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Abstract

Let (X,\mu ) be a measure space, and let L1, . . . , Ln be (possibly unbounded) self-
adjoint operators on L2(X,\mu ), which commute strongly pairwise, i.e., which
admit a joint spectral resolution E on \BbbR n. A joint functional calculus is then
defined via spectral integration: for every Borel function m : \BbbR n \rightarrow \BbbC ,

m(L) = m(L1, . . . , Ln) =
\int 

\BbbR n

m(\lambda ) dE(\lambda )

is a normal operator on L2(X,\mu ), which is bounded if and only if m --- called
the joint spectral multiplier associated to m(L) --- is (E-essentially) bounded.
However, the abstract theory of spectral integrals does not tackle the following
problem: to find conditions on the multiplier m ensuring the boundedness of
m(L) on Lp(X,\mu ) for some p \not = 2.

We are interested in this problem when the measure space is a connected Lie
group G with a right Haar measure, and L1, . . . , Ln are left-invariant differential
operators on G. In fact, the question has been studied quite extensively in the
case of a single operator, namely, a sublaplacian or a higher-order analogue.
On the other hand, for multiple operators, only specific classes of groups and
specific choices of operators have been considered in the literature.

Suppose that L1, . . . , Ln are formally self-adjoint, left-invariant differential
operators on a connected Lie group G, which commute pairwise (as operators
on smooth functions). Under the assumption that the algebra generated by
L1, . . . , Ln contains a weighted subcoercive operator --- a notion due to [ER98],
including positive elliptic operators, sublaplacians and Rockland operators --- we
prove that L1, . . . , Ln are (essentially) self-adjoint and strongly commuting on
L2(G). Moreover, we perform an abstract study of such a system of operators,
in connection with the algebraic structure and the representation theory of G,
similarly as what is done in the literature for the algebras of differential operators
associated with Gelfand pairs.

Under the additional assumption that G has polynomial volume growth,
weighted L1 estimates are obtained for the convolution kernel of the opera-
tor m(L) corresponding to a compactly supported multiplier m satisfying some
smoothness condition. The order of smoothness which we require on m is re-
lated to the degree of polynomial growth of G. Some techniques are presented,
which allow, for some specific groups and operators, to lower the smoothness
requirement on the multiplier.

In the case G is a homogeneous Lie group and L1, . . . , Ln are homogeneous
operators, a multiplier theorem of Mihlin-H\"ormander type is proved, extending
the result for a single operator of [Chr91] and [MM90]. Further, a product theory
is developed, by considering several homogeneous groups Gj , each of which with
its own system of operators; a non-conventional use of transference techniques
then yields a multiplier theorem of Marcinkiewicz type, not only on the direct
product of the Gj , but also on other (possibly non-homogeneous) groups, con-
taining homomorphic images of the Gj . Consequently, for certain non-nilpotent
groups of polynomial growth and for some distinguished sublaplacians, we are
able to improve the general result of [Ale94].





Contents

Introduction iii

List of commonly used notation xi

1 Differential operators on Lie groups 1
1.1 Lie groups and differential operators . . . . . . . . . . . . . . . . 1
1.2 Some classes of Lie groups . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Nilpotent and homogeneous groups, Rockland operators . . . . . 17
1.4 Weighted subcoercive operators . . . . . . . . . . . . . . . . . . . 23

2 Smoothness conditions 33
2.1 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 Besov spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Mihlin-H\"ormander conditions . . . . . . . . . . . . . . . . . . . . 61
2.5 Marcinkiewicz conditions . . . . . . . . . . . . . . . . . . . . . . 70

3 Commutative algebras of differential operators 75
3.1 Joint spectral resolution . . . . . . . . . . . . . . . . . . . . . . . 75
3.2 Kernel transform and Plancherel measure . . . . . . . . . . . . . 77
3.3 Spectrum and eigenfunctions . . . . . . . . . . . . . . . . . . . . 85
3.4 Direct products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.5 Change of generators . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.6 Homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.7 Gelfand pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 Weighted inequalities for kernels 111
4.1 Weighted estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.2 Schwartz functions . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.3 Improved weighted estimates . . . . . . . . . . . . . . . . . . . . 119
4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.5 An intrinsic perspective . . . . . . . . . . . . . . . . . . . . . . . 150

5 Multiplier theorems 153
5.1 Singular integral operators . . . . . . . . . . . . . . . . . . . . . . 153
5.2 Mihlin-H\"ormander multipliers . . . . . . . . . . . . . . . . . . . . 156
5.3 Marcinkiewicz multipliers . . . . . . . . . . . . . . . . . . . . . . 163
5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

i



Appendix 179
A.1 Banach \ast -algebras and C\ast -algebras . . . . . . . . . . . . . . . . . 179
A.2 Linear operators on Hilbert spaces . . . . . . . . . . . . . . . . . 182
A.3 Spectral integration . . . . . . . . . . . . . . . . . . . . . . . . . 184
A.4 The spectral theorem . . . . . . . . . . . . . . . . . . . . . . . . . 188

Bibliography 191

Index 202

ii



Introduction

Fourier and spectral multipliers

Fourier multipliers. One of the classical problems of harmonic analysis is
the study of operators of the form

Tm : f \mapsto \rightarrow \scrF  - 1(m\scrF f),

where \scrF is the Fourier transform on \BbbR n, and m : \BbbR n \rightarrow \BbbC is a suitable (measur-
able) function, which is called the Fourier multiplier associated to the operator
Tm. In fact, the Fourier transform intertwines the operator Tm with the operator
of multiplication by m.

Since the Fourier transform is (modulo a constant factor) an isometry of
L2(\BbbR n), boundedness of Tm on L2(\BbbR n) is equivalent to (essential) boundedness
of the multiplier m, and

\| Tm\| 2\rightarrow 2 = \| m\| \infty .

On the other hand, boundedness of Tm on Lp(\BbbR n) for p \not = 2 is much more
difficult to characterize.

Sufficient conditions for boundedness of Tm on Lp can be expressed in terms
of smoothness conditions on the multiplier m. For instance, given a family of
dilations

\delta t(x1, . . . , xn) = (t\lambda 1x1, . . . , t
\lambda nxn)

on \BbbR n (for some \lambda 1, . . . , \lambda n > 0), we say that m satisfies a Mihlin-H\"ormander
condition1 of order s \in \BbbR , adapted to the dilations \delta t, if

sup
t>0

\| (m \circ \delta t)\eta \| Hs(\BbbR n) <\infty , (*)

1Starting from the work of Marcinkiewicz [Mar39] about multipliers of Fourier series, Mihlin
[Mih56], [Mih57] obtained the sufficient condition

sup
\alpha \in \{ 0,1\} n

sup
x \not =0

| x| | \alpha | | \partial \alpha m(x)| < \infty (**)

for the operator Tm to be bounded on Lp for 1 < p < \infty (an account of the results of
Marcinkiewicz and Mihlin can be found in the appendix of [Mih65]). Subsequently, H\"ormander
[H\"or60] reduced to \lfloor n/2\rfloor + 1 the maximal order of derivatives of m to be controlled, and
replaced the supremum with an L2 norm, thus obtaining substantially the same condition
as (*) in the case of isotropic dilations \delta t(x) = tx. The non-isotropic case was eventually
considered by Kr\'ee [Kr\'e66] and Fabes and Rivi\`ere [FR66]. An extensive bibliography about
Fourier multipliers in the 1960s may be found in \S 2.2.4 of [Tri78a] and in Chapter IV of
[Ste70a].
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where \eta is a non-negative smooth cut-off function supported on an annulus of
\BbbR n centered at the origin, and

\| f\| 2Hs(\BbbR n) =
\int 

\BbbR n

| \scrF f(\xi )| 2 (1 + | \xi | )2s d\xi 

is the L2 Sobolev norm of fractional order s. Correspondingly, we have the
Mihlin-H\"ormander multiplier theorem:

Theorem A. If m satisfies a Mihlin-H\"ormander condition of order

s >
n

2
,

adapted to some family of dilations on \BbbR n, then Tm is of weak type (1, 1) and
bounded on Lp(\BbbR n) for 1 < p <\infty .

A multi-variate analogue of the previous condition is the following: we say
that m satisfies a Marcinkiewicz condition2 of order \vec{}s = (s1, . . . , sn) \in \BbbR n if

sup
t1,...,tn>0

\| m\vec{}t \eta \otimes \cdot \cdot \cdot \otimes \eta \| S\vec{}sH(\BbbR n) <\infty , (\dagger )

where
m\vec{}t (x1, . . . , xn) = m(t1x1, . . . , tnxn),

\eta is a smooth cut-off function as before, but on \BbbR 1, and

\| f\| 2S\vec{}sH(\BbbR n) =
\int 

\BbbR n

| \scrF f(\xi )| 2 (1 + | \xi 1| )2s1 \cdot \cdot \cdot (1 + | \xi n| )2sn d\xi 

is the multi-parameter L2 Sobolev norm of order \vec{}s. Then we have

Theorem B. If m satisfies a Marcinkiewicz condition of order \vec{}s, with

s1 >
1
2
, . . . , sn >

1
2
,

then Tm is bounded on Lp(\BbbR n) for 1 < p <\infty .

The first result is proved via the Calder\'on-Zygmund theory of singular in-
tegral operators, while the second exploits also Littlewood-Paley theory. Their

2The original result of Marcinkiewicz [Mar39] was about Fourier series. The expression
``Marcinkiewicz multiplier theorem"" refers commonly to a transposition of Marcinkiewicz's
result into the non-periodic setting, which is stated in \S XI.11.31 of [DS63] (see also Theorem
IV.6' of [Ste70a], or Theorem 5.2.4 of [Gra08]), and involves L1 norms of mixed partial deriva-
tives of the multiplier m. One feature of this condition on m is its invariance by independent
dilations of the components of \BbbR n; this feature disappears in Mihlin's pointwise condition
(**), but is recovered, e.g., by Lizorkin [Liz63] with the condition

sup
\alpha \in \{ 0,1\} n

sup
x1,...,xn \not =0

| x\alpha 1
1 \cdot \cdot \cdot x\alpha n

n \partial \alpha m(x)| < \infty . (\dagger \dagger )

Condition (\dagger ), involving a multi-parameter L2 Sobolev norm, is stated in [CS95] as the hy-
pothesis of a ``multiparameter version of the H\"ormander-Marcinkiewicz multiplier theorem"".
Subsequently, conditions such as (\dagger ) and (\dagger \dagger ) have been referred to as ``Marcinkiewicz (-type)
conditions"" in the context of joint spectral multipliers for left-invariant differential operators
on Heisenberg-type groups (see [MRS95], [MRS96], [Fra97], [Ven00], [Fra01a], [Fra01b]).
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applications include a-priori estimates and regularity results for partial differen-
tial equations (see, e.g., [H\"or90]). Notice that, in both theorems, the regularity
threshold (i.e., the minimum number of derivatives to be controlled in order to
obtain boundedness on Lp for 1 < p < \infty ) is half the dimension of the envi-
ronment space: in the former, the threshold is n/2, which is half of dim \BbbR n,
whereas in the latter it is 1/2 in each component, that is half the dimension of
each factor \BbbR 1 of \BbbR n.

Generalizations of this kind of results are given at least in two directions.
First of all, one can consider a setting where some sort of Fourier transform
is defined, e.g., locally compact groups3 or symmetric spaces. In particular,
for non-compact symmetric spaces, Clerc and Stein [CS74] proved that --- in
contrast with the Euclidean case, where a finite order of differentiability of the
multiplier is sufficient --- a necessary condition4 for a function m to define a
bounded operator Tm on Lp for some p \not = 2 is the existence of a holomorphic
extension of m.

Spectral multipliers. The second direction develops from the observation
that, if P : \BbbR n \rightarrow \BbbR is a polynomial, then the differential operator

L = P ( - i\partial 1, . . . , - i\partial n)

is (essentially) self-adjoint on L2(\BbbR n), thus admits a spectral resolution

L =
\int 

\BbbR 
\lambda dE(\lambda ),

and moreover, for a bounded Borel function m : \BbbR \rightarrow \BbbC , we have

Tm\circ P = m(L) =
\int 

\BbbR 
m(\lambda ) dE(\lambda );

an easy consequence of Theorem A is then the following

Theorem C. Let L = P ( - i\partial 1, . . . , - i\partial n), where P : \BbbR n \rightarrow \BbbR is a polyno-
mial which is homogeneous with respect to some family of dilations on \BbbR n and
nowhere null off the origin. If m : \BbbR \rightarrow \BbbC satisfies a Mihlin-H\"ormander condi-
tion of order

s >
n

2
,

then m(L) is of weak type (1, 1) and bounded on Lp(\BbbR n) for 1 < p <\infty .

The function m defining the operator m(L) is called a spectral multiplier
for L. A typical example for the operator L is the Laplacian  - (\partial 2

1 + \cdot \cdot \cdot + \partial 2
n),

which corresponds to the polynomial P (x) = x2
1 + \cdot \cdot \cdot + x2

n, and therefore to
radial Fourier multipliers m \circ P .

In a setting where an analogue L of the Laplacian is defined, the spectral
theorem gives a functional calculus for L such that, if m : \BbbR \rightarrow \BbbC is a bounded
Borel function, then m(L) is a bounded operator on L2; therefore one can again

3See [CW71] for SU2, [Rub76] for the plane motion group, [DM79] for the Heisenberg
group; see also [Wei72] for central multipliers on a compact Lie group.

4For other results in the context of non-compact symmetric spaces, including sufficient
conditions for boundedness on Lp, see [Ank90], [GMM97] and references therein.
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look for sufficient conditions on the spectral multiplier m ensuring boundedness
of m(L) on Lp for some p \not = 2.

This question has been explored particularly in the case of a connected Lie
group G with a hypoelliptic left-invariant self-adjoint5 differential operator L,
typically a sublaplacian. Notice that, for a sublaplacian L on a connected Lie
group G, a general result of Stein (see [Ste70b], \S IV.6) yields boundedness of
the operator m(L) on Lp(G) for 1 < p < \infty whenever the multiplier m is
of Laplace transform type; this rather strong condition on the multiplier --- it
implies analyticity --- can be considerably weakened on specific classes of groups.

For a homogeneous sublaplacian L on a stratified Lie group G, there is a
result analogous to Theorem C due to6 Christ [Chr91] and Mauceri and Meda
[MM90], where a condition of order

s >
Q

2
,

i.e., half the homogeneous dimension Q of the stratified group G, is required.
This result in general is not sharp: although on \BbbR n (with isotropic dilations) it
is Q = n, on more general stratified groups G the homogeneous dimension Q is
greater than the topological dimension dimG, and in the case of a Heisenberg-
type group G it has been proved (by M\"uller and Stein [MS94] and Hebisch
[Heb93a] for a sublaplacian, and by Hebisch and Zienkiewicz [HZ95] for a more
general positive Rockland operator) that a condition of order

s >
dimG

2

is sufficient.
An analogous result, due to Alexopoulos [Ale94], is known for a sublaplacian

L on a connected Lie group G of polynomial volume growth. In this case, the
condition on the multiplier is expressed in terms of an L\infty Besov norm, and the
regularity threshold involves both a local dimension Q0 (related to the Carnot-
Carath\'eodory distance associated to the sublaplacian L) and a dimension at
infinity Q\infty (that is, the degree of polynomial growth of G), so that a condition
of order

s >
max\{ Q0, Q\infty \} 

2
is sufficient; notice that, for a homogeneous sublaplacian on a stratified group,
it is Q0 = Q\infty = Q. An extension of this result to higher-order operators is
contained in [DOS02] (where generalizations to different settings, such as frac-
tals, are also discussed). Moreover, in the case of a distinguished sublaplacian
on the compact group G = SU2, for which Q0 = 4 > 3 = dimG, Cowling and
Sikora [CS01] have shown that a condition of order

s >
dimG

2

(with an L2 Sobolev norm) is sufficient.
5Since we consider left-invariant differential operators on G, it is understood that the

measure defining the Lebesgue spaces Lp(G) is a right Haar measure.
6This problem has a long history: starting from Theorem 6.25 of [FS82], due to Hulanicki

and Stein, the smoothness requirement on the multiplier has been lowered and lowered (see
[Mau87], [DM87]), culminating with the above-mentioned result.
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In the context of Lie groups with exponential volume growth, two different
behaviours may appear: in some cases (similarly to what happens on non-
compact symmetric spaces) a multiplier m defining a bounded operator m(L)
on Lp for some p \not = 2 necessarily extends to a holomorphic function (see [CM96],
[LM00]), whereas in other cases a finite order of differentiability is sufficient to
ensure boundedness on Lp(G) for 1 < p < \infty (see [Heb93b], [CGHM94]); the
distinction between the two behaviours is somehow connected with the symme-
try of the Banach \ast -algebra L1(G).

Joint spectral multipliers. Suppose now that, instead of a single opera-
tor, we have a family L1, . . . , Ln of (essentially) self-adjoint operators, which
moreover commute strongly pairwise, i.e., admit a joint spectral resolution E
on \BbbR n:

Lj =
\int 

\BbbR n

\lambda j dE(\lambda )

for j = 1, . . . , n. This defines a joint functional calculus for L1, . . . , Ln, which
yields, for every bounded Borel m : \BbbR n \rightarrow \BbbC , a bounded operator

m(L) = m(L1, . . . , Ln) =
\int 

\BbbR n

m(\lambda ) dE(\lambda )

on L2; the function m is said to be a joint spectral multiplier for the sys-
tem L1, . . . , Ln, and again one can look for sufficient conditions on m ensuring
boundedness of m(L) on Lp for some p \not = 2.

Notice that Fourier multipliers on \BbbR n fall into this context: in fact, a Fourier
multiplier on \BbbR n can be thought of as a joint spectral multiplier for the system
 - i\partial 1, . . . , - i\partial n of differential operators on \BbbR n. However, for instance, on a
non-commutative Lie group, two left-invariant differential operators do not nec-
essarily commute, so that joint spectral multipliers can be considered only for
particular systems of left-invariant differential operators.

Certainly, if the environment space is a direct product, and each Lj op-
erates on a different factor, then strong commutativity is ensured; this case is
considered in [Sik09], where results of Mihlin-H\"ormander type are obtained, and
applications to products of fractals are given.

Another extensively studied context is that of Heisenberg-type groups:

\bullet Mauceri [Mau81] obtained a result of Mihlin-H\"ormander type for joint
functions of the sublaplacian L and the central derivative  - iT on Heisen-
berg groups;

\bullet M\"uller, Ricci and Stein [MRS95], [MRS96] proved results of Marcinkiewicz
type for the sublaplacian L and the central derivatives  - iT1, . . . , - iTn on
Heisenberg-type groups;

\bullet Fraser [Fra97], [Fra01b], [Fra01a] and Veneruso [Ven00] obtained results
of Marcinkiewicz type for the partial sublaplacians L1, . . . , Ln and the
central derivative  - iT on Heisenberg groups.

In some of these works, which are concerned with specific groups and operators,
sharp thresholds are obtained.

However, to our knowledge, in the literature there is no result for multiple
operators with the same generality as in the above-presented results for a single
operator.
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Our results

One of the aims of this work is to partially fill the mentioned gap in the litera-
ture, by obtaining joint spectral multiplier results in some generality. Therefore,
one of the problems which we had to face was that of identifying the right object
to be studied, i.e., a class of systems of left-invariant differential operators on a
connected Lie group for which joint multiplier theorems were likely to hold. The
desiderata were, on one hand, the applicability of the spectral theorem for defin-
ing the joint functional calculus, and consequently the self-adjointness on L2(G)
and the strong commutativity of the operators under consideration; on the other
hand, the validity of some analogue of the ``heat kernel estimates"", which are
an essential tool in the proof of multiplier theorems for a single operator.

Our solution involves the weighted subcoercive operators of ter Elst and
Robinson [ER98], which are a rather wide class of left-invariant differential
operators on connected Lie groups, including positive elliptic operators, sub-
laplacians, and also positive Rockland operators on homogeneous groups. Cor-
respondingly, we define a system L1, . . . , Ln of left-invariant differential opera-
tors on a connected Lie group G to be a weighted subcoercive system if the Lj
are formally self-adjoint and pairwise commuting, and if moreover the algebra
generated by them contains a weighted subcoercive operator. We then prove
that, if L1, . . . , Ln is a weighted subcoercive system on the group G, then the
operators Lj are (essentially) self-adjoint on L2(G) and commute strongly pair-
wise; moreover, the presence of a weighted subcoercive operator in the algebra
generated by L1, . . . , Ln provides, by the results of [ER98], the required heat
kernel estimates.

A somehow abstract study of these weighted subcoercive systems is subse-
quently carried out, exploring their relationships with the algebraic structure
and the representation theory of the environment group, analogously as what is
done in the literature for the algebras of differential operators associated with
Gelfand pairs. In particular, we show that, to every weighted subcoercive sys-
tem L1, . . . , Ln on a group G, a Plancherel measure on the joint L2 spectrum of
the operators can be associated, so that the L2 norm of the convolution kernel
of the operator m(L) on G coincides with the L2 norm of the multiplier m with
respect to the Plancherel measure.

Next, for a weighted subcoercive system L1, . . . , Ln on a Lie group G with
polynomial growth, we obtain weighted L1 estimates for the convolution ker-
nel of the operator m(L) corresponding to a joint multiplier m with compact
support, satisfying some smoothness condition. This implies in particular that
the convolution kernel corresponding to a smooth and compactly supported
multiplier m is integrable, so that the operator m(L) is bounded on Lp(G) for
1 \leq p \leq \infty ; in fact, this result is shown to hold also for multipliers m in the
Schwartz class of rapidly decreasing smooth functions.

The weighted estimates, together with the Calder\'on-Zygmund singular inte-
gral theory, then yield, in the case of a homogeneous group G with homogeneous
operators L1, . . . , Ln, a joint multiplier theorem of Mihlin-H\"ormander type, with
a condition of order

s >
QG
2

+
n - 1
q

in terms of an Lq Besov norm with q \in [2,\infty ], where QG is the degree of
polynomial growth of G. Notice that this result extends the multiplier theorem
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of [Chr91] and [MM90] for a sublaplacian on a stratified group.
For a homogeneous group G with a positive Rockland operator L, the ho-

mogeneous dimension of G corresponds to the local dimension Q0 associated
to L as in [Ale94], whereas QG = Q\infty is the dimension at infinity, and it is
always Q0 \geq QG, with equality if G is stratified. Since most of the results in
the literature about spectral multipliers on homogeneous Lie groups are stated
in the context of stratified groups, the different role of these two quantities gen-
erally remains in the shade. However, on a fixed nilpotent Lie group G, there
may be several homogeneous structures --- as in \BbbR n there are plenty of families
of non-isotropic dilations --- with possibly different homogeneous dimensions,
whereas the degree of polynomial growth QG is intrinsic to the algebraic struc-
ture of G. In our multiplier theorem, differently from [Ale94], but analogously
as in Theorem A on \BbbR n, the homogeneous dimension Q0 does not appear in the
regularity threshold, which depends only on QG.

Some methods are presented which allow, for certain groups and systems
of operators, to improve the multiplier theorem by lowering the regularity
threshold. In particular, the technique of Hebisch and Zienkiewicz [HZ95] is
extended to our multi-variate setting, enabling us to replace, e.g, in the case
of a Heisenberg-type group G, the degree QG of polynomial growth with the
topological dimension dimG in the threshold. The summand (n  - 1)/q in the
threshold can be lowered too, through an analysis of the Plancherel measure
associated to a specific weighted subcoercive system, which sometimes can be
explicitly computed.

Finally, a sort of product theory is developed, yielding a multiplier theorem
of Marcinkiewicz type involving several homogeneous groups Gj , each of which
with its own weighted subcoercive system. A non-conventional use of trans-
ference techniques allows us to obtain this multiplier theorem not only on the
direct product of the Gj , but also on other groups (containing homomorphic
images of the Gj) which need not be nilpotent. In this way, we are also able
to improve, for certain non-nilpotent groups of polynomial growth (including
the plane motion group, the oscillator groups and the diamond groups) and for
some distinguished sublaplacians, the general result of [Ale94].

Structure of the work

This thesis is divided into five chapters. The first two chapters are of introduc-
tory character, and are aimed to establish the language which is used throughout
the work.

Specifically, the first chapter is a brief summary of the basic definitions and
results related to Lie groups, Lie algebras and translation-invariant differential
operators. Several classes of Lie groups are considered, focusing particularly on
nilpotent and homogeneous Lie groups. Moreover, some of the results of ter
Elst and Robinson [ER98] about weighted subcoercive operators are discussed
and slightly amplified.

The second chapter introduces the instruments used to measure smoothness
of functions, and particularly of joint multipliers, i.e., Sobolev and Besov spaces
on \BbbR n. Special attention is payed to Sobolev and Besov spaces with dominating
mixed smoothness, which allow to prescribe different orders of differentiability
on different directions. Mihlin-H\"ormander and Marcinkiewicz conditions are
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then studied abstractly (i.e., without immediate reference to multiplier theo-
rems), by investigating their behaviour under a change of variables, along with
mutual implications.

The remaining three chapters contain the above-mentioned results. Namely,
in the third chapter weighted subcoercive systems of operators on a connected
Lie group are introduced, together with the associated Plancherel measure, and
relationships with the algebraic structure and the representation theory of the
group are examined. In the fourth chapter, weighted estimates for convolu-
tion kernels of operators in the functional calculus are obtained, and a few
examples are worked out. In the fifth chapter, our two multiplier theorems of
Mihlin-H\"ormander and Marcinkiewicz type are proved, and some applications
are discussed.

Finally, an appendix collects some known results about spectral integration
and Banach \ast -algebras which are extensively used in the work.
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List of commonly used notation

\BbbN natural numbers (including 0)
\BbbZ , \BbbQ , \BbbR , \BbbC integral, rational, real and complex numbers
\BbbR + positive real numbers (excluding 0)
\BbbT 1-dimensional torus
Sn n-dimensional sphere

C(X) continuous (complex-valued) functions
Cb(X) bounded continuous functions
C0(X) continuous functions vanishing at infinity
Cc(X) compactly supported continuous functions
Club(G) left uniformly continuous and bounded functions
Crub(G) right uniformly continuous and bounded functions
Cub(G) left and right uniformly continuous and bounded functions
\scrE (X) smooth functions
\scrE \prime (X) compactly supported distributions
\scrD (X) compactly supported smooth functions
\scrD \prime (X) distributions
\scrS (G) Schwartz functions
\scrS \prime (G) tempered distributions
Lp(X,\mu ) Lebesgue spaces
Lp(G) Lebesgue spaces with respect to a right Haar measure
Lp;\infty (G) smooth functions which are in Lp(G)

together with all their left-invariant derivatives
C\infty 0 (G) smooth functions which vanish at infinity

together with all their left-invariant derivatives
W k,p(\BbbR n) classical Lp Sobolev spaces
Hs(\BbbR n) L2 Sobolev spaces of fractional order
Bsp,q(\BbbR n) Besov spaces
S\vec{}sp,qB(\BbbR \vec{}n) Besov spaces with dominating mixed smoothness

Lx, Rx left and right regular representations
\frakD (G) left-invariant differential operators
D+ formal adjoint of D

| \cdot | p p-norm on \BbbR n

| \cdot | \delta homogeneous norm with respect to the dilations \delta t
Q\delta homogeneous dimension with respect to the dilations \delta t
QG degree of polynomial growth (dimension at infinity)
dimG topological dimension
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Chapter 1

Differential operators on
Lie groups

This chapter is an introduction to our main objects of study and to the envi-
ronment in which they live.

Starting from general Lie groups, we then consider more restrictive condi-
tions (type I, amenability, polynomial growth, ...), eventually reaching nilpotent
and homogeneous Lie group, on which the fundamental class of Rockland oper-
ators is defined.

In the last part, we move back to general, by showing how homogeneous
Lie groups and Rockland operators may serve as a model for studying some
invariant differential operators (the so-called weighted subcoercive operators)
on general Lie groups.

1.1 Lie groups and differential operators

Here we recall the basic definitions and results involving Lie groups, Lie algebras
and differential operators, which will be freely used in the following. This brief
exposition also allows us to set out the notation.

Most of the theory presented here for Lie groups is in fact valid in the more
general context of locally compact topological groups; for these results, we refer
mainly to the treatises of Hewitt and Ross [HR79] and Folland [Fol95]. For
the parts which instead are specific to Lie groups, our primary references are
the books of Helgason [Hel62], [Hel78], [Hel84] and Varadarajan [Var74]. A
discussion of distributions on smooth manifolds and Lie groups, including the
Schwartz kernel theorem, can be found in the treatise of Dieudonn\'e [Die72],
[Die74], [Die88]; however, most results are straightforward generalizations of
the corresponding results for \BbbR n given, e.g., in the book of Tr\`eves [Tr\`e67].

Notice that, since we focus mainly on left-invariant differential operators,
the ``standard"" measure on a Lie group will be a right Haar measure, and the
definition of convolution of functions will be formulated accordingly. In some of
the references, the choice is instead for right-invariant operators and/or left Haar
measures, so that the results summarized here might take a slightly different
form in those works.
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Chapter 1. Differential operators on Lie groups

1.1.1 Lie groups and their Lie algebras

In the following, a Lie group will be a second-countable smooth manifold G
endowed with a group structure such that the maps

G\times G \ni (x, y) \mapsto \rightarrow xy \in G, G \ni x \mapsto \rightarrow x - 1 \in G

(multiplication and inversion) are smooth. We set

lg(x) = gx, rg(x) = xg - 1

(left and right translations) and correspondingly

Lgf = f \circ l - 1
g , Rgf = f \circ r - 1

g

(left and right regular representations).
On a Lie group, we have a left uniform structure, generated by entourages

of the form
\{ (x, y) \in G\times G : x - 1y \in U\} 

where U is a neighborhood of the identity e \in G, and a right uniform structure,
generated by entourages of the form

\{ (x, y) \in G\times G : yx - 1 \in U\} .

These two structures do not necessarily coincide (they do coincide, e.g., when
G is compact or abelian), however both structures are compatible with the
topology of G. Correspondingly, we have the notions of left (right) uniformly
continuous (complex-valued) functions on G; it can be shown that f : G \rightarrow \BbbC 
is left (right) uniformly continuous if and only if

lim
g\rightarrow e

\| Rgf  - f\| \infty = 0 ( lim
g\rightarrow e

\| Lgf  - f\| \infty = 0).

A left-invariant vector field on G is a (smooth) vector field X such that

d(lg)x(Xx) = Xgx for all g, x \in G

or, equivalently, thinking of X as an operator on (smooth) functions,

XLg = LgX for all g \in G.

Right-invariant vector fields are defined analogously, using right translations in
place of left translations. From the definition, it is clear that a left- (or right-)
invariant vector field is uniquely determined by its value at the identity e \in G.
Moreover, left- (right-) invariant vector fields constitute a Lie subalgebra of the
Lie algebra of smooth vector fields on G.

The Lie algebra g of the Lie group G is the Lie subalgebra of left-invariant
vector fields on G; as we said before, g can be identified with the tangent space
TeG of G at the identity, so that in particular g is finite-dimensional and its
dimension coincides with the topological dimension dimG of the Lie group.

If \phi : G \rightarrow G\prime is a Lie group homomorphism (i.e., \phi is smooth and a group
homomorphism), then it maps left-invariant vector fields on G to left-invariant
vector fields on G\prime ; the correspondence \phi \prime : g \rightarrow g\prime thus established is a Lie
algebra homomorphism, which is called the derivative of \phi .
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1.1. Lie groups and differential operators

The map
lx \circ rx : G \ni g \mapsto \rightarrow xgx - 1 \in G

is an (inner) automorphism of G; its derivative is then an automorphism of
g, which is denoted by Ad(x). The map Ad : G \rightarrow Aut(g) is a Lie group
homomorphism, which is called the adjoint action of G on its Lie algebra g.
The derivative of Ad, denoted by ad, is the adjoint action of the Lie algebra g
on itself, which maps g onto the inner derivations of g:

ad(X)(Y ) = [X,Y ].

1.1.2 Exponential map

The exponential map
exp : g \rightarrow G

is a smooth map which is uniquely determined by the condition that

\BbbR \ni t \mapsto \rightarrow exp(tX) \in G (1.1.1)

gives the flow curve of X through the identity (exp(0) = e). The exponential
map is a local diffeomorphism at 0 (its differential d(exp)0 : g \rightarrow g is the identity
map). The curves (1.1.1) are 1-parameter subgroups of G and in fact every 1-
parameter subgroup of G can be written in this form.

In exponential coordinates, the product law of G can be written as a power
series in a neighborhood of the identity, through the Baker-Campbell-Hausdorff
formula:

exp(X) exp(Y ) = exp(b(X,Y )), (1.1.2)

where
b(X,Y ) = X + Y +

\sum 
n\geq 2

bn(X,Y ),

bn(X,Y ) is a linear combination of n-times-iterated commutators ofX,Y (whose
coefficients do not depend on the Lie group G) and the series converges for
sufficiently small X,Y (see [Var74], Theorem 2.15.4).

1.1.3 Translation-invariant differential operators

A (smooth) differential operator D on G (with complex coefficients) is said to
be left-invariant if

LgD = DLg for all g \in G.

Right-invariant differential operators are defined analogously.
Left-invariant vector fields are left-invariant differential operators of order 1

and in fact they generate the whole algebra of left-invariant differential opera-
tors; more precisely, the algebra \frakD (G) of left-invariant differential operators on
G can be identified with the universal enveloping algebra U(g\BbbC ) of the complex-
ification of g.
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Chapter 1. Differential operators on Lie groups

1.1.4 Haar measures

A left (right) Haar measure on G is a non-null regular positive Borel measure
which is invariant under left (right) translations. Since a Lie group G is a locally
compact group, a left (right) Haar measure on G exists and is unique, up to
multiplication by a positive constant. A Haar measure on a Lie group is smooth,
i.e., in every local coordinate system it is absolutely continuous with respect to
the Lebesgue measure, with a density function which is smooth and nowhere
null.

Let \mu G be a right Haar measure on G. For every x \in G, the push-forward
lx(\mu G) is still a right Haar measure, so that

lx(\mu G) = \Delta G(x)\mu G

for some \Delta G(x) > 0. The function \Delta G : G\rightarrow \BbbR + is called the modular function
of the group G and is a (smooth) homomorphism of Lie groups, which can be
expressed in terms of the adjoint action Ad of G on g as

\Delta G(x) =
\bigm| \bigm| det Ad(x - 1)

\bigm| \bigm| .
(cf. [Hel62], \S X.1.1). If \nu G(A) = \mu G(A - 1), then \nu G is a left Haar measure on G.
In fact \nu G = \Delta G\mu G, i.e., \nu G is absolutely continuous with respect to \mu G, with
density \Delta G.

G is said to be unimodular if \Delta G \equiv 1. In a unimodular group, a right
Haar measure is also a left Haar measure, and vice versa. Compact groups and
abelian groups are unimodular; more generally, if the left and right uniform
structures of G coincide, then G is unimodular (see [HR79], \S 19.28).

1.1.5 Function spaces

In the following, let a right Haar measure \mu G be fixed on G, so that expressions
of the form \int 

G

f(x) dx

will be always understood as integrals with respect to \mu G. The chosen measure
determines also the Lebesgue spaces Lp(G) = Lp(G,\mu G) for 1 \leq p \leq \infty ; if G
is not unimodular, these spaces differ from the corresponding Lebesgue spaces
Lp(G,\Delta G\mu G) with respect to the left Haar measure \Delta G\mu G. For a Borel function
f : G\rightarrow \BbbC , we set for short

\| f\| p = \| f\| Lp(G) = \| f\| Lp(G,\mu G), \| f\| \^p = \| f\| Lp(G,\Delta G\mu G).

We will also use the notation C(G) for (the space of) continuous functions on G,
Cb(G) for bounded continuous functions, Club(G) for left uniformly continuous
and bounded functions, Crub(G) for right uniformly continuous and bounded
functions, C0(G) for continuous functions vanishing at infinity, Cc(G) for com-
pactly supported continuous functions, \scrE (G) for smooth functions, \scrD (G) for
compactly supported smooth functions. Moreover, \scrD \prime (G) will denote the space
of distributions on G, whereas \scrE \prime (G) will be the space of compactly supported
distributions. As usual, the space L1

\mathrm{l}\mathrm{o}\mathrm{c}(G) of locally \mu G-integrable functions on
G is naturally embedded into \scrD \prime (G), by identifying a function f \in L1

\mathrm{l}\mathrm{o}\mathrm{c}(G) with
the Radon measure f\mu G.
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1.1. Lie groups and differential operators

We will use the notation

\langle f, g\rangle =
\int 
G

f g d\mu G, (1.1.3)

with the obvious extension when one of f, g is a distribution1. In particular, the
pairing \langle \cdot , \cdot \rangle will always be linear in the first argument and conjugate-linear in
the second, in order to extend the inner product of L2(G).

1.1.6 Formal adjoint of a differential operator

The formal adjoint of a (smooth) differential operator D on G (with respect to
the right Haar measure \mu G) is the differential operator D+ on G such that

\langle D+\phi , \psi \rangle = \langle \phi ,D\psi \rangle for all \phi , \psi \in \scrD (G).

Existence and uniqueness of the formal adjoint are guaranteed by the properties
of smoothness of the measure \mu G.

If D is left- (right-) invariant, then also D+ is, and the map D \mapsto \rightarrow D+ is
an involutive conjugate-linear anti-automorphism of the algebra \frakD (G), which
makes it into a \ast -algebra. If X \in g is a left-invariant vector field, then its flow
is given by right translations, so that the measure \mu is invariant under the flow
of X, but this implies that

\langle X\phi ,\psi \rangle + \langle \phi ,X\psi \rangle = 0 for all \phi , \psi \in \scrD (G),

i.e., X+ =  - X.
A differential operator D on G is said to be formally self-adjoint if D+ = D;

in particular, if X \in g, then  - iX is formally self-adjoint.

1.1.7 Strongly continuous representations, unitary repre-
sentations, smooth vectors

A representation \pi of G on a topological vector space \scrV is a map from G to the
bounded linear operators on \scrV such that

\pi (e) = id\scrV , \pi (xy) = \pi (x)\pi (y);

we will always suppose that a representation is strongly continuous, i.e., for
every v \in \scrV , the map

G \ni x \mapsto \rightarrow \pi (x)v \in \scrV 

is continuous. A unitary representation of G is a representation \pi of G on a
Hilbert space \scrH , such that the operators \pi (x) for x \in G are unitary operators
on \scrH .

If \pi is a representation of G on a Fr\'echet space \scrV and \phi \in L1(G) has compact
support, then the expression

\pi (\phi )v =
\int 
G

\pi (x - 1)v \phi (x) dx for v \in \scrV (1.1.4)

1In fact, if distributions are defined as conjugate-linear functionals on the space of test
functions, then the pairing \langle f, g\rangle for f \in \scrD \prime (G) and g \in \scrD (G) is simply the evaluation of f
on g, whereas (1.1.3) determines the embedding of L1

\mathrm{l}\mathrm{o}\mathrm{c}(G) in \scrD \prime (G).
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Chapter 1. Differential operators on Lie groups

defines a bounded linear operator \pi (\phi ) on \scrV . If \pi is a uniformly bounded rep-
resentation (i.e., supx\in G p(\pi (x)v) <\infty for all seminorms p of \scrV and all v \in \scrV ),
then the definition of \pi (\phi ) can be extended to all \phi \in L1(G). Notice that, if \pi 
is unitary, then \| \pi (\phi )\| \leq \| \phi \| 1.

Given a representation \pi of G on a Fr\'echet space \scrV , we say that v \in \scrV is a
smooth vector of the representation \pi if the map

G \ni x \mapsto \rightarrow \pi (x)v \in \scrV 

is smooth. The set \scrV \infty of the smooth vectors of \pi is a dense linear subspace
of \scrV and moreover, if \phi \in \scrD (G), then \pi (\phi )v \in \scrV \infty for all v \in \scrV ; in fact, by
a theorem of Dixmier and Malliavin's (see [DM78], Th\'eor\`eme 3.3), the space
\scrV \infty coincides with the G\r arding space of the representation, i.e., the set of finite
sums of vectors of the form \pi (\phi )v for v \in \scrV , \phi \in \scrD (G).

For every v \in \scrV \infty , we can consider the differential of \pi (\cdot )v at the identity
e \in G, which will be denoted by d\pi (\cdot )v. It can be shown that, if X \in g
and v \in \scrV \infty , then also d\pi (X)v \in \scrV \infty , so that d\pi (X) : v \mapsto \rightarrow d\pi (X)v can be
considered as a linear operator on \scrV \infty . Since

d\pi ([X,Y ]) = d\pi (X)d\pi (Y ) - d\pi (Y )d\pi (X),

then d\pi can be extended to a homomorphism of unital algebras from \frakD (G) to
the linear operators on \scrV \infty , and one can prove that

d\pi (D)\pi (\phi )v = \pi (D\phi )v

for all v \in \scrV , \phi \in \scrD (G) and D \in \frakD (G). If \pi is a unitary representation, it can
be shown that, for all D \in \frakD (G),

d\pi (D+) \subseteq d\pi (D)\ast , (1.1.5)

and in particular a formally self-adjoint operator D is mapped to a symmetric
(densely defined) operator on \scrV .

1.1.8 Regular representations.

The (right) regular representation of G on Lp(G) (1 \leq p <\infty ) is the represen-
tation \pi given by \pi (g) = Rg. Since \mu G is right-invariant, for every g \in G, \pi (g)
is an isometry of Lp(G); in particular, if p = 2, \pi is a unitary representation.
An element f \in Lp(G) is a smooth vector of \pi if and only if, for all D \in \frakD (G),
Df \in Lp(G) (where Df is meant in the sense of distributions); moreover, in
this case d\pi (D)f = Df .

We denote by Lp;\infty (G) the space of smooth vectors of the regular represen-
tation of G on Lp(G); more generally, for a measurable function u : G \rightarrow \BbbC ,
we denote by Lp;\infty (G, u(x) dx) the Fr\'echet space of the functions f on G which
belong to the weighted Lebesgue space Lp(G, u(x) dx) together with all their
right-invariant derivatives.

An extension of the previous considerations is obtained by observing that a
homomorphism \gamma : G \rightarrow G\prime of Lie groups induces, by composition, a represen-
tation \pi of G on Lp(G\prime ) given by \pi (g) = R\gamma (g). Since the derivative \gamma \prime : g \rightarrow g\prime 

of \gamma is a Lie algebra homomorphism, it extends to a homomorphism of unital
algebras \gamma \prime : \frakD (G) \rightarrow \frakD (G\prime ). We then have that an element f \in Lp(G\prime ) is a
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1.1. Lie groups and differential operators

smooth vector of \pi if and only if \gamma \prime (D)f \in Lp(G\prime ) for all D \in \frakD (G), and in this
case d\pi (D)f = \gamma \prime (D)f .

Up to this point, for every representation \pi of G on a Fr\'echet space \scrV ,
we have always considered the operators d\pi (D) for D \in \frakD (G) as defined on
the common domain \scrV \infty . In fact, for some particular representations, we can
restrict to certain subspaces\scrW of \scrV \infty without losing essentially any information:

Proposition 1.1.1. Let \pi be a representation of G on a Fr\'echet space \scrV , and
let \scrW be a linear subspace of \scrV \infty , which is dense in \scrV and such that \pi (\phi )\scrW \subseteq \scrW 
for all \phi \in \scrD (G). Then, for all D \in \frakD (G),

d\pi (D)| \scrW = d\pi (D).

Proof. See [NS59], Theorem 1.1.

In particular, if \pi is the representation induced by a Lie group homomor-
phism \gamma : G\rightarrow G\prime on Lp(G\prime ) (1 \leq p <\infty ), then we can take \scrW = \scrD (G\prime ). This
will be understood in the following, without further mention.

1.1.9 Convolution

Let M(G) denote the space of complex finite regular Borel measures on G,
i.e., the dual of the space C0(G) of continuous functions on G vanishing at
infinity. For every \sigma , \tau \in M(G), the convolution of \sigma and \tau is the unique
element \sigma \ast \tau \in M(G) such that\int 

G

f d(\sigma \ast \tau ) =
\int 
G

\int 
G

f(xy) d\sigma (x) d\tau (y) for all f \in C0(G).

Convolution, together with the involution \sigma \mapsto \rightarrow \sigma \ast defined by

\sigma \ast (E) = \sigma (E - 1),

makes M(G) into a Banach \ast -algebra.
The space L1(G) can be identified with the subspace of M(G) of absolutely

continuous measures with respect to the right Haar measure \mu . In fact, L1(G)
is a closed \ast -subalgebra of M(G), where involution is given by

f\ast (x) = \Delta G(x)f(x - 1),

whereas convolution f \ast g is given by

f \ast g(x) =
\int 
G

f(xy - 1)g(y) dy =
\int 
G

f(y - 1)g(yx) dy for \mu G-a.e. x \in G,

or, equivalently, by

f \ast g =
\int 
G

g(y)Ry - 1f dy =
\int 
G

f(y - 1)Ly - 1g dy. (1.1.6)

These various formulations allow one to extend the definition of convolution
to other spaces of functions, and also to distributions (see [Die72], \S 17.11). For
instance, we have Young's inequalities:

\| (f\Delta  - 1/q\prime 

G ) \ast g\| r \leq \| f\| p\| g\| q

7
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for p, q, r \in [1,\infty ] with 1 + 1/r = 1/p + 1/q (see [KR78], Lemma 2.1). For
r = \infty , this inequality gives

\| f \ast g\| \infty \leq \| f\| \^p\| g\| p\prime ;

in fact, if f \in Lp(G,\Delta G\mu ) and g \in Lp
\prime 
(G,\mu ), then f \ast g is continuous and

bounded on G, and if moreover 1 < p < \infty , then f \ast g \in C0(G) (see [HR79],
Theorem 20.16).

Other (continuous) inclusions involving convolution are the following:

\scrD (G) \ast \scrD \prime (G) \subseteq \scrE (G), \scrE (G) \ast \scrE \prime (G) \subseteq \scrE (G), \scrE \prime (G) \ast \scrD \prime (G) \subseteq \scrD \prime (G).

The ``smoothing"" property of convolution, i.e., the fact that convolution has at
least the (differential) regularity of each of its factors, is due to the behaviour
of convolution under translations:

Lx(f \ast g) = (Lxf) \ast g, Rx(f \ast g) = f \ast (Rxg) for all x \in G,

which implies that, for every left-invariant differential operator D and right-
invariant differential operator D\prime on G,

D(f \ast g) = f \ast Dg, D\prime (f \ast g) = (D\prime f) \ast g.

Finally, we have that

supp(f \ast g) \subseteq (supp f) \cdot (supp g),

and the following duality relations hold:

\langle f \ast g, h\rangle = \langle f, h \ast g\ast \rangle = \langle g, (f\ast \Delta  - 1
G ) \ast h\rangle .

By comparing (1.1.4) and (1.1.6), we see that, for a fixed f \in L1(G), the map
\phi \mapsto \rightarrow \phi \ast f is the linear operator associated to f via the regular representation:

\phi \ast f = R(f)\phi .

Associativity of convolution then gives R(f \ast g) = R(g)R(f). More generally,
for a (uniformly bounded) representation \pi of G, we have

\pi (f \ast g) = \pi (g)\pi (f)

(i.e., \pi is an anti-representation of L1(G)) and

\pi (Rxf) = \pi (x)\pi (f);

moreover, if \pi is unitary, then

\pi (f\ast ) = \pi (f)\ast .
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1.1. Lie groups and differential operators

1.1.10 Approximate identities

The convolution algebra L1(G) is not unital, unless G is discrete (cf. [HR79],
Theorem 20.25). However, a valid and widely used replacement for an identity
element of L1(G) is given by the following statement, which summarizes well
known results (cf. [Gra08], \S 1.2.4).

Proposition 1.1.2. Let G be a Lie group and A be a directed set. Suppose that
(\eta \alpha )\alpha \in A is a family of elements of L1(G) such that:

\bullet lim sup\alpha \in A \| \eta \alpha \| 1 <\infty ;

\bullet lim\alpha \in A
\int 
G\setminus U | \eta \alpha (x)| dx = 0 for all neighborhoods U of the identity e \in G;

\bullet lim\alpha \in A
\int 
G
\eta \alpha (x) dx = c for some c \in \BbbC .

Then, for all f \in Cb(G),

lim
\alpha \in A

f \ast \eta \alpha = cf uniformly on compacta.

Moreover, for every uniformly bounded representation \pi of G on a Fr\'echet space
\scrV and every v \in \scrV ,

lim
\alpha \in A

\pi (\eta \alpha )v = cv in \scrV .

In particular, for all f \in Club(G),

lim
\alpha \in A

f \ast \eta \alpha = cf uniformly,

and, if 1 \leq p <\infty , for all f \in Lp(G),

lim
\alpha \in A

f \ast \eta \alpha = cf in Lp(G).

A family (\eta \alpha )\alpha \in A satisfying the hypotheses of the previous proposition with
c = 1 will be called an approximate identity on G (along the directed set A).
Approximate identities exist in great abundance: if one takes a basis \{ Un\} n\in \BbbN of
neighborhoods of e \in G, and if one chooses non-negative functions \eta n \in L1(G)
with supp \eta n \subseteq Un and

\int 
G
\eta n d\mu = 1, then it is easily checked that (\eta n)n\in \BbbN is

an approximate identity (for n \rightarrow +\infty ). In particular, if the \eta n are chosen in
\scrD (G), then the corresponding approximate identity gives a ``uniform"" method
of approximation by smooth vectors/functions.

1.1.11 Direct products

Suppose that G1, . . . , Gn are Lie groups. Then the differential structure of direct
product of smooth manifolds and the algebraic structure of direct product of
groups are compatible, and define a structure of Lie group on

G\times = G1 \times \cdot \cdot \cdot \times Gn.

Correspondingly, the Lie algebra g\times of the product is canonically identified with
the direct product (or the direct sum) of the Lie algebras of the factors:

g\times \sim = g1 \times \cdot \cdot \cdot \times gn \sim = g1 \oplus \cdot \cdot \cdot \oplus gn,
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Chapter 1. Differential operators on Lie groups

and this in turn gives a canonical identification of the universal enveloping
algebra of (g\times )\BbbC with the algebraic tensor product of the universal enveloping
algebras of (g1)\BbbC , . . . , (gn)\BbbC :

\frakD (G\times ) \sim = \frakD (G1)\otimes \cdot \cdot \cdot \otimes \frakD (Gn)

(see [Die74], \S 19.7.2).
If \mu G1 , . . . , \mu Gn

are right Haar measures on the factors, then their product

\mu G\times = \mu G1 \times \cdot \cdot \cdot \times \mu Gn

is a right Haar measure on G\times . Consequently, the algebraic tensor product
Lp(G1)\otimes \cdot \cdot \cdot \otimes Lp(Gn) is identified with a subspace of Lp(G\times ), and

\| f1 \otimes \cdot \cdot \cdot \otimes fn\| Lp(G\times ) = \| f1\| Lp(G1) \cdot \cdot \cdot \| fn\| Lp(Gn);

moreover, for 1 \leq p < \infty , the algebraic tensor product is dense in Lp(G\times ), so
that Lp(G\times ) is the completion of Lp(G1) \otimes \cdot \cdot \cdot \otimes Lp(Gn) with respect to this
norm (see [DF93], \S 7.2 and \S 15.10, Corollary 2). In particular, for p = 1 we
have a projective tensor product

L1(G\times ) \sim = L1(G1) \^\otimes \pi \cdot \cdot \cdot \^\otimes \pi L1(Gn),

whereas for p = 2 we have a Hilbert tensor product

L2(G\times ) \sim = L2(G1) \^\otimes \mathrm{H} \cdot \cdot \cdot \^\otimes \mathrm{H} L
2(Gn),

so that the inner product in L2(G\times ) satisfies

\langle f1 \otimes \cdot \cdot \cdot \otimes fn, g1 \otimes \cdot \cdot \cdot \otimes gn\rangle = \langle f1, g1\rangle \cdot \cdot \cdot \langle fn, gn\rangle .

Moreover, for the Banach spaces of continuous functions vanishing at infinity,
and for the Fr\'echet spaces of continuous functions (with the topology of uniform
convergence on compacta) we have injective tensor products:

C0(G\times ) \sim = C0(G1) \^\otimes \epsilon \cdot \cdot \cdot \^\otimes \epsilon C0(Gn), C(G\times ) \sim = C(G1) \^\otimes \epsilon \cdot \cdot \cdot \^\otimes \epsilon C(Gn).

About smooth functions, we have that \scrD (G1) \otimes \cdot \cdot \cdot \otimes \scrD (Gn) is dense in
\scrD (G\times ), and also in \scrE (G\times ) (cf. \S 17.10.2 of [Die72], or Theorem 39.2 of [Tr\`e67]).
Moreover, the LF-space \scrD (Gj) and the Fr\'echet space \scrE (Gj) are nuclear (cf.
[Tr\`e67], proof of Corollary of Theorem 51.5), and we have

\scrD (G\times ) \sim = \scrD (G1) \^\otimes \pi \cdot \cdot \cdot \^\otimes \pi \scrD (Gn) = \scrD (G1) \^\otimes \epsilon \cdot \cdot \cdot \^\otimes \epsilon \scrD (Gn),

\scrE (G\times ) \sim = \scrE (G1) \^\otimes \pi \cdot \cdot \cdot \^\otimes \pi \scrE (Gn) = \scrE (G1) \^\otimes \epsilon \cdot \cdot \cdot \^\otimes \epsilon \scrE (Gn).

The action of a left-invariant vector field (X1, . . . , Xn) \in g1 \times \cdot \cdot \cdot \times gn on
smooth functions on G\times = G1 \times \cdot \cdot \cdot \times Gn is determined by

(X1, . . . , Xn)(f1 \otimes \cdot \cdot \cdot \otimes fn) = (X1f1)\otimes \cdot \cdot \cdot \otimes (Xnfn).

More generally, if D \in \frakD (Gj), and D\sharp is the image of D via the derivative of
the canonical inclusion Gj \rightarrow G\times , then

D\sharp (f1 \otimes \cdot \cdot \cdot \otimes fn) = f1 \otimes \cdot \cdot \cdot \otimes fj - 1 \otimes (Dfj)\otimes fj+1 \otimes \cdot \cdot \cdot \otimes fn.

10



1.2. Some classes of Lie groups

In this case, we say that D\sharp is a differential operator along the j-th factor of the
product G\times = G1 \times \cdot \cdot \cdot \times Gn, which corresponds to the differential operator D
on Gj .

A consequence of nuclearity of the spaces of smooth functions is the Schwartz
kernel theorem: for every continuous linear map

T : \scrD (G1) \rightarrow \scrD \prime (G2),

there exists a unique K \in \scrD \prime (G1 \times G2) such that, for all f \in \scrD (G1) and
g \in \scrD (G2),

\langle Tf, g\rangle = \langle K, f \otimes g\rangle 

(see Theorem 51.7 of [Tr\`e67], or \S 23.9.2 of [Die88]). Although this result (to-
gether with most of the previous results about function spaces) is valid for more
general (second countable) smooth manifolds, the following particular instance
--- which will be of great use in the following --- is specific to the algebraic
structure of a Lie group G:

Theorem 1.1.3. For every continuous linear operator T : \scrD (G) \rightarrow \scrD \prime (G)
which is left-invariant, i.e.,

TLx = LxT for all x \in G,

there exists a unique k \in \scrD \prime (G), called the (convolution) kernel of T , such that

T\phi = \phi \ast k for all \phi \in \scrD (G). (1.1.7)

In particular, such an operator maps \scrD (G) into \scrE (G).

1.2 Some classes of Lie groups

The following diagram (which is an abridged version of [Pal01], Diagram 3, p.
1487) shows the inclusions between some categories of connected Lie groups:

nilpotent
wwnnnnn

''PPPPPP

polynomial growth
vvmmmmm

!!BBBBBBBBBBB CCR

}}|||||||||||

!!BBBBBBBBBBB

hermitian
��

amenable unimodular type I

Although the multiplier theorems of Chapter 5 are essentially limited to homo-
geneous nilpotent Lie groups, most of the results about commutative algebras
of differential operators of Chapter 3 require weaker hypotheses.

In this section we summarize the main definitions and results about the
classes of Lie groups which will be considered in the following (except for nilpo-
tent and homogeneous Lie groups, to which \S 1.3 is committed). In doing so,
we also briefly discuss irreducible representations, functions of positive type,
transference methods, Schwartz functions and tempered distributions.

11



Chapter 1. Differential operators on Lie groups

1.2.1 Irreducible representations and functions of positive
type

Let G be a Lie group. If \pi is a unitary representation of G on a Hilbert space
\scrH , then an element v \in \scrH is called a cyclic vector for the representation \pi if

span\{ \pi (x)v : x \in G\} 

is dense in G; the representation \pi is said to be irreducible if \scrH \not = \{ 0\} and every
non-null element of \scrH is a cyclic vector for \pi .

If \pi 1 and \pi 2 are unitary representations of G on Hilbert spaces \scrH 1 and \scrH 2

respectively, then \pi 1 is said to be (unitarily) equivalent to \pi 2 if there exists an
isometric isomorphism U : \scrH 1 \rightarrow \scrH 2 which intertwines \pi 1 and \pi 2, i.e.,

U\pi 1(x) = \pi 2(x)U for all x \in G.

A function of positive type on G is a continuous function \phi : G \rightarrow \BbbC such
that, for every choice of n \in \BbbN , x1, . . . , xn \in G and \xi 1, . . . , \xi n \in \BbbC ,

n\sum 
j,k=1

\phi (x - 1
k xj)\xi j\xi k \geq 0;

in fact, every function \phi of positive type is bounded, and we have

\| \phi \| \infty = \phi (e), \phi (x - 1) = \phi (x).

For every unitary representation \pi of G on a Hilbert space \scrH and every v \in \scrH ,
the diagonal coefficient

\phi \pi ,v(x) = \langle \pi (x)v, v\rangle \scrH 
is a function of positive type on G; in fact, every function of positive type can
be written in this form (for suitable \pi and v). For j = 1, 2, if \pi j is a unitary
representation of G on \scrH j and vj \in \scrH j is a cyclic vector for \pi j , then we have
\phi \pi 1,v1 = \phi \pi 2,v2 if and only if there exists a (unique) isometric isomorphism
U : \scrH 1 \rightarrow \scrH 2 which intertwines \pi 1 and \pi 2 and maps v1 to v2 (see [Fol95], \S 3.3).

The set \scrP of the functions of positive type on G is a weakly-\ast closed convex
cone in L\infty (G). In particular, the subset \scrP 0 = \{ \phi \in \scrP : \phi (e) \leq 1\} is convex
and weakly-\ast compact, and its extreme points are 0 and the extreme points of
\scrP 1 = \{ \phi \in \scrP : \phi (e) = 1\} , i.e., the functions of the form \phi \pi ,v for \pi irreducible
and v of unit norm ([Fol95], Theorem 3.25 and Lemma 3.26). From the Krein-
Milman theorem, it follows that the convex hull of the extreme points of \scrP 1 is
weakly-\ast dense in \scrP 1 ([Fol95], Theorem 3.27). Moreover, the weak-\ast topology
induced by L\infty (G) on \scrP 1 coincides with the topology of uniform convergence
on compacta induced by C(G) ([Fol95], Theorem 3.31).

A consequence of the previous results is the Gelfand-Raikov theorem, i.e., the
fact that the irreducible unitary representations of G separate points on G: for
every x, y \in G, if x \not = y then there exists an irreducible unitary representation
\pi of G such that \pi (x) \not = \pi (y) ([Fol95], Theorem 3.34). There is a corresponding
result for L1(G), which reads: if f \in L1(G) is not null, then there exists an
irreducible unitary representation \pi of G such that \pi (f) \not = 0. In particular, the
expression

\| f\| \ast = sup
\pi 
\| \pi (f)\| ,

12



1.2. Some classes of Lie groups

(where \pi can indifferently range either over the unitary representations of G,
or over the irreducible ones) defines a norm on L1(G) ([Fol95], Proposition 7.1
and Corollary 7.2); the completion C\ast (G) of the \ast -algebra L1(G) with respect
to this norm is in fact a C\ast -algebra, which is called the group C\ast -algebra of G.

1.2.2 CCR groups and type I groups, Plancherel formula

A Lie group G is said to be CCR (which stands for ``completely continuous
representations"") if, for every irreducible unitary representation \pi of G and
every f \in L1(G), the operator \pi (f) is compact. Compact groups and abelian
groups are CCR, because their irreducible representations are finite-dimensional.

Let \pi be a unitary representation of a Lie group G on a Hilbert space \scrH , and
let I(\pi ) be the algebra of bounded linear operators on\scrH which intertwine \pi with
itself; the representation \pi is said to be primary if the center of I(\pi ) consists
of scalar multiples of the identity. The group G is said to be type I if every
primary representation \pi of G is the direct sum of copies of some irreducible
representation.

Let \widehat G denote the set of equivalence classes of irreducible unitary represen-
tations of the Lie group G. For every function \phi of positive type which is an
extremal point of \scrP 1, there is an irreducible unitary representation \pi \phi (unique up
to equivalence) for which \phi is a diagonal coefficient; if the set of extreme points
of \scrP 1 is endowed with the weak-\ast topology of L\infty (G), the quotient topology
induced on \widehat G via the map \phi \mapsto \rightarrow [\pi \phi ] is called the Fell topology on \widehat G. It can
be shown that G is CCR if and only if the Fell topology is T1, and that G is
type I if and only if the Fell topology is T0 (see [Dix82], Propositions 3.1.6 and
3.4.11, \S 4.7.15, Theorem 9.1 and \S 13.9.4; see also [Fol95], \S 7.2); in particular,
CCR groups are type I.

One of the consequences of the type I condition involves irreducible repre-
sentations of direct products: if G1 and G2 are Lie groups, and at least one of
them is type I, then a unitary representation \pi of G1 \times G2 is irreducible if and
only if \pi is equivalent to \pi 1\otimes \pi 2 for some irreducible unitary representations \pi 1

of G1 and \pi 2 of G2 (see [Fol95], \S 7.3).
If the Lie group G is unimodular and type I, then there exists a unique posi-

tive regular Borel measure on \widehat G, which is called the group Plancherel measure of
G, such that (with a slight abuse of notation with respect to equivalence classes
of irreducible representations)

\| f\| 22 =
\int 
\widehat G \| \pi (f)\| 2\mathrm{H}\mathrm{S} d\pi for every f \in L1 \cap L2(G)

(see [Dix82], Theorem 18.8.2, and also [Fol95], \S 7.5).

1.2.3 Amenable groups and transference

There are many equivalent definitions of amenability for a Lie group (or more
generally, a locally compact topological group), for which we refer to [Gre69] and
[Pie84]. For instance, one can say that a Lie group G is amenable if it admits
a left-invariant mean on L\infty (G), i.e., a linear functional M : L\infty (G) \rightarrow \BbbC such
that

M(Lxf) = Mf for all f \in L\infty (G) and x \in G,

13



Chapter 1. Differential operators on Lie groups

Mf \geq 0 if f \geq 0, and M1 = 1.

A characterization of amenability is related to convolution operators. For
1 \leq p < \infty , let Cvp(G) the set of the distributions u \in \scrD \prime (G) such that the
associated left-invariant operator

\phi \mapsto \rightarrow \phi \ast u

extends to a bounded operator on Lp(G). By identifying left-invariant operators
with their kernels (cf. Theorem 1.1.3), Cvp(G) inherits a structure of Banach
algebra from the algebra of bounded linear operators on Lp(G). Moreover, by
Young's inequality, we have that L1(G) \subseteq Cvp(G), with continuous inclusion,
and in fact

\| f\| Cv1 = \| f\| 1,
whereas for 1 < p <\infty we only know

\| f\| Cvp \leq \| f\| 1. (1.2.1)

Then we have that, for all p \in ]1,\infty [, G is amenable if and only if

\| f\| Cvp = \| f\| 1 for all f \in L1(G) with f \geq 0

(see [Pie84], Theorem 9.6).
Another characterization of amenability can be given in terms of unitary

representations. Recall that, for any unitary representations \pi and \pi \prime of G, \pi 
is said to be weakly contained in \pi \prime if

\| \pi (f)\| \leq \| \pi \prime (f)\| for all f \in L1(G).

Then G is amenable if and only if every irreducible unitary representation of
G is weakly contained in the right regular representation of G on L2(G) (see
[Gre69], \S 3.5, and also [Pie84], Theorem 8.9).

The last characterization can be rephrased in terms of the C\ast (G)-norm: the
group G is amenable if and only if

\| f\| \ast = \| f\| Cv2 for all f \in L1(G),

so that, in this case, C\ast (G) is isometrically isomorphic to the closure of L1(G)
in Cv2(G).

This property of amenable groups --- i.e., the fact that the norm of a convo-
lution operator on L2(G) dominates the norm of the corresponding operator in
every unitary representation --- can be extended to more general representations
(and operators) by transference methods (see [CW76], and also the appendix of
[Cow97], for a discussion of the main ideas and contributions). For instance, we
have

Theorem 1.2.1. Let X be a \sigma -finite measure space, \pi be a (strongly continuous)
uniformly bounded representation of an amenable group G on Lp(X), where
1 < p <\infty , and set

c\pi = sup
x\in G

\| \pi (x)\| p\rightarrow p.

Then, for every f \in L1(G), we have

\| \pi (f)\| p\rightarrow p \leq c2\pi \| f\| Cvp(G).

14



1.2. Some classes of Lie groups

Proof. See [CW76], Theorem 2.4, and also [BPW96], Theorem 2.7.

By strengthening the hypothesis on the representation, it is possible to ob-
tain transference results also for the so-called maximal operators. Recall that a
bounded linear operator P on Lp(X) is said to be positivity preserving if Pf \geq 0
whenever f \geq 0.

Theorem 1.2.2. Under the hypotheses of Theorem 1.2.1, suppose moreover
that, for every x \in X, there exists a positivity preserving operator Px on Lp(X)
such that

| \pi (x)f | \leq Px| f | for all f \in Lp(X),

and that
cP = sup

x\in G
\| Px\| p\rightarrow p <\infty .

Let \{ fj\} j\in \BbbN be a sequence in L1(G), and set

M\phi = sup
j\in \BbbN 

| \phi \ast fj | for \phi \in Lp(G),

M\pi \eta = sup
j\in \BbbN 

| \pi (fj)\eta | for \eta \in Lp(X).

If M is bounded on Lp(G), i.e.,

\| M\phi \| p \leq CM\| \phi \| p for all \phi \in Lp(G),

then M\pi is bounded on Lp(X), and we have

\| M\pi \eta \| p \leq c\pi cPCM\| \eta \| p for all \eta \in Lp(X).

Proof. See [BPW96], Theorem 2.11.

1.2.4 Hermitian groups

A Lie group G will be called hermitian if the Banach \ast -algebra L1(G) is her-
mitian (see \S A.1.4). Thanks to Raikov's criterion, this property can be stated
in terms of the C\ast (G)-norm: namely, if \rho (f) denotes the spectral radius of an
element f of L1(G), then G is hermitian if and only if

\| f\| \ast =
\sqrt{} 
\rho (f\ast f) for all f \in L1(G).

(see also [Pal78], p. 695). It is known that connected hermitian Lie groups are
amenable ([Pal01], Theorem 12.5.18(e)).

1.2.5 Volume growth and connected moduli

Let G be a connected Lie group. Then, for every compact neighborhood V of
the identity of G, we have that

V n \subseteq V n+1 for all n \in \BbbN \setminus \{ 0\} , and
\bigcup 

n\in \BbbN \setminus \{ 0\} 

V n = G.

If \mu G is a (left or right) Haar measure on G, we can then consider the growth
of the increasing sequence of real numbers \mu G(V n) as an index of the volume
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growth of the group G. In fact, by a result of Guivarc'h ([Gui73], Th\'eor\`eme II.3;
see also [Jen73]), we know that the volume growth of a connected Lie group G
can be either strictly polynomial , i.e.,

\mu G(V n) \asymp nQG

for some QG \in \BbbN (which is called the degree of growth), or exponential, i.e.,

e\alpha n \lesssim \mu G(V n) \lesssim e\beta n

for some real \beta \geq \alpha > 0. Notice that this classification (and also the degree QG
in the case of polynomial growth) does not depend on the choice of the compact
neighborhood V of the identity, or even on the (left or right) Haar measure \mu G.

Another way to express the volume growth of a Lie group G is via a connected
modulus, i.e., a continuous proper function | \cdot | : G\rightarrow [0,+\infty [ which is symmetric,
subadditive and separating, i.e., for every x, y \in G,

| x - 1| = | x| , | xy| \leq | x| + | y| ,

| x| = 0 if and only if x = e,

and which moreover satisfies the following condition: there exist constants
C1, C2 > 0 such that, for every x \in G with | x| \geq C1, there exist elements

e = x0, x1, . . . , xn - 1, xn = x

in G with | xjx - 1
j - 1| \leq C1 for j = 1, . . . , n and n \leq C2| x| .

To every connected modulus | \cdot | on G, we associate a left-invariant distance
dl and a right-invariant distance dr on G, which are defined by

dl(x, y) = | x - 1y| , dr(x, y) = | yx - 1| ;

each of these distances induces on G the same topology as the manifold struc-
ture, and moreover

| x| = dl(e, x) = dr(e, x).

Examples of connected moduli are those associated to the so-called Carnot-
Carath\'eodory distances on G (see [VSC92], \S III.3.3), and also to the more gen-
eral control distances considered in the following \S 1.4.

If | \cdot | and | \cdot | \prime are both connected moduli on G, then they are equivalent at
infinity (cf. [VSC92], Proposition III.4.2), i.e., there exists C > 0 such that

C - 1| x| \leq | x| \prime \leq C| x| when | x| \geq 1 or | x| \prime \geq 1.

Moreover, if | \cdot | is a connected modulus, then the growth of the (Haar) measure
of the associated balls Br = \{ x \in G : | x| < r\} corresponds to the volume
growth of the group: namely, if G has polynomial growth, then

\mu G(Br) \asymp rQG for r large

(where QG \in \BbbN is the degree of growth previously defined), whereas, if G has
exponential growth, then

e\alpha r \lesssim \mu G(Br) \lesssim e\beta r for r large,
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1.3. Nilpotent and homogeneous groups, Rockland operators

for some real \beta \geq \alpha > 0.
Connected Lie groups with polynomial growth have many of the previously

examined properties: they are in fact unimodular ([Gui73], Lemme I.3), her-
mitian (see [Lud79]), and therefore amenable (see also [Gui73], p. 338). Notice
however that there exist connected Lie groups with polynomial growth which
are not type I (see, e.g., [Bag78] or [Cow78]).

1.2.6 Schwartz functions and tempered distributions

In the context of connected Lie groups with polynomial growth, it is possible to
define the class of Schwartz functions in a natural way2. Let G be a connected
Lie group with polynomial growth, | \cdot | G be a connected modulus, and set

\langle x\rangle G = 1 + | x| G.

Then, for every p \in [1,\infty ], the seminorms

\eta p,D,k(f) = \| \langle \cdot \rangle kGDf\| p for D \in \frakD (G) and k \in \BbbN 

define a Fr\'echet structure on a linear subspace \scrS (G) of \scrE (G), which contains
\scrD (G), and which in fact does not depend on p \in [1,\infty ] (see [Sch93], Theo-
rems 1.2.21 and 6.8). Moreover, \scrS (G) is a translation-invariant \ast -subalgebra of
L1(G) ([Sch93], Theorems 1.3.13 and 1.4.3), and is also a nuclear Fr\'echet space
([Sch93], Theorem 6.24). Therefore, if we define the class \scrS \prime (G) of tempered
distributions as the dual of \scrS (G), then we have the (continuous) inclusions

\scrS (G) \ast (\scrS (G) + \scrE \prime (G)) \subseteq \scrS (G), \scrS (G) \ast \scrS \prime (G) \subseteq \scrE (G) \cap \scrS \prime (G).

Moreover, analogously as in \S 1.1.11, there is a version of the Schwartz ker-
nel theorem involving Schwartz functions and tempered distributions, whose
translation-invariant version is

Theorem 1.2.3. For every bounded linear operator T : \scrS (G) \rightarrow \scrS \prime (G) which
is left-invariant, there exists a unique k \in \scrS \prime (G) such that

T\phi = \phi \ast k for all \phi \in \scrS (G).

In particular, such an operator maps \scrS (G) into \scrE (G) \cap \scrS \prime (G).

1.3 Nilpotent and homogeneous groups, Rock-
land operators

Nilpotent Lie groups are, in a sense, the slightest non-abelian generalization of
\BbbR n: in fact, a (connected, simply connected) nilpotent Lie group is a real vector
space, endowed with a polynomial group law, which is ``eventually abelian"" (i.e.,
iterated commutators of sufficiently high order equal the identity3). Due to these
facts, most of the classical instruments and techniques of analysis on Euclidean
spaces can be also applied to nilpotent Lie groups. On the other hand, the

2About the definition of Schwartz functions for other classes of Lie groups, see, e.g., [Sch93]
and [Dav10].

3Notice that, by a result of Lazard [Laz55], every polynomial group law on \BbbR n is nilpotent.
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non-commutative algebraic structure brings completely new phenomena, which
may be non-trivial at all (e.g., the theory of irreducible representations).

Homogeneous Lie groups are nilpotent Lie groups with a fixed family of au-
tomorphic dilations. This homogeneous structure allows to define a particularly
interesting class of left-invariant differential operators, the so-called Rockland
operators; moreover, dilations are an essential tool in the proof of the multiplier
theorems of Chapter 5.

Our main references for nilpotent and homogeneous Lie groups are the books
of Corwin and Greenleaf [CG90], Folland and Stein [FS82], and Goodman
[Goo76]. Moreover, a rich source of examples is the list [Nie83] of all the nilpo-
tent Lie groups of dimension up to 6 (with their irreducible representations).

1.3.1 Nilpotent Lie groups

A Lie algebra g is nilpotent if the descending central series

g[1] = g, g[n+1] = [g, g[n]]

is eventually null. If n is such that g[n] \not = 0 and g[n+1] = 0, then g is said to
be n-step. In a nilpotent Lie algebra, the formal power series b(X,Y ) in the
Baker-Campbell-Hausdorff formula (1.1.2) becomes a finite sum, which defines
a polynomial group law g \times g \rightarrow g, such that the identity is 0 and the inverse
of v \in g is  - v; with this structure, g becomes a Lie group, whose Lie algebra
is isomorphic to g itself, in such a way that the exponential map becomes the
identity map.

More generally, if G is a connected Lie group such that its Lie algebra g is
nilpotent, and if we consider on g the group law previously defined, then the
exponential map exp : g \rightarrow G becomes a Lie group homomorphism, and in fact
exp is a universal covering map of G; in particular, if G is simply connected,
then exp is an isomorphism.

A nilpotent Lie group is a Lie group whose Lie algebra is nilpotent; unless
otherwise specified, we always suppose that a nilpotent Lie group is connected
and simply connected. Therefore, if G is a nilpotent Lie group, then G can
be identified with its Lie algebra g via the exponential map. In this way, the
Lie subgroups of G are identified with the Lie subalgebras of g (so that in
particular they are linear subspaces of g and are closed). Moreover, a Lie group
homomorphism between nilpotent Lie group is identified with its derivative,
which is a Lie algebra homomorphism and in particular it is a linear map.

If G is nilpotent, then the push-forward of the Lebesgue measure on g via
the exponential map is both left- and right-invariant, so that it is a left and
right Haar measure; in particular, nilpotent Lie groups are unimodular.

In fact, every nilpotent Lie group has polynomial growth; more precisely:

Proposition 1.3.1. Suppose that G is n-step and let Vj be a supplement of
g[j+1] in g[j] for j = 1, . . . , n. Choose moreover norms | \cdot | j on the Vj and set

| x| =
n\sum 
j=1

| xj | 1/jj , (1.3.1)

where x = x1 + \cdot \cdot \cdot + xn is the decomposition of x \in g = V1 \oplus \cdot \cdot \cdot \oplus Vn. Then
every connected modulus on G is equivalent, in the large, to | \cdot | . In particular,
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G has polynomial growth of degree

QG =
n\sum 
j=1

j dimVj =
n\sum 
j=1

dim g[j].

Proof. Cf. the proofs of [Gui73], Th\'eor\`eme II.1 and Lemme II.1.

In particular, on a nilpotent Lie group we can consider the classes \scrS (G) and
\scrS \prime (G) of Schwartz functions and tempered distributions which has been defined
for groups of polynomial growth; in fact, it can be shown that these classes
coincide, in exponential coordinates, with the ``classical"" spaces of Schwartz
functions and tempered distributions on g (see also [LM95]).

About Schwartz functions, we also recall the following result from the rep-
resentation theory of nilpotent Lie groups, which implies that a nilpotent Lie
group is CCR.

Theorem 1.3.2. Let \pi be an irreducible unitary representation of G on a Hilbert
space \scrH . If f \in \scrS (G), then \pi (f) is a trace class operator on \scrH . If f \in L1(G),
then \pi (f) is a compact operator on \scrH .

Proof. See [Kir62], Theorem 7.3 and Corollary, or also [CG90], Theorem 4.2.1.

1.3.2 Homogeneous Lie groups

An expanding automorphism on a Lie algebra g is a Lie algebra automorphism
\xi of g which is diagonalizable and whose eigenvalues are all greater than 1; such
an automorphism can be written in the form \xi = eA, where A is a diagonalizable
derivation of g whose eigenvalues are all positive.

Starting from such a derivation A, we define a family of dilations

\delta t = eA \mathrm{l}\mathrm{o}\mathrm{g} t for t > 0,

which are automorphisms of g which share the eigenspaces W\lambda :

\delta t(v) = t\lambda v for v \in W\lambda .

The map t \mapsto \rightarrow \delta t is a homomorphism \BbbR + \rightarrow Aut(g).
A homogeneous Lie algebra is a Lie algebra with a fixed family of dilations.

The automorphic dilations \delta t of a homogeneous Lie algebra g extend to automor-
phisms \delta t of the universal enveloping algebra U(g\BbbC ), which are simultaneously
diagonalizable. An element D \in U(g\BbbC ) is said to be homogeneous of degree \lambda if

\delta t(D) = t\lambda D for all t > 0.

The homogeneous dimension of the homogeneous Lie algebra g is the sum Q\delta 
of the degrees of the elements a homogeneous basis of g, i.e., Q\delta = trA.

By replacing the derivation A with cA for some c > 0, we can rescale all
the degrees in g and in U(g\BbbC ), and also the homogeneous dimension Q\delta , by the
same factor c; in this case, we say that the new homogeneous structure on g,
obtained by rescaling, is equivalent to the original one. In the following, unless
otherwise specified, we always suppose that the least eigenvalue of the derivation
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A defining a family of dilations is not less than 1. Under this hypothesis, the
degree of a non-constant homogeneous element of U(g\BbbC ) is not less than 1, and
moreover Q\delta \geq dim g.

A family of automorphic dilations \delta t = eA \mathrm{l}\mathrm{o}\mathrm{g} t on a Lie algebra g determines
a direct-sum decomposition

g = W\lambda 1 \oplus \cdot \cdot \cdot \oplus W\lambda k
, (1.3.2)

for some k \in \BbbN and real numbers \lambda k > \cdot \cdot \cdot > \lambda 1 \geq 1 --- which are called
weights of the homogeneous structure --- such that, if we set W\lambda = 0 whenever
\lambda /\in \{ \lambda 1, . . . , \lambda k\} , then

[W\lambda ,W\lambda \prime ] \subseteq W\lambda +\lambda \prime for all \lambda , \lambda \prime \geq 1 (1.3.3)

(the spaces W\lambda are the eigenspaces of the derivation A, and \lambda 1, . . . , \lambda k are its
eigenvalues). Vice versa, such a direct-sum decomposition determines a family
of automorphic dilations \delta t on g by setting

\delta t(v) = t\lambda v for v \in W\lambda .

The existence of such a decomposition implies that a homogeneous Lie algebra
is nilpotent. Notice that, conversely, not every nilpotent Lie algebra admits
expanding automorphisms (see [Dye70]).

In the case the weights \lambda 1, . . . , \lambda k are all integers, then the direct-sum de-
composition is called a gradation of g, and a graded Lie algebra is a Lie algebra
with a fixed gradation (i.e., with a fixed homogeneous structure with integral
weights).

In general, if \lambda 1, . . . , \lambda k have a common rational multiple, then g has an
equivalent homogeneous structure which is graded. If this is not the case, it is
nevertheless possible to re-index the subspaces W\lambda of the decomposition (1.3.2),
replacing \lambda 1, . . . , \lambda n with positive integers, in such a way that (1.3.3) continues
to hold (see [Mil80], Proposition 1.1). This means that, if a (nilpotent) Lie al-
gebra admits automorphic dilations, then it admits also a gradation. However,
it should be noticed that this re-indexing may give an homogeneous structure
not equivalent to the original one, and in general it does not preserve the ho-
mogeneous decomposition of the universal enveloping algebra.

A stratification of a Lie algebra g is a gradation g = W1 \oplus \cdot \cdot \cdot \oplus Wn such
that W1 generates g as a Lie algebra, i.e., such that

[W1,Wj ] = Wj+1

for j = 1, . . . , n  - 1. A stratified Lie algebra is a Lie algebra with a fixed
stratification (i.e., it is a graded Lie algebra whose associated gradation is a
stratification). There exist Lie algebras which have expanding automorphisms
(and therefore admit a gradation), but which are not stratifiable, i.e., they do
not admit a stratification (see, e.g., the group G6,23 in \S 4.4.4).

A homogeneous (resp. graded, stratified) Lie group is a connected, simply
connected Lie group G whose Lie algebra g is homogeneous (resp. graded, strat-
ified). If G is a homogeneous Lie group, then the automorphic dilations \delta t on
g corresponds, via the exponential map, to automorphisms of G, which will be
also denoted by \delta t. The Haar measure \mu G on G is homogeneous with respect to
this family of dilations:

\mu G(\delta t(B)) = tQ\delta \mu G(B) for all Borel B \subseteq G and t > 0.
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A homogeneous norm on a homogeneous Lie group G with dilations \delta t is a
continuous function | \cdot | \delta : G\rightarrow [0,+\infty [ such that, for all x \in G:

\bullet | x| \delta = 0 if and only if x is the identity of G;

\bullet | x - 1| \delta = | x| \delta ;

\bullet | \delta t(x)| \delta = t| x| \delta for all t > 0.

A homogeneous norm | \cdot | \delta is quasi-subadditive:

| xy| \delta \leq c(| x| \delta + | y| \delta ) for all x, y \in G, (1.3.4)

for some constant c > 0; moreover, two homogeneous norms | \cdot | \delta , | \cdot | \prime \delta on the
same homogeneous Lie group G are equivalent:

C - 1| x| \delta \leq | x| \prime \delta \leq C| x| \delta for all x \in G,

for some constant C \geq 1 (see [Goo77], \S 3, or [Goo76], \S 1.2). In particular, each
homogeneous norm on G is equivalent to the following ones:

| x| \delta ,1 =
k\sum 
j=1

| xj | 
1/\lambda j

j , | x| \delta ,\infty = max
1\leq j\leq k

| xj | 
1/\lambda j

j , (1.3.5)

where x = x1 + \cdot \cdot \cdot + xk is the decomposition of x \in g according to (1.3.2), and
| \cdot | j is a norm on W\lambda j

. On the other hand, on every homogeneous group there
exists a homogeneous norm which is subadditive (i.e., (1.3.4) holds with c = 1)
and smooth off the origin (see [HS90]).

Notice that, for every nilpotent Lie group G, the function | \cdot | given by (1.3.1)
can be considered as a homogeneous norm, if G is thought of as an abelian group
(with the additive structure of g) with a suitable gradation (defined by the
supplementaries Vj); the homogeneous dimension associated to this (abelian)
gradation coincides with the degree QG of polynomial growth of G (with respect
to the original algebraic structure). If G is stratified, then (for a suitable choice
of the Vj) the function | \cdot | is also a homogeneous norm with respect to the original
(possibly non-abelian) structure of G, so that the degree of polynomial growth
of G coincides with its homogeneous dimension; moreover, every subadditive
homogeneous norm on G is also a connected modulus on G. For a general
homogeneous Lie group, we have the following (cf. also [Jen79]):

Proposition 1.3.3. Let G be a homogeneous Lie group, with dilations \delta t and
homogeneous dimension Q\delta , and let | \cdot | \delta be a homogeneous norm on G. Let
| \cdot | : G\rightarrow [0,+\infty [ be defined as in (1.3.1), and let QG be the degree of polynomial
growth of G.

(i) One has Q\delta \geq QG, with equality if and only if G is stratified4.

(ii) There exist a, b, c > 0 such that

c - 1| x| a\delta \leq | x| \leq c| x| b\delta (1.3.6)

for x \in G large (i.e., off a compact neighborhood of the identity). The
same inequality holds with | \cdot | replaced by any connected modulus on G.
Moreover, we can take a = b = 1 if and only if G is stratified.

4We remark that ``stratified"" for a homogeneous group means not only that the Lie algebra
of the group admits a stratification (which is the meaning of ``stratifiable""), but also that the
fixed homogeneous structure on the Lie algebra yields a stratification.
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Proof. (i) Decompose g as in (1.3.2). Notice that the subspaces g[s] composing
the descending central series are characteristic ideals of g; since the dilations \delta t
are automorphisms, the g[s] are homogeneous. A homogeneous element of g[s],
being the sum of s-fold iterated commutators of homogeneous elements of g, has
a homogeneity degree which must be the sum of n of the homogeneity degrees
\lambda 1 < \cdot \cdot \cdot < \lambda k of the elements of g; since all these degrees are not less than 1,
the sum is not less than n, therefore g[s] \cap W\lambda = \{ 0\} if \lambda < s, so that

g[s] \subseteq 
\bigoplus 
\lambda \geq s

W\lambda . (1.3.7)

In particular, if G is n-step,

QG =
n\sum 
s=1

dim g[s] \leq 
n\sum 
s=1

\sum 
\lambda \geq s

dimW\lambda \leq 
k\sum 
j=1

\lfloor \lambda j\rfloor dimW\lambda j
\leq Q\delta . (1.3.8)

We already know that, if G is stratified, then QG = Q\delta . Conversely, if
QG = Q\delta , then all the inequalities in (1.3.8) must be equalities; this means first
of all that the degrees \lambda 1, . . . , \lambda k are integers --- i.e., G is graded --- and secondly
that the inclusion (1.3.7) is an equality, so that Ws \subseteq g[s], but then necessarily
W1 generates g --- i.e., G is stratified.

(ii) By the explicit definition of | \cdot | in Proposition 1.3.1 and the equivalence
of | \cdot | \delta with one of the homogeneous norms in (1.3.5), the inequality (1.3.6)
follows easily. Since moreover, by Proposition 1.3.1, | \cdot | is equivalent in the
large to any connected modulus on G, clearly a connected modulus can replace
| \cdot | in (1.3.6).

If G is stratified, then | \cdot | \delta is (modulo equivalence of homogeneous norms)
of the form (1.3.1), with a choice of the supplements Vj possibly different to
the one defining | \cdot | ; by Proposition 1.3.1, | \cdot | \delta is equivalent in the large to any
connected modulus, and then also to | \cdot | . Conversely, since

\mu G(\{ x \in G : | x| < r\} ) \sim rQG , \mu G(\{ x \in G : | x| \delta < r\} ) \sim rQ\delta 

for r large, if (1.3.6) holds with a = b = 1, then necessarily QG = Q\delta , and the
conclusion follows by (i).

On a homogeneous Lie group G with a homogeneous norm | \cdot | \delta , the Schwartz
space \scrS (G) can be characterized as follows: a function f \in \scrE (G) belongs to the
Schwartz class if and only if, for some p \in [1,\infty ],

(1 + | \cdot | \delta )mDf \in Lp(G)

for all m \in \BbbN and D \in \frakD (G).

1.3.3 Rockland operators

Let G be a homogeneous Lie group with dilations \delta t. A Rockland operator on
G is a \delta t-homogeneous left-invariant differential operator D \in \frakD (G) such that,
for every non-trivial unitary representation \pi of G, d\pi (D) is injective (as an
operator on the smooth vectors of the representation).
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1.4. Weighted subcoercive operators

Notice that, in the abelian case (G = \BbbR n), left-invariant differential operators
coincide with constant-coefficient differential operators, i.e., operators of the
form

p

\biggl( 
 - i \partial 
\partial x1

, . . . , - i \partial 

\partial xn

\biggr) 
for some polynomial p with complex coefficients, which is called the symbol of
the operator. In this case, a differential operator with symbol p is Rockland if
and only if p is \delta t-homogeneous and such that

p(x) \not = 0 for x \not = 0.

If the dilations are isotropic (\delta t(x) = tx), the notion of Rockland operator then
coincides with that of elliptic homogeneous operator with constant coefficients
on \BbbR n.

It can be shown that the existence of a Rockland operator on a homoge-
neous Lie group G implies that the degrees of homogeneity have a common
rational multiple, so that we can suppose (modulo rescaling) that G is graded
(see [Mil80] and [ER97]). This allows us to state in the context of homogeneous
groups the Helffer-Nourrigat theorem (see [HN79], and also [HN85]), which is a
characterization of Rockland operators in terms of hypoellipticity. Recall that
a differential operator L on G is said to be hypoelliptic if, for every u \in \scrD \prime (G)
and every open set \Omega \subseteq G,

(Lu)| \Omega \in \scrE (\Omega ) =\Rightarrow u| \Omega \in \scrE (\Omega ).

Theorem 1.3.4. Let G be a homogeneous Lie group, and let L \in \frakD (G).

\bullet If L is homogeneous, then L is Rockland if and only if it is hypoelliptic.

\bullet If the principal part of L (with respect to the homogeneous structure) is
Rockland, then L is hypoelliptic.

Several regularity results have been proved for this class of operators, e.g.,
heat kernel estimates (see [AER94]). We will consider these properties in the
more general framework of weighted subcoercive operators.

1.4 Weighted subcoercive operators

As we have just seen, the class of Rockland operators contains, as a particular
case, the constant-coefficient homogeneous elliptic operators on \BbbR n. The no-
tion of (strongly) elliptic operator can in fact be extended to manifolds, and
most of the properties valid in \BbbR n can be obtained also in this wider setting,
where \BbbR n plays the role of ``local approximation"", and constant-coefficient op-
erators are somehow the model case. In particular, for connected Lie groups,
a thorough analysis of left-invariant elliptic operators can be found in [Rob91],
where ``Gaussian"" estimates are obtained for the heat kernel of a positive elliptic
operator, in terms of an invariant Riemannian metric.

On the other hand, on manifolds, and in particular on Lie groups, non-
commutativity of vector fields naturally arises, and makes it possible to consider
classes of differential operators which, although not elliptic, share nevertheless
some of the good properties of elliptic operators. For instance, if one considers a
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Chapter 1. Differential operators on Lie groups

system X1, . . . , Xn of vector fields which satisfy the H\"ormander condition (i.e.,
for some m \in \BbbN , the span of X1, . . . , Xn and their iterated commutators up
to order m is the whole tangent space in each point of the manifold), then the
associated sublaplacian

 - (X2
1 + \cdot \cdot \cdot +X2

n)

is hypoelliptic (see [H\"or67]). Moreover, in the case of a left-invariant sublapla-
cian on a connected Lie group, good estimates for the heat kernel can also be
proved (see, e.g., [VSC92]), where now the Riemannian metric is replaced by a
Carnot-Carath\'eodory (or subriemannian, or control) distance associated to the
system X1, . . . , Xn (see also [NSW85]).

At some point (see [Fol77], [RS76], [Goo76]), it has been realized that the
study of such differential operators could be performed by the use of a ``local
approximation"" in terms of left-invariant homogeneous operators on a homoge-
neous nilpotent Lie group, which may be a simpler setting than the original one,
but at the same time allows to preserve some of the non-commutative structure
(in contrast to the Euclidean local approximation used for elliptic operators).

There are several approaches for defining such a local approximation. Here
we will consider the procedure of contraction of a Lie algebra g, which produces
a homogeneous Lie algebra g\ast with the same linear dimension as g; notice that
a Lie algebra g admits several non-equivalent contractions, and one of them is
Euclidean (i.e., abelian and isotropic). For the study of left-invariant differential
operators on connected Lie groups, this technique has been exploited, among
others (see [NRS90], [Heb92]), by ter Elst and Robinson [ER98], who have
introduced the notion of weighted subcoercive operator.

As we will see, a positive left-invariant differential operator on a connected
Lie group G is weighted subcoercive if and only if it is ``locally Rockland"", i.e.,
it corresponds on a suitable contraction of the Lie algebra g to an operator
whose principal part is Rockland. In particular, every elliptic positive left-
invariant differential operator on G is weighted subcoercive (with respect to
the Euclidean contraction), but also every left-invariant sublaplacian on G is
weighted subcoercive (with respect to a different, possibly non-commutative
contraction).

In this section, we summarize and slightly amplify some of the results of
[ER98] on weighted subcoercive operators, in particular the Gaussian heat kernel
estimates, which are crucial for our multiplier theorems.

1.4.1 Weighted algebraic bases and contraction of a Lie
algebra

An algebraic basis of a Lie algebra g is a system A1, . . . , Ad of linearly inde-
pendent elements of g which generate g as a Lie algebra. A weighted algebraic
basis is an algebraic basis A1, . . . , Ad together with an assignment of a weight
wj \in [1,+\infty [ to each Aj (j = 1, . . . , d).

Fix a weighted algebraic basis on g. We introduce now a notation, which is
analogous to the multi-index notation for partial derivatives on \BbbR n, but which
takes care of the non-commutative structure. Let J(d) be the set of finite
sequences of elements of \{ 1, . . . , d\} , and J+(d) be the subset of non-empty se-
quences. For every \alpha = (\alpha 1, . . . , \alpha k) \in J(d), let | \alpha | denote the length k of \alpha ,
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1.4. Weighted subcoercive operators

and set

\| \alpha \| =
k\sum 
j=1

w\alpha j
,

A\alpha = A\alpha 1A\alpha 2 \cdot \cdot \cdot A\alpha n
(as an element of U(g)),

A[\alpha ] = [[. . . [A\alpha 1 , A\alpha 2 ], . . . ], A\alpha k
] if \alpha \in J+(d).

The fixed weighted algebraic basis defines an (increasing) filtration on g:

F\lambda = span\{ A[\alpha ] : \alpha \in J+(d), \| \alpha \| \leq \lambda \} for \lambda \in \BbbR ;

we have in fact

[F\lambda , F\mu ] \subseteq F\lambda +\mu , F\lambda =
\bigcap 
\mu >\lambda 

F\mu ,
\bigcup 
\lambda \in \BbbR 

F\lambda = g.

We can then consider the associated homogeneous Lie algebra: in fact, such a
filtration determines a finite set of weights \lambda 1, . . . , \lambda k, with

1 \leq \lambda 1 < \cdot \cdot \cdot < \lambda k,

defined by the condition F\lambda j \not =
\bigcup 
\mu <\lambda j

F\mu for j = 1, . . . , k; if we put

F - \lambda =
\bigcup 
\mu <\lambda 

F\mu , W\lambda = F\lambda /F
 - 
\lambda ,

then
g\ast =

\bigoplus 
\lambda \in \BbbR 

W\lambda = W\lambda 1 \oplus \cdot \cdot \cdot \oplus W\lambda k

is a homogeneous Lie algebra, with weights \lambda 1, . . . , \lambda k. The homogeneous Lie
algebra g\ast , which has the same dimension as g, is said to be the contraction of
g with respect to the fixed weighted algebraic basis.

The weighted algebraic basis is called a reduced basis of g if5

span\{ Aj : wj = \lambda \} \cap F - \lambda = \{ 0\} for all \lambda . (1.4.1)

Given a weighted algebraic basis, it is always possible to remove some elements
from it, in order to obtain a reduced basis of g which defines the same filtration.

Notice that, if the Lie algebra g is homogeneous as in (1.3.2), every algebraic
basis A1, . . . , Ad of g made of homogeneous elements, with the weights equal to
the respective homogeneity degrees, is a reduced basis; such a basis is said to
be adapted to the homogeneous structure of g. In this case we have F\lambda =

5Our definition of reduced basis is more restrictive than the definition given in \S 2 of [ER98],
where it is only required that Aj /\in F - wj

; however, without our restriction, the fundamental

Lemma 2.2 of [ER98], which allows to extend the reduced basis to a linear basis compatible
with the associated filtration F\lambda , is false, as it is shown by the following example. On the free
3-step nilpotent Lie algebra on two generators, defined by

[X1, X2] = Y, [X1, Y ] = T1, [X2, Y ] = T2,

the weighted algebraic basis X1, X2, Y +T1, T1, T2, with weights 1, 1, 3, 3, 3, is reduced accord-
ing to [ER98], but it not compatible with the associated filtration, and cannot be extended
since it is already a linear basis.
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W\lambda \oplus F - \lambda , so that in particular the corresponding homogeneous contraction g\ast 
is canonically isomorphic to g.

Consider now a general Lie algebra g, with a fixed reduced basis. Then
the weights w1, . . . , wd of the basis are among the weights \lambda 1, . . . , \lambda k of the
filtration; moreover, if \=Aj is the element of the quotient Wwj corresponding to
Aj \in Vwj

, then \=A1, . . . , \=Ak is an (adapted) reduced basis of g\ast , with the same
weights w1, . . . , wk (cf. [ER98], Lemma 2.2 and Proposition 3.1). As we will see
in the following, the correspondence between the two reduced bases A1, . . . , Ak
of g and \=A1, . . . , \=Ak of g\ast determines in turn a correspondence between U(g\BbbC )
and U((g\ast )\BbbC ), i.e., between invariant differential operators on a Lie group and
invariant differential operators on a contraction.

1.4.2 Control distance

Let G be a connected Lie group, with Lie algebra g. Fix a reduced basis
A1, . . . , Ak of g, with weights w1, . . . , wk. For s \in \{ 0,\infty , \ast \} and \varepsilon > 0, let
Cs(\varepsilon ) be the set of absolutely continuous curves \gamma : [0, 1] \rightarrow G such that

\gamma \prime (t) =
k\sum 
j=1

\phi j(t)Aj | \gamma (t) for a.e. t \in [0, 1],

where

| \phi j(t)| <

\left\{     
\varepsilon wj if s = 0,
\varepsilon if s = \infty ,
min\{ \varepsilon , \varepsilon wj\} if s = \ast ,

for t \in [0, 1], j = 1, . . . , k; (1.4.2)

for x, y \in G, we define then

ds(x, y) = inf\{ \varepsilon > 0 : \exists \gamma \in Cs(\varepsilon ) with \gamma (0) = x, \gamma (1) = y\} .

It is not difficult to show that d0, d\infty and d\ast are left-invariant distances on
G, compatible with the topology of G. In fact, d\infty is the classical ``unweighted""
Carnot-Carath\'eodory distance associated to the H\"ormander system A1, . . . , Ak
(cf. [VSC92], \S III.4), whereas d0 is a ``weighted"" Carnot-Carath\'eodory distance
(similar to the ones studied in [NSW85]). Moreover, for x, y \in G, we have

d0(x, y) \leq 1 \Leftarrow \Rightarrow d\infty (x, y) \leq 1 \Leftarrow \Rightarrow d\ast (x, y) \leq 1,

and the same holds with strict inequalities. Finally,

d\ast (x, y) =

\Biggl\{ 
d0(x, y) for d\ast (x, y) \leq 1,
d\infty (x, y) for d\ast (x, y) \geq 1.

We call d\ast the control distance associated to the fixed reduced basis.6.

6Notice that the definition of the control distance by ter Elst and Robinson in \S 6 of [ER98]
(see also [ER94]) is different from the one given here, and coincides with our distance d0.
Their definition has the advantage that, in the case of a homogeneous group with an adapted
basis, the modulus | \cdot | 0 induced by d0 is a homogeneous norm; on the other hand, this shows
that in general | \cdot | 0 is not a connected modulus (a homogeneous norm on a homogeneous
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The control distance d\ast induces a control modulus | \cdot | \ast on G, given by

| g| \ast = d\ast (e, g),

which is in fact a connected modulus (since d\ast coincides with d\infty in the large).
Moreover, if Br denotes the d\ast -ball with radius r centered at the identity of G,
then we have

\mu (Br) \sim rQ\ast for r \leq 1,

where Q\ast is the homogeneous dimension of the contraction g\ast (see [ER98],
Proposition 6.1). On the other hand, since | \cdot | \ast is a connected modulus, the
growth rate of \mu (Br) for r large coincides with the (intrinsic) volume growth of
the group G; in particular, if G has polynomial growth of degree QG, then

\mu (Br) \sim rQG for r \geq 1.

1.4.3 Weighted subcoercive forms and operators

Let G be a connected Lie group, and fix a reduced basis A1, . . . , Ad of its Lie
algebra g, with weights w1, . . . , wd. In this context, a form is an element of the
free (non-commutative associative unital) algebra over \BbbC on d indeterminates
X1, . . . , Xd; in other words, a form is a function C : J(d) \rightarrow \BbbC null off a finite
subset of J(d), which can be thought of as the non-commutative polynomial\sum 

\alpha \in J(d)

C(\alpha )X\alpha .

The degree of the form C is the number

max\{ \| \alpha \| : \alpha \in J(d), C(\alpha ) \not = 0\} .

If C is a form of degree m, its principal part is the form P : J(d) \rightarrow \BbbC which is
given by the sum of the terms of C of degree m:

P (\alpha ) =

\Biggl\{ 
C(\alpha ) if \| \alpha \| = m,
0 otherwise.

A form is said to be homogeneous if it equals its principal part. The adjoint of
a form C is the form C+ defined by

C+(\alpha ) = ( - 1)| \alpha | C(\alpha \ast ),

where \alpha \ast = (\alpha k, . . . , \alpha 1) if \alpha = (\alpha 1, . . . , \alpha k).

group is a connected modulus if and only if the group is stratified, see Proposition 1.3.3).
Nevertheless, in the whole papers [AER94], [ER94], [ER98] it is understood that | \cdot | 0 is a
connected modulus.

By a careful examination of the proofs, one sees that the specific properties of d0 are used
only for small distances, whereas in the large only connectedness is used. Therefore, our
modified definition of the control distance d fixes the problem (as it has been confirmed to us
by ter Elst in a private communication). As a side-effect, since d\ast \geq d0 everywhere, the heat
kernel estimates obtained with this modification (see Theorem 1.4.1(e)) are stronger than the
ones claimed by ter Elst and Robinson (which are therefore true a posteriori).

27



Chapter 1. Differential operators on Lie groups

To each form C, we associate the differential operator dRG(C) \in \frakD (G)
defined by

dRG(C) =
\sum 

\alpha \in J(d)

C(\alpha )A\alpha .

Notice that, by definition, we have clearly

dRG(C+) = dRG(C)+.

More generally, if \pi is a representation of G, we define

d\pi (C) = d\pi (dRG(C)) =
\sum 

\alpha \in J(d)

C(\alpha )d\pi (A)\alpha .

If \pi is a representation of G on a Banach space \scrV , we define seminorms and
norms on (subspaces of) \scrV by

N\pi ,s(x) = max
\alpha \in J(d)
\| \alpha \| =s

\| dU(X\alpha )x\| \scrV ,

\| x\| \pi ,s = max
\alpha \in J(d)
\| \alpha \| \leq s

\| dU(X\alpha )x\| \scrV ,

for s \in \BbbR , s \geq 0. If \pi is the right regular representation of G on Lp(G), we use
the alternative notation Np;s, \| \cdot \| p;s.

A form C of degree m is said to be weighted subcoercive on G if m/wi \in 2\BbbN 
for i = 1, . . . , d and if moreover the corresponding operator satisfies a local
G\r arding inequality : there exist \mu > 0, \nu \in \BbbR and an open neighborhood V of
the identity e \in G such that

\Re \langle \phi , dRG(C)\phi \rangle \geq \mu (N2;m/2(\phi ))2  - \nu \| \phi \| 22

for all \phi \in \scrD (G) with supp\phi \subseteq V . In this case, the operator dRG(C) is called
a weighted subcoercive operator .

Let g\ast be the homogeneous contraction of g, and G\ast be the connected,
simply connected Lie group corresponding to g\ast . Since A1, . . . , Ad induces a
reduced weighted algebraic basis \=A1, . . . , \=Ad on g\ast (with the same weights), we
can associate to a form C both a differential operator dRG(C) on G and a
differential operator dRG\ast (C) on G\ast , which is a homogeneous group: in some
sense, dRG\ast (C) is the ``local counterpart"" of the operator dRG(C). The next
theorem, which is the fundamental result of ter Elst and Robinson [ER98],
clarifies the relationship between the two operators, and substantiates the ideas
previously described.

Theorem 1.4.1. Let C be a form of degree m, whose principal part is P , such
that m/wi \in 2\BbbN for i = 1, . . . , d. The following are equivalent:

(i) C is a weighted subcoercive form on G;

(ii) P is a weighted subcoercive form on G;

(iii) C is a weighted subcoercive form on G\ast ;

(iv) dRG\ast (P + P+) is a positive Rockland operator on G\ast ;
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1.4. Weighted subcoercive operators

(v) there are constants \mu > 0, \nu \in \BbbR such that, for every unitary representa-
tion \pi of G on a Hilbert space \scrH ,

\Re \langle x, d\pi (C)x\rangle \geq \mu \| x\| 2\pi ,m/2  - \nu \| x\| 2\scrH 
for all x \in \scrH \infty ;

(vi) there is a constant \mu > 0 such that, for every unitary representation \pi of
G\ast on a Hilbert space \scrH ,

\Re \langle x, d\pi (P )x\rangle \geq \mu (N\pi ,m/2(x))2

for all x \in \scrH \infty .

Moreover, if these conditions are satisfied, for every representation \pi of G on a
Banach space \scrV , we have:

(a) the closure of d\pi (C) generates a continuous semigroup \{ St\} t\geq 0 on \scrV ;

(b) for t > 0, St(\scrV ) \subseteq \scrV \infty , and moreover

\scrV \infty =
\infty \bigcap 
n=1

D(d\pi (C)
n
);

(c) if \pi is unitary, then d\pi (C) = d\pi (C+)\ast ;

(d) there exists a representation-independent kernel kt \in L1;\infty \cap C\infty 0 (G) (for
t > 0) such that

d\pi (X\alpha )Stx = \pi (A\alpha kt)x =
\int 
G

(A\alpha kt)(g)\pi (g - 1)x dg

for all \alpha \in J(d), t > 0, x \in \scrV ;

(e) the kernel satisfies the following ``Gaussian"" estimates: for all \alpha \in J(d)
there exist b, c, \omega > 0 such that

| A\alpha kt(g)| \leq ct - 
Q\ast +\| \alpha \| 

m e\omega te
 - b
\Bigl( | g| m\ast 

t

\Bigr) 1/(m - 1)

for all t > 0 and g \in G, where Q\ast is the homogeneous dimension of g\ast 
and | \cdot | \ast is the control modulus;

(f) for all \rho \geq 0, the map t \mapsto \rightarrow kt is continuous ]0,\infty [ \rightarrow L1;\infty (G, e\rho | x| \ast dx)
and, for all \alpha \in J(d), there exist c, \omega > 0 such that

\| A\alpha kt\| L1(G,e\rho | x| \ast dx) \leq ct - 
\| \alpha \| 
m e\omega t;

(g) the function

k(t, x) =

\Biggl\{ 
0 for t \leq 0,
kt(x) for t > 0,

on \BbbR \times G satisfies \biggl( 
\partial 

\partial t
+ dRG(C)

\biggr) 
k = \delta 

in the sense of distributions, where \delta is the Dirac delta at the identity of
\BbbR \times G.
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Proof. This theorem is a summary of results of [ER98].
More specifically: the equivalence of (i), (ii), (iii) and (iv) follows from The-

orem 10.1 of [ER98]; (v) implies (i) by choosing as \pi the regular representation
on L2(G); vice versa, (iii) implies (v) by Theorem 9.2 of [ER98]; (vi) corre-
sponds to (v) with C = P , \nu = 0, G = G\ast , so that (vi) implies that P is
weighted subcoercive on G\ast , but then, by the previous equivalences, we get (i)-
(iv); conversely, (vi) can be obtained from (v) with C = P , G = G\ast by the use
of homogeneity and dilations, but in fact it is obtained directly from (iii) in the
proof of Lemma 5.1 of [ER98].

The remaining statements are contained in Theorems 1.1, 7.2, 8.2 and Corol-
lary 8.3 of [ER98], except for (f), since in Theorem 7.2 of [ER98] it is only stated
that the map t \mapsto \rightarrow kt is continuous ]0,\infty [ \rightarrow L1(G, e\rho | x| \ast dx). However, by inte-
gration of the Gaussian estimates (e), we for all \alpha \in J(d) we obtain

\| A\alpha kt\| L1(G,e\rho | x| \ast dx) \leq ct - 
Q\ast +\| \alpha \| 

m e\omega t
\int \infty 

0

e - b(
rm

t )1/(m - 1)

e\sigma rrQ\ast  - 1 dr

= ct - 
\| \alpha \| 
m e\omega t

\int \infty 

0

e - br
m/(m - 1)

e\sigma t
1/mrrQ\ast  - 1 dr

for some b, c, \omega , \sigma > 0; for t \leq 1, the last integral is less than\int \infty 

0

e - br
m/(m - 1)

e\sigma rrQ\ast  - 1 dr,

which is finite, whereas, for t \geq 1, the integral is less than

\int \infty 

0

e - b(
rm

t )1/(m - 1)

e\sigma rrQ\ast  - 1 dr =
\int (2\sigma /b)m - 1t

0

+
\int \infty 

(2\sigma /b)m - 1t

\leq 
\int (2\sigma /b)m - 1t

0

e\sigma rrQ\ast  - 1 dr +
\int \infty 

0

e - \sigma rrQ\ast  - 1 dr \leq c\prime e\sigma 
\prime t,

for some c\prime , \sigma \prime > 0, and putting all together we obtain the required estimates.
Moreover, by the semigroup property, we have

A\alpha (kt+s) = kt \ast (A\alpha ks) (1.4.3)

and, since A\alpha ks \in L1(G, e\rho | x| \ast dx) by the Gaussian estimates (e), the required
continuity follows from the properties of convolution.

Corollary 1.4.2. With the notation of the previous theorem, if C is a weighted
subcoercive form on G, then the function k(t, x) = kt(x) is smooth off the iden-
tity of \BbbR \times G and the operator dRG(C) is hypoelliptic.

Proof. From Theorem 1.4.1(g) we deduce that, for every r \in \BbbN \setminus \{ 0\} , the distri-
bution

(\partial rt  - ( - dRG(C))r)k

is supported in the origin of \BbbR \times G. In particular, if \phi \in \scrD (]0,+\infty [) and
\psi \in \scrD (G), we get

\langle (\partial rt  - ( - dRG(C))r)k, \phi \otimes \psi \rangle = 0,
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1.4. Weighted subcoercive operators

which can be rewritten as

( - 1)r
\int \infty 

0

\langle kt, \psi \rangle \phi (r)(t) dt =
\int \infty 

0

\langle ( - dRG(C))rkt, \psi \rangle \phi (t) dt.

Since both t \mapsto \rightarrow kt and t \mapsto \rightarrow ( - dRG(C))rkt are continuous ]0,+\infty [ \rightarrow L1(G) by
Theorem 1.4.1(f), this identity holds also for all \psi \in C0(G). In other words, for
all \psi \in C0(G), the r-th distributional derivative of the function

t \mapsto \rightarrow \langle kt, \psi \rangle 

on ]0,+\infty [ is the map
t \mapsto \rightarrow \langle ( - dRG(C))rkt, \psi \rangle ;

since all these derivatives are continuous, the function t \mapsto \rightarrow \langle kt, \psi \rangle is smooth on
]0,+\infty [, so that also the map t \mapsto \rightarrow kt is smooth ]0,+\infty [ \rightarrow L1(G). But then
from (1.4.3) it follows easily that, for all \alpha \in J(d), the map t \mapsto \rightarrow A\alpha kt is smooth
]0,+\infty [ \rightarrow L1(G), i.e., that t \mapsto \rightarrow kt is smooth ]0,+\infty [ \rightarrow L1;\infty (G). By Sobolev's
embedding, we then get that t \mapsto \rightarrow kt is smooth ]0,+\infty [ \rightarrow \scrE (G); this gives that
k is smooth on ]0,+\infty [ \times G, and the Gaussian estimates of Theorem 1.4.1(e)
show that k can be extended smoothly by zero to the whole \BbbR \times G \setminus \{ (0, e)\} .

Notice that k\ast t is the kernel of dRG(C+), which is also a weighted subcoercive
operator. If we put

\~k(t, x) =

\Biggl\{ 
0 if t \geq 0,
k\ast  - t if t \leq 0,

we then have that \~k is smooth on \BbbR \times G \setminus \{ (0, e)\} and satisfies

( - \partial t + dRG(C+))\~k = \delta 

in the sense of distributions. By arguing analogously as in the proof of Theo-
rem 52.1 of [Tr\`e67], we obtain that \partial t + dRG(C) is hypoelliptic on \BbbR \times G, and
the hypoellipticity of dRG(C) on G follows immediately.

Corollary 1.4.3. With the notation of Theorem 1.4.1, if C is a weighted sub-
coercive form on G, then, for every D \in \frakD (G), \beta \geq 0 and every neighborhood
U of the identity e \in G,

lim
t\rightarrow 0+

t - \beta 
\int 
G\setminus U

| Dkt(x)| dx = 0. (1.4.4)

Moreover, (kt)t>0 is an approximate identity on G for t\rightarrow 0+.

Proof. If R > 0 is such that

\{ x \in G : | x| \ast < R\} \subseteq U,

then, by Theorem 1.4.1(e), for t \leq 1 we have

t - \beta 
\int 
G\setminus U

| Dkt(x)| dx \leq ct - \gamma 
\int +\infty 

R

e - b(r
m/t)1/(m - 1)

e\sigma r dr

for some c, b, \sigma , \gamma > 0. On the other hand, for t \leq 1 and r \geq R,

t - \gamma e - b(r
m/t)1/(m - 1)

e\sigma r \leq e - b(r
m

m - 1 - R
m

m - 1 )+\sigma re - \gamma \mathrm{l}\mathrm{o}\mathrm{g} t - bR
m

m - 1 t
 - 1

m - 1
,
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Chapter 1. Differential operators on Lie groups

where the first factor on the right-hand side is integrable on ]R,+\infty [ and does
not depend on t, whereas the second factor is infinitesimal for t\rightarrow 0+ and does
not depend on r; the limit (1.4.4) then follows by dominated convergence.

In particular, we have

lim
t\rightarrow 0+

\int 
G\setminus U

| kt(x)| dx = 0,

and moreover, by Theorem 1.4.1(f), the norms \| kt\| 1 are uniformly bounded for
t small. Finally, if \pi is the trivial representation of G on \BbbC and if

c = d\pi (C)1,

then by Theorem 1.4.1(d) we have\int 
G

ht(x) dx = \pi (ht)1 = e - tc,

which tends to 1 as t\rightarrow 0+.

1.4.4 Examples

Theorem 1.4.1, which contains the announced relationship between Rockland
operators and weighted subcoercive operators, however does not imply immedi-
ately that every positive Rockland operator is weighted subcoercive. Neverthe-
less, this is true:

Proposition 1.4.4. Suppose that G is a homogeneous Lie group. Then there
exists an adapted basis A1, . . . , Ad of g such that

span\{ A1, . . . , Ad\} \cap [g, g] = 0.

With respect to such a basis, for every positive Rockland operator L of degree m,
there exists a homogeneous form of degree m such that dRG(P ) = L; moreover,
such a form is weighted subcoercive.

Proof. See [ER97], Lemmata 2.2 and 2.4, and Theorem 2.5; see also [ER98],
Example 4.4.

On the other hand, it is easy to check that, for every choice of an algebraic
basis A1, . . . , Ad of a Lie algebra g, the assignment of weights all equal to 1
always gives a reduced basis, and that the corresponding contraction g\ast is strat-
ified. In particular, the sublaplacian L =  - (A2

1 + \cdot \cdot \cdot + A2
d) corresponds to a

homogeneous sublaplacian on the stratified contraction, which is Rockland, and
therefore L is weighted subcoercive. Moreover, if A1, . . . , Ad linearly generate
g, then the contraction g\ast is Euclidean (abelian and isotropic), and it is not
difficult to prove that positive elliptic operators are weighted subcoercive with
respect to this contraction.
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Chapter 2

Smoothness conditions

While the previous chapter was devoted to the ``group side"" --- i.e., to the notions
and results related to Lie groups and differential operators --- the present chapter
focuses on the ``spectral side"" --- i.e., on the environment where the (joint)
multiplier function is defined. Although one could consider the joint spectrum
of a system of operators as an abstract space (namely, the Gelfand spectrum of
some commutative C\ast -algebra), generally an embedding of the spectrum into
some \BbbR n will be fixed, so that the multiplier will be thought of as a Borel
function \BbbR n \rightarrow \BbbC . Consequently, in order to impose smoothness conditions
on the multiplier, we can use all the machinery of classical real and harmonic
analysis, particularly the Fourier transform

\scrF f(\xi ) =
\int 

\BbbR n

f(x) e - ix\cdot \xi dx.

Smoothness conditions will be in fact expressed in terms of Besov spaces.
This choice is certainly not new in the context of spectral multiplier theo-
rems (see, e.g., [DM87] or [Ale94]). Besov spaces Bsp,q(\BbbR n) allow us to consider
smoothness conditions of fractional order s \in \BbbR and of Lp flavour for 1 \leq p \leq \infty ;
in particular, for p = 2, they include the classical Sobolev (or Bessel potential)
spaces, whereas for p = \infty they include the H\"older spaces. Moreover, they
have a very good behaviour under (real and complex) interpolation, which is a
particularly useful tool in lowering regularity thresholds of multiplier theorems.

In order to formulate conditions of Marcinkiewicz type, we need a way of
requiring different orders of smoothness independently on the different factors
of a product

\BbbR \vec{}n = \BbbR n1 \times \cdot \cdot \cdot \times \BbbR n\varrho .

This is achieved by considering Besov spaces with dominating mixed smooth-
ness1 S\vec{}sp,qB(\BbbR \vec{}n), in which the order of smoothness is a vector \vec{}s = (s1, . . . , s\varrho )
of real numbers (the idea is that, if s1, . . . , s\varrho > 0, the maximum order of dif-
ferentiability s1 + \cdot \cdot \cdot + s\varrho is reached only by mixed derivatives).

Whereas an enormous amount of literature exists about Besov spaces, their
dominating-mixed-smoothness variant has not been treated to the same extent,

1For spaces with dominating mixed smoothness, we prefer the notation S\vec{}s
p,qB(\BbbR \vec{}n), with

an S prefixed, to the notation B\vec{}s
p,q(\BbbR \vec{}n), since the latter is used, in our main references, to

denote a different class of spaces, the anisotropic spaces (see, e.g., [Tri83], \S 10.1, or [ST87],
\S 2.2.2).
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and usually not in the generality which is required here; moreover, not every
property of classical Besov spaces has a straightforward multi-parameter exten-
sion (e.g., Besov spaces of dominating mixed smoothness are less flexible with
respect to interpolation). For these reasons, in the following, a sketch of the
proofs of the main properties of Besov spaces will be given, so that their (possi-
ble) generalization to the dominating-mixed-smoothness case will be apparent.
It is interesting to notice that some properties of Besov spaces (e.g., the lifting
properties) follow from an elementary version of a Fourier multiplier theorem.

Finally, conditions of Mihlin-H\"ormander and Marcinkiewicz type (i.e., local
Besov conditions which are invariant with respect to some family of dilations)
will be introduced, and their change-of-variable properties and mutual implica-
tions will be studied.

First of all, however, we need to recall some definitions and results about
interpolation of Banach spaces, and some elementary properties of the classical
Sobolev spaces.

Notice that \BbbR n is a nilpotent Lie group, therefore the contents of the pre-
vious chapter apply, particularly the notions about families of dilations and
homogeneous norms. On the other hand, here we do not need the involved
non-commutative version of the multi-index notation for translation-invariant
derivatives described in \S 1.4.1, thus we adhere to the simpler traditional com-
mutative notation.

2.1 Interpolation

This section is simply a collection of well-known results from interpolation the-
ory. For a more extensive presentation see, e.g., [BL76], [Tri78a], [BK91].

2.1.1 Banach couples and interpolation functors

A Banach couple is a pair X = (X0, X1) of Banach spaces, such that there exists
a Hausdorff topological vector space V in which both X0, X1 are continuously
included; in this case, we can define

\Delta (X) = X0 \cap X1, \Sigma (X) = X0 +X1

as subspaces of V , which are in fact Banach spaces with norms

\| x\| \Delta (X) = max\{ \| x\| X0 , \| x\| X1\} , \| x\| \Sigma (X) = inf
x=x0+x1

(\| x0\| X0 + \| x1\| X1).

A morphism of Banach couples T : X \rightarrow Y is a pair (T0, T1) of bounded
linear maps Tj : Xj \rightarrow Yj , whose restrictions to \Delta (X) coincide, and define then
a bounded linear map T\Delta : \Delta (X) \rightarrow \Delta (Y ). In this case, the maps T0, T1 can
be pasted together to obtain a bounded linear map T\Sigma : \Sigma (X) \rightarrow \Sigma (Y ).

An intermediate space for a Banach couple X is a Banach space X such that

\Delta (X) \subseteq X \subseteq \Sigma (X),

with continuous inclusions.
An interpolation functor is a functor F from the category of Banach couples

to the category of Banach spaces such that:
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\bullet for all Banach couples X, F (X) is an intermediate space for X;

\bullet for all morphisms T : X \rightarrow Y of Banach couples, we have

F (T ) = T\Sigma | F (X).

In other words, an interpolation functor F is a choice of an intermediate space
F (X) for each Banach couple X, such that, for every morphism of Banach
couples T : X \rightarrow Y , the restriction T\Sigma | F (X) is bounded F (X) \rightarrow F (Y ).

For \theta \in [0, 1], an interpolation functor F is said to be exact of exponent \theta if,
for every morphism T : X \rightarrow Y of Banach couples,

\| F (T )\| F (X)\rightarrow F (Y ) \leq \| T0\| 1 - \theta X0\rightarrow Y0
\| T1\| \theta X1\rightarrow Y1

.

2.1.2 Retracts

Suppose that T : X \rightarrow Y and S : Y \rightarrow X are morphisms of Banach couples
such that S \circ T = idX (in this case, we say that X is a retract of Y via the
maps T and S). Then, for every interpolation functor F and every intermediate
space X of X, we have that F (X) = A (with equivalent norms) if and only if
the maps

T\Sigma | A : A\rightarrow F (Y ) and S\Sigma | F (Y ) : F (Y ) \rightarrow A

are continuous; in other words, F (X) is the (unique) retract of F (Y ) via (re-
strictions of) the maps T and S (cf. [BL76], Theorem 6.4.2, and [Tri78a], \S 1.2.4).

2.1.3 Real interpolation

The real interpolation method gives one of the most important examples of
interpolation functors. Recall that, for a Banach couple X, the Peetre functional
is defined by

K(t, x;X) = inf
x=x0+x1

(\| x\| X0 + t\| x| | X1).

K(t, \cdot ;X) is an equivalent norm on \Sigma (X) for every t > 0. We then set

\| x\| X\theta ,q
=
\biggl( \int +\infty 

0

(t - \theta K(t, x;X))q
dt

t

\biggr) 1/q

for 0 < \theta < 1, 1 \leq q <\infty , and also

\| x\| X\theta ,\infty = sup
t>0

t - \theta K(t, x;X)

for 0 \leq \theta \leq 1, q = \infty . By defining

X\theta ,q = \{ x \in \Sigma (X) : \| x\| X\theta ,q
<\infty \} ,

we get that X\theta ,q is an intermediate space for X, and moreover the correspon-
dence

X \mapsto \rightarrow X\theta ,q

gives an exact interpolation functor of exponent \theta ([BL76], Theorem 3.1.2).
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2.1.4 Complex interpolation

The other important example of interpolation functors is given by the complex
interpolation method . Set

S = \{ \theta + it \in \BbbC : 0 \leq \theta \leq 1, t \in \BbbR \} 

and, for a Banach couple X, let \scrF (X) be the set of the continuous and bounded
functions f : S \rightarrow \Sigma (X) which are holomorphic in the interior of S and such
that, for \theta = 0, 1, the function t \mapsto \rightarrow f(\theta + it) is continuous \BbbR \rightarrow X\theta and vanishes
at infinity; in fact, \scrF (X) is a Banach space, with norm

\| f\| \scrF (X) = max
\biggl\{ 

sup
t\in \BbbR 

\| f(it)\| X0 , sup
t\in \BbbR 

\| f(1 + it)\| X1

\biggr\} 
.

Then, for \theta \in [0, 1], the space

X [\theta ] = \{ f(\theta ) : f \in \scrF (X)\} ,

with norm
\| x\| X[\theta ]

= inf\{ \| f\| \scrF (X) : f(\theta ) = a\} ,

is a Banach space, which is an intermediate space for the couple X; moreover,
the correspondence

X \mapsto \rightarrow X [\theta ]

gives an exact interpolation functor of exponent \theta ([BL76], Theorem 4.1.2).

2.1.5 Interpolation of Lebesgue spaces

In the following, equalities between Banach spaces are meant in the sense of
equivalence of norms.

The basic result about interpolation of Lebesgue spaces is

Theorem 2.1.1. If (U, \mu ) is a measure space, 1 \leq p, p0, p1 \leq \infty , 0 < \theta < 1,
and

1
p

=
1 - \theta 

p0
+

\theta 

p1
,

then

(Lp0(U, \mu ), Lp1(U, \mu ))\theta ,p = (Lp0(U, \mu ), Lp1(U, \mu ))[\theta ] = Lp(U, \mu ).

Proof. See [BL76], Theorems 5.1.1 and 5.2.1.

For weighted Lebesgue spaces, we have the following extension of the Stein-
Weiss interpolation theorem.

Theorem 2.1.2. Let (U, \mu ) be a measure space and w0, w1 : U \rightarrow \BbbC be measur-
able and non-negative. If 1 \leq p, p0, p1 <\infty , 0 < \theta < 1, and

1
p

=
1 - \theta 

p0
+

\theta 

p1
, w = w

p(1 - \theta )/p0
0 w

p\theta /p1
1 ,

then

(Lp0(U,w0\mu ), Lp1(U,w1\mu ))\theta ,p = (Lp0(U,w0\mu ), Lp1(U,w1\mu ))[\theta ] = Lp(U,w\mu ).

36



2.2. Sobolev spaces

Proof. See [BL76], Theorems 5.4.1, 5.5.1 and 5.5.3, or [Tri78a], \S 1.18.5.

More extensive results hold for vector-valued sequence spaces. For every
Banach space A, for 1 \leq p \leq \infty , s \in \BbbR , we set

lps(A) = lps(\BbbN ;A) = \{ (am)m \in A\BbbN : \| (2ms\| am\| A)m\| p <\infty \} .

Theorem 2.1.3. Let 1 \leq p0, p1, p \leq \infty , s0, s1 \in \BbbR , 0 < \theta < 1.

(i) For every Banach space A, if s0 \not = s1 then we have

(lp0s0 (A), lp1s1 (A))\theta ,p = lp(1 - \theta )s0+\theta s1(A).

(ii) For every Banach couple (A0, A1), if p0, p1 <\infty and

1
p

=
1 - \theta 

p0
+

\theta 

p1
,

then
(lp0s0 (A0), lp1s1 (A1))\theta ,p = lp(1 - \theta )s0+\theta s1((A0, A1)\theta ,p).

(iii) For every Banach couple (A0, A1), if p0 <\infty and

1
p

=
1 - \theta 

p0
+

\theta 

p1
,

then
(lp0s0 (A0), lp1s1 (A1))[\theta ] = lp(1 - \theta )s0+\theta s1((A0, A1)[\theta ]).

Proof. See [BL76], Theorems 5.6.1, 5.6.2 and 5.6.3, or [Tri78a], \S \S 1.18.1 and
1.18.2.

2.2 Sobolev spaces

2.2.1 Basic properties

For 1 \leq p \leq \infty , k \in \BbbN , the Lp Sobolev space of order k is defined by

W k,p(\BbbR n) = \{ f \in Lp(\BbbR n) : \partial \alpha f \in Lp(\BbbR n) for | \alpha | \leq k\} 

(where derivatives \partial \alpha f are meant in the sense of distributions). W k,p(\BbbR n) is a
Banach space, with norm

\| f\| Wk,p =
\sum 
| \alpha | \leq k

\| \partial \alpha f\| p.

For p = 2, W k,p(\BbbR n) is (modulo equivalence of norms) an Hilbert space,
which can be characterized in terms of the Fourier transform. In fact, if we set

\langle x\rangle = (1 + | x| 22)1/2,

where | \cdot | 2 is the Euclidean norm on \BbbR n, and, for s \in \BbbR , we introduce the
Bessel-potential space

Hs(\BbbR n) = \{ f \in \scrS \prime (\BbbR n) : \scrF f \in L2(\BbbR n, \langle \xi \rangle 2s d\xi )\} ,
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then Hs(\BbbR n) is a Hilbert space, with inner product

\langle f, g\rangle Hs =
\int 

\BbbR n

\^f(\xi ) \^g(\xi ) \langle \xi \rangle 2s d\xi ,

and moreover, by the properties of the Fourier transform, it is easily seen that

W k,2(\BbbR n) = Hk(\BbbR n) for k \in \BbbN .

That is why, for a general s \in \BbbR , the space Hs(\BbbR n) is also called L2 Sobolev
space of fractional order s.

Since the spaces Hs(\BbbR n) correspond, via the Fourier transform, to weighted
L2 spaces, from Theorem 2.1.2 we get immediately

Proposition 2.2.1. For s0, s1 \in \BbbR , 0 < \theta < 1, we have

(Hs0(\BbbR n), Hs1(\BbbR n))[\theta ] = (Hs0(\BbbR n), Hs1(\BbbR n))\theta ,2 = H(1 - \theta )s0+\theta s1(\BbbR n).

Some elementary embedding results for Sobolev spaces are collected in the
following

Proposition 2.2.2. (i) If s > n/2, then

\| \scrF f\| 1 \leq Cs\| f\| Hs .

(ii) If k \in \BbbN and s > k+n/2, then, for every f \in Hs(\BbbR n), we have f \in Ck0 (\BbbR n)
and

\| f\| Ck
0
\leq Ck,s\| f\| Hs .

(iii) The continuous embedding Wn,1(\BbbR n) \subseteq Cb(\BbbR n) holds.

Proof. (i) follows immediately from H\"older's inequality. From the Riemann-
Lebesgue lemma and (i), we get easily (ii). Finally, if f \in \scrD (\BbbR n), then

f(x1, . . . , xn) =
\int x1

 - \infty 
\cdot \cdot \cdot 
\int xn

 - \infty 
\partial 1 \cdot \cdot \cdot \partial nf(t1, . . . , tn) dt1 . . . dtn,

so that
\| f\| \infty \leq \| f\| Wn,1 ,

and (iii) follows by a density argument (cf. Proposition 1.1.2).

2.2.2 Sobolev spaces with dominating mixed smoothness

If \vec{}n = (n1, . . . , n\varrho ), for l = 1, . . . , \varrho , let \partial l,1, . . . , \partial l,nl
denote the canonical basis

of translation-invariant vector fields on the l-th factor of

\BbbR \vec{}n = \BbbR n1 \times \cdot \cdot \cdot \times \BbbR n\varrho .

Partial derivatives on \BbbR \vec{}n will be denoted by a multi-multi-index notation: if
\vec{}\alpha = (\alpha 1, . . . , \alpha \varrho ) \in \BbbN \vec{}n = \BbbN n1 \times \cdot \cdot \cdot \times \BbbN n\varrho , then we set

\partial \vec{}\alpha = \partial \alpha 1
1 \cdot \cdot \cdot \partial \alpha n

n ,
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2.3. Besov spaces

where in turn
\partial \alpha l

l = \partial 
\alpha l,1
l,1 \cdot \cdot \cdot \partial \alpha l,nl

l,nl
.

For 1 \leq p \leq \infty , \vec{}k \in \BbbN \varrho , we then define the Lp Sobolev space with dominating
mixed smoothness of order \vec{}k as

S
\vec{}k,pW (\BbbR \vec{}n) = \{ f \in Lp(\BbbR \vec{}n) : \partial \vec{}\alpha f \in Lp(\BbbR \vec{}n) for | \alpha 1| \leq k1, . . . , | \alpha \varrho | \leq k\varrho \} .

Moreover, for \vec{}s \in \BbbR \varrho , we introduce the notation

\langle \xi \rangle \vec{}s = \langle \xi 1\rangle s1 \cdot \cdot \cdot \langle \xi \varrho \rangle s\varrho for \xi = (\xi 1, . . . , \xi \varrho ) \in \BbbR \vec{}n,

and then we define the L2 Sobolev (or Bessel-potential) space with dominating
mixed smoothness of fractional order \vec{}s as

S\vec{}sH(\BbbR \vec{}n) = \{ f \in \scrS \prime (\BbbR \vec{}n) : \scrF f \in L2(\BbbR \vec{}n, \langle \xi \rangle 2\vec{}s d\xi )\} .

Analogously as before, the S\vec{}k,p(\BbbR \vec{}n) are Banach spaces, the S\vec{}sH(\BbbR \vec{}n) are
Hilbert spaces, and

S
\vec{}k,2W (\BbbR \vec{}n) = S

\vec{}kH(\BbbR \vec{}n) for \vec{}k \in \BbbN \varrho .

Moreover, the space S\vec{}sH(\BbbR \vec{}n) can be characterized as a Hilbert tensor product
of Bessel-potential spaces on the factors of \BbbR \vec{}n:

S\vec{}sH(\BbbR \vec{}n) \sim = Hs1(\BbbR n1) \^\otimes \mathrm{H} \cdot \cdot \cdot \^\otimes \mathrm{H}H
s\varrho (\BbbR n\varrho ). (2.2.1)

2.3 Besov spaces

We now introduce the class of Besov spaces, which contains and extends the
previously considered scale of L2 Sobolev spaces with fractional order.

Our main references for Besov spaces are the books by Peetre [Pee76], Bergh
and L\"ofstr\"om [BL76], Triebel [Tri78a], [Tri78b], [Tri83], [Tri01], Edmunds and
Triebel [ET96], Runst and Sickel [RS96]. In fact, results about Besov spaces are
somewhat scattered through the literature. Moreover, there are several equiva-
lent definitions of Besov spaces, which use quite different techniques (Lipschitz-
H\"older conditions, atomic decompositions, wavelets...).

Here we use the characterization of the Besov spaces Bsp,q(\BbbR n) by dyadic
decompositions via the Fourier transform. Since we are only concerned with the
ranges 1 \leq p \leq \infty , 1 \leq q \leq \infty , and since moreover we are not interested in
the simultaneous introduction of Triebel-Lizorkin spaces, the exposition can be
kept to quite an elementary level.

About Besov spaces with dominating mixed smoothness, the standard (and
almost unique) reference is the monograph by Schmeisser and Triebel [ST87]; a
survey with recent developments can be found in [Sch07].

2.3.1 Basic definitions, interpolation and embeddings be-
tween Besov spaces

Let (\phi 0, \phi 1) \in \scrD (\BbbR n) be non-negative, and set

\phi k(\xi ) = \phi 1(21 - k\xi ) for \xi \in \BbbR n, k > 1.
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The pair (\phi 0, \phi 1) is said to be admissible if supp\phi 1 \subseteq \BbbR n \setminus \{ 0\} and\bigcup 
k\geq 0

\{ \phi k \not = 0\} = \BbbR n;

the system (\phi k)k\in \BbbN is said to be generated by the pair (\phi 0, \phi 1).
If (\phi 0, \phi 1) is an admissible pair, then we define, for 1 \leq p, q \leq \infty , s \in \BbbR , the

Besov space Bsp,q(\BbbR n) as the set of tempered distributions f \in \scrS \prime (\BbbR n) such that
the quantity

\| f\| Bs
p,q

= \| (2ks\| (\scrF  - 1\phi k) \ast f\| p)k\| lq

is finite. Using Proposition 2.2.2(i), partition-of-unity techniques and the fact
that the quantity \| \scrF  - 1\psi \| 1 is invariant by dilations of \psi , it is not difficult to
prove that, by replacing (\phi 0, \phi 1) with another admissible pair, we obtain an
equivalent norm on Bsp,q(\BbbR n).

One way of obtaining an admissible pair is by starting from a non-negative
\phi \in \scrD (\BbbR n) such that

supp\phi \subseteq \{ \xi : 2 - 1 \leq | \xi | \leq 2\} ,

(where | \cdot | is some norm on \BbbR n) and\sum 
k\in \BbbZ 

\phi (2k\xi ) = 1 for every \xi \not = 0,

and then setting

\phi k(\xi ) = \phi (2 - k\xi ) for k > 0, and \phi 0 = 1 - 
\sum 
k>0

\phi k.

Thus, we have \phi k \in \scrD (\BbbR n),

0 \leq \phi k \leq 1 for k \geq 0, and
\sum 
k\geq 0

\phi k \equiv 1;

supp\phi k \subseteq 

\Biggl\{ 
\{ \xi : | \xi | \leq 2\} for k = 0,
\{ \xi : 2k - 1 \leq | \xi | \leq 2k+1\} for k > 0,

(2.3.1)

so that in particular (\phi 0, \phi 1) is admissible (a pair obtained in this way will be
called a standard admissible pair with respect to the norm | \cdot | ). Moreover, if we
set

\~\phi k =

\Biggl\{ 
\phi 0 + \phi 1 if k = 0,
\phi k - 1 + \phi k + \phi k+1 if k > 0,

then we have
\phi k \~\phi k = \phi k for k \geq 0,

sup
k\geq 0

\| \scrF  - 1\phi k\| 1 <\infty and sup
k\geq 0

\| \scrF  - 1 \~\phi k\| 1 <\infty . (2.3.2)

With this choice of an admissible pair, it is not too difficult to obtain the
following properties:
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1. for f \in \scrS (\BbbR n) (resp., f \in \scrS \prime (\BbbR n)), we have

f =
\sum 
k\geq 0

\phi kf and f =
\sum 
k\geq 0

(\scrF  - 1\phi k) \ast f, (2.3.3)

with convergence in \scrS (\BbbR n) (resp., in \scrS \prime (\BbbR n));

2. for 1 \leq p, q \leq \infty , s \in \BbbR , the following H\"older-type inequality holds:

| \langle f, g\rangle | \leq Cp,q,s\| f\| Bs
p,q
\| g\| B - s

p\prime ,q\prime 

for f \in \scrS \prime (\BbbR n), g \in \scrS (\BbbR n);

3. for 1 \leq p, q \leq \infty , s \in \BbbR , we have the continuous inclusions

\scrS (\BbbR n) \subseteq Bsp,q(\BbbR n) \subseteq \scrS \prime (\BbbR n);

4. Bsp,q(\BbbR n) is a retract of lqs(L
p(\BbbR n)) via the maps

f \mapsto \rightarrow ((\scrF  - 1\phi k) \ast f)k, (gk)k \mapsto \rightarrow 
\sum 
k\geq 0

(\scrF  - 1 \~\phi k) \ast gk,

and in particular its completeness as a normed space follows from the
completeness of lqs(L

p(\BbbR n)).

Moreover, from Theorems 2.1.1 and 2.1.3, we obtain immediately the following
fundamental interpolation properties (see also [BL76], Theorem 6.4.5):

Proposition 2.3.1. Let 1 \leq p, p0, p1, q, q0, q1 \leq \infty , s0, s1 \in \BbbR , 0 < \theta < 1.

(i) If s0 \not = s1, then

(Bs0p,q0(\BbbR 
n), Bs1p,q1(\BbbR 

n))\theta ,q = B(1 - \theta )s0+\theta s1
p,q (\BbbR n).

This identity holds also if s0 = s1, provided that q0, q1 <\infty and

1
q

=
1 - \theta 

q0
+

\theta 

q1
.

(ii) If q0, q1 <\infty and

1 - \theta 

p0
+

\theta 

p1
=

1
p

=
1 - \theta 

q0
+

\theta 

q1
,

then
(Bs0p0,q0(\BbbR 

n), Bs1p1,q1(\BbbR 
n))\theta ,p = B(1 - \theta )s0+\theta s1

p,p (\BbbR n).

(iii) If q0 <\infty and

1
p

=
1 - \theta 

p0
+

\theta 

p1
,

1
q

=
1 - \theta 

q0
+

\theta 

q1
,

then
(Bs0p0,q0(\BbbR 

n), Bs1p1,q1(\BbbR 
n))[\theta ] = B(1 - \theta )s0+\theta s1

p,q (\BbbR n).
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There are several inclusions between Besov spaces. In order to give a more
detailed formulation, we introduce now the little Besov space bsp,q(\BbbR n), which is
the (closed) subspace of Bsp,q(\BbbR n) made of the elements f such that

lim
m\rightarrow +\infty 

2ms\| (\scrF  - 1\phi m) \ast f\| p = 0.

Clearly bsp,q(\BbbR n) = Bsp,q(\BbbR n) for q < \infty , whereas, for q = \infty , the difference
between Besov and little Besov corresponds to the one between l\infty and c0.

Proposition 2.3.2. Let 1 \leq p, p1, p2, q, q1, q2 \leq \infty , s1, s2 \in \BbbR .

(i) If s1 > s2, or otherwise if s1 = s2 and q1 > q2, then we have the continuous
inclusion

Bs1p,q1(\BbbR 
n) \subseteq bs2p,q2(\BbbR 

n).

(ii) If p1 \leq p2 and s1  - n/p1 \geq s2  - n/p2, then we have the continuous
inclusions

Bs1p1,q(\BbbR 
n) \subseteq Bs2p2,q(\BbbR 

n), bs1p1,q(\BbbR 
n) \subseteq bs2p2,q(\BbbR 

n).

Proof. It is an immediate consequence of inclusions between weighted lp and c0
spaces, Young's inequality and the estimate

\| \scrF  - 1 \~\phi k\| p \leq Cp2kn/p
\prime 

for k \geq 0, 1 \leq p \leq \infty (cf. [BL76], Theorems 6.2.4 and 6.5.1).

In particular, Bsp,q(\BbbR n) and bsp,q(\BbbR n) increase in q and decrease in s.

2.3.2 Fourier multipliers, lifting properties, comparison
with other spaces

Up to now, the properties which we have considered are almost entirely ``in-
ternal"" to the scale of Besov spaces, so that they do not show particular con-
nections between Besov and other known spaces; moreover, it is not clear how
Besov spaces allow to measure smoothness. These questions will be faced by
the use of Fourier multiplier results for Besov spaces.

In order to state these results, we introduce, for k \in \BbbN \cup \{ \infty \} and \sigma \in \BbbR ,
the ``class of symbols"" Sk\sigma :

Sk\sigma = \{ f \in Ck(\BbbR n) : sup
x\in \BbbR n

\langle x\rangle | \alpha |  - \sigma | \partial \alpha f(x)| <\infty for | \alpha | \leq k\} .

Clearly Sk\sigma is a vector subspace of Ck(\BbbR n) containing \scrS (\BbbR n), and moreover it
is increasing in \sigma and decreasing in k; apart from this, the main properties of
these classes of symbols are summarized in the following lemma, which is easily
proved by induction.

Lemma 2.3.3. Let k, k1, k2 \in \BbbN , \sigma , \sigma 1, \sigma 2 \in \BbbR , \alpha \in \BbbN n.

(i) If f \in Sk\sigma , then \partial \alpha f \in Sk - | \alpha | \sigma  - | \alpha | .

(ii) If f1 \in Sk1\sigma 1
and f2 \in Sk2\sigma 2

, then f1f2 \in S\mathrm{m}\mathrm{i}\mathrm{n}\{ k1,k2\} 
\sigma 1+\sigma 2

.
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2.3. Besov spaces

(iii) The function \langle \cdot \rangle \sigma belongs to S\infty \sigma ; moreover, if p is a polynomial of degree
not greater than \sigma , then p \in S\infty \sigma .

(iv) If f \in Sk\sigma and | f | \geq c\langle \cdot \rangle \sigma for some c > 0, then 1/f \in Sk - \sigma .

Here is the announced Fourier multiplier result for Besov spaces:

Proposition 2.3.4. If m \in Sk\sigma for some k \in \BbbN with k > n/2, then the operator

f \mapsto \rightarrow (\scrF  - 1m) \ast f

is continuous Bsp,q(\BbbR n) \rightarrow Bs - \sigma p,q (\BbbR n) and bsp,q(\BbbR n) \rightarrow bs - \sigma p,q (\BbbR n).

Proof. By Young's inequality, it will be sufficient to prove that

\| \scrF  - 1(m\~\phi j)\| 1 \leq C2j\sigma .

This can be obtained, for j > 1, thanks to Proposition 2.2.2(i), from the condi-
tion m \in Sk\sigma , by estimating the Ck norm of

\xi \mapsto \rightarrow m(2j - 2\xi )\~\phi 2(\xi ),

whose support is contained in a fixed annulus of \BbbR n.

From this, we obtain the fundamental lifting properties of Besov spaces:

Proposition 2.3.5. Let 1 \leq p, q \leq \infty , s \in \BbbR .

(i) For every \sigma \in \BbbR , the Bessel potential operator

J\sigma : f \mapsto \rightarrow \scrF  - 1(\langle \cdot \rangle \sigma (\scrF f))

is an isomorphism Bsp,q(\BbbR n) \rightarrow Bs - \sigma p,q (\BbbR n), with inverse J - \sigma .

(ii) For every k \in \BbbN , the three conditions

(a) f \in Bsp,q(\BbbR n),
(b) \partial \alpha f \in Bs - kp,q (\BbbR n) for | \alpha | \leq k,

(c) f, \partial k1 f, . . . , \partial 
k
nf \in Bs - kp,q (\BbbR n)

are equivalent; moreover, the quantities\sum 
| \alpha | \leq k

\| \partial \alpha f\| Bs - k
p,q

and \| f\| Bs - k
p,q

+
n\sum 
j=1

\| \partial kj f\| Bs - k
p,q

are equivalent norms of f \in Bsp,q(\BbbR n).

The same results hold also for little Besov spaces.

Proof. (i) The conclusion follows immediately from Proposition 2.3.4 and the
fact that the function \langle \cdot \rangle \sigma belongs to S\infty \sigma .

(ii) Since the polynomials \xi \alpha , for | \alpha | \leq k, belong to S\infty k , (b) follows from
(a) and Proposition 2.3.4, whereas (b) trivially implies (c). In order to obtain
(a) from (c), we claim that there exist functions \rho j \in S\infty 0 such that

\eta (\xi ) = 1 +
n\sum 
j=1

\rho j(\xi )\xi kj \geq c\langle \xi \rangle k
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for some c > 0; in fact, this inequality gives 1/\eta \in S\infty  - k by Lemma 2.3.3,
and since, by (c) and Proposition 2.3.4, we have (\scrF  - 1\eta ) \ast f \in Bs - kp,q (\BbbR n), by
Proposition 2.3.4 again we get f \in Bsp,q(\BbbR n). From this argument we also obtain
the equivalence of the norms.

If k is even, we can simply take \rho j \equiv 1. If instead k is odd, we put

\rho j(\xi ) = \beta (\xi j/| \xi | )\gamma (| \xi | ),

where \beta , \gamma \in \scrE (\BbbR ) are weakly increasing smooth bounded functions, with \beta odd
and such that \beta (t) = 0 for | t| \leq (2n) - 1/2, \beta (t) = 1 for t \geq n - 1/2, whereas
\gamma (t) = 0 for t \leq 1/2, \gamma (t) = 1 for t \geq 1. It is not difficult to show that these \rho j
are in S\infty 0 and satisfy the required inequality.

The lifting properties show that in fact the index s in Bsp,q(\BbbR n) expresses
a level of differentiability. In order to complete the picture, we need a better
understanding of the Besov spaces at level s = 0, and this will be achieved by
showing some inclusions involving other known spaces.

Proposition 2.3.6. The following are continuous inclusions:

(i) B0
1,1(\BbbR n) \subseteq L1(\BbbR n) \subseteq M(\BbbR n) \subseteq B0

1,\infty (\BbbR n),

(ii) B0
p,1(\BbbR n) \subseteq Lp(\BbbR n) \subseteq b0p,\infty (\BbbR n) for 1 \leq p <\infty ,

(iii) B0
\infty ,1(\BbbR n) \subseteq Cub(\BbbR n) \subseteq b0\infty ,\infty (\BbbR n),

(iv) B0
\infty ,1(\BbbR n) \subseteq Cub(\BbbR n) \subseteq L\infty (\BbbR n) \subseteq B0

\infty ,\infty (\BbbR n).

Moreover, we have B0
2,2(\BbbR n) = L2(\BbbR n).

Proof. The left-hand-side inclusions are due simply to (2.3.3), to the complete-
ness of Lp(\BbbR n) and Cub(\BbbR n), and to the fact that \scrS \ast L\infty \subseteq Cub. The right-
hand-side inclusions follow instead from Young's inequalities, from (2.3.2) and,
for (ii) and (iii), by Proposition 1.1.2, since

\int 
\BbbR n(\scrF  - 1\phi 1)(x) dx = 0.

Finally, it is not difficult to see that

\| f\| 2B0
2,2

=
\sum 
m\geq 0

\| (\scrF  - 1\phi m) \ast f\| 22 \sim \| f\| 22,

which gives the identity B0
2,2 = L2.

Notice that, by putting together these inclusions with those of Proposi-
tion 2.3.2, we immediately obtain that, for s > 0, the elements of Bsp,q(\BbbR n) are
Lp functions (and not simply distributions); moreover, for s > n/p, they are
also uniformly continuous and bounded.

By ``lifting"" the inclusions of Proposition 2.3.6, we then obtain further evi-
dence for the interpretation of the index s in Bsp,q as an ``order of differentiabil-
ity"".

Corollary 2.3.7. For every k \in \BbbN , the following are continuous inclusions:

(i) Bkp,1(\BbbR n) \subseteq W k,p(\BbbR n) \subseteq bkp,\infty (\BbbR n) for 1 \leq p <\infty ,

(ii) Bk\infty ,1(\BbbR n) \subseteq Ckub(\BbbR n) \subseteq bk\infty ,\infty (\BbbR n),
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(iii) Bk\infty ,1(\BbbR n) \subseteq W k,\infty (\BbbR n) \subseteq Bk\infty ,\infty (\BbbR n).

Moreover, we have Bs2,2(\BbbR n) = Hs(\BbbR n) for all s \in \BbbR .

These inclusions, together with the results of Proposition 2.3.1, lead to the
characterization of Besov spaces as real interpolation spaces between Sobolev
spaces W k,p (or spaces Ckb of bounded continuously differentiable functions) of
different orders:

Corollary 2.3.8. For 1 \leq p, q \leq \infty , m \in \BbbN \setminus \{ 0\} , 0 < \theta < 1, we have

(Lp(\BbbR n),Wm,p(\BbbR n))\theta ,q = B\theta mp,q (\BbbR n);

for p = \infty we have moreover

(Cb(\BbbR n), Cmb (\BbbR n))\theta ,q = (Cub(\BbbR n), Cmub(\BbbR n))\theta ,q = B\theta m\infty ,q(\BbbR n).

2.3.3 Approximation by smooth functions and little Besov
spaces

By the use of a suitable approximate identity (see \S 1.1.10), one can hope to
approximate the elements of Bsp,q by smooth functions in the corresponding
Besov norm. Unfortunately, some problems arise in the case q = \infty , which
force us to restrict to little Besov spaces.

Proposition 2.3.9. Let 1 \leq p, q \leq \infty , s \in \BbbR , f \in Bsp,q(\BbbR n). If u \in \scrS (\BbbR n),
then f \ast u \in W\infty ,p(\BbbR n). Moreover, if f \in bsp,q(\BbbR n), and if uh \in \scrS (\BbbR n) is an
approximate identity for h\rightarrow \infty , then f \ast uh \rightarrow f in Bsp,q(\BbbR n).

Proof. Since a Schwartz function belongs to the symbol class S\infty \sigma for every \sigma \in 
\BbbR , the first part of the conclusion follows immediately from Propositions 2.3.4,
2.3.2 and Corollary 2.3.7.

Suppose now that uh \in \scrS (\BbbR n) is an approximate identity. We then have, by
Proposition 1.1.2,

\| (\scrF  - 1\phi k) \ast (f \ast uh  - f)\| p = \| ((\scrF  - 1\phi k) \ast f) \ast uh  - (\scrF  - 1\phi k) \ast f\| p \rightarrow 0,

since (\scrF  - 1\phi k) \ast f \in Lp(\BbbR n) for p <\infty , and (\scrF  - 1\phi k) \ast f \in Cub(\BbbR n) for p = \infty .
The conclusion then follows by dominated convergence (which can be applied
also in the case q = \infty due to the restriction to little Besov spaces).

The previous result in fact clarifies the role of little Besov spaces, and more-
over leads to an alternative characterization of them:

Corollary 2.3.10. Let 1 \leq p, q, q1 \leq \infty , s, s1 \in \BbbR . Then

bsp,q(\BbbR n) = Bs1p,q1(\BbbR n)
Bs

p,q(\BbbR n)
for s1 > s,

and
bsp,q(\BbbR n) = Bsp,q1(\BbbR n)

Bs
p,q(\BbbR n)

for q1 < q.
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2.3.4 Pointwise multiplication

In the previous paragraphs, we have considered the convolution product in Besov
spaces. Now we are interested in results about pointwise multiplication (which
are a particular case of the ones presented in Chapter 4 of [RS96]).

First of all, one should notice that the pointwise product is not defined in
general between tempered distributions. However, if f, g \in \scrS \prime (\BbbR n), and one
decomposes

f =
\sum 
h\geq 0

fh, g =
\sum 
k\geq 0

gk,

where
fh = (\scrF  - 1\phi h) \ast f, gk = (\scrF  - 1\phi k) \ast g, (2.3.4)

then fh, gk are smooth (in fact, analytic) functions which have polynomial
growth together with all their derivatives (since their Fourier transforms are
compactly supported). The paraproduct of f and g is then defined as the limit

fg = lim
N\rightarrow +\infty 

\Biggl( 
N\sum 
h=0

fh

\Biggr) \Biggl( 
N\sum 
k=0

gk

\Biggr) 
in \scrS \prime (\BbbR n),

whenever it exists.
Notice that, when f \in \scrS \prime (\BbbR n) and g \in \scrS (\BbbR n), then the product fg is already

defined. However, since the map

\scrS \prime (\BbbR n)\times \scrS (\BbbR n) \ni (f, g) \mapsto \rightarrow fg \in \scrS \prime (\BbbR n)

is jointly sequentially continuous by the uniform boundedness principle, it is
immediate to check that the definition of the paraproduct in fact extends the
``classical"" product.

An important tool for proving inequalities involving paraproducts is the
Fatou property of Besov spaces (cf. [Fra86]):

Lemma 2.3.11. Suppose that (f (r))r is a sequence in Bsp,q(\BbbR n), converging in
\scrS \prime (\BbbR n) to a tempered distribution f . If

lim inf
r\rightarrow +\infty 

\| f (r)\| Bs
p,q

< +\infty ,

then f \in Bsp,q(\BbbR n), and

\| f\| Bs
p,q
\leq lim inf

r\rightarrow +\infty 
\| f (r)\| Bs

p,q
.

Proof. Let f (r)
h = (\scrF  - 1\phi h) \ast f (r), fh = (\scrF  - 1\phi h) \ast f . Since f (r) \rightarrow f in \scrS \prime (\BbbR n)

and \scrF  - 1\phi h \in \scrS (\BbbR n), we have that f (r)
h \rightarrow fh in \scrE (\BbbR n), and in particular | f (r)

h | 
converges to | fh| uniformly on compacta. But then, by Fatou's lemma,

\| fh\| p \leq lim inf
r\rightarrow +\infty 

\| f (r)
h \| p,

so that, again by Fatou's lemma,

\| (\| fh\| p)h\| lqs \leq lim inf
r\rightarrow +\infty 

\bigm\| \bigm\| \bigm\| (\| f (r)
h \| p)h

\bigm\| \bigm\| \bigm\| 
lqs
,

which is the conclusion.
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We then have the following

Lemma 2.3.12. Let f, g \in \scrS \prime (\BbbR n), and suppose that, for some p, q \in [1,\infty ]
and s \in \BbbR , \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\left(  \sum 
h\geq 0

\sum 
k\geq 0

\| (\scrF  - 1\phi m) \ast (fhgk)\| p

\right)  
m

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
lqs

<\infty , (2.3.5)

where fh, gk are defined as in (2.3.4). Then the limit

fg = lim
N\rightarrow +\infty 

\Biggl( 
N\sum 
h=0

fh

\Biggr) \Biggl( 
N\sum 
k=0

gk

\Biggr) 

exists in \scrS \prime (\BbbR n) (and also in Bsp,q(\BbbR n) if q < \infty ), and belongs to Bsp,q(\BbbR n).
Moreover

\| fg\| Bs
p,q
\leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left(  \sum 
h\geq 0

\sum 
k\geq 0

\| (\scrF  - 1\phi m) \ast (fhgk)\| p

\right)  
m

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
lqs

.

Proof. Let

PN =

\Biggl( 
N\sum 
h=0

fh

\Biggr) \Biggl( 
N\sum 
k=0

gk

\Biggr) 
.

Then, for N \prime \geq N ,

\| (\scrF  - 1\phi m) \ast (PN \prime  - PN )\| p \leq 
\sum 

\mathrm{m}\mathrm{a}\mathrm{x}\{ h,k\} >N

\| (\scrF  - 1\phi m) \ast (fhgk)\| p.

By (2.3.5), the right-hand side is infinitesimal for N \rightarrow +\infty , and in fact, if
q < \infty , by dominated convergence in lqs we get that PN is a Cauchy sequence
in Bsp,q(\BbbR n) and therefore converges (to the paraproduct fg). If q = \infty , by the
previous argument one gets convergence of PN in every B\~s

p,\~q(\BbbR n) with \~s < s,
and in particular in \scrS \prime (\BbbR n). Finally, the bound on the norm of the paraproduct
follows by Lemma 2.3.11.

The result which we present here is a H\"older-type inequality, in which one
takes into account also the order of differentiability. The following inequalities
giving upper bounds on a norm of a paraproduct are to be meant in the following
sense: if the right-hand side of the inequality is finite, then the paraproduct
exists and its norm satisfies the inequality.

Proposition 2.3.13. Let 1 \leq p, p1, p2, q \leq \infty , s \in \BbbR , with

1
p

=
1
p1

+
1
p2
.

(i) For every \sigma > | s| , we have

\| fg\| Bs
p,q
\leq Cp1,p2,q,\sigma ,s\| f\| B\sigma 

p1,\infty \| g\| Bs
p2,q

.

(ii) If s > 0, then we have also the more precise inequality

\| fg\| Bs
p,q
\leq Cp1,p2,q,s\| f\| Bs

p1,q
\| g\| Bs

p2,q
.
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Proof. Define fh, gk as in (2.3.4), and notice that

supp\scrF (fhgk) \subseteq supp\phi h + supp\phi k.

Therefore, if

Im = \{ (h, k) \in \BbbN 2 : m - 2 \leq max\{ h, k\} \leq m+ 2 and | h - k| \geq 3\} 
\cup \{ (h, k) \in \BbbN 2 : m - 2 \leq max\{ h, k\} and | h - k| \leq 2\} ,

then by (2.3.1) it is easy to see that (\scrF  - 1\phi m) \ast (fhgk) = 0 for (h, k) /\in Im.
Consequently, by Lemma 2.3.12, H\"older's inequality and (2.3.2), we have

\| fg\| Bs
p,q
\leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left(  \sum 

(h,k)\in Im

\| fh\| p1\| gk\| p2

\right)  
m

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
lqs

.

(i) The conclusion will follow from the inequality\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left(  \sum 

(h,k)\in Im

ahbk

\right)  
m

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
lqs

\leq Cq,\sigma ,s\| (ah)h\| l\infty \sigma \| (bk)k\| lqs

for sequences (ah)h\in \BbbN , (bk)k\in \BbbN of non-negative real numbers.
In fact

Im \subseteq Im,1 \cup Im,2 \cup Im,3,
where

Im,1 = \{ (h, k) : h \geq m - 2 and 0 \leq k \leq h\} ,
Im,2 = \{ (h, k) : m - 2 \leq k \leq m+ 2 and 0 \leq h \leq k  - 3\} ,
Im,3 = \{ (h, k) : k \geq m - 2 and k  - 2 \leq h \leq k  - 1\} .

Since \sigma > | s| , we may choose \~\sigma such that

max\{ 0, - s\} < \~\sigma < min\{ \sigma , \sigma  - s\} ,

and we have \sum 
(h,k)\in Im,1

ahbk \leq 
\sum 

h\geq (m - 2)+

2 - h(\sigma  - \~\sigma )2h\sigma ah
h\sum 
k=0

2 - k\~\sigma bk

\leq C\sigma ,s2 - m(\sigma  - \~\sigma )\| (ah)h\| l\infty \sigma \| (bk)k\| l1 - \~\sigma 
,

so that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left(  \sum 

(h,k)\in Im,1

ahbk

\right)  
m

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
lqs

\leq C\sigma ,s\| (ah)h\| l\infty \sigma \| (bk)k\| l1 - \~\sigma 

\bigm\| \bigm\| \bigm\| (2 - m(\sigma  - \~\sigma  - s))m
\bigm\| \bigm\| \bigm\| 
lq

\leq Cq,\sigma ,s\| (ah)h\| l\infty \sigma \| (bk)k\| lqs .

On the other hand,

\sum 
(h,k)\in Im,2

ahbk \leq \| (ah)h\| l1
2\sum 

k= - 2

bm+k
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(where b - 2 = b - 1 = 0), thus\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left(  \sum 

(h,k)\in Im,2

ahbk

\right)  
m

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
lqs

\leq \| (ah)h\| l1
2\sum 

k= - 2

\| (bm+k)m\| lqs

\leq Cq,\sigma ,s\| (ah)h\| l\infty \sigma \| (bk)k\| lqs .

Finally, by H\"older's inequality and since \sigma + s > 0,

\sum 
(h,k)\in Im,3

ahbk \leq 4
\sum 

k\geq (m - 2)+

2 - k(\sigma +s)2ksbk
k - 1\sum 

h=k - 2

2h\sigma ah

\leq Cq,\sigma ,s2 - m(\sigma +s)\| (ah)h\| l\infty \sigma \| (bk)\| lqs ,

so that again, since \sigma > 0,\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left(  \sum 

(h,k)\in Im,3

ahbk

\right)  
m

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
lqs

\leq Cq,\sigma ,s\| (ah)h\| l\infty \sigma \| (bk)\| lqs .

By putting all together, we obtain the claimed inequality.
(ii) The conclusion will follow from the inequality\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\left(  \sum 
(h,k)\in Im

ahbk

\right)  
m

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
lqs

\leq Cq,s\| (ah)h\| lqs\| (bk)k\| lqs

for sequences (ah)h\in \BbbN , (bk)k\in \BbbN of non-negative real numbers. Set

Im,+ = Im \cap \{ (h, k) : h > k\} , Im, - = Im \cap \{ (h, k) : h \leq k\} .

Since s > 0, we may choose t such that 0 < t < s, therefore

\sum 
(h,k)\in Im,+

ahbk \leq 
\sum 

h\geq \mathrm{m}\mathrm{a}\mathrm{x}\{ m - 2,1\} 

2 - ht2htah
h - 1\sum 
k=0

bk

\leq Cq,s2 - mt\| (bk)k\| l10

\left(  \sum 
h\geq \mathrm{m}\mathrm{a}\mathrm{x}\{ m - 2,1\} 

(2htah)q

\right)  1/q

,

so that, for q <\infty ,

\sum 
m\geq 0

\left(  2ms
\sum 

(h,k)\in Im,+

ahbk

\right)  q

\leq Cq,s\| (bk)k\| ql10
\sum 
m\geq 0

2qm(s - t)
\sum 

h\geq \mathrm{m}\mathrm{a}\mathrm{x}\{ m - 2,1\} 

(2htah)q

\leq Cq,s\| (bk)k\| ql10
\sum 
h\geq 1

2hsqaqh,
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which implies \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left(  \sum 

(h,k)\in Im,+

ahbk

\right)  
m

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
lqs

\leq Cq,s\| (ah)h\| lqs\| (bk)k\| lqs .

The case q = \infty and the sum for (h, k) \in Im, - are handled analogously.

Proposition 2.3.13 has as a consequence a sort of ``continuous inclusion""
between Besov spaces, different from the previously obtained ones, which holds
under the hypothesis of compact support.

Corollary 2.3.14. For every compact K \subseteq \BbbR n, s \in \BbbR , 1 \leq p1, p2, q \leq \infty with
p1 \leq p2, we have

\| f\| Bs
p1,q

\leq CK,p1,p2,q,s\| f\| Bs
p2,q

if supp f \subseteq K.

Proof. Since p1 \leq p2, we can find p3 \in [1,\infty ] such that 1/p1 = 1/p2 + 1/p3.
Therefore, it is sufficient to choose a function \eta \in \scrD (\BbbR n) such that \eta | K \equiv 1, and
to apply Proposition 2.3.13 to the product \eta f , noticing that it coincides with f
when supp f \subseteq K.

The aforementioned threshold n/p on the order s to ensure continuity of the
elements of Bsp,q can be shown to be optimal.

Proposition 2.3.15. Let 1 \leq p, q \leq \infty , s \in \BbbR . Suppose that there exist a
constant C > 0, a point x \in \BbbR n and an open neighborhood U of x such that, for
every f \in \scrD (\BbbR n) with supp f \subseteq U , we have

| f(x)| \leq C\| f\| Bs
p,q
.

Then either s \geq n/p and q = 1, or s > n/p, and in particular Bsp,q(\BbbR n) is
continuously embedded in Cub(\BbbR n).

Proof. By choosing \eta \in \scrD (\BbbR n) with supp \eta \subseteq U and \eta (x) = 1, we obtain that,
for all f \in \scrS (\BbbR n),

| f(x)| = | (\eta f)(x)| \leq C\| \eta f\| Bs
p,q
\leq C\eta ,p,q,s\| f\| Bs

p,q
,

by Proposition 2.3.13. Since the Besov norms are invariant by translations, it
follows easily that, by possibly enlarging the constant C,

\| f\| \infty \leq C\| f\| Bs
p,q

for all f \in \scrS (\BbbR n). This proves in particular that the closure of \scrS (\BbbR n) inBsp,q(\BbbR n)
is contained in L\infty (\BbbR n). The conclusion then follows by Theorem 1 in \S 2.6.2 of
[Tri78b].

2.3.5 Change of variables

In the following, by the use of elementary Sobolev embeddings and interpolation,
we will obtain change-of-variable properties for Besov spaces of positive order
(see also [Tri83], \S 2.10).
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2.3. Besov spaces

Lemma 2.3.16. Let \Omega \subseteq \BbbR n1 be open, \Phi : \Omega \rightarrow \BbbR n2 be smooth, s \in \BbbN ,
\psi \in \scrD (\Omega ).

(i) For every f \in Csb (\BbbR n2),

\| (f \circ \Phi )\psi \| Cs
b (\BbbR n1 ) \leq C\Phi ,\psi ,s\| f\| Cs

b (\BbbR n2 ).

(ii) Suppose that the differential of \Phi has constant rank r. Then, for every
f \in W s+n2 - r,1(\BbbR n2),

\| (f \circ \Phi )\psi \| W s,1(\BbbR n1 ) \leq C\Phi ,\psi ,s\| f\| W s+n2 - r,1(\BbbR n2 ).

Proof. Let K = supp\psi . Notice that, if f is modified outside the compact
\Psi (K), then (f \circ \Phi )\psi does not change. Therefore, by density arguments (see
Proposition 1.1.2), we may suppose that f \in \scrD (\BbbR n2).

Let \Phi = (\Phi 1, . . . ,\Phi n2) and, for l = 1, 2, let \partial l,1, . . . , \partial l,nl
be a basis of

(invariant vector fields) of \BbbR nl . Then we have, for j = 1, . . . , n1,

\partial 1,j(f \circ \Phi ) =
n2\sum 
k=1

((\partial 2,kf) \circ \Phi ) \cdot \partial 1,j\Phi k,

so that, inductively, for every \alpha \in \BbbN n1 ,

\partial \alpha 1 ((f \circ \Phi )\psi ) =
\sum 

\beta : | \beta | \leq | \alpha | 

((\partial \beta 2 f) \circ \Phi ) \cdot \Psi \alpha ,\beta ,

where the \Psi \alpha ,\beta are linear combinations of products of derivatives of the functions
\Phi 1, . . . ,\Phi n, \psi , with supports contained in K = supp\psi . Since K is compact, we
then get

\| \partial \alpha 1 ((f \circ \Phi )\psi )\| \infty \leq C\Phi ,\psi ,\alpha 

\sum 
\beta : | \beta | \leq | \alpha | 

\| \partial \beta 2 f\| \infty ,

which gives immediately (i), and also

\| \partial \alpha 1 ((f \circ \Phi )\psi )\| 1 \leq C\Phi ,\psi ,\alpha 

\sum 
\beta : | \beta | \leq | \alpha | 

\| ((\partial \beta 2 f) \circ \Phi )\chi K\| 1.

Notice that, in the case \Phi is a diffeomorphism with its image, (ii) follows imme-
diately from the last inequality by a change of variable in the integrals on the
right-hand side, since det d\Phi is bounded on the compact K.

Suppose now that the differential of \Phi has constant rank r \in \BbbN . Then, by the
rank theorem (see [Lee03], Theorem 7.8), for all x \in \Omega we can find a coordinate
chart \phi x : Ux \rightarrow \BbbR n1 of \Omega centered at x and a coordinate chart \zeta x : Vx \rightarrow \BbbR n2

of \BbbR n2 centered at \Phi (x) such that \Phi (Ux) \subseteq Vx and

\zeta x \circ \Phi \circ \phi  - 1
x (t1, . . . , tn1) = (t1, . . . , tr, 0, . . . , 0)

for all (t1, . . . , tn1) \in \phi x(Ux). If ax > 0 is such that [ - ax, ax]n1 \subseteq \phi x(Ux), then,
by compactness of K, we can find a finite subset \{ x1, . . . , xk\} of \Omega such that

K \subseteq \phi  - 1
x1

(] - ax1 , ax1 [
n1) \cup \cdot \cdot \cdot \cup \phi  - 1

xk
(] - axk

, axk
[n1).

Choose moreover \eta j \in \scrD (\zeta xj
(V )) such that \eta j | [ - axj

,axj
]r\times \{ 0\} \equiv 1.
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For every g \in \scrD (\BbbR n2), if gj = (g \circ \zeta  - 1
xj

)\eta j , then, by Proposition 2.2.2(iii),

| gj(y\prime , 0)| \leq \| gj(y\prime , \cdot )\| Wn2 - r,1(\BbbR n2 - r)

for j = 1, . . . , k and y\prime \in \BbbR r, thus

\| (g \circ \Phi )\chi K\| 1 \leq 
k\sum 
j=1

\int 
\phi  - 1

xj
([ - axj

,axj
]n1 )

| g(\Phi (x))| dx

\leq C\Phi ,\psi 

k\sum 
j=1

\int 
[ - axj

,axj
]n1

| g(\zeta  - 1
xj

(t1, . . . , tr, 0, . . . , 0))| dt1 . . . dtn1

= C\Phi ,\psi 

k\sum 
j=1

(2axj
)n1 - r

\int 
[ - axj

,axj
]r
| gj(y\prime , 0)| dy\prime 

\leq C\Phi ,\psi 

k\sum 
j=1

\sum 
| \gamma | \leq n2 - r

\int 
\BbbR n2

| \partial \gamma 2 gj(y)| dy \leq C\Phi ,\psi 

\sum 
| \gamma | \leq n2 - r

\| \partial \gamma 2 g\| 1,

where the last inequality follows from (ii) applied to the diffeomorphism \zeta  - 1
xj

and to the smooth function \eta j .
Putting all together, we get

\| \partial \alpha 1 ((f \circ \Phi )\psi )\| 2 \leq C\Phi ,\psi ,\alpha 

\sum 
\beta : | \beta | \leq | \alpha | +n2 - r

\| \partial \beta 2 f\| 2,

which gives (ii) in the general case.

Proposition 2.3.17. Let \Omega \subseteq \BbbR n1 be open, \Phi : \Omega \rightarrow \BbbR n2 be smooth, \psi \in \scrD (\Omega ),
s > 0, p, q \in [1,\infty ]. If either p = \infty or the differential of \Phi has constant rank
r \in \BbbN , then,

\| (f \circ \Phi )\psi \| Bs
p,q(\BbbR n1 ) \leq C\Phi ,\psi ,p,q,s\| f\| Bs+(n2 - r)/p

p,q (\BbbR n2 )
.

for all f \in Bs+(n2 - r)/p
p,q (\BbbR n2).

Proof. Thanks to the inclusions of Corollary 2.3.7, for p = 1 and for p = \infty the
conclusion follows immediately from Lemma 2.3.16 by real interpolation (see
Proposition 2.3.1(i)). For 1 < p < \infty and 1 \leq q < \infty , we then use complex
interpolation (see Proposition 2.3.1(iii)) with

p0 = 1, p1 = \infty , q0 = q1 = q, \theta = (p - 1)/p,

by choosing s0, s1 > 0 such that s = (1 - \theta )s0 + \theta s1. Finally, for the remaining
cases with q = \infty , we use real interpolation again.

2.3.6 Local conditions, spaces on manifolds

By Proposition 2.3.13, if m \in Bsp,q(\BbbR n) and \psi \in \scrD (\BbbR n), then m\psi \in Bsp,q(\BbbR n).
This suggests a way of introducing a ``local"" version of Besov spaces: for every
open \Omega \subseteq \BbbR n, s \in \BbbR , 1 \leq p, q \leq \infty , let Bsp,q,\mathrm{l}\mathrm{o}\mathrm{c}(\Omega ) be the set of distributions
m \in \scrD \prime (\Omega ) such that

m\psi \in Bsp,q(\BbbR n) for all \psi \in \scrD (\Omega )
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(where m\psi , which in principle is in \scrE \prime (\Omega ), is extended by zero to an element of
\scrE \prime (\BbbR n)). Clearly, if s \geq 0, the elements of Bsp,q,\mathrm{l}\mathrm{o}\mathrm{c}(\BbbR n) are functions. Moreover,
via partition-of-unity techniques, it is not difficult to prove the following

Proposition 2.3.18. Let s \in \BbbR , 1 \leq p, q \leq \infty , \Omega \subseteq \BbbR n be open, and let
\{ \psi \alpha \} \alpha \in A \subseteq \scrD (\Omega ) such that

\psi \alpha \geq 0 and
\bigcup 
\alpha 

\{ \psi \alpha \not = 0\} = \Omega .

For all m \in \scrD \prime (\Omega ), we have that m \in Bsp,q,\mathrm{l}\mathrm{o}\mathrm{c}(\BbbR n) if and only if

m\psi \alpha \in Bsp,q(\BbbR n) for all \alpha \in A.

By Proposition 2.3.17, the local spaces Bsp,q,\mathrm{l}\mathrm{o}\mathrm{c}(\BbbR n) are invariant by diffeo-
morphisms, at least for s > 0, so that one can define, via local coordinates and
partitions of unity, Bsp,q,\mathrm{l}\mathrm{o}\mathrm{c}(M) for every smooth manifold M . For p = q = 2,
we have in particular the local L2 Sobolev space Hs

\mathrm{l}\mathrm{o}\mathrm{c}(M), which can be clearly
considered also for s = 0 (since H0 = L2).

In the case of a compact manifold M , we set Hs(M) = Hs
\mathrm{l}\mathrm{o}\mathrm{c}(M). In fact,

since M admits a finite atlas, we have that Hs(M) is a Banach space, with
norm

\| m\| Hs(M) = max
j
\| (m\eta j) \circ \psi  - 1

j \| Hs(\BbbR n),

where \{ (Uj , \psi j)\} j is a finite atlas for M and \{ \eta j\} j is a partition of unity subor-
dinated to the open cover \{ Uj\} j . Moreover, if we choose non-negative functions
\~\eta j \in \scrD (M) with supp \~\eta j \subseteq Uj , such that \~\eta j\eta j = \eta j , then the space Hs(M) is a
retract of Hs(\BbbR n)\times \cdot \cdot \cdot \times Hs(\BbbR n) via the maps

m \mapsto \rightarrow ((m\eta j) \circ \psi  - 1
j )j and (fj)j \mapsto \rightarrow 

\sum 
j

(fj \circ \psi j)\~\eta j .

This immediately gives interpolation properties for Hs(M):

Proposition 2.3.19. For every compact manifold M , s0, s1 \geq 0, 0 < \theta < 1,
we have

(Hs0(M), Hs1(M))[\theta ] = (Hs0(M), Hs1(M))\theta ,2 = H(1 - \theta )s0+\theta s1(M).

Among compact manifolds, we have the n-dimensional torus \BbbT n. In this
case, the Sobolev spaces Hs(\BbbT n) can be characterized in terms of Fourier series:

Proposition 2.3.20. For every s \geq 0 and Borel m : \BbbT n \rightarrow \BbbC , we have that
m \in Hs(\BbbT n) if and only if\Biggl( \sum 

k\in \BbbN n

| \^f(k)| 2(1 + | k| 2)s
\Biggr) 1/2

<\infty .

In fact, the left-hand side of the inequality gives an equivalent norm on Hs(\BbbT n).

Proof. For s \in \BbbN , by the properties of Fourier series it is easy to see that\Biggl( \sum 
k\in \BbbN n

| \^f(k)| 2(1 + | k| 2)s
\Biggr) 1/2

\sim max
\alpha : | \alpha | \leq s

\| D\alpha f\| L2(\BbbT n),
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where D1, . . . , Dn is a basis of translation-invariant vector fields on \BbbT n. From
this and the previous results, the conclusion follows easily for s \in \BbbN .

For a general s \geq 0, it is then sufficient to use interpolation (see Proposi-
tions 2.2.1 and 2.3.19).

2.3.7 Trace theorems

Trace theorems are related to what happens to Sobolev or Besov spaces (and
norms) when one considers the restriction (i.e., the trace) of a function to a
subspace, or more generally to a submanifold.

Notice that Proposition 2.3.17 contains a trace theorem: if M is a smooth
k-dimensional submanifold of \BbbR n, 1 \leq p, q \leq \infty , s > (n - k)/p, then

f \in Bsp,q(\BbbR n) \Rightarrow f | M \in Bs - (n - k)/p
p,q,\mathrm{l}\mathrm{o}\mathrm{c} (M).

The following is a much more refined result, which allows to consider traces
on subsets of \BbbR n which are far from being submanifolds.

Theorem 2.3.21. Let \mu be a positive regular Borel measure on \BbbR n with compact
support, such that, for some d > 0,

\mu (B(x, r)) \leq Crd

for all x \in \BbbR n and r > 0. If s > (n - d)/2, then the identity operator on \scrS (\BbbR n)
extends to a bounded operator Hs(\BbbR n) \rightarrow L2(\mu ).

Proof. It is a particular case of [Tri01], Corollary 9.8(ii), since the Sobolev
space Hs(\BbbR n) coincides with the Triebel-Lizorkin space F s22(\BbbR n) (cf. \S 1.2 of
[Tri01]).

Let A \subseteq \BbbR n be open and d \geq 0. We say that a positive regular Borel measure
\mu on A is locally d-bounded if, for every compact K \subseteq A and \varepsilon > 0, there exist
C, \=r > 0 such that

\mu (B(x, r)) \leq Crd - \varepsilon for x \in K and 0 < r \leq \=r.

Notice that local 0-boundedness is an empty condition.

Corollary 2.3.22. Let \mu be a locally d-bounded positive regular Borel measure
on an open A \subseteq \BbbR n. If s > (n - d)/2, then, for every compact K \subseteq A,

\| f\| L2(\mu ) \leq CK,s\| f\| Hs(\BbbR n)

for every f \in \scrD (\BbbR n) with supp f \subseteq K.

Proof. Let K \subseteq A be compact and \varepsilon > 0. Choose a compact neighborhood
K \prime \subseteq A of K, and let C, \=r > 0 such that

\mu (B(x, r)) \leq Crd - \epsilon for x \in K \prime and 0 < r \leq \=r.

Let moreover \=r\prime = min\{ \=r, d(A \setminus \r K \prime ,K)\} , C \prime = max\{ C, \mu (K)/(\=r\prime )d - \epsilon \} .
The identity

\mu K(E) = \mu (E \cap K)
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defines a positive regular Borel measure \mu K on \BbbR n, which coincides with \mu on
K, and with supp\mu K \subseteq K. Moreover

\mu K(B(x, r)) \leq C \prime rd - \varepsilon for every r > 0 and x \in \BbbR n,

by construction. By Theorem 2.3.21, we then have

\| f\| L2(\mu ) = \| f\| L2(\mu K) \leq CK,s\| f\| Hs(\BbbR n)

for s > (n  - d)/2 + \varepsilon /2 and f \in \scrD (\BbbR n) with supp f \subseteq K. Since \varepsilon > 0 was
arbitrary, the conclusion follows.

In the following, we will be particularly interested in measures which are
homogeneous with respect to some family of dilations \delta t on \BbbR n. This property
yields a sort of polar-coordinate decomposition of the measure.

Proposition 2.3.23. Let \sigma be a regular Borel measure on \BbbR n such that

\sigma (\delta t(A)) = tQ\sigma (A),

for some Q > 0. Let | \cdot | \delta be a \delta t-homogeneous norm and set

S = \{ \lambda \in \BbbR n : | \lambda | \delta = 1\} .

Then S is compact and there exists a regular Borel measure \tau on S such that\int 
\BbbR n

f d\sigma =
\int 
S

\int 
]0,+\infty [

f(\delta t(\omega )) tQ - 1 dt d\tau (\omega )

for all measurable f : \BbbR n \rightarrow \BbbC which are nonnegative or L1(\sigma ).

Proof. By the hypothesis on \sigma , the measure \sigma \prime on \BbbR n given by

d\sigma \prime (\lambda ) = | \lambda |  - Q\delta d\sigma (\lambda )

is dilation-invariant.
Since | \cdot | \delta is a homogeneous norm, S is a compact subset of \BbbR n \setminus \{ 0\} and

the map
\BbbR n \setminus \{ 0\} \ni \lambda \mapsto \rightarrow (\delta | \lambda |  - 1

\delta 
(\lambda ), log2 | \lambda | \delta ) \in S \times \BbbR . (2.3.6)

is a homeomorphism, whose inverse is

S \times \BbbR \ni (\omega , t) \mapsto \rightarrow \delta 2t(\omega ) \in \BbbR n \setminus \{ 0\} .

Let \sigma \prime \prime be the push-forward of \sigma \prime on S \times \BbbR via this homeomorphism; then \sigma \prime \prime 

is a regular Borel measure on S \times \BbbR , which is invariant by translations in the
second coordinate.

Let now B \subseteq S a Borel set and consider the measure \sigma B(C) = \sigma (B\times C) on \BbbR 
(it is the push-forward on \BbbR of the restriction of \sigma \prime \prime to B \times \BbbR via the canonical
projection). Since \sigma B is invariant by translations and finite on bounded sets
(being S compact), it is a multiple of Lebesgue measure, i.e. there exists cB \geq 0
such that d\sigma B(t) = cB dt.

In particular, \sigma \prime \prime (B \times [0, 1]) = \sigma B([0, 1]) = cB . This means that B \mapsto \rightarrow cB is
in fact a measure on S (it is the push-forward on S of the restriction of \sigma \prime \prime to
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S \times [0, 1] via the canonical projection), let us call it \tau . We have thus obtained
that

\sigma \prime \prime (B \times C) = \sigma B(C) = cB | C| = \tau (B)| C| ,
which means that \sigma \prime \prime is the product measure of the regular Borel measure \tau on
S and of Lebesgue measure on \BbbR .

Putting all together, we easily obtain the conclusion.

Corollary 2.3.24. Under the hypotheses of Proposition 2.3.23, the measure \sigma 
is locally 1-bounded on \BbbR n \setminus \{ 0\} .

2.3.8 Spaces with dominating mixed smoothness

We now introduce the Besov spaces S\vec{}sp,qB(\BbbR \vec{}n) with dominating mixed smooth-
ness. Notice that the order \vec{}s of differentiability is a vector, whereas on the
contrary the parameters p, q are still scalar.

Let (\phi (l)
0 , \phi 

(l)
1 ) be an admissible pair on \BbbR nl , for l = 1, . . . , \varrho , and extend it

as before to a sequence (\phi (l)
k )k; moreover, set

\phi \vec{}m = \phi (1)
m1
\otimes \cdot \cdot \cdot \otimes \phi (\varrho )

m\varrho 
.

Then S\vec{}sp,qB(\BbbR \vec{}n) is defined as the set of the f \in \scrS \prime (\BbbR \vec{}n) such that the norm

\| f\| S\vec{}s
p,qB

= ((2\vec{}m\cdot \vec{}s\| (\scrF  - 1\phi \vec{}m) \ast f\| p)\vec{}m)lq

is finite; if moreover

lim
| \vec{}m| \rightarrow \infty 

2\vec{}m\cdot \vec{}s\| (\scrF  - 1\phi \vec{}m) \ast f\| p = 0,

then we say that f \in S\vec{}sp,qb(\BbbR \vec{}n).
Most of the arguments used and the properties found for Besov spaces extend

in a multi-variate fashion to these new spaces. In particular, S\vec{}sp,qB(\BbbR \vec{}n) is a
Banach space, with continuous inclusions

\scrS (\BbbR \vec{}n) \subseteq S\vec{}sp,qB(\BbbR \vec{}n) \subseteq \scrS \prime (\BbbR \vec{}n),

and it is a retract of the multi-parameter Lp-valued weighted sequence space

lq\vec{}s(L
p(\BbbR \vec{}n)) = lq\vec{}s(\BbbN 

\varrho ;Lp(\BbbR \vec{}n)) = lqs1(l
q
s2(. . . (l

q
s\varrho 

(Lp(\BbbR \vec{}n))))). (2.3.7)

Here we find an important difference between the one-variate and the multi-
variate cases: Besov spaces with dominating mixed smoothness have a less rich
interpolation theory. By applying iteratively Theorem 2.1.3, and then Theo-
rem 2.1.1, to the space (2.3.7), we obtain the following

Proposition 2.3.25. Let 1 \leq p, p0, p1 \leq \infty , 1 \leq q, q0, q1 \leq \infty , 0 < \theta < 1,
\vec{}s0, \vec{}s1 \in \BbbR \varrho .

(i) If q0, q1 <\infty and
1
q

=
1 - \theta 

q0
+

\theta 

q1
,

then
(S\vec{}s0p,q0B(\BbbR \vec{}n), S\vec{}s1p,q1B(\BbbR \vec{}n))\theta ,q = S(1 - \theta )\vec{}s0+\theta \vec{}s1

p,q B(\BbbR \vec{}n).
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(ii) If q0, q1 <\infty and

1 - \theta 

p0
+

\theta 

p1
=

1
p

=
1 - \theta 

q0
+

\theta 

q1
,

then
(S\vec{}s0p0,q0B(\BbbR \vec{}n), S\vec{}s1p1,q1B(\BbbR \vec{}n)\theta ,p = S(1 - \theta )\vec{}s0+\theta \vec{}s1

p,p B(\BbbR \vec{}n).

(iii) If q0 <\infty and

1
p

=
1 - \theta 

p0
+

\theta 

p1
,

1
q

=
1 - \theta 

q0
+

\theta 

q1
,

then
(S\vec{}s0p0,q0B(\BbbR \vec{}n), S\vec{}s1p1,q1B(\BbbR \vec{}n)[\theta ] = S(1 - \theta )\vec{}s0+\theta \vec{}s1

p,q B(\BbbR \vec{}n).

This result is certainly less versatile than Proposition 2.3.1, but will be
sufficient to our aims. See [SS04], \S 4.1 (and particularly Lemma 2), for an
argument against the possibility of obtaining an interpolation result as flexible
as in the one-variate case.

The continuous embeddings between multi-variate Besov spaces, instead, are
perfectly analogous to the one-variate case.

Proposition 2.3.26. Let 1 \leq p, p1, p2, q, q1, q2 \leq \infty , \vec{}s1, \vec{}s2 \in \BbbR \varrho .

(i) If \vec{}s1 > \vec{}s2, or otherwise if \vec{}s1 \geq \vec{}s2 and q1 > q2, then we have the continuous
inclusion

Ss1p,q1B(\BbbR n) \subseteq Ss2p,q2b(\BbbR 
n).

(ii) If p1 \leq p2, \vec{}s1 - \vec{}n/p1 \geq \vec{}s2 - \vec{}n/p2 and q1 \geq q2, then we have the continuous
inclusions

Ss1p1,qB(\BbbR n) \subseteq Ss2p2,qB(\BbbR n), Ss1p1,qb(\BbbR 
n) \subseteq Ss2p2,qb(\BbbR 

n).

The Fourier multiplier results obtained in the one-variate case can be cer-
tainly extended to this context, at least for multipliers in factorized form (i.e.,
when the multiplier is the tensor product of symbols belonging to suitable classes
on the factors \BbbR nl of \BbbR \vec{}n). In particular, we obtain easily this multi-variate ver-
sion of the lifting properties:

Proposition 2.3.27. Let 1 \leq p, q \leq \infty , s \in \BbbR .

(i) For every \vec{}\sigma \in \BbbR \varrho , the multi-parameter Bessel potential operator

J\vec{}\sigma : f \mapsto \rightarrow \scrF  - 1(\langle \cdot \rangle \vec{}\sigma (\scrF f))

is an isomorphism S\vec{}sp,qB(\BbbR \vec{}n) \rightarrow S\vec{}s - \vec{}\sigma p,q B(\BbbR \vec{}n), with inverse J - \vec{}\sigma .

(ii) For every \vec{}k \in \BbbN , the three conditions

(a) f \in S\vec{}sp,qB(\BbbR \vec{}n),

(b) \partial \vec{}\alpha f \in S\vec{}s - \vec{}kp,q B(\BbbR \vec{}n) for | \alpha 1| \leq k1, . . . , | \alpha \varrho | \leq k\varrho ,
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are equivalent; moreover, the quantity\sum 
| \alpha 1| \leq k1

\cdot \cdot \cdot 
\sum 

| \alpha \varrho | \leq k\varrho 

\| \partial \vec{}\alpha f\| 
S\vec{}s - \vec{}k

p,q B

is an equivalent norm of f \in S\vec{}sp,qB(\BbbR \vec{}n).

The same results hold also for little Besov spaces.

Consequently, it is not difficult to obtain the inclusions corresponding to
Corollary 2.3.7:

Proposition 2.3.28. For every \vec{}k \in \BbbN \varrho , the following are continuous inclusions:

(i) S
\vec{}k
p,1B(\BbbR \vec{}n) \subseteq S

\vec{}k,pW (\BbbR \vec{}n) \subseteq S
\vec{}k
p,\infty B(\BbbR n) for 1 \leq p \leq \infty ,

(ii) S
\vec{}k
\infty ,1B(\BbbR \vec{}n) \subseteq S

\vec{}kCub(\BbbR \vec{}n) \subseteq S
\vec{}k
\infty ,\infty B(\BbbR \vec{}n).

Moreover, we have S\vec{}s2,2B(\BbbR \vec{}n) = S\vec{}sH(\BbbR \vec{}n) for all \vec{}s \in \BbbR .

The result on pointwise multiplication can also be generalized to this setting:

Proposition 2.3.29. Let 1 \leq p, p1, p2, q \leq \infty , \vec{}s \in \BbbR \varrho , with

1
p

=
1
p1

+
1
p2
.

(i) For every \vec{}\sigma \in \BbbR \varrho with \sigma l > | sl| for l = 1, . . . , \varrho , we have

\| fg\| S\vec{}s
p,qB

\leq Cp1,p2,q,\vec{}\sigma ,\vec{}s\| f\| S\vec{}\sigma 
p1,\infty B\| g\| S\vec{}s

p2,qB
.

(ii) If \vec{}s > 0, then we also have the more precise inequality

\| fg\| S\vec{}s
p,qB

\leq Cp1,p2,q,\vec{}s\| f\| S\vec{}s
p1,qB

\| g\| S\vec{}s
p2,qB

.

Proof. Analogously as in the proof of Proposition 2.3.13, the problem is reduced
to verifying some inequalities involving sequences (a\vec{}h)\vec{}h\in \BbbN \varrho , (b\vec{}k)\vec{}k\in \BbbN \varrho of non-
negative reals:\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\left(  \sum 
(h1,k1)\in Im

\cdot \cdot \cdot 
\sum 

(h\varrho ,k\varrho )\in Im

a\vec{}hb\vec{}k

\right)  
\vec{}m

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
lq
\vec{}s

\leq Cp1,p2,q,\vec{}\sigma ,\vec{}s\| (a\vec{}h)\vec{}h\| l\infty \vec{}\sigma \| (b\vec{}k)\vec{}k\| lq\vec{}s

for (i), and\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left(  \sum 

(h1,k1)\in Im

\cdot \cdot \cdot 
\sum 

(h\varrho ,k\varrho )\in Im

a\vec{}hb\vec{}k

\right)  
\vec{}m

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
lq
\vec{}s

\leq Cp1,p2,q,\vec{}s\| (a\vec{}h)\vec{}h\| lq\vec{}s\| (b\vec{}k)\vec{}k\| lq\vec{}s

for (ii).
For \varrho = 1, the inequalities are true by the proof of Proposition 2.3.13. It is

then sufficient to plug these inequalities into themselves, by exploiting the fact
that

lq\vec{}s = lqs1(l
q
s2(. . . (l

q
s\varrho 

) . . . )), l\infty \vec{}\sigma = l\infty \sigma 1
(l\infty \sigma 2

(. . . (l\infty \sigma \varrho 
) . . . )),

to obtain recursively the inequalities for a general \varrho .
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Corollary 2.3.30. For every compact K \subseteq \BbbR \vec{}n, \vec{}s \in \BbbR , 1 \leq p1, p2, q \leq \infty with
p1 \leq p2, we have

\| f\| S\vec{}s
p1,qB

\leq CK,p1,p2,q,\vec{}s\| f\| S\vec{}s
p2,qB

if supp f \subseteq K.

Proposition 2.3.9 about approximation by smooth functions is immediately
extended to the multi-parameter context:

Proposition 2.3.31. Let 1 \leq p, q \leq \infty , \vec{}s \in \BbbR \varrho , f \in S\vec{}sp,qB(\BbbR \vec{}n). If u \in \scrS (\BbbR \vec{}n),
then f \ast u \in W\infty ,p(\BbbR \vec{}n). Moreover, if f \in S\vec{}sp,qb(\BbbR \vec{}n), and if uh \in \scrS (\BbbR \vec{}n) is an
approximate identity for h\rightarrow \infty , then f \ast uh \rightarrow f in S\vec{}sp,qB(\BbbR \vec{}n).

A comparison between Besov spaces with dominating mixed smoothness and
classical Besov spaces on \BbbR \vec{}n is given by the following

Proposition 2.3.32. Let \vec{}s > 0, 1 \leq p, q \leq \infty . Then

Bs1+\cdot \cdot \cdot +s\varrho 
p,q (\BbbR \vec{}n) \subseteq S\vec{}sp,qB(\BbbR \vec{}n) \subseteq B\mathrm{m}\mathrm{i}\mathrm{n}\vec{}s

p,q (\BbbR \vec{}n)

with continuous inclusions.

Proof. For l = 1, . . . , \varrho , choose a standard admissible pair (\phi (l)
0 , \phi 

(l)
1 ) on \BbbR nl

with respect to the norm | \cdot | \infty , let (\phi (l)
kl

)kl\in \BbbN be the corresponding generated
system, and set

\phi \vec{}k = \phi 
(1)
k1
\otimes \cdot \cdot \cdot \otimes \phi 

(\varrho )
k\varrho 
.

Moreover take an admissible pair (\eta 0, \eta 1) on \BbbR \vec{}n such that

\{ \xi \in \BbbR \vec{}n : | \xi | \infty \leq 2\} \subseteq \{ \eta 0 = 1\} , \{ \xi \in \BbbR \vec{}n : 1 \leq | \xi | \infty \leq 4\} \subseteq \{ \eta 1 = 1\} ,

and again extend it to a sequence (\eta m)m\in \BbbN . Then, for m = max\vec{}k, we have

\phi \vec{}k \eta m = \phi \vec{}k,

thus also, by Young's inequality,

\| (\scrF  - 1\phi \vec{}k) \ast f\| p \leq C\| (\scrF  - 1\eta m) \ast f\| p.

Therefore, for q <\infty ,

\sum 
\vec{}k\in \BbbN \varrho 

2\vec{}k\cdot \vec{}sq\| (\scrF  - 1\phi \vec{}k) \ast f\| 
q
p \leq Cq

\sum 
m\in \BbbN 

\left(  \sum 
\vec{}k :m=\mathrm{m}\mathrm{a}\mathrm{x}\vec{}k

2\vec{}k\cdot \vec{}sq

\right)  \| (\scrF  - 1\eta m) \ast f\| qp

and, since

\sum 
\vec{}k :m=\mathrm{m}\mathrm{a}\mathrm{x}\vec{}k

2\vec{}k\cdot \vec{}sq \leq 
\varrho \sum 
l=1

2mslq
\prod 
l\prime \not =l

m\sum 
k=0

2ksl\prime q \leq C\vec{}s,q2m(s1+\cdot \cdot \cdot +s\varrho )q,

the inclusion Bs1+\cdot \cdot \cdot +s\varrho 
p,q (\BbbR \vec{}n) \subseteq S\vec{}sp,qB(\BbbR \vec{}n) follows; the case q = \infty is analogous.

For the second inclusion, without loss of generality (see Proposition 2.3.28)
we may suppose s\ast = s1 = \cdot \cdot \cdot = s\varrho = min\vec{}s. Notice now that, if we set

\psi m =
\sum 

\vec{}k :m=\mathrm{m}\mathrm{a}\mathrm{x}\vec{}k

\phi \vec{}k,

59



Chapter 2. Smoothness conditions

then (\psi 0, \psi 1) is an admissible pair on \BbbR \vec{}n, whose generated system is (\psi m)m\in \BbbN 
(the scaling properties may be seen by considering the sums \psi 0+\cdot \cdot \cdot +\psi m, which
can be written as tensor products of corresponding sums on the factors of \BbbR \vec{}n).
For 1 < q <\infty , since

\| (\scrF  - 1\psi m) \ast f\| p \leq 
\sum 

\vec{}k :m=\mathrm{m}\mathrm{a}\mathrm{x}\vec{}k

\| (\scrF  - 1\phi \vec{}k) \ast f\| p

\leq 

\left(  \sum 
\vec{}k :m=\mathrm{m}\mathrm{a}\mathrm{x}\vec{}k

2 - \vec{}k\cdot \vec{}sq
\prime 

\right)  1/q\prime \left(  \sum 
\vec{}k :m=\mathrm{m}\mathrm{a}\mathrm{x}\vec{}k

2\vec{}k\cdot \vec{}sq\| (\scrF  - 1\phi \vec{}k) \ast f\| 
q
p

\right)  1/q

,

and \sum 
\vec{}k :m=\mathrm{m}\mathrm{a}\mathrm{x}\vec{}k

2 - \vec{}k\cdot \vec{}sq
\prime 
\leq 

\varrho \sum 
l=1

2 - ms\ast q
\prime \prod 
l\prime \not =l

m\sum 
k=0

2 - ks\ast q
\prime 
\leq C\vec{}s,q2 - ms\ast q

\prime 
,

we get

(2ms\ast \| (\scrF  - 1\psi m) \ast f\| p)q \leq C\vec{}s,q
\sum 

\vec{}k :m=\mathrm{m}\mathrm{a}\mathrm{x}\vec{}k

2\vec{}k\cdot \vec{}sq\| (\scrF  - 1\phi \vec{}k) \ast f\| 
q
p,

and the conclusion follows; the cases q = 1 and q = \infty are analogous.

2.3.9 Characterization in terms of differences

We need some notation. For l = 1, . . . , \varrho , yl \in \BbbR nl , m \in \BbbN , set

\Delta m
l,yl
f(x1, . . . , x\varrho ) =

m\sum 
k=0

( - 1)k
\biggl( 
m

k

\biggr) 
f(x1, . . . , xl - 1, xl + kyl, xl+1, . . . , x\varrho );

moreover, for J = \{ l1, . . . , lv\} \subseteq \{ 1, . . . , \varrho \} , y \in 
\prod 
l\in J \BbbR nl , set

\Delta \vec{}m
J,yf = \Delta ml1

l1,yl1
\cdot \cdot \cdot \Delta mlv

lv,ylv
f,

and, for t \in ]0,+\infty [J ,

\omega \vec{}mJ,p(t, f) = sup
| yl1 | \infty <t\varrho 1

\cdot \cdot \cdot sup
| ylv | \infty <tlv

\| \Delta \vec{}m
J,yf\| p.

Then we have (cf. [ST87], \S 2.3.4)

Proposition 2.3.33. Suppose that \vec{}m \in \BbbN \varrho , 0 < \vec{}s < \vec{}m, p, q \in [1,\infty ]. Then

\| f\| p +
\sum 

\emptyset \not =J\subseteq \{ 1,...,\varrho \} 

\Biggl( \int 
]0,+\infty [J

\Biggl( 
\omega \vec{}mJ,p(t, f)\prod 

l\in J t
sl

l

\Biggr) q \prod 
l\in J

dtl
tl

\Biggr) 1/q

is an equivalent norm on S\vec{}sp,qB(\BbbR \vec{}n). Moreover, a function f \in Lp(\BbbR \vec{}n) such
that the above quantity is finite belongs to S\vec{}sp,qB(\BbbR \vec{}n).
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Proof. The proof of the equivalence of the norms is a (notationally involved)
multi-variate analogue of the proof of Theorem 6.2.5 of [BL76]. The second
assertion follows easily by approximation via the decomposition

f =
\sum 
\vec{}m\in \BbbZ \varrho 

(\scrF  - 1\phi \vec{}m) \ast f

and Fatou's property.

About finite differences, we also recall an elementary result which will be
useful in the following.

Lemma 2.3.34. For \vec{}m \in \BbbN \varrho , J \subseteq \{ 1, . . . , \varrho \} , y \in 
\prod 
l\in J \BbbR nl , 1 \leq p \leq \infty , we

have
\| \Delta \vec{}m

J,yf\| p \leq CJ,\vec{}m,p\| f\| S \vec{}m,pW

\prod 
l\in J

| yl| ml
\infty 

Proof. Let \Delta hf(x) = f(x) - f(x+ h). If \mu h is the measure defined by\int 
\BbbR \vec{}n

\phi d\mu h =
\int 1

0

f\phi ( - th) dt,

then the fundamental theorem of calculus gives

\Delta hf = \partial  - h\mu h \ast f = | h| \infty \mu h \ast \partial  - h/| h| \infty f,

where \partial v denotes the derivative corresponding to the vector v. The conclusion
follows by repeated applications of the previous identity (with different choices
of the increment h) and by Young's inequality (since the \mu h have mass 1).

2.4 Mihlin-H\"ormander conditions

2.4.1 Pointwise conditions

Fix a system of dilations \{ \delta t\} t>0 on \BbbR n. Let Q\delta be the associated homogeneous
dimension, and | \cdot | \delta be a homogeneous norm.

Choose a basis \partial 1, . . . , \partial n of (translation-invariant vector fields on) \BbbR n di-
agonalizing the dilations \delta t. If \lambda j is the homogeneity degree of \partial j , then the
basis \partial 1, . . . , \partial n can be thought of as an adapted basis (with weights \lambda 1, . . . , \lambda n)
of the homogeneous Lie algebra \BbbR n with dilations \delta t; correspondingly, for a
multi-index \alpha = (\alpha 1, . . . , \alpha n) \in \BbbN n, we have a notion of homogeneous degree

\| \alpha \| = \alpha 1\lambda 1 + \cdot \cdot \cdot + \alpha n\lambda n

analogous to the one introduced in \S 1.4.1 for non-commutative multi-indices.
We then say that a function m : \BbbR n \rightarrow \BbbC satisfies a pointwise Mihlin-

H\"ormander condition of order s \in \BbbN (adapted to the fixed system of dilations)
if m \in Cs(\BbbR n \setminus \{ 0\} ) and, for all \alpha \in J(n) with | \alpha | \leq s,

| \partial \alpha m(x)| \leq C\alpha | x|  - \| \alpha \| \delta for x \in \BbbR n \setminus \{ 0\} ,

for some C\alpha > 0. In fact, if we put, for m \in Cs(\BbbR n \setminus \{ 0\} ),

\| m\| M\delta Cs = max
\alpha : | \alpha | \leq s

sup
x \not =0

| x| \| \alpha \| \delta | \partial \alpha m(x)| ,
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then m satisfies a pointwise Mihlin-H\"ormander condition of order s if and only if
\| m\| M\delta Cs <\infty . We will also say that m satisfies a pointwise Mihlin-H\"ormander
condition of infinite order if m \in C\infty (\BbbR n \setminus \{ 0\} ) and \| m\| M\delta Cs <\infty for all s \in \BbbN .

It is not difficult to check that the previously defined conditions do not
depend on the choice of the homogeneous norm, and also on the choice of the
adapted basis of \BbbR n, but only on the fixed system of dilations. We also have,
for every s \in \BbbN ,

\| m \circ \delta t\| M\delta Cs = \| m\| M\delta Cs for all t > 0,

so that the pointwise Mihlin-H\"ormander conditions are dilation-invariant.
In the case n = 1, there is a unique choice (up to parameter-rescaling) for a

system of dilations, which therefore needs not be specified; in this case, we will
use the notation \| \cdot \| M\ast Ck .

Clearly
\| \cdot \| M\delta Cs1 \leq \| \cdot \| M\delta Cs2 for s1 \leq s2,

so that a pointwise Mihlin-H\"ormander condition of order s implies conditions
of all the orders smaller than s. We also have that \| \cdot \| M\delta C0 coincides with
the norm of the supremum over \BbbR n \setminus \{ 0\} , so that a function m satisfying a
pointwise Mihlin-H\"ormander condition of any order is necessarily a bounded
continuous function on \BbbR n \setminus \{ 0\} ; on the other hand, its derivatives are allowed
to diverge at 0, with a precise order depending on the order of the derivative,
and correspondingly they have to vanish at infinity. In any case, the quantity
\| \cdot \| M\delta Cs majorizes the Cs-norm on every fixed compact subset of \BbbR n \setminus \{ 0\} .

2.4.2 Besov conditions

We introduce now a (possibly weaker) version of Mihlin-H\"ormander conditions,
in which derivatives are controlled in terms of Besov norms; in fact, this allows
us to be more precise, since we admit also conditions of fractional order. The
Mihlin-H\"ormander conditions that we are going to introduce are local Besov
conditions on \BbbR n \setminus \{ 0\} , with an added uniformity with respect to the fixed
system of dilations.

For 1 \leq p, q \leq \infty , s \in \BbbR , \phi \in \scrD (\BbbR n \setminus \{ 0\} ), we set

\| m\| M\phi 
\delta B

s
p,q

= sup
t>0

\| (m \circ \delta t)\phi \| Bs
p,q
.

We will be interested in this quantity when \phi satisfies the following conditions:

\phi \geq 0,
\bigcup 
t>0

\delta t - 1(\{ \phi \not = 0\} ) = \BbbR n \setminus \{ 0\} . (2.4.1)

There is also a ``discrete"" version: for a > 0, we set

\| m\| M\phi ,a
\delta Bs

p,q
= sup

j\in \BbbZ 
\| (m \circ \delta 2aj )\phi \| Bs

p,q
.

In this case, we will require a more restrictive condition on \phi :

\phi \geq 0,
\bigcup 
j\in \BbbZ 

\delta 2 - aj (\{ \phi \not = 0\} ) = \BbbR n \setminus \{ 0\} . (2.4.2)
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2.4. Mihlin-H\"ormander conditions

Proposition 2.4.1. (i) If \phi \in \scrD (\BbbR n \setminus \{ 0\} ) satisfies (2.4.1), then it satisfies
(2.4.2) for sufficiently small a > 0.

(ii) Suppose that both \phi 1, \phi 2 \in \scrD (\BbbR n \setminus \{ 0\} ) satisfy (2.4.1). Then, for every
s \geq 0, the norms

\| \cdot \| 
M

\phi 1
\delta Bs

p,q
and \| \cdot \| 

M
\phi 2
\delta Bs

p,q

are equivalent.

(iii) Suppose that \phi \in \scrD (\BbbR n \setminus \{ 0\} ) and a > 0 satisfy (2.4.2). Then, for every
s \geq 0, the norms

\| \cdot \| M\phi 
\delta B

s
p,q

and \| \cdot \| M\phi ,a
\delta Bs

p,q

are equivalent.

The proof will be given after some preliminary results. Let \lambda 1, . . . , \lambda n be the
weights of the elements of the adapted basis \partial 1, . . . , \partial n, so that Q\delta =

\sum 
j \lambda j . In

the following, we will use coordinates (x1, . . . , xn) on \BbbR n associated to the basis
\partial 1, . . . , \partial n, so that

\delta t(x1, . . . , xn) = (t\lambda 1x1, . . . , t
\lambda nxn).

In analogy with the isotropic case, it is immediate to prove that

\scrF (f \circ \delta t) = t - Q\delta (\scrF f) \circ \delta t - 1 . (2.4.3)

for all f \in \scrS \prime (\BbbR n) and t > 0.

Lemma 2.4.2. Let s \in \BbbR , 1 \leq p, q \leq \infty . Then, for every T > 1,

sup
T - 1\leq t\leq T

\| f \circ \delta t\| Bs
p,q
\leq CT,p,q,s\| f\| Bs

p,q
.

Proof. Let (\phi 0, \phi 1) be an admissible pair as in \S 2.3.1. Then it is not difficult to
find another admissible pair (\~\phi 0, \~\phi 1) such that\bigcup 

T - 1\leq t\leq T

supp(\phi j \circ \delta t - 1) \subseteq \{ \~\phi j = 1\} 

for j = 0, 1. Then, by (2.4.3), Young's inequality and the invariance of \| \scrF  - 1\eta \| 1
by dilations of \eta , it is not difficult to show that the Besov norm of f \circ \delta t with
respect to (\phi 0, \phi 1) is controlled (uniformly in t \in [T - 1, T ]) by the Besov norm
of f with respect to (\~\phi 0, \~\phi 1).

Lemma 2.4.3. Let \eta \in \scrD (\BbbR n \setminus \{ 0\} ), \eta \geq 0, such that\bigcup 
t>0

\delta t - 1(\{ \eta \not = 0\} ) = \BbbR n \setminus \{ 0\} . (2.4.4)

Then there exists a > 0 such that\bigcup 
j\in \BbbZ 

\delta 2 - aj (\{ \eta \not = 0\} ) = \BbbR n \setminus \{ 0\} .
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Proof. Let | \cdot | \delta be a \delta t-homogeneous norm, set S = \{ x : | x| \delta = 1\} , and let
\Phi : \BbbR n \setminus \{ 0\} \rightarrow S \times \BbbR be the homeomorphism defined by (2.3.6). From (2.4.4)
it follows that, for all \omega \in S, there exists t \in \BbbR such that \eta (\Phi  - 1(\omega , t)) \not = 0. By
continuity of \eta and compactness of S, we can find a finite open cover U1, . . . , Uk
of S and open intervals I1, . . . , Ik of \BbbR such that

\Phi  - 1

\Biggl( \bigcup 
l

(Ul \times Il)

\Biggr) 
\subseteq \{ \eta \not = 0\} .

In order to conclude, it is then sufficient to take a > 0 less than the minimum
of the lengths of the intervals I1, . . . , Ik.

Lemma 2.4.4. Let \eta \in \scrD (\BbbR n \setminus \{ 0\} ) and a > 0 be as in Lemma 2.4.3. Let
moreover \psi \in \scrD (\BbbR n \setminus \{ 0\} ), and s \in \BbbR . Then there is C > 0 such that, for every
measurable function m : \BbbR n \rightarrow \BbbC ,

sup
t>0

\| (m \circ \delta t)\psi \| Bs
p,q
\leq C sup

j\in \BbbZ 
\| (m \circ \delta 2aj )\eta \| Bs

p,q
. (2.4.5)

Moreover, if the right-hand side in (2.4.5) is finite, then m \in Bsp,q,\mathrm{l}\mathrm{o}\mathrm{c}(\BbbR n \setminus \{ 0\} ).
Proof. If the right-hand side of (2.4.5) is infinite, then there is nothing to prove.

Let us suppose therefore that the right-hand side is finite. In particular

\| m(\eta \circ \delta 2 - aj )\| Bs
p,q

<\infty for all j \in \BbbZ ,

so that, by Proposition 2.3.18, m \in Bsp,q,\mathrm{l}\mathrm{o}\mathrm{c}(\BbbR n \setminus \{ 0\} ).
Let \chi \in \scrD (\BbbR n \setminus \{ 0\} ) such that\bigcup 

t\in [2 - a,2a]

supp(\psi \circ \delta t) \subseteq \{ \chi = 1\} .

Then, for t \in [2 - a, 2a], we have (\chi \circ \delta t)\psi = \psi , so that

sup
t\in [2 - a,2a]

\| (m \circ \delta t)\psi \| Bs
p,q

= sup
t\in [2 - a,2a]

\| ((m\chi ) \circ \delta t)\psi \| Bs
p,q
\leq Cp,q,s,\psi ,a\| m\chi \| Bs

p,q

by Lemma 2.4.2 and Proposition 2.3.13.
On the other hand, since supp\chi is compact, there is a finite I \subseteq \BbbZ such that

supp\chi \subseteq 
\bigcup 
j\in I
\{ \eta \circ \delta 2 - aj \not = 0\} .

Let
\phi =

\chi \sum 
j\in I \eta \circ \delta 2 - aj

.

Then \phi \in \scrD (\BbbR n \setminus \{ 0\} ) and \chi = \psi 
\sum 
j\in I \eta \circ \delta 2 - aj , so that, by Proposition 2.3.13,

\| m\chi \| Bs
p,q
\leq C\phi 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| m
\sum 
j\in I

\eta \circ \delta 2 - aj

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
Bs

p,q

\leq C\phi ,I
\sum 
j\in I

\| (m \circ \delta 2aj )\eta \| Bs
p,q
.

Putting all together, we get

sup
t\in [2 - a,2a]

\| (m \circ \delta t)\psi \| Bs
p,q
\leq \~C\psi sup

j\in Z
\| (m \circ \delta 2aj )\eta \| Bs

p,q
.

By replacing m with m \circ \delta 2k for k \in \BbbZ in the last inequality, the right-hand side
is not changed, and the conclusion follows.
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2.4. Mihlin-H\"ormander conditions

Proof of Proposition 2.4.1. (i) is simply Lemma 2.4.3.
About (ii), if a > 0 is such that both \phi 1, \phi 2 satisfy (2.4.2) (the existence of

this a follows from (i)), then we get immediately from Lemma 2.4.4 that

\| \cdot \| 
M

\phi 1
\delta Bs

p,q
\leq C\| \cdot \| 

M
\phi 2,a

\delta Bs
p,q
, \| \cdot \| 

M
\phi 2
\delta Bs

p,q
\leq C\| \cdot \| 

M
\phi 1,a

\delta Bs
p,q
,

but obviously we have also

\| \cdot \| 
M

\phi 1,a

\delta Bs
p,q
\leq \| \cdot \| 

M
\phi 1
\delta Bs

p,q
, \| \cdot \| 

M
\phi 2,a

\delta Bs
p,q
\leq \| \cdot \| 

M
\phi 2
\delta Bs

p,q
,

and these inequalities together give the conclusion.
Finally, for (iii), the inequality

\| \cdot \| M\phi 
\delta B

s
p,q
\leq C\| \cdot \| M\phi ,a

\delta Bs
p,q

follows from Lemma 2.4.4, whereas the opposite inequality is trivial.

In the following, we will denote by \| \cdot \| M\delta Bs
p,q

one of the equivalent quantities
listed in Proposition 2.4.1. We then say that a function m : \BbbR n \rightarrow \BbbC satisfies
a Bsp,q Mihlin-H\"ormander condition (adapted to the system of dilations \delta t) if
\| m\| M\delta Bs

p,q
<\infty . Again, for n = 1, we will use the notation \| \cdot \| M\ast Bs

p,q
.

From the definition, it is clear that \| \cdot \| M\delta Bs
p,q

is dilation-invariant. More-
over, from Lemma 2.4.4 it follows that, if m satisfies a Bsp,q Mihlin-H\"ormander
condition, then m \in Bsp,q,\mathrm{l}\mathrm{o}\mathrm{c}(\BbbR n \setminus \{ 0\} ). In the following, we will see that, for
s sufficiently large, a function m \in Bsp,q(\BbbR n) with compact support satisfies a
Bsp,q Mihlin-H\"ormander condition; the threshold on s is given in terms of the
normalized homogeneous dimension

\~Q\delta = Q\delta /min\{ \lambda 1, . . . , \lambda n\} .

Notice that \~Q\delta \geq n.

Proposition 2.4.5. Let 1 \leq p, q \leq \infty , s > \~Q\delta /p, and \eta \in \scrD (\BbbR n). Then

sup
0<t\leq 1

\| (f \circ \delta t)\eta \| Bs
p,q
\leq C\eta ,p,q,s\| f\| Bs

p,q
.

Proof. Without loss of generality, we may suppose that s is not an integer
(the missing values can be recovered a posteriori by interpolation, see Proposi-
tion 2.3.1), thus there exists m \in \BbbN such that m - 1 < s < m.

By Proposition 2.3.33, we have to estimate

\| (f \circ \delta t)\eta \| p +
\biggl( \int 1

0

\biggl( 
\omega mp (r, (f \circ \delta t)\eta )

rs

\biggr) q
dr

r

\biggr) 1/q

(2.4.6)

(in fact, the ``missing"" integral on ]1,+\infty [ in the latter summand is easily con-
trolled by the former).

The former summand in (2.4.6) is immediately majorized by H\"older's in-
equality and embeddings (see Proposition 2.3.2), since \eta is compactly supported
and s > \~Q\delta /p \geq n/p:

\| (f \circ \delta t)\eta \| p \leq C\eta ,p\| f \circ \delta t\| \infty = C\eta ,p\| f\| \infty \leq C\eta ,p,q,s\| f\| Bs
p,q
.
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For the latter summand, notice first that, by the Leibniz rule for finite
differences, H\"older's inequality, Lemma 2.3.34 and the fact that \eta \in \scrD (\BbbR n),
we have

\| \Delta m
y ((f \circ \delta t)\eta )\| p \leq C\eta ,m,p,p0,...,pm

m\sum 
k=0

| y| m - k\| \Delta k
y(f \circ \delta t)\| pk

for any choice of p0, . . . , pk \geq p; since

\| \Delta k
y(f \circ \delta t)\| pk

= t - Q\delta /pk\| \Delta k
\delta t(y)

f\| pk
and | \delta t(y)| \infty \leq t\lambda \ast | y| \infty 

for t \leq 1, where \lambda \ast = min\{ \lambda 1, . . . , \lambda n\} , we then get also

\omega mp (r, (f \circ \delta t)\eta ) \leq C\eta ,m,p,p0,...,pm

m\sum 
k=0

rm - kt - Q\delta /pk\omega kpk
(t\lambda \ast r, f).

Choose now pm = p, and pk = ps/k for k < m. Then, for k < p, we have

pk > p, k  - n

pk
=
k

s

\biggl( 
s - n

p

\biggr) 
< s - n

p
, \lambda \ast k  - 

Q\delta 
pk

=
\lambda \ast k

s

\Biggl( 
s - 

\~Q\delta 
p

\Biggr) 
> 0,

so that, by Lemma 2.3.34 and the embeddings Bsp,q \subseteq Bkpk,1
\subseteq W k,pk (see

Proposition 2.3.2 and Corollary 2.3.7),

rm - kt - Q\delta /pk\omega kpk
(t\lambda \ast r, f) \leq Ck,pk

rmt\lambda \ast k - Q\delta /pk\| f\| Wk,pk \leq Cp,q,sr
m\| f\| Bs

p,q
,

thus
rm - kt - Q\delta /pk\omega kpk

(t\lambda \ast r, f)
rs

\leq Cp,q,sr
m - s\| f\| Bs

p,q
.

For k = m, instead,

t - Q\delta /p\omega mp (t\lambda \ast r, f)
rs

= t\lambda \ast s - Q\delta /p
\omega mp (t\lambda \ast r, f)

(t\lambda \ast r)s
\leq 
\omega mp (t\lambda \ast r, f)

(t\lambda \ast r)s
.

Putting all together, the latter summand in (2.4.6) is majorized by

C\eta ,p,q,s

\left(  \| f\| Bs
p,q

\biggl( \int 1

0

(rm - s)q
dr

r

\biggr) 1/q

+

\Biggl( \int \lambda \ast 

0

\biggl( 
\omega mp (r, f)

rs

\biggr) q
dr

r

\Biggr) 1/q
\right)  ,

and the conclusion follows from Proposition 2.3.33.

Corollary 2.4.6. Let K \subseteq \BbbR n be compact; then, for 1 \leq p, q \leq \infty , s > \~Q\delta ,

\| f\| M\delta Bs
p,q
\leq Cp,q,s,K\| f\| Bs

p,q

for all f \in Bsp,q(\BbbR n) with supp f \subseteq K.

Proof. Choose \phi \in \scrD (\BbbR n \setminus \{ 0\} ) satisfying (2.4.1) and such that

supp\phi \cap 
\bigcup 
t>1

\delta t - 1(K) = \emptyset .

Then, if supp f \subseteq K, for t > 1 we have (f \circ \delta t)\phi = 0, thus

\| f\| M\phi 
\delta B

s
p,q

= sup
0<t\leq 1

\| (f \circ \delta t)\phi \| Bs
p,q
,

and the conclusion follows by Proposition 2.4.5.
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2.4. Mihlin-H\"ormander conditions

2.4.3 Comparison

We now show some implications among the Mihlin-H\"ormander conditions pre-
viously introduced. First of all, from Proposition 2.3.2 and Corollary 2.3.14, we
get immediately

Proposition 2.4.7. Let 1 \leq p1, p2, q1, q2 \leq \infty , s1, s2 \in \BbbR . Then we have an
inequality

\| \cdot \| M\delta B
s2
p2,q2

\lesssim \| \cdot \| M\delta B
s1
p1,q1

in each of the following cases:

\bullet p1 \leq p2, s1  - n/p1 > s2  - n/p2;

\bullet p1 \leq p2, s1  - n/p1 = s2  - n/p2, q1 \geq q2;

\bullet p1 \geq p2, s1 = s2, q1 \geq q2.

Moreover, a comparison between pointwise and Besov conditions is given by
the following

Proposition 2.4.8. Let s \in \BbbN . Then

\| \cdot \| M\delta Bs\infty ,\infty \lesssim \| \cdot \| M\delta Cs \lesssim \| \cdot \| M\delta Bs
\infty ,1

.

Proof. For the first inequality, since \| \cdot \| M\delta Cs is \delta t-invariant, it is sufficient to
prove that, for \eta \in \scrD (\BbbR n \setminus \{ 0\} ),

\| m\eta \| Bs\infty ,\infty \leq Cs,\eta \| m\| M\delta Cs ,

but this follows easily from Corollary 2.3.7(ii).
For the second inequality, choose \phi \in \scrD (\BbbR n \setminus \{ 0\} ) such that

\phi \geq 0 and
\bigcup 
t>0

\delta t - 1(\{ \phi = 1\} \r ) = \BbbR n \setminus \{ 0\} .

Let \alpha \in \BbbN n such that | \alpha | \leq s, and let x \in \BbbR n \setminus \{ 0\} . Then there is t > 0 such
that \delta t(x) \in \{ \phi = 1\} \r , hence

| x| \| \alpha \| \delta | \partial \alpha m(x)| = | \delta t(x)| \| \alpha \| \delta | \partial \alpha (m \circ \delta t - 1)(\delta t(x))| \leq Cs,\phi \| \partial \alpha ((m \circ \delta t - 1)\phi )\| \infty ,

since \phi (\delta t(x)) = 1, whereas \partial \beta \phi (\delta t(x)) = 0 for | \beta | > 0. Therefore, again by
Corollary 2.3.7(ii),

| x| \| \alpha \| \delta | \partial \alpha m(x)| \leq C\phi ,s\| (m \circ \delta t - 1)\phi \| Bs
\infty ,1

\leq C\phi ,s\| m\| M\delta Bs
\infty ,1

,

and the conclusion follows since x \in \BbbR n \setminus \{ 0\} and \alpha with | \alpha | \leq s were arbitrary.

2.4.4 Change of variables

We consider now two spaces \BbbR n1 and \BbbR n2 , with systems of dilations \{ \delta 1,t\} t>0

and \{ \delta 2,t\} t>0 respectively. A map \Phi : \BbbR n1 \rightarrow \BbbR n2 will be said homogeneous
(with respect to these systems of dilations) if

\Phi \circ \delta 1,t = \delta 2,t \circ \Phi for all t > 0. (2.4.7)

Notice that, if \Phi : \BbbR n1 \setminus \{ 0\} \rightarrow \BbbR n2 is continuous and satisfies (2.4.7), then
it can be extended to a continuous homogeneous map \BbbR n1 \rightarrow \BbbR n2 by setting
\Phi (0) = 0.
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Lemma 2.4.9. A continuous homogeneous map \Phi : \BbbR n1 \rightarrow \BbbR n2 is proper (i.e.,
\Phi  - 1(K) is compact for every compact K \subseteq \BbbR n2) if and only if

\Phi (x) = 0 =\Rightarrow x = 0

for every x \in \BbbR n1 . In this case, moreover, for every \delta 2,t-homogeneous norm
| \cdot | \delta 2 on \BbbR n2 , we have that | \Phi (\cdot )| \delta 2 is a \delta 1,t-homogeneous norm on \BbbR n1 .

Proof. Notice that, since \Phi is homogeneous, the preimage of \{ 0\} via \Phi must be
dilation-invariant. This means that, if \Phi  - 1(\{ 0\} ) contains elements other than
0, then it is an unbounded subset of \BbbR n1 . In particular, if \Phi is proper, then
necessarily \Phi  - 1(\{ 0\} ) \subseteq \{ 0\} .

Vice versa, if \Phi  - 1(\{ 0\} ) \subseteq \{ 0\} , we have in fact that \Phi  - 1(\{ 0\} ) = \{ 0\} , since
0 is the only dilation-invariant element in \BbbR n2 . Therefore, if | \cdot | \delta 2 is a \delta 2,t-
homogeneous norm on \BbbR n2 , by continuity of \Phi we have immediately that | \Phi (\cdot )| \delta 2
is a \delta 1,t-homogeneous norm on \BbbR n1 , and the fact that \Phi is proper follows easily
from the equivalence of homogeneous norms on \BbbR n1 .

Let \partial j,1, . . . , \partial j,nj be an adapted basis of \BbbR nj with dilations \delta j,t for j = 1, 2.

Proposition 2.4.10. Suppose that \Phi : \BbbR n1 \rightarrow \BbbR n2 is a continuous proper
homogeneous map which is smooth off the origin. Then, for all s \in \BbbN ,

\| m \circ \Phi \| M\delta 1C
s \leq Cs,\Phi \| m\| M\delta 2C

s

for all Borel m : \BbbR n2 \rightarrow \BbbC .

Proof. As in the proof of Lemma 2.3.16, we get

\partial \alpha 1 (m \circ \Phi ) =
\sum 

\beta : | \beta | \leq | \alpha | 

((\partial \beta 2m) \circ \Phi ) \cdot \Psi \alpha ,\beta , (2.4.8)

where \Psi \alpha ,\beta are linear combinations of products of derivatives of the components
of \Phi . Since \Phi is continuous, proper and homogeneous, if | \cdot | \delta 2 is a homogeneous
norm on \BbbR n2 , then | \cdot | \delta 1 = | \Phi (\cdot )| \delta 2 is a homogeneous norm on \BbbR n1 ; moreover,
the set K = \{ x \in \BbbR n1 : | \Phi (x)| \delta 2 = 1\} is compact. We then have, for every \alpha 
with | \alpha | \leq s and every x \in K,

| \partial \alpha 1 (m \circ \Phi )(x)| \leq C\alpha ,\Phi max
\beta : | \beta | \leq | \alpha | 

| \Phi (x)| \| \beta \| \delta 2
| (\partial \beta 2m)(\Phi (x))| \leq Cs,\Phi \| m\| M\delta 2C

s ,

by the equivalence of homogeneous norms. Thus, for every x \in \BbbR n1 \setminus \{ 0\} , since
\delta 1,t - 1(x) \in K for t = | \Phi (x)| \delta 2 , we have

| x| \| \alpha \| \delta 1
| \partial \alpha 1 (m \circ \Phi )(x)| = | \partial \alpha 1 (m \circ \Phi \circ \delta 1,t)(\delta t - 1(x))| 

= | \partial \alpha 1 (m \circ \delta 2,t \circ \Phi )(\delta t - 1(x))| \leq Cs,\Phi \| m \circ \delta 2,t\| M\delta 2C
s = Cs,\Phi \| m\| M\delta 2C

s ,

by the previous inequality applied to m \circ \delta 2,t. Since x \in \BbbR n1 \setminus \{ 0\} and \alpha with
| \alpha | \leq s were arbitrary, we get the conclusion.

We look now for a similar result about the Besov conditions.
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Proposition 2.4.11. Suppose that \Phi : \BbbR n1 \rightarrow \BbbR n2 is a continuous proper
homogeneous map which is smooth off the origin, s > 0, p, q \in [1,\infty ]. If either
p = \infty , or d\Phi has constant rank r \in \BbbN on \BbbR n1 \setminus \{ 0\} , then

\| m \circ \Phi \| M\delta 1B
s
p,q
\leq Cp,q,s,\Phi \| m\| M\delta 2B

s+(n2 - r)/p
p,q

for all Borel m : \BbbR n2 \rightarrow \BbbC .

Proof. Let \eta \in \scrD (\BbbR n2 \setminus \{ 0\} ), \eta \geq 0, be such that\bigcup 
t>0

\delta 2,t - 1(\{ \eta \not = 0\} ) = \BbbR n2 \setminus \{ 0\} .

Since \Phi is a continuous proper homogeneous map which is smooth off the origin,
we have \eta \circ \Phi \in \scrD (\BbbR n1 \setminus \{ 0\} ), \eta \circ \Phi \geq 0 and\bigcup 

t>0

\delta 1,t - 1(\{ \eta \circ \Phi \not = 0\} ) = \BbbR n1 \setminus \{ 0\} .

If we choose \psi \in \scrD (\BbbR n1) such that (\eta \circ \Phi )\psi = \eta \circ \Phi , then we have

((m \circ \Phi ) \circ \delta 1,t)(\eta \circ \Phi ) = (((m \circ \delta 2,t)\eta ) \circ \Phi )\psi 

and the conclusion follows easily from Proposition 2.3.17.

Remark 2.4.1. If \Phi : \BbbR n1 \rightarrow \BbbR n2 is a homogeneous map which is smooth off the
origin, then the rank of d\Phi on \BbbR n1 \setminus \{ 0\} is at least 1. Therefore, when n2 = 1,
there is no loss of regularity in the comparison given by Proposition 2.4.11.

We extend the definition of homogeneous map in order to include maps
which are defined only on subsets of \BbbR n1 ; namely, if \Sigma \subseteq \BbbR n1 , we say that a
map \Phi : \Sigma \rightarrow \BbbR n2 is homogeneous if \Sigma is \delta 1,t-invariant and \Phi satisfies (2.4.7).
Moreover, we say that a map \Phi : \Sigma \subseteq \BbbR n1 \rightarrow \BbbR n2 is smooth if there exists some
open \Omega \subseteq \BbbR n1 containing \Sigma such that \Phi extends to a smooth map \Omega \rightarrow \BbbR n2 (cf.
Lemma 2.27 of [Lee03]).

Proposition 2.4.12. Let \Sigma \subseteq \BbbR n1 be closed, and let \Phi : \Sigma \rightarrow \BbbR n2 be continu-
ous, homogeneous and such that \Phi  - 1(0) \subseteq \{ 0\} . Suppose moreover that either \Phi 
is not surjective, or n2 \geq n1. Then there exists an extension \~\Phi : \BbbR n1 \rightarrow \BbbR n2 of
\Phi which is continuous, homogeneous and proper. If moreover \Phi | \Sigma \setminus \{ 0\} is smooth,
then the extension \~\Phi can be taken to be smooth off the origin.

Proof. By the implicit function theorem, for j = 1, 2 we can find a smooth
homogeneous norm | \cdot | \delta j

on \BbbR nj such that

\{ x \in \BbbR nj : | x| \delta j
= 1\} = Snj - 1 = \{ x \in \BbbR nj : | x| 2 = 1\} ,

and set \nu j(x) = \delta j,| x|  - 1
\delta 2

(x). Let moreover, for x \in \Sigma \cap Sn1 - 1,

\Phi r(x) = | \Phi (x)| \delta 2 , \Phi \omega (x) = \nu 2(\Phi (x)).

By the Tietze-Urysohn extension theorem (see [Bou98b], \S IX.4.2), the map
\Phi r : \Sigma \cap Sn1 - 1 \rightarrow \BbbR + can be extended to a continuous map \Psi r : Sn1 - 1 \rightarrow \BbbR +.
On the other hand, a continuous extension \Psi \omega : Sn1 - 1 \rightarrow Sn2 - 1 of the map
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\Phi \omega : \Sigma \cap Sn1 - 1 \rightarrow Sn2 - 1 exists too: if \Phi is not surjective, then by homogene-
ity also \Phi \omega is not, so that \Phi \omega can be thought of as valued in \BbbR n2 - 1 modulo
homeomorphisms, and the Tietze-Urysohn extension theorem can be applied
componentwise; if n2 \geq n1, then the extension is given by Theorem 6-45 of
[HY88]. Moreover, if \Phi is smooth off the origin, then the extensions \Psi r and \Psi \omega 

can be taken to be smooth by the Whitney approximation theorem (see [Lee03],
Theorem 10.21).

Finally, if \~\Phi : \BbbR n1 \rightarrow \BbbR n2 is defined by

\~\Phi (x) =

\Biggl\{ 
0 if x = 0,
\delta 2,| x| \delta 1\Psi r(\nu 1(x))(\Psi \omega (\nu 1(x))) otherwise.

,

then it is easily checked that \~\Phi is the looked-for extension of \Phi .

2.5 Marcinkiewicz conditions

Marcinkiewicz conditions are the multi-variate analogue of Mihlin-H\"ormander
conditions.

We will need some notation. Fix \varrho \in \BbbN , \vec{}n \in \BbbN \varrho . For l = 1, . . . , \varrho , let \{ \delta l,t\} t>0

be a system of dilations on \BbbR nl , with homogeneous norm | \cdot | \delta l
and homogeneous

dimension Ql. We introduce a multi-parameter system of dilations on \BbbR \vec{}n as
follows:

\daleth \vec{}t(x1, . . . , x\varrho ) = (\delta 1,t1(x1), . . . , \delta \varrho ,t\varrho (x\varrho )),

and, as a particular case, also a one-parameter system of dilations on \BbbR \vec{}n:

\delta t(x) = \daleth (t,...,t)(x).

The latter system of dilations defines a homogeneous structure on \BbbR \vec{}n, with
homogeneous dimension Q =

\sum 
lQl and homogeneous norm | \cdot | \delta defined by

| (x1, . . . , x\varrho )| \delta = max\{ | x1| \delta 1 , . . . , | x\varrho | \delta \varrho 
\} .

Moreover, if \partial l,1, . . . , \partial l,nl
is an adapted basis of \BbbR nl for l = 1, . . . , \varrho , then the

concatenation
\partial 1,1, . . . , \partial 1,n1 , . . . , \partial \varrho ,1, . . . \partial \varrho ,n\varrho 

is an adapted basis of \BbbR \vec{}n.
The pointwise Marcinkiewicz condition of order \vec{}k \in \BbbN \varrho (adapted to the

multi-parameter dilations \daleth \vec{}t) is defined by the finiteness of the ``norm""

\| m\| M\daleth S
\vec{}kC = max

| \alpha 1| \leq k1,...,| \alpha \varrho | \leq k\varrho 

sup
x1 \not =0,...,x\varrho \not =0

| x1| \| \alpha 1\| 
\delta 1

\cdot \cdot \cdot | x\varrho | 
\| \alpha \varrho \| 
\delta \varrho 

| \partial \alpha 1
1 . . . \partial \alpha l

\varrho m(x)| .

It is not difficult to see that

\| m \circ \daleth \vec{}t\| M\daleth S
\vec{}kC = \| m\| M\daleth S

\vec{}kC for all t1, . . . , tn > 0.

Moreover, from the definition it is clear that the derivatives of a function satis-
fying a uniform Marcinkiewicz condition are allowed to diverge not only at the
origin of \BbbR \vec{}n, but also on the set

\{ (x1, . . . , x\varrho ) \in \BbbR \vec{}n : | x1| \delta 1 \cdot \cdot \cdot | x\varrho | \delta l
= 0\} .
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2.5. Marcinkiewicz conditions

In order to introduce the Besov version of the Marcinkiewicz condition, we
need test functions \phi l \in \scrD (\BbbR nl \setminus \{ 0\} ) satisfying (2.4.1) for l = 1, . . . , \varrho . We then
set

\phi = \phi 1 \otimes \cdot \cdot \cdot \otimes \phi \varrho 

and define, for \vec{}s \in \BbbR \varrho , 1 \leq p, q \leq \infty ,

\| m\| M\phi 
\daleth S

\vec{}s
p,qB

= sup
t1,...,tn>0

\| (m \circ \daleth \vec{}t)\phi \| S\vec{}s
p,qB

.

If moreover al > 0 is such that \phi l and al satisfy (2.4.2) for l = 1, . . . , \varrho , then we
introduce also the discrete version

\| m\| 
M\phi ,\vec{}a

\daleth S\vec{}s
p,qB

= sup
j1,...,jn\in \BbbZ 

\| (m \circ \daleth (2a1j1 ,...,2a\varrho j\varrho ))\phi \| S\vec{}s
p,qB

.

As in the one-parameter case, for every \vec{}s \in \BbbR \varrho , 1 \leq p, q \leq \infty , all the pre-
viously defined ``norms"" are equivalent and their finiteness define the S\vec{}sp,qB
Marcinkiewicz condition adapted to the multi-parameter dilations \daleth \vec{}t.

When n1 = \cdot \cdot \cdot = n\varrho = 1, there is (essentially) one system of \varrho -parameter
dilations, which therefore needs not be specified; in this case, we will use the
notation \| \cdot \| M\ast S\vec{}kC or \| \cdot \| M\ast S\vec{}s

p,qB
.

For the comparison of pointwise and Besov Marcinkiewicz conditions, the
following multi-variate versions of the comparison results for Mihlin-H\"ormander
conditions are easy to prove.

Proposition 2.5.1. Let 1 \leq p1, p2, q1, q2 \leq \infty , \vec{}s1, \vec{}s2 \in \BbbR \varrho . Then we have an
inequality

\| \cdot \| 
M\daleth S

\vec{}s2
p2,q2B

\lesssim \| \cdot \| 
M\daleth S

\vec{}s1
p1,q1B

in each of the following cases:

\bullet p1 \leq p2, \vec{}s1  - \vec{}n/p1 > \vec{}s2  - \vec{}n/p2;

\bullet p1 \leq p2, \vec{}s1  - \vec{}n/p1 = \vec{}s2  - \vec{}n/p2, q1 \geq q2;

\bullet p1 \geq p2, \vec{}s1 = \vec{}s2, q1 \geq q2.

Proposition 2.5.2. Let \vec{}s \in \BbbN \varrho . Then

\| \cdot \| M\daleth S\vec{}s\infty ,\infty B \lesssim \| \cdot \| M\daleth S\vec{}sC \lesssim \| \cdot \| M\daleth S\vec{}s
\infty ,1B

.

What is more interesting is a comparison between Mihlin-H\"ormander con-
ditions adapted to the dilations \delta t and Marcinkiewicz conditions adapted to
the multi-parameter dilations \daleth \vec{}t. For the pointwise conditions, there is the
following simple result.

Proposition 2.5.3. For \vec{}s \in \BbbN \varrho , we have

\| m\| M\daleth S\vec{}sC \leq \| m\| M\delta C
s1+\cdot \cdot \cdot +s\varrho .

Proof. If | \alpha l| \leq sl for l = 1, . . . , \varrho , then | \vec{}\alpha | \leq s1 + \cdot \cdot \cdot + s\varrho , and moreover

| x1| \| \alpha 1\| 
\delta 1

\cdot \cdot \cdot | x\varrho | 
\| \alpha \varrho \| 
\delta \varrho 

\leq | x| \| \vec{}\alpha \| \delta 

for x \in \BbbR \vec{}n. From this, the conclusion follows immediately.
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Chapter 2. Smoothness conditions

For the comparison of integral conditions, we need an extra hypothesis,
involving the normalized homogeneous dimensions \~Ql of the factors \BbbR nl .

Proposition 2.5.4. If 2 \leq p \leq \infty and sl > \~Ql/p for l = 1, . . . , \varrho , then

\| m\| M\daleth S\vec{}s
p,pB

\leq Cp,\vec{}s\| m\| M\delta B
s1+\cdot \cdot \cdot +s\varrho 
p,p

.

The proof will be given after some preliminary lemmata. The first is a result
analogous to Proposition 2.4.5.

Lemma 2.5.5. Let \phi l \in \scrD (\BbbR nl \setminus \{ 0\} ) for l = 1, . . . , \varrho , and let \phi = \phi 1\otimes \cdot \cdot \cdot \otimes \phi \varrho .
Then, for p \in [2,\infty ] and \vec{}s \in \BbbR \varrho such that sl > \~Ql/p for l = 1, . . . , \varrho ,

sup
\vec{}t>0, | \vec{}t| \infty \leq 1

\| (m \circ \daleth \vec{}t)\phi \| S\vec{}s
p,pB

\leq C\phi ,\vec{}s,p\| m\| S\vec{}s
p,pB

.

Proof. Let T\vec{}t be the linear operator

m \mapsto \rightarrow (m \circ \daleth \vec{}t)\phi ;

our aim is to obtain a uniform bound on the S\vec{}sp,pB \rightarrow S\vec{}sp,pB norms of the
operators T\vec{}t for | \vec{}t| \infty \leq 1. Since the complex interpolation functors are exact,
we need to consider only the cases p = 2 and p = \infty , because the intermediate
cases 2 < p <\infty follow by interpolation (see Proposition 2.3.25(iii)).

For p = 2, by (2.2.1) we have

S\vec{}s2,2B(\BbbR \vec{}n) = Bs12,2(\BbbR 
n1) \^\otimes \mathrm{H} \cdot \cdot \cdot \^\otimes \mathrm{H}B

s\varrho 

2,2(\BbbR 
n\varrho ),

and moreover the map T\vec{}t is the tensor product of the maps

Tl,tl : m \mapsto \rightarrow (m \circ \delta l,tl)\phi l

for l = 1, . . . , \varrho , so that the norm of T\vec{}t is the product of the norms of the Tl,tl ,
which are uniformly bounded for | \vec{}t| \infty \leq 1 by Proposition 2.4.5.

For p = \infty , instead, we immediately get rid of \phi ,

\| (f \circ \daleth \vec{}t)\phi \| S\vec{}s\infty ,\infty B \leq C\vec{}s,\phi \| f \circ \daleth \vec{}t\| S\vec{}s\infty ,\infty B

by Proposition 2.3.29, and then we use the characterization of the S\vec{}s\infty ,\infty B norm
given by Proposition 2.3.33:

\| f \circ \daleth \vec{}t\| S\vec{}s\infty ,\infty B \sim \| f \circ \daleth \vec{}t\| \infty +
\sum 

\emptyset \not =J\subseteq \{ 1,...,\varrho \} 

sup
r\in ]0,+\infty [J

\omega \vec{}mJ,\infty (r, f \circ \daleth \vec{}t)\prod 
l\in J r

sl

l

.

The first summand is simply \| f\| \infty . For the second one, since | \daleth \vec{}t(y)| \infty \leq | y| \infty 
for | \vec{}t| \infty \leq 1, we easily get \omega \vec{}mJ,\infty (r, f \circ \daleth \vec{}t) \leq \omega \vec{}mJ,\infty (r, f). The conclusion then
follows again by Proposition 2.3.33.

Remark 2.5.1. Through a characterization of S\vec{}s1,1B(\BbbR \vec{}n) as a tensor product
(cf. [SU09]), one could extend the previous result (and consequently Proposi-
tion 2.5.4) to the whole range 1 \leq p \leq \infty .

72



2.5. Marcinkiewicz conditions

Lemma 2.5.6. Let b > a > 0. For l = 1, . . . , \varrho , let \phi l \in \scrD (\BbbR nl \setminus \{ 0\} ) be such
that supp\phi l \subseteq \{ xl \in \BbbR nl : a \leq | xl| \infty \leq b\} , and set \phi = \phi 1 \otimes \cdot \cdot \cdot \otimes \phi \varrho . Let
moreover \eta \in \scrD (\BbbR \vec{}n \setminus \{ 0\} ) be such that \eta | \{ x : a\leq | x| \infty \leq b\} \equiv 1. If p \in [2,\infty ] and
sl > \~Ql/p for l = 1, . . . , \varrho , then

sup
\vec{}t>0, | \vec{}t| \infty =1

\| (m \circ \daleth \vec{}t)\phi \| S\vec{}s
p,pB

\leq C\phi ,\eta ,\vec{}s,p\| m\eta \| S\vec{}s
p,pB

.

Proof. Notice that, for \vec{}t > 0,

supp(\phi \circ \daleth  - 1
\vec{}t

) \subseteq 
\varrho \prod 
l=1

\{ xl : tla \leq | xl| \leq tlb\} .

If | \vec{}t| \infty = 1, then tl \leq 1 for all l and tl = 1 for at least one l, so that

supp(\phi \circ \daleth  - 1
\vec{}t

) \subseteq \{ x : a \leq | x| \leq b\} .

Therefore
\eta (\phi \circ \daleth  - 1

\vec{}t
) = \phi \circ \daleth  - 1

\vec{}t
,

that is,
(\eta \circ \daleth \vec{}t)\phi = \phi ,

and the conclusion follows immediately by Lemma 2.5.5.

Proof of Proposition 2.5.4. Choose \phi l \in \scrD (\BbbR nl \setminus \{ 0\} ) and \eta \in \scrD (\BbbR \vec{}n \setminus \{ 0\} )
satisfying (2.4.1) and the hypotheses of Lemma 2.5.6.

For \vec{}t > 0, let r = | \vec{}t| \infty , so that | r - 1\vec{}t| \infty = 1. Since

m \circ \daleth \vec{}t = (m \circ \delta r) \circ \daleth r - 1\vec{}t,

then

\| (m \circ \daleth \vec{}t)\phi \| S\vec{}s
p,pB

\leq C\phi ,\eta ,\vec{}s,p\| (m \circ \delta r)\eta \| S\vec{}s
p,pB

\leq C\phi ,\eta ,\vec{}s,p\| m\| M\delta B
s1+\cdot \cdot \cdot +sn
p,p

by Lemma 2.5.6 and Proposition 2.3.32. Since \vec{}t > 0 is arbitrary, the conclusion
follows.

Let \epsilon t be a system of dilations on \BbbR d. Proposition 2.5.4, combined with
Proposition 2.4.11, gives in particular the following implication between Mihlin-
H\"ormander conditions on \BbbR d and Marcinkiewicz conditions on \BbbR \vec{}n.

Corollary 2.5.7. Let \Phi : \BbbR \vec{}n \rightarrow \BbbR d be a continuous proper map which is smooth
off the origin and such that

\Phi \circ \delta t = \epsilon t \circ \Phi for t > 0.

If p \in [2,\infty ], sl > \~Ql/p for l = 1, . . . , \varrho , and either p = \infty or d\Phi has constant
rank r \in \BbbN off the origin, then

\| m \circ \Phi \| M\daleth S\vec{}s
p,pB

\leq C\Phi ,p,\vec{}s\| m\| M\epsilon B
s1+\cdot \cdot \cdot +s\varrho +(d - r)/p
p,p

.

A similar implication, but with a different homogeneity condition on the
map \Phi , is considered in the following
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Chapter 2. Smoothness conditions

Proposition 2.5.8. Set

X = \{ x \in \BbbR \vec{}n : | x1| \delta 1 \cdot \cdot \cdot | x\varrho | \delta \varrho = 0\} ,

and let \Phi : \BbbR \vec{}n \rightarrow \BbbR d be a continuous map which is smooth off X and such that
\Phi  - 1(0) = X,

\Phi \circ \daleth \vec{}t = \epsilon t1\cdot \cdot \cdot t\varrho \circ \Phi for \vec{}t > 0.

If p, q \in [1,\infty ], \vec{}s > 0, and either p = \infty or d\Phi has constant rank r \in \BbbN outside
X, then

\| m \circ \Phi \| M\daleth S\vec{}s
p,qB

\leq C\Phi ,p,q,\vec{}s\| m\| M\epsilon B
s1+\cdot \cdot \cdot +s\varrho +(d - r)/p
p,q

.

Proof. For l = 1, . . . , \varrho , let \phi l \in \scrD (\BbbR nl \setminus \{ 0\} ) satisfying (2.4.1), and set

\phi = \phi 1 \otimes \cdot \cdot \cdot \otimes \phi \varrho .

Since supp\phi is compact and disjoint from \{ x \in \BbbR \vec{}n : | x1| \delta 1 \cdot \cdot \cdot | x\varrho | \delta \varrho 
= 0\} , we

can find a nonnegative \psi \in \scrD (\BbbR d \setminus \{ 0\} ) such that

\Phi (supp\phi ) \subseteq \{ \psi = 1\} ;

in particular \psi satisfies (2.4.1) too (with respect to the dilations \epsilon t), and more-
over

(\psi \circ \Phi )\phi = \phi .

Therefore, for \vec{}t > 0,

\| ((m \circ \Phi ) \circ \daleth \vec{}t)\phi \| S\vec{}s
p,qB

\leq C\vec{}s,p,q\| (((m \circ \epsilon t1\cdot \cdot \cdot t\varrho )\psi ) \circ \Phi )\phi \| 
B

s1+\cdot \cdot \cdot +s\varrho 
p,q

\leq \| (m \circ \epsilon t1\cdot \cdot \cdot t\varrho )\psi \| 
B

s1+\cdot \cdot \cdot +s\varrho +(d - r)/p
p,q

by Propositions 2.3.32 and 2.3.17, and the conclusion follows by taking the
suprema.

For instance, if we take n1 = \cdot \cdot \cdot = n\varrho = d = 1, then the map

(x1, . . . , x\varrho ) \mapsto \rightarrow x2
1 + \cdot \cdot \cdot + x2

\varrho 

satisfies the hypotheses of Corollary 2.5.7, whereas

(x1, . . . , x\varrho ) \mapsto \rightarrow x1 \cdot \cdot \cdot x\varrho 

satisfies the hypotheses of Proposition 2.5.4. Notice that, by Proposition 2.4.12,
the map

(x1, . . . , x\varrho ) \mapsto \rightarrow x1 + \cdot \cdot \cdot + x\varrho 

can be considered too, if one is only interested in its restriction to [0,+\infty [\varrho .
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Chapter 3

Commutative algebras of
differential operators

Here we come to the heart of our work, i.e., the study of the properties of a
joint functional calculus for a finite system of pairwise commuting, left-invariant
differential operators on a connected Lie group. This will be the subject also of
the following two chapters.

The present chapter is foundational and algebraic in character: on the one
hand, we give --- following Nelson and Stinespring [NS59] --- sufficient con-
ditions for the existence of the functional calculus (in terms of a joint spec-
tral resolution), and we introduce the language which is systematically used
in the following; on the other hand, we study the relationships between the
joint functional calculus and the algebraic structure of the group (representa-
tions, automorphisms...). It turns out that the choice of a particular family of
pairwise commuting left-invariant differential operators extracts, from the gen-
eral operator-valued non-commutative Fourier analysis of the Lie group, some
scalar-valued commutative portion, which shares several features with the clas-
sical Euclidean Fourier theory.

Some of the results of this chapter are multi-variate analogues of results for
a single operator, especially a Laplacian or a sublaplacian, which can be found
in the literature; we refer mainly to the works of Hulanicki [Hul74], [Hul75],
[Hul84], Christ [Chr91], Ludwig and M\"uller [LM00].

Another source of inspiration for this chapter is the theory of Gelfand pairs
on Lie groups, where the commutative algebra of differential operators to be
considered is determined by the action of a compact group of automorphisms.
In fact, at the end of the chapter, we show how Gelfand pairs (at least, those in
semidirect-product form) fit into our wider framework.

Although the next chapters will focus on groups with polynomial growth,
and especially homogeneous groups, here we try and not use hypotheses on the
groups which are not really necessary, thus obtaining results which have quite
a general character.

3.1 Joint spectral resolution

In the following, G will be a connected Lie group.
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Chapter 3. Commutative algebras of differential operators

Lemma 3.1.1. Let D,L \in \frakD (G) and suppose that L is weighted subcoercive
and formally self-adjoint. Then, for some \=r \in \BbbN , we have that, for all r \geq \=r,
Lr +D is weighted subcoercive.

Proof. Fix a reduced weighted algebraic basis of g with respect to which the
operator L is weighted subcoercive. Then there exists a weighted subcoercive
form C such that dRG(C) = L, and also a form B such that dRG(B) = D. In
fact, since L+ = L, we can suppose that C+ = C.

Let then P be the principal part of C, so that, by Theorem 1.4.1, dRG\ast (P ) is
Rockland. By definition, this implies that, for every r \in \BbbN \setminus \{ 0\} , P r is Rockland
too. Notice now that, if r is sufficiently large so that P r has degree greater
than that of B, then the principal part of Cr + B is P r and this implies, by
Theorem 1.4.1 again, that Lr +D = dRG(Cr +B) is weighted subcoercive.

Proposition 3.1.2. Let \scrA be a commutative unital subalgebra of \frakD (G) closed
by formal adjunction and containing a weighted subcoercive operator. Then, for
every unitary representation \pi of G, we have

d\pi (D) = d\pi (D+)\ast for all D \in \scrA ; (3.1.1)

moreover, the operators d\pi (D) for D \in \scrA are normal and commute strongly
pairwise.

Proof. Let L \in \scrA be weighted subcoercive. Since \scrA is closed by formal ad-
junction, by replacing L with (L + L+)/2, we can suppose that L is formally
self-adjoint (see Theorem 1.4.1).

Let D \in \scrA . By (1.1.5) and Lemma 2.3 of [NS59], in order to prove (3.1.1)
it is sufficient to show that d\pi (D+D) is essentially self-adjoint. However,
by Lemma 3.1.1, it is possible to find r \in \BbbN sufficiently large so that both
A = L2r and C = L2r +D+D are weighted subcoercive, which implies by The-
orem 1.4.1(c) that d\pi (A) and d\pi (C) are essentially self-adjoint. The conclusion
that d\pi (D+D) = d\pi (C) - d\pi (A) is essentially self-adjoint then follows as in the
proof of Corollary 2.4 of [NS59].

From (3.1.1) it follows that, for every formally self-adjoint D \in \scrA , d\pi (D) is
essentially self-adjoint. Let now

\scrQ = \{ D2 : D = D+ \in \scrA \} .

For all A,B \in \scrQ , we have that A,B, (1 + A)(1 + B) are formally self-adjoint
elements of \scrA , so that d\pi (A), d\pi (B), d\pi ((1 + A)(1 + B)) are essentially self-
adjoint, and moreover d\pi (A + B + AB) is positive (notice that AB \in \scrQ );
this implies, as in the proof of Corollary 2.4 of [NS59], that d\pi (A) and d\pi (B)
commute strongly.

In order to conclude, it will be sufficient to show that every operator of the
form d\pi (D) for some D \in \scrA is the joint function of some of the operators d\pi (A)
for A \in \scrQ . In fact, let D = D1 + iD2, where

D1 = (D +D+)/2, D2 = (D  - D+)/2i

are both formally self-adjoint elements of \scrA . Then

D2
1, (D1 + 1/2)2, D2

2, (D2 + 1/2)2
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are all elements of \scrQ , and we can consider the joint spectral resolution E on
\BbbR 4 of the corresponding operators in the representation \pi (see \S A.4). We then
have, for j = 1, 2,

d\pi (Dj) = d\pi ((Dj + 1/2)2  - D2
j  - 1/4) \subseteq 

\int 
\BbbR 4
fj dE,

where fj(\lambda 1,1, \lambda 1,2, \lambda 2,1, \lambda 2,2) = \lambda j,2  - \lambda j,1  - 1/4, so that also

d\pi (D) \subseteq 
\int 

\BbbR 4
(f1 + if2) dE, d\pi (D+) \subseteq 

\int 
\BbbR 4

(f1  - if2) dE;

by passing to the adjoints in the second inclusion and using (3.1.1), we then get

d\pi (D) =
\int 

\BbbR 4
(f1 + if2) dE,

and we are done.

A system L1, . . . , Ln \in \frakD (G) will be called a weighted subcoercive system if
L1, . . . , Ln are formally self-adjoint and pairwise commuting, and if moreover
the unital subalgebra of \frakD (G) generated by L1, . . . , Ln contains a weighted sub-
coercive operator (with respect to some reduced basis of g). From the previous
proposition and the spectral theorem (see \S A.4) we then have immediately

Corollary 3.1.3. Let L1, . . . , Ln \in \frakD (G) be a weighted subcoercive system. For
every unitary representation \pi of G, the operators d\pi (L1), . . . , d\pi (Ln) admit a
joint spectral resolution E on \BbbR n and, for every polynomial p \in \BbbC [X1, . . . , Xn],

d\pi (p(L1, . . . , Ln)) =
\int 

\BbbR n

p dE. (3.1.2)

The sign of closure for operators of the form (3.1.2) will be generally omitted
in the following.

3.2 Kernel transform and Plancherel measure

Let L1, . . . , Ln be a weighted subcoercive system on G. By applying Corol-
lary 3.1.3 to the (right) regular representation on L2(G), we obtain a joint
spectral resolution E of L1, . . . , Ln. In particular, for every f \in L\infty (\BbbR n, E), we
can consider the operator

f(L) = f(L1, . . . , Ln) =
\int 

\BbbR n

f dE,

which is a bounded left-invariant linear operator on L2(G), so that by Theo-
rem 1.1.3 it admits a kernel \u f \in Cv2(G):

f(L)u = u \ast \u f for all u \in \scrD (G).

In place of \u f , we use also the notation \scrK Lf . The correspondence

\scrK L : f \mapsto \rightarrow \scrK Lf

will be called the kernel transform associated to the weighted subcoercive system
L1, . . . , Ln.
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Chapter 3. Commutative algebras of differential operators

Lemma 3.2.1. (a) \scrK L is an isometric embedding of L\infty (\BbbR n, E) into Cv2(G);
in particular, for all f \in L\infty (\BbbR n, E),

\| \u f\| Cv2 = \| f\| L\infty (\BbbR n,E),
\u f = ( \u f)\ast .

(b) If f, g \in L\infty (\BbbR n, E) and \u g \in L2(G), then

(fg)\u = f(L)\u g;

in particular, if \u g \in \scrD (G), then

(fg)\u = \u g \ast \u f.

(c) If f, g \in L\infty (\BbbR n, E) and g(\lambda ) = \lambda jf(\lambda ) for some j \in \{ 1, . . . , n\} , then

\u g = Lj \u f

in the sense of distributions.

Proof. (a) The conclusion follows immediately from the properties of the spec-
tral integral (see \S A.3).

(b) Let u \in \scrD (G); then

u \ast (fg)\u = (fg)(L)u = f(L)g(L)u = f(L)(u \ast \u g) = u \ast (f(L)\u g)

since f(L) is left-invariant and \u g \in L2(G).
(c) Let u \in \scrD (G); then

u \ast \u g = g(L)u = Ljf(L)u = Lj(u \ast \u f) = u \ast (Lj \u f)

by the properties of convolution.

The fact that the algebra generated by L1, . . . , Ln contains a weighted sub-
coercive operator implies that the kernel transform \scrK L satisfies more refined
properties, which resemble those of an (inverse) Fourier transform.

In fact, by definition and formal self-adjointness, we can find a polynomial
p\ast with real coefficients such that p\ast (L) is a weighted subcoercive operator. By
replacing p\ast with p2r

\ast for some large r \in \BbbN , we may suppose that p\ast \geq 0 on \BbbR n
and that moreover, if we set

p0(\lambda ) = p\ast (\lambda ) +
n\sum 
j=1

\lambda 2
j + 1,

pk(\lambda ) = p0(\lambda ) + \lambda k for k = 1, . . . , n,

then p0(L), p1(L), . . . , pn(L) are all weighted subcoercive (see Lemma 3.1.1).
Notice that the polynomials p0, p1, . . . , pn are all strictly positive on \BbbR n and

lim
\lambda \rightarrow \infty 

pk(\lambda ) = +\infty for k = 0, . . . , n.

Lemma 3.2.2. The subalgebra of C0(\BbbR n) generated by the functions

e - p0 , e - p1 , . . . , e - pn .

is a dense \ast -subalgebra of C0(\BbbR n).
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3.2. Kernel transform and Plancherel measure

Proof. Since the functions e - p0 , e - p1 , . . . , e - pn are real valued, the algebra gen-
erated by them is a \ast -subalgebra of C0(\BbbR n).

Notice that e - p0 is nowhere null. Moreover, if \lambda , \lambda \prime \in \BbbR n and \lambda \not = \lambda \prime , then
we have two cases: either

e - p0(\lambda ) \not = e - p0(\lambda 
\prime ),

or e - p0(\lambda ) = e - p0(\lambda 
\prime ), but in this case, if k \in \{ 1, . . . , n\} is such that \lambda k \not = \lambda \prime k,

e - pk(\lambda ) = e - p0(\lambda )e - \lambda k \not = e - p0(\lambda 
\prime )e - \lambda 

\prime 
k = e - pk(\lambda \prime ).

The conclusion then follows immediately by the Stone-Weierstrass theorem.

Let now \scrJ L be the subalgebra of C0(\BbbR n) generated by the functions of the
form e - q, where q is a non-negative polynomial on \BbbR n such that q(L) is a
weighted subcoercive operator on G and lim\lambda \rightarrow \infty q(\lambda ) = +\infty . Set moreover

C0(L) = C0(L1, . . . , Ln) = \{ \u f : f \in C0(\BbbR n)\} .

Finally, let \Sigma be the joint spectrum of L1, . . . , Ln, i.e., the support of E.

Proposition 3.2.3. C0(L) is a sub-C\ast -algebra of Cv2(G), which is isometri-
cally isomorphic to C0(\Sigma ) via the kernel transform. Moreover

\scrK L(\scrJ L) = \{ \u f : f \in \scrJ L\} 

is a dense \ast -subalgebra of C0(L).

Proof. For the first part, see \S A.3.4. The second part follows immediately from
Lemma 3.2.2.

The results on weighted subcoercive operators and their heat kernels then
imply that the elements of \scrK L(\scrJ L) are particularly well-behaved. The next
proposition, which shows a sort of commutativity between joint functional cal-
culus of L1, . . . , Ln and unitary representations of G, is a multi-variate analogue
of Proposition 2.1 of [LM00].

Proposition 3.2.4. For every f \in \scrJ L, we have \u f \in L1;\infty (G) \cap C\infty 0 (G) and
moreover, for every unitary representation \pi of G,

\pi ( \u f) = f(d\pi (L1), . . . , d\pi (Ln)).

If G is amenable, the last identity holds for every f \in C0(\BbbR n) with \u f \in L1(G).

Proof. Suppose first that f is one of the generators e - q of \scrJ L. Then, by Corol-
lary 3.1.3 and the properties of the spectral integral (see \S A.3.6),

e - q(d\pi (L1), . . . , d\pi (Ln)) = e - d\pi (q(L)),

Since q(L) is weighted subcoercive, we obtain from Theorem 1.4.1(d) that
\scrK L(e - q) \in L1;\infty \cap C\infty 0 (G) and e - q(d\pi (L1, . . . , Ln)) = \pi (\scrK L(e - q)). The result is
easily extended to every f \in \scrJ L by Lemma 3.2.1, the properties of convolution
and those of the spectral integral.
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Suppose now that G is amenable, f \in C0(\BbbR n) and \u f \in L1(G). By Proposi-
tion 3.2.3, we can find a sequence fj \in \scrJ L which converges uniformly to f on
\BbbR n. This implies in particular, by the properties of the spectral integral, that

fj(d\pi (L1), . . . , d\pi (Ln)) \rightarrow f(d\pi (L1), . . . , d\pi (Ln))

in the operator norm, but also that \u fj \rightarrow \u f in Cv2(G). Since G is amenable, the
representation \pi is weakly contained in the regular representation (see \S 1.2.3),
so that also

\pi ( \u fj) \rightarrow \pi ( \u f)

in the operator norm. But then the conclusion follows immediately from the
first part of the proof.

We are now going to exploit the good properties of the kernels in \scrK L(\scrJ L)
to obtain a Plancherel formula for the kernel transform \scrK L. It should be no-
ticed that, in the context of commutative Banach \ast -algebras, a general abstract
argument yielding this kind of results is available (see [Loo53], \S 26J). However,
we believe that additional insight is provided by the explicit construction pre-
sented below, which follows essentially [Chr91], with some modifications due to
our multi-variate and possibly non-unimodular setting.

Proposition 3.2.5. If f \in L\infty (\BbbR n, E) is compactly supported, then

\u f \in L2;\infty \cap C\infty 0 (G).

Proof. Let \xi t = e - tp\ast for t > 0, so that \u \xi t \in L1;\infty (G) \cap C\infty 0 (G).
Since f is compactly supported, f = g \xi 1 with g = f/\xi 1 \in L\infty (\BbbR n, E), so

that
\u f = g(L)\u \xi 1 \in L2(G)

by Lemma 3.2.1. Analogously, being g compactly supported, also \u g \in L2(G),
but then

\u f = \xi 1(L)\u g = \u g \ast \u \xi 1 \in L2;\infty \cap C\infty 0 (G),

by Lemma 3.2.1 and properties of convolution.

Thus we have plenty of kernels \u f which are in L2(G); as we are going see,
the L2-norm can be interpreted as a certain operator norm of a convolution
operator. Recall that \| \cdot \| \^2 is the norm of the Lebesgue space L2(G,\Delta G\mu G)
with respect to the left Haar measure; correspondingly, we denote by \| \cdot \| \^2\rightarrow \infty 
the operator norm from L2(G,\Delta G\mu G) to L\infty (G).

Lemma 3.2.6. For all f \in L\infty (E), we have \u f \in L2(G) if and only if

\| f(L)\| \^2\rightarrow \infty <\infty ,

and in this case \| \u f\| 2 = \| f(L)\| \^2\rightarrow \infty .

Proof. If \u f \in L2(G), then, by Young's inequality, \| f(L)\| \^2\rightarrow \infty \leq \| \u f\| 2 <\infty .
Vice versa, suppose that \| f(L)\| \^2\rightarrow \infty <\infty . For \phi \in \scrD (G), if

\v \phi (x) = \phi (x - 1),
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3.2. Kernel transform and Plancherel measure

then also \v \phi \in \scrD (G), so that
f(L)\v \phi = \v \phi \ast \u f

is continuous on G, therefore

| f(L)\v \phi (e)| \leq \| f(L)\v \phi \| \infty \leq \| f(L)\| \^2\rightarrow \infty \| \phi \| 2.

This means that the map
\phi \mapsto \rightarrow f(L)\v \phi (e)

extends to a bounded linear functional on L2(G), thus there exists k \in L2(G)
such that

f(L)\v \phi (e) =
\int 
G

\phi (x)k(x) dx for all \phi \in \scrD (G),

i.e.,

\phi \ast \u f(e) =
\int 
G

\phi (x - 1)k(x) dx for all \phi \in \scrD (G),

but this, by the definition of convolution, means that the distribution \u f coincides
with k \in L2(G). Moreover, since the norm of the linear functional is \| k\| 2, we
have

\| \u f\| 2 = sup
0\not =\phi \in \scrD (G)

| f(L)\v \phi (e)| 
\| \phi \| 2

\leq \| f(L)\| \^2\rightarrow \infty ,

and we are done.

We are now able to obtain a Plancherel formula for the kernel transform.

Theorem 3.2.7. The identity

\sigma (A) = \| E(A)\| 2\^2\rightarrow \infty for all Borel A \subseteq \BbbR n

defines a regular Borel measure on \BbbR n with support \Sigma , whose negligible sets
coincide with those of E and such that, for all f \in L\infty (E),\int 

\BbbR n

| f | 2 d\sigma = \| f(L)\| 2\^2\rightarrow \infty = \| \u f\| 22.

Proof. Clearly \sigma (\emptyset ) = 0. Moreover, \sigma is monotone: if A \subseteq A\prime are Borel sub-
sets of \BbbR n and \sigma (A\prime ) < \infty , then, by Lemma 3.2.6, \u \chi A\prime \in L2(G), so that, by
Lemma 3.2.1, also

\u \chi A = E(A)\u \chi A\prime \in L2(G) and \| \u \chi A\| 2 \leq \| \u \chi A\prime \| 2,

i.e., \sigma (A) \leq \sigma (A\prime ).
We now prove that \sigma is finitely additive. Let then A,B \subseteq \BbbR n be disjoint

Borel sets. If \sigma (A) = \infty or \sigma (B) = \infty , then by monotonicity we also have
\sigma (A\cup B) = \infty and we are done. Suppose instead that \sigma (A) <\infty and \sigma (B) <\infty .
Then, by Lemma 3.2.6, both \u \chi A, \u \chi B \in L2(G), but

E(A \cup B) = E(A) + E(B),

so that clearly
\u \chi A\cup B = \u \chi A + \u \chi B ,
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which implies that \u \chi A\cup B \in L2(G), and moreover, by Lemma 3.2.6,

\sigma (A \cup B) = \| \u \chi A\cup B\| 22 = \| \u \chi A\| 22 + \| \u \chi B\| 22 = \sigma (A) + \sigma (B),

since \u \chi A = E(A)\u \chi A \bot E(B)\u \chi B = \u \chi B in L2(G) by Lemma 3.2.1.
Finite additivity implies that, if Aj (j \in \BbbN ) are pairwise disjoint Borel

subsets of \BbbR n and A =
\bigcup 
j Aj , then\sum 

j

\sigma (Aj) \leq \sigma (A).

In particular, if the sum on the left-hand side diverges, then we have an equality.
Suppose instead that the left-hand side sum converges. Then, by Lemmata 3.2.6
and 3.2.1, we have that the \u \chi Aj

are pairwise orthogonal elements of L2(G), and
that their sum converges in L2(G) to some k \in L2(G) such that

\| k\| 22 =
\sum 
j

\sigma (Aj).

But then, if u \in \scrD (G), we have that, on one hand, by Lemma 3.2.6,\sum 
j

u \ast \u \chi Aj = u \ast k in Cb(G),

and, on the other hand,\sum 
j

u \ast \u \chi Aj =
\sum 
j

E(Aj)u = E(A)u in L2(G),

which gives, by uniqueness of limits, E(A)u = u \ast k. Thus \u \chi A = k \in L2(G) and

\sigma (A) = \| k\| 22 =
\sum 
j

\sigma (Aj).

It is immediate from the definition that a Borel subset of \BbbR n is \sigma -negligible
if and only if it is E-negligible; in particular supp\sigma = suppE = \Sigma .

By Proposition 3.2.5, \sigma (A) = \| \chi A(L)\| 2\^2\rightarrow \infty = \| \u \chi A\| 22 is finite if A \subseteq \BbbR n is
relatively compact. We can then conclude, by Theorem 2.18 of [Rud74], that \sigma 
is regular.

Notice now that, for all Borel A \subseteq \BbbR n with \sigma (A) <\infty , \sigma coincides with the
measure \langle E(\cdot )\u \chi A, \u \chi A\rangle on the subsets of A: in fact, for all Borel B \subseteq \BbbR n,

\langle E(B)\u \chi A, \u \chi A\rangle = \| \u \chi A\cap B\| 22 = \sigma (A \cap B)

by Lemmata 3.2.6 and 3.2.1. In particular, for all f \in L\infty (E) with supp f \subseteq A,\int 
\BbbR n

| f | 2 d\sigma =
\int 

\BbbR n

| f(\lambda )| 2 \langle E(d\lambda )\u \chi A, \u \chi A\rangle = \| f(L)\u \chi A\| 22 = \| \u f\| 22 = \| f(L)\| 2\^2\rightarrow \infty 

by the properties of the spectral integrals and Lemmata 3.2.6 and 3.2.1.
Take now a countable partition of \BbbR n made of relatively compact Borel

subsets Aj (j \in \BbbN ). Then, for every f \in L\infty (\BbbR n, E), analogously as before we
obtain

\| f(L)\| 2\^2\rightarrow \infty =
\sum 
j

\| E(Aj)f(L)\| 2\^2\rightarrow \infty =
\sum 
j

\| \scrK L(f\chi Aj
)\| 22,

and putting all together we get the conclusion.
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3.2. Kernel transform and Plancherel measure

The measure \sigma of the previous proposition is called the Plancherel measure
associated to the system L1, . . . , Ln. Notice that

L\infty (\BbbR n, E) = L\infty (\sigma ).

We show now that the estimates (for small times) on the heat kernel of
weighted subcoercive operators give information on the behaviour at infinity of
the Plancherel measure. Recall that | \cdot | 2 denotes the Euclidean norm.

Proposition 3.2.8. The Plancherel measure \sigma on \BbbR n associated to a weighted
subcoercive system L1, . . . , Ln has (at most) polynomial growth at infinity.

Proof. If \xi t(\lambda ) = e - tp\ast (\lambda ), then, for every r > 0,

\sigma (\{ p \leq r\} ) = \| \chi \{ p\leq r\} \| 2L2(\sigma ) \leq e2\| \xi 1/r\| 2L2(\sigma ) = e2\| \u \xi 1/r\| 2L2(G).

Since \u \xi t is the heat kernel of the operator p(L1, . . . , Ln), Theorem 1.4.1(e,f)
gives, for large r,

\sigma (\{ p \leq r\} ) \leq CrQ\ast /m,

where m is the degree of p(L1, . . . , Ln) with respect to a suitable reduced
weighted algebraic basis of g, and Q\ast is the homogeneous dimension of the
corresponding contraction g\ast . In particular, if d is the degree of the polynomial
p, we get, for large a > 0,

\sigma (\{ \lambda : | \lambda | 2 \leq a\} ) \leq \sigma (\{ p \leq C(1 + a)d\} ) \leq C(1 + a)Q\ast d/m,

which is the conclusion.

The proof of Proposition 3.2.8 shows that the degree of growth at infinity
of the Plancherel measure \sigma is somehow related to the ``local dimension"" Q\ast of
the group with respect to the control distance associated to the chosen weighted
subcoercive operator (see \S 1.4.2). In \S 3.6 we will obtain more precise information
on the behaviour of \sigma under the hypothesis of homogeneity.

By Theorem 3.2.7, \scrK L| L2\cap L\infty (\sigma ) extends to an isometry from L2(\sigma ) onto a
closed subspace of L2(G). We give now an alternative characterization of this
subspace.

Lemma 3.2.9. \scrJ L is dense in Lq(\sigma ) for 1 \leq q <\infty .

Proof. Since \sigma has polynomial growth at infinity (see Proposition 3.2.8), it is
easily seen that the generators of \scrJ L belong to L1 \cap L\infty (\sigma ), and therefore also
\scrJ L is contained (modulo restriction to \Sigma ) in L1 \cap L\infty (\sigma ). Since \sigma is a positive
regular Borel measure on \BbbR n, in order to prove that the closure of \scrJ L in Lq(\sigma ) is
the whole Lq(\sigma ), it is sufficient to show that Cc(\BbbR n) is contained in this closure
(see [Rud74], Theorem 3.14).

Let then m \in Cc(\BbbR n). By Lemma 3.2.2, we can find a sequence mk \in \scrJ L
converging uniformly to m, so that supk \| mk\| \infty = C < \infty . Thus, for every
t > 0, mke

 - tp0 converges uniformly to me - tp0 , dominated by Ce - tp0 \in Lq(\sigma ),
and consequently mke

 - tp0 \rightarrow me - tp0 also in Lq(\sigma ); we then have that me - tp0
is in the closure of \scrJ L in Lq(\sigma ) for all t > 0, and by monotone convergence also
m is in this closure.

Let \Gamma 2
L be the closure of \scrK L(\scrJ L) in L2(G).
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Proposition 3.2.10. \scrK L| L2\cap L\infty (\sigma ) extends to an isometric isomorphism

L2(\sigma ) \rightarrow \Gamma 2
L.

Proof. By Theorem 3.2.7 and Lemma 3.2.9, we have

\scrK L(\scrJ L) \subseteq \scrK L(L2 \cap L\infty (\sigma )) \subseteq \scrK L(\scrJ L)
L2(G)

= \Gamma 2
L,

and the conclusion follows.

We now prove a sort of Riemann-Lebesgue lemma for \scrK  - 1
L .

Proposition 3.2.11. For every bounded Borel f : \BbbR n \rightarrow \BbbC with \u f \in L1(G), we
have

\| f\| L\infty (\sigma ) \leq \| \u f\| 1,
and moreover

lim
r\rightarrow +\infty 

\| f \chi \{ \lambda : | \lambda | 2\geq r\} \| L\infty (\sigma ) = 0.

Proof. The inequality follows immediately from Lemma 3.2.1(a) and (1.2.1).
Let \xi t = e - tp0 . Then, by Corollary 1.4.3, \u \xi t is an approximate identity for

t\rightarrow 0+. In particular, by Proposition 1.1.2, if \u f \in L1(G), then

\scrK L(f\xi t) = \u f \ast \u \xi t \rightarrow \u f in L1(G)

for t\rightarrow 0+, which implies, by the first inequality, that

lim
t\rightarrow 0+

\| f(1 - \xi t)\| L\infty (\sigma ) = 0.

Therefore, for every \varepsilon > 0, there exists t > 0 such that \| f(1  - \xi t)\| L\infty (\sigma ) \leq \varepsilon ;
since p0(\lambda ) \rightarrow +\infty for \lambda \rightarrow \infty , we may find r > 0 such that

\| \xi t \chi \{ \lambda : | \lambda | 2\geq r\} \| \infty \leq 1/2,

but then necessarily \| f \chi \{ \lambda : | \lambda | 2\geq r\} \| \infty \leq 2\varepsilon .

An analogous (and neater) result for \scrK L is obtained under the additional
hypothesis of unimodularity.

Proposition 3.2.12. Suppose that G is unimodular. If f \in L1 \cap L\infty (\sigma ), then
\u f \in C0(G) and

\| \u f\| \infty \leq \| f\| L1(\sigma ).

Proof. Since f \in L1 \cap L\infty (\sigma ), then f = g1g2 for some Borel g1, g2 : \BbbR n \rightarrow \BbbC 
such that

| g1| 2 = | g2| 2 = | f | ;
in particular, g1, g2 \in L2 \cap L\infty (\sigma ). Therefore \u g1, \u g2 \in L2(G) by Theorem 3.2.7,
but then

\u f = \u g1 \ast \u g2

by Lemma 3.2.1, which implies that \u f \in C0(G) and

\| \u f\| \infty \leq \| \u g1\| 2\| \u g2\| 2 = \| f\| L1(\sigma ),

which is the conclusion.
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3.3 Spectrum and eigenfunctions

We keep the notation of the previous section. Proposition 3.2.4 shows that there
exists some relationship between the L2 spectral theory of L1, . . . , Ln on G and
the spectral theory of the corresponding operators in a unitary representation \pi 
of G. On the other hand, a joint eigenvector of d\pi (L1), . . . , d\pi (Ln) in a unitary
representation \pi yields (as we shall see) a joint eigenfunction of L1, . . . , Ln on G,
which in general is smooth and bounded but (unless G is compact) not in L2(G).
We are now going to study such generalized joint eigenfunctions of L1, . . . , Ln
and the corresponding generalized joint point spectrum.

Proposition 3.3.1. Let \phi \in \scrD \prime (G) be such that, for some (\lambda 1, . . . , \lambda n) \in \BbbC n,

Lj\phi = \lambda j\phi for j = 1, . . . , n

in the sense of distributions. Then \phi \in \scrE (G), and the previous equalities hold
in the strong sense.

Proof. If \lambda = (\lambda 1, . . . , \lambda n), from the hypothesis we get immediately

p\ast (L)\phi = p\ast (\lambda )\phi .

Since p\ast (L) - p\ast (\lambda ) is hypoelliptic by Corollary 1.4.2, this implies that \phi \in \scrE (G)
and we are done.

Lemma 3.3.2. Let \pi be a unitary representation of G on \scrH . The following are
equivalent for v \in \scrH \setminus \{ 0\} :

(i) v \in \scrH \infty and v is a joint eigenvector of d\pi (L1), . . . , d\pi (Ln);

(ii) v is a joint eigenvector of the operators \pi ( \u m) for m \in \scrJ L.

Proof. Suppose that v \in \scrH \infty \setminus \{ 0\} is a joint eigenvector of the operators
d\pi (L1), . . . , d\pi (Ln), i.e.,

d\pi (Lj)v = cjv

for some c = (c1, . . . , cn) \in \BbbR n, j = 1, . . . , n. By Proposition 3.2.4 and the
properties of the spectral integral (see \S A.3.5), for every m \in \scrJ L we have

\pi ( \u m)v = m(d\pi (L1), . . . , d\pi (Ln))v = m(c)v,

which means that v is an eigenvector of \pi ( \u m).
Vice versa, suppose that v \in \scrH \setminus \{ 0\} is an eigenvector of \pi ( \u m) for all m \in \scrJ L.

Take m = e - pj for j = 0, . . . , n; by Proposition 3.2.4, we have

\pi ( \u m) = e - pj(d\pi (L)),

so that, by the properties of the spectral integral (see \S A.3.6), ker\pi ( \u m) = \{ 0\} ,
therefore

\pi ( \u m)v = cv

for some c > 0. This implies that

v = c - 1\pi ( \u m)v \in \scrH \infty ,
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by Theorem 1.4.1(b), and moreover, again by the properties of the spectral
integral,

pj(d\pi (L))v = (log c)v,

that is, v is an eigenvector of pj(d\pi (L)) for j = 0, . . . , n. Since

\lambda j = pj(\lambda ) - p0(\lambda ) for j = 1, . . . , n,

it follows that v is a joint eigenvector of d\pi (L1), . . . , d\pi (Ln).

Proposition 3.3.3. For a function of positive type \phi on G, the following are
equivalent:

(i) \phi is a joint eigenfunction of L1, . . . , Ln and \phi (e) = 1;

(ii) \phi has the form
\phi (x) = \langle \pi (x)v, v\rangle 

for some unitary representation \pi of G on \scrH and cyclic vector v of norm
1, where v \in \scrH \infty is a joint eigenvector of d\pi (L1), . . . , d\pi (Ln);

(iii) \phi \not = 0 and, for all m \in \scrJ L and f \in L1(G),

\langle \u m \ast f, \phi \rangle = \langle f \ast \u m,\phi \rangle = \langle f, \phi \rangle \langle \u m,\phi \rangle ;

(iv) \phi \not = 0 and, for all m \in \scrJ L,

\langle \u m \ast \u m\ast , \phi \rangle = | \langle \u m,\phi \rangle | 2.

In this case, moreover, the eigenvalue of Lj corresponding to \phi is a real number
and coincides with the eigenvalue of d\pi (Lj) corresponding to v.

Proof. (i) \Rightarrow (ii). Since \phi is of positive type and \phi (e) = 1, then \phi is of the form

\phi (x) = \langle \pi (x)v, v\rangle 

for some unitary representation \pi of G on \scrH and cyclic vector v of norm 1.
From (i) we have

Lj\phi = \lambda j\phi 

for some \lambda = (\lambda 1, . . . , \lambda n) \in \BbbC n. Being L1, . . . , Ln left-invariant, if

\phi y(x) = \langle \pi (y - 1x)v, v\rangle = \langle \pi (x)v, \pi (y)v\rangle ,

then also
Lj\phi y = \lambda j\phi y.

Since v is cyclic, for all w \in \scrH we can find a sequence (wn)n in

span\{ \pi (y)v : y \in G\} 

such that wn \rightarrow w in \scrH ; if

\psi n(x) = \langle \pi (x)v, wn\rangle , \psi (x) = \langle \pi (x)v, w\rangle ,
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then the \psi n are linear combinations of the \phi y, so that

Lj\psi n = \lambda j\psi n

and, passing to the limit, we also have

Lj\psi = \lambda j\psi 

in the sense of distributions. But then \psi \in \scrE (G) by Proposition 3.3.1. Since
w \in \scrH was arbitrary, we conclude that v \in \scrH \infty ; moreover

\langle \lambda jv, w\rangle = \lambda j\psi (e) = Lj\psi (e) = \langle d\pi (Lj)v, w\rangle ,

and again, from the arbitrariness of w, we get d\pi (Lj)v = \lambda jv for j = 1, . . . , n.
Finally, since d\pi (Lj) is self-adjoint, we deduce that \lambda j \in \BbbR .

(ii) \Rightarrow (i). Trivial.
(ii) \Rightarrow (iii). If m \in \scrJ L, by Lemma 3.3.2, \pi ( \u m)\ast v = \pi ( \u m)v = cv for some

c \in \BbbC . Since \| v\| = 1, we have

\langle f \ast \u m,\phi \rangle = \langle \pi (f \ast \u m)v, v\rangle = \langle \pi ( \u m)\pi (f)v, v\rangle = c\langle \pi (f)v, v\rangle 
= \langle \pi (f)v, v\rangle \langle \pi ( \u m)v, v\rangle = \langle f, \phi \rangle \langle \u m,\phi \rangle .

The other identity is proved analogously.
(iii) \Rightarrow (iv). Trivial.
(iv) \Rightarrow (ii). Being of positive type, \phi has the form

\phi (x) = \langle \pi (x)v, v\rangle 

for some unitary representation \pi of G on \scrH and cyclic vector v. Then (iv) can
be equivalently rewritten as

\| \pi ( \u m)v\| = | \langle \pi ( \u m)v, v\rangle | (3.3.1)

for all m \in \scrJ L. In particular, by taking m = e - tp\ast , and passing to the limit for
t\rightarrow 0+, we obtain

\| v\| = \| v\| 2

(see Corollary 1.4.3 and Proposition 1.1.2), so that \| v\| = 1 (since \phi \not = 0). Now,
for an arbitrary m \in \scrJ L, (3.3.1) implies that \pi ( \u m)v cannot have a compo-
nent orthogonal to v, thus v is an eigenvector of \pi ( \u m), and (ii) follows from
Lemma 3.3.2.

Let \scrP L be the set of the joint eigenfunctions \phi of L1, . . . , Ln of positive type
with \phi (e) = 1. For every \phi \in \scrP L, by Proposition 3.3.3 there exists a unique
\lambda = (\lambda 1, . . . , \lambda n) \in \BbbR n such that

Lj\phi = \lambda j\phi ;

we then define \vargamma L : \scrP L \rightarrow \BbbR n by setting \vargamma L(\phi ) = \lambda .

Proposition 3.3.4. For every m \in \scrJ L and \phi \in \scrP L, we have

\phi \ast \u m = m(\vargamma L(\phi ))\phi and \langle \u m,\phi \rangle = m(\vargamma L(\phi )). (3.3.2)

If G is amenable, then the previous identities hold also for every m \in C0(\BbbR n)
such that \u m \in L1(G).
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Proof. Let \phi (x) = \langle \pi (x)v, v\rangle for some unitary representation \pi of G on \scrH and
cyclic vector v of norm 1. If \vargamma L(\phi ) = (\lambda 1, . . . , \lambda n), by Proposition 3.3.3 we have

d\pi (Lj)v = \lambda jv,

so that, by Proposition 3.2.4 and the properties of the spectral integral,

\pi ( \u m)v = m(d\pi (L1), . . . , d\pi (Ln))v = m(\vargamma L(\phi ))v.

We then have

\phi \ast \u m(x) =
\int 
G

\langle \pi (x)\pi (y - 1)v, v\rangle \u m(x) dx = \langle \pi (x)\pi ( \u m)v, v\rangle = m(\vargamma L(\phi ))\phi (x),

which is the former identity of (3.3.2); by evaluating in x = e we also get the
latter.

Corollary 3.3.5. If \scrP L is endowed with the topology induced by the weak-\ast 
topology of L\infty (G), then the map \vargamma L : \scrP L \rightarrow \BbbR n is continuous.

Proof. By Proposition 3.3.4, for j = 0, . . . , n, we have that

e - pj(\vargamma L(\phi )) = \langle \scrK L(e - pj ), \phi \rangle ,

which is continuous in \phi with respect to the weak-\ast topology of L\infty (G). If
\vargamma L,1, . . . , \vargamma L,n : \scrP L \rightarrow \BbbR are the components of \vargamma L, then

e - \vargamma L,j(\phi ) = e - pj(\vargamma L(\phi ))/e - p0(\vargamma L(\phi )).

This shows that the components of \vargamma L are continuous \scrP L \rightarrow \BbbR , so that also \vargamma L
is continuous.

Proposition 3.3.6. The topologies on \scrP L induced by the weak-\ast topology of
L\infty (G), the compact-open topology of C(G) and the topology of \scrE (G) coincide.
Moreover, the map \vargamma L : \scrP L \rightarrow \BbbR n is a continuous, proper and closed map.
In particular, the image \vargamma L(\scrP L) is a closed subset of \BbbR n and its topology as a
subspace of \BbbR n coincides with the quotient topology induced by \vargamma L.

Proof. Since G is second-countable, the three aforementioned topologies on \scrP L
are all metrizable (cf. [Meg98], Corollary 2.6.20). In particular, in order to prove
that they coincide, it is sufficient to show that they induce the same notion of
convergence of sequences.

Let (\phi k)k be a sequence in \scrP L. If (\phi k)k converges in \scrE (G), then a fortiori it
converges in C(G). Moreover, since \| \phi k\| \infty = 1 for all k, convergence in C(G)
implies weak-\ast convergence in L\infty (G) by dominated convergence.

Suppose now that \phi k \rightarrow \phi \in \scrP L with respect to the weak-\ast topology of
L\infty (G). Take m = e - p\ast \in \scrJ L, so that m > 0. By Proposition 3.3.4, for all
D \in \frakD (G), we then have

D\phi k =
\phi k \ast D \u m
m(\vargamma L(\phi k))

, D\phi =
\phi \ast D \u m
m(\vargamma L(\phi ))

;

in particular, for every x \in G, since RxD \u m \in L1(G),

D\phi k(x) =
\langle RxD \u m,\phi k\rangle 
m(\vargamma L(\phi k))

\rightarrow \langle RxD \u m,\phi \rangle 
m(\vargamma L(\phi ))

= D\phi (x)
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by Corollary 3.3.5. Moreover, again by Corollary 3.3.5,

m(\vargamma L(\phi k)) \geq c > 0

for some c and all k, so that

\| D\phi k\| \infty \leq c - 1\| D \u m\| 1.

This means that, for all D \in \frakD (G), the family \{ D\phi k\} k is equibounded; but
then also, for all D \in \frakD (G), the family \{ D\phi k\} k is equicontinuous, so that
the previously proved pointwise convergence D\phi k \rightarrow D\phi is in fact uniform on
compacta. By arbitrariness of D \in \frakD (G), we have then proved that \phi k \rightarrow \phi in
\scrE (G).

Let now K \subseteq \BbbR n be compact, and take a sequence (\phi k)k in \scrP L such that
\vargamma L(\phi k) \in K for all k. As before, the sequence (\phi k)k is equibounded and equicon-
tinuous, so that, by the Ascoli-Arzel\`a theorem (see [Bou98b], \S X.2.5), we can
find a subsequence \phi kh

which converges uniformly on compacta to a function
\phi \in C(G), and such that moreover \vargamma L(\phi kh

) converges to some \lambda \in K. It is now
easy to show that \phi is of positive type and \phi (e) = 1; moreover, for all \eta \in \scrD (G),

\langle Lj\phi , \eta \rangle = lim
h
\langle Lj\phi kh

, \eta \rangle = lim
h
\vargamma L,j(\phi kh

)\langle \phi kh
, \eta \rangle = \lambda j\langle \phi , \eta \rangle ,

so that
Lj\phi = \lambda j\phi 

in the sense of distributions, but then, by Proposition 3.3.1, \phi is smooth and
is a joint eigenfunction of L1, . . . , Ln, so that \phi \in \scrP L. Since \scrP L is metrizable,
this shows that \vargamma  - 1

L (K) is compact in \scrP L. By the arbitrariness of the compact
K \subseteq \BbbR n, we conclude that \vargamma L is proper and closed (see [Bou98a], Propositions
I.10.1 and I.10.7).

Proposition 3.3.7. For \lambda \in \BbbR n, the set \vargamma  - 1
L (\lambda ) is a weakly-\ast compact and

convex subset of L\infty (G), whose extreme points are the ones associated with
irreducible representations.

Proof. It is immediate to show that \vargamma  - 1
L (\lambda ) is convex, whereas compactness

follows from Proposition 3.3.6.
Let \scrP 1 be the set of functions \phi of positive type on G such that \phi (e) = 1.

Since \vargamma  - 1
L (\lambda ) \subseteq \scrP 1, in order to conclude it will be sufficient to show that the

extreme points of \vargamma  - 1
L (\lambda ) are also extreme points of \scrP 1 (see \S 1.2.1).

Suppose then that \phi \in \vargamma  - 1
L (\lambda ) is not extreme in \scrP 1, so that

\phi = \theta 20\phi 0 + \theta 21\phi 1

for some \phi 0, \phi 1 \in \scrP 1 different from \phi and some \theta 0, \theta 1 > 0 such that \theta 20 + \theta 21 = 1.
For k = 0, 1,

\phi k(x) = \langle \pi k(x)vk, vk\rangle for k = 0, 1,

where \pi k is a unitary representation of G on \scrH k and vk is a cyclic vector of
norm 1. If

v = (\theta 0v0, \theta 1v1) \in \scrH 0 \oplus \scrH 1,

\scrH = span\{ (\pi 0 \oplus \pi 1)(x)v : x \in G\} ,
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and \pi is the restriction of \pi 0 \oplus \pi 1 to \scrH , then it is easy to see that v is a cyclic
vector for \pi and that

\phi (x) = \langle \pi (x)v, v\rangle ,

therefore by Proposition 3.3.3 it follows that v \in \scrH \infty and that d\pi (Lj)v = \lambda jv
for j = 1, . . . , n.

If Pk : \scrH \rightarrow \scrH k is the restriction of the canonical projection \scrH 0\oplus \scrH 1 \rightarrow \scrH k,
it is immediate to check that Pk intertwines \pi and \pi k, and that Pkv = \theta kvk;
hence, for all w \in \scrH k and x \in G,

\langle \pi k(x)vk, w\rangle = \theta  - 1
k \langle \pi k(x)Pkv, w\rangle = \theta  - 1

k \langle \pi (x)v, P \ast kw\rangle .

This identity, together with the arbitrariness of w \in \scrH k, shows that vk \in \scrH \infty k .
Moreover, since Pk intertwines \pi (x) and \pi k(x) for all x \in G, it is easy to check
that it intertwines also d\pi (D) and d\pi k(D) for all D \in \frakD (G), therefore

d\pi (Lj)vk = \theta  - 1
k Pkd\pi (Lj)v = \lambda jvk

for j = 1, . . . , n. By Proposition 3.3.3, this shows that \phi 0, \phi 1 \in \vargamma  - 1
L (\lambda ), thus \phi 

is not even extreme in \vargamma  - 1
L (\lambda ).

The main algebraic and topological properties of the joint eigenfunctions
of positive type of L1, . . . , Ln have been established. Now we are interested
in determining the relationships between the generalized joint point spectrum
\vargamma L(\scrP L) --- which is, by Propositions 3.3.3 and 3.3.7, the union of the joint point
spectra of d\pi (L1), . . . , d\pi (Ln) for all (irreducible) unitary representations \pi of
G --- and the joint L2(G) spectrum \Sigma of L1, . . . , Ln --- which is canonically iden-
tified to the Gelfand spectrum \frakG (C0(L)) of the C\ast -algebra C0(L) (see \S A.3.4).
In fact, we will see that \scrP L contains information about the joint spectrum of
d\pi (L1), . . . , d\pi (Ln) for every unitary representation \pi of G.

Lemma 3.3.8. Let \varpi be a unitary representation of G. Let moreover \phi be a
function of positive type, of the form

\phi (x) = \langle \pi (x)v, v\rangle 

for some unitary representation \pi of G on the Hilbert space \scrH and cyclic vector
v of unit norm. Then the following are equivalent:

(i) \pi is weakly contained in \varpi ;

(ii) | \langle f, \phi \rangle | \leq \| \varpi (f)\| for all f \in L1(G);

(iii) | \langle f, \phi \rangle | \leq C\| \varpi (f)\| for some C > 0 and all f \in L1(G).

Proof. (i) \Rightarrow (ii). Since
\langle f, \phi \rangle = \langle \pi (f)v, v\rangle 

and v has unit norm, the conclusion follows immediately from the definition of
weak containment.

(ii) \Rightarrow (iii). Trivial.
(iii) \Rightarrow (i). Let \widetilde \scrH be the Hilbert space on which \varpi acts. The hypothesis (iii)

implies that \phi defines a (positive) continuous functional on the sub-C\ast -algebra
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of \scrB ( \widetilde \scrH ) which is the closure of \varpi (L1(G)). By applying Proposition 2.1.5(ii) of
[Dix82] to this functional, one obtains, for f, g \in L1(G),

\| \pi (f)\pi (g)v\| 2 = \langle g \ast f \ast f\ast \ast g\ast , \phi \rangle \leq \| \varpi (f \ast f\ast )\| \langle g \ast g\ast , \phi \rangle = \| \varpi (f)\| 2\| \pi (g)v\| 2.

Since v is cyclic and L1(G) contains an approximate identity, the set

\{ \pi (g)v : g \in L1(G)\} 

is a dense subspace of \scrH , therefore the previously proved inequality gives

\| \pi (f)\| \leq \| \varpi (f)\| ,

and we are done.

For a unitary representation \varpi of G, we denote by \scrP L,\varpi the set of the
functions \phi \in \scrP L which satisfy the equivalent conditions of Lemma 3.3.8.

Proposition 3.3.9. Let \varpi be a unitary representation of G. Then \scrP L,\varpi is a
closed subset of \scrP L. Moreover, for every \lambda \in \BbbR n, \scrP L,\varpi \cap \vargamma  - 1

L (\lambda ) is compact
and convex, and its extreme points are the ones corresponding to irreducible
representations.

Proof. Condition (ii) of Lemma 3.3.8 is a convex and closed condition (with
respect to the weak-\ast topology of L\infty (G)) for every f \in L1(G). Therefore \scrP L,\varpi 
is closed in \scrP L, and moreover, for \lambda \in \BbbR n, since \vargamma  - 1

L (\lambda ) is compact and convex
(see Proposition 3.3.7), \scrP L,\varpi \cap \vargamma  - 1

L (\lambda ) is compact and convex too.
In order to conclude, again by Proposition 3.3.7, it is sufficient to show that

an extreme point \phi of \scrP L,\varpi \cap \vargamma  - 1
L (\lambda ) is also extreme in \vargamma  - 1

L (\lambda ). Suppose then
that \phi = (1 - \theta )\phi 0+\theta \phi 1 for some \phi 0, \phi 1 \in \vargamma  - 1

L (\lambda ) and 0 < \theta < 1. For f \in L1(G),
we have

(1 - \theta )| \langle f, \phi 0\rangle | 2 + \theta | \langle f, \phi 1\rangle | 2 = \langle f \ast f\ast , \phi \rangle \leq \| \varpi (f)\| 2

by Lemma 3.3.8 and positivity, therefore

| \langle f, \phi 0\rangle | \leq (1 - \theta ) - 1/2\| \varpi (f)\| , | \langle f, \phi 1\rangle | \leq \theta  - 1/2\| \varpi (f)\| ,

and again by Lemma 3.3.8 we obtain \phi 0, \phi 1 \in \scrP L,\varpi \cap \vargamma  - 1
L (\lambda ).

Theorem 3.3.10. Let \pi be a unitary representation of G on a Hilbert space \scrH .
Then \vargamma L(\scrP L,\pi ) is the joint spectrum of d\pi (L1), . . . , d\pi (Ln) on \scrH .

Proof. Let E\pi be the joint spectral resolution of d\pi (L1), . . . , d\pi (Ln). The joint
spectrum of d\pi (L1), . . . , d\pi (Ln), i.e., the support of E\pi , can be identified with
the Gelfand spectrum of the C\ast -algebra E\pi [C0(\BbbR n)] (see \S A.3.4), i.e., with the
closure in \scrB (\scrH ) of

\{ \pi ( \u m) : m \in \scrJ L\} 

(see Lemma 3.2.2 and Proposition 3.2.4).
In particular, if \phi \in \scrP L,\pi , then, by Lemma 3.3.8,

| \langle \u m,\phi \rangle | \leq \| \pi ( \u m)\| 
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for all m \in \scrJ L, therefore \phi defines a continuous functional on the C\ast -algebra
E\pi [C0(\BbbR n)], which is multiplicative by Proposition 3.3.3, and thus belongs to
the Gelfand spectrum of E\pi [C0(\BbbR n)]. Since

\langle \u m,\phi \rangle = m(\vargamma L(\phi ))

for all m \in \scrJ L (see Proposition 3.3.4), the element of suppE\pi corresponding to
this functional is \vargamma L(\phi ).

Conversely, if \lambda \in suppE\pi , then we can extend the corresponding character
of E\pi [C0(\BbbR n)] to a positive functional \omega of norm 1 on the whole \scrB (\scrH ) (see
[Dix82], \S 2.10). Since \omega \circ \pi : L1(G) \rightarrow \BbbC is linear and continuous, there exists
\phi \in L\infty (G) such that

\langle f, \phi \rangle = \omega (\pi (f))

for all f \in L1(G); in fact, since \omega is positive, \phi must be a function of positive type
on G (see [Fol95], \S 3.3). Moreover, since \omega extends a character of E\pi [C0(\BbbR n)],
it must be

\langle \u m1 \ast \u m2, \phi \rangle = \langle \u m1, \phi \rangle \langle \u m2, \phi \rangle 

for all m1,m2 \in \scrJ L. Therefore, by Proposition 3.3.3, \phi \in \scrP L, and in fact
\phi \in \scrP L,\pi since | \langle f, \phi \rangle | \leq \| \pi (f)\| (see Lemma 3.3.8). Finally

m(\vargamma L(\phi )) = \langle \u m,\phi \rangle = \omega (\pi ( \u m)) = m(\lambda )

for allm \in \scrJ L, by Proposition 3.3.4, since \omega extends the character corresponding
to \lambda , and consequently \vargamma L(\phi ) = \lambda .

Corollary 3.3.11. We have

\Sigma \subseteq \vargamma L(\scrP L),

with equality when G is amenable.

Proof. From Theorem 3.3.10, we have \Sigma = \vargamma L(\scrP L,\mathrm{R}), where R denotes the
regular representation of G on L2(G), from which we get the inclusion \Sigma \subseteq 
\vargamma L(\scrP L). When G is amenable, every representation is weakly contained in the
regular representation (see \S 1.2.3), so that \scrP L = \scrP L,\mathrm{R}, and we are done.

Let \Gamma 1
L be the closure of \scrK L(\scrJ L) in L1(G). \Gamma 1

L is a commutative Banach
\ast -subalgebra of L1(G) --- and also, by Proposition 3.2.3, a dense \ast -subalgebra of
the C\ast -algebra C0(L) --- which is somehow related to the joint L1(G) spectral
theory of the operators L1, . . . , Ln (cf. [Hul74], [Hul75] for the case of a single
operator). We are then interested in comparing the Gelfand spectrum \frakG (\Gamma 1

L) of
\Gamma 1
L with the other two spectra \vargamma L(\scrP L) and \Sigma previously considered.

Proposition 3.3.12. For \phi \in \scrP L, denote by \Lambda (\phi ) the linear functional

\Gamma 1
L \ni f \mapsto \rightarrow \langle f, \phi \rangle \in \BbbC .

Then \Lambda is a continuous map \scrP L \rightarrow \frakG (\Gamma 1
L) and it induces on \scrP L the same

equivalence relation as \vargamma L. In particular, \Lambda induces a continuous injective map
\vargamma L(\scrP L) \rightarrow \frakG (\Gamma 1

L).
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Proof. From Proposition 3.3.3, it follows immediately that, if \phi \in \scrP L, then the
functional \Lambda (\phi ) on \Gamma 1

L is multiplicative, and from Proposition 3.3.4 it is easy to
see that \Lambda (\phi ) is non-null; therefore \Lambda \in \frakG (\Gamma 1

L).
Since the topology of \scrP L is the weak-\ast topology of L\infty (G), whereas the

topology of \frakG (\Gamma 1
L) is the weak-\ast topology of the dual of \Gamma 1

L, and the map \Lambda 
is simply the restriction map from the dual of L1(G) to the dual of \Gamma 1

L, its
continuity is trivial.

Finally, from Proposition 3.3.4, it is clear that, at least on the dense set
\{ \u m : m \in \scrJ L\} of \Gamma 1

L, the (continuous) functional \Lambda (\phi ) is determined by \vargamma L(\phi ),
so that

\vargamma L(\phi ) = \vargamma L(\phi \prime ) =\Rightarrow \Lambda (\phi ) = \Lambda (\phi \prime ).

On the other hand, if \Lambda (\phi ) = \Lambda (\phi \prime ), then, again by Proposition 3.3.4,

m(\vargamma L(\phi )) = m(\vargamma L(\phi \prime )) for all m \in \scrJ L,

and \vargamma L(\phi ) = \vargamma L(\phi \prime ) follows since the elements of \scrJ L separate the points of \BbbR n
(see Proposition 3.2.3).

Proposition 3.3.13. Suppose that G is hermitian. Then every character of \Gamma 1
L

extends to a character of C0(L), so that the Gelfand spectra of the two Banach
\ast -algebras coincide (also as topological spaces).

Proof. Since G is connected and hermitian, then it is also amenable, so that

\| f\| Cv2 =
\sqrt{} 
\rho (f\ast f) for all f \in L1(G),

where \rho (f) denotes the spectral radius of f in L1(G). Notice that, since \Gamma 1
L is

a closed subalgebra of L1(G), for every f \in \Gamma 1
L, the spectral radius of f in \Gamma 1

L

coincides with its spectral radius in L1(G) (see \S A.1.2). Moreover, since L1(G)
is symmetric by hypothesis, also \Gamma 1

L is symmetric, so that, for every character
\psi \in \frakG (\Gamma 1

L),
\psi (f\ast ) = \psi (f) for all f \in \Gamma 1

L;

since \psi (f) belongs to the spectrum of f for every f \in \Gamma 1
L, we have

| \psi (f)| 2 = \psi (f\ast f) \leq \rho (f\ast f) = \| f\| 2Cv2 .

This shows that every character \psi \in \frakG (\Gamma 1
L) is continuous with respect to the

norm of C0(L), so that it extends by density to a unique character of C0(L).
Notice that, since \Gamma 1

L is dense in C0(L) and the elements of \frakG (C0(L)), as
functionals on C0(L), have norms bounded by 1, it is easy to check that the
topologies of \frakG (C0(L)) and \frakG (\Gamma 1

L) coincide.

Corollary 3.3.14. If G is hermitian, then the map

\Lambda : \scrP L \rightarrow \frakG (\Gamma 1
L)

is surjective. In particular, every multiplicative linear functional on \Gamma 1
L extends

to a bounded linear functional \eta on L1(G) such that

\eta (f \ast g) = \eta (f)\eta (g) for all f \in L1(G) and g \in \Gamma 1
L.
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Proof. Let \psi \in \frakG (\Gamma 1
L). By Proposition 3.3.13, \psi extends to a character of C0(L),

which corresponds to some \lambda \in \Sigma . Now, by Corollary 3.3.11, there exists \phi \in \scrP L
such that \vargamma L(\phi ) = \lambda , therefore, for every m \in \scrJ L, by Proposition 3.3.4,

\Lambda (\phi )( \u m) = \langle \u m,\phi \rangle = m(\vargamma L(\phi )) = m(\lambda ) = \psi ( \u m),

from which by density we deduce \Lambda (\phi ) = \psi .
In particular, if \eta denotes the linear functional f \mapsto \rightarrow \langle f, \phi \rangle on L1(G), then \eta 

extends \psi and, by Proposition 3.3.3, for all m \in \scrJ L,

\eta (f \ast \u m) = \eta (f) \eta ( \u m) for all f \in L1(G),

from which we get the conclusion.

The results obtained so far about the comparison of spectra are summarized
in the following diagram, where dashed arrows denote inclusions subject to the
condition indicated in the label:

\vargamma L(\scrP L)
��

\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e} //______

_�

��

\Sigma ? _oo

\frakG (\Gamma 1
L)

��
\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{n} //_____

� ?

\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{n}

OO�
�
�

\frakG (C0(L))? _oo

The three objects do coincide when G is hermitian, and in particular when G
has polynomial growth.

It has been proved that, to every element \lambda of the joint L2 spectrum \Sigma 
of L1, . . . , Ln, there corresponds a joint eigenvector of d\pi (L1), . . . , d\pi (Ln) of
eigenvalue \lambda in some irreducible unitary representation \pi of G. We see now
that, for a certain class of groups, in (almost) every irreducible representation
\pi an orthonormal basis of joint eigenvectors can be found.

Lemma 3.3.15. Let \pi be a unitary representation of G and let q be a non-
negative polynomial on \BbbR n such that the operator q(L) is weighted subcoer-
cive. Set h = \scrK L(e - q) and suppose that \pi (h) is a compact operator on \scrH .
Then there exists a complete orthonormal system of \scrH made of joint eigen-
vectors of d\pi (L1), . . . , d\pi (Ln), and moreover each joint eigenvalue \lambda \in \BbbR n of
d\pi (L1), . . . , d\pi (Ln) has finite multiplicity.

Proof. If \scrH is finite-dimensional, then the conclusion follows immediately, since
d\pi (L1), . . . , d\pi (Ln) are pairwise commuting and self-adjoint.

Suppose instead that dim\scrH is infinite. By the properties of the spectral
integral, the operator

\pi (h) = e - d\pi (q(L))

is injective, positive and self-adjoint, and moreover it is compact by hypothesis.
Therefore, from the spectral theorem for compact operators (see \S A.4.2), it
follows that there exists a complete orthonormal system (vk)k\in \BbbN of \scrH made of
eigenvectors of \pi (h), and moreover the corresponding eigenvalues ck are positive
and tend to 0 for k \rightarrow +\infty .

In particular, if

Vc = \{ v \in \scrH : \pi (h)v = cv\} = span\{ vk : ck = c\} ,
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then \scrH =
\bigoplus 

c Vc and the Vc are finite-dimensional. Moreover,

vk = \lambda  - 1
k \pi (h)vk \in \scrH \infty 

by Theorem 1.4.1(b), so that Vc \subseteq \scrH \infty . Since the d\pi (Lj) commute with \pi (h),
the eigenspaces Vc of \pi (h) are invariant subspaces for d\pi (L1), . . . , d\pi (Ln), so
that, as before, we can find an orthonormal basis of the finite-dimensional space
Vc made of joint eigenvectors of the d\pi (Lj). By putting all these bases to-
gether, we get a complete orthonormal system for \scrH made of joint eigenvectors
of d\pi (L1), . . . , d\pi (Ln).

Let now \lambda \in \BbbR n such that

d\pi (Lj)v = \lambda jv

for some v \in \scrH \setminus \{ 0\} . By the properties of the spectral integral, we then have

\pi (h)v = e - q(\lambda )v,

therefore v \in Vc with c = e - q(\lambda ). This shows that the joint eigenspace of
d\pi (L1), . . . , d\pi (Ln) associated to \lambda is contained in Vc and consequently is finite-
dimensional.

Proposition 3.3.16. Suppose that G is unimodular and type I, and let \widehat G be
the set of (equivalence classes of) irreducible representations of G. Then we can
find a generic subset \widehat G\mathrm{g}\mathrm{e}\mathrm{n} of \widehat G (with respect to the group Plancherel measure)
such that, for every \pi \in \widehat G\mathrm{g}\mathrm{e}\mathrm{n}, having denoted by \scrH the Hilbert space on which
\pi acts, there exists an orthonormal basis of \scrH made of joint eigenvectors of
d\pi (L1), . . . , d\pi (Ln), and moreover each joint eigenvalue of d\pi (L1), . . . , d\pi (Ln)
has finite multiplicity. If G is CCR, then one can take \widehat G\mathrm{g}\mathrm{e}\mathrm{n} = \widehat G.

Proof. Let h be as in Lemma 3.3.15. Then we know that h \in L1 \cap L2(G)
by Theorem 1.4.1(e,f). Therefore, if G is CCR, then \pi (f) is compact for every
irreducible representation \pi of G, and the conclusion follows from Lemma 3.3.15.
If G is unimodular and type I, then by the group Plancherel formula (see \S 1.2.2)
we have \int 

\widehat G \| \pi (h)\| 2\mathrm{H}\mathrm{S} d\pi = \| h\| 22 <\infty ;

in particular \| \pi (h)\| \mathrm{H}\mathrm{S} is finite for almost every irreducible unitary representa-
tion \pi of G, so that \pi (h) is Hilbert-Schmidt (and consequently compact) for \pi 
in a generic subset of \widehat G, and the conclusion follows again by Lemma 3.3.15.

3.4 Direct products

For l = 1, . . . , \varrho , let Gl be a connected Lie group, and set

G\times = G1 \times \cdot \cdot \cdot \times G\varrho .

We then have the identification

g\times = g1 \oplus \cdot \cdot \cdot \oplus g\varrho .
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Lemma 3.4.1. For l = 1, . . . , \varrho , suppose that Al,1, . . . , Al,dl
is a reduced basis

of gl, with weights wl,1, . . . , wl,dl
. Then

A1,1, . . . , A1,d1 , . . . , A\varrho ,1, . . . , A\varrho ,d\varrho (3.4.1)

is a reduced basis of g\times , with weights

w1,1, . . . , w1,d1 , . . . , w\varrho ,1, . . . , w\varrho ,d\varrho 
.

Moreover, if (Vl,\lambda )\lambda is the filtration on gl corresponding to the chosen reduced
basis for l = 1, . . . , \varrho , then

V \times \lambda = V1,\lambda \oplus \cdot \cdot \cdot \oplus V\varrho ,\lambda 

gives the filtration on g\times corresponding to the algebraic basis (3.4.1); therefore,
by passing to the quotients, we obtain for the contractions

(g\times )\ast = (g1)\ast \oplus \cdot \cdot \cdot \oplus (g\varrho )\ast .

Proof. An iterated commutator A[\alpha ] of the elements of (3.4.1) is not null only
if it coincides with an iterated commutator (Al)[\alpha \prime ] of Al,1, . . . , Al,nl

for some
l \in \{ 1, . . . , \varrho \} . This can be easily checked by induction on the length | \alpha | of the
commutator. The identities involving the filtrations then follow immediately,
from which we get easily the conclusion.

Proposition 3.4.2. Suppose that Dl \in \frakD (Gl) is a self-adjoint weighted subco-
ercive operator on Gl, for l = 1, . . . , \varrho , and let D\times l \in \frakD (G\times ) be the differential
operator on G\times along the l-th factor corresponding to Dl. Then

D = (D\times 1 )2 + \cdot \cdot \cdot + (D\times \varrho )2

is a positive weighted subcoercive operator on G\times .

Proof. For l = 1, . . . , \varrho , let Al,1, . . . , Al,dl
be a reduced basis of gl, with weights

wl,1, . . . , wl,dl
, such that, for some self-adjoint weighted subcoercive form Cl of

degree ml, we have Dl = dRGl
(Cl); let moreover Pl be the principal part of Cl.

Clearly, we can find real numbers \zeta 1, . . . , \zeta \varrho \geq 1 such that

\zeta 1m1 = \cdot \cdot \cdot = \zeta \varrho m\varrho .

Therefore, by rescaling the weights of the algebraic basis of gl by \zeta l, we may
suppose that the forms C1, . . . , C\varrho have the same degree m.

By Lemma 3.4.1, the concatenation of the bases of g1, . . . , gl gives a reduced
weighted algebraic basis of g\times . We can then consider, for l = 1, . . . , \varrho , the
forms C\times l , P\times l corresponding to Cl,Pl but re-indexed on the basis (3.4.1). In
particular, if

C = (C\times 1 )2 + \cdot \cdot \cdot + (C\times \varrho )2, P = (P\times 1 )2 + \cdot \cdot \cdot + (P\times \varrho )2,

then P = P+ is the principal part of C, and moreover

dRG\times (C) = (dRG1(C1)\times )2 + \cdot \cdot \cdot + (dRG\varrho 
(C\varrho )\times )2 = D.
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On the other hand, again by Lemma 3.4.1, we have the identification

(G\times )\ast = (G1)\ast \times \cdot \cdot \cdot \times (G\varrho )\ast ,

so that

dR(G\times )\ast (P ) = (dR(G1)\ast (P1)\times )2 + \cdot \cdot \cdot + (dR(G\varrho )\ast (P\varrho )
\times )2.

By Theorem 1.4.1, we have that dR(Gl)\ast (Pl) is Rockland on (Gl)\ast for l =
1, . . . , \varrho . We now prove that dR(G\times )\ast (P ) is Rockland on (G\times )\ast .

If \pi is a non-trivial irreducible unitary representation of G\times on a Hilbert
space \scrH , then (see [Fol95], Theorem 7.25) we may suppose modulo equivalence
that \pi = \pi 1 \otimes \cdot \cdot \cdot \otimes \pi \varrho , where \pi l is an irreducible unitary representation of Gl
on a Hilbert space \scrH l for l = 1, . . . , \varrho , so that

\scrH = \scrH 1 \^\otimes \cdot \cdot \cdot \^\otimes \scrH \varrho ,

and at least one of \pi 1, . . . , \pi \varrho is non-trivial. Let (wl,\nu l
)\nu l

be a complete orthonor-
mal system for \scrH l, for l = 1, . . . , \varrho , so that (w1,\nu 1 \otimes \cdot \cdot \cdot \otimes w\varrho ,\nu \varrho )\vec{}\nu is a complete
orthonormal system for \scrH . Then, for every element

v =
\sum 

\nu 1,...,\nu \varrho 

a\nu 1,...,\nu \varrho 
w1,\nu 1 \otimes \cdot \cdot \cdot \otimes w\varrho ,\nu \varrho 

of \scrH , we have

\langle d\pi (dR(G\times )\ast (P ))v, v\rangle \scrH 

=
\varrho \sum 
l=1

\sum 
\nu 1,...,\nu l - 1,\nu l+1,\nu \varrho 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| d\pi l(dR(Gl)\ast (Pl))

\Biggl( \sum 
\nu l

a\nu 1,...,\nu \varrho 
wl,\nu l

\Biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\scrH l

;

since at least one of the d\pi l(dR(Gl)\ast (Pl)) is injective (being dR(Gl)\ast (Pl) Rockland
and \pi l non-trivial), this formula gives easily that

v \not = 0 =\Rightarrow d\pi (dR(G\times )\ast (P ))v \not = 0,

i.e., d\pi (dR(G\times )\ast (P )) is injective. From the arbitrariness of \pi , we conclude that
dR(G\times )\ast (P ) is Rockland.

But then, again by Theorem 1.4.1, we get that D = dRG\times (C) is weighted
subcoercive.

For l = 1, . . . , \varrho , let Ll,1, . . . , Ll,nl
\in \frakD (Gl) be a weighted subcoercive sys-

tem. Let moreover L\times l,j be the differential operator on G\times along the l-th factor
corresponding to Ll,j . Then, by the previous proposition,

L\times 1,1, . . . , L
\times 
1,n1

, . . . , L\times \varrho ,1, . . . , L
\times 
\varrho ,n\varrho 

(3.4.2)

is a weighted subcoercive system on G\times .

Proposition 3.4.3. Suppose, for l = 1, . . . , \varrho , that ml is a bounded Borel func-
tion on \BbbR nl , and set

m = m1 \otimes \cdot \cdot \cdot \otimes m\varrho .

Then
m(L\times ) = m1(L1)\otimes \cdot \cdot \cdot \otimes m\varrho (L\varrho ),

and in particular
\u m = \u m1 \otimes \cdot \cdot \cdot \otimes \u m\varrho .
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Proof. Since the operators (3.4.2) commute strongly, by the properties of the
spectral integral it is immediate to see that

m(L\times ) = m1(L\times 1 ) \cdot \cdot \cdot m\varrho (L\times \varrho ).

On the other hand, from the identity

L\times l,j(f1 \otimes \cdot \cdot \cdot \otimes f\varrho ) = f1 \otimes \cdot \cdot \cdot \otimes fl - 1 \otimes (Ll,jfl)\otimes fl+1 \otimes \cdot \cdot \cdot \otimes fn

it follows that also

m(L\times l )(f1 \otimes \cdot \cdot \cdot \otimes f\varrho ) = f1 \otimes \cdot \cdot \cdot \otimes fl - 1 \otimes (m(Ll)fl)\otimes fl+1 \otimes \cdot \cdot \cdot \otimes fn,

from which clearly

m1(L\times 1 ) \cdot \cdot \cdot m\varrho (L\times \varrho ) = m1(L1)\otimes \cdot \cdot \cdot \otimes m\varrho (L\varrho ).

In particular, for every f1 \in \scrD (G1), . . . , f\varrho \in \scrD (G\varrho ),

m(L\times )(f1 \otimes \cdot \cdot \cdot \otimes f\varrho ) = (m1(L1)f1)\otimes \cdot \cdot \cdot \otimes (m\varrho (L\varrho )f\varrho )
= (f1 \ast \u m1)\otimes \cdot \cdot \cdot \otimes (f\varrho \ast \u m\varrho ) = (f1 \otimes \cdot \cdot \cdot \otimes f\varrho ) \ast ( \u m1 \otimes \cdot \cdot \cdot \otimes \u m\varrho ),

from which \u m = \u m1 \otimes \cdot \cdot \cdot \otimes \u m\varrho .

Let now \sigma l be the Plancherel measure on \BbbR nl associated to the system
Ll,1, . . . , Ll,nl

, for l = 1, . . . , \varrho . Let moreover \sigma \times be the Plancherel measure
on \BbbR \vec{}n associated to the system (3.4.2).

Proposition 3.4.4. \sigma \times = \sigma 1 \times \cdot \cdot \cdot \times \sigma \varrho .

Proof. If Al \subseteq \BbbR nl is a relatively compact Borel set for l = 1, . . . , \varrho , we have

\chi A1\times \cdot \cdot \cdot \times A\varrho = \chi A1 \otimes \cdot \cdot \cdot \otimes \chi A\varrho ,

so that, by Theorem 3.2.7 and Proposition 3.4.3,

\sigma (A1 \times \cdot \cdot \cdot \times A\varrho ) = \| \u \chi A1\times \cdot \cdot \cdot \times A\varrho 
\| L2(G\times ) = \| \u \chi A1 \otimes \cdot \cdot \cdot \otimes \u \chi A\varrho 

\| L2(G\times )

= \| \u \chi A1\| L2(G1) \cdot \cdot \cdot \| \u \chi A\varrho 
\| L2(G\varrho ) = \sigma 1(A1) \cdot \cdot \cdot \sigma \varrho (A\varrho ),

and we are done.

3.5 Change of generators

Let L1, . . . , Ln be a weighted subcoercive system on a connected Lie group G.
Let \sigma be the associated Plancherel measure on \BbbR n, and \Sigma = supp\sigma . For given
polynomials p1, . . . , pn\prime : \BbbR n \rightarrow \BbbR , consider the operators

L\prime 1 = p1(L1, . . . , Ln), . . . , L\prime n\prime = pk(L1, . . . , Ln),

and suppose that they still form a weighted subcoercive system. Let \sigma \prime be
the Plancherel measure on \BbbR n\prime associated to the system L\prime 1, . . . , L

\prime 
n\prime , and \Sigma \prime 

its support. We may ask if there is a relationship between the transforms \scrK L
and \scrK L\prime , and between the Plancherel measures \sigma and \sigma \prime associated to the two
systems.

Let p : \BbbR n \rightarrow \BbbR n\prime denote the polynomial map whose j-th component is the
polynomial pj .
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Lemma 3.5.1. The map p| \Sigma : \Sigma \rightarrow \BbbR n\prime is a proper continuous map.

Proof. Since L\prime 1, . . . , L
\prime 
n\prime is a weighted subcoercive system, we can find a non-

negative polynomial q : \BbbR n\prime \rightarrow \BbbR such that q(L\prime ) = q(p(L)) is a weighted
subcoercive operator. By Theorem 1.4.1(v), for sufficiently large C > 0 and
k \in \BbbN , we have that

max
j
\| Lj\phi \| 2 \leq C\| (1 + q(p(L))k)\phi \| 2 for \phi \in \scrD (G),

which means, by the spectral theorem, that

max
j
| \lambda j | \leq C(1 + q(p(\lambda ))k) for \lambda \in \Sigma ,

since \Sigma is the joint L2(G)-spectrum of L1, . . . , Ln.
Now, if K \subseteq \BbbR n\prime is compact, then by continuity there exists M > 0 such

that q| K \leq M , but then

max
j
| \lambda j | \leq C(1 +Mk) for \lambda \in \Sigma \cap p - 1(K),

thus p - 1(K)\cap \Sigma is bounded in \BbbR n, and also closed (by continuity of p), therefore
p - 1(K) is compact.

Proposition 3.5.2. For every bounded Borel m : \BbbR n\prime \rightarrow \BbbC , we have:

m(L\prime ) = (m \circ p)(L), \scrK L\prime m = \scrK L(m \circ p).

Moreover
\sigma \prime = p(\sigma ), \Sigma \prime = p(\Sigma ).

Proof. The first part of the conclusion follows immediately from the spectral
theorem and uniqueness of the convolution kernel. From this, the identity \sigma \prime =
p(\sigma ) is easily inferred by Theorem 3.2.7. In particular,

\sigma (\BbbR n \setminus p - 1(\Sigma \prime )) = \sigma \prime (\BbbR n
\prime 
\setminus \Sigma \prime ) = 0,

i.e., by continuity of p, p(\Sigma ) \subseteq \Sigma \prime .
In order to prove the opposite inclusion, we use the fact that p| \Sigma is proper

(see Lemma 3.5.1). Take \lambda \prime \in \Sigma \prime , and let Bk be a decreasing sequence of
compact neighborhoods of p in \BbbR n\prime such that

\bigcap 
k Bk = \{ p\} . By definition of

support, we then have \sigma (p - 1(Bk)) = \sigma \prime (Bk) \not = 0, therefore p - 1(Bk) \cap \Sigma \not = \emptyset 
for all k. Since p| \Sigma is proper, we have a decreasing sequence p - 1(Bk) \cap \Sigma of
non-empty compacts of \BbbR n, which therefore has a non-empty intersection. If \lambda 
belongs to this intersection, then clearly \lambda \in \Sigma and moreover p(\lambda ) \in Bk for all
k, that it, p(\lambda ) = \lambda \prime .

A particularly interesting case is when L\prime 1, . . . , L
\prime 
n\prime generate the same subal-

gebra of \frakD (G) as L1, . . . , Ln. In this case, there exists also a polynomial map
q = (q1, . . . , qn) : \BbbR n\prime \rightarrow \BbbR n such that

L1 = q1(L\prime ), . . . , Ln = qn(L\prime ).
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Notice that in general p and q are not the inverse one of the other: from the
spectral theorem, we only deduce that (q \circ p)| \Sigma = id\Sigma , (p \circ q)| \Sigma \prime = id\Sigma \prime (in fact,
these identities extend to the Zariski-closures of \Sigma and \Sigma \prime ). In particular,

p| \Sigma : \Sigma \rightarrow \Sigma \prime , q| \Sigma \prime : \Sigma \prime \rightarrow \Sigma 

are homeomorphisms.
Such polynomial changes of variables may be induced by particular auto-

morphisms of the Lie group G. Namely, let \scrO be the unital subalgebra of \frakD (G)
generated by L1, . . . , Ln. If k \in Aut(G), then its derivative k\prime is an automor-
phism of g, therefore it extends to a unique filtered \ast -algebra automorphism
of \frakD (G) \sim = U(g) (which will be still denoted by k\prime ); we then say that \scrO is k-
invariant if k(\scrO ) \subseteq \scrO , or equivalently, if k(\scrO ) = \scrO (the equivalence is due to
the fact that k\prime is an injective linear map and the filtration of \frakD (G) is made of
finitely dimensional subspaces).

Let Aut(G;\scrO ) denote the (closed) subgroup of Aut(G) made of the auto-
morphisms k such that \scrO is k-invariant. If k \in Aut(G;\scrO ), then

k\prime (L1), . . . , k\prime (Ln)

must be a system of generators of \scrO ; therefore, we can choose a polynomial
map pk = (pk,1, . . . , pk,n) : \BbbR n \rightarrow \BbbR n such that k\prime (Lj) = pk,j(L).

Notice that, for every k \in Aut(G), the push-forward via k of the right Haar
measure \mu onG is a multiple of \mu , and in fact there is a Lie group homomorphism
c : Aut(G) \rightarrow \BbbR + such that

k(\mu ) = c(k)\mu .

In particular, if we set
Tkf = f \circ k - 1

for k \in Aut(G), then we have immediately

Proposition 3.5.3. For k \in Aut(G), Tk is a multiple of an isometry of L2(G);
more precisely

\| Tkf\| 22 = c(k) - 1\| f\| 22.
Moreover, for all D \in \frakD (G),

k\prime (D) = TkDT
 - 1
k .

In particular, for every bounded Borel m : \BbbR n \rightarrow \BbbC ,

m(k\prime (L1), . . . , k\prime (Ln)) = Tkm(L1, . . . , Ln)T - 1
k ,

and consequently
\scrK k\prime (L)m = c(k)Tk\scrK Lm.

Proof. The first equality follows from the change-of-variable formula for a push-
forward measure. The second one can be easily proved for vector fields D \in g
and then extended to general D \in \frakD (G). The third identity follows from the
second one and uniqueness of the joint spectral resolution (Tk is a multiple
of an isometry, so that conjugation by Tk preserves orthogonal projections).
Consequently, we have, for \phi \in \frakD (G),

m(k\prime (L))\phi = Tk((T - 1
k \phi ) \ast \scrK Lm) = c(k)\phi \ast Tk\scrK Lm

by the properties of convolution, and the fourth identity follows.
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Corollary 3.5.4. If k \in Aut(G;\scrO ), then, for every bounded Borel function
m : \BbbR n \rightarrow \BbbC ,

(m \circ pk)(L1, . . . , Ln) = Tkm(L1, . . . , Ln)T - 1
k ,

and moreover
\scrK L(m \circ pk) = c(k)Tk\scrK Lm.

The previous results, together with the characterization of Plancherel mea-
sure given in Theorem 3.2.7, give finally

Corollary 3.5.5. If k \in Aut(G;\scrO ), then

pk(\sigma ) = c(k)\sigma , pk(\Sigma ) = \Sigma .

We then have that the restrictions pk| \Sigma (which are uniquely determined by k)
define an action of the group Aut(G;\scrO ) on the spectrum \Sigma by homeomorphisms;
more precisely

Proposition 3.5.6. The map

Aut(G;\scrO )\times \Sigma \ni (k, \lambda ) \mapsto \rightarrow pk - 1(\lambda ) \in \Sigma (3.5.1)

is continuous, and defines a continuous (left) action of Aut(G;\scrO ) on \Sigma .

Proof. Recall that \Sigma may be identified, as a topological space, with the Gelfand
spectrum of the sub-C\ast -algebra C0(L) of Cv2(G), where \lambda \in \Sigma corresponds to
the multiplicative linear functional \psi \lambda defined by

\psi \lambda ( \u m) = m(\lambda ).

By Corollary 3.5.4 we then deduce

\psi pk(\lambda ) = c(k)\psi \lambda \circ Tk,

which clarifies that (3.5.1) defines a left action on \Sigma .
Moreover, since C0(L)\cap L1(G) is dense in C0(L) (see Proposition 3.2.3), and

since c(k)Tk is an isometry of Cv2(G), we obtain easily that

k \mapsto \rightarrow c(k)Tku

is continuous for every u \in Cv2(G). Therefore, since the topology of the Gelfand
spectrum is induced by the weak\ast topology, we immediately obtain that (3.5.1)
is separately continuous, and also jointly continuous since the \psi \lambda have uniformly
bounded norms.

The richer the group Aut(G;\scrO ) --- or rather, its quotient by the subgroup
of automorphisms which fix each of the generators L1, . . . , Ln --- is, the more
we may deduce about the structure of the spectrum \Sigma and of the Plancherel
measure \sigma . An example of this fact is illustrated in the next section.
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3.6 Homogeneity

Let G be a homogeneous Lie group, with automorphic dilations \delta t and homo-
geneous dimension Q\delta . A weighted subcoercive system L1, . . . , Ln \in \frakD (G) will
be called homogeneous if each Lj is \delta t-homogeneous.

In the following, L1, . . . , Ln will be a homogeneous weighted subcoercive
system, with associated Plancherel measure \sigma , and rj will denote the degree of
homogeneity of Lj , i.e.,

\delta t(Lj) = trjLj .

The unital subalgebra of \frakD (G) generated by L1, . . . , Ln is \delta t-invariant for every
t > 0. Therefore, if we set

Dtf = f \circ \delta t - 1 ,

and if we denote by \epsilon t the dilations on \BbbR n given by

\epsilon t(\lambda ) = (tr1\lambda 1, . . . , t
rn\lambda n). (3.6.1)

(which will be said associated to the system L1, . . . , Ln), then from Corollar-
ies 3.5.4 and 3.5.5 we immediately deduce

Proposition 3.6.1. For every bounded Borel m : \BbbR n \rightarrow \BbbC , we have

(m \circ \epsilon t)(L) = Dtm(L)Dt - 1 , (m \circ \epsilon t)\u = t - Q\delta \u m \circ \delta t - 1 .

Moreover, the support \Sigma of \sigma is \epsilon t-invariant, and

\sigma (\epsilon t(A)) = tQ\delta \sigma (A)

for all Borel A \subseteq \BbbR n. In particular, \sigma (\{ 0\} ) = 0.

Since the Plancherel measure \sigma is homogeneous, it admits the decomposition
given by Proposition 2.3.23, and in particular from Corollary 2.3.24 we get

Corollary 3.6.2. The Plancherel measure \sigma associated to a homogeneous sys-
tem L1, . . . , Ln is locally 1-bounded on \BbbR n \setminus \{ 0\} .

The homogeneous system L1, . . . , Ln \in \frakD (G) will be called a Rockland sys-
tem if the unital subalgebra of \frakD (G) generated by L1, . . . , Ln contains a Rock-
land operator. We now prove that every homogeneous weighted subcoercive
system is also a Rockland system, with respect to a possibly different family of
automorphic dilations of G; in doing so, we obtain a characterization of homo-
geneous weighted subcoercive systems which is more representation-theoretic in
character.

Proposition 3.6.3. Let L1, . . . , Ln \in \frakD (G) be pairwise commuting and for-
mally self-adjoint.

(i) If L1, . . . , Ln is a weighted subcoercive system, then, for every non-trivial
irreducible unitary representation \pi of G on a Hilbert space \scrH , the oper-
ators d\pi (L1), . . . , d\pi (Ln) are jointly injective on \scrH \infty , i.e.,

d\pi (L1)v = \cdot \cdot \cdot = d\pi (Ln)v = 0 =\Rightarrow v = 0

for all v \in \scrH \infty .
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(ii) If, conversely, for every non-trivial irreducible unitary representation \pi of
G on a Hilbert space \scrH , the operators d\pi (L1), . . . , d\pi (Ln) are jointly in-
jective on \scrH \infty , then L1, . . . , Ln is a Rockland system with respect to every
system of dilations on G such that the homogeneity degrees of L1, . . . , Ln
have a common multiple; in fact, such systems of dilations on G do exist,
and in particular L1, . . . , Ln is a homogeneous weighted subcoercive system
with respect to the original dilations on G.

Proof. (i) Let p be a real polynomial such that p(L) = p(L1, . . . , Ln) is a
weighted subcoercive operator. Choose moreover a system X1, . . . , Xd of gen-
erators of g made of \delta t-homogeneous elements, so that \delta t(Xk) = t\nu kXk for
some \nu k > 0. From Theorem 1.4.1(v) we deduce that, possibly by replacing p
with some power pm, there exist a constant C > 0 such that, for every unitary
representation \pi of G on a Hilbert space \scrH ,

\| d\pi (Xk)v\| 2 \leq C(\| v\| 2 + \| d\pi (p(L))v\| 2) (3.6.2)

for v \in \scrH \infty , k = 1, . . . , d.
Fix now a non-trivial irreducible unitary representation \pi of G on a Hilbert

space \scrH , and let v \in \scrH \infty be such that

d\pi (L1)v = \cdot \cdot \cdot = d\pi (Ln)v = 0.

For t > 0, since \delta t \in Aut(G), \pi t = \pi \circ \delta t is also a unitary representation of G;
moreover, it is easily checked that smooth vectors for \pi t coincide with smooth
vectors for \pi , and that

d\pi t(D) = d\pi (\delta t(D)) for every D \in \frakD (G).

In particular,
d\pi t(p(L))v = d\pi ((p \circ \epsilon t)(L))v = p(0)v,

thus from (3.6.2) applied to the representation \pi t we get

\| d\pi (Xk)v\| 2 \leq t - 2\nu kC(1 + | p(0)| 2)\| v\| 2,

and, for t\rightarrow +\infty , we obtain

d\pi (X1)v = \cdot \cdot \cdot = d\pi (Xd)v = 0.

SinceX1, . . . , Xd generate g, this means that the function x \mapsto \rightarrow \pi (x)v is constant,
i.e.,

\pi (x)v = v for all x \in G,

but \pi is irreducible and non-trivial, thus v = 0.
(ii) By the results of [Mil80] (see in particular Proposition 1.1 and its proof),

we can find a gradation on G with respect to which the operators L1, . . . , Ln
are still homogeneous; since in this case the degrees of homogeneity are integers,
they must have a common multiple.

Suppose therefore that \~\delta t is a system of automorphic dilations of G such
that the degrees r1, . . . , rn of L1, . . . , Ln have a common multiple M . Then

\Delta = L
2M/r1
1 + \cdot \cdot \cdot + L2M/rn

n
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is \~\delta t-homogeneous of degree 2M and belongs to the unital subalgebra of \frakD (G)
generated by L1, . . . , Ln. Moreover, for every irreducible unitary representation
\pi of G on \scrH , and for every v \in \scrH \infty , we have

\langle d\pi (\Delta )v, v\rangle = \| d\pi (L1)M/r1v\| 2\scrH + . . . \| d\pi (Ln)M/rnv\| 2\scrH ,

so that, if d\pi (\Delta )v = 0, then also d\pi (Lj)v = 0 for j = 1, . . . , n, therefore v = 0.
This proves that \Delta is a Rockland operator.

Notice now that, by Proposition 1.4.4, \Delta is a weighted subcoercive operator
on G. Since L1, . . . , Ln are \delta t-homogeneous, the conclusion follows.

We now show that a Rockland operator in the unital algebra generated by
L1, . . . , Ln plays the role of ``homogeneous norm"" on the spectral side.

Proposition 3.6.4. Let | \cdot | \epsilon be a \epsilon t-homogeneous norm on \BbbR n. Suppose that,
for some polynomial p, the operator p(L) is Rockland of degree r. Then there
exists a constant C \geq 1 such that

C - 1| \lambda | \epsilon \leq | p(\lambda )| 1/r \leq C| \lambda | \epsilon for \lambda \in \Sigma .

Proof. If M is a common multiple of

r, r1, . . . , rn,

it follows from Theorem 1.4.1(vi) applied to the positive Rockland operator
| p| 2M/r(L) that there exists C > 0 such that

\| LM/rj

j u\| 2 \leq C\| p(L)M/ru\| 2

for all u \in \scrD (G), j = 1, . . . , n; therefore, by the properties of the spectral
integral, we deduce that

| \lambda j | 1/rj \leq C1/M | p(\lambda )| 1/r for \lambda \in \Sigma .

Since

| \lambda | \epsilon \sim 
n\sum 
j=1

| \lambda i| 1/rj ,

the first inequality of the conclusion follows easily.
Finally, notice that

(p \circ \epsilon t)(L) = Dtp(L)Dt - 1 = trp(L)

since p(L) has degree r, so that

p \circ \epsilon t = trp on \Sigma 

and the second inequality also follows.
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3.7. Gelfand pairs

3.7 Gelfand pairs

Let G be a connected Lie group. In this paragraph, we describe a particular
way of obtaining weighted subcoercive systems on G, which has been extensively
studied in the literature.

Let K be a compact subgroup of Aut(G). Notice that the homomorphism
c : Aut(G) \rightarrow \BbbR + defined in \S 3.5 must be identically 1 on K by compactness, so
that the elements of K preserve the Haar measure of G. A continuous function
f : G\rightarrow \BbbC is said to be K-invariant if

Tkf = f for all k \in K;

this definition is naturally extended to other spaces of functions on G, and also
to distributions. We add a subscript K to the symbol representing a particular
space of functions or distributions in order to denote the corresponding (closed)
subspace ofK-invariant elements; for instance, LpK(G) denotes the Banach space
of K-invariant Lp functions on G. Since

Tk(f \ast g) = (Tkf) \ast (Tkg), Tk(f\ast ) = (Tkf)\ast ,

it is immediately proved that L1
K(G) is a Banach \ast -subalgebra of L1(G).

We also define the projection

PK : f \mapsto \rightarrow 
\int 
K

Tkf dk,

where the integration is with respect to the Haar measure on K with mass 1;
by a suitable notion of integral, this projection is defined on various spaces of
functions and distributions on G, and on most spaces it is a continuous operator
(with unit norm), which maps the whole space onto the subspace of K-invariant
elements. Moreover

PK(f \ast (PKg)) = PK((PKf) \ast g) = (PKf) \ast (PKg), PK(f\ast ) = (PKf)\ast .

Among the left-invariant differential operators on G, we can consider those
which are K-invariant, i.e., which commute with Tk for all k \in K. The set
\frakD K(G) of left-invariant K-invariant differential operators on G is a \ast -subalgebra
of \frakD (G), which is finitely generated since K is compact (cf. [Hel62], Corol-
lary X.2.8 and Theorem X.5.6). Moreover, \frakD K(G) contains an elliptic operator
(e.g., the Laplace-Beltrami operator associated to a left-invariant K-invariant
metric on G, cf. [Hel84], proof of Proposition IV.2.2). Therefore, if one chooses
a finite system of formally self-adjoint generators of \frakD K(G), the only property
which is missing in order to have a weighted subcoercive system is commutativ-
ity of \frakD K(G).

In fact, under these hypotheses, the following properties are equivalent (cf.
[Tho84], or [Wol07], \S 8.3):

\bullet \frakD K(G) is a commutative \ast -subalgebra of \frakD (G);

\bullet L1
K(G) is a commutative Banach \ast -subalgebra of L1(G).
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The latter condition corresponds to the fact that (G\rtimes K,K) is a Gelfand pair1.
We now summarize in our context some of the main notions and results from
the general theory of Gelfand pairs, for which we refer mainly to the expositions
of Faraut [Far82] and Wolf [Wol07], but also to the books of Helgason [Hel62],
[Hel78], [Hel84]. In the following, we always suppose that L1

K(G) is commuta-
tive; consequently, G must be unimodular (cf. [Hel84], Theorem IV.3.1).

The K-invariant joint eigenfunctions \phi of the operators in \frakD K(G) with
\phi (e) = 1 are called K-spherical functions. These functions can be equivalently
characterized as the continuous and non-null functions \phi on G such that

\phi (x)\phi (y) =
\int 
K

\phi (x k(y)) dk for all x, y \in K.

The set \frakG K of bounded K-spherical functions, with the topology induced by the
weak-\ast topology of L\infty (G), is identified with the Gelfand spectrum \frakG (L1

K(G))
of the commutative Banach \ast -algebra L1

K(G), via the correspondence which
associates to a bounded K-spherical function \phi the (multiplicative) linear func-
tional

f \mapsto \rightarrow \langle f, \phi \rangle 
on L1

K(G). According to this identification, the Gelfand transform --- which is
also called the K-spherical Fourier transform --- of an element f \in L1

K(G) is
the function

\scrG Kf : \frakG K \ni \phi \mapsto \rightarrow \langle f, \phi \rangle \in \BbbC .
TheK-spherical Fourier transform \scrG K is a continuous homomorphism of Banach
algebras L1

K(G) \rightarrow C0(\frakG K), with unit norm.
If \phi is a function of positive type on G, then its projection PK\phi is of positive

type and K-invariant. Let \scrP K denote the set of K-invariant functions \phi of
positive type on G with \phi (e) = 1. Then \scrP K is a closed and convex subset of
\scrP 1 (see \S 1.2.1), whose extreme points are the elements of \frakG +

K = \frakG K \cap \scrP K , i.e.,
the K-spherical functions of positive type; in particular, by the Krein-Milman
theorem, the convex hull of \frakG +

K is weakly-\ast dense in \scrP K .
By restricting K-spherical transforms to \frakG +

K , one obtains that

(\scrG K(f\ast ))| \frakG +
K

= (\scrG Kf)| \frakG +
K
,

therefore the map f \mapsto \rightarrow (\scrG Kf)| \frakG +
K

is a \ast -homomorphism L1
K(G) \rightarrow C0(\frakG +

K) with
unit norm and dense image. Moreover, there exists a unique positive regular
Borel measure \sigma K on \frakG +

K , which is called the Plancherel measure of the Gelfand
pair (G\rtimes K,K), such that\int 

G

| f(x)| 2 dx =
\int 

\frakG +
K

| \scrG Kf(\phi )| 2 d\sigma K(\phi )

1The general notion of Gelfand pair is the following: if S is a locally compact group, and
K a compact subgroup of S, then (S, K) is said to be a Gelfand pair if the (convolution)
algebra L1(K; S; K) of bi-K-invariant integrable functions on S is commutative. The study
of a Gelfand pair (S, K) involves the K-homogeneous space S/K: for instance, bi-K-invariant
functions on S correspond to K-invariant functions on S/K. In the case S = G \rtimes K, the
homogeneous space S/K can be identified with G; moreover, the convolution in L1(K; S; K)
corresponds to the convolution in L1

K(G), and most of the notions and results about Gelfand
pairs can be rephrased, in this particular case, in terms of the algebraic structure of G (see,
e.g., [Car87] or [BJR90]). This has to be kept in mind when comparing the results mentioned
here with the ones presented in the literature.
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for all f \in L1
K \cap L2

K(G); further, the map f \mapsto \rightarrow (\scrG Kf)| \frakG +
K

extends to an isomor-
phism L2

K(G) \rightarrow L2(\frakG +
K , \sigma K).

Choose now a finite system L1, . . . , Ln of formally self-adjoint generators of
\frakD K(G). As we have seen before, the system L1, . . . , Ln is a weighted subcoercive
system on G. If the map \vargamma L of \S 3.3 is extended to all the joint eigenfunctions
of L1, . . . , Ln, then it is known (see [Fer07]) that

\vargamma L| \frakG K
: \frakG K \rightarrow \BbbC n

is a homeomorphism with its image \vargamma L(\frakG K), which is a closed subset of \BbbC n.
Notice that

\frakG +
K \subseteq \scrP L

(i.e., the K-spherical functions of positive type are joint eigenfunctions of posi-
tive type of L1, . . . , Ln) and that

\vargamma L(\frakG +
K) = \vargamma L(\scrP L)

(since the K-invariant projection of a joint eigenfunction is still a joint eigen-
function); consequently, for every \lambda \in \vargamma L(\scrP L), there exists a unique element of
\vargamma  - 1
L (\lambda ) \cap \scrP L which is a K-spherical function (cf. [Hel84], Proposition IV.2.4).

The embedding \vargamma L allows us to compare the notions of K-spherical trans-
form \scrG K and Plancherel measure \sigma K of the Gelfand pair (G \rtimes K,K) with the
notions of kernel transform \scrK L and Plancherel measure \sigma associated to the
weighted subcoercive system L1, . . . , Ln. As a preliminary remark, notice that
from Proposition 3.5.3 it follows that, for every bounded Borel m : \BbbR n \rightarrow \BbbC ,
the corresponding kernel \scrK Lm is K-invariant.

Proposition 3.7.1. Let f \in L1
K(G). Then there exists m \in C0(\BbbR n) such that

\scrG Kf(\phi ) = m(\vargamma L(\phi )) for \phi \in \frakG +
K .

For any of such m, and for every unitary representation \pi of G, we have

\pi (f) = m(d\pi (L1), . . . , d\pi (Ln)),

and in particular
f = \scrK Lm.

Proof. Since \scrG Kf | \frakG +
K
\in C0(\frakG +

K), and since \vargamma L| \frakG +
K

is a homeomorphism with
its image, which is a closed subset of \BbbR n, then by the Tietze-Urysohn extension
theorem we can find m \in C0(\BbbR n) extending (\scrG Kf) \circ (\vargamma L| \frakG +

K
) - 1.

By Proposition 3.2.4, for every u \in \scrJ L and every unitary representation \pi 
of G, we have

\pi (\u u) = u(d\pi (L1), . . . , d\pi (Ln));

therefore the map
\scrJ L \ni u \mapsto \rightarrow \u u \in L1(G)

extends by density (see Proposition 3.2.3) to a \ast -homomorphism

\Phi : C0(\BbbR n) \rightarrow C\ast (G),
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and we have
\pi (\Phi (u)) = u(d\pi (L1, . . . , Ln))

for all u \in C0(\BbbR n) and all unitary representations \pi of G. The conclusion will
then follow if we prove that

f = \Phi (m)

as elements of C\ast (G).
Recall that every \phi \in \scrP 1 defines a positive continuous functional \omega \phi on

C\ast (G) with unit norm, which extends

L1(G) \ni h \mapsto \rightarrow \langle h, \phi \rangle \in \BbbC ;

in fact, the norm of any g \in C\ast (G) is given by

\| g\| \ast = sup
\phi \in \scrP 1

\omega \phi (g \ast g\ast )

(cf. \S 1.2.1). Therefore, in order to conclude, it will be sufficient to show that
the set A of the \phi \in \scrP 1 such that

\omega \phi ((f  - \Phi (m)) \ast (f  - \Phi (m))\ast ) = 0

coincides with the whole \scrP 1.
Notice that both f and \Phi (m) belong to the closure C\ast K(G) of L1

K(G) in
C\ast (G), and it is easily checked that, for \phi \in \scrP 1 and g \in C\ast K(G),

\omega \phi (g) = \omega PK\phi (g);

consequently, we are reduced to prove that \scrP K \subseteq A. In fact, since A is a closed
convex subset of \scrP 1, it is sufficient to prove the inclusion \frakG +

K \subseteq A.
On the other hand, the functionals \omega \phi for \phi \in \frakG +

K are multiplicative on
L1
K(G), thus they are also multiplicative on C\ast K(G) by continuity, therefore

\omega \phi ((f  - \Phi (m)) \ast (f  - \Phi (m))\ast ) = | \omega \phi (f  - \Phi (m))| 2 = | \scrG Kf(\phi ) - m(\vargamma L(\phi ))| 2 = 0

for every \phi \in \frakG +
K (cf. Propositions 3.3.3 and 3.3.4), and we are done.

Thus, by applying first \scrG K and then \scrK L, we are back at the beginning.
The composition of the transforms in reverse order is considered in the follow-
ing statement, which gives also an improvement of Proposition 3.2.11 in this
particular context.

Corollary 3.7.2. Let m : \BbbR n \rightarrow \BbbC be a bounded Borel function such that
\u m \in L1(G). Then \u m \in L1

K(G) and

\scrG K(\scrK Lm)(\phi ) = m(\vargamma L(\phi )) for all \phi \in \frakG +
K with \vargamma L(\phi ) \in \Sigma .

In particular m| \Sigma \in C0(\Sigma ).

Proof. We already know that \u m is K-invariant, so that \u m \in L1
K(G). Therefore,

by Proposition 3.7.1, we can find u \in C0(\BbbR n) such that

\scrG K \u m(\phi ) = u(\vargamma L(\phi ))
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for all \phi \in \frakG +
K , and we have

\u m = \u u,

i.e.,
m(L1, . . . , Ln) = u(L1, . . . , Ln),

which means, by the properties of the spectral integral, that m and u must
coincide on the joint spectrum \Sigma of L1, . . . , Ln, and we are done.

Finally, we compare the Plancherel measures \sigma and \sigma K .

Corollary 3.7.3. We have

\sigma = \vargamma L| \frakG +
K

(\sigma K), \sigma K = (\vargamma L| \frakG +
K

) - 1(\sigma ).

Proof. Recall that \vargamma L| \frakG +
K

is a homeomorphism with its image, which is a closed
subset of \BbbR n containing the support \Sigma of \sigma , thus the two equalities to be proved
are equivalent.

Set \~\sigma = (\vargamma L| \frakG +
K

) - 1(\sigma ). Then \~\sigma is a positive regular Borel measure on \frakG +
K .

Moreover, if f \in L1
K \cap L2

K(G), then by Proposition 3.7.1 there is m \in C0(\BbbR n)
such that

\scrG Kf(\phi ) = m(\vargamma L(\phi )) for all \phi \in \frakG +
K

and
f = \u m.

Since f \in L2(G), by Theorem 3.2.7 we also have m \in L2(\sigma ), and\int 
G

| f(x)| 2 dx =
\int 

\BbbR n

| m| 2 d\sigma =
\int 

\frakG +
K

| \scrG Kf | 2 d\~\sigma 

by the change-of-variable formula for push-forward measures. By arbitrariness
of f \in L1

K \cap L2
K(G) and uniqueness of the Plancherel measure of a Gelfand pair,

we obtain that \sigma K = \~\sigma , and we are done.

We have thus shown that the study of the algebra \frakD K(G) of differential
operators associated to a Gelfand pair (G \rtimes K,K) fits into the more general
setting of weighted subcoercive systems, where in general there is no compact
group K of automorphisms which determines the algebra of operators.

In fact, in the context of Gelfand pairs, there are additional tools (e.g., the
projection PK) which permit clearer formulations of results, and simplify several
proofs. On the other hand, it should be noticed that the hypothesis of Gelfand
pair is quite restrictive. Namely, if L1

K(G) is commutative, then G must be
unimodular. Moreover, the algebra \frakD K(G) contains an elliptic operator, so
that its eigenfunctions are analytic (cf. \S X.2 of [Hel84]), and this is an essential
tool in proving some properties of K-spherical functions; however in general a
weighted subcoercive operator is not analytic hypoelliptic (see, e.g., [Hel82]).
Further, if G is solvable, then G must have polynomial growth, and, if G is
nilpotent, then G is at most 2-step (see [BJR90]).

In this last case, which we will refer to as of nilpotent Gelfand pairs, notice
that it is always possible to find a family of automorphic dilations \delta t on G
which commute with the elements of K (in fact, one obtains a K-invariant
stratification g = V1\oplus V2 by taking V2 = [g, g] and V1 = V \bot 2 with respect to some
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K-invariant inner product on g). With respect to such dilations, the algebra
\frakD K(G) is a homogeneous \ast -subalgebra of \frakD (G), so that it is possible to choose
a system L1, . . . , Ln of formally self-adjoint generators of \frakD K(G) which are also
\delta t-homogeneous, and we fall into the case of homogeneous weighted subcoercive
systems which are considered in the multiplier theorems of Chapter 5.

On the other hand, our results can be applied also to homogeneous groups
which are 3-step or more, and which therefore do not belong to the realm of
Gelfand pairs. For instance, in \S 4.4.4 we show that, on the free 3-step nilpotent
group N2,3 with 2 generators, endowed with an action of SO2 by automor-
phisms, although the whole algebra of SO2-invariant operators on N2,3 cannot
be commutative, yet there exists a non-trivial commutative subalgebra to which
our results can be applied.
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Chapter 4

Weighted inequalities for
kernels

Having established, in the previous chapter, the main properties of the kernel
transform \scrK L associated to a weighted subcoercive system L1, . . . , Ln on a con-
nected Lie group, here we investigate the problem of integrability of the kernel
\scrK Lm in terms of smoothness conditions on the multiplier m. The results of this
chapter can thus be thought of as weak multiplier theorems, which are prelimi-
nary to the more refined results of Chapter 5, where singular integral operators
are considered.

In the context of Euclidean Fourier multipliers, the above problem is reduced,
by H\"older's inequality, to controlling a weighted L2 norm of the kernel, which
corresponds, by the properties of the Fourier transform, to an L2 Sobolev norm
of the multiplier. A similar route is followed here: a multi-variate analogue of
a long-used Fourier-series-decomposition technique (see, e.g., \S 6.B of [FS82]),
combined with heat kernel estimates, allows to control a weighted L2 norm of
the kernel in terms of a Sobolev (or Besov) norm of the multiplier, provided
that the latter is supported in a fixed compactum; in the case of a group with
polynomial growth, this yields also control on the integrability of the kernel.
Interpolation plays here a fundamental role, as in [MM90], in order to reduce
the smoothness requirements on the multiplier.

For non-compactly supported multipliers, we describe a general result, hold-
ing in any group with polynomial growth, which is due to Hulanicki [Hul84] in
the case of a single operator: if the multiplier m is a Schwartz function, then
the corresponding kernel \scrK Lm is also Schwartz (and in particular is integrable).

Going back to the compactly supported case, further improvements on the
smoothness requirements are achieved through a technique due to Hebisch and
Zienkiewicz [HZ95], which exploits algebraic properties of the group in a non-
trivial way, highlighting a phenomenon which is specific to the non-commutative
realm.

Finally, some examples of weighted subcoercive systems on specific groups
are presented, with explicit computations of the Plancherel measure, and the
possibility of giving a ``coordinate-free"" formulation of the so-far obtained results
is discussed.
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4.1 Weighted estimates

Let L1, . . . , Ln be a weighted subcoercive system on a connected Lie group G,
with joint spectral resolution E, joint spectrum \Sigma \subseteq \BbbR n, Plancherel measure \sigma ,
and define the polynomials p\ast , p0, p1, . . . , pn as in \S 3.2.

Let p : \BbbR n \rightarrow \BbbR 1+n be the map whose components are the polynomials
p0, . . . , pn. For l \in \BbbZ 1+n, set

El(\lambda ) = eil\cdot e
 - p(\lambda )

 - 1 = ei(l0e
 - p0(\lambda )+l1e

 - p1(\lambda )+\cdot \cdot \cdot +lne - pn(\lambda ))  - 1.

Then El \in C0(\BbbR n), and in fact

El =
\sum 

0\not =k\in \BbbN 1+n

(il0)k0 \cdot \cdot \cdot (iln)kn

k0! \cdot \cdot \cdot kn!
e - k0p0 \cdot \cdot \cdot e - knpn ,

with uniform convergence on \BbbR n. This means that, if h\nu ,t is the heat kernel of
p\nu (L) for \nu = 0, . . . , n (with h\nu ,0 denoting the Dirac delta at the identity of G),
then

\u El =
\sum 

0 \not =k\in \BbbN 1+n

(il0)k0 \cdot \cdot \cdot (iln)kn

k0! \cdot \cdot \cdot kn!
h0,k0 \ast \cdot \cdot \cdot \ast hn,kn

(4.1.1)

in Cv2(G).

Lemma 4.1.1. There exists C > 0 such that

\| \u El\| 2 \leq C| l| for all l \in \BbbZ 1+n.

Proof. We have

| El(\lambda )| \leq | l \cdot e - p(\lambda )| \leq 
n\sum 
\nu =0

| lj | e - pj(\lambda ) \leq (1 + n)| l| e - p\ast (\lambda ),

so that in particular, if

f = ep\ast El and k = (e - p\ast )\u ,

then, by Lemma 3.2.1, \u El = f(L)k and

\| \u El\| 2 \leq \| f\| \infty \| k\| 2 \leq (1 + n)\| k\| 2| l| ,

which is the conclusion.

Let | \cdot | G be a connected modulus on G. We introduce the notation

\langle x\rangle G = 1 + | x| G.

Notice that, since | \cdot | G is subadditive, \langle \cdot \rangle G is submultiplicative.

Lemma 4.1.2. There exist c, \omega > 0 such that

\| \u El\| L2(G,e2| x| G dx) \leq ce\omega | l| for all l \in \BbbZ 1+n.
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Proof. Since all the connected right-invariant distances on G are equivalent in
the large, by interpolating the estimates (d) and (e) of Theorem 1.4.1, we have
that there exist c \geq 1 and \omega > 0 such that

\| h\nu ,t e| \cdot | G\| q \leq ce\omega t for t \geq 1, \nu = 0, . . . , n and q \in [1,\infty ].

Let k \in \BbbN 1+n \setminus \{ 0\} and notice that, in the convolution product

h0,k0 \ast \cdot \cdot \cdot \ast hn,kn
,

the factors h\nu ,k\nu 
with k\nu = 0 can be simply omitted; since the weight e| \cdot | G is

submultiplicative, by applying Young's inequality to the so reduced product we
obtain

\| (h0,k0 \ast \cdot \cdot \cdot \ast hn,kn
) e| \cdot | G\| q \leq c1+ne\omega (k0+\cdot \cdot \cdot +kn)

for q \in [1,\infty ].
This means in particular that the series in (4.1.1) converges absolutely in

L2(G, e2| x| G dx), with

\sum 
0 \not =k\in \BbbN 1+n

\bigm\| \bigm\| \bigm\| \bigm\| (il0)k0 \cdot \cdot \cdot (iln)kn

k0! \cdot \cdot \cdot kn!
h0,k0 \ast \cdot \cdot \cdot \ast hn,kn

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(G,e2| x| G dx)

\leq c1+nee
\omega | l| .

Therefore, by uniqueness of limits, we also have \u El \in L2(G, e2| x| G dx) and

\| \u El\| L2(G,e2| x| G dx) \leq c1+nee
\omega | l| ,

which is the conclusion.

Lemma 4.1.3. For all \alpha \geq 0, we have

\| \u El\| L2(G,\langle x\rangle 2\alpha 
G dx) \leq C\alpha | l| \alpha +1 for l \in \BbbZ 1+n.

Proof. First, notice that, by Lemma 4.1.2, it is sufficient to check the estimate
for | l| large. But then, for | l| large, we have\int 

G

| \u El(x)| 2\langle x\rangle 2\alpha G dx \leq 
\int 
| x| G\leq \omega | l| 

+
\int 
| x| G>\omega | l| 

\leq (1 + \omega | l| )2\alpha \| \u El\| 22 +

\Biggl( 
sup
r>\omega | l| 

e - 2r(1 + r)2\alpha 
\Biggr) 
\| \u El\| 2L2(G,e2| x| G dx)

\leq C\alpha | l| 2(\alpha +1)

by Lemmata 4.1.1 and 4.1.2.

Lemma 4.1.4. Let K \subseteq \BbbR n be compact. For every f \in \scrD (\BbbR n) supported in K,
there exists g \in \scrD (\BbbT 1+n) (depending linearly on f) such that

f(\lambda ) = g
\Bigl( 
eie

 - p(\lambda )
\Bigr) 

= g
\Bigl( 
eie

 - p0(\lambda )
, . . . , eie

 - pn(\lambda )
\Bigr) 
,

g(1, . . . , 1) = 0,

\| g\| Hs(\BbbT 1+n) \leq CK,s\| f\| Hs(\BbbR n) for all s \geq 0.
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In particular, if g(eit) =
\sum 
l\in \BbbZ 1+n \^g(l)eil\cdot t is the Fourier series development of

g, then we have
f =

\sum 
0 \not =l\in \BbbZ 1+n

\^g(l)El,

with uniform convergence on \BbbR n.

Proof. Since K \subseteq \BbbR n is compact and the polynomials p0, . . . , pn are strictly
positive, p(K) is a compact subset of \Omega = ]0,+\infty [1+n. Therefore we can choose
\psi K \in \scrD (\Omega ) such that \psi K | p(K) \equiv 1. If we put

\~f(y) = f(y1  - y0, . . . , yn  - y0)\psi K(y) for y \in \BbbR 1+n,

we then have that \~f \in \scrD (\Omega ), f = \~f \circ p and

\| \~f\| Hs(\BbbR 1+n) \leq CK,s\| f\| Hs(\BbbR n) for all s \geq 0,

by Proposition 2.3.17, since the change of variables has maximal rank.
Notice now that the map

\Phi : \Omega \ni y \mapsto \rightarrow eie
 - y

= (eie
 - y0

, . . . , eie
 - yn

) \in \BbbT 1+n

is a smooth diffeomorphism with its image, which is an open subset of \BbbT 1+n

not containing (1, . . . , 1). The function g = \~f \circ \Phi  - 1 \in \scrD (\Phi (\Omega )) can be then
extended by zero to a smooth function on \BbbT 1+n, and we have clearly

\| g\| Hs(\BbbT 1+n) \leq CK,s\| \~f\| Hs(\BbbR 1+n) for all s \geq 0.

The construction shows that g depends linearly on f and that

f = g \circ \Phi \circ p, g(1, . . . , 1) = 0,

\| g\| Hs(\BbbT 1+n) \leq CK,s\| f\| Hs(\BbbR n) for all s \geq 0.

In particular, we have \sum 
l\in \BbbZ 1+n

\^g(l) = 0,

so that the Fourier decomposition of g can be rewritten as

g(eit) =
\sum 

0\not =l\in \BbbZ 1+n

\^g(l)(eil\cdot t  - 1)

(with uniform convergence since g is smooth), which implies that

f = g \circ \Phi \circ p =
\sum 

0\not =l\in \BbbZ 1+n

\^g(l)El,

with uniform convergence on \BbbR n.

Proposition 4.1.5. Let K \subseteq \BbbR n be compact, \alpha \geq 0. For all f \in \scrD (\BbbR n) with
supp f \subseteq K, we have

\| \u f\| L2(G,\langle x\rangle 2\alpha 
G dx) \leq CK,\alpha ,\beta \| f\| H\beta (\BbbR n)

for \beta > \alpha + (n+ 3)/2.
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Proof. Let g \in \scrD (\BbbT 1+n) be given by Lemma 4.1.4. Then

\u f =
\sum 

0\not =l\in \BbbZ 1+n

\^g(l) \u El

in Cv2(G). However, the series in the right-hand side converges absolutely in
L2(G, \langle x\rangle 2\alpha G dx), since\sum 

0 \not =l\in \BbbZ 1+n

| \^g(l)| \| \u El\| L2(G,\langle x\rangle 2\alpha 
G dx) \leq C\alpha 

\sum 
0\not =l\in \BbbZ 1+n

| \^g(l)| | l| \alpha +1

\leq C\alpha ,\beta 

\left(  \sum 
0\not =l\in \BbbZ 1+n

| l|  - 2(\beta  - \alpha  - 1)

\right)  1/2

\| g\| H\beta (\BbbT 1+n) \leq CK,\alpha ,\beta \| f\| H\beta (\BbbR n),

by Lemma 4.1.3, H\"older's inequality, Proposition 2.3.20 and the fact that

2(\beta  - \alpha  - 1) > 1 + n.

Therefore, by uniqueness of limits, also \u f \in L2(G, \langle x\rangle 2\alpha G dx) and

\| \u f\| L2(\langle x\rangle 2\alpha 
G dx) \leq CK,\alpha ,\beta \| f\| H\beta (\BbbR n),

which is the conclusion.

Theorem 4.1.6. (i) Let K \subseteq \BbbR n be compact, D \in \frakD (G), \alpha \geq 0 and

\beta > \alpha .

For all f \in B\beta \infty ,\infty (\BbbR n) with supp f \subseteq K, we have

\| D \u f\| L2(G,\langle x\rangle 2\alpha 
G dx) \leq CK,D,\alpha ,\beta \| f\| B\beta 

\infty ,\infty (\BbbR n).

(ii) Suppose that, for some open A \subseteq \BbbR n and 0 < d \leq n, the Plancherel
measure \sigma is locally d-bounded on A. Let K \subseteq A be compact, D \in \frakD (G),
1 \leq p, q \leq \infty , \alpha \geq 0 and

\beta > \alpha +
n

p
 - d

max\{ 2, p\} 
.

For all f \in B\beta p,q(\BbbR n) with supp f \subseteq K, we have

\| D \u f\| L2(G,\langle x\rangle 2\alpha 
G dx) \leq CK,D,\alpha ,\beta ,p,q\| f\| B\beta 

p,q(\BbbR n).

Proof. (i) Consider first the case D = 1. Let \xi \in \scrD (\BbbR n) be such that \xi | K \equiv 1,
and let K \prime \subseteq \BbbR n be compact with supp \xi \subseteq \r K \prime . By Proposition 4.1.5 and
Corollary 2.3.14 we then have clearly, for f \in \scrD (\BbbR n) with supp f \subseteq K \prime ,

\| \u f\| L2(G,\langle x\rangle 2\alpha 
G dx) \leq CK,\alpha ,\beta \| f\| H\beta (\BbbR n) \leq CK,\alpha ,\beta \| f\| B\beta 

\infty ,2(\BbbR n)

for \beta > \alpha + (n+ 3)/2. By Proposition 2.3.9, every f \in B\beta \infty ,2(\BbbR n) with support
contained in supp \xi can be approximated in B\beta \infty ,2(\BbbR n) by smooth functions with
supports contained in K, so that the inequality

\| \u f\| L2(G,\langle x\rangle 2\alpha 
G dx) \leq CK,\alpha ,\beta \| f\| B\beta 

\infty ,2(\BbbR n),
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for \beta > \alpha + (n + 3)/2, extends to all f \in B\beta \infty ,2(\BbbR n) with supp f \subseteq supp \xi . In
particular, if we consider the linear map

M : f \mapsto \rightarrow (f\xi )\u ,

then, by Proposition 2.3.13, we have that

M is bounded B\beta \infty ,2(\BbbR 
n) \rightarrow L2(G, \langle x\rangle 2\alpha G dx) for \beta > \alpha + (n+ 3)/2.

On the other hand, in the case \alpha = 0, by Theorem 3.2.7 and Propositions 2.3.6,
2.3.13, we have, for f \in B0

\infty ,1(\BbbR n),

\| (f\xi )\u \| 2 = \| f\xi \| L2(\sigma ) \leq CK\| f\xi \| \infty \leq CK\| f\xi \| B0
\infty ,1(\BbbR n) \leq CK\| f\| B0

\infty ,1(\BbbR n),

that is,
M is bounded B0

\infty ,1(\BbbR n) \rightarrow L2(G).

By interpolation (see Proposition 2.3.1 and Theorem 2.1.2), we then get that

M is bounded B\theta \beta \infty ,2(\BbbR 
n) \rightarrow L2(G, \langle x\rangle 2\theta \alpha G dx) for \theta \beta > \theta \alpha + \theta (n+ 3)/2

for all \theta \in ]0, 1[, that is,

M is bounded B\beta \infty ,2(\BbbR 
n) \rightarrow L2(G, \langle x\rangle 2\alpha G dx) for \beta > \alpha .

Finally, if f \in B\beta \infty ,\infty (\BbbR n) for some \beta > \alpha and supp f \subseteq K, then f = f\xi and

moreover f \in B\beta 
\prime 
\infty ,2(\BbbR n) for some \beta \prime \in ]\alpha , \beta [, so that

\| \u f\| L2(G,\langle x\rangle 2\alpha 
G dx) = \| Mf\| L2(G,\langle x\rangle 2\alpha 

G dx) \leq CK,\alpha ,\beta \| f\| B\beta \prime 
\infty ,2(\BbbR n)

\leq CK,\alpha ,\beta \| f\| B\beta 
\infty ,\infty (\BbbR n)

by Proposition 2.3.2.
Take now an arbitrary D \in \frakD (G). For f \in B\beta \infty ,\infty (\BbbR n) with supp f \subseteq K, set

f0 = fep\ast , \xi = e - p\ast .

Then, by Lemma 3.2.1,
\u f = \u f0 \ast \u \xi ,

and moreover, by Proposition 2.3.13, f0 \in B\beta \infty ,\infty (\BbbR n) and supp f0 \subseteq K, so that

\| D \u f\| L2(G,\langle x\rangle 2\alpha 
G dx) \leq \| \u f0\| L2(G,\langle x\rangle 2\alpha 

G dx)\| D\u \xi \| L1(G,\langle x\rangle \alpha G dx)

\leq CK,D,\alpha ,\beta \| f0\| B\beta 
\infty ,\infty (\BbbR n) \leq CK,D,\alpha ,\beta \| f\| B\beta 

\infty ,\infty (\BbbR n)

by Young's inequality, Theorem 1.4.1(f) and Proposition 2.3.13.
(ii) By proceeding as in part (i), but with K \prime \subseteq A, and noticing that, by

Proposition 2.3.2 and Corollary 2.3.14,

\| f\| Hs(\BbbR n) \leq CK,s,s\prime \| f\| Bs\prime 
p,2(\BbbR n)

if supp f \subseteq K \prime and s\prime \geq s+ n/2, we easily obtain that

M is bounded B\beta p,2(\BbbR 
n) \rightarrow L2(G, \langle x\rangle 2\alpha G dx) for \beta > \alpha + (2n+ 3)/2.
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If we prove that, for some q \in [1,\infty ],

M is bounded B\beta p,q(\BbbR n) \rightarrow L2(G) for \beta >
n

p
 - d

max\{ 2, p\} 
, (4.1.2)

then the conclusion follows analogously as in part (i). However, for p = \infty ,
(4.1.2) is proved as in part (i), whereas, for p = 2, it follows from Corollary 2.3.22
and Proposition 2.3.2; therefore, for 2 < p <\infty , we get (4.1.2) by interpolating
the cases p = 2 and p = \infty (see Proposition 2.3.1), whereas, for 1 \leq p < 2, we
use the embeddings from Proposition 2.3.2.

By Sobolev's embedding, it is not difficult to obtain also pointwise estimates:

Corollary 4.1.7. Let K \subseteq \BbbR n be compact, D \in \frakD (G), \alpha \geq 0 and

\beta > \alpha .

For all f \in B\beta \infty ,\infty (\BbbR n) with supp f \subseteq K, we have

sup
x\in G

\langle x\rangle \alpha G| D \u f(x)| \leq CK,D,\alpha ,\beta \| f\| B\beta 
\infty ,\infty (\BbbR n).

If moreover the Plancherel measure \sigma is locally d-bounded on some open A \subseteq \BbbR n,
1 \leq p, q \leq \infty , and we have K \subseteq A,

\beta > \alpha +
n

p
 - d

max\{ 2, p\} 
,

then, for all f \in B\beta p,q(\BbbR n) with supp f \subseteq K,

sup
x\in G

\langle x\rangle \alpha G| D \u f(x)| \leq CK,D,\alpha ,\beta ,p,q\| f\| B\beta 
p,q(\BbbR n).

Proof. If \zeta \in \scrD (\BbbR n) is nonnegative and \zeta (e) > 0, and if we set

w\alpha = \langle \cdot \rangle \alpha G \ast \zeta 

for \alpha \geq 0, then w\alpha is smooth and nonnegative,

C - 1
\alpha \langle x\rangle \alpha G \leq w\alpha (x) \leq C\alpha \langle x\rangle \alpha G

and moreover
Dw\alpha (x) \leq CD,\alpha \langle x\rangle \alpha G

for all D \in \frakD (G).
We then have, for \beta > \alpha and D \in \frakD (G),

sup
x\in G

\langle x\rangle \alpha G| D \u f(x)| \leq C\alpha sup
x\in G

w\alpha (x)| D \u f(x)| 

\leq C\alpha 
\sum 
| \gamma | \leq k

\| A\gamma (w\alpha D \u f)\| 2 \leq C\alpha 
\sum 

| \gamma \prime | +| \gamma \prime \prime | \leq k

\| (A\gamma 
\prime 
w\alpha )(A\gamma 

\prime \prime 
D \u f)\| 2

\leq C\alpha 
\sum 
| \gamma | \leq k

\| A\gamma D \u f\| L2(G,\langle x\rangle 2\alpha 
G dx) \leq CK,D,\alpha ,\beta ,p,q\| f\| B\beta 

p,q

by Sobolev's embedding and Theorem 4.1.6.
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Finally, in the case of polynomial growth, by H\"older's inequality we obtain
immediately weighted L1 estimates.

Corollary 4.1.8. Suppose that G has polynomial growth of degree QG, and let
K \subseteq \BbbR n be compact, D \in \frakD (G), \alpha \geq 0 and

\beta > \alpha +
QG
2
.

For all f \in B\beta \infty ,\infty (\BbbR n) with supp f \subseteq K, we have \u f \in L1;\infty (G) and

\| D \u f\| L1(G,\langle x\rangle \alpha G dx) \leq CK,D,\alpha ,\beta \| f\| B\beta 
\infty ,\infty (\BbbR n).

If moreover the Plancherel measure \sigma is locally d-bounded on some open A \subseteq \BbbR n,
1 \leq p, q \leq \infty , and we have K \subseteq A,

\beta > \alpha +
QG
2

+
n

p
 - d

max\{ 2, p\} 
,

then, for all f \in B\beta p,q(\BbbR n) with supp f \subseteq K,

\| D \u f\| L1(G,\langle x\rangle \alpha G dx) \leq CK,D,\alpha ,\beta ,p,q\| f\| B\beta 
p,q(\BbbR n).

4.2 Schwartz functions

As before, let L1, . . . , Ln be a weighted subcoercive system on a connected Lie
group G, with joint spectrum \Sigma .

By Lemma 3.2.1(c) and Proposition 3.2.8, it follows easily that, if a bounded
Borel function f : \BbbR n \rightarrow \BbbC decays at infinity faster than the reciprocal of any
polynomial, then \scrK Lf \in L2;\infty (G). In the case G has polynomial growth, this
statement can be amplified in terms of the Schwartz class (see \S 1.2.6).

Proposition 4.2.1. Suppose that G has polynomial growth. If f \in \scrS (\BbbR n), then
\scrK Lf \in \scrS (G), and the map

\scrS (\BbbR n) \ni f \mapsto \rightarrow \scrK Lf \in \scrS (G)

is continuous.

Proof. Consider first the case n = 1, L = L1 positive and weighted subcoercive.
By Theorem 1.4.1(e), the heat kernel kt = \scrK L(e - t\cdot ) belongs to \scrS (G) for all
t > 0. The conclusion then follows by a result of Hulanicki [Hul84].

Suppose next that n \in \BbbN is arbitrary, but all the Lj are positive and weighted
subcoercive. Then we can proceed as in the proof of [ADR09], Theorem 5.2.
Namely, if f = f1 \otimes \cdot \cdot \cdot \otimes fn, then

\scrK L(f1 \otimes \cdot \cdot \cdot \otimes fn) = \scrK L1(f1) \cdot \cdot \cdot \scrK Ln(fn)

by definition of joint spectral resolution, and the conclusion follows by the case
n = 1 since

\scrS (\BbbR n) = \scrS (\BbbR ) \^\otimes \pi \cdot \cdot \cdot \^\otimes \pi \scrS (\BbbR ).
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Finally, in the general case, let p0, p1, . . . , pn be the polynomials defined in
\S 3.2. Then the operators

\~L0 = p0(L), \~L1 = p1(L), . . . , \~Ln = pn(L)

are all positive and weighted subcoercive, so that in particular they are a
weighted subcoercive system. Moreover

\scrK Lf = \scrK \~L((f \circ \Phi )\eta ),

where
\Phi (\lambda 0, \lambda 1, . . . , \lambda n) = (\lambda 1  - \lambda 0, . . . , \lambda n  - \lambda 0),

\eta (\lambda 0, \lambda 1, . . . , \lambda n) = \psi (\lambda 0  - p0(\lambda 1  - \lambda 0, . . . , \lambda n  - \lambda 0)),

and \psi \in \scrD (\BbbR ) is such that \psi (0) = 1. The conclusion then follows by the
previous case and by the fact that the map

f \mapsto \rightarrow (f \circ \Phi )\eta 

is continuous \scrS (\BbbR n) \rightarrow \scrS (\BbbR 1+n).

Remark 4.2.1. The proof of the mentioned result of Hulanicki [Hul84] uses
(in the one-variable case) a Fourier series decomposition analogous to the one
exploited in \S 4.1 in order to obtain weighted L2 estimates. However, since
Schwartz functions in general are not compactly supported, the exponential
change of variable of Lemma 4.1.4 does no longer apply. Hulanicki uses instead
a polynomial change of variable, and correspondingly he requires, in place of
heat kernel estimates, some estimate on the resolvent kernel.
Remark 4.2.2. The inverse problem --- i.e., determining if, for each f : \Sigma \rightarrow \BbbC 
such that \scrK Lf \in \scrS (G), f is the restriction to \Sigma of some \~f \in \scrS (\BbbR n) --- is much
more difficult. In the context of nilpotent Gelfand pairs, some positive results
in this direction are known (see [ADR07], [ADR09], [FR09], [FRY10]).

4.3 Improved weighted estimates

In the weighted L1 estimates obtained in Corollary 4.1.8, the regularity thresh-
old is half of the degree QG of polynomial growth of the Lie group G. In the case
G = \BbbR n, the degreeQG coincides with the topological dimension dimG = n. For
more general nilpotent Lie groups, however, QG > dimG. Nevertheless, for a
particular class of 2-step homogeneous groups --- namely, Heisenberg and related
groups --- multiplier theorems have been proved with (dimG)/2 as the regular-
ity threshold. Here we present a technique, due to Hebisch and Zienkiewicz
[HZ95], which allows (in some cases, including those just mentioned) to lower
the threshold in the weighted L1 estimates, and whose generality is particularly
suited to our context.

Let G be a nilpotent Lie group, with Lie algebra g. Let z be the center of g,
and set

y = \{ v \in g : [v, g] \subseteq z\} ; (4.3.1)

y is an ideal of g, which contains z and is characteristic, i.e., y is invariant by
automorphisms of g. Let moreover P : g \rightarrow g/z be the canonical projection.
The bilinear map

[\cdot , \cdot ] : g\times g \rightarrow g
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induces, by restriction, passage to the quotient and transposition, another bi-
linear map

J : g/z\times z\ast \rightarrow y\ast ,

which we will call the capacity map of g, and is uniquely determined by

J(P (x), \tau )(y) = \tau ([x, y])

for x \in g, y \in y, \tau \in z\ast . The group G is said to be a Heisenberg-type group (or
H-type group for short) if there exists an inner product on g such that, for every
\tau \in z\ast of norm 1, the map

J(\cdot , \tau ) : g/z \rightarrow y\ast 

is an isometric embedding (this implies that g = y, so that G is 2-step). If G is
a H-type group, then in particular we have

| J(\=x, \tau )| \geq | \=x| | \tau | 

for suitable norms on g/z, z\ast and y\ast ; the validity of such an inequality defines
the class of M\'etivier groups, which has been introduced in the study of analytic
hypoellipticity of Rockland operators (see [M\'et80], or [Hel82]); this class is
strictly larger than that of H-type groups (see [MS04] for an example), but is
still contained in the class of 2-step groups.

In the following, we consider a more general inequality of the form

| J(\=x, \tau )| \geq w(\=x)\zeta (\tau )

for some non-negative functions w : g/z \rightarrow \BbbR , \zeta : z\ast \rightarrow \BbbR , which can be also
rewritten as

w(\=x)\beta \leq | J(\=x, \tau )| \beta \zeta (\tau ) - \beta 

for some \beta > 0. The idea is to interpret this inequality via the spectral the-
orem, in order to control a multiplication operator (corresponding to w(\=x)\beta )
with a function of the central derivatives (corresponding to \zeta (\tau ) - \beta ); in this in-
terpretation, it turns out that | J(\=x, \tau )| 2 corresponds to a sum of products of
left-invariant and right-invariant differential operators on G, therefore the term
| J(\=x, \tau )| \beta can be dominated by a clever use of an a priori estimate for a weighted
subcoercive operator on the direct product G\times G.

In order to fill in the details, it is convenient to introduce some notation.
For every smooth differential operator D on G, the identity

(Df)\ast = D\circ f\ast 

defines another differential operator D\circ on G. It is immediate to check that

(\lambda 1D1 + \lambda 2D2)\circ = \lambda 1D
\circ 
1 + \lambda 2D

\circ 
2 , (D1D2)\circ = D\circ 1D

\circ 
2 , D\circ \circ = D,

i.e., the map D \mapsto \rightarrow D\circ is a conjugate-linear involutive automorphism of the
unital algebra of all smooth differential operators on G; moreover, since

(Lxf)\ast = Rx(f\ast ) for all x \in G,

this correspondence maps left-invariant operators to right-invariant ones, and
vice versa.
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The Lie algebra \~g of the direct product \~G = G\times G is canonically isomorphic
to g \oplus g, where the action of (X,Y ) \in g \oplus g on the smooth functions on \~G is
determined by

(X,Y )(f \otimes g) = (Xf)\otimes (Y g).

We define the correspondence D \mapsto \rightarrow D\bullet on \frakD ( \~G) as the unique conjugate-linear
automorphism of the unital algebra \frakD ( \~G) \sim = U(g \oplus g) which extends the Lie
algebra automorphism

(X,Y ) \mapsto \rightarrow (Y,X)

of g\oplus g.
Let \xi be the unitary representation of \~G on L2(G) given by

\xi (x, y)f = RxLyf.

Then, for every D \in \frakD ( \~G), d\xi (D) is a smooth differential operator on G, which
in general is neither left- nor right-invariant. In fact, if D \in \frakD ( \~G) is an operator
along the first factor of G\times G, then d\xi (D) is left-invariant, whereas, if D is along
the second factor, then d\xi (D) is right-invariant.

Lemma 4.3.1. For every D \in \frakD ( \~G),

d\xi (D\bullet ) = d\xi (D)\circ .

Proof. Since both sides of the equality to be proved, as functions of D \in \frakD ( \~G),
are conjugate-linear homomorphisms of unital algebras, it is sufficient to check
the identity for vector fields. Let then D = (X,Y ) \in g\oplus g. We have

d\xi (D\bullet )f\ast =
d

dt

\bigm| \bigm| \bigm| \bigm| 
t=0

\xi (exp(tY ), exp(tX))f\ast 

=
d

dt

\bigm| \bigm| \bigm| \bigm| 
t=0

(\xi (exp(tX), exp(tY ))f)\ast = (d\xi (D)f)\ast ,

which gives the conclusion.

For D \in \frakD (G), let \~D \in \frakD ( \~G) be the differential operator along the first
factor of G\times G which corresponds to D, i.e.,

\~D(f \otimes g) = (Df)\otimes g,

so that in particular d\xi ( \~D) = D.

Lemma 4.3.2. Let L = L+ \in \frakD (G) be weighted subcoercive, and set \Delta = L2.
Then \~\Delta + \~\Delta \bullet is positive weighted subcoercive on \~G.

Proof. For D \in \frakD (G), let D\diamond \in \frakD (G) be the differential operator uniquely
determined by the identity

Df = D\diamond f.

Clearly the correspondence D \mapsto \rightarrow D\diamond defines a conjugate-linear involutive au-
tomorphism of the unital algebra \frakD (G). From this, it is not difficult to prove
that, for every D \in \frakD (G),

\~D\bullet (f \otimes g) = f \otimes (D\diamond g).
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In particular, we have that \~\Delta + \~\Delta \bullet is the sum of two left-invariant differential
operators on \~G, of which the first is along the first factor of G\times G, and corre-
sponds to L2, whereas the second is along the second factor, and corresponds
to (L\diamond )2. We know from the hypothesis that L is self-adjoint and weighted sub-
coercive; by Proposition 3.4.2, in order to conclude it will be sufficient to show
that L\diamond is weighted subcoercive too.

Fix a reduced weighted algebraic basis A1, . . . , Ad of g and a weighted subco-
ercive form C such that dRG(C) = L. If C is the form defined by C(\alpha ) = C(\alpha ),
then it is easy to see that

dRG(C)f = dRG(C)f,

so that, by definition, L\diamond = dRG(C). On the other hand,

\Re \langle \phi , dRG(C)\phi \rangle = \Re \langle \phi , dRG(C)\phi \rangle ,

so that, from the definition of weighted subcoercive form, it follows immediately
that C is weighted subcoercive.

As in the previous sections, let L1, . . . , Ln \in \frakD (G) be a weighted subcoercive
system on the nilpotent Lie group G, and let \Delta = p(L)2, where p is a real
polynomial such that p(L) is weighted subcoercive.

We define

\~A = ( \~\Delta + \~\Delta \bullet )/2, A = d\xi ( \~A) = (\Delta + \Delta \circ )/2.

By Lemma 4.3.2, \~A is a (left-invariant) positive weighted subcoercive operator
on \~G, whereas A is a differential operator on G which in general is neither
left- nor right-invariant. Since \~A, \~\Delta , \~\Delta \bullet commute pairwise, the corresponding
operators A,\Delta ,\Delta \circ in the representation \xi admit a joint spectral resolution by
Corollary 3.1.3.

Let ht (t > 0) be the convolution kernel of e - t\Delta .

Lemma 4.3.3. Suppose that u \in L2(G) commutes with all the ht (t > 0). For
all Borel m : \BbbR \rightarrow \BbbC , u is in the domain of m(\Delta ) if and only if it is in the
domain of m(A), and in this case

m(A)u = m(\Delta )u.

Proof. Notice that, for all f \in \scrD (G),

\Delta f\ast = (\Delta \circ f)\ast 

Since f \mapsto \rightarrow f\ast is an isometric automorphism of L2(G), it intertwines also the
spectral resolutions of \Delta and \Delta \circ , so that in particular,

e - t\Delta 
\circ 
f = (e - t\Delta f\ast )\ast = (f\ast \ast ht)\ast = ht \ast f

and then
e - tAf = e - t\Delta /2e - t\Delta 

\circ /2f = ht/2 \ast f \ast ht/2,

so that, since u commutes with ht/2,

e - tAu = e - t\Delta u.

122



4.3. Improved weighted estimates

Let \xi t(\lambda ) = e - t\lambda , and set \scrJ 0 = span\{ \xi t : t > 0\} . By the previous identity,
it is immediate to show that, if m \in \scrJ 0, then m(A)u = m(\Delta )u.

If m \in C0(\BbbR ), then by the Stone-Weierstrass theorem we can find a sequence
mk \in \scrJ 0 such that mk \rightarrow m uniformly on [0,+\infty [. Therefore, since \Delta and A
are positive operators, by passing to the limit for k \rightarrow +\infty in the identity
mk(A)u = mk(\Delta )u, we obtain m(A)u = m(\Delta )u.

It is not difficult to extend the previous identity to all Borel m : \BbbR \rightarrow \BbbC by
the spectral theorem and dominated convergence.

Lemma 4.3.4. Let X \in g. Then, for all v \in g,

(X +X\circ )| \mathrm{e}\mathrm{x}\mathrm{p}(v) = d expv([v,X]).

Proof. Notice that the semigroup on \~G associated to \~X + \~X\bullet is

t \mapsto \rightarrow (exp(tX), exp(tX)).

This means that, for all f \in \scrD (G), v \in g,

(X +X\circ )| \mathrm{e}\mathrm{x}\mathrm{p}(v)f =
d

dt

\bigm| \bigm| \bigm| \bigm| 
t=0

f(exp( - tX) exp(v) exp(tX)).

On the other hand,

exp( - tX) exp(v) exp(tX) = exp(Ad(exp( - tX))(v)),

so that

d

dt

\bigm| \bigm| \bigm| \bigm| 
t=0

(exp( - tX) exp(v) exp(tX)) = d expv(ad( - X)(v)) = d expv([v,X]),

which is the conclusion.

In the following, since G is nilpotent, we will identify G with g via the
exponential map. Choose a basis \nu 1, . . . , \nu r of (g/z)\ast and a basis T1, . . . , Td
of z, and set Pj = \nu j \circ P . The functions Pj : G \rightarrow \BbbR can be thought of
as multiplication operators on L2(G), and it is not difficult to show that the
operators

P1, . . . , Pr, - iT1, . . . , - iTd
are (essentially) self-adjoint on L2(G) and commute strongly pairwise, so that
they admit a joint spectral resolution.

Via the chosen bases, J can be identified with a bilinear map \BbbR r\times \BbbR d \rightarrow y\ast .
Therefore, for every Y \in y, we have a bilinear form J(\cdot , \cdot )(Y ) : \BbbR r \times \BbbR d \rightarrow \BbbR ,
which in fact is a polynomial; we can then evaluate this particular polynomial
in the operators P1, . . . , Pr, - iT1, . . . , - iTd, and denote by

J(P, - iT )(Y )

the resulting operator on L2(G).
Finally, choose an inner product on y --- which induces an inner product on

y\ast --- and an orthonormal basis \{ Yl\} l of y. Then also the map

| J(\cdot , \cdot )| 2 : \BbbR r \times \BbbR d \rightarrow \BbbR 
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is a polynomial, thus as before we can consider the operator | J(P, - iT )| 2 on
L2(G), and clearly

| J(P, - iT )| 2 =
\sum 
l

(J(P, - iT )(Yl))2.

Lemma 4.3.5. For all Y \in y, J(P, - iT )(Y ) is a differential operator on G;
more precisely,

J(P, - iT )(Y ) =  - i(Y + Y \circ ).

In particular
| J(P, - iT )| 2 =  - 

\sum 
l

(Yl + Y \circ l )2.

Proof. Let \^T1, . . . , \^Td \in z\ast be the dual basis of T1, . . . , Td, and \^\nu 1, . . . , \^\nu r \in g/z
be the dual basis of \nu 1, . . . , \nu r. Then, by bilinearity, for every Y \in y,

J(P, - iT )(Y ) =  - i
\sum 
j,k

J(\^\nu j , \^Tk)(Y )PjTk.

This shows that J(P, - iT )(Y ) is a differential operator on G. In fact, for all
x \in G = g, we have \sum 

j

Pj(x)\^\nu j = P (x),

therefore

J(P, - iT )(Y )| x =  - i
\sum 
k

J(P (x), \^Tk)(Y )Tk

=  - i
\sum 
k

\^Tk([x, Y ])Tk =  - i[x, Y ] =  - i(Y + Y \circ )| x

by Lemma 4.3.4 (notice that, since T1, . . . , Td are central, they are constant
vector fields in exponential coordinates).

Since T1, . . . , Td are central, the left-invariant differential operators

L1, . . . , Ln, - iT1, . . . , - iTd (4.3.2)

on G are a weighted subcoercive system. We can thus consider the Plancherel
measure \sigma \prime on \BbbR n \times z\ast associated to this system, which can be shown not to
depend on the choice of the basis of z.

The core of the technique under discussion is contained in the following

Proposition 4.3.6. Let us suppose that, for some nonnegative Borel functions
w : g/z \rightarrow \BbbR and \zeta : z\ast \rightarrow \BbbR , we have

| J(\=x, \tau )| \geq w(\=x) \zeta (\tau ) for all \=x \in g/z, \tau \in z\ast .

If K \subseteq \BbbR n is compact, then for all m \in \scrD (\BbbR n) with suppm \subseteq K and for all
\beta \geq 0 we have

\| | w \circ P | \beta \u m\| 22 \leq CK,\beta 

\int 
\BbbR n\times z\ast 

| m(\lambda )| 2 \zeta (\tau ) - 2\beta d\sigma \prime (\lambda , \tau ).
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Proof. From the hypothesis we deduce

w(\=x)\beta \leq | J(\=x, \tau )| \beta \zeta (\tau ) - \beta 

and then also, by the spectral theorem,

\| | w \circ P | \beta f\| 2 \leq C\beta \| | J(P, - iT )| \beta \zeta ( - iT ) - \beta f\| 2

for f \in L2(G).
By Lemma 4.3.5, we have

| J(P, - iT )| 2 =  - 
\sum 
l

(Yl + Y \circ l )2 = d\xi 

\Biggl( 
 - 
\sum 
l

( \~Yl + \~Y \bullet l )2
\Biggr) 
.

Since \~A is weighted subcoercive on \~G and  - 
\sum 
l( \~Yl + \~Y \bullet j )2 \in \frakD ( \~G), by Theo-

rem 1.4.1(v), for some polynomial q\beta we have, in the representation \xi ,

\| | J(P, - iT )| \beta \psi \| 2 \leq C\beta \| q\beta (A)\psi \| 2,

therefore, by putting the two inequalities together, we get

\| | w \circ P | \beta f\| 2 \leq C\beta \| \zeta ( - iT ) - \beta q\beta (A)f\| 2

(since the Tj commute strongly with A). In particular, if we take f = \u m,

\| | w \circ P | \beta \u m\| 2 \leq C\beta \| \zeta ( - iT ) - \beta q\beta (A) \u m\| 2 = C\beta \| \zeta ( - iT ) - \beta q\beta (\Delta ) \u m\| 2

by Lemma 4.3.3, since \u m commutes with all the ht by Lemma 3.2.1.
On the other hand, by Lemma 3.2.1 and Theorem 3.2.7,

\| \zeta ( - iT ) - \beta q\beta (\Delta ) \u m\| 22 =
\int 

\BbbR n\times z\ast 
| \u m(\lambda )| 2 q\beta (p(\lambda ))2 \zeta (\tau ) - 2\beta d\sigma \prime (\lambda , \tau )

\leq CK,\beta 

\int 
\BbbR n\times z\ast 

| \u m(\lambda )| 2 \zeta (\tau ) - 2\beta d\sigma \prime (\lambda , \tau ),

where CK,\beta = sup\lambda \in K q\beta (p(\lambda ))2.

By simple manipulations, the previous estimate may take a slightly more
general form.

Corollary 4.3.7. Let us suppose that, for some nonnegative Borel functions
wj : g/z \rightarrow \BbbR and \zeta j : z\ast \rightarrow \BbbR (j = 1, . . . , h), we have

| J(\=x, \tau )| \geq wj(\=x) \zeta j(\tau ) for all \=x \in g/z, \tau \in z\ast ,

and set \~wj(x) = 1 + wj(P (x)). If K \subseteq \BbbR n is compact, then for all m \in \scrD (\BbbR n)
with suppm \subseteq K and for all \vec{}\beta = (\beta 1, . . . , \beta h) \geq 0 we have

\int 
G

| \u m(x)| 2
h\prod 
j=1

\~wj(x)2\beta j dx \leq CK,\vec{}\beta 

\int 
\BbbR n\times z\ast 

| m(\lambda )| 2
h\prod 
j=1

(1 + \zeta j(\tau ) - 2\beta j ) d\sigma \prime (\lambda , \tau ).
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Proof. If we set, for I \subseteq \{ 1, . . . , h\} ,

\beta I =
\sum 
j\in I

\beta j , w\vec{}\beta ,I(\=x) =
\prod 
j\in I

wj(\=x)\beta j/\beta I , \zeta \vec{}\beta ,I(\tau ) =
\prod 
j\in I

\zeta j(\tau )\beta j/\beta I ,

then clearly

| J(\=x, \tau )| \geq wI(\=x) \zeta I(\tau ) for all \=x \in g/z, \tau \in z\ast ,

and moreover
h\prod 
j=1

\~wj(x)2\beta j \leq C\vec{}\beta 

\sum 
I\subseteq \{ 1,...,h\} 

w\vec{}\beta ,I(P (x))2\beta I ,

h\prod 
j=1

(1 + \tau j(\tau ) - 2\beta j ) =
\sum 

I\subseteq \{ 1,...,h\} 

\zeta \vec{}\beta ,I(\tau )
 - 2\beta I ,

therefore the conclusion follows by repeated application of Proposition 4.3.6.

Therefore, under some particular hypotheses, we may control a weighted
L2 norm of \u m in terms of a weighted L2 norm of m, where the weight on the
spectral side is a function of the central coordinates. The following result gives
some information about the latter norm.

Proposition 4.3.8. Let \zeta \in L1
\mathrm{l}\mathrm{o}\mathrm{c}(z

\ast ) be nonnegative. Then the push-forward
\sigma \zeta of the measure

\zeta (\tau ) d\sigma \prime (\lambda , \tau ) (4.3.3)

on the first factor of \BbbR n \times z\ast is a regular Borel measure on \BbbR n.
Suppose moreover that G is a homogeneous group, with dilations \delta t and

homogeneous dimension Q\delta , and that L1, . . . , Ln is a homogeneous system, with
associated dilations \epsilon t. If the function \zeta is homogeneous of degree a, i.e.,

\zeta (\tau \circ \delta t) = ta\zeta (\tau ),

then \sigma \zeta is homogeneous of degree Q\delta + a, i.e.,

\sigma \zeta (\epsilon t(A)) = tQ\delta +a\sigma \zeta (A)

for all Borel A \subseteq \BbbR n.

Proof. Let K \subseteq \BbbR n be compact. By Lemma 3.5.1, the canonical projection
\BbbR n \times z\ast \rightarrow \BbbR n is a proper continuous map when restricted to supp\sigma \prime , therefore
there is a compact K \prime \subseteq z\ast such that

(K \times z\ast ) \cap supp\sigma \prime \subseteq K \times K \prime ,

and consequently

\sigma \zeta (K) =
\int 
K\times z\ast 

\zeta (\tau )d\sigma \prime (\lambda , \tau )

\leq CK

\int 
K\times K\prime 

e - 2p(\lambda ) \zeta (\tau )d\sigma \prime (\lambda , \tau ) = CK\| (\zeta \chi K\prime )1/2( - iT )h1\| 22,

126



4.3. Improved weighted estimates

by Lemma 3.2.1 and Theorem 3.2.7. On the other hand, since h1 \in \scrS (G), the
last quantity is easily seen to be finite by using the Euclidean Fourier transform
and the fact that (\zeta \chi K\prime )1/2 \in L2(z\ast ).

We have thus proved that, if K \subseteq \BbbR n is compact, then \sigma \zeta (K) < \infty . By
Theorem 2.18 of [Rud74], this means that \sigma \zeta is a regular Borel measure on \BbbR n.

Suppose now that G is a homogeneous group and L1, . . . , Ln a homogeneous
system. Without loss of generality, we may take the basis T1, . . . , Td of z as
composed by \delta t-homogeneous elements, so that

L1, . . . , Ln, - iT1, . . . , - iTd

is a homogeneous weighted subcoercive system, and the associated dilations \epsilon \prime t
on \BbbR n \times z\ast are given by

\epsilon \prime t(\lambda , \tau ) = (\epsilon t(\lambda ), \tau \circ \delta t).

By Proposition 3.6.1, \sigma \prime is \epsilon \prime t-homogeneous of degree Q\delta . Therefore, if \zeta is
homogeneous of degree a, then clearly the measure (4.3.3) is homogeneous of
degree Q\delta + a; since the canonical projection \BbbR n\times z\ast \rightarrow \BbbR n intertwines the two
system of dilations, we infer that also \sigma \zeta is homogeneous of degree Q\delta + a.

The previous results give, via interpolation, an improvement of the estimates
of \S 4.1.

Proposition 4.3.9. Let us suppose that, for some nonnegative Borel functions
wj : g/z \rightarrow \BbbR and \zeta j : z\ast \rightarrow \BbbR (j = 1, . . . , k), we have

| J(\=x, \tau )| \geq wj(\=x) \zeta j(\tau ) for all \=x \in g/z, \tau \in z\ast ,

and set \~wj(x) = 1 + wj(P (x)). Let us suppose moreover that, for some open
A \subseteq \BbbR n, \vec{}\beta \geq 0, \=\gamma \geq 0, 1 \leq p, q \leq \infty , and all compact K \subseteq A,\int 

\BbbR n\times z\ast 
| f(\lambda )| 2

h\prod 
j=1

(1 + \zeta j(\tau ) - 2\beta j ) d\sigma \prime (\lambda , \tau ) \leq CK,\vec{}\beta ,\gamma ,p,q\| f\| 
2
B\gamma 

p,q(\BbbR n) (4.3.4)

for all \gamma > \=\gamma and f \in \scrD (\BbbR n) with supp f \subseteq K. Then\left(  \int 
G

| \u m(x)| 2 \langle x\rangle 2\alpha G
h\prod 
j=1

\~wj(x)2\beta j dx

\right)  1/2

\leq CK,\alpha ,\vec{}\beta ,\gamma \| m\| B\gamma 
p,q(\BbbR n)

for all \alpha \geq 0, \gamma > \alpha + \=\gamma , K \subseteq A compact, m \in \scrD (\BbbR n) with suppm \subseteq K.

Proof. By (4.3.4) it follows that the function \zeta j cannot be everywhere null,
therefore the inequality

| J(\=x, \tau )| \geq wj(\=x) \zeta j(\tau ),

together with the bilinearity of J and Proposition 1.3.1, implies that, for some
C, \theta \geq 0

wj(P (x)) \leq C\langle x\rangle \theta G for all x \in G;

thus we also have
h\prod 
j=1

\~wj(x)2\beta j \leq C\vec{}\beta \langle x\rangle 
2\theta (\beta 1+\cdot \cdot \cdot +\beta h)
G
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for some C\vec{}\beta \geq 0.
Let \psi \in \scrD (\BbbR n) such that \psi | K = 1, K \prime = supp\psi \subseteq A. The operator

T : m \mapsto \rightarrow (m\psi )\u 

is then continuous

B\gamma p,q(\BbbR n) \rightarrow L2(G, \langle x\rangle 2\alpha G
\prod h
j=1 \~wj(x)2\beta j dx)

for \alpha \geq 0, \gamma > \alpha + \theta (\beta 1 + . . . \beta h)+n by Theorem 4.1.6, whereas it is continuous

B\gamma p,q(\BbbR n) \rightarrow L2(G,
\prod h
j=1 \~wj(x)2\beta j dx)

for \gamma > \=\gamma by Corollary 4.3.7 and (4.3.4). The conclusion then follows by inter-
polation (see Proposition 2.3.1).

Corollary 4.3.10. Under the hypotheses of Proposition 4.3.9, suppose more-
over that \int 

G

\langle x\rangle  - 2\alpha 
G

h\prod 
j=1

\~wj(x) - 2\beta j dx <\infty (4.3.5)

for \alpha > \=\alpha \vec{}\beta . Then we have\int 
G

| \u m(x)| \langle x\rangle \alpha G dx \leq CK,\alpha ,\vec{}\beta ,\gamma \| m\| B\gamma 
p,q

for all \alpha \geq 0, \gamma > \alpha + \=\alpha \vec{}\beta + \=\gamma , K \subseteq A compact, m \in \scrD (\BbbR n) with suppm \subseteq K.

Proof. Choose \alpha \prime strictly between \=\alpha \vec{}\beta and \gamma  - \alpha  - \=\gamma . Then, by H\"older's inequality
and Proposition 4.3.9,

\int 
G

| \u m(x)| \langle x\rangle \alpha G dx \leq CK,\alpha ,\gamma 

\left(  \int 
G

\langle x\rangle  - 2\alpha \prime 
G

h\prod 
j=1

\~wj(x) - 2\beta j dx

\right)  1/2

\| m\| B\gamma 
p,q

and the conclusion follows from (4.3.5).

As we mentioned at the beginning, the clearest example of application of
this machinery is that of M\'etivier groups, i.e., the connected, simply connected
groups G such that

| J(\=x, \tau )| \geq | \=x| | \tau | for all \=x \in g/z, \tau \in z\ast ,

for some norms on g/z and z\ast .

Lemma 4.3.11. If G is a M\'etivier group, then:

(i) z = [g, g], and in particular G is 2-step nilpotent;

(ii) dim(g/z) is even;

(iii) dim z \leq dim(g/z).
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Proof. (i) From the definition, it follows immediately that, if \tau \in z\ast \setminus \{ 0\} , then
the linear map

J(\cdot , \tau ) : g/z \rightarrow y\ast 

is injective, and moreover it takes its values in the subspace of y\ast corresponding
to (y/z)\ast . Thus we have dim(y/z) \geq dim(g/z), but z \subseteq y \subseteq g, therefore y = g,
which means that [g, g] \subseteq z. If the inclusion were strict, then we would find
\tau \in z\ast \setminus \{ 0\} such that \tau | [g,g] = 0, so that, by the definition of J , we would have
J(\=x, \tau ) = 0 for all \=x \in g/z, which contradicts the hypothesis.

(ii) Choose \tau \in z\ast \setminus \{ 0\} . Then, by the hypothesis, the skew-symmetric
bilinear form on g/z induced by

g\times g \ni (x, y) \mapsto \rightarrow \tau ([x, y]) \in \BbbR 

is non-degenerate. In particular, dim(g/z) must be even.
(iii) Fix x \in g \setminus z. The linear map g/z \rightarrow z induced by

g \ni y \mapsto \rightarrow [x, y] \in z

determines, by transposition, a linear map z\ast \rightarrow (g/z)\ast , which is injective by
the hypothesis, and in particular dim z \leq dim(g/z).

Proposition 4.3.12. Suppose that G is a M\'etivier group. If \alpha \geq 0 and

\gamma > \alpha +
dimG

2
,

then, for every K \subseteq \BbbR n compact,

\| \u m\| L1(G,\langle x\rangle \alpha G dx) \leq CK,\alpha ,\gamma \| m\| B\gamma 
\infty ,\infty 

for all m \in \scrD (G) with suppm \subseteq K.

Proof. We take as w1 and \zeta 1 the chosen norms on g/z and z\ast respectively. By
Proposition 4.3.8, the hypotheses of Proposition 4.3.9 are satisfied for h = 1,
A = \BbbR n, \=\gamma = 0, p = q = \infty , if \zeta  - 2\beta 1

1 \in L1
\mathrm{l}\mathrm{o}\mathrm{c}(z

\ast ), i.e., if 2\beta 1 < dim z. Having
fixed such a \beta 1, by Proposition 1.3.1 it follows easily that\int 

G

(1 + | x| G) - 2\alpha (1 + w1(P (x))) - 2\beta 1 dx <\infty 

if 2\alpha > QG  - 2\beta 1 (since 2\beta 1 < dim(g/z) by Lemma 4.3.11). We can then apply
Corollary 4.3.10 with \=\alpha \vec{}\beta = QG/2 - \beta 1, thus obtaining the inequality

\| \u m\| L1(G,\langle x\rangle \alpha G dx) \leq CK,\alpha ,\gamma \| m\| B\gamma 
\infty ,\infty 

for \gamma > \alpha +QG/2 - \beta 1. On the other hand, QG = dimG+ dim z; since \beta 1 can
be chosen arbitrarily near (dim z)/2, we get the conclusion.

We have thus shown that, for M\'etivier groups, the regularity threshold in
weighted L1 estimates may be lowered to half of the topological dimension. The
same result can be obtained, by a slight generalization of the previous argument,
also for nilpotent groups which are direct products of several M\'etiver and/or
abelian groups. In fact, as it is noticed in a remark at the end of [HZ95], there
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are further cases of groups for which this technique gives an improvement of
weighted L1 estimates.

In order to attempt a systematic treatment of these various cases, we in-
troduce the following definition: for h \in \BbbN , we say that a homogeneous Lie
group G is h-capacious if there exist linearly independent homogeneous el-
ements \omega 1, . . . , \omega h \in (g/z)\ast and linearly independent homogeneous elements
z1, . . . , zh \in z such that, for j = 1, . . . , h,

| J(\=x, \tau )| \geq | \omega j(x)| | \tau (zj)| for all \=x \in g/z, \tau \in z\ast . (4.3.6)

Clearly, every homogeneous Lie group is 0-capacious. Here are some criteria
which may be of some use in showing that a certain homogeneous group is
h-capacious. Recall that we denote by

g[1] = g, g[r+1] = [g, g[r]]

the descending central series of a Lie algebra g.

Proposition 4.3.13. Let G be a homogeneous Lie group, with dilations \delta t.

(i) If G is a M\'etivier group (with any family of automorphic dilations), then
G is (dim z)-capacious.

(ii) Suppose that, for some r \geq 2, dim g[r] = 1. Then G is 1-capacious.

(iii) If g admits a \BbbC -linear structure which is compatible with its homogeneous
Lie algebra structure, and if moreover dim\BbbC g[r] = 1 for some r \geq 2, then
g is 2-capacious.

(iv) Suppose that G = G1\times G2, where G1 and G2 are homogeneous Lie groups
with dilations \delta 1,t and \delta 2,t respectively, so that \delta t = \delta 1,t \times \delta 2,t. If G1 is
h1-capacious and G2 is h2-capacious, then G is (h1 + h2)-capacious.

Proof. (i) Since the \delta t are automorphisms, z is a homogeneous ideal. Therefore,
if h = dim z, by Lemma 4.3.11 we can choose linearly independent elements
z1, . . . , zh of z, and linearly independent homogeneous \omega 1, . . . , \omega h \in (g/z)\ast . By
a suitable renormalization, we then have

| \omega j(\=x)| | \tau (zj)| \leq | \=x| | \tau | \leq | J(\=x, \tau )| for all \=x \in g/z, \tau \in z\ast ,

since G is M\'etivier.
(ii) Since G is nilpotent, it must be r-step, so that g[r] \subseteq z. Notice that the

ideal g[r - 1] is preserved by every automorphism of g, therefore it is generated
by \delta t-homogeneous elements; since [g, g[r - 1]] = g[r] \not = 0, then there must exist a
\delta t-homogeneous element y \in g[r - 1] such that, for some x0 \in g, [x0, y] = z \not = 0.
In particular y \not = 0 and moreover, since the ideal g[r] is \delta t-homogeneous and
1-dimensional, necessarily z is \delta t-homogeneous.

Since y \in g[r - 1], the linear map [\cdot , y] : g \rightarrow g takes its values in g[r] = \BbbR z;
therefore, there exists \omega \in (g/z)\ast such that

[x, y] = \omega (P (x))z for all x \in g.

Notice that \omega (P (x0)) = 1, thus \omega \not = 0; moreover, since both y and z are
homogeneous, also \omega is homogeneous. Finally

J(\=x, \tau )(y) = \omega (\=x)\tau (z) for all \=x \in g/z, \tau \in z\ast , (4.3.7)
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which implies immediately that G is 1-capacious.
(iii) Arguing as in part (ii), but with a complex Lie algebra g, one finds

an identity analogous to (4.3.7), where now \omega is a \BbbC -linear functional on g/z,
and z \in z. The conclusion then follows by taking the \BbbR -linearly independent
\BbbR -linear functionals \Re \omega ,\Im \omega on g/z, and the \BbbR -linearly independent elements
z, iz \in z.

(iv) Via the canonical identification

g = g1 \times g2,

we have (with the obvious meaning of the notation)

z = z1 \times z2, y = y1 \times y2,

thus also

z\ast = z\ast 1 \times z\ast 2, y\ast = y\ast 1 \times y\ast 2, g/z = (g1/z1)\times (g2/z2).

Moreover it is easy to check that

J((\=x1, \=x2), (\tau 1, \tau 2)) = (J1(\=x1, \tau 1), J2(\=x2, \tau 2)),

therefore
| J((\=x1, \=x2), (\tau 1, \tau 2))| \geq max\{ | J1(\=x1, \tau 1)| , | J2(\=x2, \tau 2)| \} 

and the conclusion follows immediately.

Notice that the previous proposition is not sufficient to exhaust all the cases
of h-capacious groups. For instance, one can check that all the nilpotent groups
listed in [Nie83], except for the free nilpotent groups, are (at least) 1-capacious,
for at least one choice of a homogeneous structure on them; see also the examples
of \S 4.4.

Lemma 4.3.14. Suppose that G is h-capacious, and let \omega 1, . . . , \omega h \in (g/z)\ast be
as in the definition. Then the functionals \omega j \circ P are null on [g, g]. In particular

h \leq min\{ dim z,dim g - dim(z + [g, g])\} .

Moreover, we can find a homogeneous basis of of g compatible with the descend-
ing central series such that the functionals \omega 1 \circ P, . . . , \omega h \circ P are part of the dual
basis.

Proof. Notice that
[[g, g], y] \subseteq [g, [g, y]] \subseteq [g, z] = 0.

Therefore, from the definition of J it follows that, for every x \in [g, g],

J(P (x), \tau ) = 0 for all \tau \in z\ast .

In particular, by choosing in (4.3.6) a \tau \in z\ast such that \tau (zj) \not = 0, we obtain
that the functional \omega j \circ P is null on [g, g]. In particular, the \omega j \circ P correspond
to linearly independent elements of (g/([g, g] + z))\ast , thus the inequality about
h follows.
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Let now W = ker(\omega 1 \circ P ) \cap \cdot \cdot \cdot \cap ker(\omega h \circ P ). Then W is a homogeneous
subspace of g containing [g, g]. Moreover, if \~\omega j is the element of (g/W )\ast corre-
sponding to \omega j , then \~\omega 1, . . . , \~\omega h are a homogeneous basis of (g/W )\ast . We can
then choose homogeneous elements v1, . . . , vh \in g such that the correspond-
ing elements in the quotient g/W are the dual basis of \~\omega 1, . . . , \~\omega h. Finally, we
append to v1, . . . , vh a homogeneous basis of W compatible with the descend-
ing central series (which, apart from g[1], is contained in W , and is made of
homogeneous ideals), and we are done.

Here is finally the improvement of Corollary 4.1.8 for h-capacious groups.

Theorem 4.3.15. For some h \in \BbbN , suppose that the homogeneous group G is
h-capacious, and let QG be its degree of polynomial growth. Let moreover

L1, . . . , Ln

be a homogeneous weighted subcoercive system on G. If p, q \in [1,\infty ], \alpha \geq 0 and

\gamma > \alpha +
QG  - h

2
+
n

p
 - 1

max\{ 2, p\} 
,

then, for every K \subseteq \BbbR n \setminus \{ 0\} compact,

\| \u m\| L1(G,\langle x\rangle \alpha G dx) \leq CK,\alpha ,\gamma \| m\| B\gamma 
p,q

for all m \in \scrD (G) with suppm \subseteq K.

Proof. Let \omega 1, . . . , \omega h \in (g/z)\ast and z1, . . . , zh \in z be given by the definition of
h-capacious, and set

wj(\=x) = | \omega j(\=x)| , \zeta j(\tau ) = | \tau (zj)| .

Notice now that, since the zj are linearly independent, for every choice of
\beta 1, . . . , \beta h \in [0, 1/2[, the push-forward \sigma \vec{}\beta of the measure

h\prod 
j=1

(1 + \zeta j(\tau ) - 2\beta j ) d\sigma \prime (\lambda , \tau ) (4.3.8)

via the canonical projection on the first factor of \BbbR n\times z\ast is, by Proposition 4.3.8,
a regular Borel measure on \BbbR n; in fact, since the zj are homogeneous, \sigma \vec{}\beta is the
sum of \epsilon t-homogeneous positive regular Borel measures on \BbbR n (with possibly
different degrees of homogeneity), hence \sigma \vec{}\beta is locally 1-bounded on \BbbR n\setminus \{ 0\} . By
Corollary 2.3.22, embeddings and interpolation, this means that the hypotheses
of Proposition 4.3.9 are satisfied for A = \BbbR n \setminus \{ 0\} and \=\gamma = n/p - 1/max\{ 2, p\} .

By Lemma 4.3.14, we can find a homogeneous basis v1, . . . , vk of g, compat-
ible with the descending central series, such that, if \^v1, . . . , \^vh is the dual basis,
then \^vj = \omega j \circ P for j = 1, . . . , h; in particular we have \~wj(x) = 1 + | \^vj(x)| . If
we set

\kappa j = max\{ r : vj \in g[r]\} ,
then by Proposition 1.3.1 we have

QG =
k\sum 
j=1

\kappa j , \langle x\rangle G \sim 1 +
k\sum 
j=1

| \^vj(x)| 1/\kappa j ,
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and in particular
\langle x\rangle  - 2\alpha j

G \leq C\alpha j
(1 + | \^vj(x)| ) - 2\alpha j/\kappa j

for j = 1, . . . , k and \alpha j \geq 0. Moreover, since the \omega j \circ P are null on [g, g], then
\kappa j = 1 for j = 1, . . . , h.

Notice now that, for fixed \beta 1, . . . , \beta h \in [0, 1/2[, if \alpha \geq 0 satisfies

2\alpha > 2\alpha \vec{}\beta =
h\sum 
j=1

(1 - 2\beta j) +
k\sum 

j=h+1

\kappa j ,

then we may choose \alpha 1, . . . , \alpha k \geq 0 such that

\alpha =
k\sum 
j=1

\alpha j , 2\alpha j >

\Biggl\{ 
1 - 2\beta j for j = 1, . . . , h,
\kappa j for j = h+ 1, . . . , k,

therefore

\int 
G

\langle x\rangle  - 2\alpha 
G

h\prod 
j=1

\~wj(x) - 2\beta j dx

\leq 
\int 
G

h\prod 
j=1

(1 + | \^vj(x)| ) - 2(\alpha j+\beta j)
k\prod 

j=h+1

(1 + | \^vj(x)| ) - 2\alpha j/\kappa j dx <\infty 

We can thus apply Corollary 4.3.10, and the conclusion follows because, if the
\beta j tend to 1/2, then \alpha \vec{}\beta tends to

\sum k
j=h+1 \kappa j = QG  - h.

Notice that, as in Corollary 4.1.8, the estimates can be improved for p <\infty 
by results of local d-boundedness; in this case, however, the measure to be
examined is not the original Plancherel measure \sigma , but its ``modified version""
\sigma \vec{}\beta considered in the proof.

4.4 Examples

We now see how the techniques and results previously shown can be applied in
some particular cases, involving nilpotent Lie groups. Preliminarily, some gen-
eral computations are performed, which concern, on the one side, the Plancherel
measure associated to a weighted subcoercive system and, on the other side, the
capacity map of a nilpotent Lie algebra. The results thus obtained and the in-
troduced notation shall be understood in the subsequent specific examples.

4.4.1 Computation of the Plancherel measure

Here we present a ``heuristic"" method which can be used in order to determine
the Plancherel measure associated to a specific weighted subcoercive system, in
connection with the group Plancherel measure.

If G is a connected Lie group which is type I and of polynomial growth, and
L1, . . . , Ln is a weighted subcoercive system on G, then we know (see Propo-
sition 3.3.16) that there exists a generic set \widehat G\mathrm{g}\mathrm{e}\mathrm{n} of (equivalence classes of)
irreducible unitary representations of G such that, if \pi \in \widehat G\mathrm{g}\mathrm{e}\mathrm{n}, then the Hilbert
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space \scrH \pi admits a complete orthonormal system of joint eigenvectors \{ v\pi ,\alpha \} \alpha 
of L1, . . . , Ln. If \lambda \pi ,\alpha \in \BbbR n denotes the eigenvalues of L1, . . . , Ln corresponding
to the eigenvector v\pi ,\alpha , then, for every m \in \scrD (\BbbR n),\int 

\BbbR n

| m(\lambda )| 2 d\sigma (\lambda ) =
\int 
G

| \u m(x)| 2 dx =
\int 
\widehat G\mathrm{g}\mathrm{e}\mathrm{n}

\| \pi ( \u m)\| 2\mathrm{H}\mathrm{S} d\pi 

=
\int 
\widehat G\mathrm{g}\mathrm{e}\mathrm{n}

\sum 
\alpha 

\| \pi ( \u m)v\pi ,\alpha \| 2\scrH \pi 
d\pi =

\int 
\widehat G\mathrm{g}\mathrm{e}\mathrm{n}

\sum 
\alpha 

| m(\lambda \pi ,\alpha )| 2 d\pi .

If one is able to determine both the group Plancherel measure and the eigen-
vectors v\pi ,\alpha in such a way that the function (\pi , \alpha ) \mapsto \rightarrow \lambda \pi ,\alpha is sufficiently reg-
ular, then the measure \sigma on \BbbR n is determined by the previous identity as the
push-forward of the product of the group Plancherel measure times a counting
measure.

For nilpotent Lie groups, the Kirillov theory gives a fair amount of infor-
mation about irreducible representations and the group Plancherel measure
(see [CG90], and also [Nie83], where irreducible unitary representations and the
group Plancherel measure are computed for every nilpotent Lie group of dimen-
sion up to 6). However, except for some particular cases, an ``explicit"" formula
for the joint eigenvalues of L1, . . . , Ln in a generic irreducible representation is
not easy to find.

Two-step nilpotent Lie groups. In the case of a two-step nilpotent Lie
group, we follow the computation of the group Plancherel measure given in
[ACDS00].

Namely, let g = v \oplus z, where z is the center of g, and let \langle \cdot , \cdot \rangle be an inner
product on g such that v \bot z. To every \tau \in z\ast , we associate the skew-symmetric
endomorphism B(\tau ) of v defined by

\langle B(\tau )v, w\rangle = \tau ([v, w]),

and set r\tau = kerB(\tau ), m\tau = v \cap r\bot \tau . Since B(\tau ) is skew-symmetric, m\tau has
even dimension. Denote by \Lambda the Zariski-open subset of z\ast such that dim m\tau is
maximum, and let m \in \BbbN be such that dimm\tau = 2m for \tau \in \Lambda . We can then
choose, for \tau \in \Lambda , an orthonormal basis

E1(\tau ), . . . , Em(\tau ), \=E1(\tau ), . . . , \=Em(\tau )

of m\tau such that

B(\tau )Ej(\tau ) = bj(\tau ) \=Ej(\tau ), B(\tau ) \=Ej(\tau ) =  - bj(\tau )Ej(\tau )

for some bj(\tau ) \in \BbbR \setminus \{ 0\} and for j = 1, . . . ,m. For \tau \in \Lambda , if

x\tau = span\{ E1(\tau ), . . . , Em(\tau )\} , y\tau = span\{ \=E1(\tau ), . . . , \=Em(\tau )\} ,

and we use coordinates (X,Y,R,Z) \in x\tau \oplus y\tau \oplus r\tau \oplus z on G = g, then, for \mu \in r\ast \tau ,
an irreducible unitary representation \pi \tau ,\mu of G on L2(x\tau ) is defined by

\pi \tau ,\mu (X,Y,R,Z)\phi (X \prime ) = ei\tau (Z+[X\prime +X/2,Y ])ei\mu (R)\phi (X +X \prime ).
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If moreover, for \tau \in \Lambda , we denote by D(\tau ) = b1(\tau )2 \cdot \cdot \cdot bm(\tau )2 the determinant
of the restriction of B(\tau ) to m\tau , then D(\tau ) is a polynomial function of \tau , and
moreover, as in [ACDS00], one can show that, for f \in \scrS (G),\int 

G

| f(x)| 2 dx = (2\pi )m - \mathrm{d}\mathrm{i}\mathrm{m}G

\int 
\Lambda 

\int 
r\ast \tau 

\| \pi \tau ,\mu (f)\| 2\mathrm{H}\mathrm{S}D(\tau )1/2 d\mu d\tau .

Notice now that, for Z \in z, R \in r\tau ,

d\pi \tau ,\mu ( - iZ) = \tau (Z), d\pi \tau ,\mu ( - iR) = \mu (R)

(these differential operators are represented as constants), whereas

d\pi \tau ,\mu ( - iEj(\tau )) =  - i \partial 
\partial tj

, d\pi \tau ,\mu ( - i \=Ej(\tau )) = bj(\tau )tj ,

where (t1, . . . , tm) are the coordinates related to the basis E1(\tau ), . . . , Em(\tau ) of
x\tau . In particular, if Lj(\tau ) =  - (Ej(\tau )2 + \=Ej(\tau )2), then

d\pi \tau ,\mu (Lj(\tau )) =  - 
\biggl( 
\partial 

\partial tj

\biggr) 2

+ bj(\tau )2t2j .

It can be easily checked that an orthonormal basis of L2(x\tau ) made of joint
eigenfunctions of d\pi \tau ,\mu (L1(\tau )), . . . , d\pi \tau ,\mu (Lm(\tau )) is given by

u\tau ,\mu ,\alpha (t) =
m\prod 
j=1

| bj(\tau )| 1/4\psi \alpha j

\Bigl( 
| bj(\tau )| 1/2 tj

\Bigr) 
for \alpha = (\alpha 1, . . . , \alpha m) \in \BbbN m, where

\psi k(x) = (k! 2k
\surd 
\pi ) - 1/2e - x

2/2Hk(x)

and

Hk(x) = ( - 1)kex
2
\biggl( 
d

dx

\biggr) k
e - x

2

is the k-th Hermite polynomial; we have in fact

d\pi \tau ,\mu (Lj(\tau ))u\tau ,\mu ,\alpha = | bj(\tau )| (1 + 2\alpha j)u\tau ,\mu ,\alpha .

The differential operators Lj(\tau ) \in \frakD (G) depend on \tau , and moreover they do
not commute in general. However, in the following we will find several examples
of operators that, for every \tau \in \Lambda , can be written as polynomials in the Lj(\tau ), so
that the previous decomposition will give us the eigenvalues of those operators
in the representation \pi \tau ,\mu . For instance, if z = [g, g] and L is the orthonormal
sublaplacian on G associated to the inner product \langle \cdot , \cdot \rangle , then

L = L1(\tau ) + \cdot \cdot \cdot + Lm(\tau ) - (R1(\tau )2 + \cdot \cdot \cdot +Rh(\tau )2)

for every \tau \in \Lambda , where R1(\tau ), . . . , Rh(\tau ) is an orthonormal basis of r\tau , thus

d\pi \tau ,\mu (L)u\tau ,\mu ,\alpha =

\left(  m\sum 
j=1

| bj(\tau )| (1 + 2\alpha j) + | \mu | 2
\right)  u\tau ,\mu ,\alpha .
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4.4.2 Computation of the capacity map

Let g be a nilpotent Lie algebra, z its center and y as in (4.3.1). We now describe
a simple algorithm for computing the capacity map J : g/z \times z\ast \rightarrow y\ast . This is
useful for checking if the techniques of \S 4.3 can be applied to a given group.

Notice first of all that J takes its values in (y/z)\ast (which can be thought
of as the subspace of y\ast made of the functionals which vanish on z). Choose a
basis T1, . . . , Td of z, and complete it to a basis Y1, . . . , Yh, T1, . . . , Td of y, and
also to a basis X1, . . . , Xk, T1, . . . , Td of g (one can always take Y1, . . . , Yh to
be a subset of X1, . . . , Xk, but this is not necessary here). Correspondingly, we
have a basis \=Y1, . . . , \=Yh of y/z, and a basis \=X1, . . . , \=Xk of g/z. Finally, we take
the dual bases \=Y \ast 1 , . . . , \=Y \ast h of (y/z)\ast and T \ast 1 , . . . , T

\ast 
d of z\ast .

We construct now a matrix M , with h rows and k columns, whose entries are
homogeneous polynomials of degree 1 in the indeterminates t1, . . . , td. Namely,
the (i, j) entry of this matrix is

\sum d
r=1 T

\ast 
r ([Xj , Yi]) tr. Notice that this polynomial

is simply the expression of [Xj , Yi] in terms of the basis T1, . . . , Td, where the
elements Tr have been replaced with the indeterminates tr. Consequently, this
matrix is nothing else than a part of the ``multiplication table"" of g.

Finally, we take the product of M with the column vector V whose entries
are the indeterminates x1, . . . , xk. The result MV is a column vector with h
rows, whose entries are polynomials which are separately homogeneous of degree
1 both in the t1, . . . , td and in the x1, . . . , xk. Specifically, its i-th entry is

k\sum 
j=1

d\sum 
r=1

T \ast r ([Xj , Yi])trxj = J

\left(  k\sum 
j=1

xj \=Xj ,

d\sum 
r=1

trT
\ast 
r

\right)  (Yi),

i.e., the i-th component of J(
\sum k
j=1 xj

\=Xj ,
\sum d
r=1 trT

\ast 
r ) in the basis \=Y \ast 1 , . . . , \=Y \ast h .

In particular, by taking the sum of the squares of the entries of MV , one obtains
the square of the norm of J(

\sum k
j=1 xj

\=Xj ,
\sum d
r=1 trT

\ast 
r ), with respect to the inner

product which makes \=Y \ast 1 , . . . , \=Y \ast h into an orthonormal basis; this sum of squares
is a polynomial F (x1, . . . , xk, t1, . . . , td), and in order to apply the techniques of
\S 4.3 one looks for inequalities of the form

F (x1, . . . , xk, t1, . . . , td) \geq w(x1, . . . , xk)2\zeta (t1, . . . , td)2

for some nonnegative functions w and \zeta . For instance, if one finds that

F (x1, . . . , xk, t1, . . . , td) = (x2
1 + \cdot \cdot \cdot + x2

k)(t
2
1 + \cdot \cdot \cdot + t2d),

then g is H-type.

4.4.3 Some 2-step groups

The Heisenberg group Hn is the nilpotent Lie group determined by the
relations

[X1, Y1] = T, . . . , [Xn, Yn] = T,

where X1, Y1, . . . , Xn, Yn, T is a basis of its Lie algebra hn. The group Hn is
easily shown to be H-type (see \S 4.4.2).

Automorphic dilations \delta t on Hn are defined by

\delta t(Xj) = tXj , \delta t(Yj) = tYj , \delta t(T ) = t2T,
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Figure 4.1: The Heisenberg brush for H2

which makes Hn into a stratified Lie group of homogeneous dimension 2n+ 2.
If we set Lj =  - (X2

j + Y 2
j ) (the j-th partial sublaplacian), then

L1, . . . , Ln, - iT

is easily checked to be a system of pairwise commuting, formally self-adjoint,
\delta t-homogeneous left-invariant differential operators on Hn; in fact, they are a
Rockland system, since the algebra generated by them contains the full sub-
laplacian L = L1 + \cdot \cdot \cdot + Ln.

The Plancherel measure \sigma on \BbbR n+1 associated to that system can be easily
determined by the aforementioned techniques: if we choose an inner product
on hn which makes X1, Y1, . . . , Xn, Yn, T into an orthonormal basis, and if we
identify the dual of the center z = \BbbR T with \BbbR via the basis \{ T\} of z, we have

B(\tau )Xj = \tau Yj , B(\tau )Yj =  - \tau Xj ,

so that \Lambda = \BbbR \setminus \{ 0\} , r\tau = 0, and we can choose Ej(\tau ) = Xj , \=Ej(\tau ) = Yj ,
therefore bj(\tau ) = \tau and, if I = (1, . . . , 1) \in \BbbN n, then\int 

\BbbR n+1
| m| 2 d\sigma = (2\pi ) - (n+1)

\int 
\BbbR \setminus \{ 0\} 

\sum 
\alpha \in \BbbN n

| m(| \tau | (I + 2\alpha ), \tau )| 2 | \tau | n d\tau 

=
\sum 
\alpha \in \BbbN n

\varepsilon \in \{  - 1,1\} 

(2\pi | I + 2\alpha | 1) - (n+1)

\int \infty 

0

\bigm| \bigm| \bigm| \bigm| m\biggl( \lambda I + 2\alpha 
| I + 2\alpha | 1

,
\varepsilon \lambda 

| I + 2\alpha | 1

\biggr) \bigm| \bigm| \bigm| \bigm| 2 \lambda n d\lambda .
This shows that the Plancherel measure \sigma is the sum of (suitably weighted)
Lebesgue measures on half-lines of \BbbR n+1, which are contained in [0,+\infty [n \times \BbbR 
and which accumulate on [0,+\infty [n \times \{ 0\} ; for this reason, one cannot hope to
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Figure 4.2: The Heisenberg fan for H2

obtain that \sigma is locally d-bounded for some d greater than 1. The support of \sigma 
is called the Heisenberg brush.

The Plancherel measure \sigma \prime on \BbbR 2 associated to the system

L, - iT

can be simply obtained as a push-forward of \sigma ; we have in fact\int 
\BbbR 2
| m| 2 d\sigma \prime =

\sum 
\beta \in \BbbN 

\varepsilon \in \{  - 1,1\} 

\bigl( 
\beta +n - 1
n - 1

\bigr) 
(2\pi (n+ 2\beta ))(n+1)

\int \infty 

0

\bigm| \bigm| \bigm| \bigm| m\biggl( \lambda , \varepsilon \lambda 

n+ 2\beta 

\biggr) \bigm| \bigm| \bigm| \bigm| 2 \lambda n d\lambda .
The support of \sigma \prime is called the Heisenberg fan.

The quaternionic Heisenberg group \BbbH Hn is defined by the relations

[Xj , Yj,1] = T1, [Xj , Yj,2] = T2, [Xj , Yj,3] = T3,

[Yj,1, Yj,2] = T3, [Yj,2, Yj,3] = T1, [Yj,3, Yj,1] = T2

for j = 1, . . . , n, where X1, Y1,1, Y1,2, Y1,3, . . . , Xn, Yn,1, Yn,2, Yn,3, T1, T2, T3 is a
basis of its (4n + 3)-dimensional Lie algebra. The group \BbbH Hn is easily seen to
be H-type (see \S 4.4.2).

A family of automorphic dilations is given by

\delta t(Xj) = tXj , \delta t(Yj,k) = tYj,k, \delta t(Tk) = t2Tk,

for j = 1, . . . , n, k = 1, 2, 3, which makes \BbbH Hn into a stratified group of homo-
geneous dimension 4n+ 6.

The partial sublaplacians

Lj =  - (X2
j + Y 2

j,1 + Y 2
j,2 + Y 2

j,3),
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and also the full sublaplacian L = L1 + \cdot \cdot \cdot +Ln, are \delta t-homogeneous. Moreover,
the partial sublaplacians commute pairwise. Therefore, the system

L1, . . . , Ln, - iT1, - iT2, - iT3

is a Rockland system on \BbbH Hn.
Let us identify the dual of the center with \BbbR 3 via the basis T1, T2, T3 of the

center, and choose an inner product on the Lie algebra of \BbbH Hn which makes
X1, Y1,1, Y1,2, Y1,3, . . . , Xn, Yn,1, Yn,2, Yn,3, T1, T2, T3 into an orthonormal basis.
Then \Lambda = \BbbR 3 \setminus \{ 0\} , and moreover, by a suitable choice of the Ej(\tau ), \=Ej(\tau ), we
have

Lj =  - (E2j - 1(\tau )2 + \=E2j - 1(\tau )2 + E2j(\tau )2 + \=E2j(\tau )2)

and bj(\tau ) = | \tau | , therefore the Plancherel measure \sigma on \BbbR n+3 associated to the
system L1, . . . , Ln, - iT1, - iT2, - iT3 is\int 

\BbbR n+3
| m| 2 d\sigma =

\sum 
\alpha \in \BbbN n

\prod n
j=1(\alpha j + 1)
(2\pi )2n+3

\int 
\BbbR 3\setminus \{ 0\} 

| m(| \tau | (2I + 2\alpha ), \tau )| 2 | \tau | 2n d\tau 

=
\sum 
\alpha \in \BbbN n

\prod n
j=1(\alpha j + 1)

(4\pi | I + \alpha | 1)2n+3

\int 
S2

\int \infty 

0

\bigm| \bigm| \bigm| \bigm| m\biggl( \lambda I + \alpha 

| I + \alpha | 1
,

\varepsilon \lambda 

2| I + \alpha | 1

\biggr) \bigm| \bigm| \bigm| \bigm| 2 \lambda 2n+2 d\lambda d\varepsilon .

We thus obtain that the Plancherel measure \sigma is the sum of suitably weighted
Lebesgue measures on countably many 3-cones contained in [0,+\infty [n \times \BbbR 3,
whose vertex is the origin and which do not intersect elsewhere, whose axes are
half-lines laying in [0,+\infty [n \times \{ 0\} and whose apertures tend to zero.

If we restrict now to the system

L, - iT1, - iT2, - iT3, (4.4.1)

then the corresponding Plancherel measure \sigma \prime on \BbbR \times \BbbR 3 is given by\int 
\BbbR 4
| m| 2 d\sigma \prime =

\sum 
\beta \in \BbbN 

\bigl( 
\beta +2n - 1

2n - 1

\bigr) 
(4\pi (n+ \beta ))2n+3

\int 
S2

\int \infty 

0

\bigm| \bigm| \bigm| \bigm| m\biggl( \lambda , \varepsilon \lambda 

2(n+ \beta )

\biggr) \bigm| \bigm| \bigm| \bigm| 2 \lambda 2n+2 d\lambda d\varepsilon .

Notice that \sigma \prime has a spherical symmetry in the central coordinates, due to
the invariance by suitable automorphisms of \BbbH Hn of the algebra generated by
L, - iT1, - iT2, iT3 (see \S 3.5). Moreover, it is easily checked that \sigma \prime is locally
3-bounded on \BbbR 4 \setminus \{ 0\} . However, since \BbbH Hn is H-type, the techniques of \S 4.3
can be applied to get sharper weighted estimates, and correspondingly, in order
to take advantage also of local d-boundedness properties, one has to look at the
``modified"" measure

d\sigma \prime \gamma (\lambda , \tau ) = (1 + | \tau |  - \gamma ) d\sigma \prime (\lambda , \tau )

for \gamma \in [0, 3[ arbitrarily near to 3 (cf. Corollary 4.3.7 and Proposition 4.3.12).
This measure is locally 3-bounded on \BbbR \times (\BbbR 3 \setminus \{ 0\} ), but, for \gamma near 3, it is
only locally (4 - \gamma )-bounded on \BbbR 4 \setminus \{ 0\} (which is essentially nothing more than
the local 1-boundedness given by homogeneity). Consequently, we get sharper
weighted estimates only for kernels corresponding to multipliers supported away
from the line \BbbR \times \{ 0\} , but we do not get a general improvement in the multiplier
theorems of Chapter 5.

139



Chapter 4. Weighted inequalities for kernels

The free 2-step nilpotent group N3,2 on three generators is defined by
the relations

[X1, X2] = T3, [X2, X3] = T1, [X3, X1] = T2,

where X1, X2, X3, T1, T2, T3 is a basis of its Lie algebra n3,2.
A family \delta t of automorphic dilations is given by

\delta t(Xj) = tXj , \delta t(Tj) = t2Tj

for j = 1, 2, 3, which makes N3,2 into a stratified group of homogeneous dimen-
sion 9.

If L =  - (X2
1+X2

2+X2
3 ) is the sublaplacian andD =  - (X1T1+X2T2+X3T3),

then it is easily checked that

L,D, - iT1, - iT2, - iT3

is a Rockland system.
Let \langle \cdot , \cdot \rangle be the inner product which makes X1, X2, X3, T1, T2, T3 into an

orthonormal basis, and identify both z\ast and v with \BbbR 3 via the chosen bases.
Then it is not difficult to see that

B(\tau )v = \tau \wedge v

for \tau \in z\ast , v \in v. In particular, \Lambda = \BbbR 3 \setminus \{ 0\} , r\tau = \tau \bot ; moreover, for \tau \in \Lambda ,
if E(\tau ), \=E(\tau ) are chosen so that \tau /| \tau | , E(\tau ), \=E(\tau ) are a positive orthonormal
basis of \BbbR 3, then b(\tau ) = | \tau | . Finally, if we identify r\ast \tau with \BbbR via the basis \tau /| \tau | 
of r\tau , then we have, for \tau \in \Lambda , \mu \in r\ast \tau ,

d\pi \tau ,\mu (L) =  - 
\biggl( 
d

dt

\biggr) 2

+ | \tau | 2t2 + \mu 2, d\pi \tau ,\mu (D) = \mu | \tau | ,

therefore\int 
\BbbR 5
| m| 2 d\sigma = (2\pi ) - 5

\sum 
\alpha \in 2\BbbN +1

\int 
\BbbR 3\setminus \{ 0\} 

\int 
\BbbR 
| m(| \tau | \alpha + \mu 2, \mu | \tau | , \tau )| 2 | \tau | d\mu d\tau 

= (2\pi ) - 5
\sum 

\alpha \in 2\BbbN +1

\int \infty 

0

\int 
\BbbR \times \BbbR 3

| m(\lambda , \lambda 3/2\xi , \lambda \eta )| 2 d\sigma \alpha (\xi , \eta )\lambda 7/2 d\lambda ,

where \sigma \alpha is the regular Borel measure on \BbbR 4 = \BbbR \times \BbbR 3 given by\int 
\BbbR 4
f d\sigma \alpha = \alpha  - 4

\int 
S2

\int 1

 - 1

f
\Bigl( 
\theta (1 - \theta 2)

\alpha , (1 - \theta 2)\omega 
\alpha 

\Bigr) 
(1 - \theta 2)3 d\theta d\omega .

Each \sigma \alpha is supported on a compact hypersurface in \BbbR 4, and it is not difficult to
see that

\sigma 1(B(x, r)) \leq Cr3 \leq C\epsilon r
3 - \varepsilon 

for every x \in \BbbR 4, r > 0 and \varepsilon > 0, therefore\sum 
\alpha \in 2\BbbN +1

\sigma \alpha (B(x, r)) =
\sum 

\alpha \in 2\BbbN +1

\alpha  - 4\sigma 1(B(\alpha x, \alpha r)) \leq C\varepsilon r
3 - \varepsilon 

\sum 
\alpha \in 2\BbbN +1

\alpha  - (1+\epsilon ),
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Figure 4.3: Group N3,2: supports of the measures \sigma \prime \alpha 

i.e.,
\sum 
\alpha \sigma \alpha is locally 3-bounded on \BbbR 4 and consequently \sigma is locally 4-bounded

on \BbbR 5 \setminus \{ 0\} .
Let \Delta =  - (T 2

1 + T 2
2 + T 2

3 ) be the central Laplacian. Then

L,D,\Delta 

is a Rockland system on N3,2; in fact (see [FRY10], Theorem 7.5) this is a system
of generators of the left-invariant SO3-invariant differential operators relative
to the Gelfand pair (N3,2 \rtimes SO3, SO3). The associated Plancherel measure \sigma \prime 

on \BbbR 3 is easily obtained as the push-forward of the previously considered \sigma :\int 
\BbbR 3
| m| 2 d\sigma \prime = (2\pi ) - 5

\sum 
\alpha \in 2\BbbN +1

\int \infty 

0

\int 
\BbbR 2
| m(\lambda , \lambda 3/2\xi , \lambda 2\zeta )| 2 d\sigma \prime \alpha (\xi , \zeta )\lambda 7/2 d\lambda ,

where \sigma \prime \alpha is the regular Borel measure on \BbbR 2 given by\int 
\BbbR 2
f d\sigma \prime \alpha = 4\pi \alpha  - 4

\int 1

 - 1

f
\Bigl( 
\theta (1 - \theta 2)

\alpha , (1 - \theta 2)2
\alpha 2

\Bigr) 
(1 - \theta 2)3 d\theta .

Each \sigma \prime \alpha is supported on a curve in \BbbR 2, and it is not difficult to see that

\sigma \prime 1(B((\xi , \zeta ), r)) \leq Cr,

therefore\sum 
\alpha \in 2\BbbN +1

\sigma \prime \alpha (B((\xi , \zeta ), r)) \leq 
\sum 

\alpha \in 2\BbbN +1

\alpha  - 4\sigma \prime 1(B((\alpha \xi , \alpha 2\zeta ), \alpha 2r)) \leq Cr
\sum 

\alpha \in 2\BbbN +1

\alpha  - 2

which implies that
\sum 
\alpha \sigma 

\prime 
\alpha is locally 1-bounded on \BbbR 2, and consequently \sigma \prime is

locally 2-bounded on \BbbR 3 \setminus \{ 0\} .
Via projections, one can now obtain the Plancherel measures associated to

the systems
L, - iT1, - iT2, - iT3, L,\Delta , L,D,
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and estimate with analogous techniques the optimal exponent d for the local
d-boundedness, which in these cases is half-integer.

For instance, for the first of these systems, the Plancherel measure \sigma \prime \prime is
determined by\int 

\BbbR 4
| m| 2 d\sigma \prime \prime = (2\pi ) - 5

\sum 
\alpha \in 2\BbbN +1

\int \infty 

0

\int 
\BbbR 3
| m(\lambda , \lambda \eta )| 2 d\sigma \prime \prime \alpha (\eta )\lambda 7/2 d\lambda ,

where \sigma \prime \prime \alpha is the measure on \BbbR 3 such that\int 
\BbbR 3
f d\sigma \prime \prime \alpha = \alpha  - 4

\int 
S2

\int 1

0

f
\Bigl( \nu \omega 
\alpha 

\Bigr) 
\nu 3(1 - \nu ) - 1/2 d\nu d\omega .

Each of the measures \sigma \prime \prime \alpha is supported on a ball of \BbbR 3 centered at the origin, and
is absolutely continuous with respect to the Lebesgue measure, but the density
is not bounded, and diverges along the boundary of the support. Because of
this, the \sigma \prime \prime \alpha are not locally 3-bounded on \BbbR 3, but we have

\sigma \prime \prime 1 (B(\eta , r)) \leq Cr5/2;

thus, as before, it follows that \sigma \prime \prime is locally 7
2 -bounded on \BbbR 4 \setminus \{ 0\} .

Similarly, one obtains that the Plancherel measure associated to the systems
L,\Delta and L,D are both locally 3

2 -bounded on \BbbR 2 \setminus \{ 0\} .

The group G5,2 of [Nie83] is defined by the relations

[X5, X4] = X2, [X5, X3] = X1, (4.4.2)

where X5, X4, X3, X2, X1 is a basis of its Lie algebra g = g5,2. It is isomorphic
to the quotient of the free nilpotent group N3,2 by some central element; it is
also isomorphic to a semidirect product \BbbR \ltimes \BbbR 4.

The following are characteristic ideals of g:

z = [g, g] = span\{ X2,X1\} ,
h = span\{ X4,X3,X2,X1\} ;

in fact, z is the center of g, whereas h is the unique 4-dimensional abelian
subalgebra of g. The ideal y of g corresponding to the center of the quotient
g/z in this case coincides with the whole g.

Let \delta t be automorphic dilations on g. Then z and h are \delta t-homogeneous.
Consequently, we can choose a homogeneous element \~X5 \in X5 + h and homo-
geneous elements \~X4, \~X3 in h which are linearly independent modulo z. If we
set moreover \~X2 = [ \~X5, \~X4] and \~X1 = [ \~X5, \~X3], then clearly in the (homo-
geneous) basis \~X5, \~X4, \~X3, \~X2, \~X1 the relations of g have the same form as in
(4.4.2). Therefore, without loss of generality, we may suppose that the initial
basis X5, X4, X3, X2, X1 is homogeneous.

If \lambda j is the homogeneity degree of Xj for j = 1, . . . , 5, then it must be

\lambda 2 = \lambda 5 + \lambda 4, \lambda 1 = \lambda 5 + \lambda 3;

conversely, for any choice of \lambda 5, \lambda 4, \lambda 3 \geq 1, if \lambda 2, \lambda 1 are determined by the
previous equalities, then the dilations \delta t of g defined by \delta t(Xj) = t\lambda jXj are
automorphic.
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With respect to the bases \=X5, \=X4, \=X3 of g/z and X\ast 
2 , X

\ast 
1 of z\ast , and to a

suitable norm on g\ast , we have (see \S 4.4.2)

| J(x5
\=X5 + x4

\=X4 + x3
\=X3, t2X

\ast 
2 + t1X

\ast 
1 )| 2 = (t2x4 + t1x3)2 + (t22 + t21)x

2
5.

The homogeneous elements \=X\ast 
5 of (g/z)\ast and X2 of z then attest that G5,2 is 2-

capacious (despite the fact that Proposition 4.3.13 does not apply in this case),
with respect to any homogeneous structure on g.

We fix now the homogeneous structure with \lambda 5 = \lambda 4 = \lambda 3 = 1, which makes
G5,2 into a stratified group of homogeneous dimension 7. We consider moreover
the Rockland system

L, - iX2, - iX1,

where L =  - (X2
5 + X2

4 + X2
3 ) is the sublaplacian. The computation of the

associated Plancherel measure \sigma is performed as in the previous cases, and
gives \int 

\BbbR 3
| m| 2 d\sigma = (2\pi ) - 4

\sum 
\alpha \in 2\BbbN +1

\int \infty 

0

\int 
\BbbR 2
| m(\lambda , \lambda \eta )| 2 d\sigma \alpha (\eta )\lambda 5/2 d\lambda ,

where \sigma \alpha is the measure on \BbbR 2 such that\int 
\BbbR 2
f d\sigma \alpha = \alpha  - 3

\int 
S1

\int 1

0

f
\Bigl( \nu \omega 
\alpha 

\Bigr) 
\nu 2(1 - \nu ) - 1/2 d\nu d\omega .

It is then not difficult to show, as in the case of the group N3,2, that \sigma 1 is
locally 3

2 -bounded on \BbbR 2, and consequently \sigma is locally 5
2 -bounded on \BbbR 3 \setminus \{ 0\} .

Here, however, we can also apply the techniques of \S 4.3, since

| J(x5
\=X5 + x4

\=X4 + x3
\=X3, t2X

\ast 
2 + t1X

\ast 
1 )| \geq | (t2, t1)| 2 | x5| 2;

thus, as in the case of \BbbH Hn, we consider the ``modified"" measure

d\~\sigma \gamma (\lambda , \tau ) = (1 + | \tau |  - \gamma ) d\sigma (\lambda , \tau )

for \gamma \in [0, 1[ arbitrarily near to 1. It is not difficult to show that \~\sigma \gamma is still
locally 5

2 -bounded on \BbbR \times (\BbbR 2 \setminus \{ 0\} ), but, for \gamma near 1, it is only locally (3 - \gamma )-
bounded on \BbbR 3 \setminus \{ 0\} . Anyway, all the measures \~\sigma \gamma are locally 2-bounded on
\BbbR 3 \setminus \{ 0\} , and this will yield --- differently from the case of the groups \BbbH Hn ---
an improvement in the multiplier theorems of Chapter 5.

The free 2-step nilpotent group N4,2 on four generators is defined by
the relations

[Xj , Xk] = Tjk

for 1 \leq j < k \leq 4, where X1, X2, X3, X4, T12, T13, T14, T23, T24, T34 is a basis of
its Lie algebra n4,2.

A family \delta t of automorphic dilations is given by

\delta t(Xj) = tXj , \delta t(Tjk) = t2Tjk,

which makes N4,2 into a stratified group of homogeneous dimension 16.
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If L =  - (X2
1 +X2

2 +X2
3 +X2

4 ) is the sublaplacian and

D =  - (X2T12 +X3T13 +X4T14)2  - ( - X1T12 +X3T23 +X4T24)2

 - ( - X1T13  - X2T23 +X4T34)2  - ( - X1T14  - X2T24  - X3T34)2,

then it is easily checked that

L,D, - iT12, - iT13, - iT14, - iT23, - iT24, - iT34

is a Rockland system.
Let us fix on n4,2 the inner product which makes

X1, X2, X3, X4, T12, T13, T14, T23, T24, T34

into an orthonormal basis, and identify z and its dual with so4, the space of
skew-symmetric 4\times 4 matrices, where the vector Tjk corresponds to the matrix

(\delta jm\delta kl  - \delta jl\delta km)l,m

(where \delta rs is the Kronecker delta). If v is identified with \BbbR 4 via the basis
X1, X2, X3, X4, then it is easily seen that, for \tau \in so4, the matrix representing
the endomorphism B(\tau ) of v is \tau itself. Moreover, \Lambda = \{ \tau : det \tau \not = 0\} , and
r\tau = 0 for \tau \in \Lambda .

For b = (b1, b2) \in \BbbR 2, let

\tau b =

\Biggl( 
0  - b1 0 0
b1 0 0 0
0 0 0  - b2
0 0 b2 0

\Biggr) 
\in so4.

In order to write the Plancherel formula, we will use the following change of
variables (cf. [Hel84], Theorem I.5.17):\int 

so4

f(\tau ) d\tau = \pi 2

\int 
SO4

\int 
\BbbR 2
f(\rho \tau b\rho  - 1) (b21  - b22)

2 db d\rho ,

where the integration on SO4 is made with respect to the Haar measure of
total mass 1; in fact, if \tau = \rho \tau b\rho 

 - 1, then we simply have b1(\tau ) = b1, b2(\tau ) = b2.
Therefore, the Plancherel measure \sigma associated to the aforementioned Rockland
system on N4,2 is given by\int 

\BbbR 8
| m| 2 d\sigma 

=
1

28\pi 6

\sum 
\alpha \in (1+2\BbbN )2

\int 
SO4

\int 
\BbbR 2
| m(| b1| \alpha 1 + | b2| \alpha 2, | b1| 3\alpha 1 + | b2| 3\alpha 2, \rho \tau b\rho 

 - 1)| 2

\times | b1b2| (b21  - b22)
2 db d\rho 

In particular, if \Delta =  - (T 2
12 + T 2

13 + T 2
14 + T 2

23 + T 2
24 + T 2

34) is the central
Laplacian, and P =  - T12T34 + T13T24  - T14T23, then also

L,D, P,\Delta 
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Figure 4.4: Group N4,2: supports of the measures \sigma \prime \alpha ,\varepsilon 

is a Rockland system (in fact, it is a system of generators of the SO4-invariant
differential operators relative to the Gelfand pair (N4,2 \rtimes SO4, SO4), see Theo-
rem 7.5 of [FRY10]), and the associated Plancherel measure \sigma \prime is given by\int 

\BbbR 4
| m| 2 d\sigma \prime 

=
1

28\pi 6

\sum 
\alpha \in (1+2\BbbN )2

\int 
\BbbR 2
| m(| b1| \alpha 1 + | b2| \alpha 2, | b1| 3\alpha 1 + | b2| 3\alpha 2, b1b2, b

2
1 + b22)| 2

\times | b1b2| (b21  - b22)
2 db,

i.e.,\int 
\BbbR 4
| m| 2 d\sigma \prime = 1

27\pi 6

\sum 
\alpha \in (1+2\BbbN )2

\varepsilon \in \{  - 1,1\} 

\int \infty 

0

\int 
\BbbR 3
| m(\lambda , \lambda 3\xi , \lambda 2\eta , \lambda 2\zeta )| 2 d\sigma \prime \alpha ,\varepsilon (\xi , \eta , \zeta )\lambda 7 d\lambda ,

where \sigma \prime \alpha ,\varepsilon is the regular Borel measure on \BbbR 3 given by

\int 
\BbbR 3
f d\sigma \prime \alpha ,\varepsilon =

\int 1

0

f
\Bigl( 

(1 - \theta )3
\alpha 2

1
+ \theta 3

\alpha 2
2
, \varepsilon (1 - \theta )\theta \alpha 1\alpha 2

, (1 - \theta )2
\alpha 2

1
+ \theta 2

\alpha 2
2

\Bigr) 
\times (1 - \theta )\theta 

\alpha 2
1\alpha 

2
2

\Bigl( 
(1 - \theta )2
\alpha 2

1
 - \theta 2

\alpha 2
2

\Bigr) 2

d\theta .

By projection, we also obtain the Plancherel measure \sigma \prime \prime associated to the Rock-
land system

L,P,\Delta ,
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namely\int 
\BbbR 3
| m| 2 d\sigma \prime \prime = 1

27\pi 6

\sum 
\alpha \in (1+2\BbbN )2

\varepsilon \in \{  - 1,1\} 

\int \infty 

0

\int 
\BbbR 2
| m(\lambda , \lambda 2\eta , \lambda 2\zeta )| 2 d\sigma \prime \prime \alpha ,\varepsilon (\eta , \zeta )\lambda 7 d\lambda ,

where the \sigma \prime \prime \alpha ,\varepsilon are the corresponding projections of the \sigma \prime \alpha ,\varepsilon .
Notice now that, if p\varepsilon : \BbbR 2 \rightarrow \BbbR is the linear map defined by

p\varepsilon (\eta , \zeta ) = \zeta + 2\epsilon \eta ,

then the measure \nu \alpha = p1(\sigma \alpha , - 1) = p - 1(\sigma \alpha ,1) on \BbbR satisfies\int 
\BbbR 
f d\nu \alpha =

\int 1

0

f

\biggl( \Bigl( 
1 - \theta 
\alpha 1

 - \theta 
\alpha 2

\Bigr) 2
\biggr) 

(1 - \theta )\theta 
\alpha 2

1\alpha 
2
2

\Bigl( 
1 - \theta 
\alpha 1

 - \theta 
\alpha 2

\Bigr) 2 \Bigl( 
1 - \theta 
\alpha 1

+ \theta 
\alpha 2

\Bigr) 2

d\theta 

\leq 1
4\alpha 2

1\alpha 
2
2

\Bigl( 
1
\alpha 1

+ 1
\alpha 2

\Bigr) 2
\int 1

0

f(s) ds,

from which we get

\sigma \alpha ,\varepsilon (B((\eta , \zeta ), r)) \leq \nu \alpha (B(p - \varepsilon (\zeta , \eta )), r
\surd 

5) \leq 
\surd 

5
4\alpha 2

1\alpha 
2
2

\biggl( 
1
\alpha 1

+
1
\alpha 2

\biggr) 2

r.

Consequently, the sum of the \sigma \prime \prime \alpha ,\varepsilon is locally 1-bounded on \BbbR 2, and the measure
\sigma \prime is locally 2-bounded on \BbbR 3 \setminus \{ 0\} . But then also the sum of the \sigma \prime \alpha ,\varepsilon is locally
1-bounded on \BbbR 3, so that \sigma \prime is locally 2-bounded on \BbbR 4 \setminus \{ 0\} .

Analogously, one deduces that the previously considered measure \sigma and the
Plancherel measure associated to the system

L, - iT12, - iT13, - iT14, - iT23, - iT24, - iT34

are both locally 2-bounded off the origin.

4.4.4 Some 3-step groups

The free 3-step nilpotent group N2,3 on two generators is defined by
the relations

[X1, X2] = Y, [X1, Y ] = T1, [X2, Y ] = T2,

where X1, X2, Y, T1, T2 is a basis of its Lie algebra n2,3.
A family \delta t of automorphic dilations is given by

\delta t(Xj) = tXj , \delta t(Y ) = t2Y, \delta t(Tj) = t3Tj ,

which makes N2,3 into a stratified group of homogeneous dimension 10.
If L =  - (X2

1 +X2
2 ) is the sublaplacian and D = 2X2T1  - 2X1T2  - Y 2, then

it is easily checked that
L,D, - iT1, - iT2

is a Rockland system. Notice that the group SO2 acts onN2,3 by automorphisms
given by simultaneous rotations of \BbbR X1 + \BbbR X2 and \BbbR T1 + \BbbR T2, and that the
algebra generated by L,D, - iT1, - iT2 is SO2-invariant. As we are going to
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see, this invariance by rotations gives some information about the Plancherel
measure, which yields improvements in the weighted estimates.

We consider first the subsystem

L, - iT1, - iT2;

by homogeneity (cf. Propositions 2.3.23 and 3.6.4), we know that the associated
Plancherel measure \sigma 0 is given by\int 

\BbbR 3
f d\sigma 0 =

\int \infty 

0

\int 
\BbbR 2
f(\lambda , \lambda 3/2\xi ) d\sigma \prime 0(\xi )\lambda 

4 d\lambda ,

where \sigma \prime 0 is a compactly supported regular Borel measure on \BbbR 2 which is invari-
ant by rotations, so that in turn it can be written in the form\int 

\BbbR 2
f d\sigma \prime 0 =

1
2\pi 

\int 
S1

\int 
[0,+\infty [

f(\rho \omega ) d\sigma \prime \prime 0 (\rho ) d\omega ,

where \sigma \prime \prime 0 is the push-forward of \sigma \prime 0 via the map \xi \mapsto \rightarrow | \xi | 2.
Notice now that, for r \leq 1, \alpha > 0,

\sigma \prime \prime 0 ([0, r[) = 5
\int 

\BbbR 3
\chi ]0,1[(\lambda )\chi B(0,r)(\lambda  - 3/2\tau ) d\sigma 0(\lambda , \tau )

\leq 5r\alpha 
\int 

\BbbR 3
\chi ]0,1[(\lambda )\chi B(0,1)(\tau ) | \tau |  - \alpha 2 d\sigma 0(\lambda , \tau ).

Since, by Proposition 4.3.8, the last integral is finite for \alpha < 2, we deduce that

\sigma \prime 0(B(0, r)) = \sigma \prime \prime 0 ([0, r[) \leq C\alpha r
\alpha for 0 < \alpha < 2

(notice that, for r \geq 1, one can use the fact that \sigma \prime \prime 0 is compactly supported).
Consequently, \sigma \prime 0 is locally 1-bounded on \BbbR 2: in fact, for \xi \in \BbbR 2 and r > 0,

if | \xi | 2 \leq 2r then
\sigma \prime 0(B(\xi , r)) \leq \sigma \prime 0(B(0, 3r)) \leq Cr,

whereas, for | \xi | 2 \geq 2r, the ball B(\xi , r) is seen from the origin in an angle of
magnitude less than \pi r/| \xi | 2, so that

\sigma \prime 0(B(\xi , r)) \leq r

2| \xi | 2
\sigma \prime \prime 0
\bigl( \bigl[ 

0, 3
2 | \xi | 2

\bigl[ \bigr) 
\leq Cr.

Therefore, \sigma 0 is locally 2-bounded on \BbbR 3 \setminus \{ 0\} .
This result has consequences also for the larger system L,D, - iT1, - iT2. In

fact, if \sigma is the Plancherel measure associated to this system, then, as before,\int 
\BbbR 4
f d\sigma =

\int \infty 

0

\int 
\BbbR 3
f(\lambda , \lambda 2\eta , \lambda 3/2\xi ) d\sigma \prime (\eta , \xi )\lambda 4 d\lambda ,

where \sigma \prime is a compactly supported regular Borel measure on \BbbR 3; since the push-
forward of \sigma \prime via the map \BbbR 3 \ni (\eta , \xi ) \mapsto \rightarrow \xi \in \BbbR 2 is the measure \sigma \prime 0, then also \sigma \prime 

is locally 1-bounded on \BbbR 3, so that \sigma is locally 2-bounded on \BbbR 4 \setminus \{ 0\} .
It is also possible to consider the systems

L,D, L,\Delta , L,D,\Delta ,

where \Delta =  - (T 2
1 + T 2

2 ) is the central Laplacian. In this case, all the mentioned
operators are SO2-invariant, so that the action of SO2 on the joint spectrum is
trivial, and we do not recover any information on the Plancherel measure.
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The group G6,19 of [Nie83] is defined by the relations

[X6, X5] = X4, [X6, X3] = X1, [X5, X4] = X2, (4.4.3)

where X6, X5, X4, X3, X2, X1 is a basis of its Lie algebra g = g6,19. This group
also appears, in a different form1, in [Jen79].

For any ideal I of g, let C(I) denote the ideal of g corresponding to the
center of the quotient g/I, and Z(I) the centralizer of I in g. We then find
quite a rich collection of characteristic ideals of g:

[g, g] = span\{ X4, X2,X1\} ,
[g, [g, g]] = span\{ X2 \} ,
z = C(0) = span\{ X2,X1\} ,
y = C(z) = span\{ X4,X3,X2,X1\} ,

h = Z([g, g]) = span\{ X6, X4,X3,X2,X1\} ,
[h, h] = span\{ X1\} ,

k = C([h, h]) = span\{ X3,X2,X1\} ,
Z(k) = span\{ X5,X4,X3,X2,X1\} .

If \delta t are automorphic dilations on g, then the previous ideals must be all \delta t-
homogeneous. In particular, \~X2 = X2 and \~X1 = X1 are certainly homogeneous.
Moreover, in h we can find a homogeneous element \~X6 \in X6 + y, whereas in
Z(k) we find a homogeneous \~X5 \in X5 + y; then \~X4 = [ \~X6, \~X5] \in X4 + z is
homogeneous. Finally, in k we find a homogeneous \~X3 \in X3 + z. It is then
not difficult to show that, in the basis \~X6, \~X5, \~X4, \~X3, \~X2, \~X1, the relations of
g are the same as in (4.4.3), with Xj replaced by \~Xj ; therefore, without loss
of generality, we may suppose that the initial basis X6, X5, X4, X3, X2, X1 is
\delta t-homogeneous.

Notice that, if \lambda j is the homogeneity degree of Xj for j = 1, . . . , 6, then we
must have

\lambda 4 = \lambda 6 + \lambda 5, \lambda 2 = \lambda 6 + 2\lambda 5, \lambda 1 = \lambda 6 + \lambda 3;

in fact, for any choice of \lambda 6, \lambda 5, \lambda 3 \geq 1, if \lambda 4, \lambda 2, \lambda 1 are determined by the
previous equalities, we have a system of automorphic dilations \delta t on g such that
Xj has degree \lambda j for j = 1, . . . , 6. In particular, for \lambda 6 = \lambda 5 = \lambda 3 = 1 we have
a stratification on g.

By computing the capacity map J as in \S 4.4.2, one easily obtains that

| J(x6
\=X6 + x5

\=X5 + x4
\=X4 + x3

\=X3, t2X
\ast 
2 + t1X

\ast 
1 )| 2 = x2

6t
2
1 + x2

5t
2
2.

1In [Jen79], a 6-dimensional Lie algebra g with basis Y1, Y2, Y3, Y4, Y5, Y6 and relations

[Y1, Y2] = Y4, [Y2, Y3] = Y5, [Y1, Y3] = Y6 = [Y1, Y4] = [Y2, Y4]

is introduced, and it is claimed that there exist no dilations on g such that the elements of
degree 1 generate the whole algebra (i.e., that g is not stratifiable); the argument supporting
the claim, however, considers only dilations which make Y1, . . . , Y6 homogeneous. On the
other hand, by setting

X1 = Y5  - Y6, X2 =  - Y6, X3 = Y3  - Y4, X4 =  - Y4, X5 = Y1, X6 = Y2  - Y1,

one can easily check that the relations in the new basis X1, . . . , X6 coincide with the above
(4.4.3), and in the following we show that g6,19 admits a stratification.
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In particular, the linearly independent elements \=X\ast 
6 ,

\=X\ast 
5 \in (g/z)\ast and X2, X1 \in z

attest that G6,19 is 2-capacious (although Proposition 4.3.13 gives only that
G6,19 is 1-capacious), for any choice of a homogeneous structure on G6,19.

A Rockland system on G6,19 is given, e.g., by

L, - iX2, - iX1,

where L is any Rockland operator (with respect to some homogeneous structure)
on G6,19; for instance, one can take

L = ( - iX6)2k6 + ( - iX5)2k5 + ( - iX3)2k3

for any choice of k6, k5, k3 \in \BbbN \setminus \{ 0\} .

The group G6,23 of [Nie83] is defined by the relations

[X6, X5] = X4, [X6, X4] = X2, [X6, X3] =  - X1,

[X5, X4] = X1, [X5, X3] = X2,
(4.4.4)

where X6, X5, X4, X3, X2, X1 is a basis of its Lie algebra g = g6,23.
In this case, we have a less rich list of characteristic ideals:

[g, g] = span\{ X4, X2,X1\} ,
z = C(0) = [g, [g, g]] = span\{ X2 X1\} ,

y = C(z) = span\{ X4,X3,X2,X1\} .

However, since [y, y] = 0, the bracket [\cdot , \cdot ] : g\times g \rightarrow \BbbR defines a bilinear map

B : g/y\times y/z \rightarrow z,

and it is easily checked that B(\=x, \=y) = 0 implies \=x = 0 and \=y = 0.
Let \delta t be automorphic dilations on g. Then we can find a \delta t-homogeneous

basis v6, v5 of g/y, with degrees \lambda 6, \lambda 5 respectively, and a \delta t-homogeneous basis
w4, w3 of y/z, with degrees \lambda 4, \lambda 3 respectively. Notice that, by the aforemen-
tioned non-degeneracy, B(v6, w4), B(v5, w4) must be a homogeneous basis of z,
with degrees \lambda 2 = \lambda 6 + \lambda 4, \lambda 1 = \lambda 5 + \lambda 4 respectively. On the other hand, also
B(v6, w4), B(v6, w3) must be a homogeneous basis of z, thus B(v6, w3) must
have degree \lambda 1, so that \lambda 1 = \lambda 6 + \lambda 3. Analogously, B(v6, w3), B(w5, w3) is a
basis of z, thus B(w5, w3) must have degree \lambda 2, thus \lambda 2 = \lambda 5 + \lambda 3. By putting
all together, we get \lambda 6 = \lambda 5, \lambda 4 = \lambda 3, \lambda 2 = \lambda 1.

Consequently, we can choose \delta t-homogeneous elements \~X6 \in X6 + y and
\~X5 \in X5 + y, and set \~X4 = [ \~X6, \~X5] \in X4 + z; moreover, we can choose in y a
homogeneous \~X3 \in X3 + z. Finally, if we set \~X2 = X2 and \~X1 = X1, then it
is easily seen that the relations of g in the basis \~X6, \~X5, \~X4, \~X3, \~X2, \~X1 are the
same, mutatis mutandis, as in (4.4.4); therefore, without loss of generality, we
may suppose that the initial basis X6, X5, X4, X3, X2, X1 is \delta t-homogeneous.
Moreover, since [X6, X5] = X4, we must have \lambda 4 = 2\lambda 6 and \lambda 2 = 3\lambda 6; this
means that g6,23 admits an essentially unique homogeneous structure, which is
not stratified, because X6, X5 do not generate the whole Lie algebra.

The computation of the capacity map J (see \S 4.4.2) gives

| J(x6
\=X6 + x5

\=X5 + x4
\=X4 + x3

\=X3, t2X
\ast 
2 + t1X

\ast 
1 )| 2 = (x2

6 + x2
5)(t

2
2 + t21).
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In particular, the linearly independent elements \=X\ast 
6 ,

\=X\ast 
5 \in (g/z)\ast and X2, X1 \in z

attest that G6,23 is 2-capacious (despite the fact that Proposition 4.3.13 does
not apply to this group), for any choice of a homogeneous structure on G6,23.

A Rockland system on G6,23 is given, e.g., by

L, - iX2, - iX1,

where L is any Rockland operator on G6,23; for instance, one can take

L = ( - iX6)4k + ( - iX5)4k + ( - iX3)2k

for any choice of k \in \BbbN \setminus \{ 0\} .

4.5 An intrinsic perspective

Let L1, . . . , Ln be a weighted subcoercive system on a connected Lie group G.
It has already been noticed that the joint spectrum \Sigma of L1, . . . , Ln can be
identified with the Gelfand spectrum of the sub-C\ast -algebra C0(L) of Cv2(G).
By Proposition 3.2.3 and the following remarks, we have that C0(L) is the
closure of the algebra generated by

\{ \scrK L(e - r) : r \geq 0 is a polynomial and r(L) is weighted subcoercive\} .

By Proposition 3.5.2, this set depends only on the subalgebra \scrO of \frakD (G) gener-
ated by L1, . . . , Ln, and not on the choice of a particular system of generators
of \scrO . Therefore, the same holds for C0(L), which can thus be denoted also by
C0(\scrO ).

In particular, we can think of \Sigma as a particular immersion of the ``abstract""
Gelfand spectrum of the C\ast -algebra C0(\scrO ) in \BbbR n, due to a choice of generators
L1, . . . , Ln of \scrO . Notice that the results of \S 3.3 are consistent with this per-
spective, since the concept of ``joint eigenfunction"" depends only on \scrO and not
on the choice of the generators L1, . . . , Ln.

In order to have a more ``intrinsic"" presentation, one may start with the
notion of weighted subcoercive algebra, i.e., a finitely generated commutative
unital \ast -subalgebra of \frakD (G) containing a weighted subcoercive operator. A
weighted subcoercive system is then a (finite) system of (formally self-adjoint)
generators of a weighted subcoercive algebra. If \scrO is a weighted subcoercive
algebra, then it is not difficult to define:

\bullet the spectrum \Sigma of \scrO , i.e., the Gelfand spectrum of the C\ast -algebra C0(\scrO );

\bullet a resolution E of the identity of L2(G) on \Sigma and an isometric embedding
\scrK \scrO : L\infty (\Sigma , E) \rightarrow Cv2(G), extending the inverse of the Gelfand transform
of C0(\scrO ), such that

\phi \ast \scrK \scrO m =
\int 

\Sigma 

mdE for all \phi \in \scrD (G);

\bullet the Plancherel measure, i.e., a regular Borel measure \sigma on \Sigma such that\int 
G

| \scrK \scrO m(x)| 2 dx =
\int 

\Sigma 

| m| 2 d\sigma 

for every bounded Borel m : \Sigma \rightarrow \BbbC ;

150



4.5. An intrinsic perspective

\bullet for every choice of generators L1, . . . , Ln of \scrO , a topological embedding
\eta L : \Sigma \rightarrow \BbbR n, which maps homeomorphically \Sigma onto the joint spectrum
of L1, . . . , Ln.

In order to give an intrinsic version of the results of \S 4.1, one would like to
have a notion of smoothness on the spectrum \Sigma of a weighted subcoercive algebra
\scrO . Unfortunately, the embeddings of \Sigma in \BbbR n in general are not particularly
regular closed subsets of \BbbR n (see the examples of \S 4.4). However, if L1, . . . , Ln
and L\prime 1, . . . , L

\prime 
n\prime are two different systems of generators of \scrO , and if p : \BbbR n \rightarrow \BbbR n\prime 

is a polynomial map such that L\prime = p(L), then \eta L\prime = p \circ \eta L. Therefore, the
properties of functions which are preserved by these particular (polynomial)
changes of variables can be thought of as intrinsic.

In particular, for k \in \BbbN \cup \{ \infty \} , we may define Ck(\Sigma ) to be the set of
(continuous) functions f : \Sigma \rightarrow \BbbC such that, for some (equivalently, for every)
system of generators L of \scrO , the function f \circ \eta  - 1

L : \eta L(\Sigma ) \rightarrow \BbbC extends to a
function of class Ck on \BbbR n. Analogously, one can define the local Besov spaces
Bs\infty ,\infty ,\mathrm{l}\mathrm{o}\mathrm{c}(\Sigma ) for s > 0 (see Proposition 2.3.17).

From Theorem 4.1.6, Corollary 4.1.8 and Theorem 4.3.15 then we immedi-
ately deduce the following

Theorem 4.5.1. Let \scrO be a weighted subcoercive algebra on a connected Lie
group G, and let \Sigma be its spectrum.

\bullet If \alpha \geq 0, then, for every compactly supported m \in Bs\infty ,\infty ,\mathrm{l}\mathrm{o}\mathrm{c}(\Sigma ) with s > \alpha ,
\scrK \scrO m and all its left-invariant derivatives belong to L2(G, \langle x\rangle 2\alpha G dx).

\bullet If G has polynomial growth of degree QG, then, for every compactly sup-
ported m \in Bs\infty ,\infty loc(\Sigma ) with s > QG/2, it is \scrK \scrO m \in L1;\infty (G).

\bullet If G is a homogeneous group which is h-capacious for some h \in \BbbN , then,
for every compactly supported m \in Bs\infty ,\infty ,\mathrm{l}\mathrm{o}\mathrm{c}(\Sigma ) with s > (QG  - h)/2, it
is \scrK \scrO m \in L1;\infty (G).

Notice also that, if the group G is homogeneous, and if the weighted sub-
coercive algebra is invariant by dilations (so that it admits a finite system of
homogeneous generators), then we have the corresponding dilations on the ab-
stract spectrum \Sigma . Therefore, also the Mihlin-H\"ormander and Marcinkiewicz
conditions --- which has been considered in Chapter 2 and will be used as hy-
potheses for the multiplier theorems of Chapter 5 --- can be given an intrinsic
formulation (at least by restricting to minimal homogeneous systems of gener-
ators of \scrO , cf. Proposition 2.4.12).
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Chapter 5

Multiplier theorems

In this last part of the work, homogeneity (of the group and the operators under
consideration) plays a crucial role.

By means of homogeneity, in fact, along with singular integral operator
theory, the weighted estimates obtained in the previous chapter can be put
together, thus obtaining a multiplier theorem of Mihlin-H\"ormander type for a
homogeneous weighted subcoercive system.

Next, we develop a sort of product theory of the above: several homogeneous
groups Gj are considered, each with its own homogeneous system of operators.
By a non-conventional use of transference techniques (together with Littlewood-
Paley decompositions and maximal operators), we obtain a multiplier theorem
of Marcinkiewicz type, not only on the direct product of the Gj , but also on
fairly different groups, even non-nilpotent.

Finally, some applications are presented, and particularly it is shown how,
by the use of the mentioned theorems, it is possible to improve known multiplier
results for a single operator on some non-nilpotent groups.

5.1 Singular integral operators

Here we summarize the main notions and techniques related to singular integral
operators which will be used in the following sections in order to prove the mul-
tiplier theorems. Thus we shall restrict to the case of left-invariant operators T
on a homogeneous Lie group G (with automorphic dilations \delta t and homogeneous
dimension Q\delta ), which are given by convolution:

Tf = f \ast k

for some distribution k \in \scrS \prime (G) (see Theorem 1.2.3). In our context, the under-
lying metric measure space is the homogeneous group G with a Haar measure
(i.e., essentially \BbbR d with the Lebesgue measure, where d = dimG) and a ho-
mogeneous left-invariant distance induced by a subadditive homogeneous norm
| \cdot | \delta . It should be noticed, however, that some of the results mentioned below
admit an extension to more general settings, such as the spaces of homogeneous
type developed by Coifman, de Guzman and Weiss (see [CG71], [CW71]), where
the notions of distribution and convolution cannot be used.
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Chapter 5. Multiplier theorems

Our first multiplier theorem will be proved in \S 5.2 via the Calder\'on-Zygmund
singular integral theory, which allows, starting from an operator T bounded
on L2(G), to obtain boundedness of T on Lp(G) for some p \not = 2, under the
hypothesis that the convolution kernel k is a function off the origin satisfying
suitable estimates.

Theorem 5.1.1. Let T be a bounded operator on L2(G) whose convolution
kernel k \in \scrS \prime (G) is such that k| G\setminus \{ e\} \in L1

\mathrm{l}\mathrm{o}\mathrm{c}(G \setminus \{ e\} ) and, for some K \geq 0,
c > 1,\int 

| x| \delta \geq c| h| \delta 
| k(xh) - k(x)| dx \leq K,

\int 
| x| \delta \geq c| h| \delta 

| k(hx) - k(x)| dx \leq K,

for all h \in G \setminus \{ e\} . Then T is of weak type (1, 1) and bounded on Lp(G) for
1 < p <\infty , with \| T\| p\rightarrow p \leq Cp(\| T\| 2\rightarrow 2 +K).

Proof. See e.g. [Ste93], \S I.5, Theorem 3 and \S I.7.4(iii).

For the second multiplier theorem, proved in \S 5.3, a multi-parameter struc-
ture is required, and Littlewood-Paley theory is exploited. An important tool
will be the following result, which summarizes a well-known argument for prov-
ing properties of square functions.

Proposition 5.1.2. Let (X,\mu ) be a \sigma -finite measure space, \varrho \geq 1, 1 \leq p <\infty ,
T\vec{}k (\vec{}k \in \BbbN \varrho ) bounded linear operators on Lp(X,\mu ). Let A > 0 be such that, for
all choices of \varepsilon ik \in \{  - 1, 1\} (1 \leq i \leq \varrho , k \in \BbbN ) and of a finite subset I \subseteq \BbbN \varrho , we
have \bigm\| \bigm\| \bigm\| \sum \vec{}k\in I \varepsilon 

1
k1
\cdot \cdot \cdot \varepsilon \varrho k\varrho 

T\vec{}k

\bigm\| \bigm\| \bigm\| 
p\rightarrow p

\leq A. (5.1.1)

Then, for all f \in Lp(X,\mu ),\bigm\| \bigm\| \bigm\| \bigl( \sum \vec{}k\in \BbbN \varrho | T\vec{}kf | 
2
\bigr) 1/2\bigm\| \bigm\| \bigm\| 

p
\leq C\varrho ,pA\| f\| p. (5.1.2)

Moreover, if p > 1, for all \{ f\vec{}k\} \vec{}k\in \BbbN \varrho \subseteq Lp(X,\mu ), if
\bigl( \sum 

\vec{}k | f\vec{}k| 
2
\bigr) 1/2 \in Lp(X,\mu ),

then \bigm\| \bigm\| \sum 
\vec{}k\in \BbbN \varrho T\vec{}kf\vec{}k

\bigm\| \bigm\| 
p
\leq C\varrho ,p\prime A

\bigm\| \bigm\| \bigm\| \bigl( \sum \vec{}k\in \BbbN \varrho | f\vec{}k| 
2
\bigr) 1/2\bigm\| \bigm\| \bigm\| 

p

where the series on the left-hand side converges unconditionally in Lp.

Proof. For n \in \BbbN , let rn : [0, 1] \rightarrow \BbbR be the n-th Rademacher function,

rn(t) = ( - 1)\lfloor 2
nt\rfloor ,

and set r\vec{}k = rk1 \otimes \cdot \cdot \cdot \otimes rk\varrho 
for \vec{}k = (k1, . . . , k\varrho ) \in \BbbN \varrho . Then (r\vec{}k)\vec{}k is an

(incomplete) orthonormal system in L2([0, 1]\varrho ), and the following Khinchin's
inequalities hold: for 1 \leq p <\infty , there exist constants c\varrho ,p, C\varrho ,p > 0 such that

c - 1
\varrho ,p\| f\| p \leq \| f\| 2 \leq C\varrho ,p\| f\| p for all f \in span\{ r\vec{}k : \vec{}k \in \BbbN \varrho \} .

(see [Ste70a], Appendix D, or [Gra08], Appendix C).
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Consequently, for all finite I \subseteq \BbbN \varrho and f \in Lp(X,\mu ), we have\bigm\| \bigm\| \bigm\| \bigl( \sum \vec{}k\in I | T\vec{}kf | 
2
\bigr) 1/2\bigm\| \bigm\| \bigm\| p

p
=
\int 
X

\bigl( \sum 
\vec{}k\in I | T\vec{}kf(x)| 2

\bigr) p/2
d\mu (x)

\leq Cp\varrho ,p

\int 
X

\int 
[0,1]\varrho 

\bigm| \bigm| \sum 
\vec{}k\in I T\vec{}kf(x)r\vec{}k(t)

\bigm| \bigm| p dt d\mu (x)

= Cp\varrho ,p

\int 1

0

\bigm\| \bigm\| \bigl( \sum 
\vec{}k\in I r\vec{}k(t)T\vec{}k

\bigr) 
f
\bigm\| \bigm\| p dt \leq Cp\varrho ,pA

p\| f\| pp.

Since I \subseteq \BbbN \varrho was arbitrary, (5.1.2) follows by monotone convergence.
Notice now that the vector-valued Lebesgue space Vp = Lp(X,\mu ; l2(\BbbN \varrho )) can

be thought of as a space of sequences of Lp(X,\mu )-functions:

Vp =
\Bigl\{ 

(f\vec{}k)\vec{}k\in \BbbN \varrho \in Lp(X,\mu )\BbbN :
\bigl( \sum 

\vec{}k | f\vec{}k| 
2
\bigr) 1/2 \in Lp(X,\mu )

\Bigr\} 
,

with norm
\| (f\vec{}k)\vec{}k\in \BbbN \varrho \| Vp

=
\bigm\| \bigm\| \bigm\| \bigl( \sum \vec{}k | f\vec{}k| 

2
\bigr) 1/2\bigm\| \bigm\| \bigm\| 

p
.

The inequality (5.1.2) therefore means that the operator f \mapsto \rightarrow (T\vec{}kf)\vec{}k\in \BbbN \varrho is
bounded Lp(X,\mu ) \rightarrow Vp, with norm not greater than C\varrho ,pA.

If p > 1, the hypothesis (5.1.1) is equivalent to\bigm\| \bigm\| \bigm\| \sum \vec{}k\in I \varepsilon 
1
k1
\cdot \cdot \cdot \varepsilon nkn

T \ast \vec{}k

\bigm\| \bigm\| \bigm\| 
p\prime \rightarrow p\prime 

\leq A;

consequently we also have that S : f \mapsto \rightarrow (T \ast \vec{}k f)\vec{}k\in \BbbN \varrho is bounded Lp
\prime 
(X,\mu ) \rightarrow Vp\prime ,

with norm not greater than C\varrho ,p\prime A. This means that the transpose operator
S\ast : Vp \rightarrow Lp(X,\mu ) is bounded too, with the same norm; since it is easily
shown that

S\ast 
\bigl( 
(f\vec{}k)\vec{}k

\bigr) 
=
\sum 
\vec{}k T\vec{}kf\vec{}k,

where the series on the right-hand side converges unconditionally in Lp, the
remaining part of the conclusion follows.

The other fundamental tool will be the boundedness of some maximal oper-
ators, given by the following general result of Christ [Chr92]:

Theorem 5.1.3. Let G be a nilpotent Lie group, and let X1, . . . , Xd a basis of
its Lie algebra g. Identify G = g via exponential coordinates, and let \daleth \vec{}t be the
multi-parameter dilations on G given by

\daleth (t1,...,td)Xj = tjXj .

Then the strong maximal operator M\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{g} associated to the basis X1, . . . , Xd,
defined by

M\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{g}f(x) = sup
\vec{}t>0

\int 
K

| f(x \cdot (\daleth \vec{}t(y))
 - 1)| dy (5.1.3)

(where K is some compact neighborhood of the identity), is bounded on Lp(G)
for 1 < p \leq \infty .
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Chapter 5. Multiplier theorems

5.2 Mihlin-H\"ormander multipliers

Let G be a homogeneous Lie group, with automorphic dilations \delta t and homo-
geneous dimension Q\delta . We denote by QG the degree of polynomial growth of
G. Moreover, we fix a connected modulus | \cdot | G on G and we set

\langle x\rangle G = 1 + | x| G.

We denote also by | \cdot | \delta a subadditive homogeneous norm on G.
Let L1, . . . , Ln be a homogeneous weighted subcoercive system on G, and

\epsilon t be the associated dilations on \BbbR n, as in (3.6.1). Denote moreover by | \cdot | \epsilon a
\epsilon -homogeneous norm on \BbbR n, smooth away from the origin.

Our starting point is, for some p \in [1,\infty ] and s \in \BbbR , the following

hypothesis (Ip,s): for some compact K0 \subseteq \BbbR n \setminus \{ 0\} such that\bigcup 
t>0

\epsilon t( \r K0) = \BbbR n \setminus \{ 0\} ,

for some q0 \in [1,\infty ], for all \beta > s and for all m \in \scrD (\BbbR n) with
suppm \subseteq K0, we have

\| \u m\| L1(G) \leq C\beta \| m\| B\beta 
p,q0 (\BbbR n).

This hypothesis can be checked by exploiting the results of Chapter 3; for
instance, we have

Proposition 5.2.1. For every p \in [1,\infty ], the hypothesis (Ip,s) holds in each of
the following cases:

\bullet s = QG/2 + n/p - 1/max\{ 2, p\} ;

\bullet \sigma is locally d-bounded on \BbbR n \setminus \{ 0\} and s = QG/2 + n/p - d/max\{ 2, p\} ;

\bullet G is h-capacious and s = (QG  - h)/2 + n/p - 1/max\{ 2, p\} .

Proof. The conclusion follows easily from the weighted estimates of \S 4.1 and
\S 4.3. We omit the details since an alternative proof is obtained by combining
the following Proposition 5.3.1 and Corollary 5.3.3.

Proposition 5.2.2. Suppose that (Ip,s) holds for some p \in [1,\infty ] and s \in \BbbR .
Then s \geq n/p. Moreover, for every compact K \subseteq \BbbR n \setminus \{ 0\} , for every q \in [1,\infty ],
for every \alpha \geq 0 and \beta > \alpha + s, for every D \in \frakD (G), for every m \in B\beta p,q(\BbbR n)
with suppm \subseteq K, we have

\| D \u m\| L1(G,\langle x\rangle \alpha dx) \leq CK,D,\alpha ,\beta ,q\| m\| B\beta 
p,q
.

Proof. Let \lambda \in \r K0. For every m \in \scrD (\BbbR n) with suppm \subseteq K0, we then have

| m(\lambda )| \leq \| m\| \infty = \| \u m\| Cv2 \leq \| \u m\| 1 \leq C\beta \| m\| B\beta 
p,q0

for all \beta > s; by Proposition 2.3.15, we conclude that s \geq n/p.
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Let now K \subseteq \BbbR n \setminus \{ 0\} be compact. Then we can find t1, . . . , tk such that

K \subseteq \epsilon t1(\r K0) \cup \cdot \cdot \cdot \cup \epsilon tk(\r K0)

by compactness. If
\phi 0, \phi 1, . . . , \phi k

is a partition of unity on \BbbR n subordinated to the open cover

\BbbR n \setminus K, \epsilon t1(\r K0), . . . , \epsilon tk(\r K0),

then \phi 1 + \cdot \cdot \cdot + \phi k \equiv 1 on K, so that, for every m \in \scrD (\BbbR n) with suppm \subseteq K,

m = m\phi 1 + \cdot \cdot \cdot +m\phi k = m1 \circ \epsilon t - 1
1

+ \cdot \cdot \cdot +mk \circ \epsilon t - 1
k
,

where the mj = (m\phi j) \circ \epsilon tj are supported in K0; therefore, for all \beta > s, by
Propositions 3.6.1 and 2.3.13,

\| \u m\| 1 \leq 
k\sum 
j=1

\| \u mj\| 1 \leq C\beta 

k\sum 
j=1

\| mj\| B\beta 
p,q0

\leq C\beta ,K\| m\| B\beta 
p,q0

.

If now, givenK \subseteq \BbbR n\setminus \{ 0\} compact and \beta > s, we choose someK \prime \subseteq \BbbR n\setminus \{ 0\} 
compact such that K \subseteq \r K \prime and some \beta \prime \in ]s, \beta [, by Proposition 2.3.9 it is
easy to see that every m \in B\beta p,q0(\BbbR 

n) with suppm \subseteq K can be approximated
in B\beta 

\prime 
p,q0(\BbbR 

n) by a sequence of smooth functions supported in K \prime , therefore,
by passing to the limit in the previously obtained inequality and by Proposi-
tion 2.3.2,

\| \u m\| 1 \leq C\beta \prime ,K\prime \| m\| B\beta \prime 
p,q0

\leq C\beta ,K\| m\| B\beta 
p,q0

.

On the other hand, by Corollary 4.1.8 and Proposition 2.3.2, we also have,
for \alpha \geq 0, \beta > \alpha +QG/2+n/p, K \subseteq \BbbR n \setminus \{ 0\} compact and m \in B\beta p,\infty (\BbbR n) with
suppm \subseteq K, that

\| \u m\| L1(\langle x\rangle \alpha dx) \leq CK,\alpha ,\beta \| m\| B\beta 
p,\infty 

.

Hence, analogously as in the proof of Theorem 4.1.6, we obtain first the conclu-
sion for D = 1 by interpolation, and then also for an arbitrary D \in \frakD (G).

Notice that, by Proposition 1.3.1, there are constants a,C > 0 such that

1 + | x| \delta \leq C\langle x\rangle aG. (5.2.1)

Corollary 5.2.3. Suppose that (Ip,s) holds for some p \in [1,\infty ] and s \in \BbbR .
Let K \subseteq \BbbR n \setminus \{ 0\} be compact, \beta > s and q \in [1,\infty ]. If m \in B\beta p,q(\BbbR n) and
suppm \subseteq K, then \u m \in L1(G), thus m(L) is bounded on Lp(G) for 1 \leq p \leq \infty .
Moreover, for 0 \leq \alpha < (\beta  - s)/a,\int 

G

(1 + | x| \delta )\alpha | \u m(x)| dx \leq CK,\alpha ,\beta ,p,q\| m\| B\beta 
p,q

(5.2.2)

and, for all h \in G,\int 
G

| \u m(xh) - \u m(x)| dx \leq CK,\beta ,p,q\| m\| B\beta 
p,q
| h| \delta , (5.2.3)\int 

G

| \u m(hx) - \u m(x)| dx \leq CK,\beta ,p,q\| m\| B\beta 
p,q
| h| \delta . (5.2.4)
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Proof. Since \beta > s+ a\alpha , by Proposition 5.2.2 and (5.2.1) we have\int 
G

(1 + | x| \delta )\alpha | \u m(x)| dx \leq C\alpha 

\int 
G

\langle x\rangle a\alpha G | \u m(x)| dx \leq CK,\alpha ,\beta ,p,q\| m\| B\beta 
p,q
,

and in particular \u m \in L1(G).
Starting from the inequality\int 

G

| \u m(x exp(tX)) - \u m(x)| dx \leq \| X \u m\| 1| t| ,

true for all X \in g and t \in \BbbR , chosen a basis X1, . . . , Xk of g, with Xj homoge-
neous of degree dj , it is not difficult to see that\int 

G

| \u m(xh) - \u m(x)| dx \leq C

k\sum 
j=1

\| Xj \u m\| 1| h| 
dj

\delta .

In particular, we also have\int 
G

| \u m(xh) - \u m(x)| dx \leq C

\left(  \| \u m\| 1 +
k\sum 
j=1

\| Xj \u m\| 1

\right)  | h| \delta 
(in fact, for | h| \delta small we have | h| dj

\delta \leq | h| \delta , whereas for | h| \delta large the left-hand
side is not greater than 2\| \u m\| 1). However, by Proposition 5.2.2,

\| \u m\| 1 +
k\sum 
j=1

\| Xj \u m\| 1 \leq CK,\beta ,p,q\| m\| B\beta 
p,q
,

thus we get (5.2.3). The remaining inequality is simply obtained by replacing
m with m.

Lemma 5.2.4. Let m be a bounded measurable function on \BbbR n. Then we can
find bounded measurable functions mj on \BbbR n (for j \in \BbbZ ) such that

suppmj \subseteq \{ \lambda : 2 - 1 \leq | \lambda | \epsilon \leq 2\} ,

\| mj\| B\beta 
p,q
\leq Cp,q,\beta \| m\| M\epsilon B

\beta 
p,q

for all p, q \in [1,\infty ] and \beta \geq 0, and moreover

\u m =
\sum 
j\in \BbbZ 

2 - Q\delta j \u mj \circ \delta 2 - j , (5.2.5)

in the sense of strong convergence of the corresponding convolution operators.

Proof. Set K = \{ \lambda : 2 - 1 \leq | \lambda | \epsilon \leq 2\} . Chosen a nonnegative \eta \in \scrD (\BbbR n)
supported in K and such that1\sum 

j\in \BbbZ 
\eta (\epsilon 2j (\lambda )) = 1 for all \lambda \not = 0,

1Take a nonnegative \gamma \in \scrD (]0, +\infty [) with [3/4, 3/2] \subseteq \{ \gamma \not = 0\} \subseteq [1/2, 2]. Then, for all
t > 0, there is at least one and at most two j \in \BbbZ such that \gamma (2jt) \not = 0, so that the sum
s(t) =

\sum 
j\in \BbbZ \gamma (2jt) is in fact locally a finite sum, s \in \scrE (]0, +\infty [) and s > 0; moreover, clearly

by definition s(2jt) = s(t) for all j \in \BbbZ , t > 0. Using s we can renormalize \gamma obtaining
\~\gamma = \gamma /s, which is again a smooth nonnegative function supported in [1/2, 2], but in addition
it satisfies

\sum 
j\in \BbbZ \~\gamma (2jt) = 1 for all t > 0. Since the homogeneous norm is smooth away from

0, the function \eta (x) = \~\gamma (| x| \epsilon ) has the required properties.
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5.2. Mihlin-H\"ormander multipliers

we have (see Proposition 2.4.1)

\| m\| M\epsilon B
\beta 
p,q

= sup
t>0

\| (m \circ \epsilon t) \eta \| B\beta 
p,q(\BbbR n).

Let
mj = (m \circ \epsilon 2 - j ) \eta .

Then clearly \| mj\| B\beta 
p,q

\leq \| m\| M\epsilon B
\beta 
p,q

and suppmj \subseteq K. Moreover we have
(away from 0)

m =
\sum 
j\in \BbbZ 

mj \circ \epsilon 2j .

In fact, this is locally a finite sum and the convergence holds pointwise (away
from 0), dominated by the constant \| m\| \infty . Since E(\{ 0\} ) = 0, by the spec-
tral theorem and Proposition 3.6.1 we then have (5.2.5), in the sense of strong
convergence of the corresponding convolution operators.

Proposition 5.2.5. Suppose that (Ip,s) holds for some p \in [1,\infty ] and s \in \BbbR .
Let \beta > s. If m is a bounded Borel function on \BbbR n such that \| m\| M\epsilon B

\beta 
p,q

< \infty ,
then \u m| G\setminus \{ e\} \in L1

\mathrm{l}\mathrm{o}\mathrm{c}(G \setminus \{ e\} ), and moreover\int 
| x| \delta \geq 2| h| \delta 

| \u m(xh) - \u m(x)| d\mu (x) \leq Cp,q,\beta \| m\| M\epsilon B
\beta 
p,q
, (5.2.6)\int 

| x| \delta \geq 2| h| \delta 
| \u m(hx) - \u m(x)| d\mu (x) \leq Cp,q,\beta \| m\| M\epsilon B

\beta 
p,q

(5.2.7)

for all h \in G \setminus \{ e\} .

Proof. Let mj (j \in \BbbZ ) be given by Lemma 5.2.4 and set uj = 2 - Q\delta j \u mj \circ \delta 2 - j .
Firstly we prove that the convergence in (5.2.5) holds also in L1

\mathrm{l}\mathrm{o}\mathrm{c}(G \setminus \{ e\} ).
In fact, let Bk = \{ x \in G : 2k \leq | x| \delta \leq 2k+1\} ; it is sufficient to prove the
convergence in each L1(Bk). We have\int 

Bk

| uj | d\mu =
\int 
Bk - j

| \u mj | d\mu 

and, for j \leq k,\int 
Bk - j

| \u mj(x)| dx \leq 2\alpha (j - k)
\int 
Bk - j

| \u mj(x)| | x| \alpha \delta dx \leq C2\alpha (j - k)\| m\| M\epsilon B
\beta 
p,q

(where \alpha > 0 is as in (5.2.2)), whereas, for j \geq k,\int 
Bk - j

| \u mj(x)| dx \leq \| \u mj\| 2 \mu (Bk - j)1/2 \leq \sigma (K)1/2\| m\| \infty \mu (B0)1/22Q\delta (k - j)/2,

(here we use a uniform estimate on the L2-norms of the \u mj) so that\sum 
j

\int 
Bk

| uj | d\mu \leq C \prime 
\sum 
j\leq k

2\alpha (j - k) + C \prime \prime 
\sum 
j\geq k

2Q\delta (k - j)/2 <\infty .

This shows (by uniqueness of limits) that the restriction of the distribution \u m
to G \setminus \{ e\} coincides with a function in L1

\mathrm{l}\mathrm{o}\mathrm{c}(G \setminus \{ e\} ).
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Notice that, if | x| \delta \geq 2| h| \delta , then | xh| \delta \geq | h| \delta by subadditivity of | \cdot | \delta , so
that in the integrals in (5.2.6), (5.2.7) the function \u m is always evaluated away
from the origin.

Since \u m =
\sum 
j\in \BbbZ uj \in L1

\mathrm{l}\mathrm{o}\mathrm{c}(G \setminus \{ e\} ), then Rh \u m  - \u m =
\sum 
j\in \BbbZ (Rhuj  - uj) is

in L1
\mathrm{l}\mathrm{o}\mathrm{c}(G \setminus \{ e, h - 1\} ), so that in particular\int 
R\geq | x| \delta \geq 2| h| \delta 

| \u m(xh) - \u m(x)| dx \leq 
\sum 
j\in \BbbZ 

\int 
R\geq | x| \delta \geq 2| h| \delta 

| uj(xh) - uj(x)| dx

for all R > 0 and then\int 
| x| \delta \geq 2| h| \delta 

| \u m(xh) - \u m(x)| dx \leq 
\sum 
j\in \BbbZ 

\int 
| x| \delta \geq 2| h| \delta 

| uj(xh) - uj(x)| dx.

Let k \in \BbbZ . Then for j < k\int 
| x| \delta \geq 2| h| \delta 

| uj(xh) - uj(x)| dx \leq 2
\int 
| x| \delta \geq | h| \delta 

| uj(x)| dx

= 2
\int 
| y| \delta \geq 2 - j | h| \delta 

| \u mj(y)| dy \leq Cp,q,\beta 
2\alpha j

| h| \alpha \delta 
\| m\| M\epsilon B

\beta 
p,q

by (5.2.2), whereas for j \geq k\int 
| x| \delta \geq 2| h| \delta 

| uj(xh) - uj(x)| dx \leq 
\int 
G

| \u mj(y\delta 2 - j (h)) - \u mj(y)| dy

\leq Cp,q,\beta 
| h| \delta 
2j
\| m\| M\epsilon B

\beta 
p,q

by (5.2.3). Putting all together,

\int 
| x| \delta \geq 2| h| \delta 

| \u m(xh) - \u m(x)| dx \leq Cp,q,\beta \| m\| M\epsilon B
\beta 
p,q

\left(  2k\alpha 

| h| \alpha \delta 

\sum 
j<0

2j\alpha +
| h| \delta 
2k
\sum 
j\geq 0

2 - j

\right)  
and, in order to obtain an estimate independent of h, it is sufficient to choose a
k such that 2k \leq | h| \delta < 2k+1.

Hence we have proved (5.2.6); the inequality (5.2.7) is obtained in the same
way, using (5.2.4) instead of (5.2.3).

Here is finally the multiplier theorem.

Theorem 5.2.6. Suppose that (Ip,s) holds for some p \in [1,\infty ] and s \in \BbbR . If m
is a bounded measurable function on \BbbR n such that \| m\| MHB\beta 

p,q
< \infty for some

\beta > s and q \in [1,\infty ], then the operator m(L) is of weak type (1, 1) and bounded
on Lr(G) for 1 < r <\infty , with

\| m(L)\| r\rightarrow r \leq Cr,p,q,\beta \| m\| M\epsilon B
\beta 
p,q
.

Proof. By Proposition 5.2.2, we have \beta > n/p, so that, by Proposition 2.3.2,

\| m\| \infty \leq Cp,q,\beta \| m\| M\epsilon B
\beta 
p,q
,

thus Theorem 5.1.1 and Proposition 5.2.5 yield immediately the conclusion.
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5.2. Mihlin-H\"ormander multipliers

The ``smoothness"" conditions (5.2.6), (5.2.7) proved in Proposition 5.2.5 for
the kernel \u m off the origin are sufficient, together with the L2-boundedness of
m(L), to obtain the previous multiplier theorem. However, we show now that,
under the same hypotheses, the kernel \u m satisfies also some ``size"" and ``cancel-
lation"" conditions, analogous to the ones considered for convolution kernels in
\BbbR n (see, e.g., \S 4.4 of [Gra08], or \S VI.4.5 of [Ste93]).

Recall that a normalized bump function (or n.b.f. in short) of order N is
a smooth function on G supported in a fixed compact neighborhood of the
identity, which is bounded by a fixed constant together with its derivatives up
to order N .

Proposition 5.2.7. Under the hypotheses of Proposition 5.2.5, we also have:

(a) for r > 0, \int 
r<| x| \delta <2r

| \u m(x)| dx \leq Cp,q,\beta \| m\| M\epsilon B
\beta 
p,q

;

(b) for every n.b.f. \phi of order 1 and every t > 0,

| \langle \u m,\phi \circ \delta t\rangle | \leq Cp,q,\beta \| m\| M\epsilon B
\beta 
p,q

;

(c) for 0 < r1 < r2, \bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
r1<| x| \delta <r2

\u m(x) dx

\bigm| \bigm| \bigm| \bigm| \bigm| \leq Cp,q,\beta \| m\| M\epsilon B
\beta 
p,q
.

Proof. (a) From the proof of Proposition 5.2.5, we get that, if

Bk = \{ x \in G : 2k \leq | x| \delta \leq 2k+1\} ,

then \int 
Bk

| \u m(x)| dx \leq Cp,q,\beta \| m\| M\epsilon B
\beta 
p,q
, (5.2.8)

where the constant Cp,q,\beta is independent of k \in \BbbZ , and we are done.
(b) Set N = \lfloor \mathrm{d}\mathrm{i}\mathrm{m}G

2 + 1\rfloor . The estimate for a n.b.f. \phi of order N follows
simply from boundedness of m, by the use of Sobolev's embedding:

| \langle \u m,\phi \circ \delta t\rangle | = | \langle (m \circ \epsilon t)\u , \phi \rangle | 
= | (\phi \ast \ast (m \circ \epsilon t)\u )(e)| 
\leq C max

| \alpha | \leq N
\| (X\alpha )\circ (\phi \ast \ast (m \circ \epsilon t)\u )\| 2

= C max
| \alpha | \leq N

\| (X\alpha \phi )\ast \ast (m \circ \epsilon t)\u \| 2

\leq C max
| \alpha | \leq N

\| (X\alpha \phi )\ast \| 2\| (m \circ \epsilon t)(L)\| 2\rightarrow 2 \leq C\| m\| \infty .

Observe that, by Propositions 5.2.2 and 2.3.2, \| m\| M\epsilon B
\beta 
p,q

majorizes \| m\| \infty .
In order to extend the result to n.b.f. functions of order 1, we follow Remark

2.1.7 of [NRS01]. Fix exponential coordinates x = (x1, . . . , xd) on G such that

\delta t(x1, . . . , xd) = (t\lambda 1x1, . . . , t
\lambda dxd),
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Chapter 5. Multiplier theorems

and let kj \in \scrD \prime (G) bet the product of the distribution \u m by the smooth function
x \mapsto \rightarrow xj (for j = 1, . . . , d). Let \eta \in \scrD (G), and let \eta j be the product of \eta by
x \mapsto \rightarrow xj . Then for every f \in \scrD (G) and every t > 0 we have

\langle kj , f\rangle = \langle kj , (1 - \eta \circ \delta t)f\rangle + t\lambda j \langle \u m, f(\eta j \circ \delta t)\rangle .

Notice now that, for t \geq 1, the functions (f \circ \delta t - 1)\eta j are n.b.f. of order N
(modulo a constant factor not depending on t \geq 1), thus, taking the limit for
t\rightarrow +\infty , we get

\langle kj , f\rangle = lim
t\rightarrow +\infty 

\langle kj , (1 - \eta \circ \delta t)f\rangle . (5.2.9)

By choosing an \eta equal to 1 in a neighborhood of the origin, we conclude that
kj is determined by its restriction to G \setminus \{ e\} .

Since the restriction of \u m off the origin is an L1
\mathrm{l}\mathrm{o}\mathrm{c} function, this holds also

for the kj . Moreover, from (5.2.8), by a simple dyadic decomposition we get\int 
0<| x| \delta \leq M

| xj \u m(x)| dx \leq Cp,q,\beta M
\lambda j\| m\| M\epsilon B

\beta 
p,q

<\infty 

for all M > 0. Therefore (5.2.9) gives

\langle kj , f\rangle =
\int 
G\setminus \{ e\} 

f(x)xj \u m(x) dx

for all f \in \scrD (G); in other words, kj is an L1
\mathrm{l}\mathrm{o}\mathrm{c} function on the whole of G, which

coincides with the pointwise product of \u m| G\setminus \{ e\} by x \mapsto \rightarrow xj .
Fix a n.b.f. \eta of order N such that \eta (0) = 1. For every n.b.f. \phi of order 1,

we may decompose

\phi (x) = \phi (0)\eta (x) +
d\sum 
j=1

xj\phi j(x)

for some \phi j \in \scrD (G) which are bounded by a fixed constant and supported in a
fixed compact neighborhood of the origin. In particular

\langle \u m,\phi \rangle = \phi (0)\langle \u m, \eta \rangle +
d\sum 
j=1

\langle kj , \phi j\rangle ,

thus from the previous estimates we deduce

| \langle \u m,\phi \rangle | \leq Cp,q,\beta \| m\| M\epsilon B
\beta 
p,q
,

but then, for an arbitrary t > 0,

| \langle \u m,\phi \circ \delta t\rangle | = | \langle (m \circ \epsilon t)\u , \phi \rangle | \leq Cp,q,\beta \| m \circ \epsilon t\| M\epsilon B
\beta 
p,q

= Cp,q,\beta \| m\| M\epsilon B
\beta 
p,q
.

(c) For 0 < r1 < r2, if we choose k1, k2 \in \BbbZ such that

2k1 \leq r1 < 2k1+1, 2k2 \leq r2 < 2k2+1,

and if we fix a nonnegative \phi \in \scrD (G) supported in \{ x : | x| \delta \leq 1\} and equal to
1 on \{ x : | x| \delta \leq 1/2\} , then\bigm| \bigm| \bigm| \bigm| \bigm| 

\int 
r1<| x| \delta <r2

\u m(x) dx

\bigm| \bigm| \bigm| \bigm| \bigm| \leq C

2\sum 
j=1

\Biggl( \int 
Bkj

| \u m| d\mu + | \langle \u m,\phi \circ \delta 
2 - (kj+1)\rangle | 

\Biggr) 
,

and the previously proved inequalities give the conclusion.
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If we require a greater regularity on the function m, we obtain a more precise
characterization of the corresponding convolution kernel \u m.

Proposition 5.2.8. Suppose that m : \BbbR n \rightarrow \BbbC satisfies a Mihlin-H\"ormander
condition of infinite order, adapted to the dilations \delta t. Then \u m| G\setminus \{ e\} is a smooth
function and, for every \delta t-homogeneous D \in \frakD (G), we have

| D \u m(x)| \leq Cm,D| x|  - (Q\delta +w)
\delta , (5.2.10)

where w is the homogeneity degree of D.

Proof. As before, let mj (j \in \BbbZ ) be given by Lemma 5.2.4 and set

uj = 2 - Q\delta j \u mj \circ \delta 2 - j , Bk = \{ x \in G : 2k \leq | x| \delta \leq 2k+1\} 

for j, k \in \BbbZ .
Let D \in \frakD (G) be \delta t-homogeneous of degree w. Let \alpha \geq 0, \beta > a\alpha ; by

Corollary 4.1.7 and (5.2.1), we have

sup
x\in G

(1 + | x| \delta )\alpha | D \u mj(x)| \leq CD,\alpha ,\beta \| m\| M\epsilon B
\beta 
\infty ,\infty 

,

which can be easily manipulated to obtain

| Duj(x)| \leq CD,\alpha ,\beta \| m\| M\epsilon B
\beta 
\infty ,\infty 

2 - j(Q\delta +w - \alpha )(2j + | x| \delta ) - \alpha . (5.2.11)

In particular, for x \in Bk, we have

| Duj(x)| \leq CD,\alpha ,\beta \| m\| M\epsilon B
\beta 
\infty ,\infty 

| x|  - (Q\delta +w)
\delta 2(k - j)(Q\delta +w - \alpha )(1 + 2j - k) - \alpha .

For j \geq k, we choose \alpha = Q\delta + w, so that\sum 
j\geq k

| Duj(x)| \leq Cm,D| x|  - (Q\delta +w)
\delta 

\sum 
j\geq 0

2 - j(Q\delta +w),

whereas, for j < k, we choose \alpha > Q\delta + w, so that\sum 
j<k

| Duj(x)| \leq Cm,D| x|  - (Q\delta +w)
\delta 

\sum 
j>0

2j(Q\delta +w - \alpha )

(notice that \beta can be taken arbitrarily large, since m satisfies a Mihlin-H\"orman-
der condition of infinite order). In any case, the quantities on the right-hand side
do not depend on k. Putting all together, we obtain that the series

\sum 
j\in \BbbZ Duj

converges uniformly on the compacta of G \setminus \{ e\} , and that its sum, which coin-
cides with D \u m by uniqueness of limits, satisfies (5.2.10).

Kernels satisfying this kind of estimates on a homogeneous Lie group are
considered, e.g., in \S 6.A of [FS82].

5.3 Marcinkiewicz multipliers

Let G be a homogeneous Lie group, with automorphic dilations \delta t and homoge-
neous dimension Q\delta . For w \in L1(G), we define the maximal operator associated
to w:

Mw\phi (x) = sup
t>0

| \phi \ast (t - Q\delta w \circ \delta t - 1)(x)| = sup
t>0

\bigm| \bigm| \bigm| \bigm| \int 
G

\phi (x \delta t(y) - 1)w(y) dy
\bigm| \bigm| \bigm| \bigm| .
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We say that the function w is M-admissible if the associated maximal operator
Mw is bounded on Lp(G) for 1 < p <\infty .

In terms of maximal operators, we formulate the following hypothesis about
the homogeneous group G and a chosen homogeneous weighted subcoercive
system L1, . . . , Ln on it:

hypothesis (Js,d): for every \beta > s there exist

\bullet a Borel function u\beta on G with u\beta = u\ast \beta and u\beta \geq c\langle \cdot \rangle  - \theta G for
some c, \theta > 0,

\bullet a positive regular Borel measure \sigma \beta on \BbbR n, which is locally
d-bounded on \BbbR n \setminus \{ 0\} ,

\bullet a non-negative real number \gamma \beta < 2\beta ,

such that

\bullet the function \langle \cdot \rangle  - \gamma \beta 

G u\beta is M-admissible, and

\bullet for every compact K \subseteq \BbbR n \setminus \{ 0\} and every m \in \scrD (\BbbR n) with
suppm \subseteq K, we have

\| \u m\| L2(G,u - 1
\beta (x) dx) \leq CK,\beta \| m\| L2(\sigma \beta ).

The next proposition shows how this quite technical hypothesis can be ver-
ified by the techniques and results of Chapter 3.

Proposition 5.3.1. Let G be a homogeneous group, with degree of polynomial
growth QG, and let L1, . . . , Ln be a homogeneous weighted subcoercive system
on G.

(i) The hypothesis (JQG/2,1) holds. More generally, if the Plancherel measure
\sigma is locally d-bounded on \BbbR n \setminus \{ 0\} , then (JQ/2,d) holds.

(ii) If G is h-capacious, then (J(QG - h)/2,1) holds.

Proof. (i) For \beta > QG/2, we choose u\beta \equiv 1, \sigma \beta = \sigma . By Proposition 3.6.1,
\sigma is \delta t-homogeneous, so that it is locally 1-bounded on \BbbR n \setminus \{ 0\} . Therefore,
by Theorem 3.2.7, in order to conclude, it is sufficient to show that, for \gamma \beta \in 
]QG, 2\beta [, the function w\beta = \langle \cdot \rangle  - \gamma \beta 

G is M-admissible.
Set

g1 = g, gk+1 = [g, gk].

The ideals gk are characteristic, i.e., they are invariant by any automorphism of
g. In particular, they are \delta t-invariant, so that we can find \delta t-invariant subspaces
Vk such that gk = Vk \oplus gk+1. Let \~\delta t : g \rightarrow g be the linear map defined by

\~\delta t(x) = tkx for x \in Vk.

The \~\delta t are dilations of the vector space g, which commute with the \delta t, but
in general the \~\delta t are not automorphism of the Lie algebra g. However, by
Proposition 1.3.1, if | \cdot | \~\delta is a homogeneous norm with respect to the dilations
\~\delta t, then

c - 1(1 + | \cdot | \~\delta ) \leq \langle \cdot \rangle G \leq c(1 + | \cdot | \~\delta )
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for some c > 0. We then have\bigm| \bigm| \bigm| \bigm| \int 
G

\phi (x \delta t(y) - 1)w\beta (y) dy
\bigm| \bigm| \bigm| \bigm| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
| y| \~\delta \leq 1

+
\sum 
h\geq 1

\int 
2h - 1<| y| \~\delta \leq 2h

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq C\gamma \beta 

\sum 
h\geq 0

2 - h\gamma \beta 

\int 
| y| \~\delta \leq 2h

| \phi (x \delta t(y) - 1)| dy

\leq C\gamma \beta 

\sum 
h\geq 0

2 - h(\gamma \beta  - QG)

\int 
| y| \~\delta \leq 1

| \phi (x \delta t(\~\delta 2h(y)) - 1)| dy.

Therefore, since \gamma \beta > QG, if M\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{g} is the strong maximal function (5.1.3) on
G associated to a basis of simultaneous eigenvectors of the \delta t and the \~\delta t, we
conclude that

Mw\beta 
\phi \leq C\gamma \beta 

M\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{g}\phi ,

which gives the conclusion by Theorem 5.1.3.
(ii) Let z be the center of z, and P : g \rightarrow g/z be the canonical projection. Let

\omega 1, . . . , \omega h \in (g/z)\ast and z1, . . . , zh \in z be given by the definition of h-capacious.
By Lemma 4.3.14, there exists a homogeneous basis v1, . . . , vk of g compatible
with the descending central series such that, if \^v1, . . . , \^vk is the dual basis, then
\omega j \circ P = \^vj for j = 1, . . . , h. Moreover, if we set

\kappa j = max\{ r : vj \in g[r]\} ,

then \kappa j = 1 for j = 1, . . . , h and

QG =
k\sum 
j=1

\kappa j , \langle x\rangle G \sim 1 +
k\sum 
j=1

| \^vj(x)| 1/\kappa j (5.3.1)

by Proposition 1.3.1.
Let \daleth \vec{}t be the k-parameter family of dilations on g given by

\daleth \vec{}t(vj) = tjvj .

Clearly the \daleth \vec{}t are in general not automorphisms, but the automorphic dilations
\delta t can be obtained as a particular case:

\delta t = \daleth (tb1 ,...,tbk ),

where bj is the \delta t-homogeneous degree of vj .
If \beta > (QG  - h)/2, then

2\beta > QG  - h =
k\sum 

j=h+1

\kappa j ,

so that we can find \eta \beta ,1, . . . , \eta \beta ,h \in [0, 1[ and \gamma \beta ,1, . . . , \gamma \beta ,k > 0 such that

2\beta > \gamma \beta =
k\sum 
j=1

\gamma \beta ,j , \gamma \beta j >

\Biggl\{ 
1 - \eta \beta ,j for j = 1, . . . , h,
\kappa j for j = h+ 1, . . . , k.
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Let now \sigma \prime be the Plancherel measure on \BbbR n \times z\ast associated to the system
L1, . . . , Ln extended with the central derivatives, as in \S 4.3, and let \sigma \beta be the
push-forward of the measure

h\prod 
j=1

(1 + | \tau (zj)|  - \eta \beta ,j ) d\sigma \prime (\lambda , \tau )

via the canonical projection on the first factor of \BbbR n\times z\ast . By Proposition 4.3.8,
since \eta \beta ,1, . . . , \eta \beta ,h < 1, the measure \sigma \beta is a regular Borel measure on \BbbR n;
moreover, since the zj are \delta t-homogeneous, \sigma \beta is the sum of \epsilon t-homogeneous
regular Borel measures of different degrees (where \epsilon t are the dilations associated
to the system L1, . . . , Ln), and consequently \sigma \beta is locally 1-bounded on \BbbR n\setminus \{ 0\} .
Finally, if we set

u\beta (x) =
h\prod 
j=1

(1 + | \omega j(P (x))| ) - \eta j =
h\prod 
j=1

(1 + | \^vj(x)| ) - \eta j ,

then u\beta = u\ast \beta and, by (5.3.1), u - 1
\beta is dominated by some power of \langle \cdot \rangle G; moreover,

by Corollary 4.3.7, for every compact K \subseteq \BbbR n \setminus \{ 0\} and every m \in \scrD (\BbbR n) with
suppm \subseteq K, we have

\| \u m\| L2(G,u - 1
\beta (x) dx) \leq CK,\beta \| m\| L2(\sigma \beta ).

In order to conclude, we have to show that w\beta = \langle \cdot \rangle  - \gamma \beta 

G u\beta is M-admissible.
In fact, again by (5.3.1),

w\beta (x) \leq C\beta 

h\prod 
j=1

(1 + | \^vj(x)| ) - (\gamma \beta ,j+\eta \beta ,j)
k\prod 

j=h+1

(1 + | \^vj(x)| ) - \gamma \beta ,j/\kappa j ,

and the exponents \gamma \beta ,j+\eta \beta ,j , \gamma \beta ,j/\kappa j are all greater than 1 by construction. The
conclusion then follows as in part (i), but with a multi-variate decomposition,
by Theorem 5.1.3 applied to the multi-parameter dilations \daleth \vec{}t.

Suppose now that, for l = 1, . . . , \varrho , Gl is a homogeneous Lie group, with di-
lations (\delta l,t)t>0, and that Ll,1, . . . , Ll,nl

is a homogeneous weighted subcoercive
system on Gl. Let

G\times = G1 \times \cdot \cdot \cdot \times G\varrho ,

and let L\times l,j be the left-invariant differential operator on G\times along the l-th factor,
corresponding to Ll,j on Gl, for l = 1, . . . , \varrho , j = 1, . . . , nl. By the results of
\S 3.4, we know than that

L\times 1,1, . . . , L
\times 
1,n1

, . . . , L\times \varrho ,1, . . . , L
\times 
\varrho ,n\varrho 

is a homogeneous weighted subcoercive system on G\times .
We then show how the hypotheses on the factor groups Gl can be put to-

gether in order to obtain weighted estimates on the product group G\times .

Proposition 5.3.2. Suppose that, for l = 1, . . . , \varrho , the homogeneous group Gl,
with the system Ll,1, . . . , Ll,nl

, satisfies (Jsl,dl
). For p, q \in [1,\infty ], if

\vec{}\beta > \vec{}s+
\vec{}n

p
 - 

\vec{}d

max\{ 2, p\} 
,
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where \vec{}s = (s1, . . . , s\varrho ), \vec{}d = (d1, . . . , d\varrho ), then there exists

w\vec{}\beta = w\vec{}\beta ,1 \otimes \cdot \cdot \cdot \otimes w\vec{}\beta ,\varrho \in L
1(G\times ),

with w\vec{}\beta > 0, w\ast \vec{}\beta = w\vec{}\beta , such that w\vec{}\beta ,l is M-admissible on the group Gl for
l = 1, . . . , \varrho , and moreover, for every compact

K =
\varrho \prod 
l=1

Kl \subseteq 
\varrho \prod 
l=1

(\BbbR nl \setminus \{ 0\} ),

and for every m \in S\vec{}\beta p,qB(\BbbR \vec{}n) with suppm \subseteq K, we have

\| \u m\| L2(G\times ,w - 1
\vec{}\beta 

(x) dx) \leq CK,\vec{}\beta ,p,q\| m\| S\vec{}\beta 
p,qB(\BbbR \vec{}n)

.

Proof. Take \vec{}\alpha such that

\vec{}\alpha > \vec{}s, \vec{}\beta > \vec{}\alpha +
\vec{}n

p
 - 

\vec{}d

max\{ 2, p\} 
.

For l = 1, . . . , \varrho , since \alpha l > sl, by (Jsl,dl
) we can find a function u\vec{}\alpha ,l = u\ast \vec{}\alpha ,l > 0

on Gl such that u\vec{}\alpha ,l \geq cl\langle \cdot \rangle  - \theta l

Gl
for some cl, \theta l > 0, a positive regular Borel

measure \sigma \vec{}\alpha ,l on \BbbR nl locally dl-bounded on \BbbR nl \setminus \{ 0\} , and a positive real number
\gamma \vec{}\alpha ,l < 2\alpha l such that the function w\vec{}\beta ,l = \langle \cdot \rangle  - \gamma \vec{}\alpha ,l

Gl
u\vec{}\alpha ,l is M-admissible on Gl and

\| \u ml\| L2(Gl,u
 - 1
\vec{}\alpha ,l

(xl) dxl)
\leq CKl,\alpha l

\| m\| L2(\sigma \vec{}\alpha ,l) (5.3.2)

for every compact Kl \subseteq \BbbR nl \setminus \{ 0\} and every ml \in \scrD (\BbbR nl) with suppml \subseteq Kl.
Set

u\vec{}\alpha = u\vec{}\alpha ,1 \otimes \cdot \cdot \cdot \otimes u\vec{}\alpha ,\varrho , \sigma \vec{}\alpha = \sigma \vec{}\alpha ,1 \times \cdot \cdot \cdot \times \sigma \vec{}\alpha ,\varrho .

By ``taking the Hilbert tensor product"" (see \S 1.1.11) of the inequalities (5.3.2),
from Proposition 3.4.3 we deduce that

\| \u m\| L2(G\times ,u - 1
\vec{}\alpha 

(x) dx) \leq CK,\vec{}\alpha \| m\| L2(\sigma \vec{}\alpha )

for every compact K =
\prod \varrho 
l=1Kl \subseteq 

\prod \varrho 
l=1(\BbbR n\varrho \setminus \{ 0\} ) and every m \in \scrD (\BbbR \vec{}n) with

suppm \subseteq K.
Notice now that, again by taking Hilbert tensor products, Corollary 2.3.22

and (2.2.1) give
\| m\| L2(\sigma \vec{}\alpha ) \leq CK,\vec{}\alpha ,\vec{}\gamma \| m\| S\vec{}\eta 

2,2B(\BbbR \vec{}n)

for \vec{}\eta > (\vec{}n - \vec{}d)/2, whereas, by Proposition 2.3.28,

\| m\| L2(\sigma \vec{}\alpha ) \leq CK,\vec{}\alpha \| m\| S0
\infty ,1B(\BbbR \vec{}n),

so that, by embeddings and interpolation (Propositions 2.3.26 and 2.3.25), we
deduce that

\| m\| L2(\sigma \vec{}\alpha ) \leq CK,\vec{}\alpha ,\vec{}\gamma ,p\| m\| S\vec{}\eta 
p,pB(\BbbR \vec{}n)

for \vec{}\eta > \vec{}n/p - \vec{}d/max\{ 2, p\} .
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In particular, we have

\| \u m\| L2(G\times ,u - 1
\vec{}\alpha 

(x) dx) \leq CK,\vec{}\alpha ,\vec{}\eta ,p\| m\| S\vec{}\eta 
p,pB(\BbbR \vec{}n)

for \vec{}\eta > \vec{}n/p  - \vec{}d/max\{ 2, p\} . On the other hand, for l = 1, . . . , \varrho , by Theo-
rem 4.1.6, we have

\| \u ml\| L2(Gl,\langle xl\rangle 
\gamma l
Gl
u - 1

\vec{}\alpha ,l
(xl) dxl)

\leq CKl,\vec{}\alpha ,\gamma l,\eta l
\| ml\| B\eta l

2,2(\BbbR nl )

for \eta l > \gamma l/2+\theta l/2+nl/2, so that, by Hilbert tensor products and embeddings,

\| \u m\| L2(G\times ,\langle x1\rangle 
\gamma 1
G1
\cdot \cdot \cdot \langle x\varrho \rangle 

\gamma \varrho 
G\varrho 
u - 1

\vec{}\alpha 
(x) dx) \leq CK,\vec{}\alpha ,\vec{}\gamma ,\vec{}\eta ,p\| m\| S\vec{}\eta 

p,pB(\BbbR \vec{}n)

for \vec{}\eta > \vec{}\gamma /2 + \vec{}\theta /2 + \vec{}n. By interpolation, we obtain that

\| \u m\| L2(G\times ,\langle x1\rangle 
\gamma 1
G1
\cdot \cdot \cdot \langle x\varrho \rangle 

\gamma \varrho 
G\varrho 
u - 1

\vec{}\alpha 
(x) dx) \leq CK,\vec{}\alpha ,\vec{}\gamma ,\vec{}\eta ,p\| m\| S\vec{}\eta 

p,pB(\BbbR \vec{}n)

for \vec{}\eta > \vec{}\gamma /2 + \vec{}n/p - \vec{}d/max\{ 2, p\} .
In particular, if we take \vec{}\gamma = (\gamma \vec{}\alpha ,1, . . . , \gamma \vec{}\alpha ,\varrho ), \vec{}\eta = \vec{}\alpha +\vec{}n/p - \vec{}d/max\{ 2, p\} and

set w\vec{}\beta = w\vec{}\beta ,1 \otimes \cdot \cdot \cdot \otimes w\vec{}\beta ,\varrho , we get

\| \u m\| L2(G\times ,w - 1
\vec{}\beta 

(x) dx) \leq CK,\vec{}\beta ,p\| m\| S\vec{}\eta 
p,pB(\BbbR \vec{}n)

,

for every compact K =
\prod \varrho 
l=1Kl \subseteq 

\prod \varrho 
l=1(\BbbR n\varrho \setminus \{ 0\} ) and every m \in \scrD (\BbbR \vec{}n) with

suppm \subseteq K. The conclusion then follows by approximations and embeddings
(Propositions 2.3.31 and 2.3.26).

Notice that, in the particular case \varrho = 1, the previous proposition, together
with H\"older's inequality and Proposition 5.2.2, gives the following

Corollary 5.3.3. If a homogeneous weighted subcoercive system L1, . . . , Ln on
a homogeneous Lie group G satisfies the hypothesis (Js,d), then, for p \in [1,\infty ],
it satisfies also (Ip,s+n/p - d/\mathrm{m}\mathrm{a}\mathrm{x}\{ 2,p\} ). In particular, s \geq d/2.

The weighted estimate on G\times given by Proposition 5.3.2 will be the starting
point for the following multi-variate multiplier results. In fact, we are going to
consider a setting which is more general than the product group G\times .

Let G be a connected Lie group, endowed with Lie group homomorphisms

\upsilon l : Gl \rightarrow G for l = 1, . . . , \varrho .

Then, for l = 1, . . . , \varrho , the operators Ll,1, . . . , Ll,nl
correspond (via the deriva-

tive \upsilon \prime l of the homomorphism) to operators L\flat l,1, . . . L
\flat 
l,nl

\in \frakD (G), which are
essentially self-adjoint by Corollary 3.1.3. Since we want to give a meaning to
joint functions of these operators on G, we suppose in the following that

L\flat 1,1, . . . L
\flat 
1,n1

, . . . , L\flat \varrho ,1, . . . , L
\flat 
\varrho ,n\varrho 

commute strongly, i.e., they admit a joint spectral resolution on L2(G).
In order to obtain multiplier results on G, we would like to ``transfer"" to G

the estimates obtained on the product group G\times . However, we cannot apply
directly the classical transference results, since the map

\upsilon \times : G\times \ni (x1, . . . , xn) \mapsto \rightarrow \upsilon 1(x1) \cdot \cdot \cdot \upsilon \varrho (x\varrho ) \in G
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in general is not a group homomorphism --- because the elements of \upsilon l(Gl) are
not supposed to commute in G with the elements of \upsilon l\prime (Gl\prime ) for l \not = l\prime --- and
consequently it does not yield an action of G\times on Lp(G) by translations. Never-
theless, under the sole assumption of (strong) commutativity of the differential
operators L\flat l,j on G, we are able to express the operator m(L\flat ) on G by a sort
of convolution with the kernel \scrK L\times m of the operator m(L\times ) on G\times .

Proposition 5.3.4. For every m \in \scrD (\BbbR \vec{}n), we have

m(L\flat )\phi (x) =
\int 
G\times 

\phi (x \upsilon \times (y) - 1)\scrK L\times m(y) dy

for all \phi \in L2 \cap C0(G).

Proof. If m \in \scrD (\BbbR \vec{}n) \sim = \scrD (\BbbR n1) \^\otimes \pi \cdot \cdot \cdot \^\otimes \pi \scrD (\BbbR n\varrho ), then we can decompose

m =
\sum 
k\in \BbbN 

gk,1 \otimes \cdot \cdot \cdot \otimes gk,\varrho ,

where gk,l \in \scrD (\BbbR nl) for k \in \BbbN , l = 1, . . . , \varrho , and the convergence is in \scrD (\BbbR \vec{}n). In
particular, by applying Corollary 4.1.8 and Proposition 3.4.3 to the group G\times ,
we obtain that

\scrK L\times m =
\sum 
k\in \BbbN 

\scrK L1gk,1 \otimes \cdot \cdot \cdot \otimes \scrK L\varrho 
gk,\varrho 

in L1(G\times ).
On the other hand, for all \phi \in L2 \cap C0(G), by Proposition 3.2.4 we have

gk,l(L\flat l )\phi (x) =
\int 
Gl

\phi (x \upsilon l(yl) - 1)\scrK Ll
gk,l(yl) dyl,

and in particular (being \scrK Ll
gk,l \in L1(Gl)) also gk,l(L\flat l )\phi \in L2 \cap C0(G), so that,

by iterating,

(gk,1 \otimes \cdot \cdot \cdot \otimes gk,\varrho )(L\flat )\phi (x) = gk,\varrho (L\flat \varrho ) \cdot \cdot \cdot gk,1(L\flat 1)\phi (x)

=
\int 
G\times 

\phi (x \upsilon \varrho (y\varrho ) - 1 \cdot \cdot \cdot \upsilon 1(y1) - 1)\scrK L1gk,1(y1) \cdot \cdot \cdot \scrK L\varrho 
gk,\varrho (y\varrho ) dy.

Summing over k \in \BbbN , the left-hand side converges in L2(G) to m(L\flat )\phi , whereas
(since y \mapsto \rightarrow \phi (x \upsilon \times (y) - 1) is bounded) the right-hand side converges pointwise to\int 

G\times 
\phi (x \upsilon \times (y) - 1)\scrK L\times m(y) dy

and we get the conclusion.

Corollary 5.3.5. Under the hypotheses of Proposition 5.3.2, if p, q \in [1,\infty ]
and

\vec{}\beta > \vec{}s+
\vec{}n

p
 - 

\vec{}d

max\{ 2, p\} 
,

then the conclusion of Proposition 5.3.4 holds also for every m \in S
\vec{}\beta 
p,qB(\BbbR \vec{}n)

with compact support suppm \subseteq 
\prod \varrho 
l=1(\BbbR nl \setminus \{ 0\} ).
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Proof. Choose \beta \prime such that

\vec{}\beta > \vec{}\beta \prime > \vec{}s+
\vec{}n

p
 - 

\vec{}d

max\{ 2, p\} 
.

By Proposition 2.3.31, we can find a compact K =
\prod \varrho 
l=1Kl \subseteq 

\prod \varrho 
l=1(\BbbR nl \setminus \{ 0\} )

and a sequence mk \in \scrD (\BbbR \vec{}n) with suppmk \subseteq K such that mk \rightarrow m in S\vec{}\beta 
\prime 

p,q(\BbbR \vec{}n).
By Proposition 5.3.2 and H\"older's inequality, we then have \scrK L\times mk \rightarrow \scrK L\times m
in L1(G\times ); moreover, by Corollary 5.3.3, \beta \prime l > nl/p for l = 1, . . . , \varrho , so that, by
Propositions 2.3.26 and 2.3.28, mk \rightarrow m uniformly. Therefore, the conclusion
follows by applying Proposition 5.3.4 to the functions mk and passing to the
limit.

For l = 1, . . . , \varrho , let \epsilon l,t be the dilations on \BbbR nl associated to the weighted
subcoercive system Ll,1, . . . , Ll,nl

, and fix a \epsilon l-homogeneous norm | \cdot | \epsilon l on \BbbR nl ,
smooth off the origin. Choose a non-negative \xi \in \scrD (\BbbR ) with supp \xi \subseteq [1/2, 2]
and such that, if \xi k(t) = \xi (2 - kt), then\sum 

k\in \BbbZ 
\xi 2k(t) = 1 for t > 0, (5.3.3)

and set, for l = 1, . . . , \varrho and k \in \BbbZ ,

\chi l,k(\lambda ) = \xi (| \epsilon l,2 - k(\lambda )| \epsilon l) = \xi k(| \lambda | \epsilon l) for \lambda \in \BbbR nl .

Finally, for \vec{}k = (k1, . . . , k\varrho ) \in \BbbZ \varrho , let

\chi \vec{}k = \chi 1,k1 \otimes \cdot \cdot \cdot \otimes \chi \varrho ,k\varrho , T\vec{}k = \chi \vec{}k(L
\flat ) = \chi 1,k1(L

\flat 
1) \cdot \cdot \cdot \chi \varrho ,k\varrho (L\flat \varrho ).

Lemma 5.3.6. For 1 < p <\infty and for all \phi \in L2 \cap Lp(G),

cp\| \phi \| p \leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left(  \sum 
\vec{}k\in \BbbZ \varrho 

| T\vec{}k\phi | 
2

\right)  1/2
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
p

\leq Cp\| \phi \| p.

Proof. For every s \in \BbbN , (\varepsilon lk)k\in \BbbZ \in \{  - 1, 0, 1\} \BbbZ and N \in \BbbN , it is easy to prove
that \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\sum 
| k| \leq N

\varepsilon lk\xi k

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
M\ast Cs

\leq Cs,

where Cs > 0 does not depend on (\varepsilon lk)k or N ; therefore, by Proposition 2.4.10,
for l = 1, . . . , \varrho , also \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\sum 
| k| \leq N

\varepsilon lk\chi l,k

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
M\epsilon l

Cs

\leq Cl,s,

where Cl,s > 0 does not depend on (\varepsilon lk)k or N .
By Theorem 5.2.6 applied to the group Gl, and by transference to the group

G (see Theorem 1.2.1 and Proposition 3.2.4), we then have\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 
| k| \leq N

\varepsilon lk\chi l,k(L
\flat 
l )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
p\rightarrow p

\leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 
| k| \leq N

\varepsilon lk\chi k(Ll)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
p\rightarrow p

\leq Cl,p
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for 1 < p <\infty , l = 1, . . . , \varrho , where Cl,p > 0 does not depend on (\varepsilon lk)k or N , and
consequently also\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\sum 
| k1| ,...,| k\varrho | \leq N

\varepsilon 1k1 \cdot \cdot \cdot \varepsilon 
\varrho 
k\varrho 
T\vec{}k

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
p\rightarrow p

\leq C1,p \cdot \cdot \cdot C\varrho ,p.

Moreover, by (5.3.3) and the properties of the spectral integral,
\sum 
\vec{}k\in \BbbZ \varrho T

2
\vec{}k

con-
verges strongly to the identity of L2(G). The conclusion follows then immedi-
ately by Proposition 5.1.2.

In the following, we will consider Marcinkiewicz conditions on \BbbR \vec{}n adapted
to the system

\gimel \vec{}t = \epsilon 1,t1 \times \cdot \cdot \cdot \times \epsilon \varrho ,t\varrho 

of multi-variate dilations.

Theorem 5.3.7. Suppose that, for l = 1, . . . , \varrho , the homogeneous group Gl,
with the system Ll,1, . . . , Ll,nl

, satisfies the hypothesis (Jsl,dl
). If p, q \in [1,\infty ]

and

\vec{}\beta > \vec{}s+
\vec{}n

p
 - 

\vec{}d

max\{ 2, p\} 
,

then, for every bounded measurable function m on \BbbR \vec{}n with \| m\| 
M\gimel S

\vec{}\beta 
p,qB

< \infty ,

the operator m(L\flat ) is bounded on Lr(G) for 1 < r <\infty and

\| m(L\flat )\| r\rightarrow r \leq C\vec{}\beta ,p,q,r\| m\| M\gimel S
\vec{}\beta 
p,qB

.

Proof. Choose a non-negative \zeta \in \scrD (\BbbR ) with supp \zeta \subseteq [1/4, 4] and such that
\zeta \equiv 1 on [1/2, 2]. Set, for l = 1, . . . , \varrho ,

\eta l(\lambda ) = \zeta (| \lambda | \epsilon l) for \lambda \in \BbbR nl ,

and let
\eta = \eta 1 \otimes \cdot \cdot \cdot \otimes \eta \varrho .

If we set

m\vec{}k = (m \circ \gimel (2k1 ,...,2k\varrho ))\eta , f\vec{}k = m\vec{}k \circ \gimel (2 - k1 ,...,2 - k\varrho )

for \vec{}k \in \BbbZ \varrho , then we have \chi \vec{}km = f\vec{}k\chi \vec{}k, so that

T\vec{}km(L\flat ) = f\vec{}k(L
\flat )T\vec{}k.

Let w\vec{}\beta = w\vec{}\beta ,1 \otimes \cdot \cdot \cdot \otimes w\vec{}\beta ,\varrho \in L
1(G\times ) be given by Proposition 5.3.2. Set

w\vec{}\beta ,l,k = 2 - kQ\delta lw\vec{}\beta ,l \circ \delta l,2 - k

for k \in \BbbZ , l = 1, . . . , \varrho , and let

w\vec{}\beta ,\vec{}k = w\vec{}\beta ,1,k1 \otimes \cdot \cdot \cdot \otimes w\vec{}\beta ,\varrho ,k\varrho 
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for \vec{}k \in \BbbZ \varrho . For l = 1, . . . , \varrho , if \pi l denotes the unitary representation of Gl on
L2(G) induced by the homomorphism \upsilon l, since w\vec{}\beta ,l is M-admissible on Gl, then
the maximal function M\vec{}\beta ,l on G defined by

M\vec{}\beta ,l\phi (x) = sup
k\in \BbbZ 

| \pi l(w\vec{}\beta ,l,k)\phi (x)| 

is bounded on Lr(G) for 1 < r <\infty , by transference (see Theorem 1.2.2).
If \phi \in L2 \cap C0(G), then we have, by Corollary 5.3.5 and H\"older's inequality,

| f\vec{}k(L
\flat )T\vec{}k\phi (x)| 2 \leq 

\biggl( \int 
G\times 

| T\vec{}k\phi (x \upsilon \times (y) - 1)| | \scrK L\times f\vec{}k(y)| dy
\biggr) 2

\leq 
\int 
G\times 

| T\vec{}k\phi (x \upsilon \times (y) - 1)| 2w\vec{}\beta ,\vec{}k(y) dy
\int 
G\times 

| \scrK L\times m\vec{}k(y)| 
2w - 1

\vec{}\beta 
(y) dy

\leq C\vec{}\beta ,p,q\| m\vec{}k\| 
2

S
\vec{}\beta 
p,qB(\BbbR \vec{}n)

\pi 1(w\vec{}\beta ,1,k1) \cdot \cdot \cdot \pi \varrho (w\vec{}\beta ,\varrho ,k\varrho 
)(| T\vec{}k\phi | 

2)

thus\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left(  \sum 
\vec{}k\in \BbbZ \varrho 

| T\vec{}km(L\flat )\phi | 2
\right)  1/2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
r

\leq C\vec{}\beta ,p,q\| m\| M\gimel S
\vec{}\beta 
p,qB

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 
\vec{}k\in \BbbZ \varrho 

\pi 1(w\vec{}\beta ,1,k1) \cdot \cdot \cdot \pi \varrho (w\vec{}\beta ,\varrho ,k\varrho 
)(| T\vec{}k\phi | 

2)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
1/2

r/2

for 2 \leq r <\infty .
On the other hand, since w\vec{}\beta = w\ast \vec{}\beta , for every \psi \in L(r/2)\prime (G) we have\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\int 
G

\left(  \sum 
\vec{}k\in \BbbZ \varrho 

\pi 1(w\vec{}\beta ,1,k1) \cdot \cdot \cdot \pi \varrho (w\vec{}\beta ,\varrho ,k\varrho 
)(| T\vec{}k\phi | 

2)

\right)  \psi d\mu G

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 
\sum 
\vec{}k\in \BbbZ \varrho 

\int 
G

\Bigl( 
\pi 1(w\vec{}\beta ,1,k1) \cdot \cdot \cdot \pi \varrho (w\vec{}\beta ,\varrho ,k\varrho 

)(| T\vec{}k\phi | 
2)
\Bigr) 
| \psi | d\mu G

=
\sum 
\vec{}k\in \BbbZ \varrho 

\int 
G

| T\vec{}k\phi | 
2
\Bigl( 
\pi \varrho (w\vec{}\beta ,\varrho ,k\varrho 

) \cdot \cdot \cdot \pi 1(w\vec{}\beta ,1,k1)(| \psi | )
\Bigr) 
d\mu G

\leq 
\int 
G

\left(  \sum 
\vec{}k\in \BbbZ \varrho 

| T\vec{}k\phi | 
2

\right)  M\vec{}\beta ,\varrho \cdot \cdot \cdot M\vec{}\beta ,1(| \psi | ) d\mu G

\leq C\vec{}\beta ,r

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 
\vec{}k\in \BbbZ \varrho 

| T\vec{}k\phi | 
2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
r/2

\| \psi \| (r/2)\prime ,

that is,\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 
\vec{}k\in \BbbZ \varrho 

\pi \varrho (w\vec{}\beta ,\varrho ,k\varrho 
) \cdot \cdot \cdot \pi 1(w\vec{}\beta ,1,k1)(| T\vec{}k\phi | 

2)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
r/2

\leq C\vec{}\beta ,r

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 
\vec{}k\in \BbbZ \varrho 

| T\vec{}k\phi | 
2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
r/2

,
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and finally\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left(  \sum 
\vec{}k\in \BbbZ \varrho 

| T\vec{}km(L\flat )\phi | 2
\right)  1/2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
r

\leq C\vec{}\beta ,p,q,r\| m\| M\gimel S
\vec{}\beta 
p,qB

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left(  \sum 
\vec{}k\in \BbbZ \varrho 

| T\vec{}k\phi | 
2

\right)  1/2
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
r

which, by Lemma 5.3.6, is equivalent to

\| m(L\flat )\phi \| r \leq C\vec{}\beta ,p,q,r\| m\| M\gimel S
\vec{}\beta 
p,qB

\| \phi \| r.

This gives the conclusion for 2 \leq r <\infty . In order to obtain the same result
for 1 < r < 2, it should be noticed that, if m is real-valued, then m(L\flat ) is self-
adjoint, so that boundedness for 2 < r <\infty implies boundedness for 1 < r < 2.
In the general case, one can decompose m in its real and imaginary parts and
then apply the previous result to each part.

Remark 5.3.1. A multi-variate analogue of Propositions 5.2.7 and 5.2.8 can be
proved for the kernel \scrK L\times m on the product G\times , thus showing that, if m satisfies
a Marcinkiewicz condition of infinite order, then \scrK L\times m is a smooth Calder\'on-
Zygmund product kernel (see [NRS01], \S 2.1, and [MRS95], Theorem 1.4).
Remark 5.3.2. Although the convolution kernel \scrK L\flat m of the operator m(L\flat )
on the group G is never used directly in the previous arguments, from Proposi-
tion 5.3.4 it follows that this kernel is the push-forward of the kernel \scrK L\times m of
m(L\times ) on G\times via the map \upsilon \times : G\times \rightarrow G, i.e.,

\langle \scrK L\flat m,\phi \rangle = \langle \scrK L\times m,\phi \circ \upsilon \times \rangle 

for \phi \in \scrD (G) (cf. \S 17.4.5 of [Die72] and Corollary 2.5.3 of [NRS01]).

5.4 Applications

The previous Theorems 5.2.6 and 5.3.7 can be applied, e.g., to the groups and
systems of operators considered in \S 4.4; the corresponding results are collected
in Table 5.1. Here we focus on some few cases, which are probably the most
interesting, also because they permit a comparison with results already present
in the literature.

5.4.1 The abelian case

As a nilpotent Lie group, one can certainly take \BbbR n. In this case, commutativity
of translation-invariant differential operators is automatically guaranteed.

For j = 1, . . . , n, let Xj =  - \partial 
\partial xj

be the partial derivative in the j-th compo-
nent. Then the operators

 - iX1, . . . , - iXn

form a weighted subcoercive system, since, e.g., the Laplacian  - (X2
1 + \cdot \cdot \cdot +X2

n)
is contained in the algebra generated by them (which in fact is the full algebra
\frakD (\BbbR n) of translation-invariant differential operators).

One should notice that, with respect to the abelian group structure of \BbbR n,
every family of (possibly non-isotropic) dilations

\delta t(x1, . . . , xn) = (t\lambda 1x1, . . . , t
\lambda nxn)
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group operators dimG QG
(Js,d) required
s d smoothness

Hn L1, . . . , Ln, - iT 2n+1 2n+2
2n+1

2 1 2n+1
2 + n

p

Hn L, - iT 2n+1 2n+2
2n+1

2 1 2n+1
2 + 1

p

\BbbH Hn L1, . . . , Ln, - iT1, - iT2, - iT3 4n+3 4n+6
4n+3

2 1 4n+3
2 + n+2

p

\BbbH Hn L, - iT1, - iT2, - iT3 4n+3 4n+6
4n+3

2 1 4n+3
2 + 3

p

N3,2 L,D, - iT1, - iT2, - iT3 6 9 9
2 4 9

2 + 1
p

N3,2 L,D,\Delta 6 9 9
2 2 9

2 + 1
p

N3,2 L, - iT1, - iT2, - iT3 6 9 9
2

7
2

9
2 + 1

2p

N3,2 L,\Delta 6 9 9
2

3
2

9
2 + 1

2p

N3,2 L,D 6 9 9
2

3
2

9
2 + 1

2p

G5,2 L, - iX2, - iX1 5 7 6
2 2 6

2 + 1
p

N4,2 L,D, - iT12, . . . , - iT34 10 16 16
2 2 16

2 + 6
p

N4,2 L, - iT12, . . . , - iT34 10 16 16
2 2 16

2 + 5
p

N4,2 L,D, P,\Delta 10 16 16
2 2 16

2 + 2
p

N4,2 L,P,\Delta 10 16 16
2 2 16

2 + 1
p

N2,3 L,D, - iT1, - iT2 5 10 10
2 2 10

2 + 2
p

N2,3 L, - iT1, - iT2 5 10 10
2 2 10

2 + 1
p

N2,3 L,D,\Delta 5 10 10
2 1 10

2 + 2
p

G6,19 L, - iX2, - iX1 6 10 8
2 1 8

2 + 2
p

G6,23 L, - iX2, - iX1 6 11 9
2 1 9

2 + 2
p

Table 5.1: Multiplier theorems applied to the groups and operators of \S 4.4
(the required smoothness is expressed in terms of Lp Besov norms with p \geq 2)
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is automorphic. Moreover, the operators - iX1, . . . , - iXn are homogeneous with
respect to such a family of dilations.

Notice that, by the properties of the Fourier transform,

m( - iX1, . . . , - iXn)f = \scrF  - 1(m(\scrF f)) = f \ast \scrF  - 1m,

so that \u m = \scrF  - 1m, and then, by the classical Plancherel formula,\int 
\BbbR n

| m| 2 d\sigma =
\int 

\BbbR n

| \u m(x)| 2 dx = (2\pi ) - n
\int 

\BbbR n

| m(\xi )| 2 d\xi ,

i.e., the Plancherel measure \sigma associated to the system  - iX1, . . . , - iXn is (apart
from a constant factor) the Lebesgue measure on \BbbR n, which is clearly locally
n-bounded on the whole \BbbR n.

This means that the aforementioned system satisfies the hypothesis (Jn/2,n)
(in this case, the degree of polynomial growth clearly coincides with the topolog-
ical dimension) and we recover from Theorem 5.2.6 the classical Mihlin-H\"orman-
der theorem for Fourier multipliers on \BbbR n, i.e., Theorem A of the introduction.

One can also think of each  - iXj as a self-adjoint Rockland operator on the
j-th factor of \BbbR n, i.e., as a Rockland system by itself, satisfying the hypothesis
(J1/2,1); by applying Theorem 5.3.7 to these systems, we recover Theorem B of
the introduction.

5.4.2 H-type groups

Let G be a H-type group, with a fixed stratification. Let L be a homogeneous
sublaplacian on G, and let T1, . . . , Td be a basis of the center of the Lie algebra
g of G. Then we have a Rockland system

L, - iT1, . . . , - iTd,

to which our multiplier theorems can be applied, at least in two different ways.
Namely, this Rockland system on the H-type group G satisfies the hypothesis

(J(\mathrm{d}\mathrm{i}\mathrm{m}G)/2,1) by Proposition 5.3.1, so that, by Theorem 5.2.6, we get that, for
p \geq 2, the condition

\| m\| M\epsilon Bs
p,p

<\infty for some s >
dimG

2
+
d

p
,

where \epsilon t are the dilations associated to the Rockland system, implies that the
operator m(L, - iT1, . . . , - iTd) is of weak type (1, 1) and is bounded on Lr(G)
for 1 < r <\infty .

On the other hand, we can consider each of the operators L, - iT1, . . . , - iTd
as forming a Rockland system by itself: the sublaplacian L is Rockland on G,
so that it satisfies the hypothesis (J(\mathrm{d}\mathrm{i}\mathrm{m}G)/2,1), whereas each central derivative
 - iTj is Rockland on a 1-dimensional subgroup of the center of G, thus it satisfies
the hypothesis (J1/2,1,.) Therefore, by Theorem 5.3.7, for p \geq 2, the condition

\| m\| M\ast S\vec{}s
p,pB

<\infty for some \vec{}s >
\biggl( 

dimG

2
,
1
2
, . . . ,

1
2

\biggr) 
implies that m(L, - iT1, . . . , - iTd) is bounded on Lr(G) for 1 < r <\infty .
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dim G
2

dim G
2

Theorem 5.2.6
(Mihlin-Hörmander, L∞ Besov norm)

1
2

Theorem 5.3.7
(Marcinkiewicz, L2 Sobolev norm)

[MRS96]

(Marcinkiewicz, L2 Sobolev norm)

−iT

L

Figure 5.1: Comparison of multiplier results on the Heisenberg groups

If we compare these two results in terms of the required smoothness, we see
that, for p = \infty , neither of the conditions is contained in the other: in fact, in the
former conditions, only derivatives up to (something more than) the order \mathrm{d}\mathrm{i}\mathrm{m}G

2

are required, but any kind of derivative; in the latter, instead, the order \mathrm{d}\mathrm{i}\mathrm{m}G+d
2

is reached, but only with mixed derivatives, and in particular pure derivatives
with respect to the spectral variables corresponding to  - iT1, . . . , - iTd are only
required up to the order 1

2 . This comparison is illustrated in Figure 5.1 in the
case of the Heisenberg groups Hn (for which d = 1).

We notice that the result of M\"uller, Ricci and Stein [MRS96] involving this
system of operators is sharper than ours. In fact their condition, which is of
Marcinkiewicz type, is expressed in terms of a ``mixed"" multi-parameter L2

Sobolev norm

\| f\| 2
S\vec{}t

\mathrm{m}\mathrm{i}\mathrm{x}H(\BbbR 1+n)
=
\int 

\BbbR 1+n

(1 + | \xi 0| )2t0
n\prod 
j=1

(1 + | \xi 0| + | \xi j | )2tj | \scrF f(\xi )| 2 d\xi ,

with regularity threshold

\vec{}t >

\biggl( 
dimG - d

2
,
1
2
, . . . ,

1
2

\biggr) 
;

therefore, with respect to the required smoothness, the condition of [MRS96]
is exactly the ``intersection"" of our two. On the other hand, our results are
more general, since, for instance, the sublaplacian L can be replaced by any
Rockland operator (with respect to any homogeneous structure) on G, without
any change in the condition on the multiplier.

On the Heisenberg group Hn we can also consider the Rockland system

L1, . . . , Ln, - iT

made of the partial sublaplacians and the central derivative. There are several
ways in which our multiplier theorems can be applied to this system, since every
subfamily of partial sublaplacians form (with or without the central derivative)
a Rockland system on some subgroup of Hn. Analogously as before, the ``in-
tersection"" of all our conditions corresponds to the sharper result of Veneruso
[Ven00] about this system of operators.
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5.4.3 Non-nilpotent groups

Theorem 5.3.7 allows one to obtain spectral multiplier theorems also on groups
which are not homogeneous, even not nilpotent. Clearly, the case \varrho = 1 gives
transference of multiplier results from a homogeneous group to a larger, possibly
non-homogeneous one. A less trivial example comes by considering an action
of a torus \BbbT d = \BbbR d/\BbbZ d on a homogeneous group N by automorphisms which
commute with dilations, and the corresponding semidirect product \BbbT d \ltimes N (or
alternatively its universal covering group \BbbR d \ltimes N).

Take for instance a diamond group G = \BbbT d \ltimes Hn (see [Lud95]). If L is
a \BbbT d-invariant homogeneous sublaplacian on Hn (which always exists), and if
U1, . . . , Ud are the partial derivatives on the torus \BbbT d, then

L, - iU1, . . . , - iUd

is a weighted subcoercive system on G, since these operators commute on G,
and the algebra generated by them contains the operator

\Delta = L+ ( - iU1)2 + \cdot \cdot \cdot + ( - iUd)2,

which is a sublaplacian and therefore is weighted subcoercive on G. Each of
the operators L, - iU1, . . . , - iUd can be considered as a Rockland system in
itself: L is Rockland on Hn, and therefore satisfies (J(\mathrm{d}\mathrm{i}\mathrm{m}Hn)/2,1), whereas  - iUj
comes from the corresponding derivative on the j-th factor of \BbbR d, which satisfies
(J1/2,1,.) By applying Theorem 5.3.7, we then obtain that, if

\| m\| M\ast S\vec{}s
2,2B(\BbbR 1+d) <\infty for \vec{}s >

\biggl( 
dimHn

2
,
1
2
, . . . ,

1
2

\biggr) 
,

then m(L, - iU1, . . . , - iUd) is bounded on Lr(G) for 1 < r <\infty .
Thanks to Proposition 2.4.12 and Corollary 2.5.7, this result in turn yields

a multiplier theorem for the sublaplacian \Delta : if

\| m\| M\ast Bs
2,2(\BbbR ) <\infty for s >

dimHn + d

2
=

dimG

2
,

then m(\Delta ) is bounded on Lr(G) for 1 < r <\infty . We remark that:

\bullet this condition is sharper than the one following by the general result of
Alexopoulos [Ale94], which instead requires s > \mathrm{d}\mathrm{i}\mathrm{m}G+1

2 in terms of an
L\infty Besov norm (in fact, dimG + 1 is the local dimension associated to
the sublaplacian \Delta );

\bullet this is an example of a group in which the regularity threshold for a mul-
tiplier theorem can be lowered to half the topological dimension, which is
neither a M\'etivier group (or a direct product of Euclidean and M\'etivier
groups), nor SU2;

\bullet by Proposition 2.4.12, Corollary 2.5.7 and Proposition 2.5.8, the sublapla-
cian \Delta can be replaced by any operator of the form

Lk0 + - (iU1)2k1 + \cdot \cdot \cdot + ( - iUd)2kd or Lk0( - iU1)k1 \cdot \cdot \cdot ( - iUd)kd

for some k0, k1, . . . , kd \in \BbbN \setminus \{ 0\} , obtaining an analogous multiplier result
with identical smoothness requirement.
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Operators such as the complete Laplacian

\Delta c = L+ ( - iT )2 + ( - iU1)2 + \cdot \cdot \cdot + ( - iUd)2,

where T is the central derivative on Hn, can also be studied. By considering
L, - iT together as a Rockland system on Hn, and each of the  - iUj separately
as before, one obtains, by Theorem 5.3.7, Proposition 2.4.12 and Corollary 2.5.7,
a multiplier theorem for the Laplacian \Delta c, with a regularity threshold of order
\mathrm{d}\mathrm{i}\mathrm{m}G

2 in terms of an L\infty Besov norm.
Analogous considerations hold if one replacesHn by any H-type (or M\'etivier)

group, and also if one takes the universal covering group \BbbR d\ltimes Hn; this last case
comprises, for d = 1, the oscillator groups. Notice that the previous result about
the Laplacian \Delta c, when stated on the universal covering group, is sharper than
[Ale94], since the degree of growth of the group is greater than its topological
dimension.

Further examples include the plane motion group \BbbT \ltimes \BbbR 2, and also the semidi-
rect product \BbbT \ltimes N2,3 determined by the action of SO2 on the free 3-step nilpo-
tent group N2,3 considered in \S 4.4.4. In these last cases, for some distinguished
sublaplacians, we still get a sharpening of the result by Alexopoulos: although
the required order of smoothness is the same, our condition is expressed in terms
of an L2 instead of an L\infty Besov norm.
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Appendix

In the following we give a brief account of the theory of spectral integrals,
including the spectral theorem for multiple operators and the connections with
the Gelfand theory of commutative C\ast -algebras. In doing so, we also summarize
some results from the theory of Banach \ast -algebras which are used throughout
the work.

A.1 Banach \ast -algebras and C\ast -algebras

The following results can be found, together with a more extensive presentation,
in [BD73], [Dix82], [Pal94], [Pal01].

A.1.1 \ast -algebras

A \ast -algebra is an associative algebra over \BbbC (i.e., a complex vector space \scrA with
a bilinear, associative product) endowed with a conjugate-linear involution

\scrA \ni a \mapsto \rightarrow a\ast \in \scrA 

such that (a\ast )\ast = a, (ab)\ast = b\ast a\ast . \scrA is unital if the product has an identity.
If \scrA 1 and \scrA 2 are \ast -algebras, a linear map T : \scrA 1 \rightarrow \scrA 2 which preserves

multiplication and involution is called a \ast -homomorphism; if moreover \scrA 1 and
\scrA 2 are unital \ast -algebras, and T maps the identity of \scrA 1 to the identity of \scrA 2,
then T is called a unital \ast -homomorphism.

A Banach \ast -algebra (with isometric involution) is a \ast -algebra \scrA endowed
with a norm \| \cdot \| which makes it into a Banach space and such that

\| a1a2\| \leq \| a1\| \| a2\| , \| a\ast \| = \| a\| ,

\| e\| = 1 if e \in \scrA is an identity.

If moreover
\| a\ast a\| = \| a\| 2,

then \scrA is called a C\ast -algebra.
If \scrH is a Hilbert space, then the space \scrB (\scrH ) of bounded linear operators on

\scrH , with composition, adjunction and the operator norm, is a unital C\ast -algebra.
In fact, by the Gelfand-Naimark theorem, every C\ast -algebra is (isometrically)
\ast -isomorphic to a closed \ast -subalgebra of \scrB (\scrH ) for some Hilbert space \scrH .

If a \ast -algebra \scrA is not unital, then we embed it in a unital \ast -algebra

\scrA U = \scrA \oplus \BbbC ,
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called the unitization of \scrA , with operations

(a1, \lambda 1)(a2, \lambda 2) = (a1a2 + \lambda 1a2 + \lambda 2a1, \lambda 1\lambda 2), (a, \lambda )\ast = (a\ast , \lambda );

in fact, the element (0, 1) is an identity for \scrA U , and the embedding of \scrA into
\scrA U is given by a \mapsto \rightarrow (a, 0). If \scrA is a Banach \ast -algebra, then \scrA U can be made
into a Banach \ast -algebra with the norm

\| (a, \lambda )\| = \| a\| + | \lambda | ;

if moreover \scrA is a C\ast -algebra, then the norm

\| (a, \lambda )\| \prime = sup
x\in A
\| x\| \leq 1

\| ax+ \lambda x\| 

makes \scrA U into a C\ast -algebra.

A.1.2 Spectrum of an element

For a unital \ast -algebra \scrA , we define the spectrum Spec\scrA (a) of an element a \in \scrA 
as the set of the \lambda \in \BbbC such that a - \lambda is not invertible in \scrA ; if \scrA is not unital,
then the spectrum Spec\scrA (a) of an element a \in \scrA is defined as its spectrum in
the unitization \scrA U of \scrA . The spectral radius \rho \scrA (a) of an element a \in \scrA is given
by

\rho \scrA (a) = sup\{ | \lambda | : \lambda \in Spec\scrA (a)\} .

If \scrA is a Banach \ast -algebra, then Spec\scrA (a) is a non-empty compact subset of \BbbC 
for every a \in \scrA , and

\rho \scrA (a) \leq \| a\| ;

moreover the spectral radius formula holds:

\rho \scrA (a) = lim
n\rightarrow \infty 

\| an\| 1/n = inf
n
\| an\| 1/n.

If \scrA \prime is a closed \ast -subalgebra of a Banach \ast -algebra \scrA , then, for every b \in \scrA \prime ,

\partial Spec\scrA \prime (b) \subseteq \partial Spec\scrA (b) \subseteq Spec\scrA (b) \subseteq Spec\scrA \prime (b) \cup \{ 0\} ,

(see [BD73], Proposition I.5.12), and in particular

\rho \scrA (b) = \rho \scrA \prime (b).

If \scrA is a C\ast -algebra, then, for every a \in \scrA ,

\| a\| = \rho \scrA (a\ast a)1/2

A.1.3 \ast -representations

If \scrA is a \ast -algebra, a \ast -representation T of \scrA on a Hilbert space \scrH is a \ast -
homomorphism T : \scrA \rightarrow \scrB (\scrH ). For a \in \scrA , we set

\gamma \scrA (a) = sup\{ \| T (a)\| : T is a \ast -representation of \scrA \} .
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The function \gamma \scrA , which is called the Gelfand-Naimark seminorm of \scrA , is a
(possibly infinite-valued) submultiplicative seminorm on \scrA , which satisfies

\gamma \scrA (a\ast a) = \gamma \scrA (a)2, \gamma \scrA (a) \leq \rho \scrA (a\ast a)1/2.

In particular, if \scrA is a Banach \ast -algebra, then

\gamma \scrA (a) \leq \| a\| ,

so that every \ast -representation is automatically continuous.

A.1.4 Hermitian \ast -algebras

An element a of a \ast -algebra \scrA is called hermitian if a = a\ast . A \ast -algebra \scrA 
is called hermitian if Spec\scrA (a) \subseteq \BbbR for every hermitian a \in \scrA . In fact, for a
Banach \ast -algebra \scrA , the following conditions are equivalent:

\bullet \scrA is hermitian;

\bullet Spec\scrA (a\ast a) \subseteq [0,+\infty [ for every a \in \scrA ;

\bullet \gamma \scrA (a) = \rho \scrA (a\ast a)1/2 for every a \in \scrA .

The equivalence of the first two conditions is the Shirali-Ford theorem (see
[BD73], Theorem 41.5), whereas the third condition is called Raikov's crite-
rion (cf. [Pal01], Theorem 11.4.1).

Every C\ast -algebra is hermitian.

A.1.5 Commutative \ast -algebras

A character of a commutative \ast -algebra \scrA is a non-null linear functional \phi :
\scrA \rightarrow \BbbC which is multiplicative, i.e., such that \phi (a1a2) = \phi (a1)\phi (a2); the set
\frakG (\scrA ) of the characters of \scrA is called the Gelfand spectrum of \scrA .

If \scrA is a commutative \ast -algebra, then the Gelfand transform of a is the
function \^a : \frakG (\scrA ) \rightarrow \BbbC defined by

\^a(\phi ) = \phi (a).

The Gelfand topology is the weakest topology on \frakG (\scrA ) such that all the maps
\^a (for a \in \scrA ) are continuous.

If \scrA is a commutative Banach \ast -algebra, then, for all a \in \scrA ,

\^a(\frakG (\scrA )) \subseteq Spec\scrA (a) \subseteq \^a(\frakG (\scrA )) \cup \{ 0\} ,

and in particular
\| \^a\| \infty = \rho \scrA (a) \leq \| a\| ;

moreover \frakG (\scrA ) is a locally compact Hausdorff topological space, and \^a \in 
C0(\frakG (\scrA )) for every a \in \scrA . In fact, if A is unital, then \Gamma (\scrA ) is compact and

\^a(\frakG (\scrA )) = Spec\scrA (a)

for every a \in \scrA .
For a commutative Banach \ast -algebra \scrA , the map

\scrA \ni a \mapsto \rightarrow \^a \in C0(\frakG (\scrA )),

which is called the Gelfand transform, is a homomorphism of algebras, i.e., it is
a linear map which preserves the product. In fact, we have:
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\bullet \scrA is a hermitian Banach \ast -algebra if and only if the Gelfand transform is
a \ast -homomorphism;

\bullet \scrA is a C\ast -algebra if and only if the Gelfand transform is an (isometric)
\ast -isomorphism.

A.2 Linear operators on Hilbert spaces

While bounded operators on a Hilbert space form a C\ast -algebra, and conse-
quently are included in the theory set forth in \S A.1, unbounded operators require
a specific treatment. Moreover, among bounded operators, specific subclasses
with peculiar properties can be considered. General references for the following
are [DS63], [Rud73], [RS80].

A.2.1 Operators as graphs

Let \scrH 1,\scrH 2 be (complex) Hilbert spaces. A (possibly not everywhere defined)
linear operator L from \scrH 1 to \scrH 2 can be identified with its graph, which is a
linear subspace of the direct product \scrH 1\times \scrH 2. In particular, the domain D(A)
and the range R(A) of A can be simply thought of as the projections of A on
the two factors \scrH 1 and \scrH 2.

A.2.2 Sum and product

If A1, A2 are linear operators from \scrH 1 to \scrH 2, then their sum A1 +A2 is defined
pointwise on the intersection of their domains:

D(A1 +A2) = D(A1) \cap D(A2).

If A is an operator from \scrH 1 to \scrH 2, and B is an operator from \scrH 2 to another
Hilbert space \scrH 3, then their product (or composition) BA is an operator from
\scrH 1 to \scrH 3 defined as a composition of relations, so that

D(BA) = \{ x \in D(A) : Ax \in D(B)\} .

A.2.3 Closable and closed operators

An operator A from \scrH 1 to \scrH 2 is called closable if its closure A (as a subspace
of \scrH 1 \times \scrH 2) is still (the graph of) an operator, i.e., if A is univocal. A is said
to be closed if A = A. Clearly, if an operator A admits a closed extension, i.e.,
a closed operator B such that A \subseteq B, then A is closable. By the closed map
theorem, a closed operator which is everywhere defined is bounded.

A.2.4 Adjoint of an operator

Let J\scrH 1,\scrH 2 : \scrH 1 \times \scrH 2 \rightarrow \scrH 2 \times \scrH 1 be the isometric isomorphism defined by

J\scrH 1,\scrH 2(x1, x2) = ( - x2, x1).

We define the adjoint A\ast of an operator A from \scrH 1 to \scrH 2 as

A\ast = (J\scrH 1,\scrH 2(A))\bot = J\scrH 1,\scrH 2(A
\bot ).
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Then one can see that A\ast is an operator from \scrH 2 to \scrH 1 if and only if D(A) is
dense in \scrH 1. Moreover, the domain of the adjoint A\ast of A is given by

D(A\ast ) = \{ x2 \in \scrH 2 : x1 \mapsto \rightarrow \langle Ax1, x2\rangle \scrH 2 is continuous\} ,

and for x2 \in D(A\ast ) we have that A\ast x2 is the unique element of \scrH 1 such that

\langle x1, A
\ast x2\rangle \scrH 1 = \langle Ax1, x2\rangle \scrH 2 .

From the definition, one has immediately A\ast is closed, and that A\ast \ast = A. In
particular, if A\ast is a densely defined operator, then A is closable. Moreover

kerA\ast = R(A)\bot .

A.2.5 Symmetric and positive operators

From now on, let us suppose that \scrH 1 = \scrH 2 = \scrH . An operator A on \scrH is said
to be symmetric if A \subseteq A\ast . In particular, a densely defined symmetric operator
is closable. Notice that A is symmetric if and only if

\langle Ax, y\rangle \scrH = \langle x,Ay\rangle \scrH for all x, y \in D(A)

if and only if
\langle Ax, x\rangle \scrH \in \BbbR for all x \in D(A).

We say that an operator A is positive if

\langle Ax, x\rangle \scrH \geq 0 for all x \in D(A).

A closable operator A is symmetric or positive if and only if A is.

A.2.6 Self-adjoint and essentially self-adjoint operators,
normal operators

An operator A on \scrH is said to be self-adjoint if A\ast = A; in particular, a self-
adjoint operator is closed and densely defined.

A closable operator is said to be essentially self-adjoint if its closure A is
self-adjoint, i.e., if A\ast = A.

A closed and densely defined operator is said to be normal if A\ast A = AA\ast .

A.2.7 Spectrum

If A is a densely defined operator on \scrH , the resolvent set of A is the set of the
\lambda \in \BbbC such that A - \lambda is injective and its inverse (A - \lambda ) - 1 is densely defined and
bounded; the complementary Spec(A) of the resolvent set is called the spectrum
of A.

A subset of Spec(A) is the point spectrum of A, which is the set of the
eigenvalues of A, i.e., the \lambda \in \BbbC such that A  - \lambda is not injective. Clearly, the
point spectrum coincides with the whole spectrum when \scrH is finite-dimensional.

The spectrum Spec(A) of a densely defined operator A on \scrH is a closed
subset of \BbbC . If A is self-adjoint, then Spec(A) \subseteq \BbbR .

If A is bounded, then Spec(A) = Spec\scrB (\scrH )(A).
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A.2.8 Compact operators, Hilbert-Schmidt operators and
trace class operators

A bounded operator A on \scrH is said to be:

\bullet compact, if A maps bounded subsets of \scrH to relatively compact ones;

\bullet Hilbert-Schmidt, if

\| A\| \mathrm{H}\mathrm{S} =

\Biggl( \sum 
\alpha \in I

\| Av\alpha \| 2
\Biggr) 1/2

<\infty 

for any (hence for every) complete orthonormal system (v\alpha )\alpha \in I in \scrH ;

\bullet trace class, if
tr | A| =

\sum 
\alpha \in I

\langle (A\ast A)1/2v\alpha , v\alpha \rangle <\infty 

for any (hence for every) complete orthonormal system (v\alpha )\alpha \in I in \scrH .

The quantities \| A\| \mathrm{H}\mathrm{S} and tr | A| are independent on the choice of the system
(v\alpha )\alpha \in I , and define complete norms on the spaces of Hilbert-Schmidt operators
and trace class operators respectively.

The trace class and the Hilbert-Schmidt operators form \ast -ideals of \scrB (\scrH ).
The compact operators form a closed \ast -ideal of \scrB (\scrH ). Moreover, for a bounded
operator on \scrH , the following implications hold:

finite rank \Rightarrow trace class \Rightarrow Hilbert-Schmidt \Rightarrow compact.

For a trace class operator A, the trace

trA =
\sum 
\alpha \in I

\langle Av\alpha , v\alpha \rangle 

is well defined (and finite). Moreover, the expression

tr(B\ast A) =
\sum 
\alpha \in I

\langle Av\alpha , Bv\alpha \rangle 

defines an inner product, inducing the Hilbert-Schmidt norm \| \cdot \| \mathrm{H}\mathrm{S}.

A.3 Spectral integration

For the present and the next section, we refer mainly to [Ber66], [Rud73], [FD88]
for detailed expositions and proofs.

A.3.1 Orthogonal projections

Let \scrH be a Hilbert space. An orthogonal projection of \scrH is a bounded linear
operator P on \scrH such that P 2 = P = P \ast .

An orthogonal projection P is uniquely determined by its range R(P ), which
is a closed subspace of \scrH , and in fact every closed subspace of \scrH is the range
of an orthogonal projection.
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We define a (partial) order on the orthogonal projections of \scrH by setting

P \leq Q \Leftarrow \Rightarrow R(P ) \subseteq R(Q).

With respect to this order, the orthogonal projections of \scrH form a complete
lattice; in particular, the supremum of a family \scrP of orthogonal projections is
the orthogonal projection sup\scrP with range

R(sup\scrP ) = span
\bigcup 
\{ R(P ) : P \in \scrP \} .

A.3.2 Resolutions of the identity

Let X be a locally compact Hausdorff topological space. A resolution of the
identity of \scrH on X is a correspondence E which maps Borel subsets A of X to
orthogonal projections E(A) of \scrH , and which satisfies the following properties:

\bullet E(X) = id\scrH ;

\bullet E(A1 \cup A2) = E(A1) + E(A2) whenever A1 \cap A2 = \emptyset ;

\bullet E(A) = limnE(An) whenever \{ An\} n\in \BbbN is an increasing sequence with
union A, and where the limit is meant to be in the strong sense;

\bullet E(A1 \cap A2) = E(A1)E(A2) = E(A2)E(A1).

A resolution of the identity is also called a projection-valued measure. A res-
olution E of the identity of \scrH on X is said to be regular if, for every Borel
A \subseteq X,

E(A) = sup\{ E(K) : K is a compact subset of A\} .

Let E be a resolution of the identity of \scrH on X. For every u, v \in \scrH , the
equality

Eu,v(A) = \langle E(A)u, v\rangle 

defines a complex-valued Borel measure Eu,v on X, which satisfies

| Eu,v| (X) \leq \| u\| \| v\| .

In fact, in the case u = v, we have that Eu,u is a positive Borel measure, with

Eu,u(X) = \| u\| 2.

It can be shown that E is regular if and only if Eu,u is regular for every u \in \scrH ;
in particular, if X is second-countable, then every resolution of the identity on
X is regular (see [FD88], Proposition II.11.10).

The support suppE of a projection-valued measure E on X is defined by

suppE = X \setminus 
\bigcup 
\{ A \subseteq X : A is open and E(A) = 0\} .

In fact, suppE is the closure of the union of the supports of the measures Eu,u
for u \in \scrH . If E is regular, then E(suppE) = id\scrH .
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A.3.3 Integral of bounded functions

Let B(X) be the set of (complex-valued) bounded Borel functions on a locally
compact Hausdorff topological space X; in fact, B(X) is a C\ast -algebra with
pointwise operations and the supremum norm.

If E is a resolution of the identity of a Hilbert space \scrH on X, then there
exists a unique continuous linear map B(X) \rightarrow \scrB (\scrH ) which maps \chi A to E(A)
for every Borel A \subseteq X; the image of a function f \in B(X) via this map is
denoted by \int 

X

f dE or E[f ],

and is called the integral of the function f with respect to the projection-valued
measure E. We clearly have

\langle E[f ]u, v\rangle =
\int 
X

f dEu,v

for every f \in B(X), u, v \in \scrH , and in particular

\| E[f ]u\| 2 =
\int 
X

| f | 2 dEu,u.

In fact, the map E[\cdot ] is a \ast -homomorphism, so that

\| E[f ]\| \leq \| f\| \infty .

More precisely, if

NE = \{ f \in B(X) : E(\{ f \not = 0\} ) = 0\} ,

then NE is a closed \ast -ideal of B(X), and the map E[\cdot ] : B(X) \rightarrow \scrB (\scrH ) induces
an isometric embedding of the quotient C\ast -algebra

L\infty (X,E) = B(X)/NE

into the C\ast -algebra \scrB (\scrH ); moreover, the norm on L\infty (X,E) is given by the
E-essential supremum:

\| f\| L\infty (X,E) = min\{ \lambda \in [0,+\infty [ : E(\{ | f | > \lambda \} ) = 0\} 

(see [Rud73], \S 12.20).

A.3.4 Spectral integrals and Gelfand transform

If X is a locally compact Hausdorff topological space and E is a resolution of
the identity of a Hilbert space \scrH on X, then we can restrict the map E[\cdot ] to the
sub-C\ast -algebra C0(X) of B(X), thus obtaining a \ast -representation T of C0(X)
on \scrH . If E is a regular resolution of the identity, then the \ast -representation T is
regular, in the sense that\bigcap 

\{ kerT (f) : f \in C0(X)\} = \{ 0\} .

In fact, if T is a regular \ast -representation of C0(X) on a Hilbert space \scrH , then
there exists a unique regular resolution E of the identity of \scrH on X such that
T (f) = E[f ] for every f \in C0(X) (see [FD88], Theorem II.12.8).
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In particular, if \scrH is a Hilbert space and A is a closed commutative \ast -
subalgebra of \scrB (\scrH ) containing the identity of \scrH , then the inverse of the Gelfand
transform is a regular \ast -representation of C(\frakG (A)) on \scrH , so that there exists
a unique regular resolution E of the identity of \scrH on the compact space \frakG (A)
such that E[\^a] = a for every a \in A; this resolution E will be called the spectral
resolution of the algebra A.

On the other hand, if E is a regular resolution of the identity of a Hilbert
space \scrH on a locally compact Hausdorff topological space X, then the C\ast -
algebra C0(suppE), identified with a sub-C\ast -algebra of B(X) via extension by
zero, is isometrically embedded in the quotient L\infty (X,E); moreover, by the
Tietze-Urysohn extension theorem (see [Bou98b], \S IX.4.2), its image in \scrB (\scrH )
via the map E[\cdot ] coincides with the image E[C0(X)] of C0(X). Consequently,
the Gelfand spectrum of E[C0(X)] can be identified with suppE via a homeo-
morphism \Psi : \frakG (E[C0(X)]) \rightarrow suppE such that

\phi (E[f ]) = f(\Psi (\phi ))

for every f \in C0(X), \phi \in \frakG (E[C0(X)]).

A.3.5 Integral of unbounded functions

Let E be a resolution of the identity of\scrH on X. We extend the definition of E[f ]
to general Borel functions f : X \rightarrow \BbbC , so that E[f ] is the (possibly unbounded)
linear operator on \scrH , with domain

D(E[f ]) =
\biggl\{ 
u \in \scrH :

\int 
X

| f | 2 dEu,u <\infty 
\biggr\} 
,

which is uniquely determined by the condition

\langle E[f ]u, v\rangle =
\int 
X

f dEu,v

for all u \in D(E[f ]), v \in \scrH ; in fact, it can be shown that, for every Borel
f : X \rightarrow \BbbC , the set D(E[f ]) is a dense subspace of \scrH , and that

\| E[f ]u\| 2 =
\int 
X

| f | 2 dEu,u

for every u \in D(E[f ]). Moreover:

\bullet E[f1] + E[f2] = E[f1 + f2];

\bullet E[f1]E[f2] = E[f1f2], and D(E[f1]E[f2]) = D(E[f1f2]) \cap D(E[f2]);

\bullet E[f ] = E[f ]\ast , and E[f ]\ast E[f ] = E[| f | 2] = E[f ]E[f ]\ast .

(cf. [Rud73], Theorem 13.24). In particular, for every Borel f : X \rightarrow \BbbC , E[f ]
is a (closed) normal operator, and in fact E[f ] is self-adjoint if f is real-valued;
moreover, the spectrum of E[f ] is given by the E-essential image of f , i.e.,

Spec(E[f ]) = \{ \lambda \in \BbbC : E(\{ | f  - \lambda | < \epsilon \} ) \not = 0 for all \epsilon > 0\} ,

and, for every \lambda \in \BbbC , the eigenspace of E[f ] relative to the eigenvalue \lambda is
characterized by

\{ u \in D(E[f ]) : E[f ]u = \lambda u\} = R(E\{ f = \lambda \} )

(see [Rud73], Theorem 13.27).
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A.3.6 Push-forward measure

Let X1, X2 be locally compact Hausdorff topological spaces and p : X1 \rightarrow X2

be a Borel map. If \scrH is a Hilbert space and E is a resolution of the identity
of \scrH on X1, then we can consider the push-forward of E via p, which is the
resolution p(E) of the identity of \scrH on X2 defined by

p(E)(A) = E(p - 1(A)) for all Borel A \subseteq X2.

The support of p(E) is the E-essential image of p:

supp p(E) = \{ x \in X2 : E(p - 1(U)) \not = 0 for all neighborhoods U of x\} ;

in particular, if E is regular, then

supp p(E) \subseteq p(suppE),

with equality if p is continuous. Moreover, the following change-of-variable
theorem holds: for every Borel function f : X2 \rightarrow \BbbC ,

p(E)[f ] = E[f \circ p]

(see [Rud73], Theorem 13.28).

A.3.7 Product measure

Let X1, X2 be locally compact Hausdorff topological spaces; suppose moreover
that X1, X2 are second-countable (thus metrizable by the Urysohn metrization
theorem, see \S IX.9 of [Dug66]). Let \scrH be a Hilbert space, and let Ej be a
(necessarily regular) resolution of the identity of \scrH on Xj , for j = 1, 2. If E1

and E2 commute, i.e.,

E1(A1)E2(A2) = E2(A2)E1(A1) for all Borel A1 \subseteq X1, A2 \subseteq X2,

then there exists a unique (regular) resolution E of the identity of \scrH on the
product X1 \times X2 such that

E(A1 \times A2) = E1(A1)E2(A2) for all Borel A1 \subseteq X1, A2 \subseteq X2,

which is called the product of E1 and E2 (see [Ber66], Theorem 33 and Corol-
lary). Clearly, if pj : X1 \times X2 \rightarrow Xj is the canonical projection, then

pj(E) = Ej ,

for j = 1, 2. Moreover (see [Ber66], Theorem 35)

suppE \subseteq suppE1 \times suppE2.

A.4 The spectral theorem

A.4.1 Spectral decomposition for a single normal operator

Let T be a (possibly unbounded) normal operator on a Hilbert space \scrH . Then
there exists (see [Rud73], Theorem 13.33) a unique resolution E of the identity
of \scrH on \BbbC such that

T =
\int 
E

\lambda dE(\lambda ), (A.4.1)

188



A.4. The spectral theorem

and in particular suppE = Spec(T ). The projection-valued measure E is called
the spectral resolution (or spectral measure) of T .

In terms of the spectral measure, a functional calculus is defined for the
operator T : for every Borel function f : \BbbC \rightarrow \BbbC , we set

f(T ) =
\int 

\BbbC 
f dE.

A.4.2 Compact normal operators

Suppose that the normal operator T on the Hilbert space \scrH is (bounded and)
compact. Then there exist a complete orthonormal system (v\alpha )\alpha \in I in \scrH and a
sequence (\lambda \alpha )\alpha \in I of complex numbers such that

Tv\alpha = \lambda \alpha v\alpha for all \alpha \in I,

and

for all \varepsilon > 0, the set \{ \alpha \in I : | \lambda \alpha | > \varepsilon \} is finite

(see [FD88], Theorem VI.15.10); notice that the last condition implies that at
most countably many \lambda \alpha are not null. This means that, if E is the spectral
resolution of T , then

R(E(\{ \lambda \} )) = span\{ v\alpha : \alpha \in I, \lambda \alpha = \lambda \} ,

so that

dimR(E(\{ \lambda \} )) is finite for \lambda \not = 0,

and

\{ \lambda \alpha \} \alpha \in I \subseteq SpecT \subseteq \{ \lambda \alpha \} \alpha \in I \cup \{ 0\} .

Therefore, for a compact normal operator, the spectral decomposition (A.4.1)
becomes a sum

T =
\sum 
\alpha \in I
\lambda \alpha \not =0

\lambda \alpha E(\{ \lambda \alpha \} )

(in the sense of strong convergence of operators).

A.4.3 Strong commutativity

Two normal operators T1, T2 are said to commute strongly if their spectral reso-
lutions commute: more precisely, if E1, E2 are the spectral resolutions of T1, T2

respectively, then we ask that

E1(A)E2(B) = E2(B)E1(A) for all Borel A,B \subseteq \BbbC .

Notice that, in the case of bounded normal operators, strong commutativity is
equivalent to commutativity (cf. [Rud73], Theorem 12.16).
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A.4.4 Joint spectral theory for strongly commuting nor-
mal operators

Suppose that T1, . . . , Tn are normal operators on \scrH which commute strongly
pairwise, and let E1, . . . , En be their respective spectral resolutions. Then we
can consider the product of E1, . . . , En, i.e., the unique resolution E of the
identity of \scrH on \BbbC n such that

E(A1 \times \cdot \cdot \cdot \times An) = E1(A1) \cdot \cdot \cdot En(An)

(see \S A.3.7), and we have

Tj =
\int 

\BbbC n

\lambda j dE(\lambda 1, . . . , \lambda n) for j = 1, . . . , n.

E is called the joint spectral resolution of T1, . . . , Tn and its support, which is
contained in Spec(T1)\times \cdot \cdot \cdot \times Spec(Tn), is called the joint spectrum of T1, . . . , Tn
and denoted by Spec(T1, . . . , Tn).

Via the joint spectral resolution, a joint functional calculus for the operators
T1, . . . , Tn is defined: for a Borel function f : \BbbC n \rightarrow \BbbC , we set

f(T1, . . . , Tn) =
\int 

\BbbC n

f dE.

190



Bibliography

[ACDS00] F. Astengo, M. Cowling, B. Di Blasio and M. Sundari. Hardy's
uncertainty principle on certain Lie groups. J. London Math. Soc.
(2), 62(2):461--472, 2000.

[ADR07] F. Astengo, B. Di Blasio and F. Ricci. Gelfand transforms of polyra-
dial Schwartz functions on the Heisenberg group. J. Funct. Anal.,
251(2):772--791, 2007.

[ADR09] F. Astengo, B. Di Blasio and F. Ricci. Gelfand pairs on the Heisen-
berg group and Schwartz functions. J. Funct. Anal., 256(5):1565--
1587, 2009.

[AER94] P. Auscher, A. F. M. ter Elst and D. W. Robinson. On positive
Rockland operators. Colloq. Math., 67(2):197--216, 1994.

[Ale94] G. Alexopoulos. Spectral multipliers on Lie groups of polynomial
growth. Proc. Amer. Math. Soc., 120(3):973--979, 1994.

[Ank90] J.-P. Anker. Lp Fourier multipliers on Riemannian symmetric
spaces of the noncompact type. Ann. of Math. (2), 132(3):597--628,
1990.

[Bag78] L. Baggett. Representations of the Mautner group. I. Pacific J.
Math., 77(1):7--22, 1978.

[BD73] F. F. Bonsall and J. Duncan. Complete normed algebras. Springer-
Verlag, New York, 1973. Ergebnisse der Mathematik und ihrer
Grenzgebiete, Band 80.

[Ber66] S. K. Berberian. Notes on spectral theory. Van Nostrand Mathe-
matical Studies, No. 5. D. Van Nostrand Co., Inc., Princeton, N.J.-
Toronto, Ont.-London, 1966. Corrected second edition (2009) avail-
able on the web at www.ma.utexas.edu/mp\.arc.

[BJR90] C. Benson, J. Jenkins and G. Ratcliff. On Gel\prime fand pairs associated
with solvable Lie groups. Trans. Amer. Math. Soc., 321(1):85--116,
1990.

[BK91] Y. A. Brudny\u {\i} and N. Y. Krugljak. Interpolation functors and inter-
polation spaces. Vol. I, volume 47 of North-Holland Mathematical
Library. North-Holland Publishing Co., Amsterdam, 1991. Trans-
lated from the Russian by Natalie Wadhwa. With a preface by Jaak
Peetre.

191



[BL76] J. Bergh and J. L\"ofstr\"om. Interpolation spaces. An introduction.
Springer-Verlag, Berlin, 1976. Grundlehren der Mathematischen
Wissenschaften, No. 223.

[Bou98a] N. Bourbaki. General topology. Chapters 1--4. Elements of Mathe-
matics. Springer-Verlag, Berlin, 1998. Translated from the French,
Reprint of the 1989 English translation.

[Bou98b] N. Bourbaki. General topology. Chapters 5--10. Elements of Mathe-
matics. Springer-Verlag, Berlin, 1998. Translated from the French,
Reprint of the 1989 English translation.

[BPW96] E. Berkson, M. Paluszy\'nski and G. Weiss. Transference couples and
their applications to convolution operators and maximal operators.
In Interaction between functional analysis, harmonic analysis, and
probability (Columbia, MO, 1994), volume 175 of Lecture Notes in
Pure and Appl. Math., pages 69--84. Dekker, New York, 1996.

[Car87] G. Carcano. A commutativity condition for algebras of invariant
functions. Boll. Un. Mat. Ital. B (7), 1(4):1091--1105, 1987.

[CG90] L. J. Corwin and F. P. Greenleaf. Representations of nilpotent Lie
groups and their applications. Part I, volume 18 of Cambridge Stud-
ies in Advanced Mathematics. Cambridge University Press, Cam-
bridge, 1990. Basic theory and examples.

[CG71] R. R. Coifman and M. de Guzm\'an. Singular integrals and multi-
pliers on homogeneous spaces. Rev. Un. Mat. Argentina, 25:137--
143, 1970/71. Collection of articles dedicated to Alberto Gonz\'alez
Dom\'{\i}nguez on his sixty-fifth birthday.

[CGHM94] M. Cowling, S. Giulini, A. Hulanicki and G. Mauceri. Spectral
multipliers for a distinguished Laplacian on certain groups of expo-
nential growth. Studia Math., 111(2):103--121, 1994.

[Chr91] M. Christ. Lp bounds for spectral multipliers on nilpotent groups.
Trans. Amer. Math. Soc., 328(1):73--81, 1991.

[Chr92] M. Christ. The strong maximal function on a nilpotent group.
Trans. Amer. Math. Soc., 331(1):1--13, 1992.

[CM96] M. Christ and D. M\"uller. On Lp spectral multipliers for a solvable
Lie group. Geom. Funct. Anal., 6(5):860--876, 1996.

[Cow78] M. Cowling. The Plancherel formula for a group not of type I. Boll.
Un. Mat. Ital. A (5), 15(3):616--623, 1978.

[Cow97] M. Cowling. Herz's ``principe de majoration"" and the Kunze-Stein
phenomenon. In Harmonic analysis and number theory (Montreal,
PQ, 1996), volume 21 of CMS Conf. Proc., pages 73--88. Amer.
Math. Soc., Providence, RI, 1997.

[CS74] J. L. Clerc and E. M. Stein. Lp-multipliers for noncompact sym-
metric spaces. Proc. Nat. Acad. Sci. U.S.A., 71:3911--3912, 1974.

192



[CS95] A. Carbery and A. Seeger. Homogeneous Fourier multipliers of
Marcinkiewicz type. Ark. Mat., 33(1):45--80, 1995.

[CS01] M. Cowling and A. Sikora. A spectral multiplier theorem for a
sublaplacian on SU(2). Math. Z., 238(1):1--36, 2001.

[CW71] R. R. Coifman and G. Weiss. Analyse harmonique non-commutative
sur certains espaces homog\`enes. Lecture Notes in Mathematics, Vol.
242. Springer-Verlag, Berlin, 1971. \'Etude de certaines int\'egrales
singuli\`eres.

[CW76] R. R. Coifman and G. Weiss. Transference methods in analysis.
American Mathematical Society, Providence, R.I., 1976. Conference
Board of the Mathematical Sciences Regional Conference Series in
Mathematics, No. 31.

[Dav10] E. David-Guillou. Schwartz functions, tempered distributions, and
Kernel Theorem on solvable Lie groups. arXiv:1002.2185v1, 2010.

[DF93] A. Defant and K. Floret. Tensor norms and operator ideals, volume
176 of North-Holland Mathematics Studies. North-Holland Publish-
ing Co., Amsterdam, 1993.

[Die72] J. Dieudonn\'e. Treatise on analysis. Vol. III. Academic Press, New
York, 1972. Translated from the French by I. G. MacDonald, Pure
and Applied Mathematics, Vol. 10-III.

[Die74] J. Dieudonn\'e. Treatise on analysis. Vol. IV. Academic Press, New
York, 1974. Translated by I. G. Macdonald, Pure and Applied Math-
ematics, Vol. 10-IV.

[Die88] J. Dieudonn\'e. Treatise on analysis. Vol. VII, volume 10 of Pure
and Applied Mathematics. Academic Press Inc., Boston, MA, 1988.
Translated from the French by Laura Fainsilber.

[Dix82] J. Dixmier. C\ast -algebras. North-Holland Publishing Co., Amster-
dam, 1982. Revised edition. Translated from the French by Francis
Jellett, North-Holland Mathematical Library, Vol. 15.

[DM78] J. Dixmier and P. Malliavin. Factorisations de fonctions et
de vecteurs ind\'efiniment diff\'erentiables. Bull. Sci. Math. (2),
102(4):307--330, 1978.

[DM79] L. De Michele and G. Mauceri. Lp multipliers on the Heisenberg
group. Michigan Math. J., 26(3):361--371, 1979.

[DM87] L. De Michele and G. Mauceri. Hp multipliers on stratified groups.
Ann. Mat. Pura Appl. (4), 148:353--366, 1987.

[DOS02] X. T. Duong, E. M. Ouhabaz and A. Sikora. Plancherel-type esti-
mates and sharp spectral multipliers. J. Funct. Anal., 196(2):443--
485, 2002.

193



[DS63] N. Dunford and J. T. Schwartz. Linear operators. Part II: Spectral
theory. Self adjoint operators in Hilbert space. With the assistance
of William G. Bade and Robert G. Bartle. Interscience Publishers
John Wiley \& Sons New York-London, 1963.

[Dug66] J. Dugundji. Topology. Allyn and Bacon Inc., Boston, Mass., 1966.

[Dye70] J. L. Dyer. A nilpotent Lie algebra with nilpotent automorphism
group. Bull. Amer. Math. Soc., 76:52--56, 1970.

[ER94] A. F. M. ter Elst and D. W. Robinson. Weighted strongly elliptic
operators on Lie groups. J. Funct. Anal., 125(2):548--603, 1994.

[ER97] A. F. M. ter Elst and D. W. Robinson. Spectral estimates for pos-
itive Rockland operators. In Algebraic groups and Lie groups, vol-
ume 9 of Austral. Math. Soc. Lect. Ser., pages 195--213. Cambridge
Univ. Press, Cambridge, 1997.

[ER98] A. F. M. ter Elst and D. W. Robinson. Weighted subcoercive oper-
ators on Lie groups. J. Funct. Anal., 157(1):88--163, 1998.

[ET96] D. E. Edmunds and H. Triebel. Function spaces, entropy numbers,
differential operators, volume 120 of Cambridge Tracts in Mathe-
matics. Cambridge University Press, Cambridge, 1996.

[Far82] J. Faraut. Analyse harmonique sur les paires de Guelfand et
les espaces hyperboliques. In Analyse harmonique, Les Cours du
C.I.M.P.A., pages 315--446. CIMPA/ICPAM, Nice, 1982.

[FD88] J. M. G. Fell and R. S. Doran. Representations of \ast -algebras, locally
compact groups, and Banach \ast -algebraic bundles. Vol. 1, volume 125
of Pure and Applied Mathematics. Academic Press Inc., Boston,
MA, 1988. Basic representation theory of groups and algebras.

[Fer07] F. Ferrari Ruffino. The topology of the spectrum for Gelfand pairs
on Lie groups. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8),
10(3):569--579, 2007.

[Fol77] G. B. Folland. Applications of analysis on nilpotent groups to partial
differential equations. Bull. Amer. Math. Soc., 83(5):912--930, 1977.

[Fol95] G. B. Folland. A course in abstract harmonic analysis. Studies in
Advanced Mathematics. CRC Press, Boca Raton, FL, 1995.

[FR66] E. B. Fabes and N. M. Rivi\`ere. Singular intervals with mixed ho-
mogeneity. Studia Math., 27:19--38, 1966.

[FR09] V. Fischer and F. Ricci. Gelfand transforms of SO(3)-invariant
Schwartz functions on the free group N3,2. Annales de l'institut
Fourier, 59(6):2143--2168, 2009.

[Fra86] J. Franke. On the spaces Fspq of Triebel-Lizorkin type: pointwise
multipliers and spaces on domains. Math. Nachr., 125:29--68, 1986.

194



[Fra97] A. J. Fraser. Marcinkiewicz multipliers on the Heisenberg group.
PhD dissertation, Princeton University, 1997.

[Fra01a] A. J. Fraser. Convolution kernels of (n + 1)-fold Marcinkiewicz
multipliers on the Heisenberg group. Bull. Austral. Math. Soc.,
64(3):353--376, 2001.

[Fra01b] A. J. Fraser. An (n + 1)-fold Marcinkiewicz multiplier theorem on
the Heisenberg group. Bull. Austral. Math. Soc., 63(1):35--58, 2001.

[FRY10] V. Fischer, F. Ricci and O. Yakimova. Nilpotent Gelfand pairs and
spherical transforms of Schwartz functions I. Rank-one actions on
the centre. arXiv:1002.3630v1, 2010.

[FS82] G. B. Folland and E. M. Stein. Hardy spaces on homogeneous
groups, volume 28 of Mathematical Notes. Princeton University
Press, Princeton, N.J., 1982.

[GMM97] S. Giulini, G. Mauceri and S. Meda. Lp multipliers on noncompact
symmetric spaces. J. Reine Angew. Math., 482:151--175, 1997.

[Goo76] R. W. Goodman. Nilpotent Lie groups: structure and applications to
analysis. Lecture Notes in Mathematics, Vol. 562. Springer-Verlag,
Berlin, 1976.

[Goo77] R. Goodman. Filtrations and asymptotic automorphisms on nilpo-
tent Lie groups. J. Differential Geometry, 12(2):183--196, 1977.

[Gra08] L. Grafakos. Classical Fourier analysis, volume 249 of Graduate
Texts in Mathematics. Springer, New York, second edition, 2008.

[Gre69] F. P. Greenleaf. Invariant means on topological groups and their
applications. Van Nostrand Mathematical Studies, No. 16. Van Nos-
trand Reinhold Co., New York, 1969.

[Gui73] Y. Guivarc'h. Croissance polynomiale et p\'eriodes des fonctions har-
moniques. Bull. Soc. Math. France, 101:333--379, 1973.

[Heb92] W. Hebisch. Estimates on the semigroups generated by left invariant
operators on Lie groups. J. Reine Angew. Math., 423:1--45, 1992.

[Heb93a] W. Hebisch. Multiplier theorem on generalized Heisenberg groups.
Colloq. Math., 65(2):231--239, 1993.

[Heb93b] W. Hebisch. The subalgebra of L1(AN) generated by the Laplacian.
Proc. Amer. Math. Soc., 117(2):547--549, 1993.

[Hel62] S. Helgason. Differential geometry and symmetric spaces. Pure and
Applied Mathematics, Vol. XII. Academic Press, New York, 1962.

[Hel78] S. Helgason. Differential geometry, Lie groups, and symmetric
spaces, volume 80 of Pure and Applied Mathematics. Academic
Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1978.

195



[Hel82] B. Helffer. Conditions n\'ecessaires d'hypoanalyticit\'e pour des
op\'erateurs invariants \`a gauche homog\`enes sur un groupe nilpotent
gradu\'e. J. Differential Equations, 44(3):460--481, 1982.

[Hel84] S. Helgason. Groups and geometric analysis, volume 113 of Pure and
Applied Mathematics. Academic Press Inc., Orlando, FL, 1984. In-
tegral geometry, invariant differential operators, and spherical func-
tions.

[HN79] B. Helffer and J. Nourrigat. Caracterisation des op\'erateurs hypoel-
liptiques homog\`enes invariants \`a gauche sur un groupe de Lie nilpo-
tent gradu\'e. Comm. Partial Differential Equations, 4(8):899--958,
1979.

[HN85] B. Helffer and J. Nourrigat. Hypoellipticit\'e maximale pour des
op\'erateurs polyn\^omes de champs de vecteurs, volume 58 of Progress
in Mathematics. Birkh\"auser Boston Inc., Boston, MA, 1985.

[H\"or60] L. H\"ormander. Estimates for translation invariant operators in Lp

spaces. Acta Math., 104:93--140, 1960.

[H\"or67] L. H\"ormander. Hypoelliptic second order differential equations.
Acta Math., 119:147--171, 1967.

[H\"or90] L. H\"ormander. The analysis of linear partial differential oper-
ators. I, volume 256 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin, second edition, 1990. Distribution theory
and Fourier analysis.

[HR79] E. Hewitt and K. A. Ross. Abstract harmonic analysis. Vol. I, vol-
ume 115 of Grundlehren der Mathematischen Wissenschaften [Fun-
damental Principles of Mathematical Sciences]. Springer-Verlag,
Berlin, second edition, 1979. Structure of topological groups, in-
tegration theory, group representations.

[HS90] W. Hebisch and A. Sikora. A smooth subadditive homogeneous
norm on a homogeneous group. Studia Math., 96(3):231--236, 1990.

[Hul74] A. Hulanicki. Subalgebra of L1(G) associated with Laplacian on a
Lie group. Colloq. Math., 31:259--287, 1974.

[Hul75] A. Hulanicki. Commutative subalgebra of L1(G) associated with
a subelliptic operator on a Lie group G. Bull. Amer. Math. Soc.,
81:121--124, 1975.

[Hul84] A. Hulanicki. A functional calculus for Rockland operators on nilpo-
tent Lie groups. Studia Math., 78(3):253--266, 1984.

[HY88] J. G. Hocking and G. S. Young. Topology. Dover Publications Inc.,
New York, second edition, 1988.

[HZ95] W. Hebisch and J. Zienkiewicz. Multiplier theorem on generalized
Heisenberg groups. II. Colloq. Math., 69(1):29--36, 1995.

196



[Jen73] J. W. Jenkins. Growth of connected locally compact groups. J.
Funct. Anal., 12:113--127, 1973.

[Jen79] J. W. Jenkins. Dilations and gauges on nilpotent Lie groups. Colloq.
Math., 41(1):95--101, 1979.

[Kir62] A. A. Kirillov. Unitary representations of nilpotent Lie groups.
Russ. Math. Surv., 17(4):53--104, 1962.

[KR78] A. Klein and B. Russo. Sharp inequalities for Weyl operators and
Heisenberg groups. Math. Ann., 235(2):175--194, 1978.

[Kr\'e66] P. Kr\'ee. Sur les multiplicateurs dans \scrF Lp. Ann. Inst. Fourier
(Grenoble), 16:31--89, 1966.

[Laz55] M. Lazard. Sur la nilpotence de certains groupes alg\'ebriques. C. R.
Acad. Sci. Paris, 241:1687--1689, 1955.

[Lee03] J. M. Lee. Introduction to smooth manifolds, volume 218 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 2003.

[Liz63] P. I. Lizorkin. (Lp, Lq)-multipliers of Fourier integrals. Dokl. Akad.
Nauk SSSR, 152:808--811, 1963. Russian. English translation in
Soviet Math. Dokl., 4:1420--1424, 1963.

[LM95] J. Ludwig and C. Molitor-Braun. Alg\`ebre de Schwartz d'un groupe
de Lie nilpotent. In Travaux math\'ematiques, Fasc. VII, S\'em. Math.
Luxembourg, pages 25--67. Centre Univ. Luxembourg, Luxembourg,
1995.

[LM00] J. Ludwig and D. M\"uller. Sub-Laplacians of holomorphic Lp-type on
rank one AN -groups and related solvable groups. J. Funct. Anal.,
170(2):366--427, 2000.

[Loo53] L. H. Loomis. An introduction to abstract harmonic analysis. D.
Van Nostrand Company, Inc., Toronto-New York-London, 1953.

[Lud79] J. Ludwig. A class of symmetric and a class of Wiener group alge-
bras. J. Funct. Anal., 31(2):187--194, 1979.

[Lud95] J. Ludwig. Dual topology of diamond groups. J. Reine Angew.
Math., 467:67--87, 1995.

[Mar39] J. Marcinkiewicz. Sur les multiplicateurs des s\'eries de Fourier. Stu-
dia Mathematica, 8:78--91, 1939.

[Mau81] G. Mauceri. Zonal multipliers on the Heisenberg group. Pacific J.
Math., 95(1):143--159, 1981.

[Mau87] G. Mauceri. Maximal operators and Riesz means on stratified
groups. In Symposia Mathematica, Vol. XXIX (Cortona, 1984),
Sympos. Math., XXIX, pages 47--62. Academic Press, New York,
1987.

197



[Meg98] R. E. Megginson. An introduction to Banach space theory, volume
183 of Graduate Texts in Mathematics. Springer-Verlag, New York,
1998.

[M\'et80] G. M\'etivier. Hypoellipticit\'e analytique sur des groupes nilpotents
de rang 2. Duke Math. J., 47(1):195--221, 1980.

[Mih56] S. G. Mihlin. On the multipliers of Fourier integrals. Dokl. Akad.
Nauk SSSR (N.S.), 109:701--703, 1956. Russian.

[Mih57] S. G. Mihlin. Fourier integrals and multiple singular integrals.
Vestn. Leningr. Univ., 12(7):143--145, 1957. Russian.

[Mih65] S. G. Mihlin. Multidimensional singular integrals and integral equa-
tions. Translated from the Russian by W. J. A. Whyte. Translation
edited by I. N. Sneddon. Pergamon Press, Oxford, 1965.

[Mil80] K. G. Miller. Parametrices for hypoelliptic operators on step
two nilpotent Lie groups. Comm. Partial Differential Equations,
5(11):1153--1184, 1980.

[MM90] G. Mauceri and S. Meda. Vector-valued multipliers on stratified
groups. Rev. Mat. Iberoamericana, 6(3-4):141--154, 1990.

[MRS95] D. M\"uller, F. Ricci and E. M. Stein. Marcinkiewicz multipliers and
multi-parameter structure on Heisenberg (-type) groups. I. Invent.
Math., 119(2):199--233, 1995.

[MRS96] D. M\"uller, F. Ricci and E. M. Stein. Marcinkiewicz multipliers and
multi-parameter structure on Heisenberg (-type) groups. II. Math.
Z., 221(2):267--291, 1996.

[MS94] D. M\"uller and E. M. Stein. On spectral multipliers for Heisenberg
and related groups. J. Math. Pures Appl. (9), 73(4):413--440, 1994.

[MS04] D. M\"uller and A. Seeger. Singular spherical maximal operators on a
class of two step nilpotent Lie groups. Israel J. Math., 141:315--340,
2004.

[Nie83] O. A. Nielsen. Unitary representations and coadjoint orbits of low-
dimensional nilpotent Lie groups, volume 63 of Queen's Papers in
Pure and Applied Mathematics. Queen's University, Kingston, ON,
1983.

[NRS90] A. Nagel, F. Ricci and E. M. Stein. Harmonic analysis and fun-
damental solutions on nilpotent Lie groups. In Analysis and par-
tial differential equations, volume 122 of Lecture Notes in Pure and
Appl. Math., pages 249--275. Dekker, New York, 1990.

[NRS01] A. Nagel, F. Ricci and E. M. Stein. Singular integrals with flag
kernels and analysis on quadratic CR manifolds. J. Funct. Anal.,
181(1):29--118, 2001.

[NS59] E. Nelson and W. F. Stinespring. Representation of elliptic opera-
tors in an enveloping algebra. Amer. J. Math., 81:547--560, 1959.

198



[NSW85] A. Nagel, E. M. Stein and S. Wainger. Balls and metrics defined
by vector fields. I. Basic properties. Acta Math., 155(1-2):103--147,
1985.

[Pal78] T. W. Palmer. Classes of nonabelian, noncompact, locally compact
groups. Rocky Mountain J. Math., 8(4):683--741, 1978.

[Pal94] T. W. Palmer. Banach algebras and the general theory of \ast -algebras.
Vol. I, volume 49 of Encyclopedia of Mathematics and its Applica-
tions. Cambridge University Press, Cambridge, 1994. Algebras and
Banach algebras.

[Pal01] T. W. Palmer. Banach algebras and the general theory of \ast -algebras.
Vol. 2, volume 79 of Encyclopedia of Mathematics and its Applica-
tions. Cambridge University Press, Cambridge, 2001. \ast -algebras.

[Pee76] J. Peetre. New thoughts on Besov spaces. Mathematics Department,
Duke University, Durham, N.C., 1976. Duke University Mathemat-
ics Series, No. 1.

[Pie84] J.-P. Pier. Amenable locally compact groups. Pure and Applied
Mathematics (New York). John Wiley \& Sons Inc., New York, 1984.
A Wiley-Interscience Publication.

[Rob91] D. W. Robinson. Elliptic operators and Lie groups. Oxford Mathe-
matical Monographs. The Clarendon Press Oxford University Press,
New York, 1991. Oxford Science Publications.

[RS76] L. P. Rothschild and E. M. Stein. Hypoelliptic differential operators
and nilpotent groups. Acta Math., 137(3-4):247--320, 1976.

[RS80] M. Reed and B. Simon. Methods of modern mathematical physics. I.
Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New
York, second edition, 1980. Functional analysis.

[RS96] T. Runst and W. Sickel. Sobolev spaces of fractional order, Nemyt-
skij operators, and nonlinear partial differential equations, volume 3
of de Gruyter Series in Nonlinear Analysis and Applications. Walter
de Gruyter \& Co., Berlin, 1996.

[Rub76] R. L. Rubin. Multipliers on the rigid motions of the plane and their
relations to multipliers on direct products. Proc. Amer. Math. Soc.,
59(1):89--98, 1976.

[Rud73] W. Rudin. Functional analysis. McGraw-Hill Book Co., New York,
1973. McGraw-Hill Series in Higher Mathematics.

[Rud74] W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New
York, second edition, 1974. McGraw-Hill Series in Higher Mathe-
matics.

[Sch93] L. B. Schweitzer. Dense m-convex Fr\'echet subalgebras of opera-
tor algebra crossed products by Lie groups. Internat. J. Math.,
4(4):601--673, 1993.

199



[Sch07] H.-J. Schmeisser. Recent developments in the theory of function
spaces with dominating mixed smoothness. In Nonlinear Analysis,
Function Spaces and Applications. Proceedings of the Spring School
held in Prague, May 30-June 6, 2006, volume 8, pages 145--204.
Czech Academy of Sciences, Mathematical Institute, Praha, 2007.

[Sik09] A. Sikora. Multivariable spectral multipliers and analysis of quasiel-
liptic operators on fractals. Indiana Univ. Math. J., 58(1):317--334,
2009.

[SS04] H.-J. Schmeisser and W. Sickel. Spaces of functions of mixed
smoothness and approximation from hyperbolic crosses. J. Approx.
Theory, 128(2):115--150, 2004.

[ST87] H.-J. Schmeisser and H. Triebel. Topics in Fourier analysis and
function spaces, volume 42 of Mathematik und ihre Anwendungen
in Physik und Technik [Mathematics and its Applications in Physics
and Technology]. Akademische Verlagsgesellschaft Geest \& Portig
K.-G., Leipzig, 1987.

[Ste70a] E. M. Stein. Singular integrals and differentiability properties of
functions. Princeton Mathematical Series, No. 30. Princeton Uni-
versity Press, Princeton, N.J., 1970.

[Ste70b] E. M. Stein. Topics in harmonic analysis related to the Littlewood-
Paley theory. Annals of Mathematics Studies, No. 63. Princeton
University Press, Princeton, N.J., 1970.

[Ste93] E. M. Stein. Harmonic analysis: real-variable methods, orthogonal-
ity, and oscillatory integrals, volume 43 of Princeton Mathematical
Series. Princeton University Press, Princeton, NJ, 1993. With the
assistance of Timothy S. Murphy. Monographs in Harmonic Analy-
sis, III.

[SU09] W. Sickel and T. Ullrich. Tensor products of Sobolev-Besov spaces
and applications to approximation from the hyperbolic cross. J.
Approx. Theory, 161(2):748--786, 2009.

[Tho84] E. G. F. Thomas. An infinitesimal characterization of Gel\prime fand
pairs. In Conference in modern analysis and probability (New
Haven, Conn., 1982), volume 26 of Contemp. Math., pages 379--
385. Amer. Math. Soc., Providence, RI, 1984.

[Tr\`e67] F. Tr\`eves. Topological vector spaces, distributions and kernels. Aca-
demic Press, New York, 1967.

[Tri78a] H. Triebel. Interpolation theory, function spaces, differential oper-
ators, volume 18 of North-Holland Mathematical Library. North-
Holland Publishing Co., Amsterdam, 1978.

[Tri78b] H. Triebel. Spaces of Besov-Hardy-Sobolev type. BSB B. G. Teubner
Verlagsgesellschaft, Leipzig, 1978. Teubner-Texte zur Mathematik.
With German, French and Russian summaries.

200



[Tri83] H. Triebel. Theory of function spaces, volume 78 of Monographs in
Mathematics. Birkh\"auser Verlag, Basel, 1983.

[Tri01] H. Triebel. The structure of functions, volume 97 of Monographs in
Mathematics. Birkh\"auser Verlag, Basel, 2001.

[Var74] V. S. Varadarajan. Lie groups, Lie algebras, and their representa-
tions. Prentice-Hall Inc., Englewood Cliffs, N.J., 1974. Prentice-Hall
Series in Modern Analysis.

[Ven00] A. Veneruso. Marcinkiewicz multipliers on the Heisenberg group.
Bull. Austral. Math. Soc., 61(1):53--68, 2000.

[VSC92] N. T. Varopoulos, L. Saloff-Coste and T. Coulhon. Analysis and ge-
ometry on groups, volume 100 of Cambridge Tracts in Mathematics.
Cambridge University Press, Cambridge, 1992.

[Wei72] N. J. Weiss. Lp estimates for bi-invariant operators on compact Lie
groups. Amer. J. Math., 94:103--118, 1972.

[Wol07] J. A. Wolf. Harmonic analysis on commutative spaces, volume 142
of Mathematical Surveys and Monographs. American Mathematical
Society, Providence, RI, 2007.

201



Index

algebra
\ast -algebra, 179

hermitian, 181
C\ast -algebra, 179
weighted subcoercive, 150

approximate identity, 9

Baker-Campbell-Hausdorff formula, 3
Banach couple, 34

capacity map, 120, 136
connected modulus, 16
control modulus, 27
convolution, 7--8

kernel, see Schwartz kernel theo-
rem

degree of (polynomial) growth, 16
descending central series, 18
differential operator

formal adjoint of, 5
hypoelliptic, 23
left- (right-) invariant, 3
Rockland, 22
weighted subcoercive, 28

dilations, 19
associated to a weighted subcoer-

cive system, 102

exponential map, 3

function
joint eigenfunction, 85
M-admissible, 164
of positive type, 12
Schwartz, 17, 19, 22
spherical, 106
uniformly continuous, 2

Gelfand pair, 106
nilpotent, 109

Haar measure, 4
homogeneous dimension, 19
homogeneous norm, 21

interpolation
complex, 36
functor, 34
real, 35

intertwining operator, 12, 13

Lie algebra
algebraic basis of, 24--26
contraction of, 25
homogeneous, 19

adapted basis of, 25
nilpotent, 18
of a Lie group, 2
reduced basis of, 25
stratified, 20
universal enveloping algebra of, 3

Lie group, 2
amenable, 13
CCR, 13
graded, 20
group C\ast -algebra of, 13
H-type, 120
hermitian, 15
homogeneous, 20
h-capacious, 130

M\'etivier, 120, 128
nilpotent, 18
of polynomial growth, 16
stratified, 20
type I, 13
unimodular, 4

locally d-bounded measure, 54

Plancherel measure
for a Gelfand pair, 106
for a weighted subcoercive system,

83, 133

202



group Plancherel measure, 13

representation
\ast -representation, 180
of a Lie group, 5

induced by a homomorphism, 6
irreducible, 12
regular, 6

resolution of the identity, 185
retract, 35

Schwartz kernel theorem, 11, 17
spectral resolution, 189

joint, 190
spectrum

Gelfand spectrum, 181
joint spectrum, 79, 190
of a linear operator, 183
of an element of a \ast -algebra, 180

sublaplacian, 24, 32
system of differential operators

Rockland, 102
weighted subcoercive, 77

homogeneous, 102

transference, 14
transform

Fourier
on \BbbR n, 33
spherical, 106

Gelfand, 106, 181
kernel, 77

Young's inequalities, 7

203


	Introduction
	List of commonly used notation
	Differential operators on Lie groups
	Lie groups and differential operators
	Some classes of Lie groups
	Nilpotent and homogeneous groups, Rockland operators
	Weighted subcoercive operators

	Smoothness conditions
	Interpolation
	Sobolev spaces
	Besov spaces
	Mihlin-Hörmander conditions
	Marcinkiewicz conditions

	Commutative algebras of differential operators
	Joint spectral resolution
	Kernel transform and Plancherel measure
	Spectrum and eigenfunctions
	Direct products
	Change of generators
	Homogeneity
	Gelfand pairs

	Weighted inequalities for kernels
	Weighted estimates
	Schwartz functions
	Improved weighted estimates
	Examples
	An intrinsic perspective

	Multiplier theorems
	Singular integral operators
	Mihlin-Hörmander multipliers
	Marcinkiewicz multipliers
	Applications

	Appendix
	Banach *-algebras and C*-algebras
	Linear operators on Hilbert spaces
	Spectral integration
	The spectral theorem

	Bibliography
	Index

