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1Università degli Studi di Messina, Dipartimento di Fisica e di Scienze della Terra,

Contrada Papardo, I-98166 Messina, Italy

2CNR-IPCF, Viale F. Stagno d’Alcontres 37, I-98158 Messina, Italy
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Abstract

Phase transitions in one-dimensional classical fluids are usually ruled out by making appeal to van

Hove’s theorem. A way to circumvent the conclusions of the theorem is to consider an interparticle

potential that is everywhere bounded. Such is the case of, e.g., the generalized exponential model

of index 4 (GEM-4 potential), which in three dimensions gives a reasonable description of the

effective repulsion between flexible dendrimers in a solution. An extensive Monte Carlo simulation

of the one-dimensional GEM-4 model [S. Prestipino, Phys. Rev. E 90, 042306 (2014)] has recently

provided evidence of an infinite sequence of low-temperature cluster phases, however also suggesting

that upon pushing the simulation forward what seemed a true transition may eventually prove to

be only a sharp crossover. We hereby investigate this problem theoretically, by three different and

increasingly sophisticated approaches (i.e., a mean-field theory, the transfer matrix of a lattice

model of clusters, and the exact treatment of a system of point clusters in the continuum), to

conclude that the alleged transitions of the one-dimensional GEM4 system are likely just crossovers.
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I. INTRODUCTION

Compared to three dimensions, the statistical mechanics of one-dimensional (1D) fluids is

both simpler and harder. Simpler, because a general result due to van Hove [1] excludes the

possibility of distinct phases in one-dimensional, homogeneous, and one-component classical

fluids of hard particles with short-range interactions. Also more complicated, however,

because whenever any of the hypotheses behind van Hove’s theorem is not met, it may be

extremely difficult to say whether or not the given 1D interaction would admit a genuine

phase transition (see, e.g., Refs. [2–9]).

In this respect, the class of potentials known as generalized-exponential models (GEM)

is emblematic. These are classical fluids of particles repelling each other through a potential

of the form u(r) = ε exp{−(r/σ)α} (GEM-α potential), where ε, σ > 0 are arbitrary energy

and length units, r is the interparticle distance, and α is a real positive index. The GEM

potentials stay finite at the origin, hence particles may fully overlap, in strike contrast to real

atoms and molecules. Clearly, bounded potentials only make sense as models of the effective

pair interaction between large molecular aggregates that can intertwine even to the extent

that their centers of mass exactly coincide. In three dimensions bounded interactions give

rise to structural patterns which are unknown to rare-gas fluids, notably reentrant melting

and waterlike anomalies, which have been the subject of numerous investigations in the last

few decades (see, e.g., Refs. [10–14], to name but a few). A particularly curious feature of

bounded two-body repulsions is the possibility to generate stable cluster crystals [15], i.e.,

crystalline phases involving a mean number of particles per lattice site larger than 1, which

have been extensively studied in the recent past [16–24].

When confined in one dimension, penetrable particles may pass one through the other,

thus making it possible to change the particle ordering within the line. While there exists

a general method of computing the exact thermodynamics of a specific class of 1D systems

of impenetrable particles [25–27], nothing can a priori be said about the phase behavior of

freely overlapping particles. Hence, either a brute-force numerical-simulation approach is

taken or some other plausibility arguments must be used to probe the existence of separate

phases in such 1D systems.

In Ref. [8], the 1D GEM-2 (that is, the one-dimensional counterpart of the Gaussian-

core model [28–31]) was studied by Monte Carlo (MC) simulation. No phase transition
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was found, even at zero temperature (T = 0), notwithstanding the system structure at

low temperature is crystal-like and clear signs of dimerization were found at high pressure.

For the 1D GEM-4 the situation is markedly different [32]. True phase transitions exist at

T = 0 between states allowing for an increasing number of particles in the same lattice

site. In simulation, these states gave rise to clear-cut cluster phases for T > 0, with sharp

boundaries which manifest themselves through hysteresis loops in the number density as a

function of pressure. In fact, the coexistence loci are so sharp that they could be traced

by free-energy calculations. However, when MC simulations were made much longer (up

to tens of million sweeps), hysteresis loops became narrower and the alleged critical points

shifted to low temperatures, thus raising doubts on the true nature of the crossover from

one phase to the other. Therefore, it is still unclear whether proper phase transitions truly

exist or not in the 1D GEM-4.

In the present paper, we address this problem from the different perspective of theoretical

modeling. Upon building up successive, increasingly accurate approximations to the 1D

GEM-α system for α ≥ 4, we compute the density as a function of pressure for fixed

temperature, seeking for jumps or other singularities. At the end, we get a more definite

idea about the nature of phase crossovers in GEM fluids. Even though not having the same

degree of certainty as a mathematical proof, nonetheless the present work sheds fresh light

on a still open question.

This paper is organized as follows. After introducing a coarse-grained formulation of the

1D GEM-α Hamiltonian in terms of interacting clusters on a lattice, we compute the phase

boundaries of the model first in the mean-field approximation (Section II), and then by the

exact transfer-matrix method (Section III). Going back to the continuum, in Section IV we

analyze the exact behavior of a system of point clusters moving on a line and discuss its

relevance for the phase behavior of the original GEM system. Some concluding remarks are

given in the last section.

II. MEAN-FIELD THEORY

The statistical mechanics of the 1D GEM-α system is not amenable to an exact an-

alytical treatment. However, some progress can be made by analyzing a related system

which allows to simplify the counting of states. In this regard, a crucial observation from
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the simulation [32] is that the low-temperature structure of the GEM fluid away from the

alleged “transition points” is not dissimilar from an ordered cluster crystal, with average

site occupancy and lattice spacing depending on temperature T and number density ρ in a

smooth way. At a phase transition, the average occupancy increases by one and the density

undergoes a sharp variation (however, close to a transition point clusters do not necessar-

ily contain the same number of particles and the separation between two adjacent clusters

may then vary along the line). Given the above evidence, we are led to represent the low-

temperature behavior of the 1D GEM-α system of N particles in a volume L by means of

the coarse-grained lattice model of Hamiltonian:

H =
1

2
ε
Nc∑
i=1

ni(ni − 1) +
Nc∑
i=1

ni
∑
m>0

u (mrNN)ni+m , (2.1)

where Nc is the (for the moment arbitrary) number of point-like clusters (one for each lattice

site), rNN = L/Nc is the lattice spacing, i.e., the distance between nearest-neighbor (NN)

clusters, and ni = 1, 2, 3, . . . is the size of the cluster residing at i, i.e., the number of particles

located at the fixed lattice positions

xi = (i− 1)rNN (i = 1, . . . , Nc) . (2.2)

On the right-hand side of Eq. (2.1), the first term is the intra-cluster energy while the

second term represents the total interaction energy of particles belonging to different clusters

(periodic boundary conditions are implied). Observe that the inter-cluster potential in

Eq. (2.1) is not restricted to nearest-neighbors, but involves arbitrarily distant clusters. A

model similar to (2.1) has already been considered by Wilding and Sollich [33] as a tool to

investigate the T = 0 transitions of the three-dimensional GEM-α system. In this section

we extend their mean-field treatment to T > 0 for the 1D case, while deferring the exact

analysis of model (2.1) to the next section.

In order to extract the thermodynamic properties of (2.1) we first use the variational

principle of statistical mechanics. Since handling the
∑

i ni = N constraint is hard, we

shall work in the grand-canonical ensemble where T, L, and the chemical potential µ are

fixed, while each ni can assume every value between 1 and ∞. In this ensemble the Gibbs-

Bogoliubov inequality prescribes that the grand potential Ω is bounded from above by a

functional Ω∗,

Ω ≤ Ω∗[π] ≡ Tr

[
π(H +

1

β
ln π − µN)

]
≡ E∗ − TS∗ − µN∗ , (2.3)
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where π is any trial probability density in state space and β = (kBT )−1. Ω∗ reaches its

minimum for π = ρg. c. (i.e., the equilibrium grand-canonical density), where it takes the

value Ω. Once a parametric form of π is chosen, minimizing Ω∗[π] with respect to parameters

is the way to make the best possible estimate of Ω.

A system with no specific constraint on the total number of lattice sites entails a com-

plication. In fact, after computing Ω (i.e., the least upper bound to Ω) for each Nc, we still

need to optimize with respect to Nc. This is done according to the criterion stated by Swope

and Andersen [34], that is by minimizing Ω with respect to rNN = L/Nc, or, equivalently,

with respect to the Nc-dependent density d ≡ N∗/L [35].

The simplest choice is a π(n1, n2, . . . , nNc) of uncorrelated ni variables. Following Ref. [33],

we choose n (i.e., the mean site occupancy) as the only parameter in π. At low temperature,

we are allowed to assume that only two ni values at a time may occur in the system, namely

n< = int(n) and n> = n< + 1. Hence we have:

π({n};n) =
Nc∏
i=1

π1(ni;n) , with π1(n;n) = (1−∆)δn,n< + ∆δn,n> . (2.4)

The value of ∆ is determined by the condition 〈ni〉π ≡ Tr(πni) = n. Since

〈n1〉π =
∑
n1

n1π1(n1;n)×
∑
n2

π1(n2;n)× · · · = (1−∆)n< + ∆n> , (2.5)

we get ∆ = n− n<, which also yields:

〈n2
1〉π = (1−∆)n2

< + ∆n2
> = n2 + ∆(1−∆) . (2.6)

From the very definition of N∗ it follows that N∗ = Ncn, hence

Nc = Ld/n . (2.7)

Putting all things together we obtain:

E∗ =
Ld

2n

{[
n2 + ∆(1−∆)− n

]
ε+ 2n2

[
u

(
n

d

)
+ u

(
2n

d

)
+ . . .

]}
;

−TS∗ = kBT
Ld

n
[(1−∆) ln(1−∆) + ∆ ln ∆] ;

−µN∗ = −µLd , (2.8)

and the system pressure P is then given by:

P (T, µ) = − 1

L
min
d

Ω(d;T, µ) = − 1

L
min
d

{
min
n

Ω∗(n, d;T, µ)
}
. (2.9)
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Any jump in the equilibrium number density ρ ≡ arg mind
{

Ω(d;T, µ)
}

as a function of µ

at constant T will be the hallmark of a first-order transition.

In Figs. 1 and 2 we have plotted our mean-field results for the 1D GEM-4 system relative

to six isothermal paths, T = 0, 0.01, . . . , 0.05 (from now on, all quantities will be given in

the units set by kB, ε, and σ). For these temperatures we first computed the best value

of n and the corresponding value F of F ∗ = E∗ − TS∗ as a function of d (top panel of

Fig. 1). The optimal n undergoes a steady increase with d, interrupted at regular intervals

by plateaus at integer heights. Within the same d ranges where n stays constant, F is

convex upward. The bottom panel of Fig. 1 shows the lattice spacing rNN = L/Nc = n/d

as a function of d; rNN exhibits a zig-zag pattern which gradually dampens as d grows.

Observe that the value of rNN never falls below 1.1, meaning that the distance between two

next-nearest-neighbor clusters is always larger than 2.2. Since exp{−2.24} < 10−10, this

means that the GEM-4 interactions are effectively limited to nearest neighbors only (the

same applies for any α > 4). In Fig. 2 we show ρ (top panel) and µ (bottom panel) as a

function of P for the same temperatures considered in Fig. 1. The density jumps at the

lowest temperatures indicate a sequence of first-order transitions between cluster phases of

increasing occupancy. Above T ≈ 0.03 all discontinuities vanish and the transitions are

replaced by smooth crossovers.

Summing up, our mean-field theory asserts the existence of low-temperature phase tran-

sitions in the 1D GEM-4 system. Compared to the work by Wilding and Sollich [33], two

important improvements are: 1) our theory is directly derived from the variational principle

of statistical mechanics and, as such, it can be systematically improved; 2) at variance with

the theory in Ref. [33], to which ours reduces for T = 0, the present mean-field theory also

applies for T > 0.

III. TRANSFER-MATRIX TREATMENT

Since the results of an approximate theory may not be conclusive, the accuracy of our

mean-field theory for 1D GEM-α systems will now be tested against an exact treatment of

model (2.1). We start by rewriting the latter Hamiltonian as:

H =
1

2
ε

Nc∑
i=1

ni(ni − 1) +
Nc∑
i=1

u(rNN)nini+1 , (3.1)
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which assumes zero interaction beyond nearest neighbors (we shall check a posteriori that,

for α ≥ 4, the omitted terms are actually ineffective at all temperatures of interest). Again,

the clusters are fixed at the lattice positions given by Eq. (2.2), and rNN = L/Nc is an

adjustable parameter to be eventually optimized by requiring the system pressure to be

maximum. Each Nc-uple of ni values (for i = 1, . . . , Nc) represents an individual state

of the model (3.1), since the particles building up the clusters are indistinguishable. The

canonical partition function would be the sum of the Boltzmann factors over all Nc-uples

(n1, . . . , nNc) of positive integers obeying the constraint
∑

i ni = N . Therefore, as in the

previous section, the calculation is most easily performed in the grand-canonical ensemble,

since the partition function of the latter involves an unconstrained sum over n1, . . . , nNc .

Using the transfer-matrix method, the grand potential (under periodic boundary condi-

tions) reads

− βΩ(T, L, µ; rNN) = ln Tr
{
eβµNe−βH

}
= ln

∑
n1,...,nNc

Tn1
n2
Tn2
n3
· · ·TnNc

n1

= ln
∑
n1

(
TNc

)n1

n1
∼ Nc lnλmax , (3.2)

where the last step holds for large Nc (and L) values. In the above equation, λmax is the

largest eigenvalue of the (symmetric) transfer matrix

Tnn′ = exp

{
−βεn

2 + n′2 − n− n′

4
+ βµ(n+ n′)/2− βu(rNN)nn′

}
. (3.3)

It is worth stressing that the thermodynamic limit implies taking not only L→∞ but also

Nc → ∞, in such a way that L/Nc = rNN remains finite. Also observe that T is an infinite

matrix, since both n and n′ can vary between 1 and ∞. In practice, if the system density

is not too high, we can assume n and n′ in Eq. (3.3) to vary between, say, 1 and 10 (T thus

becomes a 10× 10 matrix).

The calculation of λmax was carried out numerically by the power method [36]. First

the system pressure for every rNN was computed through Ω(T, L, µ; rNN) = −P(T, µ; rNN)L,

yielding in the thermodynamic limit:

P(T, µ; rNN) =
lnλmax

βrNN

. (3.4)

Such a quantity was then maximized to get the equilibrium pressure:

P (T, µ) = max
rNN

P(T, µ; rNN) . (3.5)
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A first-order phase transition occurs whenever the P(T, µ; rNN) vs. rNN profile exhibits two

different maxima, whose relative stability changes when crossing a specific µ value. This

implies a jump discontinuity in the optimal value of rNN, which in turn produces a jump in

the density as a function of µ or P .

We first computed P for T = 0.01, . . . , 0.05, finding values very close to those given by

mean-field theory (pressure differences in reduced units were typically smaller than 10−3);

only for the smallest T the numerical calculation of the pressure could not be carried out

above a certain µ, because of the huge values of some T components. We verified that,

even including second-neighbor terms in the Hamiltonian, the pressure does not change

appreciably for α ≥ 4. The reason is the same mentioned previously: the optimal rNN

values are never smaller than 1.1σ, hence the strength of the second-neighbor repulsions

is nearly zero. In Fig. 3 we show our exact transfer-matrix results for the lattice model

(3.1). Besides rNN, the top panel of Fig. 3 also reports the connected correlation between

NN clusters, 〈n1n2〉c ≡ 〈n1n2〉 − 〈n1〉〈n2〉, and the correlation length ξ defined by

ξ =
1

ln |λmax/λ2|
, (3.6)

where λ2 is the second (next to the leading) eigenvalue of T in descending order. While

λ2 was computed by Wielandt deflation [37], the NN correlation was determined by the

formula:

〈n1n2〉 =
1

λmax

10∑
n1,n2=1

Rn1
1 Rn2

1 Tn1
n2
n1n2 , (3.7)

where the R matrix has the T eigenvectors for columns (in descending order of eigenvalue).

The absolute value of 〈n1n2〉c, which is very small for all pressures, may explain the good

quality of our mean-field theory. The bottom panel of Fig. 3 reports the average occupancy

〈n1〉, the average squared occupancy 〈n2
1〉, and the density ρ, respectively computed by the

formulas:

〈n1〉 =
10∑

n1=1

(Rn1
1 )2 n1 , 〈n2

1〉 =
10∑

n1=1

(Rn1
1 )2 n2

1 , and ρ = 〈n1〉/rNN . (3.8)

Overall, the density behavior closely resembles that found in mean-field theory. Indeed, we

see again discontinuous jumps at the lowest temperatures (T = 0, 0.01, 0.02), indicating true

first-order phase transitions. At higher temperatures, the discontinuous jumps transform

into sharp, but continuous, density changes in a very narrow range of pressures (similar

trends were named pseudo-transitions in a different 1D model by Pȩkalski et al. [9]).
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The correlation length shows a distinct maximum near each low-temperature transition

point. As T grows from 0, these maxima first increase and then, past T = 0.03, start to

decrease, suggesting that each coexistence line ends with a critical point and that ξ diverges

at a critical temperature ≈ 0.03. Since the transfer matrix T is strictly positive for any T ,

one might argue that its maximum eigenvalue is necessarily simple (by Perron-Frobenius

theorem [38]), and therefore it would be safely excluded that ξ may ever diverge. However,

as already noted, the true transfer matrix is infinite and therefore the use of the Perron-

Frobenius theorem is not legitimate [39]. Hence, the question of the behavior of ξ near

T = 0.03 can only be answered numerically (see below).

Upon looking more deeply into the density and correlation-length profiles close to every

zero-temperature transition point, we observed a very complex behavior. In Figs. 4 and 5

we focus on the transition from the 1-cluster phase (1) to the 2-cluster phase (2). The

density jump at the transition has an irregular T behavior. Upon heating from T = 0,

the 1-2 coexistence line “bifurcates” at T . 0.028. Indeed, two distinct density jumps are

seen for T = 0.028 (red curves in Figs. 4 and 5), and this entails the existence of a third

phase, intermediate between 1 and 2, characterized by values of n . 1.5. However, this

extra-phase has a very precarious existence, since it has already disappeared for T = 0.029.

Eventually, above T = 0.033 we find no density jump but a continuous density curve, and

the 1-2 coexistence line terminates. Figure 5 shows that the correlation length never diverges

and that the Widom line (i.e., the locus of regular ξ maxima), rather than departing from

the ending point of the coexistence line, actually blossoms from the coexistence line near

T = 0.028. We finally notice that the behavior of ρ and ξ near the 2-3 and 3-4 transitions

is perfectly analogous to that described for the 1-2 transition.

Figures 6 and 7 report the overall phase diagram on the P -T and ρ-T plane, respectively.

On each coexistence line there is a bifurcation point and the Widom line apparently emerges

from it. The mean-field coexistence lines are also shown. They run extremely close to the

exact loci up to the bifurcation points, while progressively departing from them for higher

temperatures.

Finally, we looked at what happens when increasing α from 4. We found that the discon-

tinuous density jumps are only present in a smaller and smaller range of low temperatures

until they altogether disappear for all T > 0 when α→∞. In this limit, 〈n1〉 coincides with

ρ (see Fig. 8). Hence, the 1D penetrable-sphere model (PSM, corresponding to the α→∞
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limit of GEM-α) would show no phase transition at T > 0.

IV. A CONTINUUM MODEL OF INTERACTING CLUSTERS

We hereafter show that in Hamiltonian (3.1) the lattice constraint (2.2) can be weakened,

making the distance between clusters partly arbitrary, and the model still remains exactly

solvable.

In the previous section, we considered a model whose states are represented by Nc-uples

of positive ni integers, defined at fixed lattice positions xi. Slightly abusing the notation,

a model state was any vector (n1, x1, . . . , nNc , xNc), with xi defined by Eq. (2.2). We now

release the constraint on the cluster positions and let xi be any real number in the interval

[0, L]. We focus on the specific order x1 ≤ x2 ≤ . . . ≤ xNc , which is one out of the Nc! possible

orderings of coordinates. Therefore, a microstate of the by-now continuum model is going

to be represented by a 2Nc-uple (n1, x1 . . . , nNc , xNc), with 0 ≤ x1 ≤ x2 ≤ . . . ≤ xNc ≤ L.

Since the clusters are now free to move, the new Hamiltonian is written as:

H =
Nc∑
i=1

p2i
2mi

+
1

2
ε
Nc∑
i=1

ni(ni − 1) +
Nc−1∑
i=1

ua(xi+1 − xi)nini+1 , (4.1)

where pi and mi = nim are the momentum and mass of the i-th cluster, respectively (m

being the mass of an individual particle). In the interaction term, which is again limited to

nearest-neighbors, the potential ua differs from u for the addition of a suitable hard core of

diameter a. We need such a modification to ensure that, for the given u potential, a cluster

effectively interacts only with its first neighbors; under this assumption, the calculation

of the partition function becomes feasible by elementary methods, as we shall see below.

Admitting only NN interactions in Eq. (4.1) actually amounts to cut the u interaction at

r = 2a. For the GEM-α potential with α ≥ 4, this is clearly allowed for a > 1.1, but

we can take an even smaller a if, in the system configurations with highest Boltzmann’s

weight under the given thermodynamic conditions, the number of second-neighbor clusters

at distance 2a is statistically irrelevant (as occurs in GEM-α systems, with α = 4 or higher,

for low temperatures). In other words, replacing u with ua would not alter the statistical

properties of the GEM-α model, in so far as the most relevant configurations of model (4.1)

are those where the distance between NN clusters is around 1.2÷ 1.5.
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For reasons which will be apparent below, it is far easier to compute the partition func-

tion of model (4.1) in an ensemble where the independent variables are T, P, µ,Nc. Observe

that T, P, µ do not exhaust the set of intensive variables for our system since µc, the chem-

ical potential conjugate to Nc, is also intensive. Denoting Y the partition function in the

T, P, µ,Nc representation, the appropriate thermodynamic potential is

G(T, P, µ,Nc) = −kBT lnY = µc(T, P, µ)Nc . (4.2)

However, thermodynamic equilibrium requires that µc(T, P, µ) must be identically zero [20,

34, 40, 41] and G then vanishes exactly. It is worth stressing that the equilibrium condition

µc(T, P, µ) = 0 (4.3)

represents itself an implicit functional relation between T, P and µ, and we will exploit it to

express, e.g., µ as a function of T and P .

Statistical mechanics allows to compute Y from the Hamiltonian. All details of such a

calculation are given in the Appendix. The main result is that, similarly to the treatment

of Section III, also Y(T, P, µ,Nc) can be expressed in terms of a transfer matrix T (defined

at Eq (A.4)). In the thermodynamic limit, Y reduces to

Y =
w2

1

L0Λ(βP )2
λNc−1
max , (4.4)

where λmax is the maximum eigenvalue of T (and the other, less important, symbols are

defined in the Appendix). Substitution of this result into Eq. (4.2) then yields

G(T, P, µ,Nc) = −kBTNc lnλmax +O(1) , (4.5)

and from Eq. (4.3) we can conclude that

λmax(T, P, µ) = 1 . (4.6)

We have thus demonstrated that the equilibrium condition based upon the chemical poten-

tial, µc = 0, is perfectly equivalent to the condition λmax = 1 for the largest eigenvalue of

the transfer matrix T.

Before going on, it is worth remarking that the same Eq. (4.6) can also be obtained by

a different route, which is reminiscent of the treatment of 1D multi-component mixtures
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by Longuet-Higgins [43–45]. In this case, let us start from the grand-canonical partition

function Ξ, defined as

Ξ(T, L, µ, µc) =
∑
Nc=1

eβµcNc
∑

n1,...,nNc

eβµ
∑

i ni
1

Nc!hNc

∫
LNc

dNcp dNcx e−βH . (4.7)

Assuming µc = 0 from the outset, the partition function actually reads:

Ξ(T, L, µ, 0) =
∞∑

Nc=1

∑
n1,...,nNc

eβµ
∑

i ni
1

Nc!hNc

∫
LNc

dNcp dNcx e−βH . (4.8)

For any number p, let us consider the integral:

I =
1

L0

∫ ∞
0

dLe−βpLΞ(T, L, µ, 0) . (4.9)

Denoting P (T, µ) the yet unknown system pressure in terms of T and µ, and observing that

Ξ = exp{βP (T, µ)L}, it follows for any p > P (T, µ) that:

I =
1

L0

∫ ∞
0

dLe−β(p−P (T,µ))L =
1

βL0[p− P (T, µ)]
. (4.10)

On the other hand, by the same steps leading to Eq. (4.4) the integral in Eq. (4.10) can also

be more cumbersomely written as:

I =
∞∑

Nc=1

1

L0Λ(βp)2

∞∑
n=1

w2
nλ

Nc−1
n =

1

L0Λ(βp)2

∞∑
n=1

w2
n

1− λn
, (4.11)

{λn} being the set of (real) T eigenvalues listed in decreasing order (notice that all λn are in

modulus less than 1 for p > P (T, µ), since otherwise one of the series in Eq. (4.11) would not

converge, contrary to what implied by Eq. (4.10)). Comparing the last two equations, we

see that when p attains the value P (T, µ) the largest eigenvalue λmax = λ1(T, p, µ) becomes

equal to 1, meaning that P = P (T, µ) is implicitly defined by Eq. (4.6).

Clearly, the just stated condition would make the thermal properties of the model depend

on the exact value of X = h/
√

2πmεσ2, a quantity which sets the value of Λ
√
kBT/ε relative

to σ (see Eq. (A.4)). We suspect that this annoying feature of model (4.1) is the price to pay

for clusters to be considered as point-like particles. In the following, we take the pragmatic

view to choose the X value which produces the best possible agreement with existing MC

simulation data for the 1D GEM-4 system.

For α = 4, we computed µ and ρ = (∂P/∂µ)T as a function of P in the interval 0.75-

0.9, corresponding to the 1-2 transition region, for a number of temperatures between 0.002
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and 0.025. As a preliminary check, we verified that the ρ values are relatively insensitive

to a: with either a = 0.5 or a = 1 the results were practically the same, suggesting that

the distance between NN clusters never falls below 1 in the configurations with the highest

statistical weight. This result is very important, since it is then immaterial which potential,

either the original u or ua (for a > 0.5 and NN interactions only), is used for describing the

properties of the GEM-4 [46].

Our results are plotted in Fig. 9 (top panel), for X = 0.01 and a = 1. Upon comparing

the present results with MC density data for T = 0.02 [32], we see that the improvement of

the continuum model (4.1) over the lattice model of Sect. III is dramatic (a few ρ curves for

the lattice model were reproduced for convenience in the lower panel of Fig. 9). In fact, there

is a slight dependence of the location of the 1-2 transition on X (all density curves are rigidly

shifted to the right as X is reduced), but this effect is smaller for the lower temperatures

and actually negligible near T = 0. However, the crucial point is that, compared to the

lattice model of Sect. III, the scenario set by the continuum model is qualitatively different:

the 1-2 transition, which for low T is discontinuous in the lattice model, is now turned into

a smooth crossover. This conclusion is consistent with heuristic arguments forbidding any

sort of spontaneous symmetry breaking in one dimension [47, 48]. One might observe that

this outcome does not come as a surprise, and could have been anticipated from the very

beginning, since endowing the interaction potential with a hard core restores the validity

of van Hove’s theorem. Although correct, however, in no way this reasoning diminishes

the virtue of a model whose surprising effectiveness, along with the insensitivity of density

curves to a, make us believe that it is indeed capturing the very essence of the 1D GEM-4

system.

The noteworthy efficacy of the continuum model would cast a shadow on the relevance

of the lattice model for the behavior of 1D GEM-4. In other words, the phase transitions

discussed in Sect. II and III now appear to be an artifice of assuming a strict crystal struc-

ture for an originally continuous system of low dimensionality. Nor the simulation results

of Ref. [32] can be taken in support of first-order transition behavior. In fact, the den-

sity hysteresis loops observed in the simulations appeared to progressively narrow as the

MC trajectories became longer and longer, thus rendering those numerical results actually

inconclusive.

13



V. CONCLUSIONS

Particles interacting through pairwise repulsions bounded at the origin are known to

exhibit unconventional thermodynamic and structural behavior, such as reentrant melting,

waterlike anomalies, and cluster crystals. Which features are observed in a given case

crucially depends on the range of the interaction and the space dimensionality.

In three dimensions, the generalized exponential model of index α (GEM-α) shows reen-

trant melting for α = 2, whereas it gives rise to a sequence of stable cluster-crystal phases

for any α > 2. In this paper, we have studied the phase behavior of the one-dimensional

(1D) GEM-α systems by theoretical means, focusing on the α = 4 case where numerical-

simulation results are available [32]. MC simulations gave contrasting indications: on the one

hand, the low-temperature hysteretic behavior of the number density points to the existence

of low-temperature first-order transitions between cluster phases; on the other hand, the

systematic narrowing of hysteresis loops, as simulations were made longer and longer, sug-

gests that the apparently singular behavior of the 1D GEM-4 system is actually a finite-size,

finite-time artifact.

To clarify the situation, we introduced both a lattice and a continuum cluster model

aimed at specifically representing the low-temperature behavior of the original GEM system.

While the lattice system exhibited a sequence of low-temperature first-order transitions

between cluster phases of increasing occupancy, as evidenced by the discontinuous jumps

of the number density as a function of pressure, the more accurate model defined on the

continuum only showed a series of smooth crossovers between cluster “phases” devoid of

separate individuality. When comparing the results for the continuum cluster model with

MC simulation data for α = 4 we found a rather good agreement, thus indicating that strict

phase boundaries are likely absent in the 1D GEM-4 system, and even more so in the 1D

GEM-α with α > 4.
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Appendix A: Calculation of Y(T, P, µ,Nc)

The kinetic part of Y is immediately calculated after noting that

1

h

∫ ∞
−∞

dpi exp

{
− βp

2
i

2mi

}
=

√
ni

Λ
, (A.1)

where Λ = h/
√

2πmkBT is the thermal wavelength of an individual particle. The partition

function then becomes:

Y(T, P, µ,Nc) =
∑

n1,...,nNc

eβµ
∑

i ni
1

L0

∫ ∞
0

dLe−βPL
1

Nc!hNc

∫
LNc

dNcp dNcx e−βH

=
∑

n1,...,nNc

eβµ
∑

i nie−(βε/2)
∑

i ni(ni−1)e(1/2)
∑

i lnni

× 1

L0

∫ ∞
0

dLe−βPL
1

Nc!ΛNc

∫
LNc

dx1 · · · dxNc e
−β

∑
i ua(xi+1−xi)nini+1 ,(A.2)

where L0 is an arbitrary length.

In order to compute the integrals in Eq. (A.2), we shall proceed à la Takahashi [25], writ-

ing the inner integral as a chain of convolutions whose Laplace transform is easily computed

(that is why working at fixed P is more convenient). The result is (cf. appendix A of

Ref. [42]):

1

L0

∫ ∞
0

dLe−βPL
1

Nc!ΛNc

∫
LNc

dx1 · · · dxNc e
−β

∑
i ua(xi+1−xi)nini+1

=
1

L0ΛNc

∫ ∞
0

dLe−βPL
∫
x1<...<xNc

dx1 · · · dxNc e
−β

∑
i ua(xi+1−xi)nini+1

=
1

L0Λ(βP )2

Nc−1∏
i=1

∫ ∞
0

ds

Λ
e−βPse−βua(s)nini+1 . (A.3)

Notice that Eq. (A.3) is only valid under the assumption of open boundary conditions. Upon

defining the transfer matrix T as the following symmetric matrix,

Tnn′ = eβµ(n+n
′)/2e−βε(n

2+n′2−n−n′)/4e(1/4)(lnn+lnn′)

∫ ∞
a

ds

Λ
e−βPse−βu(s)nn

′
, (A.4)

Eq. (A.2) is eventually rewritten as:

Y =
1

L0Λ(βP )2

∑
n1,...,nNc

eβµn1/2e−βεn1(n1−1)/4e(1/4) lnn1Tn1
n2
Tn2
n3
· · ·TnNc−1

nNc

× eβµnNc/2e−βεnNc (nNc−1)/4e(1/4) lnnNc =
1

L0Λ(βP )2
vTTNc−1v , (A.5)
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where v is the Nc-dimensional column vector with components

vi = eβµni/2e−βεni(ni−1)/4e(1/4) lnni . (A.6)

Equation (A.5) is an exact result, which involves Nc in a complicate manner. However, in

the Nc → ∞ limit Eq. (A.5) is radically simplified, as we are going to show soon (observe

that, when Nc →∞ also N =
∑Nc

i=1 ni →∞).

Let R be the orthogonal matrix having the T eigenvectors for columns. Then

vTTNc−1v = wTT′Nc−1w with w = R−1v and T′ = R−1TR . (A.7)

Called λmax the maximum eigenvalue of T, in the thermodynamic limit the expression of Y

simplifies to

Y =
w2

1

L0Λ(βP )2
λNc−1
max , (A.8)

which is the same as Eq. (4.4).
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FIG. 1. (Color online). 1D GEM-4, mean-field results for six temperatures, T = 0, 0.01, . . . , 0.05,

marked as black, blue, cyan, green, magenta, and red lines, respectively. We here show results

deriving from the optimization of n only (top: best n and F/L values; bottom: lattice spacing).

Each inset shows a magnification of the d interval from 1.3 to 1.7 (top: n; bottom: lattice spacing).
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FIG. 2. (Color online). 1D GEM-4, mean-field results for the same temperatures considered in

Fig. 1. We here plot the density ρ (top) and the chemical potential µ (bottom) as a function of

the pressure P , as resulting from the optimization of both n and d (only the first three transitions

are shown). In each inset, we show a magnification of the P interval from 2.3 to 2.7, which makes

us better appreciate the effect of heating the system: while the transition from the 2-cluster to

the 3-cluster phase is still first-order for T = 0.03, it has by now become a sharp (but smooth)

crossover for T = 0.04.
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FIG. 3. 1D GEM-4, transfer-matrix results for various temperatures (T = 0, 0.01, . . . , 0.05, same

colors as in Figs. 1 and 2). In the top panel, the average NN distance, the correlation length,

and the connected NN correlation are plotted as a function of pressure. In the bottom panel, the

average cluster size 〈n1〉, the average squared occupancy, and the density are shown.
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FIG. 4. 1D GEM-4, transfer-matrix results for various temperatures (T =

0.01, 0.02, 0.025, 0.026, . . . , 0.034, 0.035, 0.04, 0.05; for the sake of clarity, the line colors are

alternatively black and blue, except for T = 0.028 – red curves – where the density shows two

distinct jumps at two nearby pressures): average cluster size (top panel) and number density

(bottom panel) near the transition from the 1-cluster to the 2-cluster phase. In the inset, we show

a magnification of the density for T = 0.028, which clearly signals the existence of two distinct

steps (the raw data are the dots, joined by straight-line segments to help the eye).
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FIG. 5. 1D GEM-4, transfer-matrix results for various temperatures (the same as in Fig. 4):

correlation length ξ near the transition from the 1-cluster to the 2-cluster phase.
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FIG. 6. 1D GEM-4 phase diagram on the P -T plane: Exact transfer-matrix results (open blue

circles and squares) vs. mean-field results (black dots). The exact Widom line is also shown (dotted

red line).
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FIG. 7. 1D GEM-4 phase diagram on the ρ-T plane: Exact transfer-matrix results (open blue

circles and squares) vs. mean-field results (black dots).
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FIG. 8. 1D GEM-∞ (PSM), transfer-matrix results for various temperatures (T = 0, 0.01, . . . , 0.05,

same colors as in Figs. 1, 2, and 3): average cluster size 〈n1〉 (which coincides with the density)

and average squared size 〈n21〉. In the α→∞ limit, the discontinuous jumps of the density at the

lowest temperatures have disappeared, leaving a sharp but continuous crossover at all non-zero

temperatures.
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FIG. 9. 1D GEM-4, comparison between µ and ρ results for the continuous model (Section IV) and

for the lattice model (Section III) in the 1-2 transition region (for X ≡ h/
√

2πmεσ2 = 0.01 and

a = 1). Top: continuous model (T = 0.002, 0.003, 0.004, 0.005, black; T = 0.01, blue; T = 0.015,

cyan; T = 0.02, green; T = 0.025, magenta; T = 0.03, red). Observe that even for such a low

temperature as T = 0.002 the density varies smoothly across the “transition”. In the same panel,

the black dots are T = 0.02 density data from Ref. [32]. Bottom: lattice model (T = 0.01, blue;

T = 0.02, green; T = 0.025, magenta; T = 0.03, red).
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