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Abstract. In this paper, we prove that, for any cluster of extra-
logical assumptions, there exists exactly one axiomatic (i.e., mini-
mal) extension of classical propositional logic that admits cut elim-
ination. As a corollary, it follows that classically equivalent formu-
las share the same axiomatization. The moral is that cut elimi-
nation “flattens” the specific information encoded by the logical
structure of proper axioms.
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1. Introduction

As is well known, classical propositional logic (henceforth LK0, in a
Gentzen-style sequent formulation [9, 18]) is a Post-complete system:
whenever a nontautological formula α is added to LK0 as a new axiom
schema, the resulting system LKα0 is inconsistent. This fundamental
property of LK0 can be paraphrased by saying that the only nontrivial
axiomatic extensions of LK0 are the ones obtained by adding proper (or
extra-logical) axioms, i.e. formulas that are not closed under uniform
substitution (US). In short, structurality and consistency are mutually
excluding properties in axiomatic extensions of LK0.

The so-called logic of pivotal assumptions is the simplest element of
the set of supraclassical logic, i.e. extensions of LK0 via proper axioms:
these logics were introduced by Makinson to ‘bridge the gap’ between
classical and nonmonotonic reasoning through a ‘logical continuous’
[13, 14]. In extending classical consequence relation, supraclassical log-
ics aim at formalizing reasoning with background assumptions, namely
assumptions that are specific to the situation under consideration. In
particular, the distinctive feature of the logic of pivotal assumptions
is that any finite set of formulas can be taken as a set of background
assumptions. Thus, α is a consequence of Γ under pivotal assumptions
in Ψ if Γ∪Ψ ` α. Intuitively, pivotal assumptions in Ψ may be under-
stood as encoding pieces of nontautological information which support
more complex conclusions, underivable in LK0. Makinson exclusively
focuses on a semantic definition of pivotal-assumption consequence: a
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formula α is a consequence of Γ under the assumptions α1, . . . , αn if,
and only if, there is no classical valuation that makes all the formulas
in Γ ∪ {α1} ∪ . . . ∪ {αn} true and α false (see [2] for the character-
izations of pivotal consequence relations for the classical, three and
four-valued logics). We instead define α to be a consequence of Γ
under the assumptions α1, . . . , αn if, and only if, the sequent Γ ` α
is derivable in the system LKα1,...,αn

0 , which is LK0 extended by tak-
ing α1, . . . , αn as new proper axioms. Clearly, the two definitions are
equivalent: Γ, α1, . . . , αn ` α in LK0 if, and only if, Γ ` α in LKα1,...,αn

0 .
On the one hand, it is easy to verify that if Γ, α1, . . . , αn ` α, then
Γ ` α by n cuts on ` α1, . . . ,` αn; on the other hand, if Γ ` α, then
Γ, α1, . . . , αn ` α, by n weakenings.

The problem of axiomatic extensions of sequent calculus has a long
tradition in proof theory, inasmuch as proper axioms may jeopardize
the cut elimination theorem (see [10]). Consider, for instance, the
system LKp→q0 , which augments LK0 with the axiom p → q. Whereas
the sequent p ` q is provable in LKp→q0 by resorting to the cut rule

ax.
p ` p ax.

q ` q
→`

p, p→ q ` q
p.ax.

` p→ q
cut,

p ` q
this clearly does not admit a cut-free proof. A method to recover cut
elimination has been proposed by Negri and von Plato in [15, 16]. It
essentially consists in turning proper axioms into inference rules, which
preserve cut elimination once added to a suitable Gentzen system of
classical logic. The authors’ focus is mainly on the proof analysis of first
order axiomatic theories, so their approach is wider than the one here
proposed, which is limited to the propositional fragment. However, in
[15, 16], the new rules stemming from proper axioms do not necessarily
preserve the subformula property and, consequently, it is not clear (or
at least so it seems to us) whether their formulations ‘hide’ implicit
applications of the cut rule.

In this paper, we consider an alternative strategy, which involves
the possibility to decompose any arbitrary proper axiom into a set of
sequents made of atomic formulas [1]. Once such a decomposition has
been closed under the cut rule, both cut elimination and subformula
property can be easily rescued. More generally, this is a corollary of
the so-called strong cut elimination theorem firstly remarked by Girard
in [11].

As an original contribution to the proof-theoretical analysis of the
logic of pivotal assumption, we prove that, for any cluster of extra-
logical assumptions, there exists exactly one axiomatic (i.e., minimal)
extension of LK0 that admits cut elimination. From this, it follows as
a corollary that classically equivalent formulas share the same axiom-
atization. This is an interesting result since it can be viewed as saying
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that cut elimination “flattens” the specific information encoded by the
logical structure of proper axioms.

The paper is organized as follows. In §2, we show how to extend
LK0 with axioms corresponding to pivotal assumptions. Then, we de-
scribe the procedure for decomposing any pivotal assumption into a
set of classically underivable sequents displaying only atomic formu-
las (Theorem 2.1) [1]. In passing, we provide a variant of the proof
of Post-completeness for classical propositional logic based on such a
decomposition (Theorem 2.3). Then, in §3, we state the cut elimina-
tion theorem for the logic of pivotal assumptions (Corollary 3.4) from
which the subformula property follows (Corollary 3.6); we contextu-
ally provide a method for deciding whether a given extension of LK0

is consistent (Theorem 3.7). In §4, we show that, for any cluster of
proper axioms, there is exactly one axiomatic extension that preserves
cut elimination (Therem 4.4). This fact in turn implies that classically
equivalent formulas share the same axiomatization (Corollary 4.5). Fi-
nally, §5 presents our conclusions.

2. Proper axioms decomposition and Post-completeness

2.1. Sequent calculus for classical propositional logic. The language of
classical propositional logic includes, as basic symbols, countably many
propositional variables p, q . . . — the set A of atomic sentences — as
well as symbols for connectives: ¬,∧,∨,→. The set of formulas F is
defined standardly by the following grammar:

F := A | ¬F | F ∧ F | F ∨ F | F → F .

The expression α ↔ β is to be understood as a shorthand for (α →
β) ∧ (β → α). Sequents are expressions of the form Γ ` ∆, where Γ
and ∆ are sets of formulas.1 We write Γ,∆ and Γ, α for meaning Γ∪∆
and Γ ∪ {α}, respectively. The calculus LK0 is reported in Table 2.1.

Notation. Given a finite set of sequents S = {Γ1 ` ∆1 ; Γ2 `
∆2 ; . . . ; Γn ` ∆n} we denote with LKS

0 the system obtained from
LK0 by adding all the sequents in S as new axioms. In the case where
S = {` α1; . . . ;` αn}, we will simply write LKα1,...,αn

0 . Given two
formal systems S1 and S2 sharing a same language, we write S1 ≈ S2

(resp. S1 4 S2) for meaning that S1 and S2 prove the same formulas
(resp. all the formulas provable in S1 are also theorems of S2).

1We depart from the standard proof-theoretic approach in which sequents are
multisets or lists. While this simplification allows us to leave out the structural rules
of contraction and exchange, it does not impair the validity of our results since the
proof of each one of them can be easily adapted so as to fit with Gentzen’s standard
formulation.
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Axiom

ax.
α ` α

Cut

Γ ` α,∆ Γ′, α ` ∆′
cut

Γ,Γ′ ` ∆,∆′

Structural Rules

Γ ` ∆
weak. `

Γ, α ` ∆
Γ ` ∆ ` weak.

Γ ` α,∆

Logical Rules

Γ ` α,∆
¬ `

Γ,¬α ` ∆

Γ, α ` ∆
` ¬

Γ ` ¬α,∆

Γ, α, β ` ∆
∧ `

Γ, α ∧ β ` ∆

Γ ` α,∆ Γ′ ` β,∆′
` ∧

Γ,Γ′ ` α ∧ β,∆,∆′

Γ, α ` ∆ Γ′, β ` ∆′
∨ `

Γ,Γ′, α ∨ β ` ∆,∆′
Γ ` α, β,∆

` ∨
Γ ` α ∨ β,∆

Γ ` α,∆ Γ′, β ` ∆′
→`

Γ,Γ′, α→ β ` ∆,∆′
Γ, α ` β,∆

`→
Γ ` α→ β,∆

Table 1. The sequent calculus LK0.

2.2. Complementary sequents.

Definition 1 (complementary sequent, decomposition). A sequent Γ `
∆ is said to be complementary2 in the case where:

(1) it displays only atomic formulas,

(2) Γ ∩∆ = ∅.

2 The term ‘complementary’ is suggested by the fact that unprovable, atomic
sequents are exactly the axioms of complementary classical logic, that is the system
that proves all, and only, the nontheorems of LK0 [19, 20, 6]. Complementary
sequents are called normal clauses in [1] and regular in [16, p. 51].
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Given a formula α, we say that a set of complementary sequents S is
a decomposition for α if LKα0 ≈ LKS

0 .

Remark 1. Due to condition (2), complementary sequents are not prov-
able in LK0.

Theorem 2.1. Any formula α admits a decomposition Sα.

Proof. We need to show that, for any α, there is a Sα such that LKα0 ≈
LKSα

0 . The first part of the proof provides an algorithm for associating,
with any given formula α, a set of complementary sequents Sα. The
second shows that LKα0 ≈ LKSα

0 . The algorithm hinges on the fact that
any formula can be turned into an equivalent one in conjunctive normal
form. In particular, the procedure consists of the following four steps.

(1) Turn α into its conjunctive normal form cnf(α) = α1∧ . . .∧αn,
where each clause αi is a disjunction of literals.

(2) For each one of the clauses of cnf(α), build a new sequent by
removing any occurrence of the disjunction connective, i.e. for
all αi = l1 ∨ . . . ∨ lk the corresponding sequent is ` l1, . . . , lk.

(3) Shift all the negative literals on the left and remove the nega-
tion, i.e. any sequent of the form ` p1, . . . , pn,¬q1, . . . ,¬qm
becomes q1, . . . , qm ` p1, . . . , pn.

(4) Remove identity sequents, namely sequents of the form Γ, p `
∆, p.

Now, we need to prove that LKα0 ≈ LKSα
0 . This is an easy con-

sequence of the invertibility of left-conjunction, right-disjunction and
right-negation rules in LK0 [12].

• LK0 proves ` α∧β iff it proves both ` α and ` β. The leftwards
implication is trivial: simply apply the right-conjunction rule.
Below, it is proved that ` α ∧ β implies ` α. In a similar way,
we can derive ` β from the same assumption:

` α ∧ β

ax.
α ` α

weak `
α, β ` α

∧ `
α ∧ β ` α

cut.` α

• LK0 proves ` Γ, α ∨ β iff it proves ` Γ, α, β. The leftwards im-
plication is trivial: just apply the right-disjunction rule. Below,
it is proved that ` Γ, α ∨ β implies ` Γ, α, β:

` Γ, α ∨ β

ax.
α ` α ax.

β ` β
∨ `

α ∨ β ` α, β
cut.` Γ, α, β



6 M. PIAZZA AND G. PULCINI

• LK0 proves Γ ` ∆,¬p iff it proves Γ, p ` ∆. The leftwards im-
plication is trivial again: it suffices to apply the right-negation
rule. Below, it is proved the converse implication:

Γ ` ∆,¬p

ax.
p ` p

¬ `
p,¬p `

cut.
Γ, p ` ∆

�

Example 2.1. We show that, if

α = ((p0 ↔ p1)→ (p2 → p3)) ∧ (p1 → ¬(p0 ∧ p2)),

then Sα = {p2 ` p0, p1, p3 ; p0, p1, p2 ` p3 ; p0, p1, p2 `}. We follow
step by step the procedure indicate above:

(1) Turn α into its conjunctive normal form:

cnf(α) = (p0 ∨ p1 ∨ ¬p2 ∨ p3) ∧ (p1 ∨ ¬p1 ∨ ¬p2 ∨ p3)∧
∧(p0 ∨ ¬p0 ∨ ¬p2 ∨ p3) ∧ (¬p0 ∨ ¬p1 ∨ ¬p2 ∨ p3)∧
∧(¬p0 ∨ ¬p1 ∨ ¬p2).

(2) Split cnf(α) into the following set of sequents:{
` p0, p1,¬p2, p3
` p1,¬p1,¬p2, p3
` p0,¬p0,¬p2, p3
` ¬p0,¬p1,¬p2, p3
` ¬p0,¬p1,¬p2

}
.

(3) Shift all negative literals on the left so as to obtain the new set:{
p2 ` p0, p1, p3
p1, p2 ` p1, p3
p0, p2 ` p0, p3
p0, p1, p2 ` p3
p0, p1, p2 `

}
.

(4) Shorten the set by removing identity sequents:{
p2 ` p0, p1, p3
p0, p1, p2 ` p3
p0, p1, p2 `

}
.
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Remark 2. It is easy to check that Sα is not necessarily the unique
possible decomposition for α since any decomposition may be arbi-
trarily expanded by weakening applications. If Γ ` ∆ ∈ Sα, then
{Γ,Γ′ ` ∆,∆′} ∪ Sα is a decomposition for α as well, provided that
Γ,Γ′ ` ∆,∆′ is complementary.

2.3. Post-completeness: just another look. Recall that a (uniform) sub-
stitution is a function σ : F 7→ F , which commutes w.r.t. connectives,
i.e. σ(¬α) = ¬σ(α) and σ(α◦β) = σ(α)◦σ(β), for ◦ ∈ {∧,∨,→}. The
result of applying a substitution σ to a set Γ is the set {σ(α) | α ∈ Γ}.
A logical system S is said to be closed under US when, for any substi-
tution σ, if Γ ` ∆ is provable in S, so is σ(Γ) ` σ(∆).

Our proofs of Lemma 2.2 and Theorem 2.3 below are inspired by the
proof of Proposition 1.4.4 given in [5, p. 19].

Lemma 2.2. A formula α is a tautology if, and only if, Sα = ∅.

Proof. To prove the left-to-right implication, assume that α is a tau-
tology and apply the decomposition algorithm of Theorem 2.1. At step
(1), cnf(α) = α1 ∧ · · · ∧ αn is such that for all αi there is an atom pi
such that pi ∨ ¬pi is a subformula αi. At steps (2) and (3) we have n
sequents of the form Γ1 ` ∆1 , . . . , Γn ` ∆n such that for every i,
Γi ∩∆i 6= ∅. At step (4), they are all removed and Sα = ∅.

To prove the right-to-left implication, assume by reductio that α is
not a tautology. By applying step (1), cnf(α) is such that there is some
αi such that for no atom pi, pi ∨ ¬pi is a subformula of αi. Then, by
steps (2) and (3), we get n sequents Γ1 ` ∆1 , . . . , Γn ` ∆n and at
least one of them is not an identity sequent. Step (4) removes at most
n− 1 sequents, thus Sα is not empty, against our hypothesis. �

Theorem 2.3 (Post-completeness). If a nontautological formula α is
added to LK0 as a new axiom schema — i.e., it is considered as closed
under US — then LKα0 is inconsistent.

Proof. Consider the system LKSα
0 . If α is nontautological, then, by

Lemma 2.2, there is a sequent Γ ` ∆ ∈ Sα, such that Γ ∩ ∆ = ∅.
Moreover, notice that, if a formula α is taken as closed under US, then
each sequent in its decomposition Sα has to be taken, in turn, as closed
under US.

Clearly Γ ` ∆ is derivable in LKSα
0 and, given the closure under

US, so is σ(Γ) ` σ(∆), for any substitution σ. Let σ1 be such that
σ1(p) = ¬p, for all p ∈ Γ, and σ1(q) = p, for all q ∈ ∆. Therefore
σ1(Γ) = ¬p and σ1(∆) = p. Hence, ¬p ` p which is equivalent to
` p. Then, consider another substitution σ2 such that σ2(p) = p, for
all p ∈ Γ, and σ2(q) = ¬p, for all q ∈ ∆. Therefore, σ2(Γ) = p and
σ2(∆) = ¬p. Hence, p ` ¬p that is equivalent to p `. Now, by cut on
` p and p `, we obtain the empty sequent `. We observe that LKSα

0 is
inconsistent and so is, by Theorem 2.1, LKα0 . �
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Remark 3. All axiomatic extensions of LK0 preserve decidability, as can
be semantically ascertained in a simple way: in order to decide whether
a certain formula β is provable in LKα0 , one has to compute the truth
table of β and ignore all the Boolean valuations v such that v(α) = 0.
If the remaining valuations verify β, then it is a theorem of LKα0 .

3. Cut elimination and consistency

In this section, we observe that any extension of LK0 (which is not,
in general, cut-free) admits an equivalent formulation that satisfies cut
elimination. The new system is designed to use Theorem 2.1, which
asserts that any formula can be equivalently thought of as a set of
complementary sequents, and adding the following property of closure
under cut.

Definition 2 (closure under cut). Given a set of complementary sequents
S its closure under cut is the smallest supraset S ∗ of S — i.e.,
S ⊆ S ∗ — such that, if Γ ` ∆, p and Γ′, p ` ∆′ are both in S ∗ and
(Γ ∪ Γ′) ∩ (∆ ∪∆′) = ∅, then Γ,Γ′ ` ∆,∆′ ∈ S ∗.

Example 3.1. If S = {p ` q ; q ` p ; q ` r}, then it easy to check that
S ∗ = {p ` q ; q ` p ; q ` r ; p ` r}.

Theorem 3.1. For any finite set of sequents S , S ∗ is always finite.

Proof. This follows by observing that, on the one hand, the cut of two
complementary sequents always produces a complementary sequent; on
the other, cut applications do not introduce new atoms. �

Theorem 3.2. For any set of complementary sequents S , LKS
0 ≈ LKS ∗

0 .

Proof. LKS
0 4 LKS ∗

0 . Immediately by the fact that S ⊆ S ∗.
LKS ∗

0 4 LKS
0 . Given two sequents Γ ` ∆, p and Γ′, p ` ∆′, the

sequent Γ,Γ′ ` ∆,∆′ is clearly derivable by a cut application. �

The possibility to restate Gentzen’s Hauptsatz in a stronger way was
firstly noticed by Girard in [11]. The basic idea is the following. The
cut elimination algorithm works by ‘pushing’ cut applications upwards
along proofs until both premises of each cut application are leaves of
the proof tree, i.e., the cut formulas are directly introduced by logical
axioms. Logical axioms are closed under cut, and hence the cut rule
is dispensable. Once the calculus is enriched with a cluster of comple-
mentary proper axioms, cut applications can be pushed upwards in the
same way; and, clearly, it suffices to require their closure under cut in
order to eliminate cut applications. This claim is imported from [1].

Theorem 3.3 (Strong cut elimination). If a sequent Γ ` ∆ is derived
from a set of complementary sequents S , then there exists a proof of
the same sequent from the sequents in S in which every cut is made
on a formula which occurs in some sequent of S .
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Now the Hauptsatz follows as a nice corollary. Let LK0− be the LK0

sequent system without the cut rule.

Corollary 3.4 (Hauptsatz). For any set of complementary sequents S ,
if Γ ` ∆ is provable in LKS ∗

0 , then it is provable in LKS ∗

0− as well.

Corollary 3.5. For any formula α, LKα0 ≈ LK
S ∗α
0− .

Proof. Straightforward, by combining Theorem 3.2 and Corollary 3.4.
�

Corollary 3.6 (subformula property). All formulas occurring in an cut-
free derivation are subformulas of the formulas from the endsequent.

Proof. As usual, by induction on the length of analytic, i.e. cut-free,
proofs. �

Clearly, if you want your extension LKα1,...,αn
0 to be at the same time

consistent and proper, each one of the new axioms has to be a con-
tingent formula, i.e., neither a tautology nor a contradiction. This
necessary condition, however, does not exclude the possibility to get a
contradiction once α1, . . . , αn are put together. To exclude this possi-
bility, one has to compute the truth table of α1 ∧ . . .∧αn and to check
whether it is a contradiction. This is a semantical method for deciding
the consistency of supraclassical systems. The following theorem es-
tablishes an alternative procedure, fully syntactical, for answering the
same question.

Theorem 3.7. A supraclassical system LKα1,...,αn
0 is consistent if, and

only if, the empty sequent does not belong to S ∗
α1∧...∧αn .

Proof. We appeal to the fact that LKα1,...,αn
0 ≈ LK

S ∗α1∧...∧αn
0− , by Corollary

3.5. (⇒) Clearly, if the empty sequent belonged to S ∗
α1∧...∧αn , then it

would be provable in LKα1∧...∧αn
0 and so this latter system would be

inconsistent. (⇐) If LKα1,...,αn
0 proved the empty sequent, then it would

be also provable in LK
S ∗α1∧...∧αn
0− . Thus, by Corollary 3.6, the empty

sequent would be a proper axiom from S ∗
α1∧...∧αn . �

Remark 4 (infinite bounded axiomatizations). The results achieved
hitherto can be easily generalised to extensions obtained by adding an
infinite number of proper axioms, provided that these involve a finite
number of atoms. Since one obtains a limited number of complemen-
tary sequents by arranging a finite set of atoms, infinite axiomatizations
with a finite number of atoms admit a finite treatment allowing for cut
elimination.

4. Axiomatic decompositions and uniqueness

In this section we prove that, for any cluster of proper axioms α1, . . . , αn,
there exists exactly one axiomatic (in the sense of minimal) extension
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LKS
0 which is, at the same time, cut-free and equivalent to LKα0 (Defi-

nition 3). To prove this, the decomposition algorithm designed in the
proof of Theorem 2.1 and further refined by Definition 2 is not enough
(see Remark 2). If we want decompositions to be minimal, and so
unique (Theorem 4.4), we need to go through Definition 4.

Definition 3 (axiomatic sets of sequents). A set of complementary se-
quents T is said to be axiomatic in the case where:

(i) LKT
0 ≈ LKT

0− (cut elimination),
(ii) no sequent in T can be derived from the others in LK0− (min-

imality).

Definition 4 (reduct under weakening). Given a set of complementary
sequents T , its reduct under weakening is the largest subset T ? of
T such that, if both Γ ` ∆ and Γ,Γ′ ` ∆,∆′ are in T , then Γ,Γ′ `
∆,∆′ /∈ T ?.

Example 4.1. We take the set of complementary sequents Sα = {p2 `
p0, p1, p3 ; p0, p1, p2 ` p3 ; p0, p1, p2 `} from Example 2.1. Its reduct
under weakening S ?

α is obtained from Sα by removing the sequents
that are derivable by weakening from the others, namely p0, p1, p2 ` p3.
Thus, S ?

α = {p2 ` p0, p1, p3 ; p0, p1, p2 `}.

Proposition 4.1. If α is a contradiction, then S ∗?
α = { ` }.

Proof. Straightforwardly, by Theorem 3.7 and Definition 4. �

Lemma 4.2. Let S be an axiomatic set of sequents. If Γ ` ∆ is a
complementary sequent derivable in LKS

0 , then there is a proof of it that
is simply a single-branching tree built up from a certain complementary
sequent in S by possible successive applications of the weakening rules.

Proof. If Γ ` ∆ is provable in LKS
0 and S is axiomatic, then it is

provable by a cut-free proof π. Being Γ ` ∆ complementary and π
cut-free, this latter must be a chain of sequents built up from one of
the proper axioms in S by, possible, successive applications of the
weakening rules. �

Theorem 4.3. For any α, S ∗?
α is an axiomatic decomposition for α.

Proof. We firstly prove that S ∗?
α is a decomposition for α by proving

that LK
S ∗?α
0 ≈ LKS ∗α . Clearly, S ∗?

α ⊆ S ∗
α and so LK

S ∗?α
0 4 LKS ∗α .

Conversely, all the sequents in S ∗
α\S ∗?

α are provable from those in

S ∗?
α by weakening applications, hence LK

S ∗?α
0 < LK

S ∗α
0 .

Let us now prove that S ∗?
α is axiomatic. Clearly, the very fact of

switching from S ∗
α to S ∗?

α does not hamper the cut elimination al-
gorithm, thus S ∗?

α meets condition (i) in Definition 3. Concerning
minimality, suppose there were a sequent Γ ` ∆ in S ∗?

α derivable from
the others by a cut-free proof π. By Lemma 4.2, Γ ` ∆ would have
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been obtained by weakening applications from a certain sequent in S ∗?
α

and, thus, S ∗?
α would not be a reduct under weakening applications.

Then, we conclude that S ∗?
α meets also condition (ii) in Definition

3. �

Theorem 4.4. If both S and T are axiomatic and LKS
0 ≈ LKT

0 , then
S = T .

Proof. Suppose, by reductio, that Γ ` ∆ ∈ S \T . Since LKS
0 ≈ LKT

0 ,
Γ ` ∆ would be provable in LKT

0 as well. By Lemma 4.2, there is an
LKT

0 proof π of Γ ` ∆ shaped as follows:

seq. from T
Γ′ ` ∆′ ` weak
Γ′ ` ∆

weak `
Γ ` ∆

with Γ′ ⊆ Γ and ∆′ ⊆ ∆ (but Γ′ 6= Γ or ∆′ 6= ∆). Now, Γ′ ` ∆′ /∈ S
and, thus, for similar reasons, Γ′ ` ∆′ would be provable in LKS

0 by a
proof π′ shaped in the same way, i.e.:

seq. from S
Γ′′ ` ∆′′ ` weak
Γ′′ ` ∆′

weak `
Γ′ ` ∆′

with, this time, Γ′′ ⊆ Γ′ and ∆′′ ⊆ ∆′ (but Γ′′ 6= Γ′ or ∆′′ 6= ∆′).
Finally, being Γ′′ ⊆ Γ and ∆′′ ⊆ ∆ (but, again, Γ′′ 6= Γ or ∆′′ 6= ∆),
Γ ` ∆ would be derivable from Γ′′ ` ∆′′ just by a series of weakening
applications. Hence, Γ ` ∆ cannot be in S against our assumption.

�

Corollary 4.5. If α and β are equivalent in LK0, then S ∗?
α = S ∗?

β .

Proof. By Theorem 4.3, S ∗?
α and S ∗?

β are both axiomatic and, clearly,

LKα0 ≈ LKβ0 . Then apply the previous theorem. �

5. Concluding remarks and future work

We are confident that the methodology expounded and developed
in this paper is general enough to provide a proof-theoretic foundation
of other supraclassical logics, including the nonmonotonic ones. More
specifically, we plan to extend our approach to the logic of default as-
sumptions, which is a kind of nonmonotonic logic obtained from pivotal
assumption logic by shrinking the set of assumptions to those that are
maximally consistent with the premises ([14, p. 30]).

From the nonmonotonic vantage point, it would be also interesting
to combine the positive role of the information in the supraclassical
setting with the negative information encoded by control sets, which
specify an array of prohibitions preventing a given conclusion. Control



12 M. PIAZZA AND G. PULCINI

sets are well-behaved with respect to proof-theoretical properties, in
particular cut elimination [3, 8, 17]. More precisely, we want to inves-
tigate “controlled” calculi where control sets are injected into logical
proofs by proper axioms and analyse what happens in the decomposi-
tion process.

Finally, a semantical issue to consider is the possibility of extending
Carnielli’s Polynomial Ring Calculus to supraclassical logics [4].
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