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Abstract. — Given a real function f , the rate function for the large deviations of the di¤u-

sion process of drift ‘f given by the Freidlin–Wentzell theorem coincides with the time integral
of the energy dissipation for the gradient flow associated with f . This paper is concerned with the

stability in the hilbertian framework of this common action functional when f varies. More pre-
cisely, we show that if ð fhÞh is uniformly l-convex for some l a R and converges towards f in the

sense of Mosco convergence, then the related functionals G-converge in the strong topology of
curves.
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1. Introduction

Action functionals of the form

If ðgÞ :¼
Z 1

0

fj _ggðtÞj2 þ j‘f j2ðgðtÞÞg dt;

and the closely related ones (since they di¤er by a null lagrangian, the term
2f ðgð1ÞÞ � 2f ðgð0ÞÞ) Z 1

0

j _ggðtÞ � ‘f ðgðtÞÞj2 dt;ð1Þ

appear in many areas of Mathematics, for instance in the Freidlin–Wentzell
theory of large deviations for the SDE dX e

t ¼ ‘f ðX e
t Þ dtþ

ffiffi
e

p
dBt (see for in-

stance [9]) or in the variational theory of gradient flows pioneered by De Giorgi,
where they correspond to the integral form of the energy dissipation (see [4]). In
this paper, we investigate the stability of the action functionals If with respect to
G-convergence of the functions f (actually with respect to the stronger notion of
Mosco convergence, see below). More precisely, we are concerned with the case
when the functions under consideration are l-convex and defined in a Hilbert



space H. In this case, the functional If is well defined if we understand ‘f ðxÞ
as the element with minimal norm in the subdi¤erential qf ðxÞ: this choice, very
natural in the theory of gradient flows, grants the joint lower semicontinuity
property of ðx; f Þ 7! j‘f jðxÞ that turns out to be very useful when proving stabil-
ity of gradient flows, see [13], [5] and the more recent papers [10], [11] where em-
phasis is put on the convergence of the dissipation functionals. In more abstract
terms, we are dealing with autonomous Lagrangians Lðx; pÞ ¼ jpj2 þ j‘f j2ðxÞ
that are unbounded and very discontinuous with respect to x, and this is a source
of di‰culty in the construction of recovery sequences, in the proof of the G-
limsup inequality.

Our interest in this problem comes from [3], where we dealt with the deriva-
tion of the discrete Monge–Ampère equation from the stochastic model of a
Brownian point cloud, using large deviations and Freidlin–Wentzell theory,
along the lines of [6]. In that case H ¼ RNd was finite dimensional,

f ðxÞ :¼ max
s ASN

3x;As4;

(with A ¼ ðA1; . . . ;ANÞ a RNd given and As ¼ ðAsð1Þ; . . . ;AsðNÞÞ for all s a SN ,
the set of all permutations of 71;N8), and the approximating functions fe were
given by

feðt; xÞ ¼ et log
1

N!

X
s ASN

exp
�3x;As4

et

�" #
:

In that case, our proof used some simplifications due to finite dimensionality, and
a uniform Lipschitz condition. In this paper, building upon some ideas in [3], we
provide the convergence result in a more general and natural context. For the
sake of simplicity, unlike [3], we consider only the autonomous case. However it
should be possible to adapt our proof to the case when time-dependent l-convex
functions f ðt; �Þ are considered, under additional regularity assumptions with re-
spect to t, as in [3].

In the infinite-dimensional case, Mosco convergence (see Definition 4.1) is
stronger and more appropriate than G-convergence, since it ensures convergence
of the resolvent operators (under equi-coercitivity assumptions, the two notions
are equivalent). Also, since in the infinite-dimensional case, the finiteness domains
of the functions can be pretty di¤erent, the addition of the endpoint condition is
an additional source of di‰culties, that we handle with an interpolation lemma
which is very much related to the structure of monotone operators, see Lemma
3.1.

Defining the functionals Yf ;x0;x1 : Cð½0; 1�;HÞ ! ½0;l� by

Yf ;x0;x1ðgÞ :¼
If ðgÞ if g a ACð½0; 1�;HÞ; gð0Þ ¼ x0; gð1Þ ¼ x1;

þl otherwise;

�
ð2Þ

our main result reads as follows:
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Theorem 1.1. If ð fhÞh is uniformly l-convex for some l a R, if fh ! f w.r.t.
Mosco convergence, and if

lim
h!l

xh; i ¼ xi; sup
h

j‘fhjðxh; iÞ < l; i ¼ 0; 1;

then Yfh;xh; 0;xh; 1 G-converge to Yf ;x0;x1 in the Cð½0; 1�;HÞ topology.

As a byproduct, under an additional equi-coercitivity assumption our theorem
grants convergence of minimal values to minimal values and of minimizers to
minimizers. Obviously the condition xh; i ! xi is necessary, and we believe that at
least some (possibly more refined) bounds on the gradients at the endpoints are
necessary as well. If we ask also that xh; i are recovery sequences, i.e. fhðxh; iÞ !
f ðxiÞ, then the result can also be read in terms of the functionals (1).

As a final comment, it would be interesting to investigate this type of con-
vergence results also in a non-Hilbertian context, as it happened for the theory
of gradient flows. For instance, a natural context would be the space of probabil-
ity measures with finite quadratic moment. Functionals of this form, where f is
a constant multiple of the logarithmic entropy, appear in the so-called entropic
regularization of the Wasserstein distance (see [8] and the references therein). In
this direction, let us mention the recent paper [12], where the authors treat in
abstract metric measured spaces the specific case when f is zero and fe is of the
form eE, for some functional E. In their work, our uniform l-convexity assump-
tion is replaced by the fact that E generates a gradient flow that satisfies the evo-
lution variational inequality (EVI), in the sense of [4].

2. Preliminaries

Let H be a Hilbert space. For a function f : H ! ð�l;l� we denote by Dð f Þ
the finiteness domain of f . We say that f is l-convex if x 7! f ðxÞ � l

2 jxj
2 is con-

vex. It is easily seen that l-convex functions satisfy the perturbed convexity in-
equality

f ðð1� tÞxþ tyÞa ð1� tÞ f ðxÞ þ tf ðyÞ � l

2
tð1� tÞjx� yj2; t a ½0; 1�:

We denote by qf ðxÞ the Gateaux subdi¤erential of f at x a Dð f Þ, namely the set

qf ðxÞ :¼ p a H : lim inf
t!0þ

f ðxþ thÞ � f ðxÞ
t

b t3h; p4 Eh a H

� �
:

It is a closed convex set, possibly empty. We denote by Dðqf Þ the domain of the
subdi¤erential.

In the case when f is l-convex, the monotonicity of di¤erence quotients gives
the equivalent, non asymptotic definition:

qf ðxÞ :¼ p a H : f ðyÞb f ðxÞ þ 3y� x; p4þ l

2
jy� xj2 Ey a H

� �
:ð3Þ
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For any x a Dðqf Þ we consider the vector ‘f ðxÞ as the element with minimal
norm of qf ðxÞ. We agree that j‘f ðxÞj ¼ l if either x B Dð f Þ of x a Dð f Þ and
qf ðxÞ ¼ j. For l-convex functions, relying on (3), it can be easily proved that
qf ðxÞ is not empty if and only if

sup
yAx

�
f ðxÞ � f ðyÞ þ l

2 jx� yj2
�þ

jx� yj < lð4Þ

and that j‘f jðxÞ is precisely equal to the supremum (see for instance Theorem
2.4.9 in [4]).

For t > 0 we denote by ft the regularized function

ftðxÞ :¼ min
y AH

f ðyÞ þ jy� xj2

2t
ð5Þ

and we denote by Jt ¼ ðIdþ tqf Þ�1 : H ! Dðqf Þ the so-called resolvent map as-
sociating to x the minimizer y in (5). When f is proper, l-convex and lower semi-
continuous, existence and uniqueness of JtðxÞ follow by the strict convexity
of y 7! f ðyÞ þ jy� xj2=ð2tÞ, as soon as t < �1=l when l < 0, and for all t > 0
otherwise (we shall call admissible these values of t). We also use the notation
Jf ; t to emphasize the dependence on f .

Now we recall a few basic and well-known facts (see for instance [7], [4]), pro-
viding for the reader’s convenience sketchy proofs.

Theorem 2.1. Assume that f : H ! ð�l;l� is proper, l-convex and lower
semicontinuous. For all admissible t > 0 one has:

(i) ft is di¤erentiable everywhere, and for all x a H,

‘ftðxÞ ¼
x� JtðxÞ

t
a qf ðJtðxÞÞ:ð6Þ

(ii) Jt is ð1þ ltÞ�1
-Lipschitz, and ft a C1;1ðHÞ with Lipð‘ftÞa 3=t as soon as

there holds ð1þ tlÞ�1
a 2.

(iii) For all x a Dðqf Þ,

‘ftðxþ t‘f ðxÞÞ ¼ ‘f ðxÞ:ð7Þ

(iv) The following monotonicity properties hold for all x a H:

j‘f jðJtðxÞÞa j‘ftjðxÞ ¼
jx� JtðxÞj

t
a

1

1þ lt
j‘f jðxÞ:ð8Þ

Proof. The inclusion in (6) follows from performing variations around JtðxÞ
in (5).

Before proving the equality in (6), let us prove the Lipschitz property for
Jt given in (ii). Recall that the convexity of g ¼ f � l

2 j � j
2 yields that qf is

l-monotone, namely

3x� h; a� b4b lja� bj2 Ex a qf ðaÞ; h a qf ðbÞ:
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Given x and y, we apply this property to a :¼ JtðxÞ, b :¼ JtðyÞ, x :¼ ðx� JtðxÞÞ=
t and h :¼ ðy� JtðyÞÞ=t. (Thanks to the inclusion in (6), we have x a qf ðaÞ and
h a qf ðbÞ.) By rearranging the terms, we get

3x� y; JtðxÞ � JtðyÞ4b ð1þ ltÞjJtðxÞ � JtðyÞj2:

Hence, by the Cauchy–Schwarz inequality, Jt is ð1þ ltÞ�1-Lipschitz.
Let us go back to proving the equality in (6). For any x and z, one has (using

y ¼ JtðxÞ as an admissible competitor in the definition of ftðxþ zÞ)

ftðxþ zÞ � ftðxÞa
jJtðxÞ � ðxþ zÞj2

2t
� jJtðxÞ � xj2

2t

¼ z;
x� JtðxÞ

t

� 	
þ jzj2

2t

and, reversing the roles of x and xþ z,

ftðxÞ � ftðxþ zÞa �z;
xþ z� Jtðxþ zÞ

t

� 	
þ jzj2

2t
:

These two identities together with the continuity of Jt imply that ft is di¤eren-
tiable at x and provides the equality in (6) and hence the one in (8). The Lipschitz
property for ‘ft announced follows directly from this identity and the Lipschitz
property for Jt.

To get (7), it su‰ces to remark that for all x a Dðqf Þ, 0 belongs to the sub-
di¤erential of the strictly convex function

y 7! f ðyÞ þ jxþ t‘f ðxÞ � yj2

2t

at y ¼ x. Hence, x is the minimizer of this function, and Jtðxþ t‘f ðxÞÞ ¼ x.
Then, we deduce (6) from (7).

The first inequality in (8) follows from the inclusion in (6). In order to prove
the second inequality, we perform a variation along the a‰ne curve joining x to
JtðxÞ, namely, gðtÞ :¼ ð1� tÞxþ tJtðxÞ. Since

f ðJtðxÞÞ þ
1

2t
jx� JtðxÞj2

a f ðgðtÞÞ þ 1

2t
jx� gðtÞj2

a ð1� tÞ f ðxÞ þ tf ðJtðxÞÞ þ
t

2t
ðt� ltð1� tÞÞjx� JtðxÞj2

for all t a ½0; 1�, taking the left derivative at t ¼ 1 gives

�l
2
þ 1

t

�
jx� JtðxÞj2 a f ðxÞ � f ðJtðxÞÞ;
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so that the representation formula (4) for j‘f jðxÞ gives
�l
2
þ 1

t

�
jx� JtðxÞj2 a j‘f jðxÞjx� JtðxÞj �

l

2
jx� JtðxÞj:

By rearranging the terms, this leads to the second inequality in (8). r

Another remarkable property of j‘f j, for f l-convex and lower semicontinu-
ous, is the upper gradient property, namely,

f ðgð0ÞÞ; f ðgðdÞÞ < l and j f ðgðdÞÞ � f ðgð0ÞÞja
Z d

0

j‘f jðgðtÞÞj _ggðtÞj dt

for any d > 0 and any absolutely continuous g : ½0; d� ! H (with the convention
0�l ¼ 0), whenever g is not constant and the integral in the right hand side is
finite (see for instance Corollary 2.4.10 in [4] for the proof).

3. A class of action functionals

For d > 0 and f : H ! ð�l;l� proper, l-convex and lower semicontinuous, we
consider the autonomous functionals I df : Cð½0; d�;HÞ ! ½0;l� defined by

I df ðgÞ :¼
Z d

0

fj _ggj2 þ j‘f j2ðgÞg dt;

set to þl on Cð½0; d�;HÞnACð½0; d�;HÞ. Notice also that I df ðgÞ < l implies
g a Dðqf Þ a.e. in ð0; dÞ.

Identity (4) ensures the lower semicontinuity of j‘f j; hence, under a coercitiv-
ity assumption of the form f f a tg compact in H for all t a R, the infimum

Gdðx0; xdÞ :¼ inffI df ðgÞ : gð0Þ ¼ x0; gðdÞ ¼ xdg x0; xd a Hð9Þ

is always attained whenever finite.
Also, by the Young inequality and the upper gradient property of j‘f j, one

has that I df ðgÞ < l implies gð0Þ; gðdÞ a Dð f Þ and 2j f ðgðdÞÞ � f ðgð0ÞÞja I df ðgÞ.
The same argument shows that we may add to I df a null Lagrangian. Namely,
as done in [3], we can consider the functionalsZ d

0

j _gg� ‘f ðgÞj2 dt

which di¤er from I df precisely by the term 2f ðgðdÞÞ � 2f ðgð0ÞÞ, whenever g is ad-
missible in (9) with I df ðgÞ < l.

Because of the lack of continuity of x 7! ‘f ðxÞ, very little is known in general
about the regularity of minimizers in (9), even when H is finite-dimensional.
However, one may use the fact that I 1f is autonomous to perform variations of
type g 7! g � ðIdþ efÞ, f a Cl

c ð0; dÞ, to obtain the Dubois–Reymond equation
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(see for instance [2])

d

dt
½j _ggj2 � j‘f j2ðgÞ� ¼ 0 in the sense of distributions in ð0; dÞ:

It implies Lipschitz regularity of the minimizers when, for instance, j‘f j is
bounded on bounded sets (an assumption satisfied in [3], but obviously too strong
for some applications in infinite dimension).

We will need the following lemma, estimating Gd from above, to adjust the
values of the curves at the endpoints. The heuristic idea is to interpolate on the
graph of ft and then read back this interpolation in the original variables. This
is related to Minty’s trick (see [1] for an extensive use of this idea): a rotation of
p=4 maps the graph of the subdi¤erential onto the graph of an entire 1-Lipschitz
function; here we use only slightly tilted variables, of order t.

Lemma 3.1 (Interpolation). Let f : H ! ð�l;l� be a proper, l-convex and
lower semicontinuous function and let t > 0 be such that ð1þ tlÞ�1

a 2. For all
d > 0 and all x0 a Dðqf Þ, xd a Dðqf Þ, with Gd as in (9), one has

Gdðx0; xdÞa 2d min
i A f0; dg

j‘f j2ðxiÞ þ
�40
d
þ 12d

t2

�
jxd � x0j2

þ
�
12dþ 40t2

d

�
j‘f ðxdÞ � ‘f ðx0Þj2:

Proof. We use Theorem 2.1 to interpolate between xd and x0 as follows: set

~ggðtÞ :¼
�
1� t

d

�
ðx0 þ t‘f ðx0ÞÞ þ

t

d
ðxd þ t‘f ðxdÞÞ; xðtÞ :¼ ‘ftð~ggðtÞÞ;

and

gðtÞ :¼ Jtð~ggðtÞÞ ¼ ~ggðtÞ � txðtÞ;

where the second equality follows from (6).
Since xð0Þ ¼ ‘ftðx0 þ t‘f ðx0ÞÞ ¼ ‘f ðx0Þ and a similar property holds at time

d, the path g is admissible. Let us now estimate the action of the path g.
Kinetic term (we use our Lipschitz bound for ‘ft to deduce that j _xxðtÞja

3
t
j _~gg~ggðtÞj):Z d

0

j _ggj2 dta 2

Z d

0

j _~gg~ggj2 dtþ 2t2
Z d

0

j _xxj2 dt

a 20

Z d

0

j _~gg~ggj2 dt ¼ 20

d
jðxd þ t‘f ðxdÞÞ � ðx0 þ t‘f ðx0ÞÞj2

a
40

d
jxd � x0j2 þ

40t2

d
j‘f ðxdÞ � ‘f ðx0Þj2:
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Gradient term (we use the first inequality in (8), our Lipschitz bound for ‘ft, and
finally (7)):

Z d

0

j‘f j2ðgÞ dt

a

Z d

0

j‘ftj2ð~ggÞ dt

a

Z d

0

�
j‘ftjð~ggð0ÞÞ þ

3

t
j~ggðtÞ � ~ggð0Þj

�2
dt

a

Z d

0

2j‘f j2ðx0Þ þ
18

t2
t2

d2
jðxd þ t‘f ðxdÞÞ � ðx0 þ t‘f ðx0ÞÞj2

� �
dt

a 2dj‘f j2ðx0Þ þ
6d

t2
jðxd þ t‘f ðxdÞÞ � ðx0 þ t‘f ðx0ÞÞj2

a 2dj‘f j2ðx0Þ þ
12d

t2
jxd � x0j2 þ 12dj‘f ðxdÞ � ‘f ðx0Þj2:

We get the result by gathering these two estimates, and by remarking that in the
second line, we could have controlled j‘f jtð~ggðtÞÞ by its value at time d instead of
its value at time 0. r

Choosing d ¼ t, bounding j‘f jðxiÞ, i ¼ 0; 1 by the max of these two values,
and using j‘f ðxdÞ � ‘f ðx0Þj2 a 4maxi A f0;1gj‘f j2ðxiÞ, we will apply the interpola-
tion lemma in the form

Gdðx0; xdÞa
52

t
jxd � x0j2 þ 210t max

i A f0; dg
j‘f j2ðxiÞ:ð10Þ

4. Proof of the main result

In this section, fh, f denote generic proper, l-convex and lower semicontinuous
functions from H to ð�l;l�.

Mosco convergence is a particular case of G-convergence, where the topolo-
gies used for the lim sup and the lim inf inequalities di¤er.

Definition 4.1 (Mosco convergence). We say that fh Mosco converge to f
whenever:

(a) for all x a H there exist xh ! x strongly with

lim sup
h

fhðxhÞa f ðxÞ;
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(b) for all sequences ðxhÞ � H weakly converging to x, one has

lim inf
h

fhðxhÞb f ðxÞ:

It is easy to check that for sequences of l-convex functions, Mosco conver-
gence implies the pointwise convergence of Jfh; t to Jf ; t, contrarily to usual G-
convergence. Indeed, for t > 0 admissible, (a) grants

lim sup
h!l

min
y AH

fhðyÞ þ
jy� xj2

2t
a min

y AH
f ðyÞ þ jy� xj2

2t
;

while (b) grants

lim inf
h!l

min
y AH

fhðyÞ þ
jy� xj2

2t
b min

y AH
f ðyÞ þ jy� xj2

2t
;

and the weak convergence of minimizers yh to the minimizer y. Eventually, the
convergence of the energies together with

lim inf
h!l

fhðyhÞb f ðyÞ and lim inf
h!l

jyh � xj2 b jy� xj2

grants that both liminf are limits, and that the convergence of yh is strong.
Recall that given xh;0; xh;1 a H, the functionals Yfh;xh; 0;xh; 1 defined in (2), are

obtained from I 1fh by adding endpoints constraints. Yf ;x0;x1 is defined analogously.
We say that Yfh;xh; 0;xh; 1 G-converge to Yf ;x0;x1 in the Cð½0; 1�;HÞ topology if

(a) for all g a Cð½0; 1�;HÞ there exist gh a Cð½0; 1�;HÞ converging to g with

lim sup
h!l

Yfh;xh; 0;xh; 1ðghÞaYf ;x0;x1ðgÞ;

(b) for all sequences ðghÞ � Cð½0; 1�;HÞ converging to g one has

lim inf
h!l

Yfh;xh; 0;xh; 1ðghÞbYf ;x0;x1ðgÞ:

In connection with the proof of property (a) it is useful to introduce the func-
tional

G� lim sup
h!l

Yfh;xh; 0;xh; 1ðgÞ :¼ inf lim sup
h!l

Yfh;xh; 0;xh; 1ðghÞ : gh ! g

� �

so that (a) is equivalent to G� lim suph Yfh;xh; 0;xh; 1 aYf ;x0;x1 . Recall also that the
G-lim sup is lower semicontinuous, a property that can be achieved, for instance,
by a diagonal argument.

Proof of Theorem 1.1. It is clear that the endpoint condition passes to the
limit with respect to the Cð½0; 1�;HÞ topology, since xh; i converge to xi. Also, it
is well known that the action functional is lower semicontinuous in Cð½0; 1�;HÞ.
Hence, the G-liminf inequality, namely property (b), follows immediately from
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Fatou’s lemma and the variational characterization (4) of j‘f j. Indeed, for all
yAx and all sequences xh ! x

lim inf
h!l

j‘fhj2ðxhÞb lim inf
h!l

�
fhðxhÞ � fhðyhÞ þ l

2 jxh � yhj2
�þ

jxh � yhj

b

�
f ðxÞ � f ðyÞ þ l

2 jx� yj2
�þ

jx� yj ;

where yh is chosen as in (a) of Definition 4.1. Passing to the supremum, we get
the inequality lim infhj‘fhjðxhÞb j‘f jðxÞ, and this grants the lower semicontinu-
ity of the gradient term in the functionals. Notice that this part of the proof works
also if we assume only that G-lim infh fh b f , for the strong topology of H, but
the stronger property (namely (b) in Definition 4.1) is necessary because we will
need in the next step convergence of the resolvents.

So, let us focus on the G-limsup one, property (a). Fix a path g with

Yf ;x0;x1ðgÞ < l, t > 0 (with ð1þ tl�1Þa 2 if l < 0) and consider the perturbed
paths gthðtÞ ¼ Jfh; tðgðtÞÞ, gtðtÞ ¼ Jf ; tðgðtÞÞ; using the ð1þ tlÞ�1-Lipschitz prop-
erty of the maps Jf ; t, the first inequality in (8), the convergence of gth to gt and
eventually the second inequality in (8) one gets

lim sup
h!l

Z 1

0

fj _ggthj
2 þ j‘fhj2ðgthÞg dt

a lim sup
h!l

Z 1

0

ð1þ tlÞ�2j _ggj2 þ jg� gthj
2

t2

( )
dt

a

Z 1

0

ð1þ tlÞ�2j _ggj2 þ jg� gtj2

t2

( )
dt

a ð1þ tlÞ�2

Z 1

0

fj _ggj2 þ j‘f j2ðgÞg dt:

Also, the convergence of resolvents gives

lim
h!l

Jfh; tðxiÞ ¼ Jf ; tðxiÞ:

Finally, using again the inequalities (8) and once more the convergence of resol-
vents, we get

lim sup
h!l

j‘fhjðJfh; tðxiÞÞa
jJf ; tðxiÞ � xij

t
a ð1þ tlÞ�1j‘f jðxiÞa 2j‘f jðxiÞ:

Since the endpoints have been slightly modified by the composition with Jfh; t, we
argue as follows. Denoting by S an upper bound for j‘fhjðxh; iÞ and 2j‘f jðxiÞ, we
apply twice the construction of Lemma 3.1, with d ¼ t, to fh with endpoints xh; i,
Jfh; tðxiÞ, to extend the curves gth, still denoted gth, to the interval ½�t; 1þ t�, in
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such a way that (we use (10) in the first inequality, and the second inequality in
(8) in the second one)

lim sup
h!l

Z 1þd

�d

fj _ggthj
2 þ j‘fhj2ðgthÞg dt

a ð1þ tlÞ�2

Z 1

0

fj _ggj2 þ j‘f j2ðgÞg dtþ 420tS2

þ 52

t
fjx0 � Jf ; tðx0Þj2 þ jx1 � Jf ; tðx1Þj2g

a ð1þ tlÞ�2
�Z 1

0

fj _ggj2 þ j‘f j2ðgÞg dtþ 472tS2
�

and the endpoint condition is satisfied at t ¼ �t and t ¼ 1þ t. The limit of the
curves gth in ½�t; 1þ t�, still denoted gt, is the one obtained applying the construc-
tion of Lemma 3.1 with xi and Jf ; tðxiÞ in the intervals ½�t; 0� and ½1; 1þ t�, and
which coincides with Jf ; tðgðtÞÞ on ½0; 1�.

By a linear rescaling of the curves gth and gt to ½0; 1� we obtain curves ~ggth con-
verging to ~ggt in Cð½0; 1�;HÞ, with ~ggt convergent to g as t ! 0 and

G� lim sup
h!l

Yfh;xh; 0;xh; 1ð~ggtÞa lim sup
h!l

Yfh;xh; 0;xh; 1ð~gght Þ

a ð1þOðtÞÞ
Z 1

0

fj _ggj2 þ j‘f j2ðgÞg dtþOðtÞ:

Eventually, the lower semicontinuity of the G-upper limit and the convergence of
~ggt to g provide the inequality

G� lim sup
h!l

Yfh;xh; 0;xh; 1ðgÞa
Z 1

0

fj _ggj2 þ j‘f j2ðgÞg dt: r
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