Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

SUPPORTING INFORMATION

New *sp*³ diphosphine-based rhodium catalysts for the asymmetric conjugate addition of aryl boronic acids to 3-azaarylpropenones

Giorgio Facchetti,^{a*} Marco Fusè,^b Tania Pecoraro^c, Donatella Nava and Isabella Rimoldi^a

^aDepartment of Pharmaceutical Sciences, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy

^bScuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

^cDepartment of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, 20156, Italy

Corresponding author: giorgio.facchetti@unimi.it

INDEX

1. Syr	thesis of liga	nds L7-L9					1
2. substr	General ates	Procedure	for	the .3	synthesis	of	3-azaarylpropenone
3. Ger to azaar	3. General procedure for the enantioselective rhodium catalysed addition of organoboronic acids to 3- azaarylpropenones						
4. NM	R spectra of li	igands L7-L9					8
5. NM	R spectra of p	products not re	ported ir	n literatur	e		20
6. HPI	_C of the proc	lucts					
7. Cor	nputational D	etails					46

1. Synthesis of Ligand L7-L9

1.1 Preparation of (R,R)-Xylyl-ZEDPHOS, L7

A solution of Ar₂PLi (7.6 ml; 0.26 M in THF; MW=214.13g/mol; 1.98 mmol) was slowly dropped into a solution of (2*S*,5*S*,*Z*)-hex-3-ene-2,5-diyl bis(4-methylbenzenesulfonate)¹ (0.40 g; 0.94 mmol; MW=424.53 g/mol) in 10 ml of dry THF at -78 °C, under argon. After the addition the temperature was allowed to rise to room temperature and stirred for an additional 30 min. The excess of Ar₂PLi was neutralized by Na₂SO₄·10H₂O and the mixture was filtered under argon. Evaporation of the solvent followed by trituration with dry methanol afforded the chiral diphosphine **L7**-(*R*,*R*)-Xylyl-ZEDPHOS enantiomerically and chemically pure. %Yield=95%; ³¹P NMR (C₆D₆, 300 MHz) δ : -2.9 (s) ppm; ¹H NMR (C₃D₆O, 300 MHz) δ : 7.76-7.81 (m, 1H); 7.42–7.45 (m, 7H); 6.69 (d, *J* = 6.7 Hz, 4H); 5.48 (2H, m); 3.41 (2H, m); 2.28–2.32 (m, 24H); 0.46–0.53 (m, 6H) ppm; ¹³C NMR (C₆D₆, 101 MHz) δ 138.11, 137.96, 137.90, 137.80, 137.74, 137.63, 137.61, 137.57, 137.26, 137.13, 137.09, 137.04, 132.91, 132.14, 132.05, 131.82, 131.73, 131.62, 130.57, 130.38, 129.18, 129.01, 128.93, 128.01, 32.24, 32.20, 32.15, 32.11, 20.98, 20.97, 20.91, 20.86, 20.82, 17.87, 17.77, 17.70, 17.67, 13.55. MS (ESI): *m/z* calcd for [C₃₈H₄₆P₂]: 564.31; found: *m/z* 565.47 [M+H]⁺.

1.2 Synthesis of *trans*-(2S,5S,E)-hex-3-ene-2,5-diol

To a solution of (2*S*,5*S*)-3-hex3-yne-2,5-diol (20 mmol) in THF dry (20 mL) was added dropwise to a suspension of LiAlH₄ in THF anhydrous (200 mL) at 0 °C. After addition, the mixture was refluxed overnight. Then, EtOAc and Na₂SO₄·10H₂O were added cautiously. The reaction mixture was filtered nd the organic phase was dried over anhydrous Na₂SO₄. The solvent was removed and the residue was purified by flash column chromatography affording (2*S*,5*S*,E)-hex-3-ene-2,5-diol as a Colorless oil. %Yield: 70%; ¹H NMR (CDCl₃, 300 MHz): δ 5.73-5.75 (m, 2H); 4.31-3.35 (m, 2H); 1.73 (s, 2H); 1.28-1.30 (d, 6H) ppm; [α]_D²⁰= + 6.21 (c = 1.1 in CHCl₃); GC equipped with a capillary column with a chiral stationary phase MEGA DAcTButSiIBETA (25 m, internal diameter 0.35 mm); analytical method: T₁= 120°C x 20', Rt_{(E-(S,S)-7)} = 8.7 min.²

1.3 Synthesis of trans-(2S,5S,E)-hex-3-ene-2,5-diyl bis(4-methylbenzenesulfonate)

A 10% solution of 7.59 g (39.71 mmol) tosyl chloride in either THF or diethyl ether was added to a solution of 1.85 g (15.88 mmol) (2S,5S,E)-hex-3-ene-2,5-diol in THF, and the reaction mixture cooled to -20 °C. Thereafter a large excess of finely powdered sodium hydroxide was added in small portions to the vigorously stirred solution. The temperature was kept below -20 °C during the sodium hydroxide addition. To complete the reaction, the solution was stirred for another 3 h at -20 °C and then poured into ice water. The aqueous phase was extracted several times with dichloromethane. After the collected organic extracts were dried over anhydrous Na₂SO₄, the solvent was removed in vacuo and the crude product crystallized from diethyl ether. The colourless crystals had to be stored at -18 °C to prevent thermal decomposition. % Yield = 52%. ¹H NMR (CDCl₃; 300 MHz): δ 7.74-7.77(d, 4H); 7.33-7.36(d, 4H); 5.50-5.60(m, 2H); 4.92-4.49 (m, 2H); 2.46(s, 6H); 1.23 (d, 6H) ppm; [α]²⁰_D = -40 (c = 0.63 in CH₂Cl₂); Elemental analysis for C₂₀H₂₄O₆S₂: calculated C, 56.59; H, 5.70; found C, 55.52; H, 5.61;

1.4 Synthesis of L8-(R,R)-EPHOS and L9-(R,R)-Xylyl-EPHOS

L8-(*R*,*R***)-EPHOS** and **L9-(***R*,*R***)-Xylyl-EPHOS** were synthesized following the same synthetic methodology used for the preparation of **L7-(***R*,*R***)-Xylyl-ZEDPHOS**, starting from (2*S*,5*S*,E)-hex-3-ene-2,5-diyl bis(4-methylbenzenesulfonate).

L8-(*R*,*R*)-EPHOS: % yield= 65%; ³¹P NMR (300 MHz; C_3D_6O): (ppm) δ -1.85 (s); ¹H NMR (C_3D_6O , 300 MHz): δ 7.32–7.49 (m, 20H); 5.37–5.38 (m, 2H); 3.05–3.08 (m, 2H); 1.02 (m, 6H) ppm; ¹³C NMR (C_3D_6O , 300 MHz): δ 137.49, 137.39, 137.25, 137.07, 133.78, 133.58, 133.38, 131.84, 131.25, 130.94, 128.67, 128.52, 128.33, 128.04, 128.01, 34.36, 34.23, 16.88, 16.68 ppm; [α]²⁰_D= +96.9 (c = 0.13 in CH₂Cl₂); MS (ESI): *m/z* calcd for [$C_{30}H_{30}P_2$]: 452.18; found: *m/z* 453.43 [M+H]⁺.

L9-(*R*,*R***)-Xylyl-EPHOS:** % yield= 65%; ³¹P NMR (C₆D₆, 300 MHz): δ -1.62 (s) ppm; ¹H NMR (C₃D₆O, 300 MHz): δ 7.30 (d, *J* = 7.5 Hz, 8H); 6.72 (d, *J* = 8.5 Hz, 4H); 5.67–5.70 (m, 2H); 3.06–3.11 (m, 2H); 2.08 (d, *J* = 13.0 Hz, 24H); 1.00 (q, *J* = 6.86 Hz, 6H) ppm; ¹³C NMR (C₆D₆, 101 MHz) δ 138.06, 138.04, 137.86, 137.84, 137.68, 137.66, 137.55, 137.50, 137.46, 137.43, 137.39, 137.09, 137.05, 137.02, 132.21, 132.11, 132.01, 131.74, 131.72, 131.67, 131.65, 131.62, 131.56, 131.53, 131.51, 131.46, 131.44, 130.39, 130.17, 34.77, 34.73, 34.67, 34.63, 21.00, 20.93, 17.36, 17.17 ppm; [α]²⁰_D= +63 (c = 0.06 in CH₂Cl₂); MS (ESI): *m/z* calcd for [C₃₈H₄₆P₂]: 564.31; found: *m/z* 565.37 [M+H]⁺.

1.5 Synthesis of [L-PtCl₂] for Xantphos and L8

$$trans-Pt(tht)_{2}Cl_{2} + \underbrace{\downarrow}_{PPh_{2}Ph_{2}P} \circ r \xrightarrow{P} (P - P) (P - P)PtCl_{2} + 2 tht$$

Xantphos L8

A mixture of ligand (1eq.) and *trans*-Pd(tht)₂Cl₂ (MW = 442.32 g/mol; 1eq.) in argon-degassed CH₂Cl₂ (5 ml) was stirred at rt for 30 min, under an argon atmosphere; the solvent was reduced in vacuo and the Pt complex was precipitated by addition of hexane. The solvent was removed by filtration to give the corresponding complex. For [**L8**PtCl₂]: Elemental analysis for $C_{30}H_{30}P_2PtCl_2$: calculated C, 50.20; H, 4.22; found C, 50.57; H, 4.20. ³¹P NMR (CDCl₃, 300 MHz): 23.56 (s, J_{Pt-P} = 2554 Hz) ppm; FAB⁺ ($C_{30}H_{30}P_2PtCl$)⁺ 683 m/z, 100%. For [**Xantphos**PtCl₂]: Elemental analysis for $C_{39}H_{32}ClOP_2Pt$)⁺ 809 m/z, 100%, ($C_{39}H_{32}OP_2Pt$)⁺, 773 m/z, 60%. ³¹P NMR (CDCl₃, 300 MHz): 7.37 (s, J_{Pt-P} = 3692 Hz) ppm.

1.6 Synthesis of [L-PtCl₂] for L6

trans-Pt(COD)Cl₂ +

A mixture of **L6** (MW = 452.2 g/mol; 0.21 mmol) and Pt(COD)Cl₂ (MW = 373 g/mol; 0.21 mmol) in argon-degassed acetone (5 ml) was stirred at rt for 30 min, under an argon atmosphere; the solvent was reduced in vacuo and the Pt complex was precipitated by addition of hexane. The solvent was removed by filtration to give a [**L6PtCl**₂] complex as a white solid. Recrystallization of the product by slow diffusion of ether into a CH₂Cl₂-saturated solution afforded crystals suitable for X-ray structure analysis. Elemental analysis for C₃₀H₃₀P₂PtCl₂: calculated C, 50.20; H, 4.22; found C, 51.26; H, 4.66. ³¹P NMR (CDCl₃, 300 MHz): 6.75 (s, J_{Pt-P} = 3610 Hz) ppm.

1.7 Synthesis of rhodium(I) complexes

Ligand **Xantphos**, L6 or L8 (2.2 eq) was dissolved in 1 mL of THF-*d*8. The dimer $[Rh(coe)_2Cl]_2$ (1 eq) was added, and the suspension was stirred for 30 minutes. The solution was analyzed by NMR spectroscopy without further purification.

2. General Procedure for the synthesis of 3-azaarylpropenone substrates

The azaarene substrates, used in the asymmetric reaction addition,were synthetized by adding 30 mL of methanol and 5 mmol of acetophenone at 0 ° C in a round-bottom flask under magnetic stirring. Then, KOH 5% (25 mL) and 6 mmol of aldehyde (A1, A2, A3, A4) were slowly added and the reaction mixture was stirred at room temperature for 3 hours. The solvent was removed, and ethyl acetate was added. The organic layer was washed with water and brine, dried with anhydrous Na₂SO₄, filtered, concentrated and, eventually, purified. Generally, a light-yellow solid is obtained.

The analyses on products 1, 2, 3 and 4 resulted in accordance with those reported in literature.³

3. General procedure for the enantioselective rhodium catalysed addition of organoboronic acids to 3-azaarylpropenones

In a Schelnk tube, under nitrogen atmosphere, were added in the following order: 0.001 mmol of rhodium complex, 0.003 mmol of ligand (L*) and 0.6 mL of anhydrous solvent. The reaction mixture was stirred for 30 minutes, then the 3-azaarylpropenone substrate (0.1 mmol), the boronic acid (0.15 mmol), 0.05 mL of base and 0.4 ml of anhydrous solvent were added. The mixture was stirred at reflux for 12 hours. Afterwards, the mixture was quenched by dropping H_2O and ethyl acetate was added. The organic layer was concentrated under reduced pressure and the product was isolated by flash column chromatography.

1g: 1-phenyl-3-(pyridin-2-yl)-3-(p-tolyl)propan-1-one. ¹H NMR (300 MHz, CDCl₃) δ : 8.47 (s, 1H), 8.15 – 7.85 (m, 2H), 7.62 – 7.32 (m, 5H), 7.23 (d, J = 6.5 Hz, 2H), 7.07 (d, J = 22.0 Hz, 3H), 4.86 (s, 1H), 4.32 (s, 1H), 3.48 (s, 1H), 2.29 (s, 4H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 199.05, 162.61, 148.49, 140.25, 137.32, 136.28, 132.77, 129.28, 128.39, 128.08, 127.96, 123.76, 121.23, 47.15, 43.84, 21.31 ppm. MS (ESI): *m/z* calcd for [C₂₁H₁₉NO]: 301,15; found: *m/z* 302.34

 $[M+H]^+$. HPLC analysis: 9.2 min (*maj*); 11.2 min (*min*); column: Chiralpak OJ-H, eluent: 2-propanol/hexane=20/80, flow=1.0 mL/min, λ =240 nm.

1i: 3-(3-nitrophenyl)-1-phenyl-3-(pyridin-2-yl)propan-1-one. ¹H NMR (300 MHz, $CDCI_3$) δ : 8.54 (d, J = 4.6 Hz, 1H), 8.29 (s, 1H), 8.13 – 7.91 (m, 3H), 7.79 (d, J = 7.2 Hz, 1H), 7.69 – 7.36 (m, 6H), 7.28 (dd, J = 10.2, 4.2 Hz, 3H), 7.21 – 7.03 (m, 1H), 5.06 – 4.85 (m, 1H), 4.34 (dd, J = 17.8, 7.7 Hz, 1H), 3.66 (dd, J = 17.7, 5.8 Hz, 1H) ppm. ¹³C NMR (75 MHz, $CDCI_3$) δ : 197.86, 160.84, 160.36,

149.71, 148.85, 137.63, 137.19, 134.71, 133.51, 129.66, 128.54, 128.37, 124.49, 123.12, 122.59, 121.99, 47.64, 44.01, 30.18 ppm. MS (ESI): m/z calcd for [C₂₀H₁₆N₂O₃]: 332,12; found: m/z 333.39 [M+H]⁺. HPLC analysis: 35.5 min (*min*); 39.5 min (*maj*); column: Chiralpak OJ-H, eluent: 2-propanol/hexane=20/80, flow=1.0 mL/min, λ =240 nm.

1I: **3-(4-nitrophenyl)-1-phenyl-3-(pyridin-2-yl)propan-1-one.** ¹H NMR (300 MHz, CDCl₃) δ : 8.54 (d, J = 4.7 Hz, 1H), 8.13 (t, J = 8.2 Hz, 2H), 7.99 (d, J = 7.7 Hz, 2H), 7.71 – 7.37 (m, 7H), 7.16 (s, 1H), 5.02 (t, J = 6.9 Hz, 1H), 4.29 (dt, J = 63.8, 31.9 Hz, 1H), 3.78 – 3.57 (m, 2H), 3.49 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 204.80, 169.44, 145.96, 139.97, 138.47, 133.04, 129.71, 129.05, 128.58, 128.10, 125.24, 123.86, 121.58, 116.25, 47.79, 43.54 ppm. MS (ESI):

m/z calcd for $[C_{20}H_{16}N_2O_3]$: 332,12; found: m/z 333.27 $[M+H]^+$. HPLC analysis: 24.9 min (*maj*); 30.4 min (*min*); column: Chiralpak OJ-H, eluent: 2-propanol/hexane=20/80, flow=1.0 mL/min, λ =240 nm.

2b: 3-(3-methoxyphenyl)-1-phenyl-3-(pyridin-3-yl)propan-1-one. ¹H NMR (300 MHz, CDCl₃) δ : 8.63 (d, J = 2.2 Hz, 1H), 8.46 (dd, J = 4.9, 1.6 Hz, 1H), 8.17 – 7.84 (m, 3H), 7.79 – 7.38 (m, 6H), 7.30 – 7.08 (m, 3H), 6.95 – 6.53 (m, 4H), 4.83 (t, J = 7.3 Hz, 1H), 3.75 – 3.72 (m, 5H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 198.27, 159.59, 147.85, 146.84, 143.67, 139.42, 132.88, 129.64, 127.98, 123.66, 120.12, 114.06, 111.87, 54.80, 44.39, 44.07 ppm. MS (ESI): *m/z* calcd

for $[C_{21}H_{19}NO_2]$:317,14; found: *m/z* 318.24 [M+H]⁺. HPLC analysis: 11.9 min (*maj*); 16.2 min (*min*); column: Chiralpak AD, eluent: 2-propanol/hexane=20/80, flow=1.0 mL/min, λ =240 nm.

2c: 3-(4-methoxyphenyl)-1-phenyl-3-(pyridin-3-yl)propan-1-one. ¹H NMR (300 MHz, CDCl₃) δ :8.62 (s, 1H), 8.48 (d, *J* = 3.4 Hz, 1H), 8.11 – 7.79 (m, 3H), 7.74 – 7.37 (m, 5H), 7.34 – 7.07 (m, 4H), 7.03 – 6.68 (m, 3H), 4.81 (t, *J* = 7.3 Hz, 1H), 3.76 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 197.45, 158.93, 148.41, 146.43, 136.95, 135.20, 134.74, 133.61, 128.70, 128.04, 123.75, 114.17, 113.23, 55.07, 44.80, 42.57 ppmn. MS (ESI): *m/z* calcd for [C₂₁H₁₉NO₂]: 317,14; found: *m/z* 318.32 [M+H]⁺. HPLC analysis: 36.1 min (*maj*); 40.9 min (*min*);

column: Chiralpak AD, eluent: 2-propanol/hexane=10/90, flow=1.0 mL/min, λ =240 nm.

2d: 3-(3-bromophenyl)-1-phenyl-3-(pyridin-3-yl)propan-1-one. ¹H NMR (300 MHz, CDCl₃) δ :8.52 (d, J = 25.4 Hz, 1H), 8.50 – 8.26 (m, 1H), 8.11 – 7.86 (m, 2H), 7.69 – 6.88 (m, 10H), 4.83 (t, J = 7.2 Hz, 1H), 3.85 – 3.52 (m, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 189.92, 150.70, 149.56, 144.82, 137.97, 134.29, 133.26, 132.91, 130.33, 128.97, 127.99, 126.84, 126.01, 124.25, 122.88, 44.12 ppm. MS (ESI): *m/z* calcd for [C₂₀H₁₆BrNO]: 365,04; found: *m/z* 366.31 [M+H]⁺.

HPLC analysis: 16.0 min (*maj*); 23.3 min (*min*); column: Chiralpak AD, eluent: 2-propanol/hexane=20/80, flow=1.0 mL/min, λ =240 nm.

2e: 3-(4-bromophenyl)-1-phenyl-3-(pyridin-3-yl)propan-1-one. ¹H NMR (300 MHz, cdcl₃) δ : 8.55 (d, J = 2.3 Hz, 1H), 8.45 (dd, J = 4.8, 1.6 Hz, 1H), 7.99 – 7.80 (m, 2H), 7.70 – 7.35 (m, 7H), 7.24 – 6.90 (m, 4H), 4.81 (t, J = 7.3 Hz, 1H), 3.74 (t, J = 8.8 Hz, 2H) ppm. ¹³C NMR (75 MHz, cdcl₃) δ 196.62, 149.30, 148.04, 141.85, 138.95, 136.67, 135.23, 133.37, 132.02, 129.49,128.69, 127.96, 123.63, 120.75, 44.05, 43.07 ppm. MS (ESI): *m/z* calcd for [C₂₀H₁₆BrNO]: 365,04; found: *m/z* 366.32 [M+H]⁺. HPLC analysis: 32.2 (*maj*); 39.1 min (*min*); column:

Chiralpak OJ-H, eluent: 2-propanol/hexane=10/90, flow=1.0 mL/min, λ=240 nm.

2f: 1-phenyl-3-(pyridin-3-yl)-3-(m-tolyl)propan-1-one. ¹H NMR (300 MHz, CDCl₃) δ :8.56 (s, 1H), 8.51 – 8.36 (m, 1H), 8.00 – 7.88 (m, 2H), 7.67 – 7.53 (m, 2H), 7.49 – 7.10 (m, 9H), 4.83 (t, *J* = 7.2 Hz, 1H), 3.73 (t, *J* = 17.5 Hz, 2H), 2.31 (d, *J* = 9.0 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 190.18, 153.21, 149.91, 148.72, 145.65, 140.81, 140.29, 136.60, 133.98, 131.26, 129.17, 128.23, 127.35, 125.88, 124.93, 123.41, 44.11, 42.95 ppm. MS (ESI): *m/z* calcd for

 $[C_{21}H_{19}NO]$: 301,15; found: *m/z* 302.34 $[M+H]^+$. HPLC analysis: 15.6 min (*min*); 20.4 min (*maj*); column: Chiralpak OJ-H, eluent: 2-propanol/hexane=20/80, flow=1.0 mL/min, λ =240 nm.

2g: 1-phenyl-3-(pyridin-3-yl)-3-(p-tolyl)propan-1-one. ¹H NMR (300 MHz, CDCl₃) δ :8.57 (s, 1H), 8.43 (s, 1H), 7.65 – 7.49 (m, 3H), 7.45 (dd, *J* = 8.1, 6.8 Hz, 2H), 7.18 – 6.96 (m, 5H), 4.82 (t, *J* = 7.3 Hz, 1H), 3.71 (t, *J* = 17.5 Hz, 2H), 2.28 (d, *J* = 9.0 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ :197.14, 148.68, 147.09, 139.39, 136.63, 136.02, 133.01, 132.77, 130.34, 129.41, 128.48, 127.87, 127.57, 123.96, 44.21, 43.49, 21.31 ppm. MS (ESI): *m/z* calcd for [C₂₁H₁₉NO]: 301,15; found: *m/z* 302.27 [M+H]⁺. HPLC analysis: 13.6 min (*maj*);

14.8 min (*min*); column: Chiralpak OD-H, eluent: 2-propanol/hexane=20/80, flow=1.0 mL/min, λ =240 nm.

2h: 3-(3,5-dimethylphenyl)-1-phenyl-3-(pyridin-3-yl)propan-1-one. ¹H NMR (300 MHz, CDCI3) δ : 8.57 (d, J = 2.3 Hz, 1H), 8.42 (dd, J = 4.8, 1.6 Hz, 1H), 8.05 – 7.83 (m, 2H), 7.66 – 7.50 (m, 2H), 7.45 (ddd, J = 8.2, 2.3, 0.8 Hz, 2H), 7.20 (ddd, J = 7.9, 4.8, 0.7 Hz, 1H), 6.86 (d, J = 6.4 Hz, 3H), 4.76 (t, J = 7.3 Hz, 1H), 3.82 – 3.68 (m, 2H), 2.26 (t, J = 3.7 Hz, 7H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ :197.02, 149.58, 147.46, 142.66, 139.64, 137.85, 136.67, 135.53,

132.48, 128.61, 127.99, 125.22, 123.39, 44.15, 42.96, 21.29 ppm. MS (ESI): *m/z* calcd for [C₂₂H₂₁NO]: 315,16; found: *m/z* 316.35 [M+H]⁺. HPLC analysis: 7.6 min (*min*); 10.8 min (*maj*); column: Chiralpak OJ-H, eluent: 2-propanol/hexane=10/90, flow=1.0 mL/min, λ =240 nm.

2i: 3-(3-nitrophenyl)-1-phenyl-3-(pyridin-3-yl)propan-1-one. ¹H NMR (300 MHz, CDCl₃) δ 8.56 (s, 1H), 8.52 – 8.40 (m, 1H), 8.00 – 7.83 (m, 2H), 7.71 – 7.51 (m, 2H), 7.52 – 7.31 (m, 4H), 7.30 – 7.10 (m, 3H), 4.98 (t, *J* = 7.2 Hz, 1H), 3.83 (d, *J* = 7.2 Hz, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 193.70, 150.78, 149.90, 149.28, 140.82, 136.98, 136.06, 134.83, 134.31, 133.01, 128.86, 128.22, 127.90, 126.18, 125.56, 124.36, 43.84, 43.18 ppm. MS (ESI): *m/z* calcd

for $[C_{20}H_{16}N_2O_3]$: 332,12; found: *m/z* 333.41 [M+H]⁺. HPLC analysis: 27.9 min (*maj*); 35.3 min (*min*); column: Chiralpak OJ-H, eluent: 2-propanol/hexane=20/80, flow=1.0 mL/min, λ=240 nm.

2I: 3-(4-nitrophenyl)-1-phenyl-3-(pyridin-3-yl)propan-1-one. ¹H NMR (300 MHz, CDCl₃) δ 8.55 (d, *J* = 2.3 Hz, 1H), 8.45 (dd, *J* = 4.8, 1.6 Hz, 1H), 8.05 – 7.84 (m, 2H), 7.66 – 7.34 (m, 7H), 7.23 – 7.06 (m, 3H) 4.98 (t, *J* = 7.2 Hz, 1H), 3.90 – 3.68 (m, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 193.50, 144.51, 140.64, 137.84, 133.63, 132.97, 132.38, 129.54, 128.37, 127.94, 123.92, 123.08, 122.49, 118.47, 44.01, 43.01 ppm. MS (ESI): *m/z* calcd for [C₂₀H₁₆N₂O₃]: 332,12; found: *m/z* 333.35 [M+H]⁺. HPLC analysis: 26.6 min (*maj*); 33.8 min

(*min*); column: Chiralpak OJ-H, eluent: 2-propanol/hexane=20/80, flow=1.0 mL/min, λ=240 nm.

3a: 3-(1-methyl-1H-imidazol-2-yl)-1,3-diphenylpropan-1-one. ¹H NMR (300 MHz, CDCl₃) δ : 7.98 (dt, *J* = 8.5, 1.7 Hz, 1H), 7.60 – 7.44 (m, 1H), 7.41 – 7.33 (m, 1H), 6.91 (t, *J* = 10.9 Hz, 1H), 6.76 (d, *J* = 1.2 Hz, 1H), 4.82 (dd, *J* = 8.3, 5.4 Hz, 1H), 4.34 (dd, *J* = 18.0, 8.3 Hz, 1H), 3.47 (s, 2H) ppm. ¹³C NMR (75 MHz,CDCl₃) δ : 197.78, 149.19, 141.71, 136.39, 133.21, 128.78, 128.43, 128.17, 127.88, 126.88, 126.72, 120.90, 45.34, 37.99, 32.43 ppm. MS (ESI):

m/z calcd for [C₁₉H₁₈N₂O]: 290,14; found: *m*/z 291.24 [M+H]⁺. HPLC analysis: 13.8 min (*maj*); 20.3 min (*min*); column: Chiralpak AD, eluent: 2-propanol/hexane=10/90, flow=1.0 mL/min, λ =240 nm.

3b: 3-(3-methoxyphenyl)-3-(1-methyl-1H-imidazol-2-yl)-1-phenylpropan-1-one

1H NMR (500 MHz,CDCl₃) δ : 7.85 – 7.57 (m, 1H), 7.50 – 7.17 (m, 2H), 6.92 (dd, J = 54.8, 4.1 Hz, 2H). 5.16 (s, 1H), 3.72 (s, J = 5.9 Hz, 3H), 3.67 (s, 3H), 3.55 (dd, J = 18.0, 6.6 Hz, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 197.36, 160.39, 158.92, 148.72, 136.66, 133.03, 130.39, 128.53, 126.19, 121.04,

119.58, 113.80, 112.62, 54.94, 43.84, 37.56, 32.72 ppm. MS (ESI): m/z calcd for [C₂₀H₂₀N₂O₂]: 320,15; found: m/z 321.28 [M+H]⁺. HPLC analysis: 11.4 min (*min*); 13.4 min (*maj*); column: Chiralpak OJ-H, eluent: 2-propanol/hexane=20/80, flow=1.0 mL/min, λ =240 nm.

3c: 3-(4-methoxyphenyl)-3-(1-methyl-1H-imidazol-2-yl)-1-phenylpropan-1one. ¹H NMR (300 MHz, CDCl₃) δ : 8.08 – 7.83 (m, 1H), 7.58 – 7.44 (m, 1H), 7.40 (dd, J = 10.3, 4.6 Hz, 1H), 7.19 (dd, J = 9.2, 6.3 Hz, 1H), 7.02 – 6.61 (m, 2H), 4.88 – 4.61 (m, 1H), 4.29 (dd, J = 18.0, 8.0 Hz, 1H), 3.75 (s, 1H), 3.54 (dd, J = 17.5, 5.3 Hz, 1H), 3.53 – 3.37 (m, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 197.72, 158.74, 149.29, 136.89, 132.63, 129.50, 129.01, 128.18, 127.42, 126.30, 121.16, 114.11, 113.30, 55.21, 44.56, 37.31, 32.84 ppm. MS (ESI): *m/z* calcd for [C₂₀H₂₀N₂O₂]: 320,15; found: *m/z* 321.35 [M+H]⁺. HPLC analysis: 16.8

min (*maj*); 29.2 min (*min*); column: Chiralpak AD, eluent: 2-propanol/hexane=10/90, flow=1.0 mL/min, λ =240 nm.

3d: 3-(1-methyl-1H-imidazol-2-yl)-1-phenyl-3-(m-tolyl)propan-1-one. ¹H NMR (300 MHz, CDCl₃) δ : 8.11 – 7.89 (m, 1H), 7.61 – 7.46 (m, 1H), 7.42 (tt, *J* = 8.2, 1.2 Hz, 1H), 7.21 – 6.89 (m, 3H), 6.74 (t, *J* = 17.5 Hz, 1H), 4.82 (dd, *J* = 8.4, 5.3 Hz, 1H), 3.62 (s, 3H), 2.36 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ :198.51, 148.95, 139.34, 136.98, 133.02, 129.17, 128.86, 128.21, 127.94, 127.37, 124.67, 120.74, 44.15, 38.41, 32.41, 21.32 ppm. MS (ESI): *m/z* calcd

for $[C_{20}H_{20}N_2O]$: 304,16; found: m/z 305.32 $[M+H]^+$. HPLC analysis: 6.2 min (*maj*); 7.1 min (*min*); column: Chiralpak OJ-H, eluent: 2-propanol/hexane=20/80, flow=1.0 mL/min, λ =240 nm.

4c: 3-(4-methoxyphenyl)-3-(1-methyl-1H-imidazol-5-yl)-1-phenylpropan-1one. ¹H NMR (300 MHz, CDCl₃) δ : 8.11 (d, J = 8.0 Hz, 2H), 7.74 (d, J = 3.7 Hz, 2H) 7.40–7.46 (m, 2H), 7.28-7.33 (m, 3H), 4.67 (t, J = 4.8, 1H), 3.75 (s, 3H), 3.55 (s, 3H), 3.96 (dd, J = 8.3, 4.7 Hz, 1H), 3.53 (dd, J = 6.7, 3.8 Hz, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 198.56, 143.62, 142.03, 139.28, 137.42, 136.53, 135.25, 133.66, 133.01, 129.09, 128.43, 127.53, 125.38, 121.32, 114.23, 113.01, 56.43, 46.56, 36.11, 31.46 ppm. MS (ESI): *m/z* calcd for [C₂₀H₂₀N₂O]: 304,16; found: *m/z* 305.32 [M+H]⁺. HPLC

analysis: 22.0 min (*min*); 26.4 min (*maj*); column: Chiralpak OJ-H, eluent: 2-propanol/hexane=20/80, flow=1.0 mL/min, λ=240 nm.

4. NMR Spectra of ligands L7-L9

Figure S2. ¹³C-NMR spectrum of ligand L7.

Figure S3. ³¹P-NMR spectrum of ligand L7.

Figure S5. ¹³C-NMR spectrum of ligand L8.

Figure S7. Inverse correlation ³¹P-¹H NMR with gradient of ligand L8.

Figure S8: HSQC spectrum of ligand L8.

Figure S10. ¹³C-NMR spectrum of ligand L9.

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1 (ppm)

Figure S13. ³¹P-NMR spectrum of [XantphosPtCl₂].

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1 (ppm)

Figure S14. ³¹P-NMR spectrum of [L6PtCl₂].

Figure S15. ¹H-NMR and ³¹P-NMR spectrum of rhodium complex with Xantphos.

Figure S16. ¹H-NMR and ³¹P-NMR spectrum of rhodium complex with L6.

Figure S17. ¹H-NMR and ³¹P-NMR spectrum of rhodium complex with L8.

5. NMR spectra of products not reported in literature

Figure S18: ¹H- and ¹³C-NMR spectra of **1g**.

Figure S19: ¹H- and ¹³C-NMR spectra of 1i.

Figure S20: ¹H- and ¹³C-NMR spectra of 1I.

Figure S21: ¹H- and ¹³C-NMR spectra of 2b.

Figure S22: ¹H- and ¹³C-NMR spectra of 2c.

Figure S23: ¹H- and ¹³C-NMR spectra of 2d.

Figure S24: ¹H- and ¹³C-NMR spectra of 2e.

Figure S25: ¹H- and ¹³C-NMR spectra of 2f.

Figure S26: ¹H- and ¹³C-NMR spectra of 2g.

Figure S27: ¹H- and ¹³C-NMR spectra of 2h.

Figure S28: ¹H- and ¹³C-NMR spectra of 2i.

Figure S29: ¹H- and ¹³C-NMR spectra of 2I.

Figure S30: ¹H- and ¹³C-NMR spectra of 3a.

Figure S31: ¹H- and ¹³C-NMR spectra of 3b.

Figure S33: ¹H- and ¹³C-NMR spectra of 3d.

Figure S34: ¹H- and ¹³C-NMR spectra of 4a.

6. HPLC spectra of products

7. Computational Details

Molecular models were realized using the Jmol software[**Jmol: an open-source Java viewer for chemical structures in 3D.**⁴ starting from the X-ray crystal structure reported in literature. The systems were then optimized employing the GFN2-xTB method⁵ including implicit solvation model (GBSA) as implemented in the xTB standalone programs.⁶

The molecular systems were then reoptimized and the ³¹P chemical shifts were computed at the B3LYP^{7, 8} level of theory, also including empirical dispersion D3BJ,⁹ in conjunction with 6-31G(d) basis set and LANL2DZ pseudo potential on Pt atoms. Bulk solvent effects were again accounted for using CPCM.¹⁰ To compute the ³¹P chemical shifts, PH₃ spectra was simulated at the same level of theory and then used as the reference (-266.1 ppm). DFT computations were performed using the G16.C01 version of the Gaussian suite of programs.¹¹

Molecular representations and computing of hydrogen bonds were performed with the UCSF-Chimera package.¹²

Table 1. Experimental Simulated chemical shifts (δ in ppm) in CDCl3 of the [(PP)Pt(II)Cl2] complexes. The mean values of the two phosphorus atoms are reported.

Complex	Simulated	Experimental
cis-[(Xanthpos)PtCl ₂]	5.9	7
trans-[(Xanthpos)PtCl ₂]	-5.1	
cis-[(EPHOS)PtCl ₂]	30	23
trans-[(EPHOS)PtCl ₂]	6	
cis-[(ZEDPHOS)PtCl ₂]	5.9	7

Cartesian coordinates in XYZ format

In the following the electronic energy in Hartree at B3LYP-D3(BJ) /6-31G(d) level of theory are reported in the comment line of xyz format (Angstrom).

cis-[(ZEDPHOS)PtCl₂]

65			
Enegy:	-2883.85030376		
С	1.591692	-0.003555	2.386701
Н	2.587979	0.204163	2.790028
С	0.710683	1.171732	2.731264
Н	1.249362	2.089108	2.954255
С	-0.624043	1.234328	2.709114
Н	-1.094262	2.191246	2.927258
С	-1.575793	0.116838	2.384485
Н	-1.139680	-0.840520	2.664793
С	1.196323	-1.401914	2.895670
Н	0.788559	-1.333780	3.908709
Н	2.078291	-2.045760	2.921618
Н	0.461918	-1.897614	2.254948
С	-2.905343	0.280534	3.134062
Н	-2.711800	0.236893	4.211280
Н	-3.614257	-0.511368	2.880610
Н	-3.367108	1.247192	2.914899
С	2.576622	1.624690	0.198470
С	3.482277	2.211273	1.098767
Н	3.780480	1.692289	2.003630
С	4.016169	3.473752	0.843675
Н	4.715199	3.913099	1.548892
С	3.649603	4.169324	-0.310374
Н	4.062492	5.154557	-0.505551
С	2.752306	3.593685	-1.210672
Н	2.464587	4.126037	-2.112147
С	2.219360	2.328650	-0.961067
Н	1.535745	1.879964	-1.671245
С	3.132337	-1.280088	0.328169

С	4.494086	-0.963496	0.389620
Н	4.813432	0.068975	0.477622
С	5.450749	-1.977711	0.313468
Н	6.505995	-1.723856	0.351628
С	5.053663	-3.308588	0.179512
Н	5.799844	-4.095277	0.117883
С	3.694349	-3.627151	0.112262
Н	3.380459	-4.659837	-0.006861
С	2.736965	-2.617948	0.179438
Н	1.681985	-2.859712	0.094952
С	-2.550753	1.606064	0.101643
С	-1.730268	2.613320	-0.428213
Н	-0.690752	2.395856	-0.646828
С	-2.247602	3.883763	-0.676397
Н	-1.603185	4.654280	-1.088757
С	-3.588791	4.159758	-0.403220
Н	-3.993323	5.147365	-0.604061
С	-4.410490	3.163163	0.127066
Н	-5.454490	3.371923	0.340523
С	-3.895439	1.892622	0.385109
Н	-4.543823	1.128656	0.797959
С	-3.010569	-1.330000	0.344930
С	-2.768412	-2.536716	1.019741
Н	-1.886385	-2.653162	1.642450
С	-3.650577	-3.607915	0.888229
Н	-3.451934	-4.536105	1.415514
С	-4.781242	-3.486331	0.077594
Н	-5.468769	-4.320487	-0.025853
С	-5.018118	-2.294112	-0.608354
Н	-5.886689	-2.198667	-1.252962
С	-4.135078	-1.221724	-0.483277
Н	-4.309371	-0.313324	-1.045064
Р	1.832298	-0.013485	0.533255
Р	-1.782592	0.009184	0.525797
Pt	0.031699	-0.381486	-0.836018
CI	1.714374	-0.758801	-2.559132
CI	-1.661234	-0.587625	-2.583278

cis-[(EPHOS)PtCl₂]

65 Enegy:	-2883.82861122		
С	0.556542	-0.030017	2.755552
С	-0.640313	0.558378	2.802032
Н	-0.705387	1.644843	2.742310
С	-1.889177	-0.189061	2.478222
Н	-1.734589	-1.262885	2.635286
С	-3.147062	0.287400	3.204892
Н	-3.063323	0.020728	4.264108
Н	-4.055044	-0.171715	2.806328
Н	-3.248585	1.374325	3.143748
С	-2.080210	1.797243	0.292145
С	-1.031809	2.510719	-0.302116
Н	-0.153846	1.983271	-0.646138
С	-1.117056	3.892249	-0.475572
Н	-0.290736	4.422619	-0.939528
С	-2.260220	4.576636	-0.062361
Н	-2.332005	5.651880	-0.196796
С	-3.322094	3.871903	0.512137
Н	-4.221738	4.396571	0.819565
С	-3.237482	2.491439	0.686971
Н	-4.079907	1.955256	1.107751
С	-3.521998	-0.701712	0.099014
С	-3.963327	-1.887252	0.703512
Н	-3.348776	-2.386385	1.446022
С	-5.189452	-2.444581	0.346051
Н	-5.522840	-3.361545	0.822624
С	-5.981885	-1.828243	-0.624919
Н	-6.936667	-2.263701	-0.904395
С	-5.540168	-0.655723	-1.240135
Н	-6.146549	-0.177928	-2.003848
С	-4.314518	-0.094657	-0.883048
Н	-3.973777	0.809538	-1.374690
Р	-1.903912	-0.003429	0.580333
Pt	-0.044010	-0.845613	-0.583850

CI	1.626977	-1.679886	-2.155843
CI	-1.630163	-2.073395	-1.935792
С	1.762123	0.699733	2.267445
Н	1.533299	1.769812	2.224589
С	3.048192	0.457661	3.063265
Р	1.831348	0.140773	0.438544
Н	2.930121	0.897740	4.059445
Н	3.927209	0.903579	2.590160
Н	3.244468	-0.611011	3.180785
С	2.424140	1.618230	-0.467188
С	3.212015	-1.052034	0.486310
С	3.110266	2.650360	0.192599
С	2.154407	1.745577	-1.839866
С	4.523517	-0.668130	0.191003
С	2.950693	-2.353526	0.937898
Н	3.337911	2.578448	1.249491
С	3.513454	3.789146	-0.505335
С	2.555810	2.887827	-2.531286
Н	1.632825	0.951163	-2.360285
Н	4.730357	0.334594	-0.167815
С	5.568350	-1.580980	0.348532
С	3.997412	-3.257181	1.103996
Н	1.927628	-2.661785	1.133133
Н	4.042680	4.579364	0.018585
С	3.232488	3.913015	-1.866854
Н	2.335776	2.975015	-3.590903
Н	6.584089	-1.281148	0.107925
С	5.308734	-2.872243	0.808854
Н	3.789222	-4.264894	1.450962
Н	3.540106	4.803305	-2.407263
Н	6.123071	-3.580283	0.930994
Н	0.622179	-1.118436	2.782329

trans-[(EPHOS)PtCl₂]

65			
Enegy:	-2883.81032819		
С	-0.585970	0.511067	2.390657
С	0.533017	-0.218420	2.492078
Н	0.459276	-1.298399	2.591862
С	1.898805	0.327476	2.184247
Н	1.854304	1.420546	2.226672
С	2.993833	-0.161903	3.133269
Н	2.700808	0.071882	4.162792
Н	3.948925	0.334097	2.938207
Н	3.139365	-1.243571	3.060172
С	3.366666	-1.385768	0.039223
С	3.014057	-2.334245	-0.932164
Н	2.065399	-2.241731	-1.446888
С	3.872683	-3.392673	-1.231324
Н	3.585234	-4.119950	-1.984650
С	5.092189	-3.515276	-0.564831
Н	5.758517	-4.341707	-0.794480
С	5.461645	-2.564143	0.389668
Н	6.417851	-2.643043	0.898452
С	4.609698	-1.501364	0.684936
Н	4.929576	-0.751157	1.396796
С	3.242571	1.485263	-0.166295
С	2.806461	2.773351	0.185106
Н	1.882054	2.907171	0.735063
С	3.537117	3.896154	-0.197408
Н	3.188135	4.884909	0.085380
С	4.703737	3.751854	-0.951747
Н	5.271048	4.628110	-1.251518
С	5.130479	2.477636	-1.327188
Н	6.031476	2.355760	-1.921315
С	4.405282	1.350043	-0.939482
Н	4.749899	0.366561	-1.236619
Р	2.237603	0.027570	0.302879
Pt	0.000923	-0.155896	-0.478736
С	-1.956771	-0.071429	2.161755
Н	-1.934110	-1.143744	2.384786
С	-3.064744	0.629109	2.955703
Р	-2.229398	-0.043701	0.260781
Н	-2.912046	0.449497	4.025442

CI	0.027305	1.988772	-1.486988
CI	-0.108481	-2.472206	0.190271
cie_[(Yantnhae)Di		
CI3-[[zaniphos/Fi		
77			
Enegy:	-3303.28708563		
C	2.204525	1.416666	-0.698258
С	3 368831	1 821349	-1 368064
ĉ	3 53/33/	3 158225	_1 732004
č	2 550526	1 112206	1 420240
	2.009020	4.113300	-1.430219
C	1.399187	3.747886	-0.744008
C	1.271843	2.402214	-0.399109
С	0.266088	4.683049	-0.309425
С	-1.036544	3.904177	-0.520220
С	-1.018037	2.541470	-0.212977
С	-2.089142	1.675274	-0.398022
Ċ	-3 291775	2 242004	-0 853209
č	-3 360929	3 605056	_1 137182
ĉ	2 241225	1 128300	0.000762
	-2.241223	4.420390	-0.990702
	0.279262	6.005344	-1.083987
C	0.429202	4.977667	1.206151
C	-3.494296	-0.697091	-0.701377
С	-3.674249	-0.854683	-2.082893
С	-4.935760	-1.141650	-2.593512
С	-6.026589	-1.283550	-1.729926
С	-5.849228	-1.131204	-0.355873
С	-4.585686	-0.831480	0.160250
С	3.425740	-1.083624	-0.626172
Ċ	3,639580	-1,425530	-1.969584
Ċ.	4 882056	-1 899150	-2 378715
c.	5 916270	-2 049873	-1 449371
ĉ	5 702668	_1 710532	-0 112/81
	1 460500	1 020774	-0.112401
	4.400300	-1.230774	0.300432
	-1.915101	-0.331353	1.7 19244
C	-2.056944	-1.634743	2.226487
C	-2.075224	-1.844/48	3.602765
С	-1.923410	-0.768882	4.481465
С	-1.763169	0.521515	3.978740
С	-1.767645	0.743823	2.600898
С	1.872078	-0.206672	1.672501
С	2.335886	0.922058	2.359527
С	2.330746	0.943048	3.754227
Ċ	1 872204	-0 164085	4 469118
c.	1 422706	-1 295927	3 787024
ĉ	1 / 15797	1 210076	2 20/266
0	0.440000	1 075420	2.334200
	0.142092	0.205704	0.200009
	1.030519	-0.303/84	-0.10401/
P	-1.860551	-0.135464	-0.099864
н	4.133781	1.095856	-1.612493
Н	4.434400	3.459217	-2.259300
Н	2.711425	5.144293	-1.731166

н	-4.063436	0.274011	2.686356
Н	-3.045972	1.709255	2.785593
С	-3.322809	-1.439676	-0.153629
С	-3.230840	1.449134	-0.053480
С	-4.210561	-2.021788	0.760210
С	-3.268060	-1.924948	-1.468745
С	-4.529528	1.364537	-0.574402
С	-2.694199	2.710691	0.253203
Н	-4.262020	-1.666717	1.783130
С	-5.038218	-3.071855	0.359661
С	-4.104056	-2.965721	-1.868629
Н	-2.557974	-1.492456	-2.167855
Н	-4.956493	0.397663	-0.815501
С	-5.280214	2.523286	-0.781262
С	-3.451447	3.862958	0.055281
Н	-1.680987	2.792026	0.628164
Н	-5.720156	-3.521531	1.075280
С	-4.989658	-3.541503	-0.954040
Н	-4.055000	-3.335323	-2.888469
Н	-6.284530	2.445818	-1.187410
С	-4.745717	3.772396	-0.464033
Н	-3.027057	4.832776	0.297617
Н	-5.635152	-4.358440	-1.262929
Н	-5.332152	4.672539	-0.623448
Н	-0.502527	1.589898	2.252010
CI	0.027305	1.988772	-1.486988
CI	-0.108481	-2.472206	0.190271

CI	1.416128	-3.400536	-0.886397
trans	-[(Xantphos)PtCl ₂]	
		/	
77			
Enegy:	-3303.27870807		
С	2.278419	1.359153	-0.342143
С	3.449973	1.961600	-0.823038
С	3.515120	3.335452	-1.035258
С	2.410109	4.139002	-0.755547
С	1.230140	3.581762	-0.259452
С	1.178945	2.194607	-0.073094
С	-0.000070	4.390103	0.155487
С	-1.230252	3.581729	-0.259442
C	-1.179022	2.194579	-0.073085
C	-2.278477	1.359096	-0.342128
C	-3.450047	1.961515	-0.823022
C	-3.515228	3.335368	-1.035237
C	-2.410238	4.138944	-0.755526
	-0.000118	5.798959	-0.449852
	-0.000072	4.513292	1.704418
	-3.531550	-1.15/401	-1.164054
	-3.149212	-1.704124	-2.39/481
	-4.113001	-2.230340	-3.252570
	-5.439110	-2.230311	-2.000300
	-1 88/033	-1 16/802	-0.700654
	3 531525	-1 157340	-0.790034
c C	3 149148	-1 704166	-2 397481
c C	4 112999	-2 238602	-3 252586
č	5.459054	-2.238278	-2.880665
Č	5.843531	-1.702816	-1.648889
Ċ	4.884928	-1.164750	-0.790779
С	-2.881801	-0.675786	1.609905
С	-3.317802	-1.945593	2.018254
С	-3.771222	-2.144314	3.319928
С	-3.776883	-1.083964	4.230533
С	-3.330059	0.176656	3.832786
С	-2.884335	0.382717	2.526168
С	2.881879	-0.675712	1.609857
С	2.884363	0.382782	2.526131
С	3.330151	0.176741	3.832730
C	3.777087	-1.083849	4.230447
C	3.771476	-2.144190	3.319830
C	3.317994	-1.945489	2.018174
0	-0.000030	1.641909	0.399855

н	-4.163159	1.619073	-1.002802
н	-4.295121	4.027744	-1.493959
н	-2.313753	5.479477	-1.248076
н	1.217105	6.541753	-0.911538
н	-0.528423	6.659691	-0.742673
н	0.164205	5.843715	-2.160616
н	0.434456	4.052535	1.789636
н	-0.396440	5.604825	1.559586
Н	1.372377	5.504407	1.387856
Н	-2.820475	-0.774984	-2.748160
Н	-5.066430	-1.271717	-3.663735
Н	-7.009292	-1.517381	-2.129527
Н	-6.692095	-1.244247	0.320032
Н	-4.454260	-0.705800	1.229221
Н	2.826338	-1.339956	-2.682969
н	5.038982	-2.168941	-3.418896
Н	6.882313	-2.430430	-1.768801
Н	6.500142	-1.841541	0.614953
н	4.300088	-0.970860	1.340924
н	-2.146315	-2.471039	1.539177
Н	-2.195466	-2.853104	3.988339
Н	-1.923923	-0.938091	5.554636
Н	-1.635390	1.360221	4.656893
Н	-1.656525	1.752566	2.220892
Н	2.699927	1.783405	1.809956
Н	2.685502	1.824956	4.280351
Н	1.863792	-0.144527	5.555319
Н	1.059054	-2.157415	4.337556
н	1.056974	-2.194173	1.860863
Pt	-0.073594	-1.530456	-0.726257
CI	-1.772608	-3.197532	-1.063802
	1 116100	2 100526	0 006207

Р	2.236500	-0.462659	-0.081854
Р	-2.236501	-0.462708	-0.081835
Н	4.310333	1.343959	-1.052316
Н	4.427433	3.780666	-1.419395
Н	2.475085	5.207996	-0.921217
Н	-4.310392	1.343853	-1.052297
Н	-4.427553	3.780563	-1.419368
Н	-2.475237	5.207940	-0.921189
Н	0.877162	6.359692	-0.115627
Н	-0.877476	6.359605	-0.115679
Н	-0.000085	5.770441	-1.544180
Н	-0.000039	3.528650	2.180290
Н	-0.890157	5.057996	2.037214
Н	0.889980	5.058053	2.037209
Н	-2.102274	-1.699727	-2.681555
Н	-3.810720	-2.660020	-4.206601
Н	-6.207084	-2.659799	-3.545814
Н	-6.888638	-1.707391	-1.353469
Н	-5.185524	-0.761685	0.170825
Н	2.102197	-1.699835	-2.681501
Н	3.810607	-2.660151	-4.206573
Н	6.207006	-2.659774	-3.545910
Н	6.888629	-1.707196	-1.353662
Н	5.185550	-0.761475	0.170661
Н	-3.302773	-2.774574	1.318575
Н	-4.112017	-3.128815	3.626324
Н	-4.126332	-1.242053	5.246663
Н	-3.331329	1.004018	4.536391
Н	-2.545410	1.367225	2.222634
Н	2.545350	1.367266	2.222619
Н	3.331384	1.004095	4.536343
Н	4.126583	-1.241924	5.246562
Н	4.112359	-3.128667	3.626202
Н	3.303013	-2.774462	1.318483
CI	-0.000027	0.054817	-2.487562
CI	0.000061	-2.492743	1.559148
Pt	0.000019	-1.066698	-0.348160

References

1. Cesarotti, E.; Rimoldi, I.; Spalluto, P.; Demartin, F., Chiral 1,4-bis-diphosphine ligands from optically active (Z)-olefins. *Tetrahedron: Asymmetry* **2007**, *18*, 1278-1283.

2. Amador, M.; Ariza, X.; Garcia, J.; Sevilla, S., Stereodivergent Approach to β -Hydroxy α -Amino Acids from C2-Symmetrical Alk-2-yne-1,4-diols. *Org. Lett.* **2002**, *4* (25), 4511-4514.

3. Rimoldi, I.; Bucci, R.; Feni, L.; Santagostini, L.; Facchetti, G.; Pellegrino, S., Exploring the copper binding ability of Mets7 hCtr-1 protein domain and His7 derivative: An insight in Michael addition catalysis. *Journal of Peptide Science* **2021**, *27* (2), e3289.

4. <u>http://www.jmol.org/</u>.

5. Bannwarth, C.; Ehlert, S.; Grimme, S., GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. *Journal of Chemical Theory and Computation* **2019**, *15* (3), 1652-1671.

6. <u>https://github.com/grimme-lab/xtb/releases/tag/v6.3.3</u>.

7. Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange. *The Journal of Chemical Physics* **1993**, *98* (7), 5648-5652.

8. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Physical Review B* **1988**, *37* (2), 785-789.

9. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. *J. Comput. Chem.* **2011**, *32* (7), 1456-1465.

10. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. *J. Comput. Chem.* **2003**, *24* (6), 669-681.

11. <u>http://gaussian.com/citation/</u>.

12. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E., UCSF Chimera—A visualization system for exploratory research and analysis. *J. Comput. Chem.* **2004**, *25* (13), 1605-1612.