (DS) precon-
ditioner ﬂﬂ] Although this method was mainly intended to solve steady Stokes and
Oseen problems, it can also handle the unsteady case. Experimental results indicate
independence of its convergence rate of the mesh size and a mild dependence on the
viscosity. This preconditioner relies on a parameter that, in simple 2D geometries, can
be estimated using Local Fourier Analysis (LFA). A comparison of the performance of
the RDF preconditioner and other preconditioners such as PCD or LSC can be found
in ﬁl] Those results showed that RDF can be an attractive alternative to PCD and
LSC, especially for low values of the viscosity and anisotropic meshes. In this paper, we
develop a new approach to estimating the RDF parameter for both 2D and 3D problems
in arbitrary geometries. We test our technique on a few numerical benchmarks, as well
as on a large 3D problem originating from the simulation of blood flow in large arteries,
see e.g. ﬂﬁ] In particular, we investigate the performance of the preconditioner in terms
of strong scalability using up to 8192 cores.

The remainder of this paper is organized as follows. The mathematical model and
the strategy to solve saddle point problems using the RDF preconditioner are presented
in Sections 2] and Bl respectively. In Section M, we propose a new technique to estimate
the parameter of the RDF preconditioner. Then in Sections B we test the RDF pre-
conditioner on simple 2D cases, on a 3D driven cavity problem, and on a benchmark
relevant to hemodynamic simulations using up to 8192 cores. Finally, some conclusions
are drawn in Section

2. Mathematical model

We consider an incompressible Newtonian fluid with constant density p and viscosity
p in a bounded domain Q of R¢ (d = 2,3). The Navier-Stokes equations read

aa—lz—z/Aqu(wV)uaLVp:f in Q, t>to, (1)

V-ou=0 inQ, t>to, (2)

where u = u(x, t) is the velocity vector field, p = (x,t) the pressure scalar field, f the
external force per mass unit, and v = % the kinematic viscosity. These partial differential



equations are complemented with an initial solution and boundary conditions:

u(x,to) = up(x) Vx € (),
u(x, t) = 8D (X7 t) Vx € FD; t > to, (3)
0
(v5m —m) x.0) = gt ¥xeTn, >, (@)

where I'p and I'y refer to the Dirichlet and Neumann part of the boundary, respectively,
IpUTly =09, Tp NIy =0, and ug, gp, and gy are assigned functions.

We consider a fully implicit scheme, see, e.g. HE, @], to discretize in time the equa-
tions:

iu’“rl —vAu"t put o vun Tt pvpntt = gl iun;

At At
v.-u'tt = o

Picard iterations are used to solve the nonlinearity; see, e.g., ﬂﬁ] The weak formulation
of the resulting equations is discretized in space using the Finite Element Method (FEM)
yielding at each timestep a linear system of the form Aygx = b with

F 0 0 BF uptt G

o m o Bf | ouptt | G
ANS - 0 0 Fg Bg" ) X = U§l+1 ’ b = G3 . (5)

-By -By; —-B; 0 prtl 0

Here F; (i = 1,2,3) are discrete operators corresponding to the three components of the
vector convection-diffusion-reaction operator

Ait —vA+v-V

acting on u™ 1. Here v is the current Picard approximation to the velocity field u, and B;
is a discrete approximation of the partial derivative 6%1_, (i =1,2,3), so that [B; Ba Bg]T
is the discrete gradient and — [By B2 Bs] is its adjoint, namely, the discrete divergence.
Note that we are using —B; instead of B;, ¢ = 1, 2, 3; this choice guarantees that all the
eigenvalues of Ang lie in the right half-plane HE, E] Finally, the G; (i = 1,2, 3) contain
the discretized source forces and the second part of the time derivatives which depend
on u”. Both the matrix and the right hand side of the system are modified to take the
boundary conditions into account.

3. Relaxed Dimensional Factorization (RDF) preconditioner

The Relaxed Dimensional Factorization (RDF) preconditioner was introduced in [
as an improved version of the Dimensional Splitting (DS) preconditioner [11]. It was
originally designed for steady Oseen problems with small viscosity v, possibly using
anisotropic meshes. On such problems, most of the preconditioners fail to converge at all
or converge very slowly as showed in ﬂil] The RDF preconditioner exploits the structure



of the matrix of the linear system (&) and reads:

FF 0 0 BT\ fal 0 0 0 ol 0 0 0
poo 1| 0 ol 0 0 0 F 0 B[O af 0 0
RPE= 21 0 0 af 0 0 0 af 0 0 0 F BT

-B, 0 0 af 0 -By 0 af 0 0 —-Bs al

where @ > 0 is a parameter to be chosen. By expanding the product, we can observe
that Prpr coincides with Axg up to additional terms (which depend on «) showing up
on the upper triangular part:

P —-1BTB, —%BlTBg BT

. 0 Fy -3 Bng Bg
Prpr = 0 0 Fy B | (6)
—Bl _32 —Bg al

Numerical experiments conducted in ﬂil] on 2D problems using Q3 — Q1 and Q2 — Py FE
on a structured grid show that the RDF preconditioner leads to better results than the
DS preconditioner for Stokes problems, Oseen and generalized Oseen problems, when
the dynamic viscosity v is relatively small. For unsteady problems, the convergence
rate of RDF preconditioned iterations is independent of h and v. Experiments with
inexact variants of the RDF preconditioner also indicate h-independent convergence rates.
However, a moderate dependency on v is noticed. In ﬂ], it is shown that RDF is generally
more robust and effective than PCD, in particular for small v. It should be mentioned,
however, that RDF is more expensive than PCD to build.

We also point out that the RDF preconditioner bears some resemblance with a class
of preconditioners known as constraint preconditioners ﬂﬂ] Indeed, from (Gl we see that
the preconditioner is of the form

T
Pror = (_ng g[) ;
where B = [By Bz B3] and G corresponds to the leading block 3 x 3 submatrix in ().
For small « this matrix becomes close to

G BT
-B 0 )’

which is a constraint preconditioner (meaning that the preconditioner contains the same
constraint as the original coefficient matrix, in this case an incompressibility constraint).

4. Estimates for the parameter of the RDF preconditioner

When the RDF preconditioner is used in combination with GMRES, the rate of
convergence is not overly sensitive with respect to the parameter «, as pointed out
in ﬁl], for a value of a close enough to the optimal value, the convergence rate remains
acceptable. The optimal value a,p; of @ is the one that minimizes the number of GMRES
iterations and was determined in ﬂil] by LFA for 2D problems; this technique is recalled
in Section ] of this paper. For 3D problems, empirical search was used to find a good
estimate for aop. In Section @2l we introduce a new parameter selection strategy for both

2D and 3D problems based on an analysis of the trace of the preconditioned matrix.
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4.1. Local Fourier analysis for the determination of aop:

LFA is a classical tool for parameter estimation in iterative methods, see, e.g., ﬂa,
@, E] In particular, estimates for the o parameter of the RDF preconditioner in the
context of a fluid cavity problem have been found using this technique in ﬁl] in the 2D
case. This type of analysis is based on the following assumptions:

1. the viscosity v and 3 in the convective term 3 - V are constant;

2. periodic boundary conditions are imposed;

3. centered finite differences are used to discretize the problem;

4. the discrete problem is extended to an infinite uniform structured grid;
5. Fy, Fy, By, Bg, are all square of the same order and commute.

The first assumption may seem quite restrictive. However, we note that when v is large
the diffusion term —vA dominates the convection term v - V. The Laplacian term is
also dominating the convection term for h small enough. Indeed, for finite difference
discretization the entries of the stiffness matrix associated to the Laplacian scale as
O(h~?) and the entries of the matrix associated to the convection as O(h~!). Under these
assumptions, Fp, Fy, are replaced by discrete unsteady convection-diffusion operators of
the form

1 1
-1 Lz NCEv Az
Apl TR Al

where I is the identity operator, L,, and L, are discrete one-dimensional Laplacians
obtained by centered differences and N, and NN, are the one-dimensional convection
operators obtained by centered differences in the x, y, and z directions respectively. By,
By are replaced with the one-dimensional differentiation operators S, and S, obtained by
one-sided differences in x, and y directions, respectively. Finally, to mimic the scaling of
the entries of the finite element mass matrix, we multiply these operators by A2 in 2D. For
the sake of comparison, we assume, as in @], that At &~ h. The symbols corresponding
to the operators are the following

I+vL,+ Ny,

1 . . )
A_tl + I/Lz + N:n . I/(l o ez?ﬂhex . 67127rh63) + h(l + ﬂmax,m(eﬂﬂ—hez . 672p7rh01))
1 . . .
A_tl + I/Ly + Ny . l/(l _ ez27rh6y _ 67127rh6y) + h(l + ﬂmax,y(eﬂﬂhey _ ef2p7rh6y))
Sy h(1 — e~ #2mhoe)
Sy . h(l _ e—i27rh9y),

where Bmax,» and Bmax y denote the maximum of the 2 and y components of the convective

field B (i.e., to compute an approximation to «, we perform a Fourier analysis using a

constant field 3 taken as the maximum velocity observed in the considered problem).

For arbitrary meshes, we choose h to be the average of the diameter of the tetrahedra.
In this case, it has been shown in ﬂ] that a good estimate for a,p; is given by

o, = argmin |p(a) — 1, (7)

where p(«) is defined as follows:

i) = = (51 +52) — 152 (5
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Here s; and s are the eigenvalues of Sy = By(Fy + 1 BT By)™'Bf and S; = By(F; +
1 BY By)"'BY, respectively. We observe that the quantity (a) is to be minimized not
only with respect to o but also with respect to all the frequencies 0., 0, that appear in
the expression for the eigenvalues of S; and Sa; we refer to ﬂ] for details. In practice,
the computational cost for computing «. for a given value of h and v is small compared
to the solution of the saddle point problem, and the computation can be performed off-
line (i.e., one can precompute the value of a a priori and then use this value in further
computations) for a broad range of values of h and v.

When a FE method is used to discretize the equations, the entries of the mass matrix
M, scale as O(h~2). Therefore, we expect small values for the parameter a.

A major limitation of LFA is that it is not clear how it can be used in the case of
complex, irregular geometries and unstructured meshes. In the following we introduce a
purely algebraic technique that can be used to estimate the optimal « regardless of the
underlying geometry or the discretization scheme used.

4.2. Estimation using matriz traces

Experience shows that the number of preconditioned GMRES iterations is usually
lower when the eigenvalues of the right preconditioned matrix 7, = AnsPrpp (o,
equivalently, of the left preconditioned matrix 7. = IEE rAns) are clustered around
one. For this reason, we propose to use the following value for «:

> i-1)

i

Qtrace = argmin
«

= argmin | Tr(7,) — N|,

where the \;’s denote the eigenvalues of 7, (and 7_), and N is the rank of Ayg. As
proved in ﬂil] all these eigenvalues have positive real part. Computing the trace of 7, (or
of T, which is the same) is an expensive task. To reduce its cost, we use an explicit
expressions of 7. that is provided by Lemma [Tl



Lemma 1. Let F; = F; + 2 BT B; and S; = B;F, 'BY, i =1,2,3. Then

0 —éFlefl%
- 0 LF,'BIS B
T/:I—Pl RQZI— S, S,
a RDF 0 %Fg_lBg(oJ — 52)51 B> #
0 (af — Ss)(al —52)51By ——¢

R

ot

PRrROOF. Let Prpr = %MlMQMg with

0 0o BT ofl 0 0 0
[ 0o ar 0 0 (o m o BT
Mi=1 0o 0 ar o M=o 0 af 0 Ms
-B; 0 0 ol 0 —-By, 0 af
it 0 0 —Lif'Bf 17 0 0
_ 0 17 0 0 _ 0 Fit 0
-~ 1 = e 1_ 2
M, 0 0 i1 0 > M 0 0 17
1yt 0 0 ir—lg 0 IBFy' 0 %
Therefore,
Ft 0 0
Pl _ —L1F'BI B F Fyt 0
RDE = LEABT (af — So)Bi Py —1E7'BY Byt Byt

~1F'BT By
—a2Fy By (el = 51)B;y
E; BT [(af — S2)S1 + aSs]Bs

—F BT

0 af 0 0| o
0 0 F BT[> WV
0 0 —B3 al
0 ir o
1 p—1pT 1
—a 1y By [0 &t
0 Mt =10 %
I— 25, o o 2

— B,
—ar k5 BY (ol — S1)
—LE7'BY (o — So)(al — Sy)

—2F 'Bf (ol = 5)
—LFy ' BY (o — Sy)(od — Sy)
(ol — Ss)[(al — S2)S1 + aS2]Bs 2z (al — S3)(al — Sz)(ad — S1)

L(al = S5)(al — So)BiFt L(al — S3)BeFyt IB3Fy ! Li(al — S3)(al — Sh)(al — Sy)

Finally, direct computations give the result.



We now state the following result:

Lemma 2. The trace of T, and T is given by
2
TI"(ITQ) = TY(T ) Nu+— TI'(S1 +SQ+53) (5152-1-5153-‘1-5253)-‘1- T‘I‘(Slsgsg)

where S; = B; F 1B1T, i = 1,2,3 and Ny is the number of degrees of freedom for the
discrete velocity.

PROOF. Tt is obvious that 7, and 7. have the same trace. From Lemma [ we find

1 1
Te(7]) = Te(l) = — Te(Fy ' BYSiBy) — — Tr (F3—1B§ ((al, — S2)S1 + aSy) 33)

T (0], — Ss)(al, — So)(al, — 51)).

Thanks to the property Tr(XY) = Tr(Y X) for X € R¥V*M and Y € RM*N  simple
computations lead to

Tr(F, 'BYS)By) = Tr(ByFy; ' BY'S)), and
Tr (F3—1B§“ ((aIp - SQ)Sl + O[SQ) Bg) =Tr (ngg_lBg ((Oélp - SQ)Sl + OéSQ)) 5

and this concludes the proof.

The computation of Tr(S;), Tr(S;S;) or Tr(S15253) for i, = 1,2,3 in Lemma [ is
the most expensive part of this approach and we would like to avoid it. More generally,
computing or estimating the trace of a product of matrices or the trace of the inverse of
a matrix are challenging problems with no easy solution. To simplify the computation,
we approximate F; = F; + BTB by F; and S; by S; := B; ;diag(F;) "B, Then, we
can explicitly form S; for i = 1,2,3 and find ayqce by minimizing the function

1 2 2
¢(a) == Ny + 20 ¥b+ i

where
= Tl‘(gl + S’Q + S’3), b= Tl‘(glgg + glgg + gggg), Cc:.:= TI‘(SHS'QS'?,)

are independent of a. To further reduce the cost of this computation, we make use of
the two following formulas valid for A, B € RVXN:

Tr(A+ B) = Tr(A) + Tr(B),
N

Tr(AB) = Y (Ao B");, (9)

ij=1

where o denotes the Hadamard product.

Finally, we observe that it is inexpensive to evaluate ¢(«) once a, b, and ¢ have been
computed. Indeed, one can simply evaluate the function for « in a given range to find
an approximation of the minimum value, i.e., Q¢rgce-
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5. Numerical results

We now focus on testing the efficiency of the RDF preconditioner. In particular, we
test the techniques that were introduced in Section [ to estimate . The numerical
experiments are split into two parts. The first one shows some Matlab experiments that
allow us to compare how the new estimates for a compete against the Fourier analysis
estimate introduced in ﬁl] The second one shows some numerical experiments using up
to 8192 cores on the aneurysm benchmark problem introduced in @l])

5.1. Three simple benchmark tests

In this section, we want to compare the iterations count using the new estimates with
those obtained using the parameter () yielded by Fourier Analysis (FA). We consider the
same settings as in ﬁl] we solve the Oseen equations using two test problems. First, we
consider the steady 2D lid-driven cavity problem discretized by Q2 — Py finite elements,
which satisfy the Babuska—Brezzi (inf-sup) condition [21], on uniform grids. In particu-
lar, we consider three values for the viscosity v = 0.1, v = 0.01, and v = 0.005, and four
different space discretizations corresponding to 16 x 16, 32 x 32, 64 x 64, and 128 x 128
structured meshes. Next, we consider a 3D Marker—and—Cell (MAC) discretization of
the Oseen problem [22]. All the simulations are carried out with Matlab [23]. The FE
discretizations are generated using the IFISS 3.0 software package Hﬁ]

Unless otherwise specified, the linear system arising from the Oseen problem is solved
using a right preconditioned restarted GMRES; the maximum subspace dimensions is set
to 20. We use a zero initial guess and the stopping criterion is based on the norm of the
residual scaled by the right hand side, i.e.,

For each problem, we report the number of iterations for different choices of a stem-
ming from the strategies presented in Sectionll as well as with the optimal value obtained
experimentally by an expensive “brute force search”. In all the examples, the subprob-
lems involved in the application of the RDF preconditioner are solved by direct methods,
since our first goal is to determine the effectiveness of the new parameter estimation
techniques. Note that we are only interested in a good choice for a to lower the number
of iterations. Hence, we only report the iterations count for GMRES. We refer to ﬂil]
for numerical experiments involving the use of subiterations to apply Fi_l, 1 =1,2,3,
instead of direct methods.

5.1.1. The 2D leaky lid driven cavity problem discretized by Qo-P1 finite elements

This test problem describes the behavior of a fluid in a cavity and driven by a current
at the top (the lid) of the domain. For example, one can think of a cavity in the bed of a
river where the fluid starts moving due to the river flowing at the top. The computational
domain Q is the square [—1,1]2. The x component of the velocity u, is imposed on the
upper side of the square such that u, = 1. No-slip boundary conditions are imposed on
the lower, left and right sides.

Tables [ to Bl show the number of GMRES iterations to converge. The reported
numbers are the maximum number of GMRES iterations required in any of the Picard

9



Grid 16 x 16 32 x 32 64 x 64 128 x 128

a Tter a Tter a Tter a Tter
RDF optimal 0.13 8 0.04 8 0.011 8 0.005 7
RDF LFA estimate 0.073 9 0.025 8 0.008 8 0.002 7
RDF trace estimate 0.119 8 0.032 8 0.008 8 0.002 7

Table 1: Preconditioned GMRES on steady Oseen problems with different grid sizes (Q2 — P1 FEM,
uniform grids), viscosity v = 0.1

Grid 16 x 16 32 x 32 64 x 64 128 x 128

« Tter « Tter « Tter a Tter
RDF optimal 0.55 12 0.17 11 0.041 10 0.011 10
RDF LFA estimate 0.126 21 0.057 17 0.024 13 0.010 10
RDF trace estimate 1.188 15 0.321 14 0.083 12 0.021 11

Table 2: Preconditioned GMRES on steady Oseen problems with different grid sizes (Q2 — P1 FEM,
uniform grids), viscosity v = 0.01

steps. When v = 0.1 (see Table [Tl) we observe that the LFA and the strategy based
on trace estimates provide essentially optimal results, and that the number of iterations
remains independent of . The results for v = 0.01 are reported in Table[2l As the mesh is
refined, the quality of the LFA estimate improves, and indeed the LFA estimate performs
quite well when sufficiently fine meshes are used (see also [1] for similar observations).
Overall, the new trace-based method introduced in this work performs better than the
LFA estimates. Finally, the results for v = 0.005 are reported in Table 3l The number
of iterations obtained using the trace estimate is higher than for the larger values of v
but remains moderate and decreases as the mesh is refined. For this value of v, the LFA
estimate results in the lowest iteration count. All in all, the strategy based on the trace
estimate works about as well as the one based on LFA estimate.

5.1.2. The 3D leaky lid driven cavity problem discretized by Marker-and-Cell method

We now consider again a leaky lid driven cavity problem but in 3D and using Marker—
and—Cell (MAC) discretization ﬂé] Tables@l to [Glshow the number of GMRES iterations
to converge. For v = 0.1, v = 0.01, and v = 0.005, the trace estimate leads to essentially
optimal results. Note that the optimal « is much larger for the MAC discretization than
for the FE one, reflecting the different scaling of the discretized equations resulting from
the two schemes.

5.2. Large-scale experiments

For large-scale 3D problems, exact application of the RDF preconditioner is too ex-
pensive and inexact variants must be used ﬂ] The approximation of the RDF precon-

Grid 16 x 16 32 x 32 64 x 64 128 x 128

« Tter « Tter « Tter a Tter
RDF optimal 0.70 15 0.22 14 0.06 13 0.017 13
RDF LFA estimate 0.127 32 0.062 25 0.028 17 0.012 13
RDF trace estimate 2.377 24 0.642 23 0.167 22 0.042 19

Table 3: Preconditioned GMRES on steady Oseen problems with different grid sizes (Q2 — P; FEM,
uniform grids), viscosity v = 0.005
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Grid 16 x 16 x 16 32 x 32 x 32

a Iter « Tter
RDF optimal 2.2 11 2.3 12
RDF trace estimate 1.265 13 1.306 13

Table 4: Preconditioned GMRES on 3D steady Oseen problems with different grid sizes (MAC dis-
cretization, uniform grids), viscosity v = 0.1

Grid 16 x 16 x 16 32 x 32 x 32

et Iter « Iter
RDF optimal 16.9 17 13.7 18
RDF trace estimate 12.651 18 13.064 18

Table 5: Preconditioned GMRES on 3D steady Oseen problems with different grid sizes (MAC dis-
cretization, uniform grids), viscosity v = 0.01

ditioner uses the factorization of the RDF preconditioner from Section [B] as a starting
point. Here, inverses of the algebraic operators are replaced by some approximations
denoted by a “tilde” over the corresponding operators, which we describe below. The
approximate RDF preconditioner can then be defined in factored form, as follows:

I 0 o o\ /L 0 0 ON/r oo o0
p1 o1 o o101 O Offo 1T 0 o
eRDE-— 0 0 I 0ffo o E' of|0 0 [ -BT
00 iBs 1/ \o 0o o 1/ \0 00 I
I 0 o0 o0\ /L 0 00\/1 00 0
0 I 0 0||o E' 00|00 —-1pB7
0 0 I 0 0 0 I 0 0 0 I 0
0 4B, 0 1/ \o o o 1/ \0 0 0 ir
I 00 0\ /F" 00 0\ (/I 00 —%Bf
0 I 0 0 0O I 0 0 0 I 0 0
0 0 I O 0 oI 0 0 0 I 0 ’
B 0 0 I 0 0o 0 I 0 0 O I

where Fi_l is an approximation of FZ =F,+ éBiTBi fori=1,2,3.

In our experiments we use GMRES with a 2-level additive Schwarz preconditioner to
approximate the action of F;l for i =1,2,3 (i.e., we iterate until the inverse is applied
accurately enough). More in particular, we create a partition from the full domain. Each
parallel task performs computation on one of the subdomains. Additive-Schwarz (1 level)
with minimal overlap (one layer of elements) is used as a pre-smoother. An LU factor-

Grid 16 x 16 x 16 32 x 32 x 32

et Tter a Tter
RDF optimal 26.7 24 26.5 24
RDF trace estimate 25.982 24 26.133 24

Table 6: Preconditioned GMRES on 3D steady Oseen problems with different grid sizes (MAC dis-
cretization, uniform grids), viscosity v = 0.005
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Number of service nodes 40

Number of compute nodes 1’496

Number of processors per node 2x 16-core AMD Opteron Interlagos
Processors frequency 2.1 GHz

Processors shared memory per node 32 GB DDR2

Peak performance 402 Teraflop/s.

Network Gemini 3D torus

Table 7: Monte Rosa Cray XE6 technical data

ization is used for the (exact) solve on each subdomain. No post-smoothing is applied.
The coarse grid is obtained algebraically and the solve at the coarse level is performed
using one sweep of the Gauss—Seidel method. Note that applying Additive Schwarz with
minimal overlap (equivalent to a block Jacobi preconditioner) avoids communications.
This choice has a positive impact on the cost to compute the preconditioner since as the
number of parallel tasks is increasing, the size N of the matrix of the local problem is
decreasing, and hence the LU factorization computational cost is reduced as well.

The three-dimensional simulations have been coded in LifeV ﬂﬁ], a C++ finite ele-
ment library under the LGPL license. This library makes intensive use of Trilinos @],
which contains many distributed packages. In particular, the multigrid algorithm relies
on the ML package, and GMRES is based on the Belos package. Whenever mesh coars-
ening is required, aggregates are computed using METIS/ParMETIS ﬂﬂ, @] To perform
the LU factorization required by the coarse solve of multigrid, we chose to use KLU @]
rather than UMFPACK @] Although KLU has been developed primarily for solving
sparse linear systems from circuit simulations and not the ones arising in finite element
modeling, we found that the time to compute the factorization is smaller than that of
UMFPACK and this makes the total costs (time to build the preconditioners and time
for the preconditioned iterations) smaller. All the computations are carried out using
Monte Rosa, a Cray XE6 supercomputer at the Swiss National Supercomputing Centre
(CSCS), cf. Table[ll The reported results are obtained using as many cores as possible
on each node, without multithreading enabled.

5.2.1. Flow in a cerebral aneurysm

We consider the simulation of blood flow in a cerebral aneurysm, which is a localized
blood—filled deformation in a blood vessel wall. The computational domain 2 represents
an artery where an aneurysm has developed (see Figure. The geometry of the cere-
bral aneurysm was first used in the research project Aneurisk ﬂ3_1|] Detailed information
on the meshes is provided in Table[@ The diameter of the inlet I';,, measures 0.35 cm and
is chosen as characteristic length. Figure shows the mesh used to perform the simu-
lations, for a time step At = 1072, Blood flow is modeled by the Navier—Stokes equations
with density p = 1 g/ecm? and viscosity u = 0.035 g/(cm-s), i.e., v = 0.035 cm?/s. An

approximation of the flow rate at the inlet I';,, has been provided in [32] as
’ 2kt 2kt
gO(t) = Qo 4+ ];ak COS (T) + bk sin (T) , (10)
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Figure 1: Mesh and inflow for the cerebral aneurysm

0 1 2 3 4 5 6 7
a, 136 -0.207 -0.152 0.059 0.039 0.00286  -0.0371  -0.000759
by, 0.176 ~ -0.0429  -0.117  0.0385 0.0139 0.0166 -0.0359

Table 8: Coefficients for the flow rate function, [32]

where T' denotes the period of the cardiac cycle, and ap and by are given in Table B
(the coefficients have been scaled to correspond to our geometry). The function ¢(t)
is presented in Figure For our computations, we take 7" = 1 and the flow rate
is imposed by a flat inlet profile on I';,. This choice is made for simplicity only; using
more “physiological” boundary conditions (see [12] for a discussion) would not impact
the performance of the preconditioner. Homogenous Neumann boundary conditions are
imposed on '+, and no—slip boundary conditions are imposed on the vessel wall I'y,4;.

The problem is discretized in time using a fully implicit scheme linearized with Picard—
Oseen iterations with At = 1072 and in space using the P, — P; finite elements on a
tetrahedral mesh. Using larger time steps was found to result in the Picard iteration
failing to converge in some cases. The tolerance ey for the nonlinear iterations of the
implicit scheme is set to 1076, Flexible GMRES (FGMRES) without restart is used to
solve the linear problem at each time step [33]. The preconditioner is recomputed at
each time iteration. The stopping criterion is based on the residual scaled by the right
hand side,

Ieilly < 1076 ]l

We evaluate four versions of the approximate RDF preconditioner: each of them

Mesh Velocity DoF Pressure DoF Roniin Raverage honaw
Coarse 597,093 27,242 0.015 0.035 0.059
Medium 4,557,963 199,031 0.005 0.018 0.051
Fine 35,604,675 1,519,321 0.0026 0.0097 0.0277

Table 9: Aneurysm test case: Number of Degrees of Freedom (DoF) and mesh size
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Mesh Qopt Iteration count for agp: Qtrace Iteration count for ayqce

Coarse ~107° 50 7-107° 137.33 (6)
Medium ~5-107° 16.4 1.5-1076 17.25 (4)
Fine - - 1.76 - 10~ 9.75 (4)

Table 10: Aneurysm test case: comparison between a and opt. Inner tolerance = 10710,

corresponds to the tolerance that is used to apply ﬁ;_l, i =1,2,3 using the inner AMG-
preconditioned GMRES method, namely 107!, 1072, 1074, and 107'°. For this reason,
at each Picard iteration, the system is solved using FGMRES. Using high accuracy in
the inner solves is of course very expensive and can be avoided, as the results will confirm
in what follows. We include results for the 107 '° tolerance to show that less accuracy
in the inner solves does not cause the convergence of the outer FGMRES iteration to
deteriorate. In practice, using a large tolerance of 107! results in the fastest solution
time, about 10 times faster than using 1071, We first discuss the efficacy of the strategy
based on the trace estimation technique. Table [L0] shows the approximate value for opt
computed by successive trials, and the value of ay.qce Obtained using the trace estimation
technique. The results are obtained using 1024 processes and where Fi_l, 1 =1,2,3 have
been applied with a tolerance of 10719, Using the medium mesh, we see that we are
close to apt. We have not computed an estimation for a,,; using the fine mesh to save
resources and since the iteration count is already even better than for the medium mesh.
We observe that the values of a,,: are now much smaller than those reported for the
simple benchmark problems. While we do not have a complete explanation for this fact,
we note that already in ﬂ] it was observed that the optimal « is smaller for unsteady
problems than for steady ones, and that lower values of v and h lead to smaller values
of Qopt -

Figure 2] gives more details about how the iterations count behaves with respect to
« using the coarse and the medium meshes. The average number of Picard iterations
to solve one timestep depends on the choice of the mesh; using the coarse, the medium,
and the fine mesh, we observed 6, 4, and 4 Picard iterations to converge to the solution,
respectively. In our experiment, the inner tolerance did not affect the number of Picard
iterations.

We first report the time to build the RDF preconditioner in Figure[Bl With the coarse
mesh, strong scalability is observed up to 512 cores. With the medium and fine meshes,
the time is superlinear, thanks to the LU factorization computed on each subdomain as
explained at the beginning of Section

We report in Table [[1] the time needed to compute qce (in parenthesis, we report
the fraction w.r.t. the total time), the time to compute Fl and the total time to build
the RDF preconditioner. With all the meshes, we note that computing a,qce does not
scale at all with an increasing number of processors. In fact, the time is even increasing.
However, the value of yyqce does not vary much during the simulation. Therefore, in
practice, one can compute it once and for all using a lower number of cores than the
number used to do the simulations, at a negligible cost. The computation does not scale
because the entries of the matrices B and B” are stored by rows, which are owned by
different parallel tasks. Therefore, when we compute the product as in Equation (@), a
lot of communication is required to transpose the matrix, i.e., the rows of the matrix

14
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Figure 2: Aneurysm test case: number of GMRES iterations with respect to the choice of a

become the columns and the row entries have to be sent to the appropriate parallel task.

Building the RDF preconditioner is fairly expensive, because the number of entries
contained in the matrices Fi, 1t =1,2,3 compared to those of the matrix F;, is high. We
examined a sparse version of £ where only the entries that are already in the pattern
of F' are kept. Therefore, the number of nonzero entries of the sparse F} is the same as
that of F. Unfortunately, the resulting preconditioned FGMRES method exhibits poor
convergence, although this version of the RDF preconditioner can be built very quickly.
Future research should be aimed at finding a version that leads to good convergence rates
of FGMRES using sparse approximations of Fi, 1 =1,2,3. In this direction, we mention a
promising variant of the augmented Lagrangian approach where a Grad—Div stabilization
technique is used to build the augmented matrix; see @, @] In this approach the
augmentation is performed at the continuous level, before discretization. Experiments
show that this reduces the number of entries while preserving the convergence rates. A
similar approach may work well in the context of RDF preconditioning.

Figure Ml reports the number of iterations of FGMRES. With the coarse mesh the
number of iterations remains constant for the range of number of cores that we considered.
Nevertheless, the iterations count is quite large for all the precisions with which we apply
the RDF. It is possible that this is due to the mesh being too coarse to yield physically
meaningful solutions, and to the onset of instabilities (“wiggles”) in the corresponding
discrete solution. Using the medium or the fine mesh, however, the number of iterations
is much lower than with the coarse mesh and remains constant. We note that applying
less accurately the RDF preconditioner slightly increases the number of iterations, but
in all the considered cases, the number of iterations remains almost constant.

Finally, we show the scalability curves of the time needed to solve the linear system
(FGMRES iterations) in Figure[ll With the coarse mesh the strong scalability is observed
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Mesh Cores Computation of ayrqee Preconditioner for Fl Total time

Coarse 128 1.09 (0.12) 2.61 9.13
256 0.9 (0.22) 1.0 4.1
512 1.0 (0.34) 0.59 2.95
1024 1.72 (0.43) 0.64 3.97

Medium 128 4.77 (3.57-1073) 268.3 1336.85
256 3.16 (0.02) 52.0 158.73
512 248 (0.07) 10.74 35.33
1024 2.57 (0.19) 3.42 13.49
2048 4.29 (0.36) 1.91 11.89

Fine 1024 6.97 (5.38-1073) 240.12 1296.21
2048 7.18 (0.04) 54.48 172.55
4096 13.0 (0.22) 14.47 60.34
8192 23.22 (0.41) 9.41 56.25

Table 11: Aneurysm test case: time to build the RDF preconditioner

up to 512 cores, while the scalability is almost perfect with the medium and fine mesh.
The accuracy used to apply the RDF preconditioner is here again not affecting the slope
of the scalability curves. Therefore, it is suitable to apply the inexact version using the
inner tolerance 0.1, which as already mentioned is about 10 times faster than when using
the tolerance 10~1°. We report the average number of iterations and the time to solve
the system at each Picard iteration in Table Overall, the RDF preconditioner, while
expensive to build, is very robust and is able to make the iterative method converge to
the solutions even for very difficult cases.

To summarize, the RDF preconditioner built using  computed with the trace esti-
mate leads to a robust and scalable preconditioning technique. The main issue remains
the relatively high computation time to build it due to the number of nonzero entries in
Fl, i = 1,2,3. Therefore, finding a sparse approximation to Fl, i =1,2,3, will be the
key to obtain a more efficient version of the RDF preconditioner. It should be mentioned
that for this particular benchmark problem, numerical experiments described in ﬂﬁ] in-
dicate that an approximate SIMPLE preconditioner (see, e.g., ﬂﬁ]) leads to faster overall
solution times than RDF, mainly due to the lower cost of forming the preconditioner.
Nevertheless, for large time steps or for steady problems the performance of SIMPLE is
known to deteriorate. The purpose of these tests was mostly to assess the scalability of
the method and the effectiveness of the trace-based parameter estimation technique on
a realistic, large-scale test problem.

6. Conclusion

In this paper, we introduced a new technique to estimate the parameter o in the RDF
preconditioner. Unlike LFA, the new approach (based on the trace of the preconditioned
matrix) results in very good convergence rates for both 2D and 3D cases. Numerical
experiments on a large 3D hemodynamics problem show that RDF scales very well with
increasing core counts. Future work should focus on improving the efficiency of the pre-
conditioner. In particular, techniques to reduce fill-in in the sub-matrices that comprise
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Mesh Cores Average iteration count Time

Coarse 128 140.7 31.3
256 135.2 18.3
512 136.9 11.6
1024 139.7 14.4

Medium 128 24.5 208.0
256 23.3 37.8
512 23.2 17.5
1024 23.2 8.6
2048 23.3 5.7

Fine 1024 13.2 106.4
2048 22.3 44.2
4096 21.6 20.2
8192 21.7 11.1

Table 12: Aneurysm test case: time of the preconditioned iterations

the RDF preconditioner should be investigated.
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