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Local spectral convergence in RCD∗(K, N) spaces

Luigi Ambrosio ∗ Shouhei Honda †

November 5, 2018

Abstract

In this note we give necessary and sufficient conditions for the validity of the local
spectral convergence, in balls, on the RCD∗-setting.
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1 Introduction

Let us consider a measured Gromov-Hausdorff (mGH, for short) convergent sequence of
compact n-dimensional Riemannian manifolds Mi to a compact metric measure space
(X, d,m), called a compact Ricci limit space,

(

Mi,
vol

vol Mi

)

mGH→ (X, d,m), (1.1)

with the uniform Ricci curvature bound from below RicMi ≥ K > −∞. Then the spectral
convergence proven in [CC00] by Cheeger-Colding gives

lim
i→∞

λk(Xi) = λk(X) (1.2)

for any k, where λk denotes the k-th eigenvalue of Laplacian. Moreover, any sequence of
k-th eigenfunctions on Mi with a uniform bound on L2-norms has a uniform convergent
subsequence to a k-th eigenfunction on X.

This result was conjectured by Fukaya in [F87], who introduced the notion of mGH-
convergence and proved the same conlusion under bounded sectional curvature. This spec-
tral convergence result has more recently been generalized to metric measure spaces with
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(Riemannian) Ricci curvature bounded from below, the so called RCD(K, ∞)/ RCD∗(K, N)-
metric measure spaces, by Gigli-Mondino-Savaré in [GMS13]. See Section 2 for a quick
introduction to this class of metric measure spaces.

Next we discuss a noncompact case, i.e. a pointed mGH-convergent sequence of n-
dimensional Riemannian manifolds Ni;

(

Ni, pi,
vol

vol B1(pi)

)

mGH→ (Y, d, p, ν) (1.3)

with RicNi ≥ K > −∞.
In several papers (e.g. [D02], [KS03], [Xu14], [ZZ17]), the local spectral convergence

is investigated, i.e.
lim

i→∞
λD

k (BR(pi)) = λD
k (BR(p)) (1.4)

for any R > 0, together with the convergence of the corresponding eigenfunctions, where
λD

k denotes the k-th eigenvalue of Laplacian associated with the Dirichlet problem on the

open ball BR. To be precise, we recall that for any f ∈ H1,2
0 (BR(p), d,m) (the Sobolev

closure of Lipschitz functions with compact support in BR(p)), we say that f is an eigen-
function with the eigenvalue λ for the Dirichlet problem on BR(p) if

∫

BR(p)
Γ(f, g)dm = λ

∫

BR(p)
fgdm ∀g ∈ H1,2

0 (BR(p), d,m), (1.5)

where Γ is the carré du champ operator associated to the metric measure structure. In
[D02] the question whether the limit function of k-eigenvalues still satisfies the Dirichlet
boundary condition is raised, but the main result of that paper, namely the convergence
of the heat kernels, is proved independently of an answer to this question. In [KS03], the
spectral convergence as well as the Mosco convergence of the local Cheeger energies with
Dirichlet boundary conditions are claimed. Finally, the stability of the Dirichlet boundary
condition seems to play a role in Proposition 7.5 of [Xu14].

One of the main purposes of the paper is to give an example such that (1.4) is not satis-
fied in general, providing at the same time positive results and, in particular, convergence
results for generic balls.

Example 1.1. We consider a trivial pointed mGH convergent sequence;

([0, +∞), deucl, s, L1)
mGH→ ([0, +∞), deucl, π/4, L1)

as s ↑ π/4. It is easy to check that each ([0, +∞), deucl, s, L1) is the pointed mGH limit
spaces of a sequence of Riemannian metrics on R2 with nonnegative sectional curvature.
In particular this sequence consists of RCD∗(0, 2)-spaces.

For any ǫ ∈ (0, 1) let

fǫ(t) := cos

(

πt

π − 2ǫ

)

.

Since fǫ is smooth with fǫ(π/2 − ǫ) = 0, we have

fǫ|[0,π/2−ǫ) ∈ H1
0 (Bπ/4(π/4 − ǫ), deucl, L1)

(

= H1
0 ([0, π/2 − ǫ), deucl, L1)

)

.

Moreover, for any g ∈ C∞([0, π/2 − ǫ]) with g(π/2 − ǫ) = 0, integration by parts with
f ′

ǫ(0) = 0 yield

∫ π/2−ǫ

0
f ′

ǫ(t)g
′(t)dt =

[

f ′
ǫg
]π/2−ǫ
0 −

∫ π/2−ǫ

0
f ′′

ǫ (t)g(t)dt = −
∫ π/2−ǫ

0
f ′′

ǫ (t)g(t)dt,
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which shows that fǫ is an eigenfunction associated with the Dirichlet problem on the ball
Bπ/4(π/4 − ǫ), which coincides with [0, π/2 − ǫ). Note that the eigenvalue of fǫ is equal
to π2/(π − 2ǫ)2, so that

λD
1 (Bπ/4(π/4 − ǫ)) ≤ π2/(π − 2ǫ)2.

On the other hand, it is well-known that λD
1 (Bπ/4(π/4)) = λD

1 ((0, π/2)) = 4. Thus

lim
ǫ→0+

λD
1 (Bπ/4(π/4 − ǫ)) = 1 < 4 = λD

1 (Bπ/4(π/4)). (1.6)

Note that this is not yet a complete counterexample for the validity of (1.4), because the
approximating sequence is not smooth, but we will see later on how a diagonal argument
can be used to complete the counterexample.

The reason for the nonvalidity of (1.4) is that, in general, the limit f of eigenfunctions
fi ∈ H1,2

0 (BR(pi), di,
vol

vol B1(pi)
) is not in H1,2

0 (BR(p), d, ν) (but the identity (1.5) holds, as

f ∈ H1,2(BR(p), d, ν) and g ∈ H1,2
0 (BR(p), d, ν)). Indeed, in the case of Example 1.1, the

limit f(t) = cos t of fǫ as ǫ ↓ 0 is not in the space H1,2
0 ((0, π/2), deucl, L1).

The main result of the paper is to give a necessary and sufficient condition for the
validity of the local spectral convergence on RCD∗-spaces, where the meaning of local
spectral convergence is taken in a little bit strong sense, with converging radii and centers
(Definition 3.2, Proposition 3.3). The condition can be stated as follows (Theorem 3.4
with Lemma 2.12): for a RCD∗(K, N)-space (X, d,m) and BR(x) ⊂ X,

H1,2
0 (BR(x), d,m) =

⋂

ǫ>0

H1,2
0 (BR+ǫ(x), d,m) (1.7)

if and only if the local spectral convergence on BR(x) holds for some/all mGH-convergent
sequence of RCD∗(K̂, N̂)-spaces to (X, d,m). We also prove in Lemma 2.12 that, for a
given center x, (1.7) holds with at most countably many exceptions.

In particular, in Example 1.1, since

H1,2
0 (Bπ/4(s), deucl, L1) =

⋂

ǫ>0

H1,2
0 (Bπ/4+ǫ(s), deucl, L1)

for any s ∈ [0, π/4), by (1.6) and a diagonal argument we can find a sequence of Rie-
mannian metrics gi on R2 with nonnegative sectional curvature, pi ∈ R2 and k ∈ N such
that

(R2, dgi , pi,
vol

vol B1(pi)
)

mGH→ ([0, +∞), deucl, π/4,
L1

L1(B1(p)))
)

and limi λD
k (Bπ/4(pi)) 6= λD

k (Bπ/4(π/4)), which gives a full counterexample to the validity
of (1.4).

Next we describe an application of our local spectral convergence result to the study
of harmonic functions on RCD∗(K, N)-spaces. For that let us recall the following result
(⋆) of Petrunin given in [Pet03] ;

(⋆) Let (An
i , di, ai) be a pointed Gromov-Hausdorff convergent sequence of n-dimensional

Alexandrov spaces to a pointed noncollapsed Alexandrov space (An, d, a) with a uni-

form lower bound on sectional curvature (then it is known that (An
i , ai, di, Hn)

mGH→
(An, a, d, Hn)), let fi be harmonic functions on BR(ai) (i.e. fi ∈ H1,2(BR(ai), di, Hn)
and (1.5) is satisfied with λ = 0), and let f be the locally uniform limit function of
fi on BR(a). Then f is harmonic on Br(a) for all r ∈ (0, R) and

lim
i→∞

∫

Br(ai)
Γi(fi)dHn →

∫

Br(a)
Γ(f)dHn ∀r ∈ (0, R).
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Moreover, in the same paper (see question 2.3 therein), Petrunin raised the following
question: what happens in the result (⋆) when the sequence of spaces is collapsed?

We can give a positive answer to the question in the RCD∗-setting; (Xi, di, xi,mi)
mGH→

(X, d, x,m) (see [H15] for the corresponding results in the Ricci limit setting). Then,
combining this fact with the compatibility between Alexandrov and RCD-spaces given in
[Pet11, ZZ10], we provide an affirmative answer, as a particular case, in the Alexandrov
setting (Theorem 4.4 and Corollary 4.5). Moreover we will prove a kind of converse
harmonic approximation property: for any harmonic function g on BR(x) and any r ∈
(0, R), after passing to a subsequence, g|Br(x) can be approximated by harmonic functions
gi on Br(xi), which is new even in the noncompact Ricci limit setting (see [H14] for the
corresponding results in the compact Ricci limit setting). Furthermore, we provide an
example showing that the assumption, “r ∈ (0, R)”, is needed (Remark 4.9). Thus, these
results provide a fairly complete picture of the stability and approximability of harmonic
functions with respect to the mGH-convergence of RCD∗(K, N)-spaces.

Let us introduce a key notion to prove the harmonic approximation, which is the
harmonic replacement f̂ of a function f ∈ H1,2(BR(x), d,m), i.e. f̂ is uniquely determined
by satisfying that f̂ is a harmonic function on BR(x) with f − f̂ ∈ H1,2

0 (BR(x), d,m) if
λD

1 (BR(x)) > 0. It is worth pointing out that this replacement naturally appeared in
proofs of splitting theorems [CG71, CC96] (see also Remark 4.14). Our local spectral
convergence shows; under mild assumptions, if fi converge strongly to f on BR(x) in H1,2,
then the harmonic replacements f̂i is also H1,2-strongly convergent to f̂ (Theorem 4.12),
which plays a key role in the proof of the harmonic approximation

Finally, let us mention that these observations will be justified in more general setting
of Poisson’s equation ∆f = g. This provides new estimates for distance functions inde-
pendent of almost nonnegative curvature assumptions (Remark 4.14 and Theorem 4.16),
which seem to be new even in the Ricci limit setting.

The paper is organized as follows. In Section 2 we introduce the basic terminology
and properties of RCD-spaces, passing then to the description of the basic stability results
from [GMS13] and [AH16]. Then, for U ⊂ X open, we introduce the local Sobolev spaces
H1,2

0 (U, d,m), H1,2(U, d,m) and the related Laplacian operators. In Section 3 we provide
all basic stability results for problems with homogeneous Dirichlet conditions, identifying a
necessary and sufficient condition for the convergence. The final section of the paper deals
with elliptic problems in H1,2(BR(x), d,m)-Sobolev spaces, with possibly nonhomogeneous
Dirichlet boundary conditions, and provides stability results also in this setting.

Acknowledgement. The first author acknowledges the support of the MIUR PRIN2015
project “Calculus of Variations”. The second author acknowledges the support of the JSPS
Program for Advancing Strategic International Networks to Accelerate the Circulation of
Talented Researchers, the Grant-in-Aid for Young Scientists (B) 16K17585 and the warm
hospitality of SNS.

2 Notation and preliminary results

We use the notation Br(x) for open balls and Br(x) for {y : d(x, y) ≤ r}. We also use the
standard notation LIP(X, d), LIPb(X, d), LIPc(X, d) for the spaces of Lipschitz, bounded
Lipschitz, compactly supported Lipschitz functions, respectively.

The following elementary lemma will play a role in the proof of Lemma 2.12, about
the generic coincidence of two classes of Sobolev spaces.
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Lemma 2.1. Let (Z, τ) be a topological space with a countable basis of open sets and let
fR, gR, R > 0, be upper semicontinuous functions from Z to R satisfying fR ≤ gR ≤ fR+ǫ

for all R, ǫ > 0. Then fR ≡ gR in X for all R > 0, with at most countably many
exceptions.

Proof. For any open set A, the functions f̃(R) := supA fR, g̃(R) := supA gR satisfy f̃(R) ≤
g̃(R) ≤ f̃(R + ǫ) for all ǫ > 0, hence the set {f̃ 6= g̃} is at most countable in (0, +∞).
Choosing a countable basis {Ak} of open sets of (Z, τ), since upper semicontinuity gives

fR(u) = inf
Ak∋u

sup
Ak

fR, gR(u) = inf
Ak∋u

sup
Ak

gR,

the result follows.

Let us now recall basic facts about Sobolev spaces and heat flow in metric measure
spaces (X, d,m), see [AGS14a] and [G15] for a more systematic treatment of this topic.
We shall always assume that the metric space (X, d) is complete and separable.

Definition 2.2. The Cheeger energy Ch = Chd,m : L2(X,m) → [0, +∞] is a convex and
L2(X,m)-lower semicontinuous functional defined as follows:

Ch(f) := inf

{

lim inf
n→∞

1

2

∫

X
|∇fn|2 dm : fn ∈ Lipb(X, d) ∩ L2(X,m), ‖fn − f‖L2 → 0

}

,

(2.1)
where |∇f | is the so-called slope, or local Lipschitz constant.

The Sobolev space H1,2(X, d,m) then concides with {f : Ch(f) < +∞}.

When endowed with the norm

‖f‖H1,2 :=
(

‖f‖2
L2(X,m) + 2Ch(f)

)1/2

the space H1,2(X, d,m) is Banach, reflexive if (X, d) is doubling (see [ACDM15]), and
separable Hilbert if Ch is a quadratic form (see [AGS14b]). According to the terminol-
ogy introduced in [G15], we say that a metric measure space (X, d,m) is infinitesimally
Hilbertian if Ch is a quadratic form.

By looking at minimal relaxed slopes and by a polarization procedure, one can then
define a carré du champ

Γ : H1,2(X, d,m) × H1,2(X, d,m) → L1(X,m)

playing in this abstract theory the role of the scalar product between gradients (more
precisely, the duality between differentials and gradients, see [G15]). In infinitesimally
Hilbertian metric measure spaces the Γ operator satisfies all natural symmetry, bilinearity,
locality and chain rule properties, and provides integral representation to Ch: 2Ch(f) =
∫

X Γ(f, f) dm for all f ∈ H1,2(X, d,m). We also adopt the usual abbreviation

Γ(f) := Γ(f, f).

We can now define a densely defined operator ∆ : D(∆) → L2(X,m) whose domain
consists of all functions f ∈ H1,2(X, d,m) satisfying

∫

X
hgdm = −

∫

X
Γ(f, h)dm ∀h ∈ H1,2(X, d,m)

for some g ∈ L2(X,m). The unique g with this property is then denoted ∆f .
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Another object canonically associated to the metric measure structure, more specifi-
cally to Ch, is the heat flow ht, defined as the L2(X,m) gradient flow of Ch; even in general
metric measure structures one can use the Brezis-Komura theory of gradient flows of lower
semicontinuous functionals in Hilbert spaces to provide existence and uniqueness of this
gradient flow. In the special case of infinitesimally Hilbertian metric measure spaces, this
provides a linear, continuous and self-adjoint contraction semigroup ht in L2(X,m), with
the Markov property, characterized by: t 7→ htf is locally absolutely continuous in (0, +∞)
with values in L2(X,m) and

d

dt
htf = ∆htf for L

1-a.e. t ∈ (0, +∞), for all f ∈ L2(X,m).

In order to introduce the class of RCD(K, ∞) and RCD∗(K, N) metric measure spaces
we follow the Γ-calculus point of view, based on Bochner’s inequality, because this is the
point of view more relevant in our proofs. However, the equivalence with the Lagrangian
point of view, based on the theory of optimal transport first proved in [AGS15] (in the
case N = ∞) and then in [EKS15], [AMS15] (in the case N < ∞), plays indeed a key role
in the proof of the results we need, mainly taken from [GMS13] and [AH16].

Definition 2.3 (RCD spaces). Let (X, d,m) be a metric measure space, with (X, d) com-
plete, length, satisfying

m

(

Br(x̄)
) ≤ c1ec2r2 ∀r > 0 (2.2)

for some c1, c2 > 0 and x̄ ∈ X and the so-called Sobolev to Lipschitz property: any f ∈
H1,2(X, d,m)∩L∞(X,m) with Γ(f) ≤ 1 m-a.e. in X has a representative in f̃ ∈ Lipb(X, d),
with Lip(f̃) ≤ 1.

For K ∈ R, we say that (X, d,m) is a RCD(K, ∞) metric measure space if, for all
f ∈ H1,2(X, d,m) ∩ D(∆) with ∆f ∈ H1,2(X, d,m), Bochner’s inequality

1

2
∆Γ(f) ≥ Γ(f, ∆f) + KΓ(f)

holds in the weak form
1

2

∫

Γ(f)∆ϕdm ≥
∫

ϕ(Γ(f, ∆f) + KΓ(f))dm ∀ϕ ∈ D(∆) with ϕ ≥ 0, ∆ϕ ∈ L∞(X,m).

Analogously, for K ∈ R and N > 0, we say that (X, d,m) is a RCD∗(K, N) metric
measure space if, for all f ∈ H1,2(X, d,m) ∩ D(∆) with ∆f ∈ H1,2(X, d,m), Bochner’s
inequality

1

2
∆Γ(f) ≥ Γ(f, ∆f) +

1

N
(∆f)2 + KΓ(f)

holds in the weak form
1

2

∫

Γ(f)∆ϕdm ≥
∫

ϕ(Γ(f, ∆f) +
1

N
(∆f)2 + KΓ(f))dm

for all ϕ ∈ D(∆) with ϕ ≥ 0 and ∆ϕ ∈ L∞(X,m).

Since we are going to adopt the so-called extrinsic viewpoint in mGH convergence,
it will be convenient for us not to add the assumption that X = suppm, made in some
other papers on this subject. However, it is obvious that (X, d,m) is RCD(K, ∞) (resp.
RCD∗(K, N)) if and only if (X, d, suppm) is RCD(K, ∞) (resp. RCD∗(K, N)).

Finally recall the existence of good cut-off functions which will play a key role in the
next sections: for any x ∈ X and all 0 < r1 < R1 < +∞, there exist ϕ ∈ D(∆) such that

0 ≤ ϕ ≤ 1, ϕ|Br1 (x) ≡ 1, supp ϕ ⋐ BR1(x), Γ(ϕ) + |∆ϕ| ≤ C(K, N, r1, R1). (2.3)

See [MN14, Lemma 3.1] for the proof. Note that this is a generalization of [CC96, Theorem
6.33] from the smooth setting to the RCD-setting.
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2.1 mGH convergence and global stability results

From now on, K ∈ R and N ∈ [1, +∞). Let us fix a pointed measured Gromov-Hausdorff

(mGH for short in the sequel) convergent sequence (Xi, di, xi,mi)
mGH→ (X, d, x,m) of

RCD∗(K, N)-spaces. We adopt throughout the paper the so-called extrinsic approach,
assuming that Xi = suppmi, X = suppm and that all the sets Xi, as well as X, are
contained in a common proper metric space (Y, d), with di|Xi×Xi = d and xi → x.

Notice also that the extrinsic approach is convenient to formulate various notions of
convergence and to avoid the use of ǫ-isometries. However, it should be handled with
care: for instance, if f ∈ LIPb(Y, d) and we view this as a sequence of bounded Lipschitz
functions in the spaces Xi, then the sequence need not be strongly convergent in H1,2 (see
[AST16] for an example).

Notice also that the properness assumption on (Y, d) is justified by the uniform doubling
property granted by the Bishop-Gromov inequality. Unlike Xi, the ambient space (Y, d)
will not appear often in our notation, since the measures mi are concentrated on Xi;
however Y plays an important role to define weak convergence of functions fi ∈ Lp(Xi,mi),
since the test functions are continuous and compactly supported in the ambient space.
Occasionally, when we want to emphasize the role of Y (as in the proof of Theorem 4.2) we
adopt the superscript Y . Notice also that any continuous (compactly supported) function
φ : BXi

R (x) → R can be thought as the restriction of a continuous (compactly supported)
function φ̃ : BY

R (x) → R.
In this setting, let us recall the definition of L2-strong/weak convergence of functions

with respect to the mGH-convergence. The following formulation is due to [GMS13] and
[AST16], which fits the pmG-convergence well. Other good formulations of L2-convergence,
in connection with mGH-convergence, can be found in [H15, KS03]. However, in our setting
these formulations are equivalent by the volume doubling condition (e.g. [H16, Proposition
3.3]).

Definition 2.4 (L2-convergence of functions with respect to variable measures). We say

that fi ∈ L2(Xi,mi) L2-weakly converge to f ∈ L2(X,m) if supi ‖fi‖L2 < ∞ and fimi
Cc(Y )

⇀
fm. Moreover, we say that fi ∈ L2(Xi,mi) L2-strongly converge to f ∈ L2(X,m) if fi L2-
weakly converge to f with lim supi ‖fi‖L2 ≤ ‖f‖L2 .

For nonnegative functions fi ∈ L1(Xi,mi), we also say that fi L1-strongly converge to
f ∈ L1(X,m) if

√
fi L2 strongly converge to

√
f .

Note that it was proven in [GMS13] (see also [AST16], [AH16]) that any L2-bounded
sequence has an L2-weak convergent subsequence in the sense above. In the sequel we
shall denote by Ch

i = Chmi , Γi, ∆i, etc. the various objects associated to the i-th metric
measure structure.

The following is a consequence of the main results of [GMS13], see also [AH16].

Theorem 2.5 (Mosco convergence). The Cheeger energies Ch
i Mosco converge to Ch, i.e.

the following conditions hold:

(a) (Weak-lim inf). For every fi ∈ L2(Xi,mi) L2-weakly converging to f ∈ L2(X,m),
one has

Ch(f) ≤ lim inf
i→∞

Ch
i(fi).

Moreover if supi Ch
i(fi) < ∞, then fi L2-strongly converge to f .

7



(b) (Strong-lim sup). For every f ∈ L2(X,m) there exist fi ∈ L2(Xi,mi), L2-strongly
converging to f with

Ch(f) = lim
i→∞

Ch
i(fi). (2.4)

Moreover, if f ∈ LIP(X, d) ∩ H1,2(X, d,m), then we can find fi in such a way that
fi ∈ LIP(Xi, di) ∩ H1,2(Xi, di,mi) with supi ‖Γi(fi)‖L∞ < ∞.

Next, we define in a natural way, following [GMS13], weak and strong convergence in
the Sobolev space H1,2, with a variable reference measure.

Definition 2.6 (Convergence in the Sobolev spaces). We say that fi ∈ H1,2(Xi, di,mi)
are weakly convergent in H1,2 to f ∈ H1,2(Xi, di,mi) if fi are L2-weakly convergent to
f and supi Ch

i(fi) is finite. Strong convergence in H1,2 is defined by requiring L2-strong
convergence of the functions, and that Ch(f) = limi Ch

i(fi).

The following results are proved in [AH16] (see Corollary 5.5, Theorem 5.7 and Lemma 5.8
therein), building on [AST16]; the third result can be considered as the local counterpart
of Theorem 2.5.

Theorem 2.7 (Weak stability of Laplacian). Let fi ∈ D(∆i) with

sup
i

(‖fi‖L2(Xi,mi) + ‖∆ifi‖L2(Xi,mi)) < ∞

and assume that fi L2-strongly converge to f . Then f ∈ D(∆) and

(1) fi strongly converge to f in H1,2;

(2) ∆ifi L2-weakly converge to ∆f .

Theorem 2.8 (Continuity of the gradient operators). Let v ∈ H1,2(X, d,m) and let vi ∈
H1,2(Xi, di,mi) be strongly convergent in H1,2 to v. Then:

(i) If wi weakly converge to w in H1,2 and Γi(vi, wi) is uniformly bounded in Lp for
some p ∈ (1, ∞), then Γi(vi, wi) Lp-weakly converge to Γ(v, w).

(ii) If wi strongly converge to w in H1,2, then Γi(vi, wi) L1-strongly converge to Γ(v, w).

Lemma 2.9 (Lower semicontinuity). Let f ∈ H1,2(X, d,m) and let fi ∈ H1,2(Xi, di,mi)
be strongly convergent in H1,2 to f . Then

lim inf
i→∞

∫

Xi

g
√

Γi(fi)dmi ≥
∫

X
g
√

Γ(f)dm

for any lower semicontinuous function g : Y → [0, +∞].

We conclude this section with the following technical lemma, which is an easy conse-
quence of the previous two stability results.

Lemma 2.10. For any f ∈ LIPc(BR(x), d) there exist fi ∈ LIPc(BR(xi), di) satisfying
supi ‖Γi(fi)‖L∞ < ∞ and strongly convergent to f in H1,2.

Proof. By Theorem 2.5 there exist gi ∈ LIP(Xi, di)∩H1,2(Xi, di,mi) with supi ‖Γi(gi)‖L∞ <
∞, strongly convergent to f in H1,2. Let ǫ > 0 with supp f ⊂ BR−3ǫ(x), set r1 := R − 3ǫ,
R1 := R − 2ǫ and let ϕi ∈ D(∆i) be satisfying (2.3). By Theorems 2.5, 2.7 and the com-
pactness with respect to the L2-weak convergence, with no loss of generality we can assume
that ϕi strongly converge to some ϕ ∈ D(∆) in H1,2. Then, since supi ‖Γi(ϕi)‖L∞ < ∞,
it is not difficult to check that fi := ϕigi strongly converge to ϕf = f in H1,2, which
completes the proof.
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2.2 Local Sobolev spaces

Next, let us discuss local analysis on RCD∗(K, N)-spaces, which is the main purpose of
the paper.

Definition 2.11 (Sobolev spaces H1,2
0 , Ĥ1,2

0 ). Let U be an open subset of X.

1. (H1,2
0 -Sobolev space) We denote by H1,2

0 (U, d,m) the H1,2-closure of LIPc(U, d).

2. (Ĥ1,2
0 -Sobolev space) We denote by Ĥ1,2(U, d,m) the set of all f ∈ H1,2(X, d,m)

such that f = 0 m-a.e. in X \ U .

It is trivial that H1,2
0 (U, d,m) and Ĥ1,2

0 (U, d,m) are closed subspaces of H1,2(X, d,m),
with H1,2

0 (U, d,m) ⊂ Ĥ1,2
0 (U, d,m). A kind of “reverse” inclusion is provided in the follow-

ing lemma.

Lemma 2.12. For all x ∈ X and R > 0 one has

Ĥ1,2
0 (BR(x), d,m) =

⋂

ǫ>0

H1,2
0 (BR+ǫ(x), d,m).

In addition, for all x ∈ X, the equality Ĥ1,2
0 (BR(x), d,m) = H1,2

0 (BR(x), d,m) holds with
at most countably many exceptions.

Proof. The inclusion ⊃ is a direct consequence of the definition and of the fact that
boundaries of balls are m-negligible (this follows by the thin annulus property (2.8) ensured
by the doubling and length assumption). Let us check the converse inclusion. Let f ∈
Ĥ1,2

0 (BR(x), d,m) and let ǫ > 0. Take fi ∈ LIP(X, d) ∩ H1,2(X, d,m) with ‖fi − f‖H1,2 →
0 as i → ∞, and take ϕ ∈ LIPc(X, d) with ϕ|BR+ǫ/2(x) ≡ 1 and supp ϕ ⊂ BR+ǫ(x).

Then, since ϕfi ∈ H1,2
0 (BR+ǫ(x), d,m) and ϕfi → ϕf = f in H1,2(X, d,m), we have

f ∈ H1,2
0 (BR+ǫ(x), d,m), which completes the proof of the first statement.

To prove the second one, it suffices to apply Lemma 2.1 to the characteristic funtions
of the sets H1,2

0 (BR(x), d,m), Ĥ1,2
0 (BR(x), d,m), defined in the separable Hilbert space

Z = H1,2(X, d,m).

Accordingly, for U ⊂ X open we can define the local Cheeger-energy ChU : L2(X,m) →
[0, +∞] by

ChU (f) :=

{

Ch(f) if f ∈ H1,2
0 (U, d,m);

+∞ otherwise
(2.5)

and put Ch(x,R) := ChBR(x).
Let us now discuss the Dirichlet problem on a ball BR(x).

Definition 2.13 (Dirichlet Laplacian on balls). Let D0(∆, BR(x)) denote the set of f ∈
H1,2

0 (BR(x), d,m) such that there exists h := ∆x,Rf ∈ L2(BR(x),m) satisfying

∫

BR(x)
hgdm = −

∫

BR(x)
Γ(f, g)dm ∀g ∈ H1,2

0 (BR(x), d,m).

Strictly speaking, this Dirichlet Laplacian ∆x,R should not be confused with the oper-
ator ∆, for this reason we adopted a distinguished symbol.

It follows from standard arguments that the spectrum of ∆x,R is discrete and un-
bounded (except when X consists of a single point), so we denote it by

0 ≤ λD
1 (BR(x)) ≤ λD

2 (BR(x)) ≤ · · · → +∞,

9



counted with multiplicities. Moreover, if X\BR+ǫ(x) 6= ∅ for some ǫ > 0, then λD
1 (BR(x)) >

0, which is a direct consequence of Sobolev inequalities (c.f. (4.11)).
Let us now introduce the local Sobolev space H1,2(BR(x), d,m) on a RCD∗(K, N)-

space (X, d,m). See for instance [Ch99, S98] for the definition of general local Sobolev
space H1,p(U, d,m) for any p ∈ [1, ∞) and any open subset U of X, see also Remark 2.15.
Our working definition is this:

Definition 2.14 (H1,2(U, d,m)-Sobolev space). Let U ⊂ X be open. We say that f ∈
L2(U,m) belongs to H1,2(U, d,m) if:

(i) ϕf ∈ H1,2(X, d,m) for any ϕ ∈ LIPc(U, d);

(ii) Γ(f) ∈ L1(U,m).

Notice that condition (i) corresponds precisely to a H1,2
loc property, namely (i) holds if

and only if for any V ⋐ U there exists f̃ ∈ H1,2(X, d,m) with f̃ ≡ f on V . Condition
(ii) makes sense, since the locality properties of Γ ensure that Γ(f) makes sense for all
functions f as in (i). Indeed, choosing a sequence of functions χn ∈ LIPc(U, d) with
{χn = 1} ↑ U and defining

Γ(f) := Γ(fχn) m-a.e. on {χn+1 = 1} \ {χn = 1}

we obtain an extension of the carré du champ operator on H1,2(U, d,m) (for which we keep
the same notation, being also independent of the choice of χn) which retains all bilinearity
and locality properties.

Remark 2.15. Even though it does not play a role in this paper, it is worth to compare the
space H1,2(U, d,m) with the space H1,2(U, d,mU ) (i.e. we apply Definition 2.2 to the space
U with the induced distance and measure mU ) and with the space W 1,2 of Cheeger’s paper
[Ch99]: a function f ∈ L2(U) is said to belong to W 1,2(U, d,m) if there exist fn ∈ L2(U,m)
convergent to f in L2 and upper gradients gn of fn with supn ‖gn‖L2(U) < +∞.

Summing up, we have

H1,2(U, d,mU ) ( H1,2(U, d,m) = W 1,2(U, d,m).

and the strict inclusion may occur even when m(∂U) = 0. Since, as we said, this does not
play a role in the results of our paper, we only outline the arguments (notice that neither
doubling nor Poincaré are involved here, only local compactness is needed).

H1,2(U, d,mU ) ⊂ H1,2(U, d,m). Property (i) is obvious, since any function f ∈ H1,2(U, d,mU )
can be approximated in L2(U,mU ) by bounded Lipschitz functions fn with

sup
n

∫

U
|∇fn|2dm < +∞.

One can then apply the lower semicontinuity on open sets to fnχ, with χ ∈ LIPc(U, d), to
obtain that

∫

V
Γ(f) ≤ lim inf

n→∞

∫

V
Γ(fnχ)dm ≤ sup

n

∫

U
|∇fn|2dm

for any open set V with V ⋐ {χ = 1}. By monotone convergence, one then gets that
Γ(f) ∈ L1(U,m).

H1,2(U, d,m) ⊂ W 1,2(U, d,m). For all f ∈ H1,2(U, d,m), exploiting property (i) of Defi-
nition 2.14 and arguing as in the proof of the classical Meyers-Serrin theorem, one can
prove the existence of locally Lipschitz functions fn : U → R convergent to f in L2(U,m)
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with lim supn ‖|∇fn|‖L2(U) ≤ ‖Γ(f)‖L1(U). Since the slope is an upper gradient for locally
Lipschitz functions, this proves the inclusion.

W 1,2(U, d,m) ⊂ H1,2(U, d,m). This inclusion requires the identification between weak
upper gradients and relaxed gradients estabilished in full generality in [AGS14a]. Indeed,
if f ∈ W 1,2(U, d,m) and if g is any weak limit point in the L2(U) topology of upper
gradients gn of fn, fn → f in L2(U,m), then we know that g is 2-weak upper gradient,
according to the theory developed in [S98]. Then, for any open set V ⋐ U we can
apply the identification of [AGS14a] to get hn ∈ LIP(V , d) with hn → f in L2(V ,m)
and lim supn ‖|∇hn|‖L2(V ) ≤ ‖g‖L2(V ). Since V is arbitrary, this immediately gives that

ϕf ∈ H1,2(X, d,m) for all ϕ ∈ LIPc(U, d), and that supV ⋐U ‖Γ(f)‖L1(V ) < +∞.

Counterexample. An example of a function f ∈ H1,2(U, d,m) \ H1,2(U, d,mU ) can be
found in Remark 4.9.

Definition 2.16 (Laplacian on balls). For f ∈ H1,2(BR(x), d,m), we write f ∈ D(∆, BR(x))
if there exists h := ∆x,Rf ∈ L2(BR(x),m) satisfying

∫

BR(x)
hgdm = −

∫

BR(x)
Γ(f, g)dm ∀g ∈ H1,2

0 (BR(x), d,m).

Since for f ∈ H1,2
0 (BR(x), d,m) one has f ∈ D(∆, BR(x)) iff f ∈ D0(∆, BR(x)) and

the laplacians are the same, we retain the same notation ∆x,R of Definition 2.13. It is
easy to check that for any f ∈ D(∆, BR(x)) and any ϕ ∈ D(∆) ∩ LIPc(BR(x), d) with
∆ϕ ∈ L∞(X,m) one has (understanding ϕ∆x,Rf to be null out of BR(x)) ϕf ∈ D(∆) with

∆(ϕf) = f∆ϕ + 2Γ(ϕ, f) + ϕ∆x,Rf m-a.e. in X. (2.6)

Finally, we recall the Sobolev inequality, which plays a role in the proof of stability of
H1,2-functions.

(

−
∫

BR(x)
|f − −

∫

BR(x)
fdm|2∗

dm

)1/2∗

≤ C

(

−
∫

BR(x)
Γ(f)dm

)1/2

∀f ∈ H1,2(BR(x), d,m),

(2.7)

where 2∗ = 2N/(N − 2) if N > 2, 2∗ can be any power in (2, ∞) if N ∈ (1, 2] and
C := C(K, N, 2∗, R) > 0. In our context of curvature-dimension bounds, (2.7) can be
proved for locally Lipschitz functions starting from the local Poincaré inequality of [Ra12],
applying then Theorem 5.1 of [HK00] in combination with the Bishop-Gromov inequality.
By density, it extends to global H1,2-functions. Since H1,2(BR(x), d,m) locally coincide
with global H1,2-functions, a simple monotone approximation then provides the result in
the class H1,2(BR(x), d,m).

We also need the following volume estimate for “thin” annuli; for any ǫ > 0 there exists
δ := δ(K, N, R, ǫ) > 0 such that for all x ∈ X one has

m(Br(x) \ B(1−δ)r(x)) ≤ ǫm(Br(x)) ∀r < R. (2.8)

See for instance [CM00] or [St06].

3 Stability of local problems with homogeneous Dirichlet

conditions

Let us start to discuss local stability on RCD∗-spaces with respect to the mGH-convergence.
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Proposition 3.1 (Compactness of Ĥ1,2
0 -functions). Any sequence (fi) with fi ∈ Ĥ1,2

0 (BR(xi), di,mi)
and supi ‖fi‖H1,2 < ∞ has a weak H1,2-convergent subsequence to some f ∈ Ĥ1,2

0 (BR(x), d,m).

Proof. By Theorems 2.5, 2.7 and the compactness with respect to the L2-weak conver-
gence, with no loss of generality we can assume that fi H1,2-weakly converge to some
f ∈ H1,2(X, d,m). Thus it suffices to check that f ∈ Ĥ1,2

0 (BR(x), d,m). Let z ∈ X \BR(x),
let r > 0 with Br(z) ⊂ X \ BR(x) and let ϕ ∈ LIPc(X, d) with supp ϕ ⊂ Br(z). Then, ap-
plying Lemma 2.10 to f := ϕ shows that there exist ϕi ∈ LIPc(Xi, di) strongly convergent
to ϕ in H1,2 such that supp ϕi ⊂ Br(zi), where zi → z. In particular

∫

X
ϕfdm = lim

i→∞

∫

Xi

ϕifidmi = 0.

Since ϕ is arbitrary, this proves that f ∈ Ĥ1,2
0 (BR(x), d,m).

Definition 3.2 (Mosco convergence of local Cheeger energies). We say that the local
Cheeger energies Ch

i
loc Mosco converge to the local Cheeger energy Chloc at (z, R) ∈ X ×

(0, +∞), denoted by
Ch

i
loc → Chloc at (z, R) (3.1)

for short, if whenever Ri → R and zi ∋ Xi → z, the following conditions hold;

(a) (Weak-lim inf). For every fi ∈ L2(BRi(zi),mi) L2-weakly converging to f ∈ L2(BR(z),m),
one has

Ch(z,R)(f) ≤ lim inf
i→∞

Ch
i
(zi,Ri)

(fi).

(b) (Strong-lim sup). For every f ∈ L2(BR(z),m) there exist fi ∈ L2(BRi(zi),mi), L2-
strongly converging to f with

Ch(z,R)(f) = lim
i→∞

Ch
i
(zi,Ri)

(fi). (3.2)

The next proposition follows from a standard argument. For the reader’s convenience
we give a sketch of the proof.

Proposition 3.3 (Equivalence of Mosco and local spectral convergence). The following
properties are equivalent:

(1) Ch
i
loc → Chloc at (z, R).

(2) The spectral convergence for the Dirichlet problems on BRi(zi) holds for any Ri → R
and any zi → z, i.e. for any k, any sequence of eigenfunctions fi,k with the eigen-
value λD

k (BRi(zi)) associated with the Dirichlet problem on BRi(zi) has a L2-strong
convergent subsequence to an eigenfunction fk ∈ D0(∆, BR(z)) with the eigenvalue
λD

k (BR(z)) (in particular limi λD
k (BRi(zi)) = λD

k (BR(z)) holds).

Proof. See for instance [GMS13, Theorem 7.8] for the proof of the implication from (1) to
(2). We give only a proof of the converse implication.

Assume that (2) holds. Since Lemma 2.10 yields the condition (b) in Definition 3.2, it
suffices to check the condition (a). Let fi ∈ H1,2

0 (BR(xi), di,mi) with supi ‖fi‖H1,2 < ∞
and let f ∈ L2(BR(x),m) be the L2-weak limit function. Then by Theorem 2.5 f is the
L2-strong limit function and f ∈ H1,2(X, d,m). By assumption, with no loss of generality
we can assume that {fi,k}k, {fk}k are o.n.b. in H1,2

0 (BRi(zi), di,mi), in H1,2
0 (BR(z), d,m),

respectively and that fi,k L2-strongly converge to fk for any k.
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Let f =
∑

k=1 akfk in L2(BR(z),m), fi :=
∑N

k=1 ai,kfi,k in H1,2
0 (BRi(zi), di,mi), and

denote by fN :=
∑N

k=1 akfk, fN
i :=

∑N
k=1 ai,kfi,k the corresponding finite sums. Since

ai,k =

∫

BRi
(zi)

fifi,kdmi →
∫

BR(z)
ffkdm = ai

as i → ∞, we have

‖fN‖2
H1,2 =

N
∑

k=1

(ak)2

(

1 +

∫

BR(z)
Γ(fk)dm

)

=
N
∑

k=1

(ak)2(1 + λD
k (BR(z)))

= lim
i→∞

N
∑

k=1

(ai,k)2(1 + λD
k (BR(zi)))

= lim
i→∞

‖fN
i ‖2

H1,2 ≤ lim inf
i→∞

‖fi‖2
H1,2 < ∞.

Thus letting N ↑ ∞ shows (a).

We are now in a position to introduce the main result of the paper (recall that, ac-
cording to Lemma 2.12, for given z condition (2) below holds for all radii, with at most
countably many exceptions).

Theorem 3.4 (Main equivalence). The following are equivalent;

(1) Ch
i
loc → Chloc at (z, R).

(2) H1,2
0 (BR(z), d,m) = Ĥ1,2

0 (BR(z), d,m).

In particular if these conditions hold, then the Mosco convergence of local Cheeger energies
at (z, R) holds for any sequence of RCD∗(K, N)-spaces (Yi, di, νi)

GH→ (X, d,m).

Proof. We first prove the implication from (1) to (2). Assume that (1) holds.
Let f ∈ Ĥ1,2(BR(z), d,m). Then by Lemma 2.12 for any ǫ > 0 there exists fǫ ∈

LIPc(BR+ǫ(z), d) such that ‖f − fǫ‖H1,2 < ǫ. Applying Lemma 2.10 for f := fǫ yields
that there exist fǫ,i ∈ LIPc(BR+ǫ(zi), di) such that supi ‖Γi(fǫ,i)‖L∞ < ∞ and fǫ,i strongly
converge to fǫ in H1,2. Thus there exists a subsequence j(i) such that gj(i) := fi−1,j(i)

strongly converge to f in H1,2. Then the condition (a) in Definition 3.2 shows that
f ∈ H1,2

0 (BR(z), d,m), which proves (2).
Next assume that (2) holds. By the same reason as in the proof of Proposition 3.3,

it suffices to check the condition (a) in Definition 3.2. This is a direct consequence of
Proposition 3.1 and assumption (2).

Remark 3.5. By scaling and translation invariance, Lemma 2.12 obviously gives

H1,2
0 (BR(x), deucl, Ln) = Ĥ1,2

0 (BR(x), deucl, Ln) ∀(x, R) ∈ Rn × (0, +∞). (3.3)

In particular any mGH-convergent sequence of RCD∗(K, N)-spaces to (Rn, deucl, 0n, Hn)
satisfies Ch

i
loc → Chloc at any (x, R) ∈ Rn × (0, ∞).

Still using scaling invariance, one can prove an analogous property for all R > 0 when
the metric measure space is a metric cone and x is the pole. See Proposition 4.15.
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Remark 3.6 (Correction to [H14]). In [H14] the second author established second-order (or
weak C1,1-) differential structure on a Ricci limit space (X, d,m). In the proof, one of the
key estimates was

∫

Br(x)
Γ(Γ(f))dm < ∞ (3.4)

for any limit harmonic function f : BR(x) → R and any r < R, which means that f is the
uniform limit function of smooth harmonic functions fi : BR(xi) → R. In order to prove
(3.4), the local spectral convergence was used in his first proof. However, as we observed
in the introduction, this is not the correct argument. However, the problem can be fixed
by using the local spectral convergence for almost every radius granted by this paper.

Remark 3.7. It is natural to ask whether the Mosco convergence of the modifed Cheeger
energies Ĉh

i
BR(xi) : L2(Xi,mi) → [0, +∞] holds or not, where

Ĉh
i
BR(xi)

(f) :=

{

Ch(f) if f ∈ Ĥ1,2
0 (BR(xi), di,mi);

+∞ otherwise.
(3.5)

The answer is negative in general and we give an example as follows. Put Ĉh(xi,R) :=

Ĉh
i
BR(xi).
Let us consider the mGH-convergent sequence

(S1(s), dS1(s), H1)
mGH→ (S1(1), dS1(1), H1).

As s ↓ 1, let xs ∈ S1(s) with xs → x1 ∈ S1(1). Note that

Ĥ1,2
0 (Bπ(x1), dS1(1), H1) = H1,2(S1(1), dS1(1), H1),

because H1(S1(1) \ Bπ(x1)) = 0. In particular take 1 ∈ Ĥ1,2
0 (Bπ(x1), dS1(1), H1). For any

s > 1 fix a canonical local isometry ϕs : (−π, π) → Bπ(xs). Let us prove that there is no
approximating sequence fi ∈ Ĥ1,2

0 (Bπ(xsi), dS1(si), H1) as si ↓ 1 such that fi L2-strongly

converge to 1 on Bπ(x) with supi ‖fi‖H1,2 < ∞, which in particular implies that Ĉh
i
(xsi ,π)

does not Mosco converge to Ĉh(x1,π). Indeed if such fi exist, then since gi := fi ◦ ϕsi ∈
H1,2

0 ((−π, π), deucl, L1) L2-strongly converge to 1 with supi ‖gi‖H1,2 < ∞, where we used
the identity H1,2

0 = Ĥ1,2
0 on Bπ(xsi), we would have 1 ∈ H1,2

0 ((−π, π), deucl, L1), which is
a contradiction.

On the other hand by using the arguments in this section it is not difficult to see that the
Mosco convergence of Ĉh

i
loc-energies above is also equivalent to the spectral convergence,

where the meaning of the spectrum here is taken by satisfying (1.5) in the Ĥ1,2
0 -setting

(instead of H1,2
0 ), and that if (2) of Theorem 3.4 is satisfied, then Ĉh

i
(xi,R) Mosco converge

to Ĉh(x,R) = Ch(x,R). In particular the Mosco convergence of Ĉh
i
loc-energies is also satisfied

under a generic assumption.

Remark 3.8 (p-energies). Even though we discussed only H1,2-Sobolev spaces for simplicity,
it is easy to see that the H1,p, p > 1, version of all results above holds (except for
Proposition 3.3), i.e. using p-Cheeger energy instead of Ch. See [AH16] for the Mosco
convergence of the p-Cheeger energies.

Let us denote by h
(x,R)
t the heat flow on L2(BR(x),m) associated with the Dirichlet

problem on BR(x), namely the gradient flow of Ch(x,R) w.r.t. to the L2 distance. Note
that it follows from the Hilbertian theory of gradient flows that for any f ∈ L2(BR(x),m)

and t > 0 one has, h
(x,R)
t f ∈ H1,2

0 (BR(x), d,m) ∩ D(∆, BR(x)) with

‖Γ(h
(x,R)
t f)‖L1(BR(x)) ≤ 1

t
‖f‖L2(BR(x)), ‖∆x,Rh

(x,R)
t f‖L2(BR(x)) ≤ 1

t
‖f‖L2(BR(x)). (3.6)
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Proposition 3.9. Let fi ∈ L2(BR(xi),mi) L2-strongly converge to f ∈ L2(BR(x),m) on
BR(x). If

H1,2
0 (BR(x), d,m) = Ĥ1,2

0 (BR(x), d,m), (3.7)

then for any t > 0 one has:

(1) h
(xi,R)
t fi converge strongly to h

(x,R)
t f in H1,2;

(2) Γi(h
(xi,R)
t fi) L1-strongly converge to Γ(h

(x,R)
t f).

Proof. Since Theorem 3.4 and (3.7) ensure Mosco convergence of the local Cheeger energies,

it follows from a standard argument that h
(xi,R)
t fi L2-strongly converge to h

(x,R)
t f (c.f.

[GMS13, KS03]). On the other hand, taking (3.6) into account, we can pass to the limit
as i → ∞ in

∫

BR(xi)
Γi(gi, h

(xi,R)
t fi)dmi = −

∫

BR(xi)
gih

(xi,R)
t fidmi gi ∈ H1,2

0 (BR(xi), di,mi)

to obtain that ∆xi,Rh
(xi,R)
t fi L2-weakly converge to ∆x,Rh

(x,R)
t f on BR(x). Thus

∫

Xi

Γi(h
(xi,R)
t fi)dmi =

∫

BR(xi)
Γi(h

(xi,R)
t fi)dmi

=

∫

BR(xi)
h

(xi,R)
t fi∆xi,Rh

(xi,R)
t fidmi

→
∫

BR(x)
h

(x,R)
t f∆xi,Rh

(x,R)
t fdm

=

∫

BR(x)
Γ(h

(x,R)
t f)dm =

∫

X
Γ(h

(x,R)
t f)dm, (3.8)

which shows (1). Property (2) follows from (1) and Theorem 2.8.

4 Harmonic replacements and nonhomogeneous boundary

conditions

From now on we consider a pointed mGH-convergent sequence of RCD∗(K, N)-spaces,
with N > 1:

(Xi, xi, di,mi)
mGH→ (X, x, d,m).

In this setting, the notions of weak/strong Lp convergence on balls will be used in this
final section. These concepts derive immediately from the global ones by multiplying by
characteristic functions, for instance we say that fi ∈ L2(Xi,mi) L2-weakly converge to
f ∈ L2(X,m) on BR(x) if fi1BR(xi) L2-weakly converge to f1BR(x).

Definition 4.1 (Local H1,2-convergence). We say that fi ∈ H1,2(BR(xi), di,mi) are
weakly convergent in H1,2 to f ∈ H1,2(BR(x), d,m) on BR(x) if fi are L2-weakly (or
L2-strongly, equivalently) convergent to f on BR(x) with supi ‖fi‖H1,2 < ∞. Strong con-
vergence in H1,2 on BR(x) is defined by requiring limi ‖Γi(fi)‖L1(BR(xi)) = ‖Γ(f)‖L1(BR(x)).

Theorem 4.2 (Compactness of local Sobolev functions). Let R > 0 and let fi ∈ H1,2(BR(xi), di,mi)
with supi ‖fi‖H1,2 < ∞. Then there exist f ∈ H1,2(BR(x), d,m) and a subsequence fi(j)

such that fi(j) L2-strongly converge to f on BR(x) and

lim inf
j→∞

∫

BR(xi(j))
Γi(j)(fi(j))dmi(j) ≥

∫

BR(x)
Γ(f)dm.
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Proof. For any r < R, fix ϕr ∈ LIPc(B
Y
R (x), d) with 0 ≤ ϕr ≤ 1 and that ϕr ≡ 1 on

BY
r (x).

We first check the L2-strong compactness. Although it was proven in [H15], we give
another proof here for the reader’s convenience. Note that by (2.7) we have

sup
i

‖fi‖L2∗ (BR(xi)) < ∞. (4.1)

Thus, by the Lp-weak compactness, with no loss of generality we can assume that fi

L2-weakly converge to f ∈ L2∗
(BR(x),m) on BR(x).

Since ϕrfi L2-weakly converge to ϕrf with supi ‖ϕrf‖H1,2 < ∞, Theorem 2.5 yields
that ϕrfi L2-strongly converge to ϕrf , and that ϕrf ∈ H1,2(X, d,m). Since r < R is
arbitrary, the second property easily implies

ϕf ∈ H1,2(X, d,m) ∀ϕ ∈ LIPc(BR(x), d).

On the other hand, the Hölder inequality shows

‖ϕrfi−fi‖L2(BR(xi)) ≤ ‖1BR(xi)\BY
r (x)fi‖L2(BR(xi)) ≤ mi(B

Y
R (xi)\BY

r (x))1−2/2∗ ‖fi‖2
L2∗ (BR(xi)).

Since lim supi mi(B
Y
R (xi) \ BY

r (x)) ≤ m(B
Y
R(x) \ BY

r (x)), combining this with (2.8) and
(4.1) yields

lim
i→∞

‖fi‖L2(BR(xi)) = ‖f‖L2(BR(x)), (4.2)

i.e. fi L2-strongly converge to f on BR(x).
Assuming with no loss of generality that

√

Γi(fi) L2-weakly converge to g ∈ L2(BR(x),m)
in BR(x) (i.e. the measures 1BR(xi)

√

Γi(fi)mi weakly converge to gm), if we prove that

g ≥
√

Γ(f), we are done. Fix an open set A ⋐ BY
R (x), then s ∈ (0, R) with A ⋐ BY

s (x) and
ϕ ∈ LIPc(B

Y
s (x), d) with 0 ≤ ϕ ≤ 1 and ϕ|BY

s (x) ≡ 1. Since the sequence fiϕ converges to

fϕ weakly in H1,2 on X, from Lemma 2.9 with g equal to the characteristic function of
A we get

∫

A
gdm ≥ lim sup

i

∫

A

√

Γi(fi)dmi ≥
∫

A

√

Γ(f)dm.

Now, since any open set B ⊂ BY
R (x) can be written as ∪iAi, with Ai ⋐ Ai+1, the previous

inequality gives
∫

B gdm ≥ ∫

B

√

Γ(f)dm. Since B is arbitrary, this proves the inequality
g ≥

√

Γ(f).

Corollary 4.3. Let fi, gi ∈ H1,2(BR(xi), di,mi) be H1,2-strong/weak convergent sequences
to f, g ∈ H1,2(BR(x), d,m) on BR(x), respectively. Then

∫

BR(xi)
Γi(fi, gi)dmi →

∫

BR(x)
Γ(f, g)dm. (4.3)

In particular, fi ± gi converge strongly to f ± g in H1,2 on BR(x) if gi is also H1,2-strong
convergent on BR(x).

Proof. It follows from lim infi ‖Γ(fi + tgi)‖L1(BR(xi)) ≥ ‖Γ(f + tg)‖L1(BR(x)) for any t ∈ R,
by polarization.

Theorem 4.4 (Stability of Laplacian on balls). Let fi ∈ D(∆, BR(xi)) with

sup
i

(‖fi‖H1,2(BR(xi)) + ‖∆fi‖L2(BR(x))) < ∞,

and let f be the L2-strong limit function of f on BR(x) (so that, by Theorem 4.2, f ∈
H1,2(BR(x), d,m)). Then:
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(1) f ∈ D(∆, BR(x));

(2) ∆x,Rfi L2-weakly converge to ∆x,Rf on BR(x);

(3) Γi(fi) L1-strongly converge to Γ(f) on Br(x) for any r < R.

Proof. Fix r < R. By using good cut-off functions (2.3) for pairs Br(xi) ⊂ Br+(R−r)/2(xi),
with no loss of generality we can assume the existence of a strong H1,2-convergent sequence
of ϕi ∈ LIPc(BR(xi), di) ∩ D(∆) to ϕ ∈ LIPc(BR(x), d) ∩ D(∆) with 0 ≤ ϕi ≤ 1, |∆ϕi| +
Γi(ϕi) ≤ C(K, N, r, R) and ϕi|Br(xi) ≡ 1, 0 ≤ ϕ ≤ 1, |∆ϕ| + Γ(ϕ) ≤ C(K, N, r, R) and
ϕ|Br(x) ≡ 1.

Then, applying Theorem 2.7 to ϕifi with the L2-weak compactness (on BR(x)) yields
that (1) and (2) are satisfied, and that Γi(ϕifi) L1-strongly converge to Γ(ϕf). This
completes the proof of (3), because Γi(ϕifi) = Γi(fi) mi-a.e. on Br(xi) and Γ(ϕf) = Γ(f)
m-a.e. on Br(x).

The following is a direct consequence of Theorem 4.4.

Corollary 4.5 (Stability of harmonic functions). Let fi ∈ H1,2(BR(xi), di,mi) be har-
monic functions on BR(xi), i.e. fi ∈ D(∆, BR(xi)) with ∆xi,Rfi = 0. If fi L2-strongly
converge to f on BR(x) with supi ‖fi‖H1,2 < ∞, then f is also harmonic on BR(x).

Theorem 4.6 (Continuity of the local gradient operators). Let fi ∈ H1,2(BR(xi), di,mi)
be an H1,2-strong convergent sequence to f ∈ H1,2(BR(x), d,m) on BR(x). Then we have
the following;

(1) Γi(fi) L1-strongly converge to Γ(f) on BR(x).

(2) if gi ∈ H1,2(BR(xi), di,mi) converge weakly to g ∈ H1,2(BR(x), d,m) in H1,2 on
BR(x), and if Γi(fi, gi) is uniformly Lp-bounded for some p ∈ (1, ∞), then Γi(fi, gi)
Lp-weakly converge to Γ(f, g) on BR(x).

Proof. Let us prove (1). As in the proof of Theorem 4.2, we can assume with no loss
of generality that

√

Γi(fi) L2-weakly converge to some function g in BR(x), and H1,2-
strong convergence together with lower semicontinuity provides, in this case, the inequality
‖g‖L2(BR(x)) ≤ ‖

√

Γ(f)‖L2(BR(x)). Since in the proof of Theorem 4.2 we obtained, using

only weak H1,2 convergence, the inequality g ≥
√

Γ(f), we obtain that g =
√

Γ(f), and
this proves (1).

Statement (2) can be proved by applying Theorem 2.8(i) to the functions giϕ
r, fiϕ

r,
with ϕr as in the proof of Theorem 4.2.

From now on we discuss the local Dirichlet problem. The next lemma is quite standard.

Lemma 4.7. Let g ∈ L2(BR(x),m) and let f ∈ H1,2(BR(x), d,m). If λD
1 (BR(x)) > 0,

then there exists a unique f̂ ∈ D(∆, BR(x)) such that














∆x,Rf̂ = g

f − f̂ ∈ H1,2
0 (BR(x), d,m).

(4.4)

In addition

‖
√

Γ(f̂)‖L2(BR(x)) ≤ 2‖
√

Γ(f)‖L2(BR(x)) +
‖g‖L2(BR(x))

λD
1 (BR(x))

, (4.5)

‖f̂‖L2(BR(x)) ≤ ‖f‖L2(BR(x)) +
1

λD
1 (BR(x))

‖
√

Γ(f)‖L2(BR(x)) +
‖g‖L2(BR(x))

(λD
1 (BR(x)))2

. (4.6)
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Proof. Since

λD
1 (BR(x))

∫

BR(x)
|h|2dm ≤

∫

BR(x)
Γ(h)dm ∀h ∈ H1,2

0 (BR(x), d,m),

it follows that
√

∫

BR(x) Γ(·)dm is an equivalent norm on H1,2
0 (BR(x), d,m). Let us consider

the linear functional F on H1,2
0 (BR(x), d,m) defined by

F(h) := −
∫

BR(x)
(gh + Γ(f, h))dm.

Then since F is continuous with ‖F‖ ≤ ‖
√

Γ(f)‖L2 + ‖g‖L2/λD
1 (BR(x)), there exists a

unique ϕ ∈ H1,2
0 (BR(x), d,m) such that F(h) =

∫

BR(x) Γ(ϕ, h)dm, i.e.

−
∫

BR(x)
(gh + Γ(f, h))dm =

∫

BR(x)
Γ(ϕ, h)dm ∀h ∈ H1,2

0 (BR(x), d,m).

Letting f̂ := f + ϕ and using the inequality ‖
√

Γ(ϕ)‖L2 ≤ ‖
√

Γ(f)‖L2 + ‖g‖L2/λD
1 (BR(x))

completes the proof of the existence and the apriori estimates. Uniqueness is a simple
consequence of linearity and apriori estimates.

In the particular case when g = 0, the function f̂ provided by the previous lemma will
be called harmonic replacement of f .

Theorem 4.8 (Continuity of the local Dirichlet problem). Let fi ∈ H1,2(BR(xi), di,mi)
be a weak H1,2-convergent sequence to f ∈ H1,2(BR(x), d,m) on BR(x), and let gi ∈
L2(BR(xi),mi) be an L2-weak convergent sequence to g ∈ L2(BR(x),m) on BR(x). Assume
that λD

1 (BR(x)) > 0 and that

H1,2
0 (BR(x), d,m) = Ĥ1,2

0 (BR(x), d,m).

Then the solutions f̂i ∈ D(∆i, BR(xi)) of the Dirichlet problems, ∆xi,Rf̂i = gi with fi−f̂i ∈
H1,2

0 (BR(xi), di,mi), converge weakly in H1,2 to the solution f̂ of the Dirichlet problem,
∆x,Rf̂ = g with f − f̂ ∈ H1,2

0 (BR(x), d,m). Moreover the convergence is strong in H1,2 if
and only if

∫

BR(xi)
Γi(f̂i, fi)dmi →

∫

BR(x)
Γ(f̂, f)dm. (4.7)

Finally (4.7) is satisfied if either supi ‖Γ(fi)‖Lp(BR(xi)) < ∞ for some p > 1, or fi ∈
H1,2

0 (BR(xi), di,mi) for all i.

Proof. It is easy to check that (4.5) and (4.6) give supi ‖f̂i‖H1,2 < ∞. Thus, by Theo-
rem 4.2, with no loss of generality we can assume that there exists the weak H1,2-limit
function h ∈ H1,2(BR(x), d,m) of f̂i on BR(x). Moreover, Theorem 3.4 yields

f − h ∈ H1,2
0 (BR(x), d,m), (4.8)

and Theorem 4.4 shows that h ∈ D(∆, BR(x)) with ∆x,Rh = g. In particular our assump-
tion, λD

1 (BR(x)) > 0, together with the uniqueness part of Lemma 4.7 yield f = h, which
completes the proof of the first part.
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Next we assume that (4.7) is satisfied. Then since f̂i −fi L2-strongly converge to f̂ −f
on BR(x), we have

‖Γi(f̂i)‖L1(BR(xi)) =

∫

BR(xi)
(Γi(f̂i, fi) + Γi(f̂i, (f̂i − fi))dmi

=

∫

BR(xi)
(Γi(f̂i, fi) − gi(f̂i − fi))dmi

→
∫

BR(x)
(Γ(f̂, f) − g(f̂ − f))dm = ‖Γ(f̂)‖L1(BR(x)),

which yields that f̂i converge strongly to f̂ on BR(x) in H1,2. The converse implication
can be checked by a similar argument.

Finally we prove the sufficiency of the conditions mentioned in the statement, for the
validity of (4.7). If fi ∈ H1,2

0 (BR(xi), di,mi) for all i, then since Theorem 3.4 shows
f ∈ H1,2

0 (BR(x), d,m), we have

∫

BR(xi)
Γi(f̂i, fi)dmi = −

∫

BR(xi)
gifidmi → −

∫

BR(x)
gfdm =

∫

BR(x)
Γ(f̂, f)dm.

Next we assume that supi ‖Γi(fi)‖Lp(BR(xi)) < ∞ for some p > 1. Then since Young’s
inequality shows

|Γi(f̂i, fi)|q ≤ |Γi(f̂i)|q/2|Γi(fi)|q/2 ≤ q

2
Γi(f̂i) +

2 − q

2
Γi(fi)

q/(2−q)

for any q ∈ (1, 2), applying this in the case when p = 2q/(2−q) yields supi ‖Γi(f̂i, fi)‖Lq(BR(xi)) <

∞. In particular Theorem 4.6 yields that Γ(f̂, f) ∈ Lq(BR(x),m).
Note that Theorems 4.4 and 4.6 yield

∫

Br(xi)
Γi(f̂i, fi)dmi →

∫

Br(x)
Γ(f̂, f)dm ∀r < R. (4.9)

Since
∣

∣

∣

∣

∣

∫

BR(xi)
Γi(f̂i, fi)dmi −

∫

Br(xi)
Γi(f̂i, fi)dmi

∣

∣

∣

∣

∣

≤ mi(BR(xi) \ Br(xi))
1/q̂‖Γi(f̂i, fi)‖Lq(BR(xi)),

where q̂−1 + q−1 = 1, (2.8) and (4.9) show (4.7).

Remark 4.9. In Theorem 4.8 the assumption that λD
1 (BR1(x)) > 0 is essential. We give

an example as follows. Let us consider the mGH-convergent sequence

(S1(s), dS1(s), H1)
mGH→ (S1(1), dS1(1), H1).

As s ↑ 1, let xs ∈ S1(s) with xs → x1 ∈ S1(1) and let r := π. Note that λD
1 (BR1(x1)) = 0

for any R1 > π because

LIPc(BR1(x1), dS1(1)) = LIP(S1(1), dS1(1)),

hence the H1,2
0 and the H1,2 spaces coincide.

Take f ∈ C∞(R) with f(0) 6= f(2π) and fix a canonical local isometry ϕ : Bπ(x1) →
(0, 2π). Then g := f ◦ϕ belongs to D(∆, Bπ(x)) (with ∆x,πf ∈ C∞(Bπ(x1)) and bounded),
but

g 6= h|Bπ(x1) ∀h ∈ H1,2(S1(1), dS1(1), H1). (4.10)
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Indeed, if g = h|Bπ(x1) for some h ∈ H1,2(S1(1), dS1(1), H1), then since Γ(g) ∈ L∞(Bπ(x1)),
we see that h ∈ LIP(S1(1), dS1(1)), which contradicts our assumption that f(0) 6= f(2π).

Then there is no approximating sequence fi ∈ H1,2(Bπ(xi), dS1(si), H1) as si ↑ 1 such
that fi L2-strongly converge to g on Bπ(x) with supi ‖fi‖H1,2(Bπ(xi)) < ∞. Indeed, if such
fi exist, then Bπ(xi) = S1(si) and Theorem 2.5 yield g ∈ H1,2(S1(1), dS1(1), H1), which
contradicts (4.10).

It is known that if X \ B(1+ǫ)R(x) 6= ∅ for some ǫ > 0, then

∫

BR(x)
|f |2dm ≤ C(K, N, R, ǫ)

∫

BR(x)
Γ(f)dm ∀f ∈ H1,2

0 (BR(x), d,m), (4.11)

which implies λD
1 (BR(x)) > 0 (c.f. [Ch99, (4.5)]).

Let us give a simple corollary of Theorem 4.8. We first state the following:

Lemma 4.10. For any f ∈ H1,2(BR(x), d,m), r ∈ (0, R), there exist fi ∈ H1,2(Br(xi), di,mi)
such that fi|Br(xi) converge strongly to f |Br(x) on Br(x) in H1,2.

Proof. By using cut-off functions, with no loss of generality we can assume there exists
g ∈ H1,2(X, d,m) such that g|Br(x) = f |Br(x). Then, applying Theorem 2.5(b) to g together
with Theorem 2.8 completes the proof.

Remark 4.11. In Lemma 4.10, the assumption that r is strictly smaller than R is needed.
See Remark 4.9 above. In connection with this problem, the authors do not know whether
there exists a generic condition to satisfy the Mosco convergence of the following energy;

C̃hBR(x)(f) :=

{

1
2

∫

BR(x) Γ(f)dm if f |BR(x) ∈ H1,2(BR(x), d,m);

+∞ otherwise
(4.12)

with respect to the mGH-convergence.

The next approximation result, was known in the noncollapsed metric cone setting
[D04] and in the compact Ricci limit setting [H14]. Our result extends these to general
RCD∗(K, N)-spaces, without extra strong assumptions.

Corollary 4.12 (Harmonic approximation/replacement). Let f be a harmonic function
on BR(x). Then, for any r ∈ (0, R) there exist harmonic functions fi on Br(xi) such that fi

strongly converge to f |Br(x) in H1,2 on Br(x). Moreover, for any gi ∈ H1,2(Br(xi), di,mi)
converging strongly to f |Br(x) in H1,2 on Br(x) for some r ≤ R, the harmonic replacements
ĝi of gi converge strongly to f |Bs(x) in H1,2 on Bs(x) for all s ∈ (0, r] with

H1,2
0 (Bs(x), d,m) = Ĥ1,2

0 (Bs(x), d,m).

Proof. Take s̄ ∈ (r, R) with H1,2
0 (Bs̄(x), d,m) = Ĥ1,2

0 (Bs̄(x), d,m). Note that it is not
restrictive to assume that λD

1 (Bs̄(x)) > 0, since all harmonic functions are constant other-
wise.

Then by Lemma 4.10 there exist hi ∈ H1,2(Bs̄(xi), di,mi) such that hi converge strongly
to f |Bs̄(x) in H1,2. Then, thanks to Theorem 4.8, the harmonic replacements ĥi of hi

converge strongly to f |Bs̄(x) in H1,2 on Bs̄(x). Thus, letting fi := ĥi|Br(xi), completes the
proof of the first part. Moreover, the final statement about radii s ∈ (0, r] can also be
easily checked by this argument.

Remark 4.13. One might wonder about a global version of Corollary 4.12:
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for any harmonic function f on X (which means that f |BR(x) is harmonic for any
R > 0), are there a subsequence i(j) and harmonic functions fi(j) on Xi(j) such that
fi(j) L2-strongly converge to f on BR(x) for any R > 0?

The following simple example shows that the global version, as stated, does not hold. First
we check that if g is harmonic on [0, +∞) (with respect to L1), then g is constant. Indeed,
clearly g has to be affine and the condition g′(0)ϕ(0) = − ∫+∞

0 g′(t)ϕ′(t)dt = 0 for any
ϕ ∈ C∞

c (R), yields g′ ≡ 0.
Let us consider the pointed mGH-convergent family

([0, +∞), deucl, s, L1)
mGH→ (R, deucl, 0, L1) s ↑ ∞. (4.13)

Then, any nonconstant harmonic function f on R has no L2
loc-strong approximation by

global harmonic functions with respect to the convergence (4.13).

Remark 4.14. In the proof of the splitting theorem for Ricci limit spaces proven in [CC96],
the harmonic replacement of the distance function played an important role, as follows.

Let (Mi, di, xi,
vol

vol B1(mi)) be a pointed mGH-convergent sequence of n-dimensional

Riemannian manifolds to a Ricci limit space (X, d, x,m) with RicMi ≥ −δi, δi → 0.
If X contains a line γ : R → X with γ(0) = x, then for any ǫ > 0 and any R > 0
there exists L1 > 1 such that for any L ≥ L1 and any sequence xL

i ∈ Mi converging
to γ(L) ∈ X, there exist harmonic functions hi on BR(xL

i ) with

lim sup
i→∞

‖eL
i − hi‖H1,2(BR(xL

i )) < ǫ, (4.14)

where eL
i (z) := di(x

L
i , xi) − di(x

L
i , z). Moreover, we can take hi as the harmonic

replacements of eL
i in BR(xL

i ).

Even though in the splitting theorem on RCD∗(0, N)-spaces established in [G13] the
harmonic replacement were not needed (because a priori these spaces do not arise from
an approximation), recently harmonic replacement have been considered in RCD-setting
in [HM17]. It is worth pointing out that in the proof of harmonic replacement as above,
the sharp Laplacian comparison theorem and the maximum principle play a key role.

We are now in a position to prove, via Corollary 4.12, harmonic replacement for most
R > 0 using neither the “almost” nonnegative Ricci curvature condition, nor Laplacian
comparison theorem and maximum principle. To see how via Corollary 4.12 can be applied,
we assume that the limit space (X, d, x,m) of (Xi, di, xi,mi) satisfies;

(X, d,m) := (R, deucl, H1) × (Y, dY , ν)

for some RCD∗(K̂, N̂)-space (Y, dY , ν) and we denote by γ a canonical line in X, i.e.
γ(t) = (t, y) with γ(0) = x for a fixed y ∈ Y . Note that the Busemann function bγ of γ is
equal to the projection to the R-factor, i.e. bγ(t, z) = t. In particular bγ is harmonic on
X with Γ(bγ) = 1 m-a.e. in X.

Now, fix R > 0 with

H1,2
0 (BR(x), d,m) = Ĥ1,2

0 (BR(x), d,m)

and, for any L ≥ 1, take a convergent sequence xL
i ∈ Xi to γ(L) ∈ X. Then it is easy

to see that there exists a subsequence i(j) such that ej
i(j) converge uniformly to bγ on
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each bounded subset of X (in particular it is an L2
loc-strongly convergent sequence), where

ej
i(j)(z) := di(j)(x

j
i(j), xi(j)) − di(j)(x

j
i(j), z). Since Γi(j)(e

j
i(j)) = 1 mi(j)-a.e., we have

lim
j→∞

∫

BR(xi(j))
Γi(j)(e

j
i(j))dmi(j) = lim

j→∞
mi(j)(BR(xi(j))) = m(BR(x)) =

∫

BR(x)
Γ(bγ)dm.

Thus, Corollary 4.12 can be applied in this case and it follows that the harmonic replace-
ments êi(j) of ej

i(j) on BR(xi(j)) satisfy

‖ej
i(j) − êi(j)‖H1,2(BR(xi(j))) → 0.

Proposition 4.15 (Local convergence for metric cones). Let us consider the metric cone

(C(Z), dC(Z), r2
mZ)

over a compact RCD∗(N − 2, N − 1)-space (Z, dZ ,mZ) (by [K15] (C(Z), dC(Z), r2
mZ) is

an RCD∗(0, N)-space). Then

H1,2
0 (BR(p), dC(Z), r2

mZ) = Ĥ1,2
0 (BR(p), dC(Z), r2

mZ) ∀R > 0, (4.15)

where p = (0, ∗) is the pole of C(Z) = ([0, ∞) × Z)/({0} × Z).

Proof. For any ǫ ∈ (0, 1), let us consider the 1-Lipschitz map Φǫ : C(Z) → C(Z) defined
by Φǫ((t, z)) := ((1 − ǫ)t, z). By Lemma 2.12, for any f ∈ Ĥ1,2(BR(p), dC(Z), r2

mZ) there
exists fǫ ∈ LIPc(B(1−ǫ)−1R(p), dC(Z)) such that ‖f − fǫ‖H1,2 < ǫ. Then, since it is easy to
check that the support of gǫ := fǫ ◦ Φǫ is included in BR(p) and that ‖gǫ − f‖H1,2 → 0
as ǫ ↓ 0, we obtain that f ∈ H1,2

0 (BR(p), dC(Z), r2
mZ), which completes the proof of

(4.15).

We end this section by giving the following stability result, already known in the case
when the sequence consists of noncollapsed Riemannian manifolds with almost nonnegative
Ricci curvature in [CC96].

Theorem 4.16. Assume that the limit space (X, d, x,m) is a RCD∗(0, N) space satisfying

r 7→ m(Br(x))

rN
is constant in (0, +∞).

Then the solutions of the Dirichlet problem, ∆xi,Rf̂i = 2N with d(xi, ·)2−f̂i ∈ H1,2
0 (BR(xi), di,mi),

satisfy
lim

i→∞
‖d(xi, ·)2 − f̂i‖H1,2 = 0 ∀R > 0. (4.16)

Proof. Recall that from [DePhG16] we can represent

(X, x, d,m) = (C(Z), p, dC(Z), r2
mZ)

for some RCD∗(N − 2, N − 1)-space (Z, dZ ,mZ) and that dC(Z)(p, ·)2|BR(p) ∈ D(∆, BR(p))
with ∆p,RdC(Z)(p, ·)2 = 2N . Since di(xi, ·)2|BR(xi) converge strongly to dC(Z)(p, ·)2 in H1,2

on BR(p), applying Theorem 4.8 with Proposition 4.15 yields (4.16).
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