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We study the numerical solution of boundary and initial value problems for differential equations posed
on graphs or networks. The graphs of interest are quantum graphs, i.e., metric graphs endowed with a
differential operator acting on functions defined on the graph’s edges with suitable side conditions. We
describe and analyse the use of linear finite elements to discretize the spatial derivatives for a class of
linear elliptic model problems. The solution of the discrete equations is discussed in detail in the context
of a (nonoverlapping) domain decomposition approach. For model elliptic problems and a wide class
of graphs, we show that a combination of Schur complement reduction and diagonally preconditioned
conjugate gradients results in optimal complexity. For problems of parabolic type, we consider the use of
exponential integrators based on Krylov subspace methods. Numerical results are given for both simple
and complex graph topologies.
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1. Introduction

Differential equations posed on networks, or graphs, play an important role in the modeling and simulation
of a wide variety of complex phenomena (see Newman, 2010). An important example is the study of
diffusion phenomena on networks, which in the simplest cases reduces to the solution of initial value
problems for linear systems of ordinary differential equations (ODEs). Although these models may be
adequate for studying simple situations, such as those where the relations between the constituents of the
system (corresponding to graph vertices) can be modeled by a simple binary relation (connected or not
connected), more sophisticated models are necessary when dealing with more complex situations.

Metric and quantum graphs provide useful models for a variety of physical systems including conju-
gated molecules, quantum wires, photonic crystals, thin waveguides, carbon nanostructures, and so forth.
We refer to Berkolaiko & Kuchment (2013) for details and references (see also Lagnese et al. (1994) for
related problems not considered in Berkolaiko & Kuchment (2013)). A metric graph is a graph in which
each edge is endowed with an implicit metric structure. Often (but not always), its edges can be identified
with intervals on the real line. In technical terms, a metric graph is an example of one-dimensional topo-
logical manifold, or one-dimensional simplicial complex. A quantum graph is a metric graph equipped
with a differential operator (‘Hamiltonian’) and suitable vertex conditions (see the next section for more
precise definitions). This differential operator acts on functions defined on the edges and vertices of the
underlying metric graph.

© The authors 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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In physics and engineering applications, there is a strong interest in the spectral properties of the
Hamiltonian, as well as on associated wave propagation, transport and diffusion phenomena. The literature
on quantum graphs is vast; most papers deal with theoretical issues such as spectral theory, well posedness
and so forth, or with physical applications. On the other hand, the literature devoted to computational
issues is almost nonexistent, apart from a handful of references dealing with rather special situations (see,
e.g., Pesenson, 2005; Nordenfelt, 2007; Herty et al., 2010; Hild & Leugering, 2012; Wybo et al., 2015;
Zlotnik et al., 2015), and the numerical aspects are typically not the main focus.

Here, we take a first step in the systematic study of numerical methods for the solution of differential
problems involving quantum graphs. We discuss a simple spatial discretization using linear finite elements
and techniques for the fast solution of the discrete equations, using simple elliptic and parabolic model
problems to illustrate our approach. We focus on this type of discretization because it allows us to
highlight interesting relations connecting the discretized Hamiltonian with the graph Laplacian of the
underlying combinatorial graph. In addition to equations posed on highly structured graphs, which are
of interest in physics, we also consider the case of complex graphs with nontrivial topologies, in view of
potential applications in fields such as physiology, biology and engineering. Not surprisingly, we observe
significant differences with the numerical solution of PDEs posed on more typical spatial domains.

The remainder of the article is organized as follows. The necessary background information on
metric and quantum graphs is provided in Section 2. In Section 3, we introduce a simple linear finite
element method and analyse its convergence for a model quantum graph. The useful notion of extended
graph is introduced in Section 4; in this section, we also give a detailed description of the matrices
obtained from the finite element method. The conditioning of the mass matrix is studied in Section 5.
Section 6 contains some remarks on the spectrum of discretized quantum graphs. Solution algorithms
from the discretized equations, including preconditioned conjugate gradient (PCG) methods and schemes
for integrating time-dependent problems, are discussed in Section 7. Numerical experiments for some
simple elliptic and parabolic model problems are presented in Section 8. Finally, in Section 9, we present
our conclusions and a list of topics for future work.

2. Definitions and notations

We give in sequence the definitions, the notations and the assumptions that we will use in the following.
We refer to Berkolaiko & Kuchment (2013) for a comprehensive introduction to the theory of quantum
graphs.

Definition 2.1 A combinatorial graph Γ = (V , E ) is a collection of a finite number of vertices and of
edges connecting pairs of distinct vertices. We will denote by V = {v1, . . . ,vN} the set of vertices and
by E = {

ej = (vi,vk)
}

j=1,...,M
the set of edges. Thus, an edge can be identified with a pair of vertices. The

graph is undirected if no orientation is assigned to the edges; in this case, we do not distinguish between
(vi,vj) and (vj,vi). Otherwise, the graph is directed. For an undirected graph, we define for each vertex
vi its degree dvi as the number of edges ek such that ek = (vi,vj). Since only a single edge (at most)
is allowed between any two vertices, dvi is the number of vertices adjacent to vi (i.e., the number of
‘immediate neighbors’ of vi in Γ ). We restrict our attention to graphs with no self-loops: (vi,vi) /∈ E ,
for all i. A graph is connected if from each vertex vi in V there exists a path (vi,vk), (vk ,vj), . . . made
by edges in E connecting it to any of the other vertices.

In this work, we only consider sparse graphs, which we define as those graphs with M = O(N).
We assume that the initial graph Γ is undirected, but we assign an arbitrarily chosen direction to each
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edge to define an incidence matrix of Γ . This is a matrix E ∈ R
N×M where each column corresponds

to an edge and has only two nonzero entries corresponding to the two vertices identifying the edge. We
will arbitrarily fix the first nonzero entry in the column to the value 1 and the second nonzero entry to
the value −1 (this is equivalent to assigning an orientation to the edges). We emphasize that the choice
of the signs is irrelevant for the purposes of this exposition. The advantage of using E will become
more clear after the introduction of the concept of quantum graph. It is important to remark that E
has an interesting interpretation as a finite-dimensional operator mimicking the divergence operator on
differentiable functions (see Arioli & Manzini, 2003, 2006 for a similar discussion related to mixed finite
element problems). Finally, we recall that E has rank N − 1 in the case of a connected graph.

The matrix ET is also interpretable as the finite-dimensional equivalent of the gradient operator
acting on differentiable functions. It is also important to observe that the classical (combinatorial) graph
Laplacian coincides with the matrix LΓ = EET. Note that LΓ does not depend on the choice of orientation
used for the edges, since EQ(EQ)T = EET for any M × M diagonal matrix Q with entries ±1 on the
main diagonal. The graph Laplacian is a symmetric positive semidefinite M-matrix. The multiplicity of 0
as an eigenvalue of LΓ equals the number of connected components of Γ ; if Γ is connected, the null
space of LΓ is one-dimensional and is spanned by the vector of all ones.

Let the matrix D be the diagonal of the matrix LΓ . The diagonal entries of D are just the degrees
of the corresponding vertices. The matrix Ad = D − LΓ is the adjacency matrix of the graph, i.e., the
matrix where the (i, j) entry is either 1 or 0 according to whether (vi,vj) ∈ E .

Definition 2.2 A connected graph Γ is said to be a metric graph if,

1. to each edge e is assigned a length �e such that 0 < �e < ∞, and

2. each edge is assigned a coordinate xe ∈ [0, �e], which increases in a specified (but otherwise arbitrary)
direction along the edge.

In general, the edges could be simple differentiable curves (i.e., no loops). However, to simplify the
notation, we assume that each edge is a straight line joining the two vertices defining the edge. The
direction used to assign coordinates to points on a given edge will be the same one used to define the
incidence matrix. In our definition of a metric graph, we assume that all lengths are finite. We refer to
Berkolaiko & Kuchment (2013) for discussions of infinite metric graphs with some edges having infinite
length. We define the volume of a metric graph Γ as vol(Γ ) = ∑

e∈E �e. In the following, we will discuss
only finite graphs with all edge lengths finite, hence with vol(Γ ) < ∞. Note that we do not assume that
metric graphs are embedded in R

n for some n. With the structure described above, the metric graph Γ
becomes a one-dimensional domain, where for each edge e we have a variable xe representing locally the
global coordinate variable x.

As noted earlier, a sequence of contiguous vertices defines a path in Γ formed by {ej}M̂
j=1 and the

associated path length is simply
∑
�ej . We define the distance d(vi,vj) between two vertices vi and vj as

the length of a shortest path in Γ between them. This notion of distance can be extended in a natural way
to define the distance between any two points (possibly lying on different edges) in the one-dimensional
simplicial complex. Endowed with this distance, Γ is readily seen to be a metric space.

Next, we proceed to introduce function spaces on a metric graph Γ and linear differential operators
defined on these spaces.
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Definition 2.3 The space L2(Γ ) = ⊕
e L2(e) is the space of all square-integrable measurable functions

u on the edges of Γ ; i.e.,

‖u‖2
L2(Γ )

=
∑
e∈E

‖u|e‖2
L2(e)

< ∞.

The inner product in this space will be denoted by (u, v)L2(Γ ) = ∫
Γ

u(x)v(x) dx.
The Sobolev space H1(Γ ) = ⊕

e H1(e) ∩ C0(Γ ) is the space of all continuous functions u on Γ ,
u ∈ C0(Γ ), such that u|e belongs to H1(e) for each edge e, i.e.,

‖u‖2
H1(Γ )

=
∑
e∈E

‖u|e‖2
H1(e)

< ∞.

We remind that

‖u‖2
H1(e)

=
∫

e

(
du

dx

)2

dx +
∫

e
u2 dx

and therefore

‖u‖2
H1(Γ )

=
∫
Γ

(
du

dx

)2

dx +
∫
Γ

u2 dx.

Because of the properties of the Sobolev spaces of functions of one variable, the functions belonging to
H1(e) are continuous (Brezis, 2010, Chapter 8). This justifies the assumption in Definition 2.3 of restricting
membership in H1(Γ ) to the continuous functions. Moreover, the global continuity assumption implies
automatically that the functions on all edges adjacent to a vertex v assume the same value at v.

The operators that we consider here are quite simple, but suitable for describing interesting dynamics
on metric graphs. More specifically, besides the continuity of the functions on Γ , we will use ‘Neumann–
Kirchhoff’ conditions on the vertices, i.e., denoting by Ev the subset of E comprising the edges incident
to the vertex v, we impose the condition∑

e∈Ev

du

dx
(v) = 0 ∀v ∈ V . (2.1)

This corresponds to assuming Neumann conditions at all vertices. Strictly speaking, (2.1) requires that
u|e ∈ H2(e) for each edge e ∈ E . As discussed below (see Theorem 3.2), this condition is usually satisfied
in our setting. Conditions (2.1) express the conservation of currents if the metric graph Γ is viewed as
an electrical network, hence the name. Note that to give a meaning to (2.1), we need to assume that the
derivatives are taken in the directions away from the vertex, which we call the outgoing directions (see
Berkolaiko & Kuchment, 2013). Moreover, we observe that (2.1) are the natural boundary conditions
satisfied by the following one-dimensional Schrödinger-type operator:

H : u(x) �→ − d2u

dx2
+ v(x)u(x). (2.2)

The function v(x) in (2.2) is a potential; throughout the article, we assume that v ∈ L∞(Γ ).
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The operator (2.2) is defined for functions u ∈ L2(Γ ) such that u|e ∈ H2(e) for all e ∈ E . We observe
that u|e ∈ H2(e) ⇒ u|e ∈ C1(ē), thus, because of the regularity property of u|e, the Neumann–Kirchhoff
conditions (2.1) are well defined in the classical sense. However, for our purposes, it is convenient
to introduce a weak form of (2.2), which requires that u ∈ H1(Γ ). Here, we follow the treatment in
Berkolaiko & Kuchment (2013, p. 25). From (2.1) and (2.2), we have that the bilinear formh corresponding
to the Hamiltonian H is

h : H1(Γ )× H1(Γ ) −→ R, h(u, g) =
∑
e∈E

{∫
e

du

dx

dg

dx
dx +

∫
e

u(x)g(x)v(x) dx

}
. (2.3)

The corresponding energy functional is given by

J[u] = 1

2

∑
e∈E

{∫
e

(
du

dx

)2

+ u(x)2v(x) dx

}
∀u ∈ H1(Γ ). (2.4)

Furthermore, if v(x) ≥ v0 for some constant v0 > 0, then the symmetric bilinear form (2.3) is
continuous and coercive on H1(Γ ), with coercivity constant γ0 = min (1, v0) and continuity constant
γ1 = max (1, ‖v‖∞), thus J[·] is strictly convex and has a unique minimum in H1(Γ ) (see Theorem 3.2
below). Moreover, for f ∈ L2(Γ ), the Euler equation for J[u]:

h(u, g) =
∫
Γ

f (x)g(x) dx ∀g ∈ H1(Γ ) (2.5)

has a unique solution (Lax–Milgram Theorem).
We observe that even though here we are taking into account only Neumann conditions, it is possible

(if required) to fix the values of the functions on a subset of the vertices that will become the Dirichlet
boundary vertices. These will play the same role of Dirichlet boundary conditions in the classical sense.
More general conditions at the vertices can be imposed and we refer to Berkolaiko & Kuchment (2013)
for a deeper discussion.

Hereafter, we define a quantum graph as follows:

Definition 2.4 A quantum graph is a metric graph equipped with the Hamiltonian operator H defined
by the operator (2.2) subject to the conditions (2.1) at the vertices.

Although this definition is more restrictive than the one found, e.g., in Berkolaiko & Kuchment (2013),
it is adequate for our purposes.

Finally, among our goals is the analysis of parabolic problems on metric graphs. In this case, we
assume that the functions we use also depend on a second variable t representing time (see Raviart et al.,
1983), i.e.,

u(x, t) : Γ × [0, T ] −→ R,

and that they are elements of suitable Bochner spaces, specified below.
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Definition 2.5 Let V denote either L2(Γ ) or H1(Γ ). Let C0
([0, T ]; V

)
be the space of functions u(x, t)

that are continuous in t with values in V , i.e., for each fixed value t∗ of t we have that u(·, t∗) ∈ V . This
space is equipped with the norm

‖u‖
C0
(
[0,T ];V

) = sup
0≤t≤T

‖u(·, t)‖V .

Let L2
([0, T ]; V

)
be the space of functions u(x, t) that are square integrable in t for the dt measure with

values in V , i.e., for each fixed value t∗ of t we have that u(·, t) ∈ V . This space is equipped with the norm

‖u‖
L2
(
[0,T ];V

) =
(∫ T

0
‖u(·, t)‖2

V dt

) 1
2

and scalar product

(
u, g
)

L2
(
[0,T ];V

) =
∫ T

0

(
u(·, t), g(·, t)

)
V

dt.

We note that all these definitions can be easily modified to deal with self-adjoint operators acting on
spaces of complex-valued functions, as required, e.g., in quantum–mechanical applications.

3. Finite element approximation of quantum graphs

On each edge of the quantum graph, it is possible to use the classical one-dimensional finite element
method. Let e be a generic edge identified by two vertices, which we denote by va and vb. The first step
is to subdivide the edge in ne intervals of length he, with ne ≥ 2. The points{

Ve = {
xe

j

}ne−1

j=1

}
∪ {ve

a} ∪ {ve
b}

form a chain linking vertex ve
a to vertex ve

b lying on the edge e. The internal points xe
j are said to be the

nodes of the discretization. For each of the internal nodes, we denote by
{
ψ e

j

}ne−1

j=1
the standard hat basis

functions

ψ e
j (x

e) =
{

1 − |xe
j −xe|
he

if xe
j−1 ≤ xe ≤ xe

j+1

0 otherwise,
(3.1)

where we have set xe
0 = ve

a and xe
ne

= ve
b. We also define the neighboring set Wv of a vertex v ∈ V as the

union of all the sets [ve
a, xe

1] and [xe
ne

,ve
b]:

Wv =

⎧⎪⎨⎪⎩
⋃

e∈
{

e∈Ev s.t. ve
a=v
}[v, xe

1]

⎫⎪⎬⎪⎭ ∪

⎧⎪⎨⎪⎩
⋃

e∈
{

e∈Ev s.t. ve
b=v
}[xe

ne−1,v]

⎫⎪⎬⎪⎭.
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Fig. 1. Example of ψj at a vertex v.

Note that Wv is itself a (star shaped) metric graph because, as a sub-graph, it inherits the metric properties
of the original graph. We introduce the functions φv(x) with support supp(φv(x)) = Wv such that

φv(x)|Wv∩e =
{

1 − |xe
v−xe|
he

if xe ∈ Wv ∩ e; e ∈ Ev
0 otherwise,

(3.2)

where xe
v is either 0 or �e depending on the direction on the edge and its parametrization. Fig. 1 describes

a simple example. The functions ψ e
j are a basis for the finite-dimensional space

V e
h =

{
w ∈ H1

0 (e); w|[xe
j ,xe

j+1] ∈ P1 j = 0, 1, . . . , ne − 1
}

,

where P1 is the space of linear functions. Globally, we construct the space

Vh(Γ ) =
(⊕

e∈E

V e
h

)
⊕ span {φv}v∈V

and we have

Vh(Γ ) ⊂ C0(Γ ).

This is a finite-dimensional space of functions that belong to H1(Γ ).
Any function wh ∈ Vh(Γ ) is then a linear combination of the ψ e

j and φv:

wh(x) =
∑
e∈E

ne−1∑
j=1

αe
jψ

e
j (x)+

∑
v∈V

βvφv(x) x ∈ Γ .

When we approximate the variational equation

h(u, g) =
∫
Γ

fg dx ∀g ∈ H1(Γ ), (3.3)
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with f ∈ L2(Γ ), on Vh we test on all the ψ e
k , φv and, because of Wv ∩ Wz = ∅ if v �= z, we have the

following finite-dimensional (discrete) system of equations:

hh(wh,ψ e
k ) = ∑

e∈E

∑ne−1
j=1 αe

j

{∫
e

dψ e
j

dx

dψ e
k

dx
dx + ∫

e ψ
e
j ψ

e
k v(x) dx

}

+∑v∈V βv

{∫
Wv

dφv
dx

dψ e
k

dx
dx + ∫

Wv
φvψ

e
k v(x) dx

}
= ∫

supp(ψe
k )

fψ e
k dx ∀ψ e

k ;

hh(wh,φv) = ∑
e∈E

∑ne−1
j=1 αe

j

{∫
Wv

dψ e
j

dx

dφv
dx

dx + ∫
Wv
ψ e

j φvv(x) dx

}

+βv
{∫

Wv

dφv
dx

dφv
dx

dx + ∫
Wv
φvφvv(x) dx

}
= ∫

Wv
f φv dx ∀φv .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

Under the hypotheses of the previous section (continuity and coercivity of the Hamiltonian), the
system (3.4) has a unique solution in Vh(Γ ). Henceforth, we will denote with uh ∈ Vh(Γ ) the solution of
the discrete variational equation (3.4).

The following theorem gives the properties and the structure of the discretized Hamiltonian H
corresponding to the system (3.4).

Theorem 3.1 Let us denote by

uE =
⎡⎢⎣ u1

...
uM

⎤⎥⎦, where ue =
⎡⎢⎣ ue

1
...

ue
ne−1

⎤⎥⎦ (e = 1, . . . , M),

and by

uV =
⎡⎢⎣ u1

...
uN

⎤⎥⎦
the values that give

uh(x) =
∑
e∈E

ne−1∑
j=1

ue
jψ

e
j (x)+

∑
v∈V

uvφv(x) x ∈ Γ .
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Let fE and fV be the vectors

fE =
⎡⎢⎣ f1

...
fM

⎤⎥⎦, where fe =
⎡⎢⎣ f e

1
...

f e
ne−1

⎤⎥⎦,

fV =
⎡⎢⎣ f1

...
fN

⎤⎥⎦,

with f e
k = ∫

supp(ψe
k )

fψ e
k dx and fv = ∫

Wv
f φv dx. Then, the linear system (3.4) can be written as

H
[

uE

uV

]
=
[

fE

fV

]
,

where H has the following structure:

H =
[

H11 H12

HT
12 H22

]
=
[

A B
BT G

]
+
[

V C
CT F

]
= L + Mv. (3.5)

Moreover,

(i) H is a symmetric positive definite matrix.

(ii) Both A and V are block diagonal matrices and each diagonal block (of dimension ne − 1) can be
permuted into a symmetric tridiagonal nonsingular matrix corresponding to the edge e.

(iii) The entries of A are given by∫
e

dψ e
j

dx

dψ e
k

dx
dx =

⎧⎨⎩
2/he if j = k

−1/he if |j − k| = 1
0 otherwise,

(3.6)

whereas the entries of B are given by∫
Wv

dφv
dx

dψ e
k

dx
dx =

{ −1/he if e ∈ Wv ∩ Ev �= ∅
0 otherwise.

(3.7)

Moreover, G is diagonal and the entries of G are given by∫
Wv

dφv
dx

dφv
dx

dx =
∑
e∈Ev

1/he. (3.8)

(iv) The entries of V are
∫

e ψ
e
j ψ

e
k v(x) dx, the entries of C are

∫
Wv
φvψ

e
k v(x) dx, the entries of F are∫

Wv
φvφvv(x) dx and F is diagonal. Moreover, we have∣∣∣∣∫

Wv∩e
φvψ

e
k v(x) dx

∣∣∣∣ ≤ χhe and

∣∣∣∣∫
Wv

φvφvv(x) dx

∣∣∣∣ ≤ χ
∑
e∈Ev

he, (3.9)

where χ = maxΓ |v(x)|.
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Proof. (i) This follows from the coercivity and the continuity of the self-adjoint Hamiltonian.

(ii) The nodes on the edges will describe a chain path between two vertices, therefore the block
corresponding to the edge can be permuted into a tridiagonal matrix ordering the internal nodes by
increasing or decreasing distance from one of the vertices defining the edge. Because the supports
of the hat functions corresponding to internal nodes of distinct edges have empty intersections,
we have a block diagonal structure for both A and V.

(iii) The values of the entries in A can be easily computed, observing that the derivative of each hat
functionψ e

j on the interval [xe
j , xe

j+1] is a constant equal to ±1/he, depending on the orientation we
choose on the edge. Taking into account the restrictions of the φv on the incident edges and the
orientation chosen on the edge e, we have that on the interval [xe

v, xe
1] (or [xe

ne−1, xe
v]) the derivatives

ofψ e
1 (respectively,ψ e

ne−1) andφv|e are constants of opposite sign. Hence, we have that the integrals
are equal to −1/he for the nonzero entries in B. The expression (3.8) for the diagonal entries of G
is straightforward.

(iv) The bounds (3.9) follow from 0 ≤ ψ e
j ≤ 1 and 0 ≤ φv ≤ 1.

This completes the proof. �

Next, we have the following error estimate.

Theorem 3.2 Let f ∈ L2(Γ ) and v ∈ L∞(Γ ), with v(x) ≥ v0 > 0 on Γ . Then the approximate solution
uh of (3.3) satisfies

‖u − uh‖H1(Γ ) ≤
√
γ1

γ0
ΘCĥ

∑
e∈E

‖u|e‖H2(e), (3.10)

where ĥ = maxe he, C is a constant independent of u and ĥ and Θ = vol(Γ ) = ∑
e∈E �e, the volume

of Γ .

Proof. As a consequence of the assumptions, the bilinear form

h(z, w) =
∫
Γ

dz

dx

dw

dx
dx +

∫
Γ

v(x)zw dx

on H1(Γ ) is coercive and continuous, i.e.,{
γ0‖z‖2

H1(Γ )
≤ h(z, z)

|h(z, w)| ≤ γ1‖z‖H1(Γ )‖w‖H1(Γ ).

From these inequalities, we have that the energy norm |||z|||2 = h(z, z) and the H1(Γ ) norm are equivalent.
From the fact that Vh(Γ ) ⊂ H1(Γ ), it follows that z = u − uh minimizes the energy norm of z in Vh(Γ )

and, thus,

γ0‖u − uh‖2
H1(Γ )

≤ h(z, z) ≤ h(u − uI
h, u − uI

h) ≤ γ1‖u − uI
h‖2

H1(Γ )
,

where uI
h is the interpolant of u in the nodes and the vertices. We observe that under our assumptions, the

solution to (3.3) satisfies u|e ∈ H2(e) on each edge e ∈ E (see Brezis, 2010, Chapter 8). On each edge
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e = (va,vb), the ψ e
j , (j = 1, . . . , ne − 1) and the restrictions to e of φva and φvb form a basis for the

finite element approximation of H1(e). Thus, we have the standard error estimate

‖u|e − uh|e‖H1(e) ≤
√
γ1

γ0
�eChe‖u|e‖H2(e) ∀e ∈ E , (3.11)

where C is independent of u and he (see Raviart et al., 1983, Chapter 3.2; Brenner & Scott, 2002,
Section 4.4). Letting now ĥ = maxe he, the sum of all the local errors and of their upper bounds gives the
global upper bound (3.10) for ‖u − uh‖H1(Γ ) (see Dupont & Scott, 1980, Theorem 7.1). �

3.1 Error estimates for the Neumann–Kirchhoff conditions

In general, unfortunately, the Neumann–Kirchhoff conditions cannot be exactly satisfied for any value of
h > 0; for the special case of a single edge (i.e., an interval), see the discussion in Raviart et al. (1983,
p. 71). However, they are asymptotically satisfied as the discretization is refined.

The following result provides an upper bound on how much the discrete solution uh can deviate from
satisfying the Neumann–Kirchhoff conditions at a given vertex v of Γ .

Theorem 3.3 If f ∈ L2(Γ ), then for any vertex v of Γ with neighboring set Wv and degree dv, the finite
element solution uh of (3.4) satisfies∣∣∣∣∣∑

e∈Vv

duh

dxe

∣∣∣∣∣ ≤ 2vol(Vv)
(
‖f ‖L2(Γ ) + χ‖u‖L2(Γ )

)
≤ 2dvĥ

(
‖f ‖L2(Γ ) + χ‖u‖L2(Γ )

)
, (3.12)

where ĥ = maxe he and χ = maxΓ |v(x)|.

Proof. The entry in the right-hand side corresponding to a v ∈ V is given by

fv =
∫

Wv

f φv dx.

Taking into account that the supports of each φv|e have length he and, using the triangle and Cauchy–
Schwarz inequalities, we get

|fv| ≤ vol(Vv)‖f ‖L2(Γ ) ≤ ĥdv‖f ‖L2(Γ ). (3.13)

Taking into account that on Wv ∩ e the function uh(x) is linear, and thus differentiable, we obtain from
(3.7) and (3.8) that

[
BTuin + GuV

]
v

=
∑
e∈Ev

duh

dxe
(v).

Similarly, from (3.1), we have that the entry corresponding to v in [CTuin + FuV ] satisfies

[
CTuin + FuV

]
v

=
∫

Wv

uhφvv(x) dx.
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Therefore, from (3.13) we have that at each vertex v and for φv,

∑
e∈Wv

duh

dxe
(v) =

∫
Wv

(
f − uhv(x)

)
φv dx,

and thus from (3.9), we have∣∣∣∣∣∑
e∈Vv

duh

dxe
(v)

∣∣∣∣∣ ≤ 2vol(Vv)
(
‖f ‖L2(Γ ) + χ‖u‖L2(Γ )

)
≤ 2dvĥ

(
‖f ‖L2(Γ ) + χ‖u‖L2(Γ )

)
.

This completes the proof. �

Inequality (3.12) shows that, in general, the Neumann–Kirchhoff interface conditions are satisfied
only in the limit for ĥ ↘ 0.

Remark 3.4 Taking into account (3.13) and (3.12), for vertices v with a large degree dv � 1 (so-called
hubs), the Neumann–Kirchhoff conditions can be poorly satisfied even for a reasonably small value of
h. This suggests that in these cases, an adaptive choice of the mesh points should be made. In particular,
the analysis suggests that on the edges having an end point corresponding to a hub, the mesh node xe

1 (or
xne−1) in Wv should be chosen much closer to xe

v than the distance between two consecutive nodes on e,
i.e., |xe

1 − xe
v| = h̃e (or |xe

ne−1 − xe
v| = h̃e), where h̃ is such that h̃edv ≤ ĥ.

4. Extended graphs

The discretization of a metric graph Γ leads naturally to a new graph G , which we refer to as the extended
graph, having as vertices the vertices of Γ plus all the discretization nodes xe

j and as edges all the intervals
cut out by the discretization on each edge.

Hereafter, given a set of matrices {Yk}K
k=1, we will denote by blkdiag

({Yk}K
k=1

)
the block diagonal

matrix obtained using the Yk as diagonal blocks. We remark that we do not require that the blocks be
square.

4.1 Construction of the coefficient matrices

It is possible to build the matrix H using an extended incidence matrix Ẽ obtained from the incidence
matrix E used to describe the original graph Γ . In particular, as H = L + M, where L is the stiffness
matrix and M is the mass matrix (or more generally the matrix Mv describing the discretized potential
v(x), see (3.5)) on the extended graph G , we will focus on the construction of L and M using E. Let us
define the matrices

E+ = 1

2

(
E + |E|) and E− = 1

2

(
E − |E|),

where |E| denotes the entry-wise absolute value of E. Note that E = E+ + E−.



A FINITE ELEMENT METHOD FOR QUANTUM GRAPHS 13

Lemma 4.1 Let E ∈ R
N×M be the incidence matrix describing a graph with N vertices and M edges

without loops. We have

E+(E+)T + E−(E−)T = D,
E+(E−)T + E−(E+)T = −Ad,

(4.1)

where D and Ad are the degree and adjacency matrix of the graph, respectively.

Proof. First note that the rows of both E+ and E− are mutually orthogonal, since we separate the in-
coming edges from the out-going edges in E. Thus, both E+(E+)T

and E−(E−)T
are diagonal matrices.

Every row in each matrix corresponds to a vertex in the graph and will have a number of nonzeros equal
to the number of edges that, respectively, have that vertex as the origin (E+) or ending (E−). Therefore,
the sum of the two diagonal matrices will result in the total number of edges incident to each vertex. The
second relation is a straightforward consequence of EET = LΓ = D − Ad and E = E+ + E−. �

Consider now the ne − 1 nodes interior to the generic edge e. Because of the chain structure of them,
to each edge we associate the (ne − 1)× ne matrix

Ee =

⎡⎢⎢⎢⎣
−1 1

−1 1
. . .

. . .
−1 1

⎤⎥⎥⎥⎦.

Note that, strictly speaking, this is not an incidence matrix, because of the first and last column. Next, we
define the block diagonal matrix Ē = blkdiag({Ee}e∈E) of size ñ × (̃n + M), where ñ = ∑

e∈E(ne − 1).
If we denote by ene

1 and by ene
ne

, respectively, the first and the last column of the identity matrix Ine , e ∈ E ,
then we can build the N × (̃n + M) matrix Ê by expanding each column E+

j of E+ in an N × nej block
equal to

Ê+
j = E+

j ⊗
(

e
nej
1 ,
)T

, (4.2)

and by expanding each column E−
j of E− in an N × nej block equal to

Ê−
j = E−

j ⊗
(

e
nej
nej

)T
. (4.3)

Then, by adding these matrices, we can construct the new matrix

Ê = [
Ê+

1 + Ê−
1 , . . . , Ê+

M + Ê−
M

]
. (4.4)

Finally, the incidence matrix of the extended graph G is given by

Ẽ =
[

Ē
Ê

]
∈ R

(̃n+N)×(̃n+M).
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Fig. 2. Example of a simple planar metric graph and its incidence matrix.

Fig. 3. Example of the extension of the graph given in Fig. 2 when four-node chains are added internally to each edge and its
incidence matrix.

In Fig. 2, we give an example of a simple planar graph and its incidence matrix. In Fig. 3, we show
the extended graph and its corresponding incidence matrix when four extra nodes are added internally to
each edge.

Next, we introduce the following block diagonal matrix of weights:

W = blkdiag
({

1

he
Ine

}
e∈E

)
.

The matrix

L = ẼWẼT =
[

A B
BT G

]
, (4.5)
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Fig. 4. Pattern of the matrix L, where the red bullets correspond to the original vertices and the blue ones to the internal nodes on
each edge. See online version for colour.

where the leading principal block has order ñ and is block diagonal, is the stiffness matrix corresponding
to the Laplace operator − d2

dx2 on Γ . In Fig. 4 we show the nonzero pattern of L, where the blue bullets
correspond to the internal nodes on each edge and the red ones are the original vertices.

The matrix Mv describing the discretized potential (which reduces to the mass matrix M for v(x) ≡ 1)
requires the values of the integrals∫

e
ψ e

j ψ
e
k v(x) dx,

∫
Wv

φvψ
e
k v(x) dx and

∫
Wv

φvφvv(x) dx,

which can be computed numerically using either the trapezoidal formula or Simpson’s rule (Raviart et al.,
1983). In the first case, we need to have the values of the function v(x) on all the vertices of the extended
graph, i.e., in each vertex in the set

V̂ = V ∪
(⋃

e

Ve

)
.

In the second case, we also need the values of v(x) at each vertex in the set

Vmid =
⋃

e

Ṽe,

where

Ṽe =
{

xe
j+1 + xe

j

2

}ne−2

j=1

∪
{
ve

a + xe
1

2

}
∪
{
ve

b + xe
ne−1

2

}
.

Let Ke ∈ R
(ne−1)×(ne−1) be the diagonal matrices Ke = diag(v(Ve)) for all e ∈ E , i.e., the matrices

having the values of v(x) on the set Ve on the main diagonal; let KV ∈ R
ñ×̃n be the diagonal matrix

KE = blkdiag
({Ke}e∈E

)
and KV ∈ R

N×N be the diagonal matrix KV = diag(v(V )) with the values of
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Fig. 5. Example of a simple planar metric graph: Ē.

v(x) on the vertices of the original graph Γ on the main diagonal. Finally, we can assemble the diagonal
matrix K1 ∈ R

(̃n+N)×(̃n+N):

K1 = blkdiag
(
KE , KV

)
.

Next, we form the diagonal matrix K2 ∈ R
(̃n+M)×(̃n+M) given by K2 = blkdiag

(
v
(
Ṽ2

))
and the matrix

Ŵ = blkdiag
({

he Ine

}
e∈E

)
.

Therefore, the mass matrix M and the potential part Mv of the Hamiltonian computed by the Simpson
quadrature rule are, respectively,

M = 1

6

(
|Ẽ|Ŵ|Ẽ|T + diag

({(|Ẽ|Ŵ|Ẽ|T)
i,i

}ñ+M

i=1

))
and

Mv = 1

6

(
|Ẽ|K2Ŵ|Ẽ|T + K1diag

({(|Ẽ|Ŵ|Ẽ|T)
i,i

}ñ+M

i=1

))
.

If instead the simple trapezoidal rule is used for the computation of the mass matrix and the potential
then we will take the diagonal part of the two previous matrices. Although the Simpson rule, being exact
for quadratic polynomials, gives ‘exact’ values for the entries of M (and also of Mv when v(x) = ν with
ν > 0 a constant), the trapezoidal rule will only give approximations that are accurate up to an error of
O(h2). Clearly, in the limit h → 0, the bound (3.10) remains valid.

We observe that the mass matrix M has a block structure that matches the block structure of L,
Theorem 3.1:

M =
[

V C
CT F

]
. (4.6)

In both cases, the block structure pattern is a straightforward consequence of the partitioning of the
rows in Ẽ. In Figs 5 and 6, we give the structures of Ē and Ê for the simple graph in Fig. 2.
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Fig. 6. Example of a simple planar metric graph: Ê.

In matrices L and M the N × ñ blocks BT and CT are given by

BT = ÊĒTW1 and CT = |Ê| |ĒT|Ŵ1,

where W1 and Ŵ1 are the first blocks corresponding to ĒT (and its absolute value) of W and Ŵ. Because
of the lower triangular structure of ĒT and |Ē|T, the pattern of BT and CT will be the same of Ê (see Figs 5
and 6). Therefore, we have that both BTB and CTC are diagonal.

Finally, we observe that G = ÊW2ÊT, where W2 is the second diagonal block of W corresponding
to Ê, is also a diagonal matrix. Similar considerations show that F is also a diagonal matrix. In particular,
for the Laplace case with ne = n and �e = � for all e ∈ E , we have that

BTB = 1

h
D = G and CTC = h

3
D = F. (4.7)

Furthermore, we have he = h and

BT = 1

h

(
E+ ⊗ (

en
1

)T + E− ⊗ (
en

n

)T
) (

IM ⊗ ET
e

)
, (4.8)

CT = h

6

(
|E+| ⊗ (

en
1

)T + |E−| ⊗ (
en

n

)T
) (

IM ⊗ |Ee|T
) = −h2

6
BT. (4.9)

In Section 4.2 we will describe the relation between the underlying domain decomposition techniques
and the original graph Laplacian.

Remark 4.2 If in the original graph all the �e are equal, all the ne are equal to n and v(x) = ν with ν a
constant in the Hamiltonian (2.2), then the extended graph will produce a matrix H

H = L + νM.

Moreover, if the Hamiltonian (2.2) is given by

− d

dx

(
α(x)

du

dx

)
α(x) ≥ α0 > 0, α(x) ∈ L∞(Γ )

and v(x)|e = νe with νe constant on each edge e (the Hamiltonian is still continuous and coercive), it
suffices to modify the weight matrix W as

W = blkdiag
({

1

he
diag({wj}ne

j=1)

}
e∈E

)
,
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where

wj = 1

he

∫ jhe

(j−1)he

α(x) dx,

the matrix Ŵ as

Ŵ = blkdiag
({

he νe Ine

}
e∈E

)
,

and to proceed as described above to obtain the matrix H approximating the infinite-dimensional Hamil-
tonian H . We finally remark that the block structure of H (Theorem 3.1) will be determined by the
corresponding block structure of L and M.

4.2 Extended graph and domain decomposition

In this section, we investigate the structure of the Schur complement system arising from the elimination
of the nodes internal to each edge. We begin by observing that, because of the node ordering scheme used,
the matrix H is partitioned as in a (nonoverlapping) domain decomposition approach, where individual
edges e ∈ E of the original metric graph are the subdomains and the vertices v ∈ V are the interfaces
between them.

The following theorem shows that, under certain conditions, the Schur complement of the discretiza-
tion of the second derivative operator coincides with the graph Laplacian of the underlying combinatorial
graph, Γ .

Theorem 4.3 Assume that ne = n for all e ∈ E and that all edges in the metric graph Γ have the same
length �e = � = 1. Assume further that v(x) ≡ 0. Then,

S := G − BTA−1B = LΓ .

Proof. Under our hypotheses, we have

L = n ẼẼT,

see (4.5). Because of the partition of the rows of Ẽ into nodes internal to the edges (corresponding to
rows of Ē) and the vertices of the original graph (corresponding to rows of Ê), we have

A = n ĒT,
B = n ĒÊT,
G = n ÊÊT = n D.

(4.10)

The nonzero pattern of the Schur complement

S = G − BTA−1B

coincides with that of

BTA−1B = n Ê
(

ĒT
(
ĒĒT

)−1
Ē
)

ÊT.



A FINITE ELEMENT METHOD FOR QUANTUM GRAPHS 19

We point out that the matrix n ĒT
(
ĒĒT

)−1
Ē is block diagonal and that each of the M blocks can be easily

computed for our simple Hamiltonian:

n ĒT
(
ĒĒT

)−1
Ē = IM ⊗ T, (4.11)

with

T = n In − 1n1
T
n ,

where 1j is the vector of all ones of dimension j. Moreover, from (4.4), the matrix Ê is a stretching of the
incidence matrix of the original graph. Under our current hypotheses, it is given by

Ê = E+ ⊗ (
en

1

)T + E− ⊗ (
en

n

)T
, (4.12)

where en
1 ∈ R

n and en
n ∈ R

n are, respectively, the first and the last column of the identity matrix. The
Schur complement is given by

S = G −
(

E+ ⊗ (
en

1

)T + E− ⊗ (
en

n

)T
)
(IM ⊗ T)

(
E+ ⊗ (

en
1

)T + E− ⊗ (
en

n

)T
)T

= G −
(

E+ ⊗ (
en

1

)T + E− ⊗ (
en

n

)T
) (
(E+)T ⊗ Ten

1 + (E−)T ⊗ Ten
n

)
= G −

(
E+(E+)T ⊗ (

en
1

)T
Ten

1 + E−(E+)T ⊗ (
en

n

)T
Ten

1

+ E+(E−)T ⊗ (
en

1

)T
Ten

n + E−(E−)T ⊗ (
en

n

)T
Ten

n

)
.

Moreover, from the following relations:(
en

1

)T
Ten

1 = (
en

n

)T
Ten

n = n − 1 and
(
en

n

)T
Ten

1 = (
en

1

)T
Ten

n = −1,

and from Lemma 4.1, we have, taking into account that G = n ÊÊT, that

S = G − (n − 1)
(

E+(E+)T + E−(E−)T
)
+
(

E−(E+)T + E+(E−)T
)

= n D − (n − 1)D − Ad = EET = LΓ .

This completes the proof. �

In Fig. 7, we display the sparsity pattern of the product A−1B for the simple example considered in
Figs 2 and 3.

Hence, we have shown that upon elimination of the internal nodes on the edges, the resulting Schur
complement reduces to the combinatorial Laplacian associated with the original graph. In particular,
S is sparse. This fact is important enough to warrant further comment. Indeed, since the inverse of
an irreducible tridiagonal matrix is full (Meurant, 1992), a priori one could have expected the Schur
complement S = G−BTA−1B to incur significant fill-in, similar to what happens when solving discretized
elliptic PDEs in two-dimensional and three-dimensional domains. The fact that S is sparse has important
implications when solving the discretized equations. This will be discussed further in Section 7. We
observe that the Schur complement remains sparse even if we drop the assumption that all edges on the
metric graph Γ have equal length, and that the same number of interior nodes is used in discretizing each
edge. In this case, however, it is no longer true that S coincides with the graph Laplacian LΓ .
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Fig. 7. Example of a simple planar metric graph: BT (top) and A−1B (bottom).

Remark 4.4 In Theorem 4.3, we have assumed that v(x) ≡ 0. In the general case, where we have a more
complex Hamiltonian, the Schur complement will contain additional information; indeed, the values in
a vertex v now take into account the contributions of the solutions on the edges incident to it. However,
the above argument shows that the nonzero pattern of the resulting S will still coincide with the nonzero
pattern of LΓ . Additional details are given in the appendix.

5. Conditioning of the mass matrix

In this section, we examine the conditioning of the mass matrix M in terms of h and of the maximum
degree of Γ . It is well known (Wathen, 1987) that for a number of different types of finite elements in
one, two and three dimensions, the condition number of the mass matrix is independent of h, and that
a simple diagonal scaling of the mass matrix yields a well-conditioned matrix. This fact will be useful
when we discuss the solution of parabolic problems. In our situation, the condition number of M is also
independent of h. However, in the case of complex graphs, the spectrum can be quite spread out. With
the scaling adopted in this article, and assuming for simplicity a constant h throughout the graph, the
eigenvalues range between O(h) and O(dmaxh), where dmax is the maximum degree of a vertex in Γ .
More precisely, we have the following result.

Theorem 5.1 Let Γ be a graph having N vertices and M edges and with at least one node vi of degree
dvi > 6. Let M be the mass matrix relative to a piecewise linear, continuous finite-element approximation
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of the L2(Γ ) norm by using n nodes on each edge of Γ , and h = 1
n+1 . Then the spectrum sp(M) of M

satisfies

sp(M) ⊂ h

6

[
O(1), O(dmax)

]
.

Proof. The proof is a simple application of Gershgorin’s Theorem. Let M̃ = 6(n + 1)M, then we have
that the diagonal entries of M̃ii for i = 1, . . . , nM are equal to 4 and the corresponding off-diagonal
sum of the entries is 2 (note that the entries of M are non-negative). The last N diagonal entries of
M̃ii, i = nM + 1, . . . , nM + N are equal to 2dvi , and the sum of the corresponding off-diagonal entries is
equal to dvi . Therefore, under the hypothesis dvi > 6, the spectrum of M̃ lays in the union of two disjoint
sets and at least one eigenvalue lays in the union of the circles corresponding to the highest degree. �

Remark 5.2 If the highest degree of a vertex in Γ is much larger than the others, then one eigenvalue
of M̃ is of the same order of it. Numerical experiments on graphs with a power law degree distribution
indicate that the condition number of the mass matrix M̃ grows like O(dmax) as N , and therefore dmax

increases. We note that this phenomenon has no analog in the ‘standard’ finite element theory because
of the requirement that the triangles or the tetrahedra must satisfy the minimum angle condition (Raviart
et al., 1983, p. 109), which imposes a bound on the maximum number of edges incident to a vertex,
independent of N .

6. A generalized eigenvalue problem

In this section, we analyse the generalized eigenvalue problem

Hw = λMw. (6.1)

The finite element discretization of the eigenvalue problem H u = λu leads to algebraic eigenvalue
probems of the form (6.1). In particular, for v(x) = 0 the eigensolutions (λ, w) of (6.1) are approximations
of the eigenvalues and eigenfunctions of the simple Hamiltonian H = − d2

dx2 (we assume Neumann–
Kirchhoff conditions throughout). This operator has discrete spectrum and a complete orthonormal basis
of eigenfunctions (as a special case of Berkolaiko & Kuchment, 2013, Theorem 3.1.1). Note that H = L
is positive semidefinite, and the kernel of H is spanned by the vector of all ones. Our motivation for the
study of (6.1) is that it plays a central role in the solution of diffusion problems on Γ . The spectrum of
a quantum graph is also of fundamental interest in scattering theory, photonics, quantum chaos, and so
forth (Berkolaiko & Kuchment, 2013). For any sufficiently small, fixed h, only the leftmost part of the
spectrum of H , which is unbounded above, is well approximated by the corresponding eigenvalues of
(6.1). However, in many problems, these are the only eigenvalues of interest.

In the study of diffusion processes on combinatorial graphs Γ , the behavior of the solution is
essentially determined by the spectrum of the graph Laplacian LΓ , which, to a large extent, reflects
structural properties of Γ . An important question is therefore to determine whether the eigenvalues
of the graph Laplacian bear any relation to the spectrum of the Laplace operator H = − d2

dx2 , with
Neumann–Kirchhoff conditions on the quantum graph constructed from Γ . The spectral analysis of
quantum graphs is generally quite challenging (see Berkolaiko & Kuchment, 2013). A simple result is the
following.
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Theorem 6.1 Let μj and qj j = 1, . . . , (n − 1)M be the eigenvalues of the symmetric positive definite
pencil

(
H11, V

)
, i.e.,

H11qj = μjVqj ∀j.

We have that λ∗ �∈
{
μj

}(n−1)M

j=1
is an eigenvalue for

Hx = λMx

if and only if λ∗ is a root of the algebraic (rational) equation det T(λ) = 0, where

T(λ) = H22 − λF − (
H12 − λC

)T(
H11 − λV

)−1(
H12 − λC

)
, (6.2)

i.e., if and only if there exists y �= 0 such that T(λ∗)y = 0.

Proof. Given the generalized eigenvalue problems for the symmetric positive definite pencils
(
H, M

)
and

(
H11, V

)
, if λ is not an eigenvalue of the pencil

(
H11, V

)
, the matrix H11 − λV is nonsingular. If we

partition the eigenvectors of the pencil
(
H, M

)
conformally to the block structure of H and M, we have

H11q1 + H12q2 = λ
(
Vq1 + Cq2

)
, (6.3)

HT
12q1 + H22q2 = λ

(
CTq1 + Fq2

)
. (6.4)

Thus, we have from (6.3) that (
H11 − λV

)
q1 =

(
λC − H12

)
q2

and

q1 =
(

H11 − λV
)−1(

λC − H12

)
q2.

Substituting q1 in (6.4), we have(
HT

12

(
H11 − λV

)−1(
λC − H12

)+ H22

)
q2 = λ

(
CT
(
H11 − λV

)−1(
λC − H12

)+ F
)

q2.

Rearranging terms, we obtain the desired result. �

We note that this result is not new, being known in the context of algebraic substructuring methods
for large-scale linear eigenvalue problems (see, e.g., Bekas & Saad, 2005) and in the approximation of
certain resonance problems (Bindel & Hood, 2013). What is of interest here is that Theorem 6.1 has
several continuous (i.e., infinite-dimensional) counterparts described in Kuchment (2004, 2005). For
self-adjoint Hamiltonians, a λ∗ which is not in the spectrum of the Hamiltonian restricted to any edge of
Γ will be an eigenvalue if and only if it is a root of an algebraic equation obtained by imposing certain
conditions at each vertex of Γ , just as in Theorem 6.1 above.
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It is important to remark that for diffusion problems, the difference between the global eigenvalues of L
on the extended graph and the eigenvalues of the combinatorial graph Laplacian LΓ can make the quantum
graph version of the problem more challenging and richer insofar the behavior of the solution on the graph,
seen as a quantum graph, is more difficult to predict a priori. This is due to the possible occurrence of
‘Dirichlet eigenvalues’ associated with the edges, namely eigenvalues of the pencil

(
H11, V

)
, which are

also eigenvalues of the pencil (H, M) (see Kuchment, 2004). Also, it is clear that while the spectrum
of LΓ is necessarily bounded for a fixed N , the spectrum of the discrete Hamiltonian is unbounded
above as h is refined and N is kept fixed, reflecting the unboundedness of the infinite-dimensional
Hamiltonian H .

Some numerical comparisons between the eigenvalues of LΓ and those of the simple Hamiltonian
H = − d2

dx2 for a few small graphs can be found in Section 8.2, where the behavior of the eigenfunctions
of H is also shown.

7. Solution of the discretized equations

In this section, we discuss the solution of problems arising from the finite element discretization of
quantum graphs, namely:

(1) Systems of linear algebraic equations Huh = fh.

(2) Initial value problems for systems of linear ODEs.

Problem (1) arises in particular when solving variational problems of the form (3.3) using finite element
methods. Problem (2) arises from the semidiscretization of (the weak form of) parabolic PDEs on Γ :

Given u0 ∈ H1(Γ ) and f ∈ L2
([0, T ]; L2(Γ )

)
find u ∈ L2

([0, T ]; H1(Γ )
) ∩ C0

([0, T ]; H1(Γ )
)
, such

that ⎧⎨⎩
∂u

∂t
− ∂2u

∂x2
+ mu = f on Γ × [0, T ],

u(x, 0) = u0 x ∈ Γ ,
(7.1)

where m ≥ 0 (see also Definition 2.5). We further assume that u(·, t) satisfies the Neumann–Kirchhoff
conditions on the vertices v of Γ , for all t ∈ [0, T ].

The need for solving large linear systems on the extended graph G also arises in the solution of
problem (7.1) by fully implicit methods, and in the solution of generalized eigenvalue problems of the
form (6.1) when shift-and-invert methods are used.

7.1 Solution of linear algebraic systems

We assume again for simplicity of notation that each edge e ∈ E contains the same number n − 1 of
internal nodes. For solving linear systems of the form Huh = fh corresponding to the extended graph G ,
we make use of the block LU factorization

H =
[

H11 H12

HT
12 H22

]
=
[

H11 O
HT

12 S

] [
I(ne−1)M H−1

11 H12

O IN

]
. (7.2)
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We recall that when the potential v(x) is positive on the (metric) graph Γ , the matrix H is guaranteed
to be positive definite. In particular, both H11 and the Schur complement

S = H22 − HT
12H−1

11 H12

are symmetric and positive definite (SPD).
The factorization (7.2) corresponds to the following block elimination procedure frequently used in

domain decomposition algorithms. First, the following N × N reduced linear system is solved:

Suv
h = fvh − HT

12H−1
11 fe

h ≡ ch , (7.3)

where uv
h and fvh are the values of the discrete solution uh and external load fh at the vertices v ∈ V , and

fe
h are the values of fh on the nodes internal to the edges e ∈ E .

Next, the values of the solution ue
h at the internal nodes are obtained by solving the (ne−1)M×(ne−1)M

linear system

H11ue
h = fe

h − H12uv
h , (7.4)

where fe
h is the vector containing the values of fh at the nodes internal to the edges.

As already observed, the coefficient matrix S of (7.3) is sparse, and it can be constructed explicitly.
The resulting linear system can be solved either by a direct solver (sparse Cholesky factorization) or by an
iterative method, such as PCG. In the case of PCG, the explicit assembling of the Schur complement can
be avoided. If the M diagonal blocks of H11 are factored at the outset, then each matrix–vector product
with S involves, at each PCG iteration, a diagonal scaling (with H22), two sparse matrix–vector products
(with H12 and HT

12) and M independent tridiagonal solves (using the precomputed factorizations) at each
iteration. Although this procedure is more expensive than a matrix–vector product with the assembled S,
it has the advantage that it can be more easily performed in parallel in a distributed environment.

The linear system (7.4), which consists of M completely uncoupled tridiagonal linear systems, can
be solved in O(neM) time (or less if parallelism is exploited), essentially the cost of one CG iteration
on (7.3) if the Schur complement is not explicitly assembled. Note that in practice, moderate values of
ne may suffice for a sufficiently accurate solution. On the other hand, M may be very large for a large
graph Γ .

Clearly, the critical step is the solution of the reduced system (7.3). A sparse Cholesky factorization
may be appropriate if N is not too large, but one should keep in mind that in the case of complex graphs
such as small-world and power law graphs (see Newman, 2010), the Cholesky factor will frequently
incur enormous amounts of fill-in, regardless of the ordering used. This may discourage the use of a
sparse direct solver even for moderate values of N ; see Benzi & Kuhlemann (2013) for an example from
computational biology. Thus, here we focus instead on iterative solvers, particularly on PCG.1

As is well known, the rate of convergence of the CG algorithm depends on the distribution of the
eigenvalues of the coefficient matrix, and the key to rapid convergence is the choice of an appropriate
preconditioner. A wide variety of algebraic preconditioners is available, including preconditioners based
on splittings of the coefficient matrix, incomplete factorizations and algebraic multigrid (AMG) methods

1 Chebyshev semi-iteration is also quite attractive for problems, where bounds on the extreme eigenvalues of S are available
(see Benzi & Kuhlemann, 2013).
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(Benzi, 2002; Saad, 2003). With relatively simple graph topologies, incomplete Cholesky preconditioning
or AMG can be expected to give good results; however, for such problems, a sparse direct solver may
be the best choice, especially if the original graph Γ is planar. Generally, in the case of large, complex
graphs, however, where direct solvers are not an option, incomplete Cholesky factorization turns out to
be not competitive (Benzi & Kuhlemann, 2013). It turns out, however, that when Γ is a graph with a
power law degree distribution, information about the eigenvalue distribution of the graph Laplacian LΓ

is available, which suggests the use of a simple diagonal preconditioner. In particular, it is known (Chung
& Lu, 2006) that under certain conditions on Γ , the nonzero eigenvalues of the normalized Laplacian

L̂Γ = D− 1
2 LΓ D− 1

2 = IN − D− 1
2 Ad D− 1

2

lie in a small interval (1 − δ, 1 + δ) with 0 < δ < 1 independent of N . This guarantees that diagonally
preconditioned CG will converge rapidly, with a rate that is independent of the number of vertices N in
Γ , when applied to linear systems involving the graph Laplacian, and we expect a similar behavior when
solving systems of the form (7.3) whenever S is in some sense ‘close’ to LΓ . We will return to this topic
in Section 8.

Another simple preconditioner that can be easily implemented is the first-degree polynomial
preconditioner given by

P−1 = D−1 + D−1 (D − S)D−1 ≈ S−1. (7.5)

This approximation is obtained from the identity

S−1 = (
IN − D−1(D − S)

)−1
D−1

by truncating to first order the Neumann series expansion

(
IN − D−1(D − S)

)−1 =
∞∑

k=0

(
D−1(D − S)

)k
.

This preconditioner has been found to be effective in solving certain Laplacian-type linear systems
stemming from complex network analysis, see Salkuyeh et al. (2014). It is only slightly more expensive
than the diagonal one. For a typical sparse problem averaging about five nonzeros per row in S, the cost of
each PCG iteration is about 50% higher than with diagonal scaling, but convergence is faster. In Section 8,
we present the results of numerical experiments using diagonal and polynomial preconditioning on a few
different types of graphs.

7.2 Solution of systems of ODEs

Semidiscretization of the weak form of (7.1) leads to initial value problems of the form

Mu̇h = −Huh + fh uh(0) = uh,0 , (7.6)

where the dot denotes differentiation with respect to time. Let us consider for simplicity the case of the
heat equation with f = 0 and m independent of time. Then, fh = 0 and the solution of (7.6) can be given
explicitly in terms of matrix exponentials:

uh(t) = exp(−t M−1 H)uh,0 ∀t ∈ [0, T ]. (7.7)
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Approximations to the exact semidiscrete solution (7.7) can be obtained in various ways. Here, we
consider time-stepping methods and exponential integrators based on Krylov subspace approximations.
Besides explicit methods, which we do not discuss here due to the well-known restrictions on the time
step required for stability, the most commonly used time-stepping methods are backward Euler and
Crank–Nicolson. These methods require at each step the solution of linear systems with coefficient
matrices

I +Δt M−1H and I + Δt

2
M−1H, (7.8)

respectively, where Δt > 0 is the time step.
On the other hand, Krylov-based exponential integrators compute directly, for any value of t ∈ (0, T ],

an approximation of (7.7) by projecting the problem on a suitable low-dimensional subspace and forming
the exponential of the (small) projected matrix explicitly. This is equivalent to a polynomial approximation
of (7.7). Both Lanczos- and Arnoldi-type methods can be used, depending on whether the underlying
problem is symmetric (Hermitian in the complex case) or not. Here, we note that the matrix M−1H,
which occurs in both (7.7) and (7.8), is generally nonsymmetric, apparently precluding the use of the
more efficient Lanczos-based methods. However, since both H and M are SPD, the product M−1H is
symmetrizable. For example, if M = RTR is the Cholesky factorization of M with R upper triangular,
introducing the new variable vh = Ruh leads to the solution vector in (7.7), becoming

uh(t) = R−1vh(t) where vh(t) = exp(−t H̃)vh,0 ∀t ∈ [0, T ], (7.9)

with H̃ = R−T HR−1 and vh,0 = Ruh,0. Here H̃ is symmetric, and Lanczos-based methods can be applied
to approximate the solution. A similar symmetrization applied to the matrices in (7.8) allows one to
use the PCG method to solve the linear systems arising from implicit methods, rather than the more
expensive nonsymmetric Krylov methods. The price to pay for this is the need to compute the Cholesky
factorization of M and to perform triangular solves at each step or iteration. Unfortunately, for large
graphs, the Cholesky factorization M = RTR of the mass matrix can be prohibitive when the integrals
that define M are computed with the Simpson rule. In this case, however, it is possible to replace the mass
matrix M with a diagonal approximation, M̂ ≈ M, obtained, for example, by lumping. Symmetrization
is then trivial, at the expense of an additional error, which, however, is O(h) as h ↘ 0. The same holds
true if the integrals in the mass matrix are approximated with the simple trapezoidal rule, in which case
M is diagonal.

In Section 8.3, we discuss the results of experiments comparing the two quadrature rules, where we
apply a Krylov-based method (Afanasjew et al., 2008; Güttel, 2017) to approximate the solution of a
simple diffusion problem on different types of graphs.

8. Numerical experiments

In this section, we illustrate the results of numerical studies, including the solution of simple elliptic and
parabolic PDEs and eigenvalue problems on graphs.

8.1 Solution of simple elliptic problems

We begin by showing some results of experiments using the PCG method to solve linear systems
arising from the discretization of simple elliptic problems posed on scale-free graphs obtained using the
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Table 1 Number of vertices and edges for
three scale-free graphs and in the corres-
ponding extended graphs

Graph N M m p

Γ1 2000 3974 81480 79480
Γ2 5000 9968 204360 199360
Γ3 10000 19965 409300 399300

Barabási–Albert model (Barabasi & Albert, 1999). We are especially interested in seeing how PCG iter-
ations scale with problem size. We consider two main situations that lead to linear systems of increasing
size:

• The mesh size h is fixed, but the size of the graph Γ increases.

• The graph Γ is fixed, but h decreases.

In the first situation, we assume that the graph’s average degree is kept roughly constant. In the
second situation, we are applying PCG to a reduced system of fixed size N , but a priori the number
of iterations could grow since the condition number (more precisely, the eigenvalue distribution) of the
Schur complement may worsen as h ↘ 0.

We use the Matlab toolkit CONTEST (Taylor & Higham, 2009) to generate scale-free graphs with
different numbers N of vertices and M of edges, while keeping the average degree constant. In Table 1,
we report the sizes of three graphs Γ generated using CONTEST together with the number of vertices
(m = (ne − 1)M + N), and number of edges (p = neM) of the corresponding extended graphs G for the
constant choice h = 1

21 of the mesh size. All edges are assumed to have unit length. In particular, we do
not consider here adaptive discretizations that take into account the presence of hubs (see Section 3.1),
although this is not difficult to do. We recall that m is the order of the discrete Hamiltonian H, whereas
N is the order of the corresponding Schur complement S. For these problems, the Schur complement has
only about four nonzeros per row.

For the Hamiltonian, we consider the simple elliptic operator

H u =
(

− d2

dx2
+ ν

)
u, (8.1)

where ν is constant, with Neumann–Kirchhoff conditions at the vertices. The discrete Hamiltonian H
obtained applying one-dimensional linear finite elements to the weak form of (8.1) is then SPD for all
ν > 0. We choose the right-hand side fh = e1, corresponding to a unit load applied to the first-numbered
vertex v1 of the graph Γ .

In Table 2, we report iteration counts for the conjugate gradient method with no preconditioning,
with diagonal preconditioning and with the polynomial preconditioner (7.5) for ν = 0.1, using the three
graphs of Table 1. In all cases, the initial guess is the zero vector and the stopping criterion is a reduction
of the relative residual norm below

√
eps, where eps ≈ 2.2204 · 10−16. In all cases, the relative 2-norm

of the error is of the order of
√

eps ≈ 10−8.
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Table 2 PCG iteration counts for Schur complement
system, different preconditioners (ν = 0.1)

Graph No prec. Diagonal Polynomial

Γ1 78 28 15
Γ2 102 28 15
Γ3 115 28 15

Table 3 PCG iteration counts for Schur complement system,
different values of h. Graph: Γ1 (ν = 0.1)

h−1 m No preconditioning Diagonal Polynomial

21 81480 78 28 15
41 160960 78 28 15
81 319920 78 28 15

101 399400 78 28 15

From the results, one can see that, while the number of iterations increases without preconditioning
for increasing graph size, it remains constant (and quite small) with both diagonal and polynomial
preconditioning. Qualitatively similar results are observed for other values of ν, with the convergence
being faster as ν increases.

Next, we fix the metric graph (using Γ1) and we refine the discretization of the edges. In Table 3,
we report iteration counts for four different values of h, corresponding to n = 20, 40, 80, 100 equally
spaced nodes per edge. We also report the order m of the discrete Hamiltonian, H. The order of the Schur
complement S is fixed (N = 2000). Although this Schur complement is so small that a sparse direct
solver suffices, we are interested in the behavior of the PCG iteration as a function of h, expecting a
qualitatively similar behavior for larger graphs. The results show that the convergence of the conjugate
gradient algorithm, even in the absence of preconditioning, is completely h-independent, suggesting that
even for rather fine meshes, the Schur complement is close to a well-conditioned matrix. As before,
convergence is faster (slower) if ν is taken larger (respectively, smaller).

We conclude that for this class of quantum graphs, the reduced system approach, combined with
diagonally preconditioned CG for solving the Schur complement system, results in rates of convergence
that are both h- and N-independent, and thus it is optimal, in the sense that the total solution cost scales
linearly in the number m = (ne − 1)M + N of degrees of freedom. This approach has also very high
inherent parallelism, especially if the Schur complement is not explicitly assembled (except for the
diagonal entries of S if they are needed). Polynomial preconditioning may lead to slighlty less work
overall, but the difference is small.

The observed convergence behavior can be explained as follows. For ν > 0 and h > 0 fixed and suffi-
ciently small, the Schur complement S is, up to a constant factor, a small perturbation of the combinatorial
graph Laplacian, LΓ (see the appendix). Hence, we expect the convergence behavior of PCG applied to
the Schur complement system to be close to that of PCG applied to a (consistent) linear system of the
form LΓ x = b. We remark that, although this system is singular, the singularity is benign, the kernel
being one-dimensional and spanned by a known vector since Γ is connected. In particular, the eigenvalue
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λ1 = 0 of LΓ plays no role in determining the rate of convergence of the conjugate gradient method. Now,
the distribution of the extreme (nonzero) eigenvalues of the Laplacian of scale-free graphs is known. Quite
a lot is known also about the nonzero eigenvalues of the normalized Laplacian L̂Γ = D− 1

2 LΓ D− 1
2 . Of

course, since scale-free graphs obtained using the Barabási–Albert model have an element of randomness,
these results are to be taken in a probabilistic sense.

We first consider the case of the normalized Laplacian. Note that, since the matrix D− 1
2 AdD− 1

2 is
symmetric and stochastic, the eigenvalues of L̂Γ = IN−D− 1

2 AdD− 1
2 lie in the interval [0, 2]. Moreover, for

scale-free graphs with sufficiently large minimum degree dmin, the nonzero eigenvalues of the normalized
Laplacian can be expected to fall with high probability for N → ∞ in the interval

I =
(

1 − 2√
w

, 1 + 2√
w

)
, where w = davg. (8.2)

Here, davg denotes the average expected degree for Γ . See (Chung & Lu, 2006, Chapter 9) for the precise
statement of this result. While the assumption on the minimum degree is quite restrictive, the conclusions
of this theorem appear to hold in practice even for power law random graphs such as those considered
here, for which dmin is rather small. Our three power law graphs satisfy

0.83 <
2√
w
< 0.84,

so we expect the nontrivial eigenvalues of the normalized Laplacian to lie between

1 − 2√
w

≈ 0.16 and 1 + 2√
w

≈ 1.84. (8.3)

Hence, the effective condition number κeff
2 (L̂Γ ), defined as the ratio of the largest and the smallest

nontrivial eigenvalues of L̂Γ , can be expected to satisfy

κeff
2 (L̂Γ ) ≤ 1.84/0.16 = 11.5,

independently of N . Therefore, the conjugate gradient method with diagonal scaling can be expected
to converge rapidly with a rate independent of N , which is what we observe in practice. Although this
argument is not rigorous, we found in practice that it gives reliable estimates of the condition number
of the normalized Laplacian of random power law graphs, and thus of the rate of convergence of PCG
applied to the Schur complement system.

Now we turn to the case of the (unnormalized) Laplacian LΓ . Using, for example, Ostrowski’s
Theorem (a quantitative version of Sylvester’s Law of Inertia, see Horn & Johnson, 2012, Theorem 4.5.9),
one can easily show that the first nonzero eigenvalue of LΓ is related to the first nonzero eigenvalue of
L̂Γ by the following inequality:

λ2(LΓ ) ≥ dmin · λ2(L̂Γ ), (8.4)

where again dmin denotes the minimum degree of any vertex in Γ . In our case, dmin = 2 (by construction,
see Taylor & Higham, 2009). It follows from (8.3) and (8.4) that for any of our three graphs Γi, the
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smallest nonzero eigenvalue can be expected to satisfy

λ2(LΓ ) ≥ 0.32, independent of N . (8.5)

Of course, the same holds for any power law graph with the same minimum and average degree. To four
decimals, the smallest nonzero Laplacian eigenvalue for the three graphs used in our experiments was
given by

• λ2 = 0.5259 for Γ1

• λ2 = 0.5338 for Γ2

• λ2 = 0.5257 for Γ3.

Given the random nature of these graphs, we repeated the calculation several times, always getting similar
values. Hence, although the lower bound (8.5) is slightly pessimistic, it does correctly predict that the
smallest nonzero eigenvalue of a random power law graph can be expected to remain bounded away from
zero as N increases. Since we saw (cf. Table 2) that without preconditioning the number of PCG iterations
required to solve the Schur complement system increases with N , we predict that the largest eigenvalues
of S must increase with N , all else being constant. Once again, we replace S with the graph Laplacian
LΓ , for which analytical results are available. In Elsässer (2006), the following remarkable and a priori
unexpected result is proved: In a power law graph, the upper portion of the spectrum of LΓ is distributed
like the largest degrees of vertices of Γ (we refer to Elsässer, 2006 for the precise statement).

Looking at the three graphs Γi (i = 1, 2, 3) used in our test, we obtained the following results. For
Γ1, the five largest degrees are

185, 66, 63, 54, 45,

and the five largest eigenvalues of LΓ1 are approximately

186.03, 67.07, 64.06, 55.19, 45.99.

For Γ2, the five largest degrees are

227, 122, 90, 89, 88,

and the five largest eigenvalues of LΓ2 are approximately

228.03, 123.06, 91.14, 90.07, 89.01.

For Γ3, the five largest degrees are

430, 237, 147, 128, 98,

and the five largest eigenvalues of LΓ3 are approximately

431.02, 238.02, 148.04, 129.08, 99.00.
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This shows that the theory developed in Elsässer (2006) is remarkably accurate. Hence, without
preconditioning, the effective condition number κeff

2 (LΓ ) of the Laplacian grows like O(dmax) as N → ∞,
where dmax denotes the maximum degree. As shown in the appendix, if ν < h−1 then in the limit for
ν, h → 0 the Schur complement matrix S reduces to the graph Laplacian LΓ . Hence, for ν and h
sufficiently small (but fixed), we expect the iteration count of unpreconditioned CG applied to the Schur
complement system to grow with N , as observed in our experiments. Fortunately, a simple diagonal
scaling is sufficient to remove this dependency on N .

We stress the fact that the optimality of the Schur complement reduction approach with diagonally
scaled CG is a phenomenon that has no analog in the usual two-dimensional or three-dimensional PDE
setting.

8.2 Eigenvalues and eigenfunctions

It is instructive to compare numerically the eigenvalues of LΓ with the first few eigenvalues of the
Hamiltonian H = − d2

dx2 on the metric graph based on Γ and to investigate the behavior of the corres-
ponding eigenfunctions. In order to be able to visualize the eigenfunctions, we consider at first only
a few small, simple graphs: a cross (or star graph) with five vertices, a simple graphene-like structure
with 12 vertices and a tree with 16 vertices. In all cases, we assume the edges have unit length, and we
discretize the eigenvalue problem using linear finite elements with 100 internal discretization nodes on
each edge, leading to a generalized eigenvalue problem of the form (6.1). Throughout this section, we
assume Neumann–Kirchhoff conditions.

In Table 4, we report the eigenvalues of the graph Laplacian LΓ for each graph.
In Fig. 8, we display the six smallest eigenpairs obtained approximating −u′′ = λu on the cross graph

via (6.1). Note that the first nonzero eigenvalue λ2 = 2.4675 has multiplicity three.
In Fig. 9, we display the computed approximations to the 10 smallest eigenpairs for the small graphene

graph consisting of two hexagons connected by an edge. Note the peculiar behavior of the eigenfunc-
tions. More complex graphene-like graph models show similar behavior, but, unfortunately, the cluttered
displays become difficult to visualize.

Finally, we display the results for the same simple Hamiltonian H u = −u′′ on a binary tree with an
extra vertex connected to the root. In Fig. 10, we display the first eight leftmost eigenpairs and, in Fig. 11,
the next eight eigenpairs. As in the previous examples, we note the existence of repeated eigenvalues
(reflecting the symmetry of the underlying graphs) and the fact that, as expected, the eigenfunctions
corresponding to higher eigenvalues become increasingly oscillatory.

We note that for these small, highly regular graphs, the smallest eigenvalues of the (discretized)
Hamiltonian tend to mimic the behavior of the eigenvalues of the graph Laplacian LΓ . It is therefore
natural to ask whether this is true in general.

To answer this question, we performed some eigenvalue computations on a few graphs with
irregular, complex topologies. For the experiments we used three graphs, one synthetic and the other two
representing real-world networks. The first is a Barabási–Albert graph (preferential attachment model)
with 2000 vertices and 3974 edges, of the same kind as the graph Γ1 described in Table 1. The second
one is a graph describing a social network of drug users in Colorado Springs, where the edges indicate
pairs of individuals that have exchanged needles in the last three months (Estrada, 2011, p. 122). The
third graph represents protein–protein interactions in beer yeast (Newman, 2010, p. 89). We denote the
three networks Γ1, Γd and Γy, respectively. The number of vertices/edges for the networks Γd and Γy are
616/2012 and 2224/6609, respectively.
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Table 4 Eigenvalues of LΓ

for each of the three graphs

Cross Graphene Tree

0 0 0
1 0.1578 0.0968
1 1 0.2679
1 1 0.2679
5 1 0.4965

1.4931 1
3 1
3 1
3 1

3.5069 1.7356
4 2.1939

4.8422 3.5767
3.7321
3.7321
4.7093
5.1912

In Table 5, we report the six smallest eigenvalues of the graph Laplacian LΓ for each of these
three graphs, together with approximations to the six smallest eigenvalues of the simple Hamiltonian
H = − d2

dx2 , with Neumann–Kirchhoff conditions obtained by solving the discrete problem (6.1). Again,
each edge is assumed to have unit length, and 100 interior nodes are used to discretize H on each edge.
The eigenvalues appear to have converged to an approximation with at least three accurate significant
digits. These results show that it is difficult to make general statements, as the relationship between the
small eigenvalues of H and those of LΓ appears to be very much graph dependent. This fact confirms the
observation made in Section 6 that the diffusion dynamics could be rather different for the combinatorial
graph Γ and for the corresponding metric graph, even for very simple PDEs. This is discussed further in
the next section.

8.3 Parabolic problems

Here, we consider approximating the simple diffusion-type equation

∂u

∂t
= ∂2u

∂x2
(x, t) ∈ Γ × (0, T ]; u(x, 0) = u0(x) x ∈ Γ , (8.6)

where u0(x) is an initial temperature distribution. As always in this article, Neumann–Kirchhoff conditions
are imposed at the vertices. Note that as t → ∞, the solution u(x, t) of (8.6) must decay to a steady state,
everywhere constant solution at an exponential rate.

Finite element discretization of the second derivative in (8.6) leads to a system of linear ODEs of the
form (7.6) with fh = 0, the solution of which is given by (7.7) with H = L. For the initial temperature
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Fig. 8. Eigenvalues–eigenfunctions for −u′′ = λu on a star graph (n = 100 internal points).

distribution, we have chosen the function u0(x) that is linear on each edge and such that u0(x|e) = x.
Moreover, u0 is normalized so that ‖u0‖L2(Γ ) = 1.

We have used the package in Güttel (2017) to approximate the action of the matrix exponential in
(7.7) at times t1 = 0.0002, t2 = 0.0004, . . ., t10 = 0.002 for four different graphs: the graphs Γ1, Γd and
Γy from the previous section and a graphene-like lattice Γg consisting of 200 contiguous hexagons. Each
edge in each graph is assumed to have unit length, and 20 interior nodes are used to discretize each edge.
In the case of the graphene-like graph, which has 840 vertices and 1210 edges, the extended graph has
25040 nodes. Because the steady state is approached quickly for all graphs, we limit ourselves to a very
small time interval; slower decay can be obtained by premultiplying the diffusion operator in (8.6) by a
small diffusivity coefficient, but doing so does not change the relative rate of decay obtained for different
graphs.
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Fig. 9. Eigenvalues–eigenfunctions for −u′′ = λu on a simple graphene graph (n = 100 internal points).
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Fig. 10. Eigenvalue–eigenfunctions for −u′′ = λu on a simple tree (n = 100 internal points).
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Fig. 11. Eigenvalues–eigenfunctions for −u′′ = λu on a simple tree (n = 100 internal points).
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Table 5 The smallest six eigenvalues of LΓ and of H = − d2

dx2

for each of the three graphs

Γ1 Γd Γy

Eigenvalue LΓ H LΓ H LΓ H

λ1 0 0 0 0 0 0
λ2 0.5227 0.3374 0.0107 0.0035 0.0600 0.0664
λ3 0.5335 0.3453 0.0148 0.0073 0.0727 0.0765
λ4 0.5431 0.3486 0.0317 0.0095 0.0904 0.0826
λ5 0.5502 0.3522 0.0410 0.0157 0.1177 0.0909
λ6 0.5572 0.3559 0.0617 0.0370 0.1226 0.0918

Consider the discrete solution (7.7). The rate of decay to steady state is governed primarily by the
first nonzero eigenvalue of the matrix pencil (H, M) (i.e., of the matrix M−1H). To see this, let m be
the total number of nodes on the extended graph G and q1, q2, . . . , qm be the normalized eigenvectors
corresponding to the generalized eigenvalues λ1 < λ2 ≤ · · · ≤ λm. Then, the solution (7.7) is given, for
all times t ≥ 0, by

uh(t) = e−tλ1(q1
Tuh,0)q1 + e−tλ2(q2

Tuh,0)q2 + · · · + e−tλm(qm
Tuh,0)qm. (8.7)

In our case H = L, hence λ1 = 0 and q1 = 1√
m 1 (where 1 is the vector of all ones), therefore

uh(t) → 1
m (1

Tuh,0)1 as t → ∞. In other words, the solution tends to a state of thermal equilibrium,
where the temperature is the same everywhere on G and is given by the space average of the initial
solution. It is also clear from (8.7) that the rate of convergence depends primarily on the magnitude of
the smallest nonzero eigenvalue, λ2, since all the terms corresponding to larger eigenvalues tend to zero
faster.

The six smallest eigenvalues of the Hamiltonian for the graphs Γ1, Γd and Γy have been reported in
Table 5. For the graphene-like graph Γg, the corresponding values are λ1 = 0, λ2 = 0.0014, λ3 = 0.0056,
λ4 = 0.0126, λ5 = 0.0160 and λ6 = 0.0176. Hence, one would expect the convergence to steady state
to take longer on the graphene-like graph than on the other graphs, with the Barábasi–Albert graph Γ1

exhibiting the fastest rate of decay (λ2 = 0.3374). This is also intuitive in view of the fact that Γg is a
two-dimensional lattice with large diameter, whereas the Barábasi–Albert graph is a small-world graph
with small diameter, and so diffusion should take place faster on the latter graph than on the former (with
the other two graphs occupying somewhat intermediate positions).

However, things are not quite so simple. It is important to keep in mind that we are dealing with
solutions to a partial differential equation, and that the actual decay behavior may be different when
measured by different, nonequivalent norms. Recall (see, e.g., Brezis, 2010, Chapter 11) that the solution
u(t) of problem (8.6) satisfies at each time t the relation

1

2
‖u(t)‖2

L2(Γ )
+
∫ T

0
(H u(s), u(s))L2(Γ ) ds = 1

2
‖u(0)‖2

L2(Γ )
, (8.8)
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and if u(t) ∈ C1(Γ ) for all t, we have

d

dt

(
1

2
‖u(t)‖2

L2(Γ )

)
+ (H u(s), u(s))L2(Γ ) = 0 (8.9)

(where, for ease of notation, we have suppressed the dependence of u on x). We point out that the finite
element approximation gives the relations

Mu̇h = −Huh uh(0) = uh,0,

and therefore the semidiscrete solutions uh(t) will satisfy for each h

d

dt

(
1

2
‖uh(t)‖2

L2(Γ )

)
+ uh(t)

THuh(t) = 0. (8.10)

We also note that in our case (H u(s), u(s))L2(Γ ) = ‖u(s)‖2
H1(Γ )

, the square of the H1 (semi)norm. This

quantity has the physical meaning of an energy. Since the quadratic form uh(t)THuh(t) is the discrete H1

seminorm (squared), (8.10) implies that large energy solutions at a time t will show a faster decrease of
the L2(Γ ) norm.

In Fig. 12, we display for our test problems both the H1 seminorm and the L2-norm of the solutions
(squared). These plots show that the decay behavior is different in different norms. In particular, the
approach to equilibrium is fastest for the graphene-like graph and slowest for the Barábasi–Albert graph
when measured in the L2-norm, but the situation is reversed when decay is measured in terms of energy,
with the decay of the H1 seminorm now being noticeably slower for the highly regular graphene-like
graph (note the semilogarithmic scale used for the energy plot). This observation is consistent with our
remarks above.

As a final note, one of the purposes of these experiments was to compare the use of two variants of the
mass matrix M, the one obtained from the Simpson rule and the diagonal approximation of it obtained
using the trapezoidal rule. To generate the results shown in Fig. 12, we made use of the trapezoidal rule.
The results for the Simpson rule were found to be virtually identical and therefore are not shown. The
essential equivalence of the two variants of the mass matrix is in line with what one would expect from
a simple error analysis of the two quadrature rules. The Simpson rule, however, requires computing the
Cholesky factorization of the mass matrix and two triangular solves at each step of the Krylov subspace
method (see the discussion in Section 7.2). In contrast, the trapezoidal rule does not necessitate any of
this, since it leads to a diagonal approximation of the mass matrix, resulting in computing times that are
orders of magnitude smaller.

9. Conclusions and future work

In this article, we have introduced and analysed a linear finite element method for the discretization of
elliptic, parabolic and eigenvalue problems posed on graphs, with special attention to the important case
of Neumann–Kirchhoff vertex conditions. The structure and main properties of the resulting stiffness
and mass matrices have been carefully described, together with the associated notion of extended graph.
Numerical linear algebra aspects have been discussed, as well as the numerical integration of simple
parabolic PDEs on graphs. The effect of graph topology on the convergence behavior of iterative solvers
has been discussed and illustrated by numerical experiments, showing that a combination of Schur com-
plement reduction (closely related to a nonoverlapping domain decomposition approach) with diagonally
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Fig. 12. L2(Γ ) norm squared and energy of solution u(x, t) to the heat equation as a function of time (n = 20 internal nodes). Note
the logarithmic scale on the vertical axis in the second plot.

scaled CG results in optimal solvers for scale-free graphs. This approach has also very high inherent
parallelism. Not surprisingly, we have found that the solution of PDEs on graphs, particularly complex
networks, can lead to new phenomena that are not typically observed when solving PDEs posed on more
typical two-dimensional and three-dimensional domains.

The numerical analysis of PDEs on graphs and networks is still in its infancy, and much work remains
to be done in this area. Future work should address the numerical solution of more complex types of
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differential equations on graphs. These include hyperbolic problems (especially nonlinear conservation
laws, which are important for the description of transport phenomena on networks, as well as for the
propagation of shocks), Schrödinger-type equations, systems of PDEs (such as the Dirac equations,
which are important in the modeling of graphene) and nonlocal PDEs of fractional type. In particular, the
influence of the underlying graph topology on the discretization and solver behavior should be investigated
for these more complex PDEs.

Finally, in this article we have focused on a simple linear continuous finite element discretization,
which allowed us to relate the discretized Hamiltonian to standard linear operators associated with graphs,
such as the incidence matrix and the graph Laplacian. It would also be of interest to compare the efficacy
of different discretization strategies (discontinuous or higher order finite elements, finite differences,
finite volumes and spectral methods) in solving PDEs on graphs.
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Appendix

We assume that we approximate by uniform linear finite elements the simple Hamiltonian

H u = − d2u

dx2
+ νu
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(ν = constant), with �e = 1 and ne = n ∀e ∈ E , so that the block

H11 = A + V = I ⊗
(

1

h
T̂ + hνM̂

)
is the combination of the two tridiagonal matrices of order n − 1:

T̂ = tridiag {−1, 2, −1}, M̂ = 1

6
tridiag {1, 4, 1},

the block

H12 = B + C =
(−1

h
+ νh

6

)
|B|,

and

H22 = G + F =
(

1

h
+ νh

3

)
D.

Both the matrices T̂ and M̂ are diagonalized by the symmetric, orthonormal matrix U (Meurant, 1992):

U = (ui,j)
{

ui,j = √
2h sin(ijπh)

}n−1

i,j=1
.

UT̂U = Λ and UM̂U = 1

6

(
2I +Λ

)
,

where λi = 4 sin2
(
i π2 h

)
. Moreover, we have

UH11U = Θ = 1

h
Λ+ hν

6

(
2I +Λ

)
.

We observe the following useful relations:

sin(iπh) = (−1)i−1 sin(inπh), (A.1)

sin(iπh) = 2 cos
(

i
π

2
h
)

sin
(

i
π

2
h
)

, (A.2)

sin(iπh)2 = 1

4
(4 − λi)λi. (A.3)

The Schur complement S of the Hamiltonian in our specific case is

S = G + F − (
B + C

)T(
A + V

)−1(
B + C

)
=
(

1

h
+ νh

3

)
D −

(−1

h
+ νh

6

)2

|ÊĒT|
(

I ⊗ (
UΘ−1U

))|ĒÊT|.
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Taking into account that

ĒT = IM ⊗ ET
e ,

with Ee ∈ R
(n−1)×n, and in view of (4.2), (4.3) and (4.4) with nej = n, we have

|ÊĒT| = (
E+ ⊗ (

en
1

)T + |E−| ⊗ (
en

n

)T)(
IM ⊗ |Ee|T

)
= (

E+ ⊗ (
en−1

1

)T + |E−| ⊗ (
en−1

n−1

)T)
.

Finally, we have

S =
(

1

h
+ νh

3

)
D

−
(−1

h
+ νh

6

)2 (
E+ ⊗ (

en−1
1

)T (
UΘ−1U

)+ |E−| ⊗ (
en−1

n−1

)T)(
(E+)T ⊗ en−1

1 + |E−|T ⊗ en−1
n−1

)
.

By expanding the products, we have

S =
(

1

h
+ νh

3

)
D −

(−1

h
+ νh

6

)2

·
[(

E+(E+)T
)⊗ (

en−1
1

)T (
UΘ−1U

)
en−1

1

+ (
E+|E−|T)⊗ (

en−1
1

)T (
UΘ−1U

)
en−1

n−1

+ (|E−|(E+)T
)⊗ (

en−1
n−1

)T (
UΘ−1U

)
en−1

1

+ (|E−| |E−|T)⊗ (
en−1

n−1

)T (
UΘ−1U

)
en−1

n−1

]
.

Because of the symmetry of U and from (A.1), (A.2) and (A.3), we have

(
en−1

n−1

)T (
UΘ−1U

)
en−1

1 = (
en−1

1

)T (
UΘ−1U

)
en−1

n−1,(
en−1

n−1

)T (
UΘ−1U

)
en−1

n−1 = (
en−1

1

)T (
UΘ−1U

)
en−1

1 .

Thus, from Lemma 4.1 and the property |E−| = −E−, it follows that

S =
(

1

h
+ νh

3

)
D −

(−1

h
+ νh

6

)2 [(
E+E+T + E−E−T)⊗ (

en−1
1

)T (
UΘ−1U

)
en−1

1

− (
E+E−T + E−E+T)⊗ (

en−1
n−1

)T (
UΘ−1U

)
en−1

1

]
=
(

1

h
+ νh

3

)
D −

(−1

h
+ νh

6

)2 [
D ⊗ (

en−1
1

)T (
UΘ−1U

)
en−1

1 + Ad ⊗ (
en−1

n−1

)T (
UΘ−1U

)
en−1

1

]
.
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Moreover, we have

S =
[(

1

h
+ νh

3

)
−
(−1

h
+ νh

6

)2 (
en−1

1

)T (
UΘ−1U

)
en−1

1

]
D

−
[(−1

h
+ νh

6

)2 (
en−1

n−1

)T (
UΘ−1U

)
en−1

1

]
Ad.

In the general case ν > 0, it follows that the nonzero pattern of S will always coincide with that of LΓ .

Lemma A.1 (
1

h
+ νh

3

)
−
(−1

h
+ νh

6

)2 (
en−1

1

)T (
UΘ−1U

)
en−1

1 � 1 + (n − 1)ν

3π2 + ν
+ O(h). (A.4)

If ν < h−1, then we have the estimate

(−1

h
+ νh

6

)2 (
en−1

n−1

)T (
UΘ−1U

)
en−1

1 ≈ −1

1 + ν

3π 2

+ O(h). (A.5)

Proof. We have

−
(−1

h
+ νh

6

)2 (
en−1

1

)T (
UΘ−1U

)
en−1

1

= − 1

h2

(
1 − νh2

6

)2 n−1∑
j=1

2h2 sin2(jπh)(
1 + νh2

6

)
λj + νh2

3

= −
(

1 − νh2

6

)2 n−1∑
j=1

[
2 cos2

(
j
πh

2

)]
λj(

1 + νh2

6

)
λj + νh2

3

= −
(

1 − νh2

6

)2 n−1∑
j=1

[
2 cos2

(
j
πh

2

)]
(

1 + νh2

6

)
+ νh2

3λj

≤ −
(

1 − νh2

6

)2 n−1∑
j=1

[
2 cos2

(
j
πh

2

)]
(

1 + νh2

6

)
+ νh2

3λ1

≈ −
(

1 − νh2

6

)2 n−1∑
j=1

[
2 cos2

(
j
πh

2

)]
(

1 + νh2

6

)
+ ν

3π 2

= −

(
1 − νh2

6

)2

1 + νh2

6
+ ν

3π 2

(n − 1).

Here, we have used the identity

n−1∑
j=1

2 cos2

(
jθ

2

)
=

n−1∑
j=1

[cos(jθ)+ 1] =
n−1∑
j=1

cos(jθ)+ n − 1
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(with θ = πh = π/n) and the Dirichlet kernel formula

1 − 2
n−1∑
j=1

cos(jθ) = sin
(
(n − 1

2 )θ
)

sin
(
θ

2

) ,

which together yield

n−1∑
j=1

2 cos2

(
jθ

2

)
= n − 1.

Therefore, we have (A.4).
From (A.1) and expanding λ−1 = csc2(jπh/2)/4 to the first-order (jπh/2 < π ), we obtain that

(−1

h
+ νh

6

)2 (
en−1

n−1

)T (
UΘ−1U

)
en−1

1 =
(

1 − νh2

6

)2 n−1∑
j=1

(−1
)j

2 cos2(j π2 h)(
1 + νh2

6

)
+ νh2

3λj

≈
(

1 − νh2

6

)2 n−1∑
j=1

(−1
)j

2 cos2(j π2 h)(
1 + νh2

6

)
+ ν

3

[ 1

jπ
+ jπh2

48

]2

≈
(

1 − νh2

6

)2 n−1∑
j=1

(−1
)j

2 cos2(j π2 h)

1 + ν

3π 2

[
1 + O( π

2h
48 )
]2 ≈ 1

1 + ν

3π2

n−1∑
j=1

(−1
)j

2 cos2
(

j
π

2
h
)

+ O(h).

Finally, we obtain (A.5) by observing that
∑n−1

j=1

(−1
)j

2 cos2(j π2 h) = −1. �

Remark A.2 We observe that the estimate (A.5) is only a crude approximation of the real value of the
nonzero entries of S (corresponding to the entries of Ad) when ν ≥ h−1. In this case, we can only say
that the off-diagonal entries in the Schur complement will go to zero at least as fast as ν−1 for ν → ∞.
However, numerically we observe that they are much closer to zero than the estimated value in (A.5).
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