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Chapter 1

Introduction

This thesis is devoted to studying algorithms for the solution of a class of quadratic matrix
and vector equations appearing, in different forms, in several practical applications.

With the term quadratic vector (matrix) equation we denote an equation in which the
unknown is a vector (or a matrix), and the equation itself contains only terms of degree at
most 2 in the entries of the unknown. Thus, strictly speaking, we are dealing with a system
of N equations in N unknowns, each of degree 2. However, in all our algorithms it is useful
to consider the unknowns as a whole vector or matrix, and apply the techniques and tools
of linear algebra. This allows a richer and more numerics-friendly treatment than abstract
commutative algebra tools. Therefore, we favor the approach of considering them a single
equation in a vector or matrix unknown.

A common aspect to many of the equations that we consider is the presence of suitable
(componentwise) nonnegativity assumptions on the coefficients, which ensure the existence
of nonnegative solutions. The solution of interest is the minimal nonnegative one, according
again to the componentwise ordering or to a spectral characterization. The properties of the
cone

Rn+ := {x ∈ Rn : xi ≥ 0 for i = 1, . . . , n},

play an important role, together with the Perron–Frobenius theory of positive matrices and
M-matrices. Some remarks on this theory and other linear algebra results which are needed
along the exposition are recalled in Chapter 2.

A first equation, arising originally from the modeling of Markovian binary trees [BKT08,
HLR08], has the form

Mx = a+ b(x, x), (1.1)

where the unknown x and a are in RN+ , M is an M-matrix, and b : RN+ × RN+ → RN+ is a
bilinear form. This is in fact a very general equation, as many of the quadratic matrix and
vector equations appearing in literature can be represented in this form. The analysis of
some basic properties and algorithms for this equation, performed in Chapter 3, allows us to
introduce, under a unifying point of view, several common aspects of quadratic vector and
matrix equations with nonnegativity assumptions. Among them, the minimal solution, the
monotonic convergence of basic functional iterations and of Newton’s method, and the key
concept of criticality.

In Chapter 4, we introduce a new algorithm which applies to the quadratic vector
equations (1.1) of the original probability setting [BKT08] and has a completely different
behavior from the traditional fixed-point iterations when the problem is close to critical.
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In Chapter 5, we treat in more detail the so-called unilateral quadratic matrix equation
(UQME)

AX2 +BX + C = 0 (1.2)

appearing originally in a model in queuing theory [BLM05]. The usual assumptions in this
probabilistic setting are that

B =− (I −B′), A,B′, C ∈ Rn′×n′+ , (A+B′ + C)e = e. (1.3)

Equation (1.2) is strictly related to the quadratic eigenvalue problem

(λ2A+ λB + C)u = 0. (1.4)

The minimal solution and the convergence properties of several algorithms can be character-
ized in terms of the properties of the roots of (1.4).

An effective algorithm for the solution of (1.2) is the cyclic reduction (CR) [BGN70,
BLM05], a quadratically convergent iteration which implements a sort of squaring of the
eigenvalues of the original problem. Logarithmic reduction [LR93] (LR) is a closely related
iteration arising from a probabilistic idea, which is somewhat simpler to analyze in some
respects. In the same Chapter 5, we discuss the relationship between CR/LR and the
Newton method for quadratic vector equations.

Another matrix equation which falls in our framework is the nonsymmetric algebraic
Riccati equation (NARE)

AX +XD = XCX +B, (1.5)

with X,B ∈ Rm×n, C ∈ Rn×m, A ∈ Rm×m, D ∈ Rn×n. In its nonsymmetric version, this
equation appears in fluid queues [BOT05], which are a continuous-time version of the models
that lead to (1.2). The nonnegativity assumption here is that the matrix

M :=

[
D −C
−B A

]
(1.6)

is a nonsingular or singular irreducible M-matrix.
The NARE (1.5) can be reformulated as an invariant subspace problem[

D −C
B −A

] [
I
X

]
=

[
I
X

]
(D − CX) (1.7)

for the matrix

H :=

[
D −C
B −A

]
= KM, with K :=

[
In 0
0 −Im

]
, (1.8)

called Hamiltonian. This name is a bit misleading, as the terminology arises from the field
of (symmetric) continuous-time algebraic Riccati equations [LR95], which have been widely
studied in control theory since 1960. With the notation of (1.5), they represent the case
where m = n, D = AT , and B and C are symmetric. In this case, the matrix H ∈ R2n×2n

is a Hamiltonian matrix , i.e., it satisfies

JH = (JH)T , J :=

[
0 In
−In 0

]
. (1.9)

The Structured doubling algorithm (SDA) [And78, GLX06] is an algorithm for the
solution of nonsymmetric algebraic Riccati equations that has been recently rediscovered,
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understood in terms of eigenvalues of matrix pencils and applied to many different equations.
In Chapter 6, we describe this algorithm and study its connection to cyclic reduction, based
on the evolution of an approach suggested by Ramaswami [Ram99] on how to transform a
NARE into a UQME.

In Part II, we deal with a special case of nonsymmetric algebraic Riccati equation arising
from a physical problem in neutron transport theory [JL99]. Given two parameters 0 < c ≤ 1,
0 ≤ α < 1, this equation is (1.5) with parameters A,B,C,D ∈ Rn×n given by

A =∆− eqT , B =eeT , C =qqT , D =Γ− qeT , (1.10)

and
e =(1, 1, . . . , 1)T ,

q =(q1, q2, . . . , qn)T with qi =
wi
2ti

,

∆ = diag(δ1, δ2, . . . , δn) with δi =
1

cti(1 + α)
,

Γ = diag(γ1, γ2, . . . , γn) with γi =
1

cti(1− α)
.

(1.11)

The quantities 0 < tn < . . . < t2 < t1 < 1 and wi > 0, i = 1, 2, . . . , n, with
∑
i wi = 1, are

the nodes and weights of a suitable Gaussian quadrature rule. For more details and for the
physical meaning of the two parameters, we refer the reader to [JL99] and to the references
therein.

Although the problem can be treated and solved in the framework of (1.5) (in particular,
M is an irreducible M-matrix), there is a richer structure to exploit: M and H are diagonal
plus rank one matrices, the solution is a Cauchy-like matrix, and most algorithms preserve
the Cauchy-like structure along all the iterates. Alternatively, following an idea of L.-Z. Lu
[Lu05b], the equation can be rewritten in terms of its Cauchy-like generators [Lu05b] as{

u = u .∗ (Pv) + e,

v = v .∗ (P̃ u) + e,
(1.12)

with P, P̃ ∈ Rn×n+ given rank-structured matrices, and unknowns u, v ∈ Rn+. Here the
operator .∗ denotes the componentwise (Hadamard) product of two vectors of the same
length, with a notation borrowed from Matlab. This equation falls in the same class of
nonnegative quadratic vector equations, thus the algorithms introduced in Chapter 3 can be
applied productively. In Chapter 8 we introduce Cauchy-like matrices and their properties,
and we develop variants of the existing algorithms; in Chapter 9 we discuss the structured
form of Newton’s method for (1.5) and (1.12) and their mutual relationship. We showed
in [BMP09] that SDA and the Ramaswami cyclic reduction algorithm [Ram99] can also be
implemented in a structure-preserving way; however, this approach does not seem to give
numerically sound results, therefore it is not treated in full detail.

In Part III we turn to the original application of SDA, control theory problems, and
describe two new ways to exploit this algorithm in the solution of invariant subspace
problems. The structured doubling algorithm is traditionally [CFL05] applied to the
symmetric, continuous-time algebraic Riccati equation which arises from a continuous-time
control problem after some manipulations. In more detail, optimal control problems appear
originally [Son98, Meh91] in the form of an invariant subspace problem for a matrix pencil
in the form

sE − A =

 0 −sI +A B
sI +A∗ Q C
B∗ C∗ R

 , (1.13)
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where the block sizes are such that A ∈ Cn×n, R ∈ Cm×m, and A is Hermitian. When
R is nonsingular, the last block row and columns can be eliminated, leading to a reduced
invariant subspace problem for a Hamiltonian matrix. Moreover, when the leading square
block of the stable invariant subspace is nonsingular, the problem can be further reduced to
the form (1.7), which, as we already noted, is equivalent to an algebraic Riccati equation.

This is the approach that is followed in the standard engineering literature on control
theory. However, in some cases, the nonsingularity assumptions that we have made do
not hold, and thus the algebraic Riccati equation cannot be formed. Different techniques
are needed for the solution of this class of control problems. Chapter 10 is devoted to
solving a system of equations describing control problems with a singular matrix R, the
so-called Lur’e equations. Chapter 11 describes a possible variation of SDA in order to deal
more reliably with problems in which a singular leading square block appears in the stable
invariant subspace, and thus the Riccati equation cannot be formed.

Part IV deals with the generalization of another quadratic matrix equation. The matrix
geometric mean A#B of two symmetric, positive definite matrices may be defined [Bha07]
as the unique symmetric positive definite solution X of the Riccati equation

XA−1X = B, (1.14)

or directly as
A#B := A(A−1B)1/2 = A1/2(A−1/2BA−1/2)1/2A1/2. (1.15)

There are deep connections between the geometric mean defined here and the Riemannian
geometry of positive definite matrices. In several applications, the geometric mean of two
matrices arises as a natural candidate to average the results of numerical experiments affected
by uncertainty [Moa06]. However, when the matrices to average are more than two, it is
not easy to find a sensible generalization maintaining most of the properties that hold for
the two-matrix case. A first generalization was proposed in a seminal paper by Ando, Li
and Mathias (ALM mean); in Chapter 12 we describe a different one, defined via a natural
geometrical approach. Moreover, it turns out that our mean is faster to compute than the
original ALM mean, since it is based on an iteration with cubical convergence; on the other
hand, the original mean by Ando, Li and Mathias was based on an iteration with linear
convergence.

However, the problem of finding a computationally effective matrix geometric mean is far
from being solved. Although faster than the original Ando–Li–Mathias iteration, the new
iteration has a cost that still grows exponentially with the number of involved matrices. In
Chapter 13 we show that, at least under reasonable assumptions, all the means constructed
using this approach (composing previously existing matrix means and taking limits) require
an amount of computational work that grows exponentially with the number of matrices to
average.

At the end of each chapter, we report comments and research lines on the exposed topics.
Where appropriate, the results of numerical experiments are presented. In most of them,
Matlab is the language of choice; however, in Part II, we switch to Fortran 90 for some tests,
since we need tight for loops that would perform poorly in the Matlab architecture.



Chapter 2

Linear algebra preliminaries

With the notations Rn and Rm×n we denote respectively the space of n-vectors and m× n
matrices with coefficients in a ring R — or a semi-ring, as in the case of

R+ := {x ∈ R : x ≥ 0}.
The notation In, with n often omitted when it is clear from the context, denotes the identity
matrix; the zero matrix of any dimension is denoted simply by 0. With e we denote the
vector of suitable dimension all of whose entries are 1. The expression ρ(A) stands for the
spectral radius of the matrix A.

We make use of some handy matrix notations taken from Fortran 90 and Matlab. When
M is a matrix, the symbol Mi:j,k:` denotes the submatrix formed by rows i to j and columns
k to ` of M , including extremes. The index i is a shorthand for i : i, and : alone is a shorthand
for 1 : n, where n is the maximum index allowed for that row/column. A similar notation
is used for vectors. When v ∈ Cn is a vector, the symbol diag(v) denotes the diagonal
matrix D ∈ Cn×n such that Di,i = vi. On the other hand, when M ∈ Cn×n is a square
matrix, diag(M) denotes the (column) vector with entries M1,1,M2,2, . . . ,Mn,n. Finally, we
denote with u .∗ v the componentwise (Hadamard) product of two vectors u, v ∈ Rn, i.e.,
w = u .∗ v ∈ Rn is the vector such that wi = uivi for each i = 1, 2, . . . , n.

The notation A ≥ 0 has a double meaning in linear algebra; unfortunately, in this thesis
we need both, though in different parts.

• In parts I and II, we write A ≥ B, where A,B ∈ Rm×n, to denote A − B ∈ Rm×n+ ,
i.e., Ai,j ≥ Bi,j for all valid i, j (componentwise ordering), and similarly with vectors.
Writing A > B means that Ai,j > Bi,j for all i, j.

• In parts III and IV, we write A ≥ B, only for symmetric matrices in Rn×n, to mean
that A − B is positive semidefinite. Similarly, A > B means that A − B is positive
definite (positive definite ordering).

2.1 Nonnegative matrices and M-matrices

In this section, the symbols ≥ and > denote the componentwise ordering.
A matrix A ∈ Rn×n is called irreducible when its associated graph is strongly connected,

i.e., if the set {1, 2, . . . , n} cannot be partitioned in two disjoint sets S and T such that
As,t = 0 whenever s ∈ S, t ∈ T .

The following theorem is at the basis of the theory of (componentwise) nonnegative
matrices.

5
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Theorem 2.1 (Perron–Frobenius theorem [BP94a]). Let P be a nonnegative matrix. Then,

• ρ(P ) is an eigenvalue of P , called its Perron value

• P has nonnegative left and right eigenvectors wT and v corresponding to ρ(P )

If in addition P is irreducible, then

• ρ(P ) is a simple eigenvalue of P

• its associated right and eigenvectors wT and v, called the left and right Perron vectors,
have strictly positive components. All other left and right eigenvectors have at least
one strictly negative entry.

• If Q ≥ P but Q 6= P , then ρ(Q) > ρ(P ).

Corollary 2.2 ([BIMP10]). Let A be an irreducible nonnegative matrix and let v1, . . . , vn
be a set of Jordan chains of A. Then there exists only one positive or negative vector among
the vi’s and it is a scalar multiple of v.

A real square matrix Z is said to be a Z-matrix if Zij ≤ 0 for all i 6= j. A Z-matrix is
said to be an M-matrix if it can be written in the form sI − P , where P ≥ 0 and s ≥ ρ(P )
and ρ(·) denotes the spectral radius.

The following results are classical, see e.g. [BP94a].

Theorem 2.3. The following properties hold.

1. If Z is a Z-matrix and there exists a vector v > 0 such that Zv ≥ 0, then Z is an
M-matrix;

2. If Z is a Z-matrix and Z ≥ M for an M-matrix M 6= Z, then Z is a nonsingular
M-matrix.

3. A nonsingular Z-matrix Z is an M-matrix if and only if Z−1 ≥ 0.

Lemma 2.4. Let M be a nonsingular M-matrix or an irreducible singular M-matrix. Parti-
tion M as

M =

[
M11 M12

M21 M22

]
,

where M11 and M22 are square matrices. Then M11 and M22 are nonsingular M-matrices.
The Schur complement of M11 (or M22) in M is also an M-matrix (singular or nonsingular
according to M). Moreover, the Schur complement is irreducible if M is irreducible.

2.2 Sherman–Morrison–Woodbury formula

A matrix identity that is needed in the following is the so-called Sherman–Morrison–Woodbury
(SMW) formula [GVL96, p. 50].

Lemma 2.5 (Sherman–Morrison–Woodbury formula [GVL96]). Let D ∈ Rn×n and C ∈
Rk×k be nonsingular, and U ∈ Rn×k, V ∈ Rk×n. Then D−UCV is nonsingular if and only
if C−1 − V D−1U is nonsingular, and it holds that

(D − UCV )−1 = D−1 +D−1U(C−1 − V D−1U)−1V D−1.
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The following lemma relates the SMW formula and M-matrices.

Lemma 2.6. Let D,C,U, V be real matrices satisfying the hypotheses of Lemma 2.5, with
D and C diagonal and D,C,U, V > 0. Then, D−UCV is a (nonsingular) M-matrix if and
only if C−1 − V D−1U is a (nonsingular) M-matrix.

Proof. Let C−1 − V D−1U be a nonsingular M-matrix, the SMW formula yields

(D − UCV )−1 = D−1 +D−1U(C−1 − V D−1U)−1V D−1,

and since all terms on the right-hand side are nonnegative, one has (D − UCV )−1 ≥ 0, so
D − UCV is a nonsingular M-matrix by Theorem 2.3; the converse is analogous. By a
continuity argument, the result can be extended to singular M-matrices.

2.3 Newton’s method

Let F : D ⊆ Rn → Rn be a continuous map; F is said to be Fréchet differentiable if there is
a linear operator A such that

lim
h→0

‖F (x+ h)− Fx−Ah‖
‖h‖ = 0.

The map A is denoted by F ′x, and is called the Fréchet derivative of F at x.
Let F : D ⊆ Rn → Rn be a Fréchet differentiable map. The Newton method for the

solution of the equation F (x) = 0, starting from a point x0 ∈ D, is defined by

xk+1 = xk − (F ′xk)
−1
F (xk), (2.1)

and is well-defined whenever F ′xk is nonsingular for all k = 0, 1, . . . .
The following result is a weaker version of the classical Newton-Kantorovich theorem.

Theorem 2.7 ([OR00]). Let F be Fréchet differentiable on D, and F ′ be Lipschitz continu-
ous. Let x∗ be a zero of F such that F ′(x∗) is nonsingular. Then there exists a radius r
such that the Newton method (2.1) started from any x0 with ‖x− x0‖ < r converges to x∗

quadratically.

Notice that convergence is not guaranteed when F ′(x∗) is singular; in fact, pathological
cases may arise [GO83].

2.4 Matrix polynomials

We present here a minimal introduction to matrix polynomials and pencils, where we state
only the results that are needed in this thesis. A complete theory, including Jordan chains,
normal forms and careful definition of eigenvalues at infinity can be found in [GLR82].

A matrix polynomial is a polynomial expression in which the coefficients are matrices in
Cm×n, i.e.,

A(λ) =

d∑
i=0

λiAi, Ai ∈ Cm×n,

where λ is the indeterminate. A value λ̂ for which detA(λ̂) = 0 is called an eigenvalue

of the matrix polynomial. The corresponding vectors u such that A(λ̂)u = 0 are called
eigenvectors.



8

For a polynomial (or, more generally, rational) matrix-valued function Φ : D ⊆ C →
Cn×m, we define the normal rank by normalrank Φ = maxs∈D rk Φ(s).

A matrix polynomial is called regular if m = n and normalrankA(λ) = n, or, equivalently,
if detA(λ) does not vanish for each λ. In this case, detA(λ) is a polynomial of degree at
most nd, and thus has at most nd solutions. When the leading coefficient Ad is singular,
the degree is strictly less than nd. In this case, we may consider the degree deficiency as
eigenvalues at infinity . More precisely, if the matrix polynomial

revA(λ) :=

d∑
i=0

λiAd−i

has an eigenpair (0, u), then we call (∞, u) an eigenpair at infinity for the matrix polynomial
A(λ).

Notice that every similarity transformation of the form

A(λ) 7→ RA(λ)S, (2.2)

with nonsingular R,S ∈ Cn×n, preserves the eigenvalues of the matrix polynomial. If S = I,
the (right) eigenvectors are preserved, too.

2.5 Matrix pencils

A degree-1 matrix polynomial is called a matrix pencil. We often write matrix pencils in
the form sE −A. This is to highlight how square matrix pencils are, in many respects, a
generalization of the usual matrices: many of the definition related to eigenvalues, Jordan
forms and deflating (invariant) subspaces that we give in this section reduce to the usual
ones for a matrix A if E = I. Thus we can embed square matrices in the space of square
matrix pencils by identifying A ≡ sI −A.

A canonical form for matrix pencils is given by the following result. For k ∈ N we
introduce the special matrices Jk,Mk, Nk ∈ Rk,k, Kk, Lk ∈ Rk−1,k with

Jk :=

 1

. .
.

1

 , Kk :=

0 1
. . .

. . .

0 1

 , Lk :=

1 0
. . .

. . .

1 0

 ,

Mk :=


1 0

. .
.

. .
.

1 . .
.

0

 , Nk :=


0 1

. . .
. . .

. . . 1
0

 .

Theorem 2.8 (Kronecker canonical form (KCF) [Gan98]). For a matrix pencil sE − A
with E,A ∈ Cm×n, there exist nonsingular matrices Ul ∈ Cm×m, Ur ∈ Cn×n, such that

Ul(sE −A)Ur = diag(C1(s), . . . , Ck(s)), (2.3)

where each of the pencils Cj(s) is of one of the types presented in Table 2.1.
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Type Size Cj(s) Parameters

W1 kj × kj (s− λ)Ikj −Nkj kj ∈ N, λ ∈ C

W2 kj × kj sNkj − Ikj kj ∈ N

W3 (kj − 1)× kj sKkj − Lkj kj ∈ N

W4 kj × (kj − 1) sKT
kj
− LTkj kj ∈ N

Table 2.1: Block types in Kronecker canonical form

Type Size Dj(s) Parameters

E1 2kj × 2kj

[
0kj ,kj (λ− s)Ikj −Nkj

(λ+ s)Ikj −NT
kj

0kj ,kj

]
kj ∈ N, λ ∈ C+

E2 kj × kj εj((−is− µ)Jkj +Mkj ) kj ∈ N, µ ∈ R, εj = ±1

E3 kj × kj εj(isMkj + Jkj ) kj ∈ N, εj = ±1

E4
(2kj − 1)×
(2kj − 1)

[
0kj−1,kj−1 −sKkj + Lkj
sKT

kj
+ LTkj 0kj ,kj

]
kj ∈ N

Table 2.2: Block types in even Kronecker canonical form

The blocks of type W1 are Jordan blocks associated with an eigenvalue λ of sE − A.
Blocks of type W2 correspond to infinite eigenvalues. Blocks of type W3 and W4 appear
only for non-regular pencils.

A pencil sE −A is called even if E = −E∗ and A = A∗. A special modification of the
KCF for even matrix pencils is presented in[Tho76].

Theorem 2.9 (even Kronecker canonical form (EKCF)[Tho76]). For an even matrix pencil
sE −A with E,A ∈ Cn×n, there exists a nonsingular U ∈ Cn×n such that

U∗(sE −A)U = diag(D1(s), . . . ,Dk(s)), (2.4)

where each of the pencils Dj(s) is of one of the types presented in Table 2.2.

The numbers εj in the blocks of type E2 and E3 are called the block signatures. The
blocks of type E1 contain complex conjugate pairs (λ,−λ) of eigenvalues. The blocks of
type E2 and E3 correspond respectively to the purely imaginary and infinite eigenvalues.
Blocks of type E4 appear only in non-regular pencils and are a combination of two blocks of
type W3 and W4.

A generalization of the concept of invariant subspace applies naturally to matrix pencils.
A subspace U = SpanU , with U ∈ Rn×r having full column rank, is called an r-dimensional
(right) deflating subspace for the matrix pencil sE−A, A,E ∈ Rm×n, if there are V ∈ Rn×r,
and Ã, Ẽ ∈ Rr×r such that

(A− sE)U = V (Ã− sẼ).
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Two pencils sE1 − A1 and sE2 − A2 are called right-similar if there is a nonsingular
L ∈ Cm×m such that

L(sE1 −A1) = sE2 −A2.

In this case, they have the same eigenvalues, right deflating subspaces and Jordan chains.
Similarly, a square matrix pencil sE − A is said to be right-similar to a matrix M of the
same size if L(sE −A) = sI −M for some nonsingular L, i.e., M = E−1A.

2.6 Indefinite product spaces

Especially in Part III, we deal with the space R2n equipped with the indefinite form
ω(x, y) = xTJ y defined by the matrix J introduced in (1.9). Notice that J−1 = J T = −J .

A real Hamiltonian matrix is one that is skew-symmetric with respect to this form,
i.e., HTJ = −JH. Notice that this definition is essentially the same as the one given in
(1.9). This reduces to imposing that the matrix H has the block form (1.8) with A = DT ,
B = BT , C = CT . A real symplectic matrix is one that is orthogonal with respect to J , i.e.,
STJS = J .

A matrix pencil A− λE is called symplectic if AJAT = EJ ET .
A subspace U = SpanU is called Lagrangian if UTJU = 0, or equivalently, ω(u, v) = 0

for all u, v ∈ U .
Real Hamiltonian matrices and real even pencils have the so-called Hamiltonian eigen-

symmetry , i.e., if λ ∈ C is an eigenvalue, then so are λ, −λ, −λ. That is, the spectrum
is symmetric with respect to the real and imaginary axes. Eigenvalues with nonzero real
and imaginary part come in quadruples; purely real or imaginary eigenvalues come in pairs,
except for the eigenvalues 0 and ∞ (in the case of pencils), which need not be paired.

Real symplectic matrices and pencils have the so-called symplectic eigensymmetry , i.e.,
if λ ∈ C is an eigenvalue, then so are λ, 1/λ, 1/λ. That is, the spectrum is symmetric with
respect to the real axis and to the unit circle. Non-unimodular, non-real eigenvalues come
in quadruples; real and unimodular eigenvalues come in pair, except for 1 and −1. In the
case of pencils, this pairing is respected provided that we stick to the usual conventions of
arithmetic involving (complex) infinity.

2.7 Möbius transformations and Cayley transforms

Let a, b, c, d ∈ C be given such that ad− bc 6= 0. The map from P(C) = C ∪ {∞} to itself
defined by f(z) := az+b

cz+d is called a Möbius transformation. Möbius transformations are
projective automorphisms of the Riemann sphere.

Möbius transformations can be extended to matrices: if cM + dI is nonsingular, then
f(M) := (cM + d)−1(aM + b) = (cM + dI)−1(aM + bI). As can be seen by reducing M to
Jordan or Schur form, λ is an eigenvalue of M if and only if f(λ) is an eigenvalue of f(M).
Left and right eigenvectors and Jordan chains are preserved, as follows from the results in
[Hig08].

A more natural extension, which removes the nonsingularity assumption, involves matrix
pencils:

f(A− λE) = (aA+ bE)− λ(cA+ dE).

This map transforms eigenvalues (including those at infinity) according to λ 7→ f(λ), and
preserves left and right Jordan chains and deflating subspaces.
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A special class of Möbius transformation is given by Cayley transforms. The Cayley
transform with parameter γ ∈ R \ {0} is the map

Cγ(z) =
z − γ
z + γ

. (2.5)

The following properties follow easily from the definition.

Lemma 2.10. The following properties hold for any Cayley transform C = Cγ .

1. C(0) = 1

2. C(∞) = −1

3. C maps the real axis (including ∞) onto itself

4. C maps the imaginary axis onto the unit circle. If γ > 0, then the right half-plane
is mapped onto the unit disk, and the left half-plane to its outside; if γ < 0, the left
half-plane is mapped onto the unit disk, and the right half-plane to its outside.

5. C sends a matrix/pencil with Hamiltonian eigensymmetry to a matrix/pencil with
symplectic eigensymmetry.

The Cayley transform preserves left and right eigenvectors, while transforms the associated
eigenvalues according to the map C : λ 7→ λ−γ

λ+γ , λ ∈ C ∪∞. In particular, Kronecker blocks

of size k for λ are mapped to Kronecker blocks of size k for C(λ). This follows for example
from [Hig08, Theorem 1.36].

2.8 Control theory terminology

A complete introduction to control theory is outside of the scope of this thesis; we refer
the reader to [Son98] for more detail of this topic. However, in Part III we deal with
invariant subspace problems arising from control theory applications. While our exposition
is self-contained and need not deal with the engineering background of the problem, it is
useful to introduce some of the notation used in the field.

Most control theory definitions exist in two variants, one relative to linear recurrence
systems (discrete-time problems) and one to linear differential equations (continuous-time
problems). The difference is that in the former case the stability region of interest is the open
unit disk {z ∈ C : |z| < 1}, while in the latter it is the open left half-plane {z ∈ C : <(z) < 0}.
Thus most definitions appear in two variants. For example, a matrix is called stable if all its
eigenvalues lie inside the stability region; this means that a continuous-time stable (c-stable)
matrix has all its eigenvalues inside the left half plane, while a discrete-time stable (d-stable)
matrix has all its eigenvalues inside the unit disk. The prefixes d- and c- are used when it is
necessary to distinguish between the two cases.

An eigenvalue is called stable if it lies inside the stability region, unstable if it lies outside
its closure, and critical if it lies on its border. A matrix (or pencil) is called semi-stable if
all its eigenvalues are stable or critical. Conversely, it is unstable (semi-unstable) if all its
eigenvalues are unstable (unstable or critical).

The stable space of a matrix (pencil) is the invariant subspace (deflating subspace)
spanned by the Jordan chains relative to stable eigenvalues; similarly, the unstable space is
the invariant (deflating) subspace relative to unstable eigenvalues.

Due to the properties in Lemma 2.10, a Cayley transform with parameter γ < 0 maps
c-stable eigenvalues to d-stable eigenvalues, and thus, roughly speaking, transforms all the
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stated continuous-time conditions into the corresponding discrete-time conditions. If γ > 0,
then it also switches the stable and unstable regions.

A matrix pair (A,B), withA ∈ Cn×n, B ∈ Cn×r, is called controllable if rk
[
λI −A B

]
=

n for all λ ∈ C, and stabilizable if this holds only for λ with <λ ≥ 0. A matrix pair (C,A)
is called observable if (AT , CT ) is controllable, and detectable if (AT , CT ) is stabilizable.
Notice that these definitions do not depend on the choice of continuous- or discrete-time
setting.

2.9 Eigenvalue splittings

We speak of a splitting of the eigenvalues of a matrix when referring on how they divide
between the stable, critical and unstable region of the complex plane.

A matrix or pencil of size m+n has an (m,n) splitting if there exist r1, r2 ∈ N such that:

• its stable space has dimension m− r1;

• its unstable space has dimension n− r2;

• its critical space has dimension r1 + r2.

The splitting is called proper if at least one among r1 and r2 is zero. When this happens,
we can identify uniquely two disjoint semi-stable and semi-unstable invariant (or deflating)
subspaces of dimension respectively m and n: if r1 = 0, then the critical space is considered
to be part of the semi-unstable subspace, while if r2 is zero, then it is considered to be part
of the semi-unstable subspace. We call these two subspaces the canonical semi-stable and
semi-unstable subspaces.

The splitting is called partial splitting if r1 = r2, and the lengths kj of its Jordan chains
relative to critical eigenvalues (which must sum up to 2r if the two previous properties hold)
are all even. In this case, we define the canonical semi-stable (resp. semi-unstable) subspace
as the invariant subspace spanned by all the Jordan chains relative to stable (resp. unstable)
eigenvalues, plus the first kj/2 vectors from each critical chain.

Symplectic and Hamiltonian matrices and pencils have respectively a d- and c-partial
splitting. Under suitable assumptions [LR95] which are satisfied in most control theory
applications, the canonical semi-stable and semi-unstable subspaces of a symplectic or
Hamiltonian matrix or pencil are Lagrangian.

In the case of a d-splitting, we call the dominance factor of a splitting the ratio

ν := max
|λs|
|λu|

≤ 1, (2.6)

where the maximum is taken over all the eigenvalues λs belonging to the canonical d-semi-
stable subspace, and all the eigenvalues λu belonging to the canonical d-semi-unstable
subspace. The dominance factor ν is small when there is a large spectral gap between the
semi-stable and semi-unstable subspace; it is strictly less than 1 in the case of a proper
splitting, and equal to 1 in case of a partial splitting. The convergence properties of many
of the algorithms for matrix equations that we expose are related to the dominance factor.
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Chapter 3

Quadratic vector equations

3.1 Introduction

In this chapter, we aim to study in an unified fashion several quadratic vector and matrix
equations with nonnegativity hypotheses. Specific cases of these problems have been studied
extensively in the past by several authors. For references to the single equations and results,
we refer the reader to the following sections, in particular Section 3.3. Many of the results
appearing here have already been proved for one or more of the single instances of the
problems, resorting to specific characteristics of the problem. In some cases the proofs we
present here are mere rewritings of the original proofs with a little change of notation to
adapt them to our framework, but in some cases we are effectively able to remove some
hypotheses and generalize the results by abstracting the specific aspects of each problem.

It is worth noting that Ortega and Rheinboldt [OR00, Chapter 13], in a 1970 book, treat
a similar problem in a far more general setting, assuming only the monotonicity and operator
convexity of the involved operator. Since their hypotheses are far more general than the
ones of our problem, the obtained results are less precise than the one we are reporting here.
Moreover, all of their proofs have to be adapted to our case, since our map F (x) is operator
concave instead of convex.

3.2 General problem

We are interested in solving the equation (1.1) (quadratic vector equation, QVE), where
M ∈ RN×N is a nonsingular M-matrix, a, x ∈ RN+ , and b is a nonnegative vector bilinear form,
i.e., a map b : RN+ × RN+ → RN+ such that b(v, ·) and b(·, v) are linear maps for each v ∈ Rn+.
The map b can be represented by a tensor Bijk, in the sense that b(x, y)k =

∑n
i,j=1Bijkxiyj .

It is easy to prove that x ≤ y, z ≤ w implies b(x, z) ≤ b(y, w). If A is a nonsingular M-matrix,
A−1B denotes the tensor representing the map (x, y) 7→ A−1b(x, y). Note that, here and
in the following, we do not require that b be symmetric (that is, b(x, y) = b(y, x) for all
x, y): while in the equation only the quadratic form associated with b is used, in the solution
algorithms there are often terms of the form b(x, y) with x 6= y. Since there are multiple
ways to extend the quadratic form b(x, x) to a bilinear map b(x, y), this leaves more freedom
in defining the actual solution algorithms.

We are only interested in nonnegative solutions x∗ ∈ RN+ ; in the following, when referring
to solutions of (1.1) we always mean nonnegative solutions only. A solution x∗ of (1.1) is
called minimal if x∗ ≤ y∗ for any other solution y∗.

Later on, we give a necessary and sufficient condition for (1.1) to have a minimal solution.

15
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3.3 Concrete cases

E1: Markovian binary trees in [BKT08, HLR08], the equation (1.1), with the assump-
tion that e is a solution, arises from the study of Markovian binary trees.

E2: Lu’s simple equation in [Lu05b, Lu05a], the equation (1.12) arises from a special
Riccati equation appearing in a neutron transport problem. By setting w := [uT vT ]T

as the new unknown, the equation takes the form (1.1).

E3: Nonsymmetric algebraic Riccati equation in [GL00], the equation (1.5), where
the matrix M defined in (1.6) is a nonsingular or singular irreducible M-matrix, is
studied. Vectorizing everything, we get

(I ⊗A+DT ⊗ I) vec(X) = vec(B) + vec(XCX),

which is in the form (1.1) with N = mn.

E4: Unilateral quadratic matrix equation in several queuing problems [BLM05], the
equation (1.2) with assumptions (1.3) is considered. Vectorizing everything, we fall

again in the same class of equations, with N = n′2: in fact, since B′e ≤ e, Be ≥ 0 and
thus B is an M-matrix.

To ease the notation in the cases E3 and E4, in the following we set xk = vec(Xk),
d = max(m,n) for E3 and d = n′ for E4.

3.4 Minimal solution

Existence of the minimal solution

It is clear by considering the scalar case (N = 1) that (1.1) may have no real solutions. The
following additional condition allows us to prove their existence.

Assumption 3.1. There are a positive linear functional l : RN → Rt and a vector z ∈ Rt+
such that for any x ∈ RN+ , the property l(x) ≤ z implies l(M−1(a+ b(x, x))) ≤ z.

Theorem 3.1 ([Pol10b]). Equation (1.1) has at least one solution if and only if Assump-
tion 3.1 holds. Among its solutions, there is a minimal one.

Proof. Let us consider the iteration

xk+1 = M−1 (a+ b(xk, xk)) , (3.1)

starting from x0 = 0. Since M is an M-matrix, we have x1 = M−1a ≥ 0. It is easy to see by
induction that xk ≤ xk+1:

xk+1 − xk = M−1(b(xk, xk)− b(xk−1, xk−1)) ≥ 0

since b is nonnegative. We prove by induction that l(xk) ≤ z. The base step is clear:
l(0) = 0 ≤ z; the inductive step is simply Assumption 3.1. Thus the sequence xk is
nondecreasing and bounded from above by l(Mxk) ≤ z, and therefore it converges. Its limit
x∗ is a solution to (1.1).

On the other hand, if (1.1) has a solution s, then we may choose l = I and z = s; now,
x ≤ s implies M−1(a + b(x, x)) ≤ M−1(a + b(s, s)) = s, thus Assumption 3.1 is satisfied
with this choices.
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For any solution s, we may prove by induction that xk ≤ s:

s− xk+1 = a+ b(s, s)− a− b(xk, xk) ≥ 0.

Therefore, passing to the limit, we get x∗ ≤ s.

Taylor expansion

Let F (x) := Mx − a − b(x, x). Since the equation is quadratic, the following expansion
holds.

F (y) = F (x) + F ′x(y − x) +
1

2
F ′′x (y − x, y − x), (3.2)

where F ′x(w) = Mw − b(x,w) − b(w, x) is the (Fréchet) derivative of F and F ′′x (w,w) =
−2b(w,w) ≤ 0 is its second (Fréchet) derivative. Notice that F ′′x is nonpositive and does not
depend on x.

The following theorem is a straightforward extension to our setting of the argument in
[GL00, Theorem 3.2].

Theorem 3.2 ([Pol10b]). If x∗ > 0, then F ′x∗ is an M-matrix.

Proof. Let us consider the fixed point iteration (3.1). By a theorem on fixed-point iterations
[KVZ+72], one has

lim sup k
√
‖x∗ − xk‖ ≤ ρ(G′x∗), (3.3)

where G′x∗ is the Fréchet derivative of the iteration map

G(x) := M−1(a+ b(x, x)),

that is,

G′x∗(y) = M−1(b(x∗, y) + b(y, x∗)).

In fact, if x∗ > 0, equality holds in (3.3). Let ek := x∗ − xk. We have ek+1 = Pkek, where

Pk := M−1(b(x∗, ·) + b(·, xk))

are nonnegative matrices. The matrix sequence Pk is nondecreasing and limk→∞ Pk = G′x∗ .
Thus for any ε > 0 we may find an integer l such that

ρ(Pm) ≥ ρ(Gx∗)− ε, ∀m ≥ l.

We have
lim sup k

√
‖x∗ − xk‖ = lim sup k

√
‖Pk−1 . . . Pl . . . P0x∗‖

≥ lim sup k

√∥∥P k−ll P l0x
∗
∥∥.

Since x∗ > 0, we have P l0x
∗ > 0 and thus P l0x

∗ > cle for a suitable constant cl. Also, it
holds that

∥∥P k−ll

∥∥ =
∥∥P k−ll vk,l

∥∥ for a suitable vk,l ≥ 0 with ‖vk,l‖ = 1, and this implies

lim sup k
√
‖x∗ − xk‖ = lim sup k

√
cl
∥∥P k−ll e

∥∥
≥ lim sup k

√
cl
∥∥P k−ll vk,l

∥∥
= lim sup k

√
cl
∥∥P k−ll

∥∥
=ρ(Pl) ≥ ρ(Gx∗)− ε.
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Since ε is arbitrary, this shows that equality holds in (3.3).
From the convergence of the sequence xk, we get thus

ρ(M−1(b(x∗, ·) + b(·, x∗))) ≤ 1,

which implies that M − b(x∗, ·)− b(·, x∗) is an M-matrix.

Corollary 3.3. From part 2 of Theorem 2.3, we promptly obtain that F ′(x) is an M-matrix
for all x ≤ x∗.

Concrete cases

We may prove Assumption 3.1 for all the examples E1–E4. E1 is covered by the following
observation.

Lemma 3.4. If there is a vector y ≥ 0 such that F (y) ≥ 0, then Assumption 3.1 holds.

Proof. In fact, we may take the identity map as l and y as z. Clearly x ≤ y implies
M−1(a+ b(x, x)) ≤M−1(a+ b(y, y)) ≤ y.

As for E2, it follows from the reasoning in [Lu05b] that a solution to the specific problem
is u = Xq+ e, v = XT q+ e, where X is the solution of an equation of the form E3; therefore,
E2 follows from E3 and Lemma 3.4. An explicit but rather complicate bound to the solution
is given in [Jua01].

The case E3 is treated in [Guo01, Theorem 3.1]. Since M in (1.6) is a nonsingular or
singular M-matrix, there are vectors v1, v2 > 0 and u1, u2 ≥ 0 such that Dv1 − Cv2 = u1
and Av2 −Bv1 = u2. Let us set l(x) = Xv1 and z = v2 −A−1u2. We have

(AXk+1 +Xk+1D)v1 =(XkCXk +B)v1

≤XkCv2 +Av2 − u2 ≤ XDv1 +Av2 − u2.

Since Xk+1Dv1 ≥ XkDv1 (monotonicity of the iteration), we get Xk+1v1 ≤ v2 − A−1u2,
which is the desired result.

The case E4 is similar. It suffices to set l(x) = vec−1(x)e and z = e:

Xk+1e = (I −B)−1(A+ CX2
k)e ≤ (I −B)−1(Ae+ Ce) ≤ e,

since (A+ C)e = (I −B)e

3.5 Functional iterations

Definition and convergence

We may define a functional iteration for (1.1) by choosing a splitting b = b1 + b2 such that
bi ≥ 0 and a splitting M = Q− P such that Q is an M-matrix and P ≥ 0. We then have
the iteration

(Q− b1(·, xk))xk+1 = a+ Pxk + b2(xk, xk). (3.4)

Theorem 3.5 ([Pol10b]). Suppose that the equation (1.1) has a minimal solution x∗ > 0.
Let x0 be such that 0 ≤ x0 ≤ x∗ and F (x0) ≤ 0 (e.g., x0 = 0). Then:

1. Q− b1(·, xk) is nonsingular for all k, i.e., the iteration (3.4) is well-defined.
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2. xk ≤ xk+1 ≤ x∗, and xk → x∗ as k →∞.

3. F (xk) ≤ 0 for all k.

Proof. Let J(x) := Q−b1(·, x) and g(x) := a+Px+b2(x, x). It is clear from the nonnegativity
constraints that J is nonincreasing (i.e., x ≤ y ⇒ J(x) ≥ J(y)) and g is nondecreasing (i.e.,
x ≤ y ⇒ g(x) ≤ g(y)).

The matrix J(x) is a Z-matrix for all x ≥ 0. Moreover, since J(x∗)x∗ = g(x∗) ≥ 0,
J(x∗) is an M-matrix by Theorem 2.3 and thus, by the same theorem, J(x) is a nonsingular
M-matrix for all x ≤ x∗.

We first prove by induction that xk ≤ x∗. This shows that the iteration is well-posed,
since it implies that J(xk) is an M-matrix for all k. Since g(x∗) = J(x∗)x∗ ≤ J(xk)x∗ by
inductive hypothesis, (3.4) implies

J(xk)(x∗ − xk+1) ≥ g(x∗)− g(xk) ≥ 0;

thus, since J(xk) is an M-matrix by inductive hypothesis, we deduce that x∗ − xk+1 ≥ 0.
We prove by induction that xk ≤ xk+1. For the base step, since we have F (x0) ≤ 0, and

J(x0)x0 − g(x0) ≤ 0, thus x1 = J(x0)−1g(x0) ≥ x0. For k ≥ 1, it holds that

J(xk−1)(xk+1 − xk) ≥ J(xk)xk+1 − J(xk−1)xk = g(xk)− g(xk−1) ≥ 0,

thus xk ≤ xk+1. The sequence xk is monotonic and bounded above by x∗, thus it converges.
Let x be its limit; by passing (3.4) to the limit, we see that x is a solution. But since x ≤ x∗
and x∗ is minimal, it must be the case that x = x∗.

Finally, for each k we have

F (xk) = J(xk)xk − g(xk) ≤ J(xk)xk+1 − g(xk) = 0.

Theorem 3.6 ([Pol10b]). Let f be the map defining the functional iteration (3.4), i.e.,

f(xk) = J(xk)−1g(xk) = xk+1. Let Ĵ , ĝ, f̂ be the same maps as J , g, f but for the special

choice b2 = 0, P = 0. Then f̂k(x) ≥ fk(x), i.e., the functional iteration with b2 = 0, P = 0
has the fastest convergence among all those defined by (3.4).

Proof. It suffices to prove that f̂(y) ≥ f̂(x) for all y ≥ x, which is obvious from the fact that

Ĵ is nonincreasing and ĝ is nondecreasing, and that f̂(x) ≥ f(x), which follows from the
fact that Ĵ(x) ≤ J(x) and ĝ(x) ≥ g(x).

Corollary 3.7. Let
xGSk+1 = J(yk)−1gk, (3.5)

where yk is a vector such that xk ≤ yk ≤ xk+1, and gk a vector such that g(xk) ≤ gk ≤
g(xk+1). It can be proved with the same arguments that xk+1 ≤ xGSk+1 ≤ x∗. This implies
that we can perform the iteration in a “Gauss–Seidel” fashion: if in some place along the
computation an entry of xk is needed, and we have already computed the same entry of
xk+1, we can use that entry instead. It can be easily shown that J(xk)−1g(xk) ≤ J(yk)−1gk,
therefore the Gauss–Seidel version of the iteration converges faster than the original one.

Remark 3.8. The iteration (3.4) depends on b as a bilinear form, while (1.1) and its solution
depend only on b as a quadratic form. Therefore, different choices of the bilinear form b
lead to different functional iterations for the same equation. Since for each iterate of each
functional iteration both xk ≤ x∗ and F (xk) ≤ 0 hold (thus xk is a valid starting point for
a new functional iteration), we may safely switch between different functional iterations at
every step.
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Concrete cases

For E1, the algorithm called depth in [BKT08] is given by choosing P = 0, b2 = 0. The
algorithm called order in the same paper is obtained with the same choices, but starting by
the bilinear form b̃(x, y) := b(y, x) obtained by switching the arguments of b. The algorithm
called thicknesses in [HLR08] is given by performing alternately one iteration of each of the
two above methods.

For E2, Lu’s simple iteration [Lu05b] and the algorithm NBJ in [BGL08] can be seen as
the basic iteration (3.1) and P = 0, b2 = 0. The algorithm NBGS in the same paper is a
Gauss–Seidel-like variant.

For E3, the fixed point iterations in [GL00] are given by b2 = b and different choices of P .
The iterations in [JC93] are the one given by b2 = 0, P = 0 and a Gauss–Seidel-like variant.

For E4, the iterations in [BLM05, Chapter 6] can also be reinterpreted in our framework.

3.6 Newton’s method

Definition and convergence

We may define the Newton method for the equation (1.1) as

F ′xk(xk+1 − xk) = −F (xk). (3.6)

Alternatively, we may write

F ′xkxk+1 = a− b(xk, xk).

Also notice that

− F (xk) = b(xk−1 − xk, xk−1 − xk). (3.7)

Theorem 3.9 ([Pol10b]). If x∗ > 0, the Newton method (3.6) starting from x0 = 0 is
well-defined, and the generated sequence xk converges monotonically to x∗.

Proof. First notice that, since F ′x∗ is an M-matrix, by Theorem 3.2, F ′x is a nonsingular
M-matrix for all x ≤ x∗, x 6= x∗.

We prove by induction that xk ≤ xk+1. We have x1 = M−1a ≥ 0, so the base step holds.
From (3.7), we get

F ′xk+1
(xk+2 − xk+1) = b(xk+1 − xk, xk+1 − xk) ≥ 0,

thus, since F ′xk+1
is a nonsingular M-matrix, xk+2 ≥ xk+1, which completes the induction

proof.
Moreover, we may prove by induction that xk < x∗. The base step is obvious, the

induction step is

F ′xk(x∗ − xk+1) =Mx∗ − b(xk, x∗)− b(x∗, xk)− a+ b(xk, xk)

=b(x∗ − xk, x∗ − xk) > 0.

The sequence xk is monotonic and bounded from above by x∗, thus it converges; by
passing (3.6) to the limit we see that its limit must be a solution of (1.1), hence x∗.
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Concrete cases

Newton methods for E1, E2, and E3 appear respectively in [HLR08], [Lu05a] and [GL00],
with more restrictive hypotheses which hold true in the special applicative cases. As far
as we know, the more general hypothesis x∗ > 0 first appeared here. In particular, in
[GL00] (and later [Guo01]) the authors impose that x1 > 0; [HLR08] impose that F ′x∗ is an
M-matrix, which is true in their setting because of probabilistic assumptions; and in the
setting of [Lu05a], x1 > 0 is obvious. The Newton method is usually not considered for E4
due to its high computational cost.

3.7 Modified Newton method

Recently Hautphenne and Van Houdt [HVH10] proposed a different version of Newton’s
method for E1 that has a better convergence rate than the traditional one. Their idea is to
apply the Newton method to the equation

G(x) = x− (M − b(·, x))−1a, (3.8)

which is equivalent to (1.1).

Theoretical properties

Let us set for the sake of brevity Rx := M − b(·, x). The Jacobian of G is

G′x = I −R−1x b(R−1x a, ·).

As for the original Newton method, it is a Z-matrix, and a nonincreasing function of x. It is
easily seen that G′x∗ is an M-matrix. The proof in Hautphenne and Van Houdt [HVH10] is
of probabilistic nature and cannot be extended to our setting; we provide here a different
one. We have

G′(x∗) = R−1x∗
(
M − b(·, x∗)− b(R−1x∗ a, ·)

)
= R−1x∗ (M − b(·, x∗)− b(x∗, ·)) ;

the quantity in parentheses is F ′x∗ , an M-matrix, thus there is a vector v > 0 such that
F ′x∗v ≥ 0, and therefore G′x∗v = R−1x∗ F

′
x∗v ≥ 0. This shows that G′x is an M-matrix for all

x ≤ x∗ and thus the modified Newton method is well-defined. The monotonic convergence
is easily proved in the same fashion as for the traditional method.

The following result holds.

Theorem 3.10 ([HVH10]). Let x̃k be the iterates of the modified Newton method and xk
those of the traditional Newton method, starting from x̃k = xk = 0. Then x̃k − xk ≥ 0.

The proof in Hautphenne and Van Houdt [HVH10] can be adapted to our setting with
minor modifications.

Concrete cases

Other than for E1, its original setting, the modified Newton method can be applied success-
fully for the other concrete cases of quadratic vector equations. In order to outline here the
possible benefits of this strategy, we ask for the reader’s indulgence and refer forward to the
results on the structure of Newton’s method which are presented in Chapter 9.
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Figure 3.1: Convergence history of the two Newton methods for E2 for several values of the
parameters α and c. The plots show the residual Frobenius norm of Equation (1.1) vs. the
number of iterations

For E2, let us choose the bilinear map b as

b([u1v1], [u2v2]) := [u1 ◦ (Pv2), v1 ◦ (P̃ u2)].

It is easily seen that b(·, x) is a diagonal matrix. Moreover, as in the traditional Newton
method, the matrix b(x, ·) has a special structure (Trummer-like structure [BIP08], also in
Chapter 9) which allows a fast inversion with O(n2) operations per step. Therefore the
modified Newton method can be implemented with a negligible overhead (O(n) ops per step
on an algorithm that takes O(n2) ops per step) with respect to the traditional one, and
increased convergence rate.

We have performed some numerical experiments on the modified Newton method for
E2; as can be seen in Figure 3.1, the modified Newton method does indeed converge faster
to the minimal solution, and this allows one to get better approximations to the solution
with the same number of steps. The benefits of this approach are limited, however; in the
numerical experiments performed, this modified Newton method never saved more than one
iteration with respect to the customary one.

For E3 and E4, the modified Newton method leads to similar equations to the traditional
one (continuous- and discrete-time Sylvester equations), but requires additional matrix
inversions and products; that is, the overhead is of the same order O(d3) of the cost of the
Newton step. Therefore it is not clear whether the improved convergence rate makes up for
the increase in the computational cost.
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3.8 Positivity of the minimal solution

Role of the positivity

In many of the above theorems, the hypothesis x∗ > 0 is required. Is it really necessary?
What happens if it is not satisfied?

In all the algorithms we have exposed, we worked with only vectors x such that 0 ≤ x ≤ x∗.
Thus, if x∗ has some zero entry, we may safely replace the problem with a smaller one by
projecting the problem on the subspace of all vectors that have the same zero pattern as x∗:
i.e., we may replace the problem with the one defined by

â = Πa, M̂ = ΠMΠT , b̂(x, y) = Πb(ΠTx,ΠT y),

where Π is the orthogonal projector on the subspace

W = {x ∈ RN : xi = 0 for all i such that x∗i = 0}, (3.9)

i.e., the linear operator that removes the entries known to be zero from the vectors. Perform-
ing the above algorithms on the reduced vectors and matrices is equivalent to performing
them on the original versions, provided the matrices to invert are nonsingular. Notice,
though, that both functional iterations and Newton-type algorithms may break down when
the minimal solution is not strictly positive. For instance, consider the problem

a =

[
1
2
0

]
, M = I2, b

([
x1
x2

]
,

[
y1
y2

])
=

[
1
2x1y1
Kx1y2

]
, x∗ =

[
1
0

]
.

For suitable choices of the parameter K, the matrices to be inverted in the functional
iterations (excluding obviously (3.1)) and Newton’s methods are singular; for large values of
K, none of them are M-matrices. However, the nonsingularity and M-matrix properties still
hold for their restrictions to the subspace W defined in (3.9). It is therefore important to
consider the positivity pattern of the minimal solution in order to get efficient algorithms.

Computing the positivity pattern

By considering the functional iteration (3.1), we may derive a method to infer the positivity
pattern of the minimal solution in time O(N3). Let us denote by et the t-th vector of the
canonical basis, and eS =

∑
s∈S es for any set S ∈ {1, . . . , N}. We report the algorithm as

Algorithm 1.

Theorem 3.11 ([Pol10b]). The above algorithm runs in at most O(N3) operations and
computes the set {h ∈ {1, . . . , N} : x∗h > 0}.

Proof. For the implementation of the working sets, we use the simple approach to keep
in memory two vectors S, T ∈ {0, 1}N and set to 1 the components corresponding to the
indices in the sets. With this choice, insertions and membership tests are O(1), loops are
easy to implement, and retrieving an element of the set costs at most O(N).

Let us first prove that the running time of the algorithm is at most O(N3). If we
precompute a PLU factorization of M , each subsequent operation M−1v, for v ∈ RN , costs
O(n2). The first for loop runs in at most O(N) operations. The body of the while loop
runs at most N times, since an element can be inserted into S and T no more than once (S
never decreases). Each of its iterations costs O(N2), since evaluating b(et, eS) is equivalent
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Algorithm 1: Compute the positivity pattern of the solution x∗

input: a, M , b
output: S = {i : x∗i > 0}
S ← ∅{entries known to be positive}
T ← ∅{entries to check}
a′ ←M−1a
for i = 1 to N do

if a′i > 0 then
T ← T ∪ {i}; S ← S ∪ {i}

end if
end for
while T 6= ∅ do
t← some element of T
T ← T \ {t}
u←M−1 (b(eS , et) + b(et, eS)) {or only its positivity pattern}
for i ∈ {1, . . . , N} \ S do

if ui > 0 then
T ← T ∪ {i}; S ← S ∪ {i}

end if
end for

end while
return S

to computing the matrix-vector product between the matrix (Btij)i,j=1,...,N and eS , and
similarly for b(eS , et).

The fact that the algorithm computes the right set may not seem obvious at first sight.
Since the sequence xk is increasing, if one entry in xk is positive, then it is positive for all
iterates xh, h > k. When does an entry of xk become positive? The positive entries of x1
are those of M−1a; then, an entry t of xk+1 is positive if either the corresponding entry of
xk was positive or two entries r, s of xk were positive and Brst > 0. Thus, an entry in x∗ is
positive if and only if we can find a sequence Si of subsets of {1, . . . , N} such that:

• S0 = {h ∈ {1, . . . , N} : (M−1a)h > 0};

• Si+1 = Si ∪ {ti}, and there are two elements r, s ∈ Si such that Brsti > 0.

For each element u of {h ∈ {1, . . . , N} : x∗h > 0}, we may prove by induction on the length
of its minimal sequence Si that it eventually gets into S (and T ). In fact, suppose the
last element of the sequence is Sl. Then, by inductive hypothesis, all the elements of Sl−1
eventually get into S and T . All of them are removed from T at some step of the algorithm.
When the last one is removed, the if condition triggers and the element u is inserted into T .
Conversely, if u is an element that gets inserted into S, then by considering the values of S
at the successive steps of the algorithm we get a valid sequence {Si}.

It is a natural question to ask whether for the cases E3 and E4 it is possible to use the
special structure of M and b in order to develop a similar algorithm with running time
O(d3), that is, the same as the cost per step of the basic iterations. Unfortunately, we were
unable to go below O(d4). It is therefore much less appealing to run this algorithm as a
preliminary step before, since its cost is likely to outweigh the cost of the actual solution.
However, we remark that the strict positiveness of the coefficients is usually a property of
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the problem rather than of the specific matrices involved, and can often be solved in the
model phase before turning to the actual computations. An algorithm such as the above
one would only be needed in an “automatic” subroutine to solve general instances of the
problems E3 and E4.

3.9 Other concrete cases

In Bini et al. [BLM03], the matrix equation

X +

d∑
i=1

AiX
−1Di = B − I

appears, where B,Ai, Di ≥ 0 and the matrices B + Dj +
∑d
i=1Ai are stochastic. The

solution X = T − I, with T ≥ 0 minimal and sub-stochastic, is sought. Their paper proposes
a functional iteration and Newton’s method. By setting Y = −X−1 and multiplying both
sides by Y , we get

(I −B)Y = I +
∑

AiY DiY,

which is again in the form (1.1). It is easy to see that Y is nonnegative whenever T is
substochastic, and Y is minimal whenever T is.

The paper considers two functional iterations and the Newton method; all these algorithm
are expressed in terms of X instead of Y , but they essentially coincide with those exposed
in this chapter.

3.10 Conclusions and research lines

We presented in this chapter a novel unified approach to the analysis of a family of quadratic
vector and matrix equations [Pol10b]. This helps pinpointing which are the minimal
hypotheses needed to derive the presented results, and in particular the role of the strict
positivity of x∗. In some cases, such as in Theorem 3.9, we can weaken the hypotheses
of existing theorems; in other cases, this unified approach allows adapting the algorithms
designed for one of such equations to the others, with good numerical results.

There are many open questions that could lead to better theoretical understanding of
this class of equations and better solution algorithms.

A first question is whether x ≤ x∗ implies F (x) ≤ 0, and under which conditions the
converse holds. If an easy criterion is found, then one could safely implement overrelaxation
in many of the above algorithms, which would lead to faster convergence.

There are a wide theory and several numerical methods for E3 and E4 that rely on the
specific matrix structure of the two equations; convergence properties and characteristics
of the solutions are understood in terms of the spectral structure of the involved matrices.
Some of these results are exposed in the following chapters. Is there a way to extend this
theory to include all quadratic vector equations? What is the right way to generalize spectral
properties?

In particular, it would be extremely interesting to find a useful expression of (1.1) in
terms of an invariant subspace, as in (1.4) for E4 and (1.7) for E3. Applying recursively the
techniques used in [MP09] could yield an expression of the type we are looking for, but with
dimensions growing exponentially with N .

On the other hand, finding a more feasible invariant subspace formulation for (1.1)
seems to be a challenging or even impossible problem. In fact, if we drop the nonnegativity
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assumptions, (1.1) can represent basically any system of N simultaneous quadratic equations.
In finite fields, similar problems are known to be NP-hard [CKPS00]. An invariant subspace
formulation of polynomial size would probably lead to a polynomial-time algorithm for the
finite-field version of this problem, which seems too much to ask for.

Another interesting question is whether we can generalize this approach to the positive-
definite ordering on symmetric matrices. This would lead to the further unification of the
theory of a large class of equations, including the algebraic Riccati equations appearing in
control theory [LR95]. A lemma proved by Ran and Reurings [RR02, Theorem 2.2] could
replace the first part of Theorem 2.3 in an extension of the results of this chapter to the
positive definite ordering.



Chapter 4

A Perron vector iteration for QVEs

4.1 Applications

Equation (1.1), with the additional conditions

M =I, a+ b(e, e) =e (4.1)

(i.e, the vector e is a solution, though not necessarily the minimal one), arises from the
study of a class of branching processes known as Markovian binary trees. These processes
model a population composed of a number of individuals, each of which may be in a
state ϕ ∈ {1, 2, . . . , n}. The individuals evolve independently and have state-dependent
probabilities of reproducing or dying. Here reproducing means that an individual in state
i splits into two individuals in state j and k respectively; the probability of this event is
represented by the term bijk in the equation, while the probability of an individual in state
i dying is ai.

It can be proved with probabilistic means [BOT05] that the minimal solution x∗ represents
the extinction probability of the colony; i.e., xi is the probability that the colony generated
by a single individual in state i eventually gets extinct.

The binary tree is classified according to the spectral radius of the nonnegative matrix

R := b(e, ·) + b(·, e).

Theorem 4.1 ([AN04]). If assumption (4.1) hold for (1.1), then we are in one of the
following cases.

subcritical case ρ(R) < 1, and x∗ = e.

critical case ρ(R) = 1, and x∗ = e.

supercritical case ρ(R) > 1, and x∗ ≤ e, x∗ 6= e.

4.2 Assumptions on the problem

Besides (4.1), we assume in this chapter that x∗ > 0, motivated by the discussion in
Section 3.8, and that we are in the supercritical case (otherwise, x∗ = e and there is nothing
to compute).

A further assumption is that R is irreducible. This is equivalent to imposing that
F ′(x∗) = I−b(x∗, ·)−b(·, x∗), which is an M-matrix according to Theorem 3.2, is irreducible,
since irreducibility is only determined by the nonnegativity pattern of b(·, ·).

27
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Moreover, we may assume that eT b(e− x∗, e− x∗) > 0; otherwise b(e− x∗, e− x∗) = 0
and the problem is trivial since it becomes a linear problem.

4.3 The optimistic equation

If we set x = e− y, by using (4.1) and the bilinearity of the operator b(·, ·), then (1.1) can
be rewritten as

y = b(y, e) + b(e, y)− b(y, y). (4.2)

The trivial solution is y = 0, which corresponds to x = e. We are interested in the nontrivial
solution 0 < y∗ < e, which gives the sought solution x∗ = e− y∗.

In the probabilistic interpretation of Markovian binary trees, x∗ is the extinction proba-
bility, thus y∗ = e− x∗ is the survival probability, i.e., y∗i is the probability that a colony
starting from a single individual in state i does not become extinct in a finite time. For this
reason, we refer to (4.2) as to the optimistic equation.

Notice that (4.2) admits the following probabilistic interpretation. The term b(y, e)
represents the probability that the original individualM (for “mother”) spawns an offspring
F (for “first-born”), and after that the colony generated by the further offsprings of M,
excluding F , survives. The term b(e, y) represents the probability that M spawns F , and
the colony generated by F survives. The term b(y, y) represents the probability that M
spawns F , and after that both their colonies survive. Thus (4.2) follows by the well-known
inclusion-exclusion principle

P[M or F survives] = P[M survives] + P[F survives]− P[both M and F survive],

where P[X] denotes the probability of the event X.
Equation (4.2) can be rewritten as

y = Hyy (4.3)

where
Hy = b(·, e) + b(e, ·)− b(y, ·). (4.4)

Notice that Hy is the sum of a fixed matrix and a matrix that depends linearly on y.
Therefore the quadratic operator on the right-hand side of (4.2) is “factored” as the product
of a matrix which depends on y, and y.

An important property is that Hy is a nonnegative irreducible matrix, whenever y <
e. Therefore, by the Perron–Frobenius theorem, if y < e, Hy has a positive eigenvalue
λy = ρ(Hy), the so-called Perron value, and to λy corresponds a positive eigenvector wy,
unique up to a multiplicative constant, the so-called Perron vector, so that Hywy = λywy.
Therefore the sought solution y∗ can be interpreted as the vector 0 < y∗ < e such that
ρ(Hy∗) = 1 and y∗ is a Perron vector of Hy∗ .

It is worth pointing out that this interpretation of y∗ in terms of the Perron vector allows
to keep away from the trivial solution y = 0 of (4.3), since the Perron vector has strictly
positive elements.

The formulation of the quadratic vector equation in terms of the Perron vector allows to
design a new algorithm for its solution.

4.4 The Perron iteration

If we set up a fixed-point iteration or a Newton method for y based on (4.2), we get the
traditional fixed-point iterations and Newton methods for MBTs [HLR08], since what we
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have done is simply a linear change of variables. Instead, we exploit the fact that y∗ is a
Perron vector of the nonnegative irreducible matrix Hy∗ (compare (4.3)).

To this purpose we introduce the operator

u = PV(X)

which returns the Perron vector u of the irreducible nonnegative matrix X.
Thus, we can devise a fixed-point iteration to compute the solution y∗ by defining the

sequence of vectors

yk+1 = PV(Hyk), k =0, 1, 2, . . . , (4.5)

starting from an initial approximation y0. In order to define uniquely the sequence {yk},
we need to impose a normalization for the Perron vector, which is uniquely defined up to a
multiplicative constant. A possible choice for the normalization is imposing that the residual
of (4.2) is orthogonal to a suitable vector w ∈ Rn, i.e.,

wT (yk+1 − b(yk+1, e)− b(e, yk+1) + b(yk+1, yk+1)) = 0. (4.6)

Clearly, this normalization is consistent with the solution of (4.2). We choose w as the
left Perron vector of the matrix b(·, e) + b(e, ·); the rationale for this choice is discussed in
Section 4.5.

Given a Perron vector u of Hyk , the equation to compute the normalization factor α
such that yk+1 = αu satisfies (4.6) reduces to

αwTu = αwT b(u, e) + αwT b(e, u)− α2wT b(u, u),

whose only non-zero solution is

α = −w
T (u− b(u, e)− b(e, u))

wT b(u, u)
.

Notice that the solution α = 0 corresponds to the trivial solution y = 0 (x = e), which we
want to avoid.

The PV(·) operator is defined on the set of irreducible nonnegative matrices. If y < e,
then the matrix Hy is nonnegative irreducible, therefore the sequence yk generated by (4.5)
is well defined if yk < e for any k.

In Section 4.5 we show that the iteration (4.5) is locally convergent. Therefore, if y0
is quite close to y∗, one can expect that yk < e for any k. In the case where Hyk is not a
nonnegative irreducible matrix, we can define yk+1 as an eigenvector corresponding to the
eigenvalue of Hyk having maximal real part. We call maximal eigenvector this eigenvector.
Clearly if Hyk is a nonnegative irreducible matrix, the maximal eigenvector is the Perron
vector. We see in Section 4.6 that this concern is not necessary in practice.

As a starting approximation y0 we may choose the null vector. For close to critical
problems, where y∗ is close to zero, this choice should guarantee the convergence, according
to the results of Section 4.5.

The resulting iterative process is summarized in Algorithm 2.

4.5 Convergence analysis of the Perron iteration

In this section, we show that the Perron iteration (4.5) is locally convergent, and its
convergence is linear. Moreover, the convergence speed gets faster as the problem gets closer
to critical.
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Algorithm 2: The Perron iteration

input: b of the QVE (1.1) associated to a supercritical Markovian binary tree
output: the minimal solution x∗

k ← 0
y0 ← 0
w ← the Perron vector of b(e, ·) + b(·, e)
while ‖Hykyk − yk‖1 ≥ ε do
u← the maximal eigenvector of Hyk

Compute the normalization factor α = −w
T (u−b(u,e)−b(e,u))

wT b(u,u)
yk+1 ← αu
k ← k + 1

end while
return x = e− yk

Derivatives of eigenvectors

It is well known [Wil88] that the eigenvalues and eigenvectors of a matrix are analytical
functions of the matrix entries in a neighborhood of a simple eigenpair. The following
formula gives an analytical expression of their first derivatives.

Theorem 4.2 ([MS88, Theorem 1]). Let A = A(z), λ = λ(z), u = u(z) be a matrix,
eigenvalue and associated eigenvector depending on a parameter z ∈ C. Let us suppose that
λ(z0) is simple and A′(z0), λ′(z0), u′(z0) each exist. Let w = w(z) be another vector such
that w′(z0) exists and let σ(u,w) be a function whose value is a real scalar constant for all
z. Let σH1 and σH2 be the partial gradients of σ(·, ·) seen as a function respectively of its first
and second vector argument only.

If σH1 u 6= 0 for z = z0, then the derivative u′ of u at z = z0 is given by

u′ =
σH1 (A− λI)#A′u− σH2 w′

σH1 u
u− (A− λI)#A′u.

Here X# denotes the so-called group inverse of a singular matrix X, i.e., the inverse of
X in the maximal multiplicative subgroup containing X. We refer the reader to [MS88] for
more details on group inverses.

In fact, very little is needed on group inverses, and the formula can be modified slightly
in order to replace it with the Moore–Penrose pseudoinverse X†, which is a more canonical
tool in matrix computations.

Theorem 4.3 ([MP10]). With the same hypotheses as Theorem 4.2, let v(z) be the left
eigenvector of A(z) corresponding to the eigenvalue λ(z). If σH1 u 6= 0 for z = z0, then the
derivative u′ of u at z = z0 is given by

u′ =
σH1 (A− λI)†(A′ − λ′I)u− σH2 w′

σH1 u
u− (A− λI)†(A′ − λ′I)u, (4.7)

with λ′ = vHA′u
vHu

.

Proof. The proof is a minor modification of the original proof [MS88] of Theorem 4.2. By
differentiating the identity Au = λu we get A′u+Au′ = λ′u+ λu′, i.e.,

(A− λI)u′ = −(A′ − λ′I)u. (4.8)



Chapter 4. A Perron vector iteration for QVEs 31

By left-multiplying everything by vH , and noting that vHA = λvH , we get the required
expression for the eigenvalue derivative λ′. Moreover, since u is a simple eigenvector at
z = z0, the kernel of (A − λI) is span(u). Thus from (4.8) we can determine u′ up to a
scalar multiple of u:

u′ = −(A− λI)†(A′ − λ′I)u+ δu. (4.9)

We now use the normalization condition σ(u,w) = k to determine the value of δ. By
differentiating it, we get

σH1 (u,w)u′ + σH2 (u,w)w′ = 0. (4.10)

Plugging (4.9) into (4.10) yields a linear equation for δ.

Jacobian of the Perron iteration

The Perron iteration is a fixed-point iteration for the function F (y) := PV (Hy), where the
function u = PV (X) returns the Perron vector u of the nonnegative irreducible matrix X,
normalized such that wT (u − Huu) = 0, where w is a fixed positive vector. We can use
Theorem 4.3 to compute the Jacobian of this map F .

Theorem 4.4 ([MP10]). Let y be such that Hy is nonnegative and irreducible. Let u = F (y),
and let v be such that vTHy = λvT , where λ = ρ(Hy). Then the Jacobian of the map F at
y is

JFy =

(
I − uσT1

σT1 u

)
(Hy − λI)†

(
I − uvT

vTu

)
b(·, u) (4.11)

where
σT1 = wT (I − b(e− u, ·)− b(·, e− u)).

Proof. We compute first the directional derivative of F at y along the direction a. To this
purpose, let us set y(z) := y + az, for any z ∈ C, and A(z) = Hy. We have

A′(z) =
d

dz
Hy = −b(a, ·).

Moreover, set
σ(u,w) = wT (u− b(e, u)− b(u, e) + b(u, u)),

where w(z) = w for each z (so that w′ = 0). The partial gradient of σ(·, ·) with respect to
the first argument is σT1 = wT (I − b(e− u, ·)− b(·, e− u)). Plugging everything into (4.7),
we get

u′ =
σT1 (A− λI)†(A′ − λ′I)u

σT1 u
u− (A− λI)†(A′ − λ′I)u

=−
(
I − uσT1

σT1 u

)
(A− λI)†

(
A′ − vTA′u

vTu
I

)
u

=−
(
I − uσT1

σT1 u

)
(A− λI)†

(
I − uvT

vTu

)
A′u

=−
(
I − uσT1

σT1 u

)
(A− λI)†

(
I − uvT

vTu

)
(−b(a, u))

=

(
I − uσT1

σT1 u

)
(A− λI)†

(
I − uvT

vTu

)
b(·, u)a.

From this expression for the directional derivative, it is immediate to recognize that the
Jacobian is (4.11).
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Local convergence of the iteration

The fixed-point iteration yk+1 = F (yk) is locally convergent in a neighborhood of y∗ if and
only if the spectral radius of JFy∗ is strictly smaller than 1. First notice that it makes
sense to compute the Jacobian using (4.11) in a neighborhood of the solution y∗. In fact,
σT1 y

∗ = wT (y∗−b(e−y∗, y∗)−b(y∗, e−y∗)) = wT b(y∗, y∗) and the latter quantity is positive
as w > 0 and b(y∗, y∗) 
 0, as stated in Section 4.2. Moreover, since λ = 1 is a simple
eigenvalue, the left and right eigenvectors v = v∗ and u = y∗ cannot be orthogonal.

By evaluating (4.11) at y = y∗, we get

JFy∗ =

(
I − y∗σ∗T1

wT b(y∗, y∗)

)
A†
(
I − y∗v∗T

v∗T y∗

)
b(·, y∗), (4.12)

where we have set σ∗T1 = wT (I − b(e− y∗, ·)− b(·, e− y∗)) and A = (b(e− y∗, ·) + b(·, e)− I).
Let us try to understand what happens to the spectral radius ρ(JFy∗) when the problem

is close to critical.

Theorem 4.5 ([MP10]). Let bt(·, ·), t ∈ [0, 1] be an analytical one-parameter family of
Markovian binary trees, which is supercritical for t ∈ [0, 1) and critical for t = 1, and let us
denote with an additional subscript t the quantities defined above for this family of problems.
Let us suppose that Rt := bt(e, ·) + bt(·, e) is irreducible for every t ∈ [0, 1], and let ρ(JFy∗t ,t)
be the spectral radius of the Jacobian of the Perron iteration as defined in (4.12). Then

lim
t→1

ρ(JFy∗t ,t) =

∣∣∣∣1− v̂T1 b1(ŷ1, ŷ1)

wT b1(ŷ1, ŷ1)

wT ŷ1
v̂T1 ŷ1

∣∣∣∣
where ŷ1 and v̂T1 are left and right Perron vectors of R1. As a special case, if the vector w
is a scalar multiple of v̂1, the limit is 0.

Proof. Let us define ŷt as the Perron vector of Hy∗t ,t
normalized so that ‖ŷt‖1 = 1, and

similarly v̂Tt as the left Perron vector of the same matrix, normalized so that ‖ŷt‖1 = 1.
Since Hy∗t ,t

is irreducible, its left and right Perron vectors are analytical functions of t, and
thus ŷt and v̂t converge to ŷ1 and v̂1 respectively. We have Hy∗1 ,1

= H0,1 = R1. Notice that

σ∗,T1,t → wT (I −R1), and that

A†t = (b(e− y∗, ·) + b(·, e)− I)† → (R1 − I)†.

Moreover, since ŷ1 and v̂1 span the right and left kernel of I −R1, we have

(I −R1)(I −R1)† = I − ŷ1v̂
T
1

v̂T1 ŷ1
.

Additionally, we make use of the relation ρ(AB) = ρ(BA), valid for any A and B such
that AB and BA are square matrices, in the first and second-to-last step of the following
computation.

Putting all together, we get

ρ(JFy∗t ,t) =ρ

((
I − y∗t σ

∗T
1,t

wT bt(y∗t , y
∗
t )

)
A†t

(
I − y∗t v

∗T
t

v∗Tt y∗t

)
bt(·, y∗t )

)

=ρ

((
bt(·, y∗t )− bt(y

∗
t , y
∗
t )σ∗T1,t

wT bt(y∗t , y
∗
t )

)
A†t

(
I − y∗t v

∗T
t

v∗Tt y∗t

))

=ρ

((
bt(·, y∗t )− bt(ŷt, ŷt)σ

∗T
1,t

wT bt(ŷt, ŷt)

)
A†t

(
I − ŷtv̂

T
t

v̂Tt ŷt

))
.
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Therefore, we obtain

lim
t→1

ρ(JFy∗t ,t) =ρ

(
−b1(ŷ1, ŷ1)wT (I −R1)

wT b1(ŷ1, ŷ1)
(R1 − I)†

(
I − ŷ1v̂

T
1

v̂T1 ŷ1

))
=ρ

(
b1(ŷ1, ŷ1)wT

wT b1(ŷ1, ŷ1)

(
I − ŷ1v̂

T
1

v̂T1 ŷ1

)2
)

=ρ

(
b1(ŷ1, ŷ1)wT

wT b1(ŷ1, ŷ1)

(
I − ŷ1v̂

T
1

v̂T1 ŷ1

))
=ρ

(
1

wT b1(ŷ1, ŷ1)
wT
(
I − ŷ1v̂

T
1

v̂T1 ŷ1

)
b1(ŷ1, ŷ1)

)
=

∣∣∣∣1− v̂T1 b1(ŷ1, ŷ1)

wT b1(ŷ1, ŷ1)

wT ŷ1
v̂T1 ŷ1

∣∣∣∣ .
For the normalization condition, the above result suggests taking w as the left Perron

vector of b(e, ·) + b(·, e). Indeed, this choice guarantees the local convergence of the Perron
iteration for close-to-critical problems. Moreover we point out that, even though the
convergence is linear, the speed of convergence increases as the MBT gets closer to critical;
in particular, the convergence is superlinear in the critical case.

4.6 Numerical experiments

We compared the Perron iteration (PI) with the Newton method (NM) [HLR08] and with the
thicknesses algorithm (TH) [HLR09]. As stated before, TH and PI are linearly convergent
algorithms, while NM is a quadratically convergent one. All the experiments were performed
using Matlab 7 (R14) on an Intel Xeon 2.80Ghz bi-processor.

We applied the algorithms to the two test cases reported in [HLR08]. The first one (E1)
is an MBT of size n = 9 depending on a parameter λ, which is critical for λ ≈ 0.85 and
supercritical for larger values of λ. The second one (E2) is a MBT of size n = 3 depending
on a parameter λ, which is critical for λ ≈ 0.34 and λ ≈ 0.84, and supercritical for the values
in this interval.

The only noteworthy issue in the implementation of PI is the method used for the
computation of the maximal eigenvector. The classical methods are usually optimized for
matrices of much larger size; however, here we deal with matrices of size n = 3 and n = 9,
for which the complexity constants matter. We compared several candidates (eigs, eig, the
power method, a power method accelerated by repeated squaring of the matrix), and found
that in our examples the fastest method to find the maximal eigenvector is computing the
full eigenvector basis with [V,Lambda]=eig(P) and then selecting the maximal eigenvector.
The picture should change for problems of larger size: eig takes O(n3) operations, while
for instance eigs should take only O(n2) in typical cases. On the other hand, we point out
that in absence of any structure (such as sparsity) in b(·, ·), forming the matrix b(v, ·) or
b(·, v) for a new vector v, an operation which is required at every step in all known iterative
algorithms, requires O(n3) operations. Therefore, the CPU times are somehow indicative of
the real complexity of the algorithms, but should be taken with a grain of salt.

The stopping criterion was chosen to be ‖x− a+ b(x, x)‖ ≤ nε, with ε = 10−13, for all
algorithms.

Table 4.1 shows the results for several choices of λ. The algorithm TH is clearly the
slowest, taking far more CPU time than the two competitors. The different behavior of
PI when approaching the critical cases is apparent: while the iterations for TH and NM
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Table 4.1: CPU time in seconds (and number of iterations in brackets) for TH, NM and PI

λ TH NM PI

0.86 2.39× 10+00 (11879) 5.09× 10−03 (14) 4.93× 10−03 (7)
0.9 6.54× 10−01 (3005) 4.29× 10−03 (12) 5.58× 10−03 (8)
1 2.80× 10−01 (1149) 3.90× 10−03 (11) 5.51× 10−03 (8)
2 9.26× 10−02 (191) 2.85× 10−03 (8) 5.51× 10−03 (8)

(a) E1, several choices of λ

λ TH NM PI

0.5 7.70× 10−02 (132) 2.33× 10−03 (8) 5.70× 10−03 (11)
0.7 7.65× 10−02 (135) 2.18× 10−03 (8) 5.61× 10−03 (11)
0.8 9.36× 10−02 (313) 2.45× 10−03 (9) 4.62× 10−03 (9)
0.84 7.31× 10−01 (4561) 4.00× 10−03 (13) 4.11× 10−03 (8)

(b) E2, several choices of λ

increase, PI seems to be unaffected by the near-singularity of the problem, and in fact the
iteration count decreases slightly.

To show further results on the comparison between NM and PI, we report a number of
graphs comparing the iteration count and CPU times of the two algorithms. The graphs
are not cut at the critical values, but they extend to subcritical cases as well. It is an
interesting point to note that when the MBT is subcritical, and thus the minimal solution
x∗ (extinction probability) is e, the two algorithms have a different behavior: NM (and TH
as well) converges to e, while PI skips this solution and converges to a different solution
x > e. This is because in the derivation of the Perron iteration we chose the solution α 6= 0
for the normalization equation, thus explicitly excluding the solution y = 0 (i.e., x = e).

Figure 4.1 shows a plot of the iteration count of the two methods vs. different values
of the parameter λ. While in close-to-critical cases the iteration count for NM has a spike,
the one for PI seems to decrease. However, the iteration count comparison is not fair since
the steps of the two iterations require a different machine time. Figure 4.2 shows a similar
plot, considering the CPU time instead of the iteration count. In order to achieve better
accuracy, the plotted times are averages over 100 consecutive runs.

The results now favor the Newton method in most experiments, but in close-to-critical
cases the new method achieves better performance. The results are very close to each other,
though, so it is to be expected that for larger input sizes or different implementations the
differences in the performance of the eigensolver could lead to significant changes in the
results.

In order to highlight the performance difference in close-to-critical cases, we report in
Figure 4.3 a plot with the CPU times sampled at a larger number of points around the most
“interesting” regions of the previous graphs.

The Jacobian (4.12) had spectral radius less than 1 in all the above experiments, a
condition which is needed to ensure the convergence of PI. However, this is not true for
all possible MBTs. In fact, by setting the parameter λ for E1 to much larger values, we
encountered problematic cases in which PI did not converge. Specifically, starting from
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Figure 4.1: Iteration count vs. parameter λ for E1 (top) and E2 (bottom)

λ ≈ 78 the Jacobian (4.12) is larger than 1 and PI does not converge. However, such
cases are of little practical interest since they are highly supercritical MBTs, distant from
the critical case, and thus they are easily solved with the traditional methods (NM or the
customary functional iterations [BKT08]) with a small number of iterations.

The problem E2 is well-posed only for 0 ≤ λ ≤ 1, otherwise negative entries appear in b,
thus the above discussion does not apply.

Along all the experiments reported above, all the matrices Hy appearing in the PI steps
always turned out to have positive entries, even in the subcritical problems; thus their Perron
vector and values were always well-defined and real.
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Figure 4.2: CPU time (in sec.) vs. parameter λ for E1 (top) and E2 (bottom)
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Figure 4.3: Detailed views from Figure 4.2: CPU time (in sec.) vs. parameter λ for E1 (top)
and E2 (middle and bottom)



38 I. Quadratic vector and matrix equations

4.7 Conclusions and research lines

We have proposed a new algorithm for solving the quadratic vector equation (1.1) arising in
the modeling of Markovian binary trees, based on a Perron iteration [MP10]. The algorithm
performs well, both in terms of speed of convergence and accuracy, for close-to-critical
problems where the classical methods are slower.

Along the framework that we have exposed, several different choices are possible in the
practical implementation of the new algorithm.

One of them is the choice of the bilinear form b(·, ·). Equation (4.2) and its solution
depend only on the quadratic form b(t, t); however, there are different ways to extend it to a
bilinear form b(s, t). This choice ultimately reflects a modeling aspect of the problem: when
an individual spawns, it is transformed into two individuals in different states, and we may
choose arbitrarily which of them is called the mother and which the child.

As an example of how this choice affects the solution algorithms, changing the bilinear
form may transform the depth algorithm into the order one and vice versa. The algorithms
we proposed depend on the actual choice of the bilinear extension of the quadratic form
b(t, t), and the convergence speed is affected by this decision.

A second choice is the normalization of the computed Perron vector: different approaches
may be attempted — for instance, minimization of the 1-norm, of the 2-norm, or orthogonality
of the residual of (4.3) with respect to a suitably chosen vector — although it is not clear
whether we can improve the results of the normalization presented here.

A third choice, crucial in the computational experiments, is the method used to compute
the Perron vector. For moderate sizes of the problem, it is cheaper to do a full eigendecom-
position of the matrix and extract the eigenvalue with maximum modulus, but for larger
problems it pays off to use different specific methods for its computation. All these variants
deserve to be better understood, and are now under our investigation.

It would be interesting to see if the assumption that one of the positive solutions to the
equation, (x = e) is known can be weakened. In the following chapters, several examples
of quadratic vector equations (1.1) appear in which only partial information is known on
the solution (e.g., an algebraic Riccati equation (1.5) in which we know that X∗e = e).
If the Perron vector iteration could be adapted to this case, then we would have a new
algorithm for many classes of quadratic equations, with a completely new behavior in the
close-to-critical case.
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Unilateral quadratic matrix equations

5.1 Applications

Unilateral quadratic matrix equations appear with positivity assumptions in the context
of discrete-time queuing problems [BLM05]. A QBD process is a random process on the
two-dimensional state space N× {1, 2, . . . , n′} for some finite n′. In a state (k, ϕ), the first
coordinate k (called the level) represents the number of client in the queue, and the second
the state of an outer Markov chain governing the environment space. We assume that
transitions are allowed only from level k to the levels k − 1, k, k + 1, i.e., no more than one
client can join or leave the queue at any given time, and that the arrival and departure
process is independent of the length k of the queue. The (semi-infinite) transition matrix is
given by 

C +B′ A
C B′ A

C B′ A

C B′
. . .

. . .
. . .

 ,

where A,B′, C ∈ Rn′×n′+ . For this to be a Markov process, (A+B′ + C)e = e is assumed.
We define Gi,j as the probability of first passage from a state (k + 1, i) to (k, j), where the
latter is the first reached state in level k. Then, one sees that the matrix G is the minimal
nonnegative solution to (1.2) and is either substochastic or stochastic.

Using the existence of this solution and other probabilistic techniques, one can prove the
following result.

Theorem 5.1 ([BLM05]). If assumptions (1.3) hold for equation (1.2), then we are in one
of the following cases.

transient case the d-stable subspace has dimension n′, the d-unstable subspace has dimen-
sion n′ − 1, and there is a simple eigenvalue in 1.

positive recurrent case the d-stable subspace has dimension n′−1, the d-unstable subspace
has dimension n′, and there is a simple eigenvalue in 1.

null recurrent (critical) case the d-stable and d-unstable subspace have both dimension
n′ − r, and there are r Jordan chains of length 2 at the r-th roots of unity.

Moreover, in all cases, the eigenvector relative to 1 is e.

39
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It can be proved that this nomenclature is consistent with the common definitions of
transient and recurrent Markov chains. The three cases can be described in probabilistic
terms using the so-called drift of the associated queuing problem [BLM05].

In all three cases a splitting is present; it is proper in the first two, and partial in the
third. In all cases, G spans the canonical semi-stable subspace. In particular, in the positive
and null recurrent cases, G has a simple eigenvalue 1.

5.2 Overview of logarithmic and cyclic reduction

Cyclic and logarithmic reduction [BLM05] are two closely related methods for solving (1.2),
which have quadratic convergence and a lower computational cost than Newton’s method.
Both are based on specific properties of the problem, and thus cannot be extended in a
straightforward way to other quadratic vector equations.

Logarithmic reduction (LR) [LR93] is based on the fact that if X solves

X = AX2 + C,

then it can be shown with algebraic manipulations that Y = X2 solves the equation

Y = (I −AC − CA)−1C2 + (I −AC − CA)−1A2Y 2, (5.1)

with the same structure. Therefore we may start from an approximation X1 = C to the
solution and refine it at each step with a term AY , where Y is (an approximation to) the
solution of (5.1). Such an approximation is computed with the same method, and refined
successively by applying the same method recursively. The resulting algorithm is reported
here as Algorithm 3

Algorithm 3: Logarithmic reduction for E4 [BLM05]

input: A, B, C
output: the minimal solution X to AX2 +BX + C = 0
A0 ← −B−1A
C0 ← −B−1C
X0 ← C0

U0 ← A1

k ← 0
while stopping criterion is not satisfied do
Ck+1 ← (I −AkCk − CkAk)−1C2

k

Ak+1 ← (I −AkCk − CkAk)−1A2
k

Xk+1 ← Xk + UkCk+1

Uk+1 ← UkAk+1

k ← k + 1
end while
return Xk

An alternative interpretation of LR [BLM05] arises by defining the matrix-valued function
f : C→ Cn′×n′ as f(z) = A− z + Cz2 and applying the Graeffe iteration f 7→ f(z)f(−z),
which yields a quadratic polynomial in z2 with the same roots of f(z) plus some additional
ones. The derivation and convergence of logarithmic reduction can be derived based on a
probabilistic interpretation of the iterates [BLM05].
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Cyclic reduction (CR) is a similar algorithm, which is connected to LR by simple
algebraic relations (see [BLM05, Theorem 7.5] for more detail). It was originally introduced
by Hockney, Buzbee, Golub, Nielson [BGN70, Hoc65] for the Poisson equation over the
rectangle, and later adapted to solving matrix equations by Bini and Meini [BM96, BLM05].
Its original derivation is based on performing a block Gaussian elimination on a suitable
infinite block tridiagonal matrix [BGN70, BLM05]. We present here essentially the same
derivation, but translated in a language that is more suitable to our exposition.

The idea is again trying to build a UQME for Y = X2, but without normalizing the
equation before so that the degree-1 term is the identity matrix. We start from the three
relations 

A+BX + CX2 = 0,

AX +BX2 + CX3 = 0,

AX2 +BX3 + CX4 = 0,

(5.2)

which are obtained by multiplying the original equation (1.2) by X and X2 on the right. We
do some manipulations to simplify the terms containing odd powers of X: from the second
equation, we subtract the first multiplied by AB−1 and the third multiplied by CB−1 on
the left. Thus we get

−AB−1A+ (B −AB−1C − CB−1A)Y − CB−1CY 2 = 0,

which is again in the same form as (1.2), suitable for recursion. The solution can be
obtained by accumulating the current estimates of X, i.e., by approximating in each equation
X ≈ −B−1A and using a similar estimate of Y = X2 to refine it. However, a different
approach is followed usually, based on computing and updating a fourth matrix B̂ according
to B̂ ← B̂ − CB−1A and using it to reconstruct the solution. We report the resulting
algorithm as Algorithm 4.

Algorithm 4: Cyclic reduction for E4 [BLM05]

input: A, B, C
output: the minimal solution X to AX2 +BX + C = 0
C0 ← C
A0 ← A
B0 ← B
B̂0 ← B
k ← 0
while stopping criterion is not satisfied do
Ak+1 ← −AkB−1k Ak
Bk+1 ← Bk −AkB−1k Ck − CkB−1k Ak
B̂k+1 ← B̂k − CkB−1k Ak
Ck+1 ← −CkB−1k Ck
k ← k + 1

end while
return −B̂−1k A0

Notice that both algorithms may break down if the matrices to invert (that is, (I −
AkCk − CkAk) or Bk respectively), are singular.

A proof of the convergence of −B̂−1k A0 to the minimal solution X∗ can be derived based
on arguments similar to those used to derive the CR step, and can be found in [BLM05].
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Several results [BM96, BGM02, BLM05] provide necessary and sufficient conditions for the
applicability of CR. We report some of the known convergence and applicability results that
are needed later on.

Theorem 5.2 ([BLM05]). If assumptions (1.3) hold, then in Algorithm 4, Ak, Ck ∈ Rn
′×n′

+ ,

while −Bk and −B̂k are nonsingular M-matrices for each k. Thus the algorithm is well-
defined.

Theorem 5.3 ([BLM05]). Let A,B,C ∈ Rn′×n′ , and consider the eigenvalues λ1, . . . , λ2n′

of the matrix polynomial

s2A+ sB + C. (5.3)

ordered by nondecreasing modulus. Suppose that λn′ ≤ 1 ≤ λn′+1, where at least one of the
inequalities is strict (non-null recurrent case). Moreover, suppose that there is a solution X
with ρ(X) ≤ λn′ and that Algorithm 4 can be carried on with no breakdown.

Then, −B̂−1k A0 converges to the minimal solution X∗ quadratically with rate equal to
the dominance factor ν = |λn′ | / |λn′+1|.

Theorem 5.4 ([CCG+09]). Suppose cyclic reduction (Algorithm 4) is applied to the null

recurrent case of (1.2) with assumptions (1.3). Then, −B̂−1k A0 converges to the minimal
solution X∗ linearly with rate 1/2.

Theorem 5.5 ([BLM05]). The function ϕ(s) = As+B + Cs−1 is analytic and invertible
for |λn′ | < |s| < |λn′+1|. If in addition there exists a solution to the equation

CX2 +BX +A = 0 (5.4)

with spectral radius |λn′+1|, then the constant coefficient ψ0 of

ψ(s) =

+∞∑
i=−∞

siψi = ϕ(s)−1 (5.5)

is nonsingular and

lim
k
Bk =ψ−10 ,

∥∥Bk − ψ−10

∥∥ = O
(
ν2

k
)
.

We recall that the assumption on the existence of a solution X∗ such that ρ(X∗) = |λn′ |
is generally satisfied in most applications [BIMP10, BM09]. The computational cost of the

CR iteration amounts to 6 matrix products and one LU factorization per step, that is, 38
3 n
′3

ops per step.
Another useful formulation of the cyclic reduction is the functional formulation [BLM05].

Let

ϕk(s) := s−1Ck +Bk + sAk,

and ψk(s) = ϕk(s)−1, defined for all z for which ϕk(s) is nonsingular. Then the CR iteration
can be seen as

ψk+1(s2) =
1

2
(ψk(s) + ψk(−s)), k =0, 1, . . . . (5.6)
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5.3 Generalization attempts

In this section, we attempt to produce algorithms similar to LR and CR for a generic
quadratic vector equation. Notice that we cannot look for an equation in X2 in our vector
setting, since x2 for a vector x has not a clear definition — using e.g. the Hadamard
(componentwise) product does not lead to a simple equation. Nevertheless, we may try to
find an equation in b(x, x), which is the only quadratic expression that makes sense in our
context.

We look for an expression similar to the Graeffe iteration. If x solves 0 = F (x) =
Mx − a − b(x, x), then it also solves b(F (x), F (−x)) + b(F (−x), F (x)) = 0 (notice that a
symmetrization is needed), that is,

b(x−M−1a−M−1b(x, x), x+M−1a+M−1b(x, x))+

b(x+M−1a+M−1b(x, x), x−M−1a−M−1b(x, x)) = 0.

If we set v1 = M−1b(x, x) and exploit the bilinearity of b(·, ·), the above equation reduces to

− b(M−1a,M−1a) +
(
M − b(M−1a, ·)− b(·,M−1a)

)
v1 − b(v1, v1) = 0, (5.7)

which is suitable to applying the same process again. A first approximation to x is given by
M−1a; if we manage to solve (even approximately) (5.7), this approximation can be refined
as x = M−1a+ v1. We may apply this process recursively, getting an algorithm similar to
logarithmic reduction. The algorithm is reported here as Algorithm 5. It is surprising to

Algorithm 5: A cyclic reduction-like formulation of Newton’s method for a quadratic
vector equation

input: a, M , b defining a quadratic vector equation (1.1)
output: its minimal solution x∗

x← 0, M̃ ←M , ã← a
while stopping criterion is not satisfied do
w ← M̃−1ã
x← x+ w
ã← b(w,w)
M̃ ← M̃ − b(w, ·)− b(·, w)

end while
return x

see that this algorithm turns out to be equivalent to Newton’s method. In fact, it is easy to
prove by induction the following proposition.

Theorem 5.6 ([Pol10b]). Let xk be the iterates of Newton’s method on (1.1) starting from
x0 = 0. At the kth iteration of the while cycle in Algorithm 5, it holds x = xk, w = xk+1−xk,
M̃ = F ′xk , ã = −F (xk).

The modified Newton method discussed in Section 3.7 can also be expressed in a form
that looks very similar to LR/CR. We may express all the computations of step k + 1 in
terms of R−1xk b and R−1xk a only: in fact,

Rxk+1
= Rxk − b(·, xk+1 − xk) = Rxk

(
I −R−1xk b(·, xk+1 − xk)

)
,
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and thus
R−1xk+1

Rxk =
(
I −R−1xk b(·, xk+1 − xk)

)−1
.

The resulting algorithm is reported here as Algorithm 6.

Algorithm 6: A cyclic reduction-like formulation of the modified Newton method for
a quadratic vector equation

input: a, M , b defining a quadratic vector equation (1.1)
output: its minimal solution x∗

x← 0, ã← a, b̃← b, w̃ ← 0
while stopping criterion is not satisfied do
ã← (I − b̃(·, w))−1ã
b̃← (I − b̃(·, w))−1b̃
w ← (I − b̃(ã, ·))−1(ã− x)
x← x+ w

end while
return x

The similarities between the two Newton formulations and LR are apparent. In all of
them, only two variables (B−1 and B1, ã and M̃ , ã and b̃) are stored and used to carry on
the successive steps, and some extra computations and variables are needed to extract the
approximation of the solution (X, x) which is refined at each step with a new additive term.

It is a natural question whether there are algebraic relations among LR and Newton
methods, or if LR can be interpreted as an inexact Newton method (see e.g. Ortega
and Rheinboldt [OR00]), thus providing an alternative proof of its quadratic convergence.
However, we were not able to find an explicit relation among the two classes of methods.
This is mainly due to the fact that the LR and CR methods are based upon the squaring
X 7→ X2, which we have no means to translate in our vector setting. To this regard we point
out that we cannot invert the matrix C, since in many applications it is strongly singular.



Chapter 6

Nonsymmetric algebraic Riccati equations

The research activity concerning the analysis of nonsymmetric algebraic Riccati equations
associated with M-matrices and the design of numerical algorithms for their solution has had
a strong acceleration in the last decade. Important progresses have been obtained concerning
theoretical properties of this class of matrix equations and new effective algorithms relying
on the properties of M-matrices have been designed and analyzed [BOT05, BMP10b, BIP08,
BILM06, FG06, Guo01, Guo02, Guo06, GH06, GIM07, GL00, HCL05, JL99, LX06, Lu05a,
Lu05b].

6.1 Applications

There are two applications where nonsymmetric algebraic Riccati equations (1.5) play an
important role: the study of fluid queues models [Rog94, Ram99, Wil82], and the analysis
of a neutron transport equation [JL99, Jua01]. In both cases the solution of interest is the
minimal nonnegative one.

Application to fluid queues

In the analysis of two dimensional continuous-time Markov processes, called fluid queues,
a crucial step is to compute the element-wise minimal nonnegative solution S of the
NARE (1.5). In [Asm95, Ram99, Rog94, dSSL02, AR04, BOT05], the fluid flow models
are described in terms of a two-dimensional continuous-time Markov process denoted by
{(X(t), ϕ(t)) : t ≥ 0} where X(t) represents the level, while ϕ(t) represents the phase.
The phase process {ϕ(t) : t ≥ 0} is an irreducible Markov chain with space state S1 ∪ S2,
S1 = {1, 2, . . . ,m}, S2 = {m+ 1,m+ 2, . . . ,m+ n}, and infinitesimal generator given by a
matrix in the form (1.6). The minimal nonnegative solution S = (si,j) of (1.5) is such that
si,j is the probability that, starting from level x in phase i ∈ S2, the process (X(t), ϕ(t))
first returns to level x in finite time and does so in phase j ∈ S1, while avoiding levels below
x. A detailed description of this kind of models can be found in [Ram99].

Application to transport equation

Riccati equations associated with M-matrices also appear in a problem in neutron transport
theory, a variation of the one-group neutron transport equation, described in [JL99]. The
mathematical model consists in solving an integrodifferential equation; after discretization of
this integrodifferential equation, the problem can be expressed as the nonsymmetric algebraic

45
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Riccati equation (1.5) with coefficients (1.10). The resulting M is a diagonal-plus-rank-1
M-matrix. Due to this additional structure, ad-hoc algorithms can be developed; this is the
main subject of Part II.

6.2 Theoretical properties

The properties of (1.5) have been studied, among other papers, in [FG06, Guo01, Guo02,
GIM07]; we summarize some of their results. The given results hold for algebraic Riccati
equations for which M is a nonsingular or singular irreducible M-matrix. The case in which
M is singular and reducible is of minor interest.

The dual equation

The dual equation of a NARE (1.5) is defined as

Y BY − Y A−DY + C = 0. (6.1)

It is the NARE associated with the M-matrix

M̃ =

[
A −B
−C D

]
= ΠMΠ, Π =

[
0 I
I 0

]
which is nonsingular or irreducible singular if and only if M is so. For the Perron vector
v > 0 of M it holds Mv ≥ 0, thus M̃Πv > 0 and by Theorem 2.3 this implies that the
Z-matrix M̃ is an M-matrix.

Existence of nonnegative solutions

The existence of a minimal nonnegative solution for (1.5) follows from the results of Sec-
tion 3.4; we call this solution S. Observe that the result holds also for the dual equation
(6.1), whose minimal solution we denote by T .

The eigenvalue problem associated with the matrix equation

A useful technique frequently encountered in the theory of matrix equations consists in
relating the solutions to some invariant subspace of a matrix polynomial.

The solutions of (1.5) can be described in terms of the invariant subspaces of the matrix
H in (1.8), according to (1.7). Moreover, for each solution X, the eigenvalues R := D−CX
are a subset of the eigenvalues of H. Conversely, if the columns of[

U1

U2

]
, with U1 ∈ Rn×n, U2 ∈ Rm×n, (6.2)

span an invariant subspace of H and U1 is nonsingular, then U2U
−1
1 is a solution of the

Riccati equation [LR95].
Similarly, for the solutions of the dual equation we have

H
[
Y
Im

]
=

[
Y
Im

]
(BY −A),

and the eigenvalues of BY −A are a subset of those of H.
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Theorem 6.1 ([BIMP10]). Let M be an irreducible M-matrix. Then the eigenvalues of H
have an (m,n) c-splitting. Moreover, the only c-critical eigenvalue that H may have is a
simple 0 eigenvalue.

Proof. Let v > 0 be the Perron vector of M, and let λ ≥ 0 be its Perron value; define
Dv = diag(v). The matrix M = D−1v MDv has the same eigenvalues as M; moreover, it is
an M-matrix such that Me = λe. Due to the sign structure of M-matrices, this means that
M is diagonal dominant (strictly in the nonsingular case). Notice that

H = D−1v HDv = KM,

thus H is diagonal dominant as well, with m negative and n positive diagonal entries. We
apply Gershgorin’s theorem [Hog07, Section 14-5] to H; due to the diagonal dominance, the
Gershgorin circles never cross the imaginary axis (in the singular case, they are tangent in
0). Thus, by using a continuity argument we can say that m eigenvalues of H lie in the
negative half-plane and n in the positive one, and the only eigenvalues on the imaginary
axis are the zero ones. But since H and H are similar, they have the same eigenvalues.

If H = KM has a zero eigenvalue with right eigenvector u, then u is an eigenvector for
M as well. It must be the Perron vector, with eigenvalue 0. Therefore it is simple.

We can give a more precise result on the location of the eigenvalues of H, after defining
the drift of the Riccati equation [BOT05]. When M is a singular irreducible M-matrix, by
the Perron–Frobenius theorem, the eigenvalue 0 is simple, there are positive vectors u and v
such that

uTM = 0, Mv = 0, (6.3)

and both the vectors u and v are unique up to a scalar factor.
In fluid queues problems, v coincides with the vector of ones. In general v and u can be

computed by performing the LU factorization of the matrix M, say M = LU , and solving
the two triangular linear systems uTL = [0, . . . , 0, 1] and Uv = 0 (see [Hog07, Sec. 54-12]).

Using the technique of Theorem 6.1, we may apply a positive diagonal scaling to M to
impose that the right eigenvalue v is e; therefore, in the theoretical analysis we may assume
without loss of generality v = e when needed.

We consider the quantity

µ = uT2 v2 − uT1 v1 = −uTKv, with u =

[
u1
u2

]
, v =

[
v1
v2

]
, (6.4)

where u1, v1 ∈ Rn and u2, v2 ∈ Rm. The number µ is called drift and determines some
spectral properties of the Riccati equation, in a result similar to Theorem 5.1.

Theorem 6.2 ([Guo01, Guo06]). If M is a nonsingular M-matrix, then we are in the
following case.

nonsingular case the c-stable space has dimension m and the c-unstable subspace has
dimension n, and there are no c-critical eigenvalues.

If M is a singular irreducible M-matrix, then we are in one of the following cases.

transient case if µ > 0, the c-stable subspace has dimension m, the c-unstable subspace
has dimension n− 1, and there is a simple eigenvalue in 0.
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positive recurrent case if µ < 0, the c-stable subspace has dimension m−1, the d-unstable
subspace has dimension n, and there is a simple eigenvalue in 0.

null recurrent (critical) case if µ = 0, the c-stable space has dimension m − r, the c-
unstable subspace has dimension n− r, and there are r Jordan chains of length 2 at
the r-th roots of unity.

The close to null recurrent case, i.e., the case µ ≈ 0, deserves a particular attention,
since it corresponds to an ill-conditioned null eigenvalue for the matrix H. In fact, if u and
v are normalized such that ‖u‖2 = ‖v‖2 = 1, then 1/|µ| is the condition number of the null
eigenvalue for the matrix H (see [GVL96]).

When M is singular irreducible, for the Perron–Frobenius Theorem the eigenvalue 0 is
simple, therefore H has a one dimensional kernel, too, and uTK and v are the unique (up to
a scalar constant) left and right eigenvectors, respectively, corresponding to the eigenvalue 0.
However the algebraic multiplicity of 0 as an eigenvalue of H can be 2; in that case, the
Jordan form of H has a 2× 2 Jordan block corresponding to the 0 eigenvalue and it holds
uTKv = 0 [HSC06].

The relationship between the eigenvalues of H and the minimal solution is precised in
the following theorem.

Theorem 6.3 ([Guo01, Guo06]). LetM be a nonsingular or a singular irreducible M-matrix,
and let λ1, . . . , λm+n be the eigenvalues of H ordered by nonincreasing real part. Then,

1. the eigenvalues λn and λn+1 are real and

<(λn+m) ≤ · · · ≤ <(λn+2) < λn+1 ≤ 0 ≤ λn < <(λn−1) ≤ · · · ≤ <(λ1). (6.5)

2. The minimal nonnegative solutions S of (1.5) and T of the dual equation (6.1) are
such that D − CS, A− SC, A−BT , D − TB are M-matrices

3. σ(D−CS) = σ(D−TB) = {λ1, . . . , λn} and σ(A−SC) = σ(A−BT ) = {−λn+1, . . . ,−λn+m}.
4. If the equation is

• nonsingular, then λn+1 < 0 < λn.

• transient, then λn > 0 and λn+1 = 0.

• positive recurrent, then λn = 0 and λn+1 < 0;

• null recurrent, then λn = λn+1 = 0 and there is a Jordan chain of length 2
relative to the eigenvalue 0;

We call λn and λn+1 the central eigenvalues of H. If H (and thus M) is nonsingular,
then the central eigenvalues lie on two different half planes, so the splitting is proper. In
this case, D − CS and A− SC are c-unstable matrices, thus in view of (1.7) the matrices[

In
S

] [
T
Im

]
(6.6)

span respectively the unstable and stable subspaces of H. By comparing Theorem 6.3 with
our definition of canonical semi-stable and semi-unstable subspaces, we see that in the case
in which M is singular, they span respectively the canonical semi-stable and semi-unstable
subspaces.

The next result, presented in [GIM07], shows how we can reduce the case µ < 0 to the
case µ > 0 and conversely. This property enables us to restrict our interest only to the case
µ ≤ 0.
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Lemma 6.4 ([GIM07]). The matrix S is the minimal nonnegative solution of (1.5) if and
only if Z = ST is the minimal nonnegative solution of the equation

XCTX −XAT −DTX +BT = 0. (6.7)

WhenM is singular and irreducible, (1.5) is transient if and only if (6.7) is positive recurrent.

Proof. The first part is easily shown by transposing both sides of (1.5). The M-matrix
corresponding to (6.7) is

Mt =

[
AT −CT
−BT DT

]
.

Since the left and right Perron vectors of Mt are given by[
vT2 vT1

]
Mt =0, Mt

[
u2
u1

]
=0,

the second part follows.

Theorem 6.5 ([Guo01, Guo02, GH06]). Let M be singular and irreducible, and let S and
T be the minimal nonnegative solutions of (1.5) and (6.1), respectively. Then the following
properties hold:

(a) if µ < 0, then Sv1 = v2 and Tv2 < v1;

(b) if µ = 0, then Sv1 = v2 and Tv2 = v1;

(c) if µ > 0, then Sv1 < v2 and Tv2 = v1.

Remark 6.6. When µ ≥ 0, from Lemma 6.4 and Theorem 6.5 we deduce that the minimal
nonnegative solution S of (1.5) is such that uT2 S = uT1 .

The Fréchet derivative of the Riccati operator

We define the Riccati operator R(X) and the operator associated with the dual equation
(6.1) as

R(X) :=XCX −AX −XD +B,

D(Y ) :=Y BY −DY − Y A+ C,
(6.8)

where X and Y T are m× n matrices.
The Fréchet derivative R′ is given by

R′X(W ) = WCX +XCW −AW −WD. (6.9)

The Fréchet derivative W → R′X(W ) is a linear operator which can be represented by the
matrix

∆X = (CX −D)T ⊗ Im + In ⊗ (XC −A). (6.10)

We say that a solution X of the matrix equation (1.5) is critical if the matrix ∆X is
singular.

From the properties of Kronecker product [Hog07, Sec. 10.4], it follows that the eigen-
values of ∆X are the sums of those of CX − D and XC − A. If X = S, where S is the
minimal nonnegative solution, then D − CS and A− SC are M-matrices by Theorem 6.3,
and thus all the eigenvalues of ∆S have nonpositive real parts. Moreover, since D−CS and
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A− SC are M-matrices then −∆S is an M-matrix. The minimal nonnegative solution S is
critical if and only if both M-matrices D − CS and A− SC are singular, thus only in the
null recurrent case.

Moreover, if 0 ≤ X ≤ S then D−CX > D−CS and A−XC ≥ A−SC are nonsingular
M-matrices by Lemma 2.3, thus −∆X is a nonsingular M-matrix.

The number of positive solutions

We know from Section 3.4 that there is a minimal nonnegative solution S of the NARE.
In [FG06], it is shown that if M is nonsingular or singular irreducible with µ 6= 0, then

there exists a second solution S+ such that S+ > S and S+ is obtained by a rank one
correction of the matrix S. More precisely, the following result holds [FG06].

Theorem 6.7 ([FG06]). If M is irreducible nonsingular or irreducible singular with µ 6= 0,
then there exists a second positive solution S+ of (1.5) given by

S+ = S + kabT ,

where k = (λn − λn+1)/bTCa, a is such that (A − SC)a = −λn+1a and b is such that
bT (D − CS) = λnb

T .

We prove that there are exactly two nonnegative solutions in the noncritical case and
only one in the critical case. In order to prove this result it is useful to study the form of
the Jordan chains of an invariant subspace of H corresponding to a positive solution.

Lemma 6.8. Let M be irreducible and let Σ be any positive solution of (1.5). Denote by
η1, . . . , ηn the eigenvalues of D − CΣ ordered by nondecreasing real part. Then η1 is real,
and there exists a positive eigenvector v of H associated with η1. Moreover, any other vector
independent of v, belonging to Jordan chains of H corresponding to η1, . . . , ηn cannot be
positive or negative.

Proof. Since Σ is a solution of (1.5), then one has

H
[
I
Σ

]
=

[
I
Σ

]
(D − CΣ).

Since D − CS is an irreducible M-matrix by Theorem 6.3, and Σ ≥ S (S is the minimal
positive solution), then D−CΣ is an irreducible Z-matrix and thus can be written as sI−N
with N nonnegative and irreducible. Then by Theorem 2.1 and Corollary 2.2 η1 is a simple
real eigenvalue of D − CΣ, the corresponding eigenvector can be chosen positive and there
are no other positive or negative eigenvectors or Jordan chains corresponding to any of the
eigenvalues. Let P−1(D − CΣ)P = K be the Jordan canonical form of D − CΣ, where the
first column of P is the positive eigenvector corresponding to η1. Then we have

H
[
P

ΣP

]
=

[
P

ΣP

]
K.

Thus, the columns of

[
P

ΣP

]
are the Jordan chains of H corresponding to η1, . . . , ηn, and

there are no positive or negative columns, except for the first one.

Theorem 6.9 ([BIMP10]). Let M be irreducible. Equation (1.5) has a unique positive
solution in the null recurrent case, and exactly two positive solutions otherwise.
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Proof. From Lemma 6.8 applied to S it follows that H has a positive eigenvector correspond-
ing to λn, and no other positive or negative eigenvectors or Jordan chains corresponding to
λ1, . . . , λn. Let T be the minimal nonnegative solution of the dual equation (6.1). Then

H
[
T
I

]
=

[
T
I

]
(−(A−BT )).

As in the proof of Lemma 6.8, we can prove that H has a positive eigenvector corresponding
to the eigenvalue λn+1 and no other positive or negative eigenvectors or Jordan chains
corresponding to λn+1, . . . , λn+m.

If the equation is not null recurrent, then λn > λn+1, and there are only two linearly
independent positive eigenvectors corresponding to real eigenvalues. By Lemma 6.8, there
can be at most two solutions corresponding to λn, λn−1, . . . , λ1, and to λn+1, λn−1, . . . , λ1,
respectively. Since it is know from Theorem 6.7 that there exist at least two positive solutions,
thus (1.5) has exactly two positive solutions.

If the NARE is null recurrent, there is only one positive eigenvector corresponding to
λn = λn+1, and the unique solution of (1.5) is obtained by the Jordan chains corresponding
to λn, λn−1, . . . , λ1.

Perturbation analysis for the minimal solution

We conclude this section with a result of Guo and Higham [GH06] who perform a qualitative
description of the perturbation of the minimal nonnegative solution S of a NARE (1.5)
associated with an M-matrix.

The result is split in two theorems where an M-matrix M̃ is considered which is obtained
by means of a perturbation of M . Here, we denote by S̃ the minimal nonnegative solution
of the perturbed Riccati equation associated with M̃.

Theorem 6.10 ([GH07]). If (1.5) is not null recurrent, then there exist constants γ > 0

and ε > 0 such that ‖S̃ − S‖ ≤ γ‖M̃ −M‖ for all M̃ with ‖M̃ −M‖ < ε.

Theorem 6.11 ([GH07]). If (1.5) is null recurrent, then there exist constants γ > 0 and
ε > 0 such that

1. ‖S̃ − S‖ ≤ γ‖M̃ −M‖1/2 for all M̃ with ‖M̃ −M‖ < ε;

2. ‖S̃ − S‖ ≤ γ‖M̃ −M‖ for all singular M̃ with ‖M̃ −M‖ < ε.

Therefore, when µ = 0 or if µ ≈ 0, one should expect poor numerical performance even if
the algorithm used for approximating S is backward stable. The rounding errors introduced
to represent the input values of M in the floating point representation with precision ε may
generate an error of the order

√
ε in the solution S. A solution to this problem for the null

recurrent case is described in [GIM07].

6.3 Schur method

In the following, we give a brief introduction to several numerical methods for computing
the minimal nonnegative solution of a NARE (1.5) associated with an M-matrix. Other
numerical algorithms are introduced later in Chapter 7.

Here we consider the case where M is nonsingular or is singular, irreducible and µ ≤ 0.
The case µ > 0 can be reduced to the case µ < 0 by means of Lemma 6.4.
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A classical approach for solving equation (1.5) is to use the (ordered) Schur decomposition
of the matrix H to compute the invariant subspace corresponding to the minimal solution S.
This approach for the symmetric algebraic Riccati equation was first presented by Laub in
1979 [Lau79]. Concerning the NARE, a study of this method in the singular and critical
case was done by Guo [Guo06] who presented a modified Schur method for the critical or
near critical case (µ ≈ 0).

As explained in Section 6.2, finding the minimal solution S of (1.5) is equivalent to
finding a basis of the c-semi-unstable invariant subspace of H relative to the eigenvalues of
D − CS.

A method for finding an invariant subspace is obtained by computing a semi-ordered
Schur form of H, that is, computing an orthogonal matrix Q and a quasi upper-triangular
matrix T such that Q∗HQ = T , where T is block upper triangular with diagonal blocks Ti,i
of size at most 2. The semi-ordering means that if Ti,i, Tj,j and Tk,k are diagonal blocks
having eigenvalues with positive, null and negative real parts, respectively, then i < j < k.

A semi-ordered Schur form can be computed in two steps:

• Compute a real Schur form of H by the customary Hessenberg reduction followed by
the application of the QR algorithm as described in [GVL96].

• Swap the diagonal blocks by means of orthogonal transformations as described in
[BD93].

The minimal solution of the NARE can then be obtained from the first n columns of the
matrix Q: if we partition them as in (6.2), then S = U2U

−1
1 .

In the critical case this method does not work, since there is no way to choose an invariant
subspace relative to the first n eigenvalues; moreover in the near critical case where µ ≈ 0,
there is lack of accuracy since the 0 eigenvalue is ill-conditioned. However, the modified
Schur method given by C.-H. Guo [GH06] overcomes these problems.

The cost of this algorithm is 200n3 ops for computing the Schur form, plus the cost for
the reordering, which may vary depending on how many blocks need to be reordered in the
Schur form [Guo06].

6.4 Functional iterations and Newton’s method

Functional iterations and Newton’s method may be performed according to the framework
introduced in Chapter 3.

Fixed-point iterations may be implemented based on suitable splittings of A and D, that
is A = A1 − A2 and D = D1 −D2, with A1, D1 chosen to be M-matrices and A2, D2 ≥ 0.
The form of the iterations is then

A1Xk+1 +Xk+1D1 = XkCXk +XkD2 +A2Xk +B, (6.11)

and at each step a Sylvester equation of the form M1X +XM2 = N must be solved.
Some possible choices for the splitting are:

1. A1 and D1 are the diagonal parts of A and D, respectively;

2. A1 is the lower triangular part of A and D1 the upper triangular part of D;

3. A1 = A and D1 = D.
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The solution Xk+1 of the Sylvester equation can be computed, for instance, by using the
Bartels and Stewart method [BS72], as in Matlab’s sylvsol function of the Nick Higham
Matrix Function toolbox [Higb].

The cost of this computation is about 60n3 ops including the computation of the Schur
form of the coefficients A1 and D1 [Hig08].

However, observe that for the first splitting, A1 and D1 are diagonal matrices and the
Sylvester equation can be solved with O(n2) ops; for the second splitting, the matrices A1

and D1 are already in Schur form. This substantially reduces the cost of the application of
the Bartels and Stewart method to 2n3. Concerning the third iteration, observe that the
matrix coefficients A1 and D1 are independent of the iteration. Therefore, the computation
of their Schur form must be performed only once.

We have also an asymptotic convergence result.

Theorem 6.12 ([Guo01]). For the fixed-point iterations (6.11) with X0 = 0, it holds that

lim sup k
√
‖Xk − S‖ = ρ((I ⊗A1 +DT

1 ⊗ I)−1(I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I).

These iterations have linear convergence which turns to sublinear in the critical case.
The computational cost varies from 8n3 arithmetic operations per step for the first splitting,
to 64n3 for the first step plus 10n3 for each subsequent step for the last splitting. The
most expensive iteration is the third one which, on the other hand, has the highest (linear)
convergence speed.

Newton’s iteration was first applied to the symmetric algebraic Riccati equation by
Kleinman in 1968 [Kle68] and later on by various authors. In particular, Benner and Byers
[BB98] complemented the method with an optimization technique (exact line search) in
order to reduce the number of steps needed for arriving at convergence. The study of the
Newton method for nonsymmetric algebraic Riccati equations was started by Guo and Laub
in [GL00], and a nice convergence result was given by Guo and Higham in [GH06].

The convergence of the Newton method is generally quadratic except for the critical
case where the convergence is observed to be linear with rate 1/2 [GL00]. At each step, a
Sylvester matrix equation must be solved, so the computational cost is O(n3) ops per step,
but with a large overhead constant.

The Newton method for a NARE [GL00] consists in the iteration (3.6) which, in view of
(6.9), can be written explicitly as

(A−XkC)Xk+1 +Xk+1(D − CXk) = B −XkCXk. (6.12)

Therefore, the matrix Xk+1 is obtained by solving a Sylvester equation. This linear equation
is defined by the matrix

∆Xk = (D − CXk)T ⊗ Im + In ⊗ (A−XkC)

which is a nonsingular M-matrix if 0 ≤ Xk < S, as shown in section 6.2.
In the noncritical case, R′S is nonsingular, and the iteration is quadratically convergent

in a neighborhood of the minimal nonnegative solution S by the traditional results on
Newton’s method (see e.g. [Kan52]). Moreover, the convergence is monotonic, according to
Theorem 3.9.

In [GL00], a hybrid method was suggested, which consists in performing a certain number
of iterations of a linearly convergent algorithm, such as the ones of Section 6.4, and then
using the computed value as the starting point for Newton’s method.

At each step of Newton’s iteration, the largest computational work is given by the
solution of the Sylvester equation (6.12). The overall cost of Newton’s iteration is 66n3 ops.
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It is worth noting that in the critical and near critical cases, the matrix ∆k becomes
almost singular as Xk approaches the solution S; therefore, some numerical instability
is to be expected. Such instability can be removed by means of a suitable technique
[GIM07, BIMP10].

6.5 Matrix sign method

In the case of a nonsingular equation, the solution can be computed using the matrix
sign function. The matrix sign function [Hig08] is defined for all matrices without purely
imaginary eigenvalues as the matrix extension of the sign function

sgnx =

{
+1 if <(x) > 0,

−1 if <(x) < 0.

Alternatively, if the Jordan form of H is ordered such that

H = U

[
Js 0
0 Ju

]
UH ,

where Js is c-stable and Ju is c-unstable, then the matrix sign function is given by

sgnH := U

[
I 0
0 −I

]
UH .

It follows from this definition that the unstable space is given by ker sgn(H)− I, thus if we
compute

ker sgn(H)− I =

[
U1

U2

]
,

then the kernel is n-dimensional, U1 is nonsingular and S = U2U
−1
1 .

Popular choices for computing the matrix sign function include the Schur method, which
leads essentially to the same algorithm as the one in Section 6.3, the Newton iteration and
the Padé family of iterations. We describe here the Newton iteration, and refer the reader to
[Hig08] for more detail. The Newton iteration for the matrix sign (NMS iteration), which
should not be confused with the Newton method, is the iteration

Hk+1 =
γk
2

(Hk +H−1k ), H0 =H (6.13)

where γk ∈ R is a suitable scaling factor. It converges quadratically to the sign function of
H, and the number of iterations can be bounded in terms of the condition number of the
matrix H. Unfortunately, when the matrix is close to null recurrent this condition number is
expected to be large, due to the presence of an eigenvalue close to zero. Therefore, the NMS
iteration is not recommended for the robust solution of NAREs. However, it is interesting to
point out its relationship with the algorithms that are introduced in the following sections.

6.6 Block swapping in pencil arithmetic

Pencil arithmetic [BB06] is a technique to extend several common operations (matrix sums,
matrix products) to matrix pencils. From a practical point of view, it provides a method to
implement the linear algebra basic operations on matrices of the form E−1A while storing
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and operating on the pair (E,A) only. This allows extending such operations in a numerically
stable fashion even when E is singular or ill-conditioned.

A basic kernel that is needed in several pencil arithmetic computations is the following
(CS-AB problem [SQO04]): given two matrices E ,A ∈ Rk×k, compute Ẽ , Ã ∈ Rk×k such
that

ÃE = ẼA, or
[
Ẽ Ã

] [ A
−E

]
= 0, (6.14)

and rank
[
Ẽ Ã

]
= k.

Clearly several choices are possible: if the pair (Ẽ , Ã) is a solution, then so is (SẼ , SÃ)
for any nonsingular S ∈ Rk×k.

A simple approach, which fails if E is singular or ill-conditioned, is (Ẽ , Ã) = (SAE−1, S),
for any nonsingular S. A more robust but computationally expensive choice is computing
the QR decomposition [

A
−E

]
=

[
Q1 Q2

Q3 Q4

] [
R
0

]
and taking (Ẽ , Ã) = (QT2 , Q

T
4 ).

We propose a third approach, which is useful to preserve a special block structure that is
introduced later.

Theorem 6.13 ([MP]). Let A, E ∈ Rk×k be given, M ∈ R2k×2k be a nonsingular matrix,
and let

M

[
A
−E

]
=

[
X
Y

]
If X is nonsingular, then for any nonsingular S ∈ Rk×k[

−SY X−1 S
]
M−1

is a solution to the CS-AB problem.

Proof. Direct computation.

Notice that the simple solution corresponds to S = I and

M =

[
0 Ik
Ik 0

]
,

while the more robust approach corresponds to S = I and M = QT , with Q the orthogonal
factor of the QR factorization.

If k = n+m, we may divide the matrices into blocks of sizes (n,m)× (n,m)

A =

[
A11 A12

A21 A22

]
, E =

[
E11 E12

E21 E22

]
, Ã =

[
Ã11 Ã12

Ã21 Ã22

]
, Ẽ =

[
Ẽ11 Ẽ12

Ẽ21 Ẽ22

]
, (6.15)

Choosing now

M =


0 0 In 0
0 Im 0 0
In 0 0 0
0 0 0 Im


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transforms the original CS-AB problem into one of the form

[
Ã11 Ẽ12 Ẽ11 Ã12

Ã21 Ẽ22 Ẽ21 Ã22

]
−E11 −E12

A21 A22

A11 A12

−E21 −E22

 = 0

or [
Ã11 Ẽ12

Ã21 Ẽ22

] [
−E11 −E12

A21 A22

]
=

[
Ẽ11 Ã12

Ẽ21 Ã22

] [
−A11 −A12

E21 E22

]
.

The following result can then be proved from Theorem 6.13 or by direct inspection from the
latter equality.

Theorem 6.14 ([MP]). Let the matrices A, E be partitioned as in (6.15), and the blocks[
Ẽ11 Ã12

Ẽ21 Ã22

]
be given. If [

−E11 −E12

A21 A22

]
is nonsingular, then Ã, Ẽ can be completed to a solution to the CS-AB problem by setting[

Ã11 Ẽ12

Ã21 Ẽ22

]
=

[
Ẽ11 Ã12

Ẽ21 Ã22

] [
−A11 −A12

E21 E22

] [
−E11 −E12

A21 A22

]−1
.

The CS-AB solution described in the latter theorem has the same computational cost as
the simple one (Ẽ , Ã) = (SAE−1, S), but requires the inversion of a different matrix. Thus
when E is singular or ill-conditioned, it may be advisable to use this solution instead.

6.7 Inverse-free NMS iteration

As an example of the use of pencil arithmetic and of its benefits, we outline an inverse-free
implementation of the NMS iteration proposed by Benner and Byers [BB06]. Let us suppose
that Hk in (6.13) is given through a matrix pencil Ak − sEk which is right-similar to it, i.e.,
E−1k Ak = Hk. Then (6.13) reads

Hk+1 =
1

2

(
E−1A+A−1E

)
.

If (Ẽk, Ãk) is a solution of the CS-AB problem for (Ek,Ak), i.e., ẼkAk = ÃkEk, then direct
verification shows that

Hk+1 =
(
ÃkEk

)−1 1

2

(
ÃkAk + ẼkEk

)
,

that is, Hk+1 is right-similar to

sEk+1 −Ak+1 := sÃkEk −
1

2

(
ÃkAk + ẼkEk

)
. (6.16)

The pencil sEk+1 −Ak+1 can be computed directly without the need of matrix inversions.
The following similarity result is derived with the help of pencil arithmetics in [BB06].
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H 1
2

(
H+H−1

)

S S2

NMS

C1 C1

Squaring

Figure 6.1: Relationship between the NMS iteration, the Cayley transform, and squaring

Theorem 6.15 ([BB06]). Let H0 = A0 be a nonsingular square matrix, and E0 = I. Then,
the sequences Ek, Ak defined recursively by (6.16) are such that sEk −Ak is right-similar to
the matrix Hk obtained by the NMS iteration (6.13).

By iterating the transformation (6.16) starting from A0 = H, E0 = I, we obtain an
implicit version of the NMS iteration. After a sufficient number of iterations, we expect
E−1k Ak to converge to sgn(H). However, the convergence theory is tricky, and not completely
settled in [BB06]. Even if there is convergence in a weaker sense regarding deflating subspaces,
the two sequences of matrices Ek and Ak may diverge, oscillate, converge simultaneously
to zero (which is equally problematic), or exhibit different behaviors simultaneously in
different subspaces. A suitable normalization of the pencil may be needed in order to ensure
convergence of the two sequences, and even in this case it may be ill-conditioned to recover
the invariant subspaces from the two limits.

Despite this issues, the inverse-free NMS iteration performs better than its customary
counterpart in terms of stability [BB06], especially when the starting matrix H is ill-
conditioned. The price to pay is a higher cost per step.

6.8 Matrix sign and disk iteration

The NMS iteration assumes a simpler form if we make use of a Cayley transform to switch
between the continuous-time and discrete-time setting [Ben97]. If we set S = C1(H), then
the same Cayley transform verifies

S2 = C1
(

1

2
(H+H−1)

)
.

In other words, the diagram in Figure 6.1 commutes. This means that the map underlying
the NMS iteration and repeated squaring are conjugated by the Cayley transform, and thus
iterating one is equivalent to iterating the other [And78, Rob80, Ben97].

This fact is exploited in [Ben97] to replace the iteration (6.13) with the map Sk+1 = S2k ,
where Sk = C1(Hk). The squaring can be performed along the inverse-free framework. Let

Sk = E−1k Ak be given, and (Ẽk, Ãk) be a solution of the CS-AB problem for (Ek,Ak). Then,

Sk+1 = (ẼkEk)−1(ÃkAk). (6.17)

Therefore the corresponding inverse-free iteration is

sEk+1 −Ak+1 = sẼkEk − ÃkAk, (6.18)

which compares favorably in terms of computational cost to (6.16), since it requires one
CS-AB solution and only two (instead of three) matrix products. The iteration (6.18) was
first used by Malyshev [Mal89] to compute the disk function of a pencil.

A parallel of Theorem 6.15 is easily derived for this iteration.
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Theorem 6.16 ([Ben97, BDG97]). Let S0 = A0 be given and E0 = I. Then, the sequences

Ek, Ak defined recursively by (6.18) are such that sEk −Ak is right-similar to S2k .

If this squaring operation is repeated t times, we get to a pencil with the same deflating
subspaces of sE − A, but with eigenvalues given by λ2

t

, where λ is an eigenvalue of the
original pencil sE −A. In particular, eigenvalues with |λ| < 1 converge to 0, and eigenvalues
with |λ| > 1 converge to infinity. Thus we can recover the d-stable and d-unstable deflating
subspaces of the initial pencil by computing the deflating subspaces relative to 0 and ∞ of
sEt −At.

This idea is the basis of the inverse-free disk function method [Ben97] reported here in
Algorithm 7. Note that, as in the inverse-free NMS method, the numerical stability of the

Algorithm 7: inverse-free disk function method

input: a matrix pencil sE0 −A0

output: U , V bases of the d-stable and d-unstable deflating subspaces of sE0 −A0

k ←− 0
while a suitable stopping criterion is not satisfied do

(Ẽk, Ãk)←− any solution of the CS-AB problem for (Ak, Ek)

Ak+1 ←− ÃkAk
Ek+1 ←− ẼkEk
k ←− k + 1

end while
U ←− approximate null space of Ak
V ←− approximate null space of Ek
return U , V

algorithm and the convergence of the sequences Ak and Ek depend strongly on the choice of
the solution to the CS-AB problem.

6.9 The structured doubling algorithm

The structured doubling algorithm (SDA) can be seen as a variant of the inverse-free disk
function. It was introduced in an initial form by Anderson [And78] as an algorithm for the
solution of a discrete-time algebraic Riccati equation, and later extended, adapted to other
equations and explained in terms of matrix pencils in several papers by Wen-Wei Lin and
others [CFL05, LX06, HL09, CCG+09].

The main idea is coupling the inverse-free disk iteration with a special form of the initial
pencil, which is preserved along the algorithm.

Standard structured form

A pencil sE − A with A, E ∈ R(n+m)×(n+m) is said to be in standard structured form I
(SSF-I) if it can be written as

A =

[
E 0
−H Im

]
, E =

[
In −G
0 F

]
, (6.19)

where the block sizes are such that E ∈ Rn×n and F ∈ Rm×m. Note that a pencil in SSF-I
is always regular.
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Derivation of SDA

With the help of Theorem 6.14, we can build a solution to the CS-AB problem in SSF-I, i.e.,

Ã =

[
Ẽ 0

−H̃ Im

]
, Ẽ =

[
In −G̃
0 F̃

]
. (6.20)

This is equivalent to imposing [
Ẽ11 Ã12

Ẽ21 Ã22

]
= In+m,

thus Theorem 6.14 yields [
Ẽ G̃

H̃ F̃

]
=

[
E 0
0 F

] [
In −G
−H Im

]−1
,

and thus

Ã =

[
E(In −GH)−1 0
−F (Im −HG)−1H In

]
, Ẽ =

[
In −E(In −GH)−1G
0 F (Im −HG)−1

]
. (6.21)

If we apply a step of inverse-free disk iteration (6.18) to sE −A using the computed CS-AB
solution, the resulting pencil is still in SSF-I, and is given by

Â =

[
E(In −GH)−1E 0

−(H + F (Im −HG)−1HE) Im

]
,

Ê =

[
In −(G+ E(In −GH)−1GF )
0 F (Im −HG)−1F

]
.

(6.22)

The only hypothesis required to carry on these operations is that I −GH and I −HG are
nonsingular.

Remark 6.17. Let G ∈ Rn×m, H ∈ Rm×n. Then In−GH is singular if and only if Im−HG
is nonsingular.

Proof. It is a basic fact in linear algebra [Hog07, Chapter 4] that the two products GH and
HG have the same spectrum, except for the zero eigenvalues. In particular, GH has the
eigenvalue 1 if and only if HG does.

Algorithm 8 implements this variant of the inverse-free disk iteration (Algorithm 7) by
updating directly the blocks of the involved matrices. Each step of the algorithm costs
14
3 (m3 + n3) + 6mn(m + n) floating point operations. This reduces to 64

3 n
3 in the case

m = n.

Convergence results

The following result summarizes the convergence properties of SDA [CFL05, LX06, HL09,
CCG+09].

Theorem 6.18 ([CFL05, LX06, HL09, CCG+09]). Suppose that the pencil (6.19) has either
a proper or a partial (n,m) d-splitting, and that there are two matrices in the form[

In
H∞

]
,

[
G∞
Im

]
, (6.23)
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Algorithm 8: SDA-I

input: E0, F0, G0, H0 defining a pencil in SSF-I
output: H∞,G∞ so that the subspaces in (6.23) are respectively the canonical

semi-d-stable and semi-d-unstable deflating subspaces of the given pencil
k ←− 0
while a suitable stopping criterion is not satisfied do
Ẽk ←− Ek(In −GkHk)−1

F̃k ←− Fk(Im −HkGk)−1

Gk+1 ←− Gk + ẼkGkFk
Hk+1 ←− Hk + F̃kHkEk
Ek+1 ←− ẼkEk
Fk+1 ←− F̃kFk
k ←− k + 1

end while
return H∞ ←− Hk, G∞ ←− Gk

spanning respectively the canonical d-semi-stable and d-semi-unstable deflating subspace.
Then for Algorithm 8 it holds that

1. ‖Ek‖ = O(2−k),

2. ‖Fk‖ = O(2−k),

3. ‖H∞ −Hk‖ = O(2−k),

4. ‖G∞ −Gk‖ = O(2−k).

Moreover, if the splitting is proper, the convergence is quadratic, and in particular in 3. and

4. the term O(2−k) can be replaced by O(ν2
k

), with ν equal to the dominance factor (2.6) of
H.

A new method to compute the SSF-I of a pencil

From the following result, we can derive a compact expression to compute the unique pencil
in SSF-I which is right-similar to a given pencil.

Theorem 6.19 ([PR]). Let sE − A be a matrix pencil with A, E ∈ R(n+m)×(n+m), and
partition both matrices as

A =
[
A1 A2

]
E =

[
E1 E2

]
with A1, E1 ∈ R(n+m)×n and A2, E2 ∈ R(n+m)×m. A SSF-I pencil which is right-similar to
sE − A exists if and only if [

E1 A2

]
(6.24)

is nonsingular; in this case, it holds[
E −G
−H F

]
=
[
E1 A2

]−1 [A1 E2
]
. (6.25)
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Proof. We are looking for a matrix Q such that

Q
[
A1 A2

]
− sQ

[
E1 E2

]
=

[
E 0
−H I

]
− s

[
I −G
0 F

]
.

By taking only some of the blocks from the above equation, we get

QE1 =

[
I
0

]
, QA2 =

[
0
I

]
,

i.e.,

Q
[
E1 A2

]
=

[
I 0
0 I

]
,

thus Q must be the inverse of the matrix in (6.24).
On the other hand, taking the other two blocks we get

QA1 =

[
E
−H

]
, QE2 =

[
−G
F

]
,

which promptly yields (6.25).

This formula is connected to the principal pivot transform (PPT) [Tsa00].

SDA for nonsymmetric algebraic Riccati equations

We may solve a NARE (1.5) using SDA with the following steps [GLX06].

• Compute S = Cγ(H), where H is as in (1.8), for a suitable γ > 0. In this way, the
c-splitting is transformed into a d-splitting, and the c-unstable subspace is transformed
into the d-stable space. Notice that the splitting is partial in the null recurrent case
and proper otherwise.

• Find a pencil in SSF-I which is right-similar to S.

• Apply SDA (Algorithm 8) to the resulting pencil.

The two matrices H∞ and G∞ returned by SDA are the minimal solution of the NARE
(1.5) and of its dual (6.1).

The second step can be performed efficiently thanks to Theorem 6.19. Notice that the
Cayley transform of H is given in pencil form by (H−γI)− s(H+γI). Thus (6.25) becomes[

E −G
−H F

]
=

[
D + γI −C
B −A− γI

]−1 [
D − γI −C
B −A+ γI

]
. (6.26)

This formula is more compact to write and more computationally effective than the one
suggested by Guo et al. [GLX06]. In fact, their expressions for the starting blocks involve
computing the inverses of two n×n and m×m matrices, which are indeed the (1, 1) and (2, 2)
blocks of the matrix to be inverted in (6.26) and their Schur complements. Clearly, two these
inversions are redundant in (6.26), which requires more or less half of the computational
cost with respect to the original formulas in [GLX06].

Moreover, the parameter γ can be chosen in order to guarantee applicability and conver-
gence of SDA.
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Theorem 6.20 ([GIM07]). Let M be irreducible and γ be chosen such that

γ > max

{
max

1≤i≤m
Aii, max

1≤j≤n
Djj

}
. (6.27)

Then for each k ≥ 0 the iterates Ek, Fk, Gk Hk generated by SDA are nonnegative matrices
(except for E0, F0 ≤ 0, and the matrices I−GkHk and I−HkGk are nonsingular M-matrices.
Moreover, the sequences Gk and Hk converge monotonically.

6.10 Conclusions and research lines

This chapter presents an overview of the theoretical properties and numerical algorithms for
the solution of the NARE (1.5), which we also presented in the review work [BIMP10]. The
main difference between the two is the treatment of SDA, which is introduced here with a more
natural derivation as a modification of the inverse-free disk and NMS functions. Theorem 6.13
provides a new way to generate solutions of the CS-AB problem, and Theorem 6.19 a simpler
method to compute the SSF-I of a pencil than those existing in literature.

An important research problem is incorporating one of the scaling strategies used in
NMS iteration [Hig08] into SDA. As is shown by Higham [Hig08], scaling can have a large
impact on the convergence speed of the NMS iteration (and thus of SDA). Unfortunately, it
is not straightforward how to implement such a scaling, since the scaling in the NMS setting
becomes a more involved function in the squaring/SDA setting after a Cayley transform. We
have obtained several encouraging partial results using Theorem 6.19 to recompute the SSF-I
factorization after a scaling transformation, but the issue has not been settled completely.

There are other problems for which SDA could possibly be applied successfully, and that
we would like to investigate further. We list two of them.

• Matrix sign function computation (instead of the NMS iteration [Hig08, BB06]). Apart
from the scaling, the other issue is that SDA apparently needs to know in advance
how many stable and unstable eigenvalues the starting matrix has. On the other hand,
the application of Theorem 6.19 could be the key to providing a method to change the
block sizes of SDA dynamically, e.g., from (m,n) to (m+ k, n− k).

• Multiplication-rich divide-and-conquer spectral division algorithm for high-performance
computing. Currently, several papers [Mal89, BDG97, DDH07] advocate using the
inverse-free NMS and disk functions to this purpose. SDA would make a good tool
for this problem: in fact, it should be easier with SDA than with inverse-free NMS to
enforce an even splitting of the spectrum, which boosts the performance of divide-and-
conquer.

For the control theory applications, a criterion for the choice of the parameter γ for the
Cayley transform similar to that of Theorem 6.20 does not exist, up to our knowledge. In
Section 10.4 we address this problem and try to find a heuristic for its choice.

The shift technique [HMR02, GIM07] is a tool to speed up the convergence in presence
of a singular M by modifying it in order to remove the zero eigenvalue and increase the
dominance factor. We are studying [IP] a modification of the shift technique to deal in the
same way with close-to-singular problems.



Chapter 7

Transforming NAREs into UQMEs

7.1 Introduction

The problem of reducing an algebraic Riccati equation (1.5) to a unilateral quadratic matrix
equation (1.2) has been considered in [BILM06, GLX06, IB03, LR80, Ram99].

In this chapter we introduce two methods to transform the ARE into a UQME [BMP10b].
These transformations enable us to prove some theoretical and computational properties. In
particular they provide a unifying framework which includes apparently different algorithms
like the algorithm of Ramaswami [Ram99] and the structure preserving doubling algorithm
(SDA) of Anderson [And78], and Guo, Lin, Xu [GLX06]. We show that SDA can be
interpreted as cyclic reduction algorithm applied to a suitable UQME. This fact enables
one to deduce some of the convergence properties of SDA directly from the theory of cyclic
reduction which is well consolidated [BLM05, BMR08, BM09]. The result has an interesting
counterpart in [CCG+09], where, on the other hand, it is proved that cyclic reduction can
be interpreted as a form of SDA with a block structure which is different from SSF-I (6.19).

This unifying framework allows us to design some new algorithms for the effective solution
of an ARE. In particular, by combining the SDA idea with the shrink-and-shift technique
of Ramaswami we obtain a new algorithm having the same cost per iteration as SDA but
relying on a different and simpler initialization. We prove that this algorithm has better
convergence properties with respect to SDA when M is an M-matrix and max ai,i/max di,i
is very large or very small as in the fluid queues models of [BOT05]. In fact, for the equations
of [BOT05] the speedup in terms of iterations is by a factor greater than 4, as shown in our
numerical experiments.

The transformations are based on two steps, namely, transforming the matrix pencil
sI −H to a structured quadratic matrix polynomial and applying a suitable matrix function
to convert the c-splitting of the Hamiltonian (1.8) into a d-splitting.

After these steps, we arrive at a UQME (1.2) whose solutions are simply related to the
solutions of (1.5). Due to the d-splitting, cyclic reduction can be applied for the solution of
this UQME. The block structure of the coefficients of the UQME allows to implement cyclic
reduction with a lower computational cost.

7.2 Assumptions on Algebraic Riccati Equations

The transformations we present work under general assumptions on the NARE. This makes
them suitable not only for the nonsymmetric equations associated with an M-matrix, but also
for their symmetric counterpart in control theory and for more general complex problems.
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In cases where more structure is present (Hamiltonian and symmetric structure, or
nonnegativity and M-matrix structure), this can be used to prove that CR converges
without breakdown and preserving said structure, but the general hypotheses needed for the
transformation are not very restrictive.

Throughout this chapter, unless differently specified, we assume the following.

Assumption 7.1 (c-splitting). The eigenvalues of H are such that

Reλn+1 ≤ 0 ≤ Reλn. (7.1)

Moreover, the invariant subspace of H corresponding to the eigenvalues λ1, . . . , λn is spanned
by a matrix in the form (6.2), with U1 nonsingular. This is equivalent to assuming the
existence of a solution S = U2U

−1
1 such that σ(D − CS) = {λ1, λ2, . . . , λn}. Similarly, the

invariant subspace corresponding to λn+1, λn+2, . . . , λn+m is spanned by a matrix in the
form [

V1
V2

]
, with V1 ∈ Rn×m, V2 ∈ Rm×m,

with V2 nonsingular. This is equivalent to assuming the existence of a solution T = V1V
−1
2

to the dual equation (6.1) such that σ(A−BT ) = {λn+1, λn+2, . . . , λn+m}.

Assumption 7.1 is satisfied in particular under the following stronger conditions which
are encountered in diverse applications.

Assumption 7.1.1 (Symmetric case [LR95, Meh91]). The matrix H is such that D = AT ,
C and −B are symmetric, positive-definite, the pair (D,C) is stabilizable and the pair
(B,D) is detectable.

Assumption 7.1.2 (M-matrix case [BOT05, Guo01, Ram99]). The matrix M of (1.6) is
either a nonsingular M-matrix or a singular irreducible M-matrix.

Assumption 7.1.3 (Complex case [Guo07]). The matrix H is complex and such that

H̃ = (h̃i,j), h̃i,i = |hi,i|, h̃i,j = −|hi,j |, if i 6= j, is an M-matrix, moreover the diagonal
elements of H are real and either all positive or all negative.

In the following we restrict our analysis to the case where the condition <(λn) =
<(λn+1) = 0 is not satisfied. We recall that if λn = λn+1 = 0, then one can apply
suitable techniques in order to overcome the difficulties encountered in this critical case
[GIM07, BIMP10].

Thanks to Lemma 6.4, in the sequel we may assume the following without loss of
generality.

Assumption 7.2. The eigenvalues of H, ordered as in (6.5), are such that <(λn+1) < 0 ≤
<(λn).

7.3 Transformations of a NARE into a UQME

In this section we present two methods to convert a NARE (1.5) into an equivalent UQME
(1.2). These transformations are based on the idea of modifying the pencil sI −H to get a
quadratic matrix polynomial having the same eigenvalues plus some additional ones at zero
and at infinity.
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Ramaswami’s transformation

Ramaswami [Ram99] proposed a method to transform the NARE into a UQME of the kind

A0 +A1X +A2X 2 = 0, A0,A1,A2,X ∈ R(m+n)×(m+n).

His idea can be interpreted in the following way. The eigenvalue problem

0 = (H− sI)u =

([
D −C
B −A

]
− s

[
I 0
0 I

])
u

originating from (1.7) is transformed into a quadratic eigenvalue problem by multiplying
the second block column by s:([

D 0
B 0

]
+

[
−I −C
0 −A

]
s+

[
0 0
0 −I

]
s2
)
û =0, û =

[
I 0
0 s−1I

]
u.

With the latter quadratic pencil we may associate the UQME[
D 0
B 0

]
+

[
−I −C
0 −A

]
X +

[
0 0
0 −I

]
X 2 = 0, (7.2)

defined by the matrix quadratic polynomial

A(s) = A0 + sA1 + s2A2,

A0 =

[
D 0
B 0

]
, A1 =

[
−I −C
0 −A

]
, A2 =

[
0 0
0 −I

]
.

(7.3)

The eigenvalues of A(s) and the eigenvalues of H, as well as the solutions of (1.5) and
the UQME (7.2), are closely related as stated by the following theorem.

Theorem 7.1 ([Ram99, BMP10b]). The eigenvalues of the matrix polynomial A(s) defined
in (7.3) are:

• 0 with multiplicity m,

• the m+ n (counted with multiplicity) eigenvalues λ1, . . . , λm+n of H,

• ∞ with multiplicity n.

Moreover, if X is a solution of the NARE (1.5), then

X =

[
D − CX 0

X 0

]
is a solution to the UQME (7.2); conversely,

S =

[
D − CS 0

S 0

]
(7.4)

where S is the extremal solution of (1.5), is the unique solution of the UQME (7.2) with m
eigenvalues equal to zero and n eigenvalues equal to λ1, . . . , λn.
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Proof. By construction, one has

A(s) = (H− sIm+n)

[
In 0
0 sIm

]
.

Therefore detA(s) = sm det(H − sIm+n) and the properties of the eigenvalues follow. If
X solves the NARE (1.5), one may verify by direct inspection that X solves the UQME
(7.2). In particular S is a solution of (7.2), and its eigenvalues are zero with multiplicity m
and λ1, . . . , λn; for the properties of the roots of A(s), S is the unique solution with these
eigenvalues.

UL-based transformation

We introduce another transformation of a NARE to a UQME which relies on the block UL
factorization of the matrix H. As we discuss in Section 7.5, this transformation is implicitly
used in the SDA, and allows to relate SDA to CR.

Let us consider the block UL factorization

H =U−1L, U =

[
I −U1

0 U2

]
, L =

[
L1 0
−L2 I

]
,

with

U1 =CA−1, U2 =−A−1, L1 =D − CA−1B, L2 =A−1B,

where we assume detA 6= 0, and transform the eigenvalue problem

0 = (H− sI)u = (U−1L − sI)u

into the generalized one (L − sU)u = 0 via a right-similarity. Now we multiply the second
block row by −s to get([

L1 0
0 0

]
+

[
−I U1

L2 −I

]
s+

[
0 0
0 U2

]
s2
)
u = 0.

As in the previous section, with the latter quadratic pencil we may associate the UQME[
L1 0
0 0

]
+

[
−I U1

L2 −I

]
X +

[
0 0
0 U2

]
X 2 = 0, (7.5)

defined by the matrix quadratic polynomial

A(s) = A0 + sA1 + s2A2,

A0 =

[
L1 0
0 0

]
, A1 =

[
−I U1

L2 −I

]
, A2 =

[
0 0
0 U2

]
.

(7.6)

Then the following result holds.

Theorem 7.2 ([BMP10b]). The eigenvalues of the matrix polynomial A(s) defined in (7.6)
are:

• 0 with multiplicity m,

• the m+ n (counted with multiplicity) eigenvalues λ1, . . . , λm+n of H,
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• ∞ with multiplicity n.

Moreover, if X is a solution of the NARE (1.5), then

X =

[
D − CX 0

X(D − CX) 0

]
is a solution to the UQME (7.5). Conversely,

S =

[
D − CS 0

S(D − CS) 0

]
,

where S is the extremal solution of (1.5), is the unique solution of the UQME (7.2) with m
eigenvalues equal to zero and n eigenvalues equal to λ1, . . . , λn.

Proof. By construction, one has

A(s) =

[
In 0
0 −sIm

]
U(H− sIm+n).

Therefore detA(s) = (−1)msm detU det(H−sIm+n) and the spectral properties follow. The
remaining part can be proved as in Theorem 7.1.

7.4 Eigenvalue transformations

The transformations presented in Section 7.3 can effectively be used to transform the NARE
into a UQME. The solution of interest in NAREs is the extremal one, which is the one
associated with the c-semi-unstable eigenvalues. Algorithms for solving UQMEs are usually
designed to find the solution with d-semi-stable eigenvalues; therefore, we need to apply
an eigenvalue transformation in order to transform the c-splitting to a d-splitting. Several
strategies are available for this task; the basic idea is the following lemma.

Lemma 7.3. Let a(s) = a0+a1s+. . .+ahs
h and b(s) = b0+b1s+. . .+bls

l be polynomials with
complex coefficients, and extend them to square matrices as a(X) = a0I + a1X + . . .+ ahX

h

and b(X) = b0I + b1X + . . . + blX
l. Let f(s) = a(s)

b(s) and f(X) = b(X)−1a(X). Let λi be

the eigenvalues of the matrix H. If b(λi) 6= 0 for each i, then the eigenvalues of f(H) are
f(λi). Moreover, if

H
[
I
X

]
=

[
I
X

]
R (7.7)

holds, then

f(H)

[
I
X

]
=

[
I
X

]
f(R) (7.8)

holds as well.

Proof. The first part is well-known [HJ94]. As for the last formula, by applying repeatedly
(7.7) we get

Hk
[
I
X

]
=

[
I
X

]
Rk for all k > 0; (7.9)

then we rewrite (7.8) as

a(H)

[
I
X

]
b(R) = b(H)

[
I
X

]
a(R)

(observe that a(R) and b(R) commute), and apply (7.9) to all the monomials appearing in
the above expression.



68 I. Quadratic vector and matrix equations

In particular, this result implies that the solutions of the NARE associated with H are
the same as the ones of the NARE associated with f(H), for each rational function f for
which b(H) is nonsingular.

Shrink and shift

Ramaswami’s approach [Ram99] for the eigenvalue transformation is based on a shrink-and-
shift approach. Under Assumption 7.2, if there is no eigenvalue on the imaginary axis, except
for zero, then for a sufficiently large value of t > 0 one has |t− λi| ≤ t for i = 1, . . . , n, that
is, the eigenvalues of H with nonnegative real part are contained in a sufficiently large disk
D of center t and radius t. The remaining eigenvalues clearly lie outside D, since they are
on the opposite side of the imaginary axis. The transformation ft : z 7→ 1− z

t maps D onto
the unit disk |z| ≤ 1. Applying to H the transformation

H 7→ ft(H) = I − 1

t
H,

yields the matrix

Ĥ := f(H) =

[
D̂ −Ĉ
B̂ −Â

]
,

where

Â :=− I − 1

t
A, B̂ :=− 1

t
B, Ĉ :=− 1

t
C, D̂ :=I − 1

t
D. (7.10)

By Lemma 7.3, the eigenvalues of ft(H) are d-split. More precisely, under Assumption 7.2
for the eigenvalues µi = ft(λi) of ft(H) we have

|µi| ≤ 1 for i = 1, . . . , n, |µi| > 1 for i = n+ 1, . . . , n+m,

By the same lemma, the solutions to the NARE associated with f(H) are the same as the
solutions of the original NARE (1.5).

As to the choice of t, with Assumption 7.1.2 it is sufficient to take

t > max
1≤i≤n

Dii. (7.11)

In fact, with this choice of t the M-matrix D −CS can be put in the form tI − P , with P a
nonnegative matrix; thus ρ(P ) ≤ t, with equality only when D − CS is singular. Therefore
all the eigenvalues λ of D − CS satisfy |λ− t| ≤ t.

Cayley transform

Another approach [LR95, GLX06, BILM06] is applying the Cayley transform (2.5) with
γ > 0. By Lemma 2.10, transforming

H 7→ Hγ := Cγ(H) = (H+ γI)−1(H− γI)

maps the n eigenvalues of H lying in the right half-plane into the closed unit disk, and
the other m eigenvalues to the outside of it. More precisely, under Assumption 7.2, the
eigenvalues of Hγ are ξi = Cγ(λi), i = 1, . . . ,m+ n, and are such that

max
i=1,...,n

|ξi| ≤ 1 < min
i=1,...,m

|ξi+n|.
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Moreover, the solutions of the Riccati equation (1.5) are solutions of the Riccati equation
associated with Hγ , according to Lemma 7.3.

Observe that the blocks of Hγ are

Hγ = Cγ(H) =

[
D̃ −C̃
B̃ −Ã

]
,

where

Ã :=− I + 2γV −1, B̃ :=2γ(−A+ γI)−1BW−1,

C̃ :=2γ(D + γI)−1CV −1, D̃ :=I − 2γW−1,
(7.12)

with V := −A+ γI +B(D + γI)−1C and W := D + γI + C(−A+ γI)−1B.

7.5 Old and new algorithms

The algorithms that we outline in this section are based on two main steps.
In the first step, the Hamiltonian H is transformed into a matrix H̃ whose eigenvalues

are split with respect to the unit circle. This can be obtained either by means of the
shrink-and-shift technique of Section 7.4, or by means of the Cayley transform of Section 7.4.
According to Lemma 7.3 the solutions of the Riccati equations associated with H and H̃ are
the same; in particular, the extremal solution S of the NARE (1.5) is the solution of the

NARE associated with H̃ corresponding to the eigenvalues in the unit disk.
In the second step, the NARE associated with H̃ is transformed into a UQME. This

is achieved by means of one of the two techniques of Section 7.3. The resulting UQME is
solved by means of cyclic reduction.

According to the combination of the techniques used for performing the above two steps
we obtain known and new algorithms.

Shrink-and-shift with Ramaswami’s transformation

Under Assumption 7.1.2, Ramaswami [Ram99] and later Guo [Guo06] proposed two similar
algorithms based on logarithmic reduction [LR93]. First, one performs the shrink-and-shift

transformation defined in Section 7.4, to get Ĥ = I − 1
tH. Then, one applies Ramaswami’s

transformation defined in Section 7.3 to the NARE associated with the Hamiltonian Ĥ, to
get an (n+m)× (n+m) UQME whose coefficients have the following block sparsity pattern[

∗ 0
∗ 0

]
+

[
−I ∗
0 ∗

]
X +

[
0 0
0 ∗

]
X 2 = 0. (7.13)

Ramaswami [Ram99] and Guo [Guo06] applied logarithmic reduction to the above UQME.
Here we apply cyclic reduction, which has a slightly lower computational cost per step as
compared to logarithmic reduction [BLM05]. It is easy to see that the sparsity pattern of the
block coefficients in (7.13) is preserved during the iterations of cyclic reduction; therefore, CR
can be accelerated by working only on “small” blocks and removing the products involving
zero blocks.
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More precisely, it turns out that applying cyclic reduction to the equation (7.2), where

H is replaced by Ĥ, yields blocks of the kind

A(k)
0 =

[
R

(k)
1 0

R
(k)
2 0

]
, A(k)

1 =

[
−I R

(k)
3

R
(k)
4 R

(k)
5

]
,

A(k)
2 =

[
0 0

0 R
(k)
6

]
, Â(k) =

[
−I R

(0)
3

R
(k)
4 R

(0)
5

]
.

It can be verified that the matrices R
(k)
i , i = 1, . . . , 6, satisfy the following equations:

S(k) = R
(k)
5 +R

(k)
4 R

(k)
3 ,

Y (k) =
(
S(k)

)−1 (
R

(k)
2 +R

(k)
4 R

(k)
1

)
,

X(k) = R
(k)
3 Y (k) −R(k)

1 ,

Z(k) =
(
S(k)

)−1
R

(k)
6 ,

T (k) = R
(k)
3 Z(k),

R
(k+1)
1 = −R(k)

1 X(k),

R
(k+1)
2 = −R(k)

2 X(k),

R
(k+1)
3 = R

(k)
3 −R(k)

1 T (k),

R
(k+1)
4 = R

(k)
4 −R(k)

6 Y (k),

R
(k+1)
5 = R

(k)
5 −R(k)

2 T (k),

R
(k+1)
6 = −R(k)

6 Z(k).

for k = 0, 1, . . . , starting from the initial values R
(0)
1 = I − 1

tD, R
(0)
2 = − 1

tB, R
(0)
3 = 1

tC,

R
(0)
4 = 0, R

(0)
5 = I+ 1

tA, R
(0)
6 = −I. This way, the CR iteration requires 12 matrix products

and one LU factorization per step, leading to a total cost of 74
3 n

3 ops per step (when m = n).

From Theorem 5.3 and from Theorem 7.1 applied to H = H̃ it follows that

S = −
(
R

(0)
5 +R

(k)
4 R

(0)
3

)−1 (
R

(0)
2 +R

(k)
4 R

(0)
1

)
+O(ν2

k

),

where

ν :=
maxi=1,...,n |µi|

mini=1,...,m |µn+i|
< 1,

and µi = ft(λi) = 1− 1
tλi for i = 1, . . . ,m+ n.

Cayley transform with UL-based transformation

A different approach consists in applying the Cayley transform followed by the UL-based
transformation of Section 7.3. The following result shows that SDA is in fact CR applied to
the resulting UQME.

Theorem 7.4 ([BMP10b]). Let[
L1 0
0 0

]
+

[
−I U1

L2 −I

]
X +

[
0 0
0 U2

]
X 2 = 0 (7.14)

be the UQME obtained by applying the Cayley transform to H followed by the UL-based
transformation of an ARE to a UQME. Then

L1 = E, L2 = H, U1 = G, U2 = F,
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where the matrices E, F , G, H are defined by (6.26). Moreover the matrix sequences A(k)
i ,

i = 0, 1, 2, generated by CR (Algorithm 4) applied to (7.14) are given by

A(k)
0 =

[
Ek 0
0 0

]
, A(k)

1 =

[
−I Gk
Hk −I

]
, A(k)

2 =

[
0 0
0 Fk

]
,

where {Ek}, {Fk}, {Gk} and {Hk} are the sequences generated by SDA (Algorithm 8).

Proof. The application of the Cayley transform to H generates a matrix Hγ = Cγ(H) which
can be factored as

Hγ = U−1L =

[
I −G
0 F

]−1 [
E 0
−H I

]
, (7.15)

where E, F , G, H are the initial values of SDA. Applying the transformation of Section 7.3
leads to the UQME (7.14). We can see that applying CR to this equation preserves the
sparsity pattern of the coefficients Ai, that is, the iterates can be written as

A(k)
0 =

[
Ek 0
0 0

]
, A(k)

1 =

[
−I Gk
Hk −I

]
, A(k)

2 =

[
0 0
0 Fk

]
for suitable matrices Ek, Fk, Gk, Hk. Carrying out the CR iteration (Algorithm 4) block by
block leads to exactly the same relations (6.22) that define SDA.

In the following theorem, we provide an explicit expression for the solutions of several
unilateral equations related to this transformation.

Theorem 7.5 ([BMP10b]). Let

A0 =

[
E 0
0 0

]
, A1 =

[
−I G
H −I

]
, A2 =

[
0 0
0 F

]
,

where the matrices E, F , G, H are given by (6.26), and let

ϕ(s) = s−1A0 +A1 + sA1.

Define

S =

[
Rγ 0
SRγ 0

]
, T =

[
0 TUγ
0 Uγ

]
, Ŝ =

[
0 0

QγS Qγ

]
, T̂ =

[
Pγ PγT
0 0

]
,

where Rγ = Cγ(R) is the Cayley transform of R = D − CS, Uγ = Cγ(U) is the Cayley
transform of U = BT −A, Qγ = F (I − SG)−1, Pγ = E(I − TH)−1. Then:

1. the matrix S is the only solution to

A0 +A1X +A2X 2 = 0 (7.16)

such that ρ(S) ≤ 1;

2. the matrix Ŝ is the only solution to

A2 + XA1 + X 2A0 = 0 (7.17)

such that ρ(Ŝ) < 1;
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3. the matrix T is the only solution to

A2 +A1X +A0X 2 = 0 (7.18)

such that ρ(T ) ≤ 1;

4. the matrix T̂ is the only solution to

A0 + XA1 + X 2A2 = 0 (7.19)

such that ρ(T̂ ) < 1;

5. the following canonical factorizations hold for |s| = 1

ϕ(s) = (I − sŜ)W(I − s−1S), ϕ(s) = (I − s−1T̂ )Z(I − sT ), (7.20)

where

W = A2S +A1 =

[
−I G
S −I

]
, Z = A0T +A1 =

[
−I T
H −I

]
.

Proof. The matrix Hγ = Cγ(H) has eigenvalues ξi = Cγ(λi), which are split with respect

to the unit circle. From Lemma 7.3 one has Hγ
[
I
S

]
=

[
I
S

]
Rγ , which in view of (7.15) is

equivalent to [
E 0
−H I

] [
I
S

]
=

[
I −G
0 F

] [
I
S

]
Rγ . (7.21)

From Theorem 7.2 applied to Hγ it follows that the matrix S is the only solution to (7.16)
with eigenvalues ξ1, . . . , ξn, so that ρ(S) ≤ 1. It can be easily verified by direct inspection

that the matrix Ŝ = −A2W−1, for W = A1 +A2S, solves (7.17). By using the structure of
A1 and A2 we find that

W =

[
0 0
0 F

] [
Rγ 0
SRγ 0

]
+

[
−I G
H −I

]
=

[
−I G
S −I

]
,

From the above representation of W it follows that

Ŝ = −
[
0 0
0 F

] [
−I G
S −I

]−1
=

[
0 0

QγS Qγ

]
,

with Qγ = F (I − SG)−1. The first factorization in (7.20) follows from the equation

Ŝ = −A2W−1 and from the fact that Ŝ solves the matrix equation (7.17). Since the roots
of φ(z) are ξ1, . . . , ξm+n and since the eigenvalues of S are ξ1, . . . , ξn, it follows that the

eigenvalues of Ŝ are ξ−1n+1, . . . , ξ
−1
m+n. Therefore ρ(Ŝ) < 1.

The properties of the matrices T and T̂ as well as the second factorization of (7.20) can
be similarly proved by using the property[

E 0
−H I

] [
T
I

]
=

[
I −G
0 F

] [
T
I

]
Uγ ,

with Uγ = Cγ(A−BT ).
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The solutions S and T can be expressed in functional form by means of the matrix
Laurent power series ψ(s) =

∑+∞
i=−∞ siψi = ϕ(s)−1, where ϕ(s) is the matrix function

defined in Theorem 7.5, as shown by the following theorem.

Theorem 7.6 ([BMP10b]). The constant coefficient ψ0 of ψ(s) is nonsingular and such

that ψ−10 =

[
−I T
S −I

]
. Moreover, for the sequence {A(k)

1 }k generated by CR, it holds

lim
k→∞

A(k)
1 = lim

k→∞

[
−I Gk
Hk −I

]
=

[
−I T
S −I

]
.

The convergence is quadratic, and more precisely

‖Gk − T‖ =O(ν2
k

), ‖Hk − S‖ =O(ν2
k

),

for any matrix norm ‖·‖, with

ν =
maxi=1,...,n |ξi|

mini=1,...,m |ξn+i|
< 1.

Proof. We observe that the hypotheses of Theorem 5.3 hold since the roots of A(s) coincide
with the eigenvalues ξi of Hγ which are split with respect to the unit disk. Moreover, ψ0 is
nonsingular in view of Theorems 5.5 and 7.5.

The first equation in (7.20) can be written as

ϕ(s) =

(
I − s

[
0 0

QγS Qγ

])[
−I G
S −I

](
I − s−1

[
Rγ 0
SRγ 0

])
.

For |s| = 1, we invert both sides of the last equation to get

ψ(s) := ϕ(s)−1 =

∑
j>0

s−j
[
Rjγ 0
SRjγ 0

]W−1
∑
j>0

sj
[

0 0
QjγS Qjγ

] .

The constant term of ψ(s) =
∑
i∈Z ψis

i is

ψ0 =
∑
j>0

[
Rjγ 0
SRjγ 0

]
W−1

[
0 0

QjγS Qjγ

]

=W−1 +

[
I
S

]∑
j>1

[
Rjγ 0

]
W−1

[
0
Qjγ

][S I
]
.

(7.22)

From Theorem 5.3, one has

lim
k→∞

A(k)
1 = ψ−10

that is,

lim
k→∞

[
−I Gk
Hk −I

]
= ψ−10 . (7.23)

Using (7.22), we can say more about the structure of ψ−10 ; defining

K =
∑
j>1

[
Rjγ 0

]
W−1

[
0
Qjγ

]
,
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we get

ψ−10 =W−1 +

[
I
S

]
K
[
S I

]
.

Applying the Sherman–Morrison–Woodbury (SMW) formula (2.5) yields

ψ0 =W +W
[
I
S

]
K̂−1

[
S I

]
W, (7.24)

where K̂ is the auxiliary matrix to be inverted in the SMW formula. We are not concerned
with the explicit value and structure of K̂ now. Since

W
[
I
S

]
=

[
∗
0

]
,
[
S I

]
W =

[
0 ∗

]
(∗ stands for an arbitrary block of the right size), the second summand in the right-hand
side of (7.24) is nonzero only in its (1, 2) block, thus we get

ψ−10 =

[
−I ∗
S −I

]
.

Combining the latter equation with (7.23) yields limk→∞Hk = S.
Using the second factorization in (7.20), similarly we may show that

ψ−10 =

[
−I T
∗ −I

]
.

Therefore, we conclude that limk→∞Gk = T .

The quadratic convergence of SDA has been proved in [LX06, GIM07, Guo07] under the
more restrictive Assumptions 7.1.1, 7.1.2, 7.1.3, respectively. Our result is valid under the
more general Assumption 7.1.

Shrink-and-shift with UL-based transformation

Here, we combine the shrink-and-shift technique with the UL-based transformation in order
to arrive at a UQME having a splitting with respect to the unit circle.

Formally, we start from H̃ = I − 1
tH, factor it as

H̃ =

[
Dt t−1C
−t−1B At

]
=

[
I −t−1CA−1t
0 A−1t

]−1 [
Dt + t−2CA−1t B 0
−t−1A−1t B I

]
,

with Dt := I − t−1D and At := I + t−1A and reduce it to a UQME with the same structure
as (7.5). Cyclic reduction applied to this UQME leads to the same update rule as SDA with
initial values

Ê0 = Dt + t−2CA−1t B, F̂0 = A−1t ,

Ĝ0 = t−1CA−1t , Ĥ0 = t−1A−1t B.
(7.25)

The advantage is that we get an algorithm with the same computational cost as SDA that
is, 64

3 n
3 ops per step, having somewhat simpler initial values. In the following, we call this

algorithm SDA-ss (for shrink-and-shift), and denote the original SDA by SDA-Cayley when
it is important to distinguish between the two different sets of initial values rather than
focusing on the iteration itself.
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The sequences Gk and Hk converge to T and S, respectively; the convergence speed is
given by the bounds

‖Gk − T‖ =O(ν2
k

), ‖Hk − S‖ =O(ν2
k

)

for ν =
maxi=1,...,n|µi|

mini=1,...,m|µn+i| < 1.

Applicability of the SDA-ss algorithm

Theorem 7.7 ([BMP10b]). Suppose that Assumption 7.1.2 holds with M irreducible, and

choose t as in (7.11). Then for the matrices Êk, F̂k, Ĝk, Ĥk generated by SDA-ss, i.e.,

Algorithm 8 with starting values (7.25), one has Êk, F̂k, Ĝk, Ĥk ≥ 0, Êke > 0; moreover,

I − ĜkĤk and I − ĤkĜk are nonsingular M-matrices. Therefore, SDA-ss is well-defined.

Proof. To obtain this proof, we adapt to our case some of the ideas of the convergence and
applicability proofs for SDA [GLX06, GIM07].

Let us prove by simultaneous induction the following statements: Êk, F̂k, Ĝk, Ĥk ≥ 0;
Êke > 0 and I − ĜkĤk and I − ĤkĜk are nonsingular M-matrices.

First, notice that A−1t ≥ 0 since At is an M-matrix. Due to the choice of t, Dt ≥ 0

and thus for the initial values it holds that Ê0, F̂0, Ĝ0, Ĥ0 ≥ 0. Moreover, Ê0 is irreducible
since Ê0 = 2I − M , where M is a Schur complement of I + t−1M, (see e.g. [GIM07,

Lemma 2.5]); thus it has no zero rows, from which it follows that Ê0e > 0. Moreover, letting
Rt := I − t−1(D − CS), one has Rt ≥ 0. Since R = D − CS is an irreducible M-matrix
[Guo01], Rt has no zero rows, thus Rte > 0.

It is proved in Guo et al. [GLX06] for the SDA case, but it also holds in our case with
the same proof, that

S − Ĥ0 = F̂0SRt, Ê0 = (I − Ĝ0S)Rt.

From the first equation it follows that Ĥ0 ≤ S; from the second, that (I−Ĝ0S)Rte = E0e > 0,

and thus I − Ĝ0S is a nonsingular M-matrix. Thus I − Ĝ0Ĥ0 ≥ I − Ĝ0S is a nonsingular
M-matrix, too. By the SMW formula,

(I − Ĥ0Ĝ0)−1 = I + Ĥ0(I − Ĝ0Ĥ0)−1Ĝ0, (7.26)

thus I − Ĥ0Ĝ0 is a nonsingular M-matrix.
The inductive step is proved with the same techniques. It is easy to prove that

Êk+1, F̂k+1, Ĝk+1, Ĥk+1 ≥ 0; from the fact that I − ĜkĤk is nonsingular it follows that

Êk+1e > 0. The two relations

S − Ĥk+1 = F̂k+1SR
2k+1

t , Êk+1 = (I − Ĝk+1S)R2k+1

t ,

proved in the same way as above [GLX06], allow one to carry out the same proof as in the

base step to conclude that I−Ĝk+1Ĥk+1 and I−Ĥk+1Ĝk+1 are nonsingular M-matrices.

Some remarks on stability

For both the original SDA [GIM07] and its shrink-and-shift modification, the matrices to
be inverted when computing the initial data (k = 0) are “tame” matrices, since they are
submatrices or Schur complements of M+ γI (or M+ t−1I), whose condition number is
controlled by the magnitude of γ (or t).
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It is interesting to point out that in view of Theorem 7.7, the computation of one
iteration step consists in performing products and additions of nonnegative matrices and in
the inversion of the M-matrices I −GkHk and I −HkGk. Multiplication and addition of
nonnegative matrices is a numerically stable computation since it does not involve numerical
cancellation. The only problematic operation from a stability point of view is the inversion of
I−GkHk and I−HkGk. It is proved in C.-H. Guo et al. [GIM07] that under Assumption 7.1.2
and 7.2, I−ST is a nonsingular M-matrix, moreover, since Gk and Hk converge monotonically
increasing to T and S respectively, one has that

∥∥(I −HkGk)−1
∥∥
∞ ≤

∥∥(I − ST )−1
∥∥
∞. That

is, the norms of the inverses of I −GkHk and I −HkGk are uniformly bounded. However,
when the equation is near to the critical case, I − ST is near to a singular matrix, since in
the critical case I − ST is a singular M-matrix. This shows that one could expect some
ill-conditioning in the last steps of the algorithm, when Hk and Gk are near to S and T
respectively.

This is a problem common to all variants of SDA and all methods based on cyclic
reduction; in fact, it depends on the near-singularity of the matrix ψ0 of Theorem 5.5.
This problem is already briefly treated in X.-X. Guo et al.[GLX06, Section 5.2], with the
conclusion that in practice, when this happens, Ek or Fk are very close to zero (to which
they converge quadratically), and thus there is no significant growth in the error bounds.

On the other hand, in view of Theorem 6.11, in the singular case the problem is ill-
conditioned, since the best error bound we can obtain is O(ε1/2), with ε being the machine
precision. It is therefore to be expected that in a neighborhood of the critical case the
approximation error increases accordingly. Up to our knowledge, a complete stability analysis
of SDA is not present in the literature yet.

Theoretical comparison of convergence speeds

It is interesting to compare the expected convergence speeds of the two variants of SDA. In
view of Theorem 7.6, the convergence ratio is given by

ν =
maxi=1,...,n |f(λi)|

mini=1,...,m |f(λn+i)|
,

with f(z) being either the Cayley transform Cγ or the shrink-and-shift transform ft. Using
the fact that the eigenvalues λn and λn+1 are real, one can check that maxi=1,...,n |f(λi)| =
|f(λn)| and mini=1,...,m |f(λn+i)| = |f(λn+1)|. We have

Cγ(λ) = −
1− 1

γλ

1 + 1
γλ

=

(
1− 1

γ
λ

)2

+O

((
λ

γ

)2
)

= fγ(λ)2 +O

((
λ

γ

)2
)
,

so when the two ratios |λn/γ| and |λn+1/γ| are small, the convergence ratio for the Cayley
transform is about the square of the one for the shrink-and-shift with t = γ. Since the
convergence is quadratic, we expect in this case that SDA-ss takes one more iteration than
SDA-Cayley to attain the same precision.

It is therefore important to relate the possible choices of γ and t with the two algorithms.
Under the Assumptions 7.1.2 and 7.2, when the outermost max in (6.27) is attained by the
diagonal of D, or when the two operands are very close, γ for SDA-Cayley and t for SDA-ss
can take roughly the same values. Therefore we may expect that SDA-Cayley takes one less
iteration. In this case, it is not advisable to adopt SDA-ss, since the computational cost of
one more iteration is larger than the difference between the costs of computing the initial
values.
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n sda-Cayley sda-ss ram-ss

20 1× 10−14 (21) 1× 10−14 (22) 4× 10−15 (22)
100 1× 10−13 (23) 1× 10−13 (24) 5× 10−14 (24)
200 2× 10−13 (24) 3× 10−13 (25) 1× 10−13 (25)
500 1× 10−12 (25) 1× 10−12 (26) 4× 10−13 (27)

Table 7.1: Relative residual (and number of iterations needed) for Test 1, for several choices
of the dimension n

On the other hand, when on the diagonal of A there is an element significantly larger
than the ones on the diagonal of D, we can choose a value of t much smaller than the best
possible for γ. In this case, SDA-ss should be faster than SDA-Cayley, due to both the
better convergence ratio and the simpler initial values.

In fact, we can successfully exploit any difference in magnitude between maxAii and
maxDii: when the latter is significantly larger, we may make use of Lemma 6.4 and solve
equation (6.7), which swaps diag(A) and diag(D), instead. Thanks to this lemma, the
minimal solution of (1.5) is the transpose of the minimal solution of (6.7).

7.6 Numerical experiments

We implemented in Matlab and tested the following algorithms:

sda-Cayley: the algorithm based on Cayley transform and UL factorization (SDA), as
outlined in Section 7.5;

sda-ss: the algorithm based on shrink-and-shift and UL factorization, described in Sec-
tion 7.5;

ram-ss: the algorithm based on shrink-and-shift and on Ramaswami’s transformation,
described in Section 7.5.

For all the algorithms, we reported the minimum value of the residual, computed as

‖XCX +B −AX −XD‖∞
‖XCX +B‖∞ + ‖AX +XD‖∞

,

that the algorithm could achieve, and the number of iterations needed in order to reach it.
We applied the algorithms to the following examples.

Test 1 The structured NARE with coefficients in (1.10). Here we have chosen α = 10−10,
c = 1− 10−8, which yields an equation very close to the critical case (α = 0, c = 1).
Several values of the dimension n = m were tested.

Test 2 The equation associated with a randomly chosen singular M-matrix M, generated
using the Matlab commands R=rand(2*n); M=diag(R*ones(2*n,1))-R. Such matrices
are usually very far from the critical case, so the resulting Riccati equation is well
conditioned. Several random matrices of dimension n = 100 were tested.
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Choice sda-Cayley sda-ss ram-ss

1 1× 10−15 (17) 1× 10−15 (18) 3× 10−16 (18)
2 1× 10−15 (18) 1× 10−15 (19) 3× 10−16 (20)
3 8× 10−16 (13) 7× 10−16 (14) 2× 10−16 (14)
4 7× 10−16 (13) 8× 10−16 (14) 3× 10−16 (14)

Table 7.2: Relative residual (and number of iterations needed) for Test 2, for several choices
of a random M-matrix of size 200

Problem sda-Cayley sda-ss ram-ss

Example 2 8× 10−13 (34) 3× 10−12 (19) 5× 10−12 (19)
Example 3 6× 10−12 (18) 3× 10−12 (4) 2× 10−12 (4)

Table 7.3: Examples 2 and 3 of Bean et al.

Test 3 Examples 2 and 3 of Bean et al. [BOT05]: two Riccati equations of small dimension,
the former close to the critical case, the latter strongly positive recurrent. These
equations are particularly well suited to show how large differences between the
magnitude of the diagonals of A and D affect the convergence of the algorithms.
Example 2 has maxAii = 100.002, maxDii = 0.003; Example 3 has maxAii = 0.018,
maxDii = 170.002 and was solved using the transposed form (6.7).

From the results, it emerges that ram-ss is generally able to achieve a marginally better
precision, but with a larger computational cost ( 74

3 n
3 instead of 64

3 n
3 per iteration). The

precisions achieved with the two variants of SDA are usually comparable.
When the diagonal elements of A and D are of similar magnitude, such as in Tests 1

and 2, the analysis of Section 7.5 is confirmed by the experiments: sda-ss and ram-ss

consistently take one more iteration than sda-Cayley to achieve the same precision. In
these cases, the running time of sda-ss (not reported here) is slightly larger, since the
simpler starting matrices do not compensate the cost of one more step of the iteration.

On the contrary, in Test 3, with sda-ss we have the possibility to choose a much more
favorable value of t at no extra cost, due to the difference in magnitude between the diagonals
of the coefficients. This provides a significant saving in the number of iterations needed
by this algorithm with respect to the other two. In fact, the ratio between the number of
iterations needed by sda-Cayley and by sda-ss is greater than 4, for Example 3.

7.7 Conclusions and research lines

The interpretation provided in this chapter casts new light on SDA and on the relationship
between UQMEs and NAREs. With this new setting, several other approaches to the
solution of the NARE can be developed. Some possible ideas are:

• using numerical integration and the Cauchy integral theorem for computing the matrix
ψ0 of Theorem 7.6;

• using functional iterations borrowed from stochastic processes (QBD) for solving the
UQME;
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• using Newton’s iteration applied to the UQME trying to exploit the specific matrix
structure.

Moreover, it would be interesting to test other functions f mapping λ1, . . . , λn inside
the unit circle and the other eigenvalues outside, and see if more general results regarding
the applicability of the SDA iteration hold true in these cases.
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Rank-structured NAREs
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Chapter 8

Storage-optimal algorithms for
Cauchy-like matrices

8.1 Introduction

Several classes of algorithms for the numerical solution of Toeplitz-like and Cauchy-like
linear systems exist in the literature. We refer the reader to [VBHK01] for an extended
introduction on this topic, with descriptions of each method and plenty of citations to the
relevant papers, and only summarize them in Table 8.1.

The Levinson algorithm is known to be unstable even for large classes of symmetric
positive definite matrices [Cyb80]; stabilization techniques such as look-ahead may raise the
computational cost from O(n2) to O(n3) or from O(n log2 n) to O(n2). A mixed approach
like the one in the classical Fortran code by Chan and Hansen [HC92] bounds the complexity
growth, but may fail to remove the instability. The GKO algorithm is generally stabler
[GKO95], even though in limit cases the growth of the coefficients appearing in the Cauchy-
like generators may lead to instability. Though superfast Toeplitz solvers have a lower
asymptotic computational cost, when the system matrix is nonsymmetric and ill-conditioned
O(n2) algorithms such as the GKO algorithm [GKO95] are still attractive.

In this chapter we deal with the GKO algorithm for Cauchy-like matrices. Any given
Toeplitz matrix can be converted [GKO95] to a Cauchy-like matrix with displacement
rank r = 2 in O(n log n) ops and O(n) memory locations, so that algorithms designed for
Cauchy-like matrices can deal with Toeplitz and Toeplitz-like systems.

Table 8.1: Existing algorithms for solving Toeplitz and Toeplitz-like linear systems

Name Operations Memory Stability remarks

Levinson O(n2) O(n) stable only for some symmetric matrices

Schur-Bareiss O(n2) O(n2) backward stable only for symmetric, positive
definite matrices

GKO O(n2) O(n2) stable in practice in most cases

Superfast O(n log2 n) O(n) leading constant may be large; may be unstable
in the nonsymmetric case

83
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In 1994, Kailath and Chun [KC94] showed that it is possible to express the solution of
a linear system with Cauchy-like matrix as the Schur complement of a certain structured
augmented matrix. In 2006, in a paper on Cauchy-like least squares problems, G. Rodriguez
exploited this idea to design a variation of GKO using only O(n) memory locations.

In the first part of the present chapter, we provide an alternative O(n)-space imple-
mentation of the Schur Cauchy-like system solution algorithm, having several desirable
computational properties.

Moreover, in some applications, a special kind of partially reconstructible Cauchy-like
matrices appears, i.e., those in which the main diagonal is not reconstructible. We call them
Trummer-like, as they are associated with Trummer’s problem [Ger88]. We show how the
O(n)-storage algorithms adapt nicely to this case, allowing one to develop an integrated
algorithm for their fast inversion. In particular, one of the key steps in order to obtain a full
representation of their inverse is the calculation of diag(T−1) for a given Trummer-like T .

8.2 Basic definitions

Throughout the chapter, we say that a vector s ∈ Cn is injective if si 6= sj for all i, j =
1, 2, . . . , n such that i 6= j.

Displacement operators and Cauchy-like matrices

Let t, s ∈ Cn. We denote by ∇t,s the operator Cn×n → Cn×n which maps M to

∇t,s(M) := diag(t)M −M diag(s).

A matrix C ∈ Cn×n is called Cauchy-like (with displacement rank r) if there are vectors t, s
and matrices G ∈ Cn×r, B ∈ Cr×n such that

∇t,s(C) = GB. (8.1)

Notice that if we allow r = n, then any matrix is Cauchy-like. In the applications, we are
usually interested in cases in which r � n, since the computational cost of all the involved
algorithms depends on r.

A Cauchy-like matrix is called a quasi-Cauchy matrix if r = 1, and Cauchy matrix if
G∗ = B = (1, 1, . . . , 1). Usually, it is assumed that the operator ∇t,s is nonsingular, or
equivalently, ti 6= sj for all pairs i, j. Under this assumption, the elements of C can be
written explicitly as

Cij =

∑r
l=1GilBlj
ti − sj

, (8.2)

thus C can be fully recovered from G, B, t and s. Otherwise, the latter formula only holds
for the entries Cij such that ti 6= sj , and C is said to be partially reconstructible. The
matrices G and B are called the generators of C, and the elements of t and s are called
nodes. The vectors t and s are called node vectors, or displacement vectors.

Trummer-like matrices

In Section 8.6, we deal with the case in which t = s is injective, that is, when the non-
reconstructible elements are exactly the ones belonging to the main diagonal. We use ∇s as
a shorthand for ∇s,s. If ∇s(T ) = GB has rank r, a matrix T is called Trummer-like (with
displacement rank r). Notice that a Trummer-like matrix can be fully recovered from G, B, s,
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and d = diag(T ). Trummer-like matrices are related to interpolation problems [Ger88], and
may arise from the transformation of Toeplitz and similar displacement structure [KO97], or
directly from the discretization of differential problems [BIP08].

8.3 Overview of the GKO Schur step

Derivation

The fast LU factorization of a Cauchy-like matrix C is based on the following lemma.

Lemma 8.1. [KS95] Let

C =

[
C1,1 C1,2:n

C2:n,1 C2:n,2:n

]
satisfy the displacement equation (8.1), and suppose C1,1 nonsingular. Then its Schur
complement C(2) = C2:n,2:n − C2:n,1C1,1

−1C1,2:n satisfies the displacement equation

diag(t2:n)C(2) − C(2) diag(s2:n) = G(2)B(2),

with

G(2) = G2:n,1:r − C2:n,1C1,1
−1G1,1:r, B

(2) = B1:r,2:n −B1:r,1C1,1
−1C1,2:n. (8.3)

Using this lemma, we can construct the LU factorization of C with O(n2) floating point
operations (ops). The algorithm goes on as follows. Given G(1) = G, B(1) = B, and the two
vectors s and t, recover the pivot C1,1, the first row C1,2:n and the first column C2:n,1 of C
using the formula (8.2). This allows to calculate easily the first row of U as

[
C1,1 C1,2:n

]
and the first column of L as

[
1 CT2:n,1C1,1

−1]T . Then use equations (8.3) to obtain the

generators G(2) and B(2) of the Schur complement C(2) of C. Repeat the algorithm setting
G ← G(2), B ← B(2), s ← s2:n and t ← t2:n to get the second row of U and the second
column of L, and so on. A simple implementation is outlined in Algorithm 9. Note that
for the sake of clarity we used two different variables L and U ; in fact, it is a widely used
technique to have them share the same n× n array, since only the upper triangular part of
the matrix is actually used in U , and only the strictly lower triangular part in L. When the

Algorithm 9: LU factorization of Cauchy-like matrices [GKO95]

input: G ∈ Cn×r, B ∈ Cr×n, t, s ∈ Cn generators of the matrix C
output: LU factors L,U ∈ Cn×n of C (can share the same storage space)
L← In, U ← On
for k = 1 to n− 1 do
Uk,` ← Gk,:B:,`

tk−s` for all ` = k to n

L`,k ← U−1k,k
G`,:B:,k

t`−sk for all ` = k + 1 to n
G`,: ← G`,: − L`,kGk,: for all ` = k + 1 to n
B:,` ← B:,` − U−1k,kB:,kUk,` for all ` = k + 1 to n

end for
Un,n ← Gn,:B:,n

tn−sn
return L,U

LU factorization is only used for the solution of a linear system in the form Cx = b, with
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b ∈ Cn×m, it is a common technique to avoid constructing explicitly L, computing instead
L−1b on-the-fly as the successive columns of L are computed. This is also possible with the
GKO algorithm, as shown in Algorithm 10.

Algorithm 10: Solving a system Cx = b with implicit L factor and pivoting [GKO95]

input: G ∈ Cn×r, B ∈ Cr×n, t, s ∈ Cn generators of the matrix C
input: b ∈ Cn×m right-hand side
output: x = C−1b
{temporary variables: l ∈ Cn, U ∈ Cn×n}
U ← On
x← b
for k = 1 to n− 1 do
l` ← G`,:B:,k

t`−sk for all ` = k to n

q ← argmax`=k,k+1,...,n |l`| {Finds pivot position}
p← lq {pivot}
if p=0 then

print ’error: singular matrix’
end if
swap lk and lq; xk,: and xq,:; Gk,: and Gq,:; tk and tq
Uk,k ← p

Uk,` ← Gk,:B:,`

tk−s` for all ` = k + 1 to n

x`,: ← x`,: − l`(p−1xk,:) for all ` = k + 1 to n
G`,: ← G`,: − l`(p−1Gk,:) for all ` = k + 1 to n
B:,` ← B:,` − p−1B:,kUk,` for all ` = k + 1 to n

end for
Un,n ← Gn,:B:,n

tn−sn
xn,: ← xn,:/Un,n {start of the back-substitution step}
for k = n− 1 down to 1 do
xk,: ← xk,: − Uk,`x`,: for all ` = k + 1 to n
xk,: ← xk,:/Uk,k

end for
return x

Comments

Notice that Algorithm 10 includes partial pivoting. Its total cost is (4r + 2m+ 1)n2 + o(n2)
ops, when applied to a matrix C with displacement rank r and an n×m right-hand side.
The algorithm works whenever C is a completely reconstructible Cauchy matrix; if it is
not the case, when the number of non-reconstructible entries is small, the algorithm can be
modified to store and update them separately, see e.g. Kailath and Olshevsky [KO97] or
Section 8.6.

However, there is an important drawback in Algorithm 10: while the size of the input
and output data is O(n) (for small values of m and r), O(n2) memory locations of temporary
storage are needed along the algorithm to store U . Therefore, for large values of n the
algorithm cannot be effectively implemented on a computer because it does not fit in the
RAM.
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Moreover, another important issue is caching. Roughly speaking, a personal computer
has about 512 kb–8 Mb of cache memory, where the most recently accessed locations of
RAM are copied. Accessing a non-cached memory location is an order of magnitude slower
than a cached one. The real behavior of a modern processor is more complicated than this
simple model, due to the presence of several different levels of cache, each with its own
performance, and instruction pipelines [HP03]. Nevertheless, this should highlight that when
the used data do not fit anymore into the cache, saving on memory could yield a greater
speedup than saving on floating point operations.

8.4 Low-storage version of GKO: the extended matrix approach

Derivation

The following algorithm to solve the high storage issue in GKO was proposed by Rodriguez
[Rod06] in 2006, while dealing with least squares Cauchy-like problems. More recently, a
deeper analysis and a ready-to-use Matlab implementation were provided by Aricò and
Rodriguez [AR09].

The approach is based on an idea that first appeared in Kailath and Chun [KC94]. Let
us suppose that C is a completely reconstructible Cauchy-like matrix and that s is injective.
The solution of the linear system Cx = b can be expressed as the Schur complement of C in
the rectangular matrix

C̃ :=

[
C b
−I 0

]
.

Thus, we can compute x by doing n steps of Gaussian elimination on C̃. Moreover, the first
block column of C̃ is a partially reconstructible Cauchy-like matrix with respect to the node
vectors

s̃ :=

[
t
s

]
and t; therefore, while performing the Gaussian elimination algorithm, the entries of this
block can be stored and updated in terms of the generators, as in Algorithm 9. Unlike the
previous algorithms, we may discard the rows of U and columns of L as soon as they are
computed, keeping only the generators. Instead, the entries in the second block column are
computed with customary Gaussian elimination and stored along all the algorithm.

The following observations, which are needed later, should make clearer what is going on
with this approach.

Lemma 8.2. Suppose for simplicity that no pivoting is performed; let L and U be the LU
factors of C, x be the solution to the linear system Cx = b, y be the solution to Ly = b, and
W = U−1. Let k denote the step of Gaussian elimination being performed, with e.g. k = 1
being the step that zeroes out all the elements of the first column but the first. During the
algorithm,

1. The (i, j) entry of the (1, 1) block is updated at all steps k with k < min(i, j+ 1). After
its last update, it contains Ui,j.

2. The (i, j) entry of the (1, 2) block is updated at all steps k with k < i. After its last
update, it contains yi,j.

3. The (i, j) entry of the (2, 2) block is updated at all steps k with k ≥ i. In particular,
the last step (k = n) updates all entries, and after that the (2, 2) block contains xi,j.



88 II. Rank-structured NAREs

4. The (i, j) entry of the (2, 1) block is updated at all steps k with i ≤ k ≤ j. After its last
update, it contains 0. Immediately before that, i.e., just after step j − 1, it contains
−Wi,jUj,j.

Proof. From the structure of Gaussian elimination, it can easily be verified that the entries
are only updated during the above mentioned steps. In particular, for the condition on
updates to the (2, 1) block, it is essential that the initial (2, 1) block initially contains a
diagonal matrix. Regarding which values appear finally in each position,

1. is obvious: in fact, if we ignore all the other blocks, we are doing Gaussian elimination
on C.

2. is easily proved: since the row operations we perform transform C = LU to U , they
must be equivalent to left multiplication by L−1.

3. is a consequence of the well-known fact that after n steps of Gaussian elimination we
get the Schur complement of the initial matrix in the trailing diagonal block.

4. is less obvious. Let us call Zi,k the value of the (i, k) entry of the (2, 1) block right
after step k − 1, and consider how the entries of the (2, 2) block are updated along
the algorithm. They are initially zero, and at the kth step the one in place (i, j) is
incremented by −(Zi,k/Uk,k)yk,j , so its final value is

xi,j = −
∑
k

(Zi,k/Uk,k)yk,j .

Since for each choice of b (and thus of y = L−1b) Zi,k and Wi,k are unchanged, as they
only depend on C, and it holds that

xi,j = (U−1y)i,j =
∑
k

Wi,kyk,j ,

the only possibility is that Wi,k = −Zi,k/Uk,k for each i, k.

We report here the resulting Algorithm 11.

Comments

It is worth mentioning that several nice properties notably simplify the implementation.

• The partial reconstructibility of C̃ is not an issue. If the original matrix C is fully
reconstructible and s is injective, then the non-reconstructible entries of C̃ are the
ones in the form C(n+ k, k) for k = 1, . . . , n, that is, the ones in which the −1 entries
of the −I block initially lie. It is readily shown that whenever the computation of
such entries is required, their value is the initial one of −1.

• At each step of the algorithm, the storage of only n rows of G and of the right block
column x is required: at step k, we only need the rows with indices from k to n+ k− 1
(as the ones below are still untouched by the algorithm, and the ones above are not
needed anymore). It is therefore possible to reuse the temporary variables to store the
rows modulo n, thus halving the storage space needed for some of the matrices.
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Algorithm 11: Solving a system Cx = b with the extended matrix algorithm [AR09]

input: G ∈ Cn×r, B ∈ Cr×n, t, s ∈ Cn generators of the matrix C
input: b ∈ Cn×m right-hand side
output: x = C−1b
{temporary variables: l, u ∈ Cn}
x← b
for k = 1 to n− 1 do
l` ← G`,:B:,k

s`−sk for all ` = 1 to k − 1

l` ← G`,:B:,k

t`−sk for all ` = k to n

q ← argmax`=k,k+1,...,n |l`| {Finds pivot position}
p← lq {pivot}
if p=0 then

print ’error: singular matrix’
end if
swap lk and lq; xk,: and xq,:; Gk,: and Gq,:; tk and tq
u` ← Gk,:B:,`

tk−s` for all ` = k + 1 to n

xk,: ← p−1xk,:
x`,: ← x`,: − l`xk,: for all ` 6= k
Gk,: ← p−1Gk,:
G`,: ← G`,: − l`Gk,: for all ` 6= k
B:,` ← B:,` − p−1B:,ku` for all ` = k + 1 to n

end for
l` ← G`,:B:,k

s`−sk for all ` = 1 to n− 1

p← Gn,:B:,n

tn−sn
xn,: ← p−1xn,:
x`,: ← x`,: − l`xn,: for all ` 6= n
return x

• Pivoting can be easily included without destroying the block structure by acting only
on the rows belonging to the first block row of C̃.

Algorithm 11 uses (6r + 2m + 3
2 )n2 + o(n2) floating point operations, and it can be

implemented so that the input variables G, B, t, b are overwritten during the algorithm,
with x overwriting b, so that it only requires 2n memory locations of extra storage (to keep
l and u).

As we stated above, for the algorithm to work we need the additional assumption that
s is injective, i.e., si 6= sj for all j. This is not restrictive when working with Cauchy-like
matrices derived from Toeplitz matrices or from other displacement structured matrices; in
fact, in this case the entries si are the n complex nth roots of a fixed complex number, thus
not only are they different, but their differences si − sj can be easily bounded from below,
which is important to improve the stability of the algorithm. This is a common assumption
when dealing with Cauchy matrices, since a Cauchy (or quasi-Cauchy) matrix is nonsingular
if and only if x and y are injective. For Cauchy-like matrices this does not hold, but the
injectivity of the two vectors is still related to the singularity of the matrix: for instance, we
have the following result.

Lemma 8.3. Let s have r + 1 repeated elements, that is, si1 = si2 = · · · = sir+1 = s. Then
the Cauchy-like matrix (8.2) is singular.
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Proof. Consider the submatrix C ′ formed by the r+ 1 columns of C with indices i1, . . . , ir+1.
It is the product of the two matrices G′ ∈ Cn×r and B′ ∈ Cr×r+1, with

(G′)ij =
Gij
ti − s

, (B′)ij = Bisj .

Therefore C ′ (and thus C) cannot have full rank.

8.5 Low-storage version of GKO: the downdating approach

Derivation

In this section, we describe a different algorithm to solve a Cauchy-like system using only
O(n) locations of memory [Pol10a]. Our plan is to perform the first for loop in Algorithm 10
unchanged, thus getting y = L−1b, but discarding the computed entries of U which would
take O(n2) memory locations, and then to recover them via additional computations on the
generators.

For the upper triangular system Ux = y to be solved incrementally by back-substitution,
we would like the entries of the matrix U to be available one row at a time, starting from
the last one, and after the temporary value y = L−1b has been computed, that is, after the
whole LU factorization has been performed.

Let G(k) (B(k)) denote the contents of the variable G (resp. B) after step k. The key
idea is trying to undo the transformations performed on B step by step, trying to recover
B(k) from B(k+1). Because of the way in which the generators are updated in Algorithms 9
and 10, the first row of G(k) and the first column of B(k) are kept in memory untouched by
iterations k + 1, . . . , n of the GKO algorithm. Thus we can use them in trying to undo the
kth step of Gaussian elimination.

Let us suppose we know B(k+1), i.e., the contents of the second generator B after the

(k + 1)st step of Gaussian elimination, and the values of G
(k)
k,: and B

(k)
:,k , which are written

in G and B by the kth step of Gaussian elimination and afterward unmodified (since the
subsequent steps of Algorithm 10 do not use those memory locations anymore).

We start from the second equation of (8.3) and (8.2) for the kth row of U , written using
the colon notation for indices.

B
(k+1)
:,` = B

(k)
:,` −B

(k)
:,k Uk,k

−1Uk,`, ` > k,

Uk,` =
G

(k)
k,:B

(k)
:,`

tk − s`
, ` ≥ k.

Substituting B
(k)
:,` from the first into the second, and using the k = ` case of the latter to

deal with Uk,k, we get

Uk,` =
G

(k)
k,:B

(k+1)
:,`

tk − s`
+
G

(k)
k,:B

(k)
:,k Uk,k

−1

tk − s`
Uk,` =

G
(k)
k,:B

(k+1)
:,`

tk − s`
+
tk − sk
tk − s`

Uk,`

and thus

Uk,` =
G

(k)
k,:B

(k+1)
:,`

sk − s`
, ` ≥ k, (8.4)

B
(k)
:,` = B

(k+1)
:,` +B

(k)
:,k Uk,k

−1Uk,`, ` > k. (8.5)
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The above equations allow one to recover the value of B
(k)
:,` for all ` > k using only B

(k+1)
:,` ,

G
(k)
k,: and B

(k)
:,k as requested.

By applying the method just described repeatedly for k = n − 1, n − 2, . . . , 1, we are
able to recover one at a time the contents of B(n−1), B(n−2), . . . , B(1), which were computed
(and then discarded) in the first phase of the algorithm. I.e., at each step we “downdate”
B to its previous value, reversing the GKO step. In the meantime, we get at each step
k = n − 1, n− 2, . . . , 1 the kth row of U . In this way, the entries of U are computed in a
suitable way to solve the system Ux = y incrementally by back-substitution.

We report here the resulting Algorithm 12.

Algorithm 12: Solving a system Cx = b with the downdating algorithm

input: G ∈ Cn×r, B ∈ Cr×n, t, s ∈ Cn generators of the matrix C
input: b ∈ Cn×m right-hand side
output: x = C−1b
{temporary variables: l, u ∈ Cn}
x← b
for k = 1 to n− 1 do
l` ← G`,:B:,k

t`−sk for all ` = k to n

q ← argmax`=k,k+1,...,n |l`| {Finds pivot position}
p← lq {pivot}
if p=0 then

print ’error: singular matrix’
end if
swap lk and lq; xk,: and xq,:; Gk,: and Gq,:; tk and tq
uk ← p
u` ← Gk,:B:,`

tk−s` for all ` = k + 1 to n

x`,: ← x`,: − p−1l`xk,: for all ` = k + 1 to n
G`,: ← G`,: − p−1l`Gk,: for all ` = k + 1 to n
B:,` ← B:,` − p−1B:,ku` for all ` = k + 1 to n

end for
un ← Gn,:B:,n

tn−sn
xn,: ← xn,:/un {start of the back-substitution step}
for k = n− 1 down to 1 do
u` ← Gk,:B:,`

sk−s` for all ` = k + 1 to n

B:,` ← B:,` + u−1k B:,ku` for all ` = k + 1 to n
xk,: ← xk,: − u`x`,: for ` = k + 1 to n
xk,: ← xk,:/uk

end for
return x

Comments

Notice that pivoting only affects the first phase of the algorithm, since the whole reconstruc-
tion stage can be performed on the pivoted version of C without additional row exchanges.

This algorithm has the same computational cost, (6r+ 2m+ 3
2 )n2 + o(n2), and needs the

same number of memory locations, 2n, as the extended matrix approach. Moreover, they
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both need the additional property that s be injective, as an sk − s` denominator appears in
(8.4). These facts may lead one to suspect that they are indeed the same algorithm. However,
it is to be noted the two algorithms notably differ in the way in which the system Ux = y is
solved: in the extended matrix approach we solve this system by accumulating the explicit
multiplication U−1y, while in the downdating approach we solve it by back-substitution.

Several small favorable details suggest adopting the latter algorithm:

• With the extended matrix approach, we do not get any entry of x before the last step.
On the other hand, with the downdating approach, as soon as the first for cycle is
completed, we get xn, and then after one step of the downdating part we get xn−1, and
so on, getting one new component of the solution at each step. This is useful because
in the typical use of this algorithm on Toeplitz matrices, x is the Fourier transform of
a “meaningful” vector, such as one representing a signal, or an image, or the solution
to an equation. Using the correct ordering, the last entries of a Fourier transform can
be used to reconstruct a lower-sampled preview of the original data, with no additional
computational overhead, see e.g. Walker[Wal96]. Thus with this approach we can
provide an approximate solution after only the first part of the algorithm is completed.

• In the extended matrix version, each step of the algorithm updates O(nr) memory
locations. Instead, in the downdating version, for each k, the (n− k)th and (n+ k)th
step work on O(kr) memory locations. Therefore, the “innermost” iterations take
only a small amount of memory and thus fit better into the processor cache. This is a
desirable behavior similar to the one of cache-oblivious algorithms [FLPR99].

• In exact arithmetic, at the end of the algorithm the second generator B of the matrix
C is reconstructed as it was before the algorithm. In floating point arithmetic, this
can be used as an a posteriori accuracy test: if one or more entries of the final values
of B are not close to their initial value, then there was a noticeable algorithmic error.

8.6 Computations with Trummer-like matrices

A special class of Cauchy-like matrices which may arise in application [Ger88, KO97, BIP08,
BMP09] is that of Trummer-like matrices, i.e., those for which the two node vectors coincide
(t = s) and are injective. The partial reconstructibility of these matrices requires special care
to be taken in the implementation of the solution algorithms. The O(n)-storage algorithms
we have presented can be adapted to deal with this case. Moreover, it is a natural request
to ask for an algorithm that computes the generators of T−1 given those of T . Such an
algorithm involves three different parts: the solution of a linear system with matrix T
and multiple right-hand side; the solution of a similar system with matrix T ∗, and the
computation of diag(T−1). We show that an adaptation of the algorithm presented in
Algorithm 8.4 can perform all three at the same time, fully exploiting the fact that these
three computations share a large part of the operations involved.

The following results, which are readily proved by expanding the definition of ∇s on
both sides, are simply the adaptation of classical results on displacement ranks (see e.g.
Heinig and Rost [HR84]) to the Trummer-like case. Notice the formal similarity with the
derivative operator.

Lemma 8.4. Let A,B ∈ Cn×n, and let r(X) = rk∇s(A).

1. ∇s(A+B) = ∇s(A) +∇s(B), so r(A+B) ≤ r(A) + r(B).

2. ∇s(AB) = ∇s(A)B +A∇s(B), so r(AB) ≤ r(A) + r(B).
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3. ∇s(A−1) = −A−1∇s(A)A−1, so r(A−1) = r(A).

As we saw in Section 8.2, a Trummer-like matrix can be completely reconstructed by
knowing only the node vector s, the generators G and B, and its diagonal d = diag(T ).
In this section, we are interested in implementing fast—i.e., using O(n2) ops—and space-
efficient—i.e., using O(n) memory locations—matrix-vector and matrix-matrix operations
involving Trummer-like matrices stored in this form.

Matrix-vector product

For the matrix-vector product, all we have to do is reconstructing one row at a time
of the matrix T and then computing the customary matrix-vector product via the usual
formula (Tv)i =

∑
j Tijvj . Approximate algorithms for the computation of the Trummer-like

matrix-vector product with O(n log2 n) ops also exist, see e.g. Bini and Pan [BP94b].

Matrix-matrix operations

The matrix product between two Trummer-like matrices T and S is easy to implement: let
GT and BT (resp. GS and BS) be the generators of T (resp. S); then, by Lemma 8.4, the
generators of TS are [

TGS GT
]
,

[
BS
BTS

]
,

while diag(TS) can be computed in O(n2) by recovering at each step one row of T and one
column of S and computing their dot product. Sums are similar: the generators of S+T are

[
GS GT

]
,

[
BS
BT

]
,

and its diagonal is dS + dT .

Linear systems

Linear system solving is less obvious. Kailath and Olshevsky [KO97] suggested the following
algorithm: the GKO Gaussian elimination is performed, but at the same time the computed
row Uk,k:n and column Lk:n,k are used to update the diagonal d to the diagonal of the Schur
complement, according to the customary Gaussian elimination formula

T
(k+1)
i,i = T

(k)
i,i − Li,k(T

(k)
k,k )−1Uk,i. (8.6)

It is easy to see that this strategy can be adapted to both the extended matrix and the
downdating version of the algorithm, thus allowing one to implement GKO with O(n) storage
also for this class of matrices.

However, a more delicate issue is pivoting. Kailath and Olshevsky [KO97] do not deal
with the general case, since they work with symmetric matrices and with a symmetric kind
of pivoting that preserves the diagonal or off-diagonal position of the entries. Let us consider
the pivoting operation before the kth step of Gaussian elimination, which consists in choosing
an appropriate row q and exchanging the kth and qth rows. The main issue here is that the
two non-reconstructible entries that were in position Tkk and Tqq, now are in positions Tqk
and Tkq. This requires special handling in the construction of the kth row in the Gaussian
elimination step, but luckily it does not affect the successive steps of the algorithm, since
the kth column and row are not used from step k + 1 onwards. On the other hand, the
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entry Tqq, which used to be non-reconstructible before pivoting, is now reconstructible. We
may simply ignore this fact, store it in d and update it with the formula (8.6) as if it were
not reconstructible. The algorithm is reported here as Algorithm 13. The extended matrix

Algorithm 13: Solving a system Tx = b with the downdating algorithm

input: G ∈ Cn×r, B ∈ Cr×n, s ∈ Cn generators of the matrix T
input: d ∈ Cn diagonal of T
input: b ∈ Cn×m right-hand side
output: x = T−1b
{temporary variables: l, u ∈ Cn}
{temporary variable: σ ∈ Nn vector of integer indices used to keep track of the
permutation performed during the pivoting}
σ(i)← i for all i = 1 to n {initializes σ as the identity permutation}
for k = 1 to n− 1 do
lk ← dk
l` ← G`,:B:,k

sσ(`)−sk for all ` = k + 1 to n

q ← argmax`=k,k+1,...,n |l`| {Finds pivot position}
p← lq {pivot}
if p=0 then

print ’error: singular matrix’
end if
swap lk and lq; xk,: and xq,:; Gk,: and Gq,:; σ(k) and σ(q)
uk ← p
u` ← Gk,:B:,`

sσ(k)−s` for all ` = k + 1 to n, ` 6= q

uq ← dq {non-reconstructible entry that moved off-diagonal after pivoting}
x`,: ← x`,: − p−1l`xk,: for all ` = k + 1 to n
G`,: ← G`,: − p−1l`Gk,: for all ` = k + 1 to n
B:,` ← B:,` − p−1B:,ku` for all ` = k + 1 to n
d` ← d` − p−1l`u` for all ` = k + 1 to n{Gaussian elimination on the diagonal}
if q 6= k then {dq may be reconstructible after the pivoting — but we store it
explicitly anyway}
dq ← Gq,:B:,q

sσ(q)−sq
end if

end for
un ← Gn,:B:,n

sσ(n)−sn
xn,: ← xn,:/un {start of the back-substitution step}
for k = n− 1 down to 1 do
u` ← Gk,:B:,`

sk−s` for all ` = k + 1 to n

B:,` ← B:,` + u−1k B:,ku` for all ` = k + 1 to n
xk,: ← xk,: − u`x`,: for ` = k + 1 to n
xk,: ← xk,:/uk

end for
return x

version of the algorithm can also be modified in a similar way — we see this in more detail
in the next paragraph.
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Matrix inversion

Matrix inversion poses an interesting problem too. The generators of T−1 can be easily
computed as T−1G and −BT−1 by resorting to Lemma 13 applied twice on T and T ∗.
However, whether we try to compute the representation of T−1 or directly that of T−1S
for another Trummer-like matrix S, we are faced with the problem of computing diag(T−1)
given a representation of T . There appears to be no simple direct algorithm to extract it in
time O(n2) from the LU factors of T .

A possible solution could be based on the decomposition T−1 = diag(f) + F , with f a
vector and F a matrix with diag(F ) = [0, 0, . . . , 0]T . In fact, notice that F depends only on
the generators of the inverse; therefore, after computing them, one could choose any vector
v for which T−1v has already been computed (e.g., G:,1) and solve for the entries of f in the
equation T−1v = diag(f)v + Fv. This solution was attempted in [BMP09], but was found
to have unsatisfying numerical properties.

We present here a different solution based on the observations of Lemma 8.2, that allows
to compute the diagonal together with the inversion algorithm [Pol10a]. Let us ignore
pivoting in this first stage of the discussion. Notice that the last part of Lemma 8.2 shows
us a way to compute (U−1)1:k,k at the kth step of the extended matrix algorithm. Our plan
is to find a similar way to get (L−1)k,1:k at the same step, so that we can compute the sums

(T−1)i,i =
∑
k

(U−1)i,k(L−1)k,i, i = 1, . . . , n, (8.7)

one summand at each step, accumulating the result in a temporary vector.
The following result holds.

Lemma 8.5. Let T be Trummer-like with generators G and B, nodes s and diagonal d,
T = LU be its LU factorization, and D = diag(p), where pi = Ui,i are the pivots.

1. The LU factorization of T ∗, the transpose conjugate of T , is (U∗D−1)(DL∗).

2. The matrix T ∗ is Trummer-like with nodes s, diagonal d and generators B∗ and G∗.

3. Let G(k) and B(k) be the content of the variables G and B after the kth step of the

GKO algorithm on T , and G
(k)

and B
(k)

be the content of the same variables after

the same step of the GKO algorithm on T ∗. Then, G
(k)

= (B(k))∗ and B
(k)

= (G(k))∗

Proof. The matrices U∗D−1 and DL∗ are respectively unit lower triangular and upper
triangular. Thus the first part holds by the uniqueness of the LU factorization. The second
part is clear, and the last one follows by writing down the formula (8.3) for T and T ∗.

Therefore, there is much in common between the GKO algorithm on T and T ∗, and
the two can be carried on simultaneously saving a great part of the computations involved.
Moreover, in the same way as we obtain (U−1)1:k,k, we may also get at the kth step its
equivalent for T ∗, i.e., ((DL∗)−1)1:,k = pk(L−1)k,1:k. Since pk, the kth pivot, is also known,
this allows to recover (L−1)k,1:k.

Thus we have shown a way to recover both (U−1)1:k,k and (L−1)k,1:k at the kth step of
the extended matrix algorithm, and this allows to compute the kth summand of (8.7) for
each i.
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Pivoting

How does pivoting affect this scheme for the computation of diag(T−1)? If T = PLU ,
formula (8.7) becomes

(T−1)i,i =
∑
k

(U−1)i,k(L−1P−1)k,i, i = 1, . . . , n. (8.8)

The permutation matrix P , of which we already have to keep track during the algorithm, acts
on L−1 by scrambling the column indices i, so this does not affect our ability to reconstruct
the diagonal, as we still have all the entries needed to compute the kth summand at each
step k. We only need to take care of the order in which the elements of (U−1)1:k,k and
(L−1)k,1:k are paired in (8.8).

The complete algorithm, which includes pivoting, is reported here as Algorithm 14.

Comments

It is worth noting with the same run of the GKO algorithm we can compute diag(T−1) and
solve linear systems with matrices T and T ∗, as the two algorithms share many of their
computations. In particular, the solutions of the two systems giving T−1G and BT−1, which
are the generators of T−1, are computed by the algorithm with no additional effort: the
transformations on G and B needed to solve them are exactly the ones that are already
performed by the factorization algorithm. Also observe that, since the computation of
(T−1)i,i spans steps i to n, while di is needed from step 1 to step i, we may reuse the vector
d to store the diagonal of the inverse. The resulting algorithm has a total computational
cost of (8r + 2m1 + 2m2 + 5)n2 ops, if we solve at the same time a system Tx = b with
b ∈ Cn×m1 and a system yT = c with c ∈ Cm2×n (otherwise just set m1 = 0 and/or m2 = 0).
The only extra storage space needed is that used for u, l and σ, i.e., the space required to
store 2n real numbers and n integer indices.

Another observation is that we did not actually make use of the fact that the diagonal of
T is non-reconstructible: in principle, this approach works even if C is a Cauchy-like matrix
with respect to two different node vectors t and s. This might be useful in cases in which we
would rather not compute explicitly the diagonal elements, e.g. because ti − si is very small,
and thus would lead to ill-conditioning.

8.7 Numerical experiments

We denote by ‖·‖ the Euclidean 2-norm for vectors and the Frobenius norm for matrices.

Speed measurements

The speed experiments were performed on a Fortran 90 implementation of the proposed
algorithms. The compiler used was the lf95 Fortran compiler version 6.20c, with command-
line options -o2 -tp4 -lblasmtp4. The experiments took place on two different computers:

C1 a machine equipped with four Intel R© XeonTM 2.80Ghz CPUs, each equipped with 512kb
of L2 cache, and 6 GB of RAM. Since we did not develop a parallel implementation,
only one of the processors was actually used for the computations.

C2 a machine equipped with one Intel R© Pentium R© 4 2.80Ghz CPU with 1024kb of L2
cache, and 512Mb of RAM.
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Algorithm 14: Computing the representation of T−1 (and solving systems with matrix
T and T ∗) [Pol10a]

input: G ∈ Cn×r, B ∈ Cr×n, s ∈ Cn generators of the matrix T
input: d ∈ Cn diagonal of T
input: b ∈ Cn×m1 , c ∈ Cm2×n for the (optional) solution of Tx = b and yT = c

output: G̃, B̃, d̃ generators and diagonal of T−1; optionally, x = T−1b, y = cT−1

{temporary variables: l, u ∈ Cn,σ ∈ Nn}
x← b; y ← c
σ(i)← i for all i = 1 to n {initializes σ as the identity permutation}
for k = 1 to n− 1 do
l` ← G`,:B:,k

s`−sk for all ` = 1 to k − 1
lk ← dk
l` ← G`,:B:,k

sσ(`)−sk for all ` = k + 1 to n

q ← argmax`=k,k+1,...,n |l`| {Finds pivot position}
p← lq {pivot}
if p=0 then

print ’error: singular matrix’
end if
swap lk and lq; xk,: and xq,:; Gk,: and Gq,:; σ(k) and σ(q)

u` ← Gk,:B:,`

sσ(k)−sσ(`) for all ` = k+ 1 to n, ` 6= q {“extended matrix” computations for T ∗}
u` ← Gk,:B:,`

sσ(k)−s` for all ` = k + 1 to n, ` 6= q

uq ← dq {non-reconstructible entry that moved off-diagonal after pivoting}
xk,: ← p−1xk,:; x`,: ← x`,: − l`xk,: for all ` 6= k
Gk,: ← p−1Gk,:; G`,: ← G`,: − l`Gk,: for all ` 6= k
B:,k ← p−1B:,k; B:,` ← B:,` −B:,ku` for all ` 6= k {the update is performed in the
“extended matrix” fashion for B and y too}
y:,k ← p−1y:,k; y:,` ← y:,` − y:,ku` for all ` 6= k
d` ← d` − p−1l`u` for all ` = k + 1 to n
if q 6= k then {dq may be reconstructible after the pivoting — but we store it
explicitly anyway}
dq ← Gq,:B:,q

sσ(q)−sq
end if
lk ← −1;uk ← −1; dk ← 0{prepares to overwrite d(k) with the diagonal of the inverse}
u` ← 0 for ` = k + 1 to n {permutes the entries of u to create the right matching for
the update of the formula(8.8). Notice that the variable u holds now the entries of
(L−1P−1)k,` and l holds the entries of (U−1)`,k}
uσ(`) ← u` for all ` = 1 to n
d` ← d` + p−1l`u` for all ` = 1 to k

end for{continues in the next page}
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Algorithm 14: (continued) Computing the representation of T−1 (and solving systems
with matrix T and T ∗) [Pol10a]

{continues: last step (k = n) of the algorithm}
l` ← G`,:B:,n

s`−sn for all ` = 1 to n− 1

u` ← Gn,:B:,`

sσ(n)−sσ(`) for all ` = 1 to n− 1

p← dn
xn,: ← p−1xn,:; x`,: ← x`,: − l`xn,: for all ` = 1 to n− 1
Gn,: ← p−1Gn,:; G`,: ← G`,: − l`Gn,: for all ` = 1 to n− 1
B:,n ← p−1B:,n; B:,` ← B:,` −B:,nu` for all ` = 1 to n− 1
y:,n ← p−1y:,n; y:,` ← y:,` − y:,nu` for all ` = 1 to n− 1
ln ← −1;un ← −1; dn ← 0
uσ(`) ← u` for all ` = 1 to n
d` ← d` + p−1l`u` for all ` = 1 to n
y:,σ(`) = y:,` for all ` = 1 to n {undoes the pivoting on the rows of y and B}
B:,σ(`) = B:,` for all ` = 1 to n

return G̃← G, B̃ ← B, d̃← d, x, y

As an indicative comparison with a completely different algorithm, with different stability
characteristics, we also reported the computational time for the solution of a (different!)
Toeplitz system of the same size with the classical TOMS729 routine from Chan and Hansen,
which is a Levinson-based Toeplitz solver. For C1, we reported the times of the Matlab
backslash solver as a further comparison.

The results are shown in Table 8.2.
It is clear from the table that two different behaviors arise for different sizes of the input.

For small values of n, the winner among the GKO variants is the traditional O(n2)-space
algorithm, due to its lower computational cost of (4r+ 2m+ 1)n2 instead of (6r+ 2m+ 3

2 )n2

(for these tests, r = 2, m = 1). As the dimension of the problem increases, cache efficiency
starts to matter, and the traditional algorithm becomes slower than its counterparts. This
happens starting from n ≈ 256− 512. Quick calculations show that the memory occupation
of the full n× n matrix is 512kb for n = 256 and 2Mb for n = 512, so the transition takes
indeed place when the O(n2) algorithm starts to suffer from cache misses.

The three GKO variants are slower than TOMS729; this is also due to the fact that the
implementation of the latter is more mature than the GKO solvers we developed for this
test; it uses internally several low-level optimizations such as specialized BLAS routines with
loop unrolling.

Accuracy measurements

For the accuracy experiments, we chose four test problems, the first two inspired from Boros,
Kailath and Olshevsky [BKO02], the third taken from Gohberg, Kailath and Olshevsky
[GKO95], and the fourth from Sweet and Brent [SB95] (with a slight modification).

P1 is a Cauchy-like matrix with r = 2, nodes ti = a+ ib, sj = jb for a = 1 and b = 2, and
generators G and B such that Gi,1 = 1, Gi,2 = −1, B1,j = (−1)j , B2,j = 2. It is an
example of a well-conditioned Cauchy-like matrix; in fact, for n = 512, its condition
number (estimated with the Matlab function condest) is 4E+02, and for n = 4096 it
is 1.3E+03.
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Machine C1

n O(n2)-space Ext. matrix Downdating TOMS729 Backslash

128 1.49× 10−03 2.02× 10−03 2.13× 10−03 9.36× 10−04 3.44× 10−03

256 7.70× 10−03 7.68× 10−03 8.17× 10−03 3.59× 10−03 1.69× 10−02

512 6.06× 10−02 2.92× 10−02 3.01× 10−02 1.38× 10−02 8.41× 10−02

1024 2.42× 10−01 1.19× 10−01 1.24× 10−01 5.47× 10−02 4.41× 10−01

2048 9.62× 10−01 4.56× 10−01 4.66× 10−01 2.56× 10−01 2.61× 10+00

4096 4.60× 10+00 1.89× 10+00 1.91× 10+00 1.02× 10+00 1.60× 10+01

8192 3.04× 10+01 9.26× 10+00 8.18× 10+00 5.41× 10+00 Out of mem.
16384 Out of mem. 4.06× 10+01 3.64× 10+01 2.33× 10+01 Out of mem.
32768 Out of mem. 1.91× 10+02 1.64× 10+02 1.04× 10+02 Out of mem.
65536 Out of mem. 7.93× 10+02 7.04× 10+02 4.17× 10+02 Out of mem.

Machine C2

n O(n2)-space Ext. matrix Downdating TOMS729

128 1.58× 10−03 2.17× 10−03 2.23× 10−03 4.50× 10−04

256 6.19× 10−03 8.10× 10−03 8.12× 10−03 1.60× 10−03

512 6.31× 10−02 3.20× 10−02 3.15× 10−02 5.98× 10−03

1024 3.08× 10−01 1.27× 10−01 1.24× 10−01 2.34× 10−02

2048 1.25× 10+00 5.12× 10−01 4.94× 10−01 9.74× 10−02

4096 4.87× 10+00 2.04× 10+00 1.98× 10+00 3.87× 10−01

8192 Out of mem. 8.41× 10+00 8.05× 10+00 1.60× 10+00

16384 Out of mem. 3.72× 10+01 3.38× 10+01 7.39× 10+00

32768 Out of mem. 1.92× 10+02 1.59× 10+02 4.83× 10+01

65536 Out of mem. 9.08× 10+02 7.99× 10+02 2.68× 10+02

Table 8.2: Speed experiments: CPU times in seconds for the solution of Cauchy-like/Toeplitz
linear systems with the different algorithms

P2 is the same matrix but with a = 1 and b = −0.3. It is an ill-conditioned Cauchy like
matrix; in fact, the condition number estimate is 1E+17 for n = 512 and 5E+20 for
n = 4096.

P3 is the Gaussian Toeplitz matrix [GKO95], i.e., the Toeplitz matrix defined by Ti,j =

a(i−j)
2

, with size n = 512 and different choices of the parameter a ∈ (0, 1). It is an
interesting test case, since it is a matrix for which the Levinson-based Toeplitz solvers
are unstable [GKO95]. Its condition number estimate is 7E+09 for a = .90 and 3E+14
for a = 0.93.

P4 is a Cauchy-like matrix for which generator growth is expected to occur [SB95]. We
chose n = 128, the same nodes as P1, and generators defined by G = [a, a + εf ],
B = [a+ εg, −a]T , where ε = 10−12 and a, f, g are three vectors with random entries
uniformly distributed between 0 and 1 (generated with the Matlab rand function).
Notice that the absolute values of the entries of GB is about 1e-12, and their relative
accuracy is about 1e-04.

For P1 and P2, we chose several different values of n, for each of them we computed
the product v = Ce (where e = [11 . . . 1]T ) with the corresponding matrix C, and applied
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the old and new GKO algorithms to solve the system Cx = v. We computed the relative
error as

err =
‖x− e‖
‖e‖ . (8.9)

As a comparison, for P2 we also reported the accuracy of Matlab’s unstructured solver
(backslash), which is an O(n3) algorithm based on Gaussian elimination.

For P3, we solved the problem Tx = v, with T the Gaussian Toeplitz matrix and
v = Te, for different values of the parameter a, with several different methods: reduction
to Cauchy-like form followed by one of the three GKO-Cauchy solvers presented in this
chapter, Matlab’s backslash, and the classical Levinson Toeplitz solver TOMS729 by Chan
and Hansen [HC92]. The errors reported in the table are computed using the formula (8.9).

For P4, we generated five matrices, with the same size and parameters but different
choices of the random vectors a, f and g. We used the same right-hand side and error
formula as in the experiments P1 and P2. The condition number estimates of the matrices
are reported as well.

The results are shown in Table 8.3. There are no significant differences in the accuracy
of the three variants of GKO. This shows that, at least in our examples, despite the larger
number of operations needed, the space-efficient algorithms are as stable as the original
GKO algorithm. On nearly all examples, the stability is on par with that of Matlab’s
backslash operator. When applied to critical Toeplitz problems, the GKO-based algorithms
can achieve better stability results than the classical Levinson solver TOMS729.

In the generator growth case P4, the accuracy is very low, as expected from the theoretical
bounds; nevertheless, there is no significant difference in the accuracy of the three versions.

We point out that a formal stability proof of the GKO algorithm cannot be established,
since it is ultimately based on Gaussian elimination with partial pivoting, for which coun-
terexamples to stability exist, and since in some limit cases there are other issues such as
generators growth [SB95]: i.e., the growth of the elements of G and B (but not of L and
U) along the algorithm. However, both computational practice and theoretical analysis
suggest that the GKO algorithm is in practice a reliable algorithm [Ols03]. Several strategies,
such as the one proposed by Gu [Gu98], exist in order to avoid generator growth, and they
can be applied to both the original GKO algorithm and its space-efficient versions. The
modified versions of GKO are not exempt from this stability problem, since they perform
the same operations as the original one plus some others; nevertheless, when performing the
numerical experiments, we encountered no case in which the O(n)-space algorithms suffer
from generator growth while the original version does not.

A posteriori accuracy test

We tested on the experiment P2 the a posteriori accuracy test mentioned at the end of
Section 8.5; i.e., solving the system with the downdating approach and then comparing
the values of B before and after the algorithm. In Table 8.4, we report the value of the
relative error ‖B −B′‖ / ‖B‖, where B′ is the value of the variable initially holding the
second generator B at the end of the algorithm. We compare it with the relative residual
‖Cx̃− b‖ / ‖b‖, where C and b are the system matrix and right-hand side of the experiment
P2, and x̃ is the solution computed by the downdating algorithm. At least in this experiment,
the proposed test is not able to capture the instability of the algorithm; the computation of
the relative residual is more accurate as an a posteriori test to estimate the accuracy of the
solution.
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Problem P1

n O(n2)-space Ext. matrix Downdating

128 1.26× 10−15 1.16× 10−15 1.06× 10−15

256 1.52× 10−15 1.81× 10−15 1.46× 10−15

512 2.98× 10−15 3.06× 10−15 3.09× 10−15

1024 2.79× 10−15 3.43× 10−15 3.07× 10−15

2048 4.57× 10−15 5.92× 10−15 5.04× 10−15

4096 5.23× 10−15 7.45× 10−15 5.46× 10−15

8192 7.49× 10−15 1.25× 10−14 7.29× 10−15

16384 Out of mem. 1.65× 10−14 1.15× 10−14

32768 Out of mem. 2.62× 10−14 1.76× 10−14

65536 Out of mem. 3.93× 10−14 2.21× 10−14

Problem P2

n O(n2)-space Ext. matrix Downdating Backslash

128 4.23× 10−05 4.23× 10−05 4.23× 10−05 6.94× 10−05

256 2.50× 10−03 2.50× 10−03 2.50× 10−03 1.68× 10−03

512 1.31× 10−01 1.31× 10−01 1.31× 10−01 2.15× 10−01

1024 1.63× 10+01 1.63× 10+01 1.63× 10+01 1.87× 10+01

2048 4.37× 10+02 4.37× 10+02 4.37× 10+02 2.34× 10+03

4096 2.31× 10+04 2.31× 10+04 2.31× 10+04 1.12× 10+03

Problem P3

a O(n2)-space Ext. matrix Downdating Backslash TOMS729

0.85 2.92× 10−10 1.58× 10−10 1.96× 10−10 3.08× 10−11 1.63× 10−10

0.87 7.08× 10−10 6.93× 10−10 6.23× 10−10 3.67× 10−10 2.74× 10−09

0.90 1.93× 10−07 2.74× 10−07 1.81× 10−07 1.40× 10−07 3.12× 10−06

0.91 2.69× 10−04 1.65× 10−04 2.65× 10−04 1.36× 10−06 1.21× 10−04

0.92 8.09× 10−05 1.17× 10−04 1.54× 10−04 4.64× 10−05 1.02× 10−02

0.93 5.77× 10−03 6.57× 10−03 6.18× 10−03 2.53× 10−03 2.49× 10+00

0.94 3.77× 10−01 2.11× 10+00 2.84× 10−01 1.12× 10+00 1.77× 10+03

Problem P4

O(n2)-space Ext. matrix Downdating condest(C)

1.68× 10−01 1.68× 10−01 1.68× 10−01 4× 10+04

1.17× 10−01 1.16× 10−01 1.13× 10−01 4× 10+03

2.81× 10+01 2.80× 10+01 2.80× 10+01 1× 10+05

5.55× 10−02 5.17× 10−02 5.57× 10−02 1× 10+04

6.54× 10−02 6.76× 10−02 7.39× 10−02 1× 10+03

Table 8.3: Relative forward errors
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Problem P2

n A posteriori test Relative residual

128 2.67× 10−12 2.03× 10−13

256 5.61× 10−12 4.28× 10−13

512 8.83× 10−12 1.70× 10−12

1024 1.45× 10−10 2.94× 10−09

2048 6.54× 10−10 4.99× 10−07

4096 6.25× 10−10 3.56× 10−05

Table 8.4: Accuracy of the a posteriori accuracy test

Problem P2

n Downdating(Matlab) Downdating(Fortran) Backslash(assembling+solving)

128 4.83× 10−02 2.05× 10−03 1.45× 10−02 + 2.70× 10−03

256 9.22× 10−02 7.52× 10−03 1.95× 10−02 + 1.24× 10−02

512 2.13× 10−01 2.78× 10−02 4.02× 10−02 + 6.62× 10−02

1024 5.81× 10−01 1.11× 10−01 1.22× 10−01 + 3.53× 10−01

2048 1.85× 10+00 4.33× 10−01 4.52× 10−01 + 2.22× 10+00

4096 7.10× 10+00 1.73× 10+00 1.91× 10+00 + 1.43× 10+01

Table 8.5: CPU times (in seconds) on the machine C1 for the Matlab and Fortran imple-
mentation of downdating and for the Matlab backslash operator

Speed comparison with Matlab’s backslash

We have compared the speed of the Matlab and Fortran implementations of downdating
GKO with the cost of assembling the full matrix C in Matlab and solving the system with
the backslash operator. The results are in Table 8.5. The experiments were performed on
C1, and the version of Matlab used was 7 (R14) SP1.

The comparison is not meant to be fair: on one hand, we are testing a O(n2) and a O(n3)
algorithm; on the other, we are comparing an interpreted program, a compiled program and
a call to a native machine-code library within Matlab. Starting from n = 2048, even the
Matlab version of the downdating algorithm is faster than backslash: for large values of n,
the overhead of processing O(n) instructions with the Matlab interpreter is amortized.

Inversion of Trummer-like matrices

We now turn to testing the algorithm for the structured inversion of Trummer-like matrices
proposed in Section 8.6. We chose two experiments, one with well-conditioned matrices
and one with ill-conditioned ones. Notice that not all possible choices of the generators G
and B are admissible for a Trummer-like matrix, since the displacement equation implies
Gi,:B:,i = 0 for all i.

T1 The n× n Trummer matrix T with Ti,i = 1, nodes defined by si = i
n and generators

defined by Gi,1 = i, Gi,2 = −1, B1,i = cos
(
iπ
n

)
, Bi,2 = Gi,1B1,i for all i = 1, . . . , n.
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Problem T1

n E1 E2 E3 condest(T)

128 5.45× 10−16 1.13× 10−14 2.94× 10−15 6× 10+02

256 7.07× 10−16 2.85× 10−14 7.40× 10−15 1× 10+03

512 9.34× 10−16 4.10× 10−14 1.17× 10−14 2× 10+03

1024 1.33× 10−15 1.28× 10−13 2.93× 10−14 5× 10+03

2048 1.87× 10−15 2.33× 10−13 5.69× 10−14 1× 10+04

4096 2.75× 10−15 2.53× 10−13 7.94× 10−14 2× 10+04

Problem T2

ε E1 E2 E3

1× 10−03 2.27× 10−11 5.90× 10−11 3.02× 10−11

1× 10−06 4.04× 10−08 8.09× 10−08 4.11× 10−08

1× 10−09 4.09× 10−05 8.18× 10−05 4.13× 10−05

1× 10−12 3.26× 10−02 6.62× 10−02 3.29× 10−02

1× 10−15 1.42× 10+00 4.82× 10+00 1.73× 10+00

Table 8.6: Accuracy of the algorithm for inverting Trummer-like matrices

T2 The 512× 512 diagonal-plus-rank-1 matrix depending on a parameter ε and defined by

T =(1 + ε)I − uuT , u =
v

‖v‖ , vi =
i

n
for all i = 1, . . . , n.

Its inverse can be computed explicitly as (1 + ε)−1(I + ε−1uuT ), and its condition
number is ε−1 + 1. A diagonal-plus-rank-1 matrix is Trummer-like with r = 2 with
respect to any set of nodes; in this experiment, we used the node vector defined by
si = a+ ib for all i = 1, . . . , n, with a = 1, b = −0.3.

We computed the relative errors

E1 :=
‖d′ − d′′‖
‖d′′‖ , E2 :=

‖G′ −G′′‖
‖G′′‖ +

‖B′ −B′′‖
‖B′′‖ , E3 :=

‖T ′ − T ′′‖
‖T ′′‖ ,

where G′, B′, d′, T ′ are the generators, diagonal and full inverse computed by Algorithm 14,
and G′′, B′′, d′′, T ′′ are their reference values computed with Matlab’s function inv for T1
and with the exact formula for the inverse for T2. The results are reported in Table 8.6. In
both cases, the algorithm is able to reach good accuracy, compatibly with the restrictions
imposed by the condition number of the matrices.

The Fortran and Matlab implementations of the algorithms that were used in the
experiments are available online on http://arxiv.org/e-print/0903.4569 along with the
e-print of the paper on which this chapter is based.

8.8 Conclusions and research lines

In this chapter, we proposed a new O(n)-space version of the GKO algorithm for the solution
of Cauchy-like linear systems [Pol10a]. Despite the slightly larger number of operations
needed, this algorithm succeeds in making a better use of the internal cache memory of

http://arxiv.org/e-print/0903.4569
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the processor, thus providing an improvement with respect to both the customary GKO
algorithm and a similar O(n)-space algorithm proposed by Rodriguez [Rod06], [AR09].
Starting from n ≈ 500− 1000, the algorithm outperforms these two versions of GKO. When
applying this algorithm to the special case of inversion of Trummer-like matrices, several
small optimizations reduce the total number of operations needed.

The O(n)-space implementation is a trade-off between the number of operations needed
and the memory access, which starts to pay off when the matrices are large enough. It is
an interesting question whether a O(n)-space implementation can be obtained with a lower
computational cost, hopefully matching the one of the traditional GKO algorithm.

Another open issue is the possibility to perform an adaptive algorithm, which uses the
O(n) approach in a first phase, until the problem is small enough to fit in the cache, and
then switches to the traditional GKO implementation.



Chapter 9

Newton method for rank-structured
algebraic Riccati equations

9.1 The neutron transport equation

Equation (1.5) with coefficients given by (1.10) arises from the discretization of an integrod-
ifferential equation appearing in a neutron transport model [JL99]. The solution of interest
is the minimal positive one, whose existence is proved in [JL99]. Note that for this equation
M is an M-matrix [Guo01]: in fact,

M =

[
Γ 0
0 ∆

]
−
[
q
e

] [
eT qT

]
;

by Lemma 2.6 this is an M-matrix if and only if

0 ≤ 1−
[
eT qT

] [Γ−1 0
0 ∆−1

] [
q
e

]
,

which reduces to

1 > eTΓ−1q + qT∆−1e =

n∑
i=1

c(1− α)

2
wi +

n∑
i=1

c(1 + α)

2
wi = c, (9.1)

in view of (1.11). According to the terminology in (6.2), the equation is nonsingular whenever
c 6= 1, transient when α 6= 0, c = 1, and null recurrent when α = 0, c = 1.

As this equation is a special case of (1.5), we may apply the methods that were introduced
in the previous chapters, such as functional iterations, Newton’s method, or SDA. All these
algorithms share the same order of complexity, that is, O(n3) arithmetic operations (ops)
per step, and provide quadratic convergence in the noncritical case.

However, observing that the coefficients in (1.10) are defined by a linear number of
parameters, it is quite natural to aim to design algorithms which exploit this structure to
get a lower computational cost.

A step in this direction has been done by L.-Z. Lu [Lu05b]. If we use (1.10) and set
δ = diag(∆), γ = diag(Γ), then we can rewrite (1.5) as

∇δ,−γ(X) = XΓ + ∆X = (Xq + e)(eT + qTX); (9.2)

therefore any solution X is Cauchy-like with respect to (∆,−Γ) and its generators are given
by

u :=Xq + e, vT :=eT + qTX. (9.3)
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We may eliminate X by combining (9.2) and (9.3); the resulting equation can be rewritten
as (1.12), with

Pij :=
qj

δi + γj
, P̃ :=

qj
γi + δj

.

Lu proposed first a functional iteration [Lu05b] and then Newton’s method [Lu05a] to solve
(1.12). Since the equation falls in the framework exposed in Chapter 3, the two methods
are well-defined and their convergence is monotonic. The functional iteration has cost
O(n2) but converges linearly, which is a severe drawback since the cases of interest are
close-to-critical, and thus the convergence is very slow. On the other hand, Newton’s method
can be implemented in O(n2) using the results of Chapter 8 [BIP08] and is very efficient.

In this chapter we show that the Newton method for the NARE (1.10) can be implemented
with cost O(n2) as well, exploiting the structural properties of the matrices to invert.
Moreover, the Newton method for (1.12) is linked by simple algebraic relations to the one
for the original NARE.

In the null recurrent case, where the Jacobian at the solution is singular, the convergence
of Newton’s (and therefore Lu’s) iteration turns to linear; the mixed iteration proposed
in [Lu05a] loses its quadratic convergence, too, while the iteration of [Lu05b] converges
sublinearly. Moreover, in view of Theorem 6.11, we may only expect an accuracy of the
order of the square root of the machine precision, unless we exploit the singularity of the
equation in our algorithm.

We show how we can remove the singularity of the Jacobian and consequently of all the
above mentioned drawbacks. The idea is to apply the shift technique originally introduced
by C. He, B. Meini and N.H. Rhee [HMR02] and used in the framework of Riccati equations
by C.-H. Guo, B. Iannazzo, and B. Meini in [GIM07] and by C.-H. Guo [Guo06]. With
this technique, we replace the original Riccati equation with a new one having the same
minimal solution but nonsingular Jacobian. We prove that the matrix coefficients of the
new equation share the same rank structure properties of the original coefficients in (1.10).
This enables us to design a fast Newton iteration which preserves the quadratic convergence
and keeps the same O(n2) complexity even in the critical case.

Moreover, with the shift technique, the information on the singularity of M is plugged
into the algorithm and we may achieve full accuracy in the approximation as confirmed by
the numerical experiments.

9.2 Newton’s method

Newton’s iteration applied to (1.5), for a suitable initial value X(0), generates the matrix
sequence {X(k)} defined by the solution of the Sylvester equation [GL00]

(X(k+1) −X(k))(D − CX(k)) + (A−X(k)C)(X(k+1) −X(k)) = R(X(k)), (9.4)

where R(X) is as in (6.8). Using the Kronecker product notation, this can be written as

vecX(k+1) − vecX(k) =
(
(D − CX(k))T ⊗ In + In ⊗ (A−X(k)C)

)−1
vecR(X(k)), (9.5)

where the vec operator stacks the columns of a matrix one above the other to form a single
vector. Thus Newton’s iteration is well-defined when the matrix MX(k) = (D − CX(k))T ⊗
In + In ⊗ (A−X(k)C) is nonsingular for each k. With abuse of notation, we call the matrix
MX the Jacobian matrix at X; in fact it is the Jacobian matrix of the vector function
− vec ◦R ◦ vec−1 at vec(X).
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In the following, we consider a slightly more general case; i.e., when the matrix M is a
generic diagonal plus rank-one matrix. Hence, we replace (1.10) with

A = ∆− ẽqT , B = ẽeT , C = q̃qT , D = Γ− q̃eT , (9.6)

where e, q, ẽ, q̃ are any nonnegative vectors such thatM, as defined in (1.6), is a nonsingular
M-matrix or a singular irreducible M-matrix. Such generalization is useful when dealing
with the shifted case.

Observe that Newton’s iteration for this case can be rewritten as

X(k+1)Γ + ∆X(k+1) = −(X(k)q̃ −X(k+1)q̃)(qTX(k) − qTX(k+1))

+ (X(k+1)q̃ + ẽ)(eT + qTX(k+1)), (9.7)

and this shows that X(k+1) is Cauchy-like with displacement rank 2. The property holds for
all the iterates X(k), k > 1 of Newton’s method obtained with any starting matrix X(0).

The Jacobian at X(k), in Kronecker product notation, takes the form

MX(k) = ΓT ⊗ In + In ⊗∆− (e+X(k)T q)q̃T ⊗ In − In ⊗ (ẽ+X(k)q̃)qT .

By setting D = ΓT ⊗ In + In ⊗∆, u(k) = ẽ+X(k)q̃, v(k) = e+X(k)T q, and

U (k) =
[
v(k) ⊗ In In ⊗ u(k)

]
, V =

[
q̃T ⊗ In
In ⊗ qT

]
, (9.8)

we can rewrite MX(k) as
MX(k) = D − U (k)V. (9.9)

Since U (k) ∈ Rn2×2n and V ∈ R2n×n2

, the inversion of MX(k) can be reduced to the inversion
of a 2n× 2n matrix using the SMW formula:

M−1
X(k) = D−1 +D−1U (k)(I2n − VD−1U (k))−1VD−1. (9.10)

As we show in the next section, this 2n× 2n matrix is Trummer-like, and this fact can be
exploited in the computation. This provides an algorithm which implements the Newton
method using only O(n2) ops per step; we report it as Algorithm 15.

Note that the matrix–vector product D−1 vecW can be reshaped to vec−1(∆−1W +
WΓ−1) and thus implemented with O(n2) ops. Similarly, the identities

(vT ⊗ In) vec(W ) = Wv,

(In ⊗ vT ) vec(W ) = WT v

allow one to compute the products with U (k) and V in O(n2) as well. Therefore the overall
cost of Algorithm 15 is O(n2).

9.3 Fast Gaussian elimination for Cauchy-like matrices

We now address the problem of solving the linear system with matrix R(k), given the vector
b and the vectors q, u(k), v(k) such that

R(k) = I2n −
[
q̃T ⊗ In
In ⊗ qT

]
D−1

[
v(k) ⊗ In In ⊗ u(k)

]
. (9.11)
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Algorithm 15: Fast Newton’s method for the NARE (1.10)

input: ∆,Γ, e, q, ẽ, q̃ defining an instance of (9.6)
output: its minimal solution X
X0 ← 0
k ← 0
while a suitable stopping criterion is not satisfied do
u(k) ← ẽ+X(k)q̃
v(k) ← e+X(k)T q
R← R(X(k)) = u(k)v(k)T −X(k)Γ−∆X(k)

b← V (D−1 vec(R))
Solve (I2n − VD−1U (k))x = b using Algorithm 13 — see Section 9.3
X(k+1) ← D−1 vec(R) + U (k)x
k ← k + 1

end while
return X(k)

First note that R(k) is a nonsingular M-matrix by Lemma 2.6 applied to the nonsingular
M-matrix MX(k) of (9.9). Carrying out the products in (9.11) yields

R(k) = I2n −
[
G(k) H(k)

K(k) L(k)

]
(9.12)

with

G(k) = diag(g
(k)
i ), g

(k)
i =

n∑
l=1

v
(k)
l q̃l

dl + δi
,

H(k) =(h
(k)
ij ), h

(k)
ij =

u
(k)
i q̃j

dj + δi
,

K(k) =(κ
(k)
ij ), κ

(k)
ij =

v
(k)
i qj

di + δj
,

L(k) = diag(l
(k)
i ), l

(k)
i =

n∑
l=1

u
(k)
l ql

di + δl
.

(9.13)

Thus G(k) and L(k) are diagonal, and H(k) and K(k) are Cauchy-like. Their displacement
equations are

∆H(k) +H(k)D = u(k)q̃T , DK(k) +K(k)∆ = v(k)qT .

Partition x and b according to the block structure of R(k) as x = [xT1 , x
T
2 ]T , b = [bT1 , b

T
2 ]T .

Performing the block LU factorization of R(k) enables one to rewrite the system R(k)x = b
as [

I −G(k) −H(k)

0 S(k)

] [
x1
x2

]
=

[
b1
b̂2

]
(9.14)

where S(k) = I − L(k) − K(k)(I − G(k))−1H(k) and b̂2 = b2 −K(k)(I −G(k))−1b1. The
matrices I −G(k) and S(k) are nonsingular as they are a principal submatrix and the Schur
complement of a nonsingular M-matrix, respectively. Moreover, S(k) enjoys the following
displacement structure

DS(k) − S(k)D = K(k)(I −G(k))−1u(k)q̃T − v(k)qT (I −G(k))−1H(k).
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This can be easily proved since D, ∆, I − G(k), I − L(k) all commute because they are
diagonal, in fact,

DS(k) = D(I − L(k))−DK(k)(I −G(k))−1H(k)

= (I − L(k))D + (K(k)∆− v(k)qT )(I −G(k))−1H(k)

= (I − L(k))D +K(k)(I −G(k))−1∆H(k) − v(k)qT (I −G(k))−1H(k)

= (I − L(k))D −K(k)(I −G(k))−1(H(k)D − u(k)q̃T )− v(k)qT (I −G(k))−1H(k)

= S(k)D +K(k)(I −G(k))−1u(k)q̃T − v(k)qT (I −G(k))−1H(k).

Thus S(k) is Trummer-like with displacement rank 2 with respect to the singular operator
DS(k) − S(k)D. Therefore, we can solve for x2 in (9.14) using Algorithm 13; once x2 is
recovered, we may get x1 by substituting it directly in the equation given by the first block
row of (9.14).

9.4 Lu’s iteration

L.-Z. Lu [Lu05a] proposed to solve the equation (1.5) when the coefficients are in the form
(9.6) by applying Newton’s iteration to the equivalent equation (1.12). Applicability and
monotonic convergence of this iteration follow from the more general arguments in Chapter 3.
If one writes down (3.6) for this equation, the algorithm can be expressed as the following
iteration for the sequences {û(k)}, {v̂(k)}, k > −1:[

û(k+1)

v̂(k+1)

]
= (R̂(k))−1

[
ẽ− Ĥ(k)v̂(k)

e− K̂(k)û(k)

]
, (9.15)

starting from û(−1) = v̂(−1) = 0. As we see later on, indexing from k = −1 simplifies the
subsequent analysis. Here R̂(k), Ĥ(k) and K̂(k) are defined as

R̂(k) = I2n −
[
Ĝ(k) Ĥ(k)

K̂(k) L̂(k)

]
, (9.16)

Ĝ(k) = diag(ĝ
(k)
i ), ĝ

(k)
i =

n∑
l=1

v̂
(k)
l q̃l

dl + δi
,

Ĥ(k) =(ĥ
(k)
ij ), ĥ

(k)
ij =

û
(k)
i q̃j

dj + δi
,

K̂(k) =(κ̂
(k)
ij ), κ̂

(k)
ij =

v̂
(k)
i qj

di + δj
,

L̂(k) = diag(l̂
(k)
i ), l̂

(k)
i =

n∑
l=1

û
(k)
l ql

di + δl
,

(9.17)

which are, formally, the same relations as in (9.12) and (9.13).
As a first result, since both algorithms are based on the solution of a system with the

same structure, we obtain that Algorithm 13 can also be used in the implementation of
Lu’s iteration to reduce its computational cost to O(n2). But there is a deeper connection
between the two algorithms.
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Theorem 9.1 ([BIP08]). Let {û(k)}, {v̂(k)}, k > −1 be the sequences generated by Lu’s
algorithm for the NARE (1.5) with (9.6), and let {X(k)}, k > 0 be the sequence generated
by Newton’s iteration with starting point X(0) = 0 for the same problem. Then, for all k > 0,
one has

û(k) =X(k)q̃ + ẽ, v̂(k) =X(k)T q + e.

Proof. We prove the result by induction over k. It is easy to check from the definitions that
R̂(−1) = I2n, and thus û(0) = ẽ, v̂(0) = e; therefore the base step k = 0 holds. As a side
note, this means that we can save an iteration by starting the computation from u(0) = ẽ,
v(0) = e.

Assuming by induction that û(k) = X(k)q̃ + ẽ = u(k), v̂(k) = X(k)T q + e = v(k), we find
that equations (9.13) and (9.16) define the same matrices; therefore, from now on, we drop
the superscript (k) and the hat symbol to ease the notation.

We have

VD−1 vecR(X) = VD−1 vec(uvT )− V vecX =

[
ẽ− (I −G)u
e− (I − L)v

]
,

in view of the relations

D−1 vec(XΓ + ∆X) = vecX,

VD−1 vec(uvT ) =

[
Gu
Lv

]
,

which can be easily verified from the definitions of D, G and L, where V is the matrix
defined in (9.8).

Applying the operator V to both sides of (9.5) yields

V vec(X(k+1) −X) =VD−1 vecR(X) + VD−1U(I2n − VD−1U)−1VD−1 vecR(X)

=(I2n + VD−1U(I2n − VD−1U)−1)VD−1 vecR(X)

=(I2n − VD−1U)−1VD−1 vecR(X),

(9.18)

where the last equation holds since I +M(I −M)−1 = (I −M)−1.
We recall that R = (I2n − VD−1U) and[

û(k+1)

v̂(k+1)

]
= R−1

[
ẽ−Hu
e−Kv

]
(the latter one being Lu’s iteration). Now we can explicitly compute

R

[
ûk+1 − u
v̂k+1 − v

]
=

[
ẽ−Hu
e−Kv

]
−
(
I2n −

[
G H
K L

])[
u
v

]
=[

ẽ−Hv
e−Ku

]
−
[
u
v

]
+

[
Gu+Hv
Ku+ Lv

]
=

[
ẽ− (I −G)u
e− (I − L)v

]
= VD−1 vecR(X),

and substitute it into (9.18) to get

V vec(X(k+1) −X) =

[
ûk+1 − u
v̂k+1 − v

]
.



Chapter 9. Newton method for rank-structured algebraic Riccati equations 111

Finally, using the definition of V in (9.8), we find that[
ûk+1 − u
v̂k+1 − v

]
= V vec(X(k+1) −X) =

[
X(k+1)q̃ −Xq̃
X(k+1)T q −XT q

]
=

[
X(k+1)q̃ + ẽ− u
X(k+1)T q + e− v

]
and thus ûk+1 = X(k+1)q̃ + ẽ, v̂k+1 = X(k+1)T q + e.

The theorem brings deeper insight into Newton’s and Lu’s iterations. Lu’s iteration can
be viewed as a structured Newton’s iteration exploiting the displacement structure found in
(9.7). Therefore, the two algorithms take the same number of iterations to converge, as the
computation they perform is the same. Observe also that the Lu version of this algorithm is
slightly more efficient, since it operates on the generators only, and never forms the matrices
X(k) explicitly. For this reason, we only present numerical results regarding Lu’s iteration.

9.5 Shift technique

As we mentioned before, the case (c, α) = (1, 0) corresponds to a null recurrent NARE. Several
drawbacks are encountered when this happens [GH06]. The singularity of the Jacobian
does not guarantee the quadratic convergence of Newton’s iteration; in fact, Newton’s and
therefore Lu’s method converge linearly. Moreover, as proved in Theorem 6.11 a perturbation
O(ε) in the coefficients of the equation leads to an O(

√
ε) variation in the solution.

These drawbacks can be removed by means of the shift technique originally introduced by
He, Meini and Rhee [HMR02] and applied to Riccati equations in [GIM07] and [BILM06].

The shift technique consists in building a rank-1 modification of the original NARE
which has the same minimal solution.

Theorem 9.2 ([GIM07]). Let (1.5) be transient or null recurrent, v be the right eigenvector
of H corresponding to the eigenvalue 0, p ∈ Rm+n be any vector such that pT v = 1, and
η > 0.

1. The matrix
H̃ = H+ ηvpT

has the same spectrum of H, except that the eigenvalue 0 is replaced by η.

2. the minimal solution X of (1.5) is also the minimal solution of the NARE with

Hamiltonian H̃, i.e.,
XC̃X −XD̃ − ÃX + B̃ = 0, (9.19)

with

Ã = A− ηv2qT , B̃ = B + ηv2e
T , C̃ = C − ηv1qT , D̃ = D + ηv1e

T . (9.20)

Notice that the shifted equation (9.19) is nonsingular when the original equation is
transient, and positive recurrent when the original equation is null recurrent; in particular,
it is never critical. Its solution can be computed with the usual algorithms faster than the
one of the original NARE, as the ratio between the two central eigenvalues is increased.

In this section, we show that it is possible to incorporate this technique in our fast
implementation of Newton’s method.

Under the assumptions (1.10), (1.11) the right eigenvector of H corresponding to zero

is given by v =
[
vT1 vT2

]T
, where v1 = Γ−1q, v2 = ∆−1e. This can be seen by direct

inspection using (9.1) and the fact that eTΓ−1q + qT∆−1e = c = 1.
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We consider the rank-one correction

H̃ = H+ η

[
v1
v2

]
pT ,

where 0 < η ≤ γ1 and pT =
[
eT qT

]
. It holds that pT v = 1, in fact pT v = eTΓ−1q +

qT∆−1e = 1.
With the choice pT = [eT qT ], H̃ remains a diagonal plus rank-one matrix, and so is

M̃ = KH̃; hence, we only need to prove that M̃ is an M-matrix to ensure that the algorithms
proposed in Sections 9.2 and 9.4 can be applied to (9.19). In fact, we have

M̃ =

[
Γ 0
0 ∆

]
−
[
q − ηv1
e+ ηv2

] [
eT qT

]
,

and since we chose 0 < η ≤ γ1 < γ2 < . . . < γn, and q ≥ 0, then q− ηv1 = (In− ηΓ−1)q > 0,

thus M̃ is a Z-matrix. By the Perron–Frobenius theorem applied to ρI −M, there exists a
vector u > 0 such that uTM≥ 0, and µ = uTKv ≥ 0; therefore,

uTM̃ = uTM+ ηuTKvpT ≥ 0,

thus by Lemma 2.3 M̃ is an M-matrix.
Newton’s iteration applied to equation (9.19) provides a quadratically convergent al-

gorithm of complexity O(n2) for solving the Riccati equation (1.5) in the critical case.
Moreover, since the singularity has been removed, it is expected that X, as minimal solution
of (9.19), is better conditioned than with respect to the coefficients of (1.5), and that a
higher precision can be reached in the computed solution. This fact is confirmed by the
numerical experiments as shown in Section 9.7.

9.6 Numerical stability

Our first concern about numerical stability is proving that the matrix R(k) = I2n−VD−1U (k)

resulting after the application of the SMW formula to the Jacobian D − U (k)V is well-
conditioned whenever the Jacobian is. In the following analysis, we assume that the norm∥∥(D − U (k)V )−1

∥∥
1

is bounded, and we drop the superscripts (k) to simplify the notation.

Observe that 0 ≤ D−1 ≤ (D − UV )−1, therefore D is well-conditioned. Moreover, one
has

B−1 =

[
(D − UV )−1 0
V (D − UV )−1 I

] [
I U
0 I

]
, with B =

[
D −U
−V I

]
;

therefore B is an M-matrix and is well-conditioned. Now, R = I − VD−1U is the Schur
complement of D in B, and thus R−1 is a submatrix of B−1 [GVL96]. This implies

∥∥R−1∥∥
1
≤∥∥B−1∥∥

1
, hence R is well-conditioned, too.

Another stability problem could arise from the generator growth during the fast Gaussian
elimination step. Generator growth has been reported in some cases with the GKO algorithm
[SB95], especially when the starting generators are ill-conditioned. This is not our case,
since the starting generators are bounded, and no significant generator growth has been
observed during our experiments.

9.7 Numerical experiments

We consider here the same numerical examples as in [GL00] and in [Lu05a]. The sequences ti
and wi, which appear in the discretization as the nodes and weights of a Gaussian quadrature
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α = 0.5, c = 0.5 α = 10−8, c = 1− 10−6 α = 0, c = 1

n Lu LuF Lu LuF Lu LuF LuS

32 2.0× 10−3 1.0× 10−3 6.0× 10−3 2.0× 10−3 9.0× 10−3 5.0× 10−3 3.0× 10−3

64 1.5× 10−3 6.0× 10−3 2.8× 10−2 8.0× 10−3 4.8× 10−2 1.5× 10−2 4.0× 10−3

128 1.0× 10−1 1.5× 10−2 2.0× 10−1 3.6× 10−2 3.6× 10−1 6.1× 10−2 1.3× 10−2

256 7.1× 10−1 8.0× 10−2 1.6× 10+0 1.6× 10−1 2.7× 10+0 2.9× 10−1 6.4× 10−2

512 8.6× 10+0 5.6× 10−1 1.8× 10+1 1.3× 10+0 3.1× 10+1 2.1× 10+0 3.9× 10−1

Table 9.1: Comparison of CPU time in seconds of Lu’s algorithm (Lu), its fast version
presented here (LuF), and the shifted algorithm in the critical case (LuS)

α = 0.5, c = 0.5 α = 0, c = 1

n Lu LuF Lu LuF LuS

32 4.8× 10−16 (4) 2.3× 10−16 (5) 5.2× 10−8 (25) 4.2× 10−8 (26) 4.4× 10−16 (6)
256 1.6× 10−15 (4) 4.0× 10−16 (5) 4.6× 10−8 (25) 8.0× 10−8 (25) 1.2× 10−15 (6)

Table 9.2: Comparison of the relative error (and in parentheses the number of steps) of
Lu’s algorithm (Lu), its fast version presented here (LuF), and the shifted algorithm in the
critical case (LuS)

method, are obtained by dividing the interval [0, 1] into n
4 subintervals of equal length, and

by applying to each one the 4-nodes Gauss-Legendre quadrature.
The computation was performed with three different choices of the parameters (c, α),

namely, (0.5, 0.5), (1− 10−6, 10−8), and (1, 0). The first example is far from the singular
case and poses little numerical trouble; the second one is numerically close to the critical
case, but still nonsingular; the third example is the critical case of (1.10).

We have compared the method described here with the original algorithm presented
in [Lu05a], which does not exploit the Trummer-like structure and requires a traditional
O(n3) algorithm to solve (9.15). For this purpose we used the LAPACK function dgesv.
In the critical case, we also considered the algorithm described here coupled with the shift
technique of Section 9.5.

The three algorithms were implemented in Fortran 90 and the tests were performed using
the Lahey Fortran compiler on a 2.8 GHz Xeon biprocessor.

In Table 9.1 we compare the timing of the original unstructured Lu’s algorithm with
its fast O(n2) version. The numerical results highlight the different order of complexity.
Observe that in the critical case the shift technique reduces the timings even further.

In Table 9.2 we compare the relative error of the two methods and the number of steps

required. Here the error is computed as
∥∥∥X̃ −X∥∥∥

1
/ ‖X‖1, where X̃ and X are the solution

computed in double and in quadruple precision, respectively.
The stopping criterion is based on the computation of

Res :=
‖uk − uk−1‖1 + ‖vk − vk−1‖1

2
.

Observe that the cost of computing Res is negligible.
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As one can see, in the critical case the accuracy of the solution obtained with the
non-shifted algorithms is of the order of O(

√
ε), where ε is the machine precision, in strict

accordance with Theorem 6.11. The speed-up obtained is greater than 2 even for small
values of n. In the critical case with size n = 512 our algorithm is about 80 times faster
than Lu’s original algorithm. The problems deriving from the large number of steps and the
poor accuracy are completely removed by the shift technique.

9.8 Conclusions and research lines

The implementation of the Lu-Newton iteration provided here reduces the complexity of
the Newton algorithm from O(n3) per step to O(n2) per step, with great impact on the
computational times for the solution of this equation. The method presented in this chapter,
which was published in [BIP08] outperforms all algorithms present in literature.

Now that the Trummer-like and Cauchy-like structure of the iterates has been exposed, a
challenging issue is to prove that Lu’s iteration for this problem can be effectively computed
with less than O(n2) ops. There exist algorithms for computing the Cauchy matrix–vector
product [Ger88] and for approximating the inverse of a Cauchy matrix [MRT05] with
O(n log2 n) ops (superfast algorithms), even though they not exempt from numerical issues.
If the implementation can be carried on with sufficient efficiency and stability, this could
lead to another great speedup in the solution of this class of equations.

Another natural question is whether SDA and the cyclic reduction algorithm presented
in Chapter 7 can be applied in a structure-preserving implementation. In another paper, we
proved that both preserve the Cauchy-like structure of the iterates, and provided a O(n2)
implementation [BMP09]. However, the numerics for these algorithms are not satisfying: the
computational cost per step is higher than the one for the Lu/Newton method, and serious
stability problems arise for close-to-critical equations. Despite several attempts, which led
as a byproduct to the results in Chapter 8, we did not manage to remove such instability.

Thus, surprisingly, while SDA and CR are more effective than Newton methods for
general algebraic Riccati equations, the situation is reversed for this rank-structured problem.

The algorithms exposed here can be extended to the case where M is diagonal plus
rank r; in this case, the computational cost grows as O(r3n2). On the other hand, the
corresponding extensions of the structured SDA and CR [BMP09] have computational cost
O(r2n2).



Part III

Matrix equations from control theory

115





Chapter 10

Lur’e equations

10.1 Introduction

For given matrices A,Q ∈ Cn×n with Q = Q∗ and B,C ∈ Cn×m, R ∈ Cm×m, we consider
the Lur’e equations

A∗X +XA+Q = K∗K,

XB + C = K∗L,

R = L∗L,

(10.1)

that have to be solved for (X,K,L) ∈ Cn×n × Cp×n × Cp×m with X = X∗ and p as small
as possible. Equations of type (10.1) were first introduced by A.I. Lur’e [Lur51] in 1951
(see [Bar07] for an historical overview) and play a fundamental role in systems theory,
since properties like dissipativity of linear systems can be characterized via their solvability
[And66, AN68, AV73, Wil72]. This type of equations moreover appears in the infinite time
horizon linear-quadratic optimal control problem [CAM77, CA77, CA78, Yak85, ZDG96],
spectral factorization [CG89, CALM97] as well as in balancing-related model reduction
[CW95, GA04, OJ88, PDS02, RS10]. In the case where R is invertible, the matrices K and
L can be eliminated by obtaining the algebraic Riccati equation

A∗X +XA− (XB + C)R−1(XB + C)∗ +Q = 0. (10.2)

Whereas this type is well explored both from an analytical and numerical point of view
[LR95, Wil71, Ben97], the case of singular R has received comparatively little attention.
However, the singularity of R is often a structural property of the system to be analyzed
[RS08] and can therefore not be avoided by arguments of genericity.

Two approaches exist for the numerical solution of Lur’e equations with (possibly)
singular R. The works [SJ71, WWS94] present an iterative technique for the elimination
of variables corresponding to kerR. After a finite number of steps this leads to a Riccati
equation. This also gives an equivalent solvability criterion that is obtained by the feasibility
of this iteration. The most common approach to the solution of Lur’e equations is the slight
perturbation of R by εIm for some ε > 0. Then by using the invertibility of R + εI, the
corresponding perturbed Lur’e equations are now equivalent to the Riccati equation

A∗Xε +XεA− (XB + C)(R+ εI)−1(XεB + C)∗ +Q = 0. (10.3)

It is shown in [JS71, Tre87] that certain corresponding solutions Xε converge to a solution of
(10.1). Whereas the first approach has the great disadvantage that it relies on successive null

117



118 III. Matrix equations from control theory

space computations (which may be arbitrarily an ill-conditioned numerical problem), the big
problem of the perturbation approach is that there exist no estimates for the perturbation
error |X −Xε| and, furthermore, the numerical condition of the Riccati equation (10.3)
increases drastically as ε tends to 0. From a theoretical point of view, Lur’e equations
have been investigated in [CALM97, Bar07]. The solution set is completely characterized
in [Rei09] via the consideration of the matrix pencil (1.13). This pencil has the special
property of being even, that is E is skew-Hermitian and A is Hermitian. Solvability of (10.1)
is characterized via the eigenstructure of this pencil. It is furthermore shown that there
exists some correspondence to deflating subspaces of (1.13). Under some slight additional
conditions of the pair (A,B), it is shown in [Rei09] that there exists a so-called maximal
solution X. In this case, maximal means that X is, in terms of semi-definiteness, above
all other solutions of the Lur’e equations. This solution is of particular interest in optimal
control as well as in model reduction.

In this chapter, we set up an iterative method for Lur’e equations that converges linearly
to the maximal solution, based on SDA and the theoretical results of [Rei09].

10.2 Solvability of Lur’e equations

In this part we collect theoretical results that characterize the solvability of Lur’e equations.
For convenience, we call a Hermitian matrix X a solution of the Lur’e equations if (10.1) is
fulfilled for some K ∈ Cp×n, L ∈ Cp×m.

We now introduce some further concepts which are used to characterize solvability of the
Lur’e equations.

For the Lur’e equations (10.1), the spectral density function is defined as

Φ(iω) :=

[
(iωI −A)−1B

Im

]∗ [
Q C
C∗ R

] [
(iωI −A)−1B

Im

]
(10.4)

In several works, the spectral density function is also known as Popov function. The linear
matrix inequality (LMI) associated with the Lur’e equations (10.1) is defined as[

A∗Y + Y A+Q Y B + C
B∗Y + C∗ R

]
≥ 0. (10.5)

We recall that in this chapter we use the symbol ≥ to denote the positive definite ordering.
The solution set of the LMI is defined as

SLMI := {Y ∈ Cn×n : Y is Hermitian and (10.5) holds true}. (10.6)

The LMI (10.5) is called feasible if SLMI 6= ∅. It can be readily verified that Y ∈ SLMI

solves the Lur’e equations if it minimizes the rank of (10.5).
We now collect some known equivalent solvability criteria for Lur’e equations. In the

following we require that the pair (A,B) is stabilizable. Note that this assumption can be
replaced by the weaker condition of sign-controllability [Rei09].

Theorem 10.1 ([Rei09]). Let the Lur’e equations (10.1) with associated even matrix pencil
sE − A as in (1.13) and spectral density function Φ as in (10.4) be given. Assume that at
least one of the claims

(i) the pair (A,B) is stabilizable and the pencil sE − A as in (1.13) is regular;

(ii) the pair (A,B) is controllable;
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holds true. Then the following statements are equivalent:

1. There exists a solution (X,K,L) of the Lur’e equations.

2. The LMI (10.5) is feasible

3. For all ω ∈ R with iω /∈ σ(A) holds Φ(iω) ≥ 0;

4. In the EKCF of sE − A, all blocks of type E2 have positive signature and even size,
and all blocks of type E3 have negative signature and odd size.

5. In the EKCF of sE −A, all blocks of type E2 have even size, and all blocks of type E3
have negative signature and odd size.

In particular, solutions of the Lur’e equations fulfill (X,K,L) ∈ Cn×n × Cn×p × Cm×p with
p = normalrank Φ.

It is shown in [Rei09] that m− normalrank Φ is the number of blocks of type E4 in an
EKCF of sE −A. In particular, the pencil sE −A is regular if and only if Φ has full normal
rank.

We can identify a maximal solution among the solutions of the Lur’e equations.

Theorem 10.2 (). Let the Lur’e equations (10.1) be given with stabilizable pair (A,B).
Assume that SLMI as defined in (10.6) is non-empty. Then there exists a solution X+ of
the Lur’e equations that is maximal in the sense that for all Y ∈ SLMI it holds Y ≤ X+.

Let M∈ Ck×k be given. A subspace V ⊂ Ck is called M-neutral if x∗My = 0 for all
x, y ∈ V. Note that the notion of E-neutrality, which is used in the following result, is the
counterpart of Lagrangianness in this setting.

Theorem 10.3 ([Rei09]). Let the Lur’e equations (10.1) be given with stabilizable pair
(A,B). Assume that SLMI as defined in (10.6) is non-empty. ThenX+ 0

In 0
0 Im

 (10.7)

spans the unique (n+m)-dimensional semi-c-stable E −neutral subspace of the pencil (1.13).

The above theorem states that the maximal solution can be expressed in terms of
a special deflating subspace of sE − A. This space can be constructed from the matrix
U ∈ C2n+m×2n+m bringing the pencil sE − A into even Kronecker form (2.4). Considering
the partitioning U = [U1 , . . . , Uk ] according to the block structure of the EKCF, a matrix
V ∈ C2n+m×n+m spanning the desired deflating subspace is given by

V =
[
V1 . . . Vk

]
for Vj = UjZj , (10.8)

where

Zj :=


[ Ikj , 0kj ]T , if Dj is of type E1,

[ Ikj/2 , 0kj/2 ]T , if Dj is of type E2,

[ I(kj+1)/2 , 0(kj−1)/2 ]T , if Dj is of type E3,

[ Ikj , 0kj+1 ]T , if Dj is of type E4.

In particular, the desired subspace contains all the vectors belonging to the Kronecker chains
relative to c-stable eigenvalues, no vectors from the Kronecker chains relative to c-unstable
eigenvalues, the first kj/2 vectors from the chains relative to c-critical eigenvalues, and the
first (kj + 1)/2 from the chains relative to eigenvalues at infinity.
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10.3 A reduced Lur’e pencil

Our aim in this chapter is applying SDA (Algorithm 8) to the solution of the Lur’e equations
(10.1). If R were nonsingular, the most linear approach would be to transform the Lur’e
equations to a (continuous-time) Riccati equation, and then using the usual strategy of
performing a Cayley transform followed by a SSF-I factorization in order to get the proper
d-splitting and the SSF-I pencil which is needed in the SDA initialization. However, as we
saw in the introduction, when R is singular it is not possible to reduce the Lur’e equations
(10.1) to an algebraic Riccati equation. In this section, we show that if we change the order
of the steps and start with the Cayley transform, then this problem disappears.

Here and in the following, we suppose that the pencil (1.13) is regular.
Let sE − A be the pencil in (1.13). By Theorem 6.19, the SSF-I form of its Cayley

transform (with dimensions chosen such that E ∈ Cn×n, F ∈ C(m+n)×(m+n)) is given by

[
E −G
−H F

]
=

 0 A− γI B
A∗ − γI Q C
B∗ C∗ R

−1  0 A+ γI B
A∗ + γI Q C
B∗ C∗ R

 . (10.9)

Let now

Ã :=

[
0 A− γI

A∗ − γI Q

]
,

and assume that both Ã and its Schur complement

R−
[
B∗ C∗

]
Ã−1

[
B
C

]
= Φ(γ)

(here Φ is the same function as in (10.4), as one can verify by expanding both expressions)
are nonsingular. In this case we can perform the inversion with the help of a block LDU
factorization. Tedious computations lead to a matrix of the form[

Â 0

B̂ Im

]
,

with

Â =I + 2γÃ−1S + 2γÃ−1
[
B
C

]
Φ(γ)−1

[
B∗ C∗

]
Ã−1S, S =

[
0 I
I 0

]
. (10.10)

In the blocks used in SSF-I, this means that

F =

[
F̂ 0
∗ Im

]
, G =

[
Ĝ 0

]
, H =

[
Ĥ
∗

]
,

where the blocks F̂ , Ĝ, Ĥ have size n× n. It follows that a special right deflating subspace
of this pencil is [

02n×m
Im

]
,

whose only eigenvalue is 1 with algebraic and geometric multiplicity m, while the deflating
subspaces relative to the rest of the spectrum are in the form[

V
∗

]
,
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where V has 2n rows and is a deflating subspace of the reduced pencil

s

[
In −Ĝ
0 F̂

]
−
[
E 0

−Ĥ In

]
. (10.11)

Using (10.10) and the fact that Ã and Φ(γ) are Hermitian, one sees that ÂS is Hermitian,
too. This means that E∗ = F and G = G∗, H = H∗, that is, the pencil (10.11) is symplectic.

The pencil (10.11) is given by P ∗(sE − A)P , where P is the projection onSpan

 0
0
Im

⊥ = (ker E)⊥.

With this characterization, it is easy to derive the KCF of (10.11) from that of the Cayley
transform of (1.13). We see that ker E is the space spanned by the first column of each
W2 block (as a corollary, we see that there are exactly m = dim kerE such blocks). These
blocks are transformed into blocks W1 with λ = 1 by the Cayley transform. Thus projecting
on their orthogonal complement corresponds to dropping the first row and column from
each of the W1 blocks relative to λ = 1. In particular, it follows that if the criteria in
Theorem 10.1 hold, then every Kronecker block of (10.11) relative to an eigenvalue λ on
the unit circle has even size. Therefore, the reduced pencil (10.11) is weakly d-split. By
considering which vectors are needed from each Kronecker chain to form the subspace in
(10.8), we get therefore the following result.

Theorem 10.4 ([Rei09]). Let V be the unique (n+m)-dimensional c-semi-stable E-neutral
deflating subspace of (1.13). Then, there is a matrix V2 ∈ Cn×m such that

V = Span

[
V1 0
V2 Im

]
,

where V1 spans the canonical d-semi-unstable subspace of the pencil (10.11). Moreover, if
Span(V1) admits a basis in the form [

X+

In

]
,

then X+ is the maximal solution of the Lur’e equation (10.1).

In other words, X+ is the canonical weakly stabilizing solution of the DARE

X = EX(I − ĤX)−1E∗ + Ĝ. (10.12)

10.4 Implementation of SDA

Based on the results of the previous sections, we can use SDA to compute the solution
to a Lur’e equation. The resulting algorithm is reported as Algorithm 16. The explicit
computation of (a possible choice of) K and L is typically not needed in the applications. If
the two matrices are needed, they can be computed using the fact that[

A∗X +X∗A+Q XB + C
B∗X∗ + C∗ R

]
=

[
K∗

L∗

] [
K L

]
(10.13)

is a full rank decomposition.
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Algorithm 16: A SDA for the maximal solution of a Lur’e equation

input: A, B, C, Q, R defining a Lur’e equation
output: The weakly stabilizing solution X (and optionally K and L)

Choose a suitable γ > 0
Compute

T ←−

 0 A− γI B
A∗ − γI Q C
B∗ C∗ R

−1  0 A+ γI
A∗ + γI Q
B∗ C∗


Partition

T =

 E −G
−H E∗

∗ ∗


Use SDA on E, F = E∗, G,H to compute G∞, H∞
return X ← G∞
if K and L are needed then

Compute Σ and V ∗ corresponding to the first m singular vectors of the SVD of (10.13)
return

[
K L

]
←− Σ1/2V ∗

end if

SDA and symplectic pencils

While we have exposed SDA in its application to nonsymmetric Riccati equations, the
algorithm was originally born for discrete- and continuous-time Riccati equation in control
theory [HCL05, CFL05]. One of its main advantages there is that it is able to preserve the
symplectic structure of the SSF-I pencil.

As the matrix H associated with a continuous-time algebraic Riccati equation is a
Hamiltonian matrix, its Cayley transform is symplectic. Therefore SDA for control theory
problems need only work with symplectic matrices and pencils [CFL05]. An easy check
shows that a pencil in SSF-I is symplectic if and only if E = FT , G = GT and H = HT . If
this property holds, then all the iterates generated by SDA are symplectic as well, i.e., it
holds

Ek =FTk , Gk =GTk , Hk =HT
k

for all k ≥ 0. In particular, at each steps the two matrices Fk+1 and Ek+1 are one the
transposed of the other; therefore, only the computation of the first is needed. Similarly, the
computation and inversion of I −HkGk can be avoided, since this matrix is the transposed
of I −GkHk which is already computed and inverted during the algorithm. If the inversion
is performed implicitly (e.g., with a LU factorization), the picture does not change.

In particular, this implies that the symplectic eigensymmetry is preserved during the
iteration. This property is crucial, since the eigenvalue condition number for structured
perturbations can be substantially lower than the one for unstructured perturbation [KKT06].
Therefore, in presence of Hamiltonian or symplectic eigensymmetry, structure-preserving
algorithms yield usually much better results than unstructured ones [BKM05].
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Choice of the parameter in the Cayley transform

The accuracy of the computed solution depends also on an appropriate choice of γ. Clearly,
two goals have to be considered:

1. the matrix to invert in (10.9) should be well-conditioned;

2. the condition number of the resulting problem, i.e, the separation between the stable
and unstable subspace of the Cayley-transformed pencil (10.11), should not be too
small.

While the impact of the first factor is easy to measure, the second one poses a more significant
problem, since there are no a priori estimates for the conditioning of a subspace separation
problem. Nevertheless, we may try to understand how the choice of the parameter γ
of the Cayley transform affects the conditioning. Roughly speaking, the conditioning of
the invariant subspace depends on the distance between its eigenvalues and those of the
complementary subspace [GVL96]. The eigenvalues of the transformed pencil are given by
λ−γ
λ+γ = 1− 2γ

λ+γ , thus they tend to cluster around 1 for small values of γ, which is undesirable.
The closest to 1 is the one for which λ + γ has the largest modulus; we may take as a
crude approximation ρ(A) + γ, which can be further approximated loosely with ‖A‖1 + γ.
Therefore, as a heuristic to choose a reasonable value of γ, we may look for a small value of

f(γ) = max

(
condest

([
E1 A2

])
,
‖A‖1 + γ

2γ

)
,

where condest(·) is the condition number estimate given by Matlab. Following the strategy
of [CFL05], we chose to make five steps of the golden section search method [LY08] on f(γ)
in order to get a reasonably good value of the objective function without devoting too much
time to this ancillary computation.

However, we point out that in [CFL05], a different f(γ) is used, which apparently only
takes into account the first of our two goals. The choice of the function is based on an error
analysis of their formulas for the starting blocks of SDA. Due to Theorem 6.25, this part of
the error analysis can be simplified to checking condest

([
E1 A2

])
.

10.5 Numerical experiments

We have implemented Algorithm 16 (SDA-L) using Matlab, and tested it on the following
test problems.

P1 a Lur’e equation with a random stable matrix A ∈ Rn×n, a random C = B, Q = 0 and
R the m×m matrix with all the entries equal to 1, with rk(R) = 1. Namely, B was
generated with the Matlab command B=rand(n,m), while to ensure a stable A a we
used the following more complex sequence of commands: V=randn(n); W=randn(n);

A=-V*V’-W+W’;

P2 a set of problems motivated from real-world examples, taken with some modifications
from the benchmark set carex [BLM95a]. Namely, we took Examples 3 to 6, which
are a set of real-world problems arising from various applications, varying in size and
numerical characteristics, and changed the value of R to get a singular problem. In
the original versions of all examples, R is the identity matrix of appropriate size; we
simply replaced its (1, 1) entry with 0, in order to get a singular problem.
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Table 10.1: Relative residual for P1

n m SDA-L R+S R+N

ε = 10−6 ε = 10−8 ε = 10−12 ε = 10−8

10 3 1× 10−15 2× 10−8 4× 10−10 3× 10−6 3× 10−10

50 5 3× 10−14 8× 10−9 1× 10−7 2× 10−1 4× 10−10

500 10 7× 10−14 2× 10−9 1× 10−7 1× 10−1 ?

P3 a highly ill-conditioned high-index problem with m = 1, A = In + Nn, B = en (the
last vector of the canonical basis for Rn), C = −B, R = 0, Q = − tridiag(1, 2, 1).
Such a problem corresponds to a Kronecker chain of length 2n + 1 associated with
an infinite eigenvalue, and its canonical semi-stable solution is X = I. Notice that
the conditioning of the invariant subspace problem in this case is ε1/(2n+1), for an
unstructured perturbation of the input data of the order of the machine precision ε
[GLR06, Section 16.5].

The results of SDA-L are compared to those of a regularization method as the one
described in (10.3), for different values of the regularization parameter ε. After the regular-
ization, the equations are solved using Algorithm 8 after a Cayley transform with the same
parameter γ (R+S), or with the matrix sign method with determinant scaling [Meh91, Hig08]
(R+N). We point out that the control toolbox of Matlab contains a command gcare that
solves a so-called generalized continuous-time algebraic Riccati equation based on a pencil in
a form apparently equivalent to that in (1.13). In fact, this command is not designed to deal
with a singular R, nor with eigenvalues numerically on the imaginary axis. Therefore, when
applied to nearly all the following experiments, this command fails reporting the presence of
eigenvalues too close to the imaginary axis.

For the problem P3, where an analytical solution X = I is known, we reported the values
of the forward error ∥∥∥X̃ −X∥∥∥

F

‖X‖F
.

For P1 and P2, for which no analytical solution is available, we computed instead the relative
residual of the Lur’e equations in matrix form∥∥∥∥[A′X +XA+Q XB + C

B∗X∗ + C∗ R

]
−
[
K∗

L∗

] [
K L

]∥∥∥∥
F∥∥∥∥[A′X +XA+Q XB + C

B∗X∗ + C∗ R

]∥∥∥∥
F

(see (10.13)). The results are reported in Tables 10.1, 10.2 and 10.3. A star ? in the data
denotes convergence failure.

We see that in all the experiments our solution method obtains a better result than the
ones based on regularization.
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Table 10.2: Relative residual for P2

Problem number SDA-L R+S R+N

ε = 10−6 ε = 10−8 ε = 10−12 ε = 10−8

3 6× 10−16 1× 10−7 9× 10−10 8× 10−6 1× 10−9

4 9× 10−16 6× 10−7 6× 10−9 2× 10−7 6× 10−9

5 6× 10−15 3× 10−7 1× 10−9 3× 10−8 1× 10−9

6 2× 10−15 6× 10−12 2× 10−12 1× 10−11 4× 10−13

Table 10.3: Forward error for P3

n SDA-L R+S R+N

ε = 10−6 ε = 10−8 ε = 10−12 ε = 10−8

1 1× 10−8 1× 10−3 1× 10−4 1× 10−6 1× 10−4

2 5× 10−5 3× 10−2 1× 10−2 3× 10−2 ?
3 2× 10−3 1× 10−1 5× 10−2 2× 10+0 ?
4 1× 10−2 4× 10−1 1× 10−1 8× 10−1 ?
5 6× 10−2 1× 10+0 4× 10−1 2× 10+0 ?

10.6 Conclusions and research lines

In this chapter we have presented a new numerical method for the solution of Lur’e matrix
equations. Unlike previous methods based on regularization, this approach allows one to
solve the original equation without introducing any artificial perturbation. The method is
exposed in a work in preparation [PR].

The first step of this approach is applying a Cayley transform to convert the problem to
an equivalent discrete-time pencil. In this new form, the infinite eigenvalues can be easily
deflated, reducing the problem to a discrete-time algebraic Riccati equation with eigenvalues
on the unit circle. For the solution of this latter equation, the structured-preserving doubling
algorithm was chosen, due to its good behavior in presence of eigenvalues on the unit circle,
as proved by the convergence results in [HL09]. Direct methods, such as the symplectic
eigensolvers presented in [Fas00], could also be used for the solution of the deflated DARE.

The numerical experiments confirm the effectiveness of our new approach for regular
matrix pencils. It is not clear whether the same method can be adapted to work in cases
in which the pencil (1.13) is not regular, which may indeed happen in the context of Lur’e
equations. Another issue is finding a method to exploit the low-rank structure of Q (when
present). These further developments are currently under our investigation.





Chapter 11

Generalized SDA

11.1 Introduction

The traditional hypotheses needed for the implementation of SDA are that the two Riccati
equations

Q+ATX +XA−XGX = 0

Y QY + Y AT +AY −G = 0

have respectively a stabilizing and anti-stabilizing solution. This is equivalent to saying that
the Hamiltonian

H =

[
A −G
−Q −AT

]
has stable and unstable invariant subspaces in the form

U =

[
U (1)

U (2)

]
, V =

[
V (1)

V (2)

]
,

with U (1) and V (2) nonsingular. If this holds, we can form the desired solutions to the two
Riccati equations as X = U2U

−1
1 , Y = V1V

−1
2 .

The case in whichH has eigenvalues on the imaginary axis arises as well in the applications
[FD87, CG89]; in this case, one looks for the unique semi-stable (semi-unstable) Lagrangian
subspaces U (V ). SDA converges in this case as well, as has recently been proved in [HL09],
but its convergence turns to linear instead of quadratic.

In the case in which one or both of the blocks U (1) and V (2) is ill-conditioned, the
corresponding Riccati solution X or Y becomes very large; the quantities appearing in the
algorithm grow as well, and ill-conditioning in the intermediate steps often leads to poor
performance in the algorithm. In fact, the algorithm uses the initial data of the control
problem only in its initialization; thus, inaccuracy in one of the intermediate steps leads to
a loss of accuracy that is impossible to counter in later steps.

In this chapter, we address this situation, and propose a generalization of SDA that aims
to attain more accuracy in these problematic cases, at the expense of a larger cost per step.
Numerical examples are provided that show how our SDA variant achieves better results on
several border-case problems.

127
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11.2 Generalized SDA

Our aim is building a variant of SDA in which we drop the condition that the bases for the
canonical subspaces are in the form (6.23), in the hope to get an algorithm which does not
break down when such form cannot be constructed. To do so, we relax the assumption on
SSF-I, and we aim for a pencil of the form

A =

[
E 0
H(1) H(2)

]
, E =

[
G(1) G(2)

0 F

]
, (11.1)

which we call weak SSF-I. Unlike SSF-I, there is not an unique weak SSF-I pencil which is
right-similar to a given regular pencil. In fact, we can multiply on the left both A and E by
a matrix in the form [

S(1) 0
0 S(2)

]
without altering the weak SSF-I. Thus, a normalization choice is needed along the algorithm
that we are constructing. The choice of such normalization and its consequences are discussed
in the following sections.

Derivation of the general form

We replay the steps that lead to SDA starting with the weak SSF-I. If we impose[
Ẽ11 Ã12

Ẽ21 Ã22

]
= In+m, (11.2)

Theorem 6.14 yields [
Ẽ G̃

H̃ F̃

]
=

[
E 0
0 F

] [
G(1) G(2)

H(1) H(2)

]−1
.

Thus, setting [
G(1) G(2)

H(1) H(2)

]−1
:=

[
Z11 Z12

Z21 Z22

]
, (11.3)

we obtain an analogous of (6.22)

Â =

[
EZ11E 0

H(1) − FZ12E H(2)

]
, Ê =

[
G(1) G(2) − EZ21F

0 FZ22F

]
. (11.4)

Remark 11.1. Notice that this update relation plays well with the normalization ambiguity
in the weak SSF-I form: in fact, if we start over from[

S(1) 0
0 S(2)

]
A =

[
S(1) 0

0 S(2)

] [
E 0
H(1) H(2)

]
,[

S(1) 0
0 S(2)

]
E =

[
S(1) 0

0 S(2)

] [
G(1) G(2)

0 F

]
and follow the same steps, we get to[

S(1) 0
0 S(2)

]
Â,

[
S(1) 0

0 S(2)

]
Ê . (11.5)
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Similarly, if we replace (11.2) with the more general form[
Ẽ11 Ã12

Ẽ21 Ã22

]
=

[
S(1) 0

0 S(2)

]
(11.6)

the multiplicative factors introduced can be factored out as in (11.5).

Alternatively, we may compute the CS-AB solution as in (11.4), without any normalizing
factor, and only later multiply it by a factor as in (11.5) to impose a suitable constraint.

By iterating the pencil transformation described here, we get Algorithm 17. For the sake
of brevity, in the algorithm and the following we set

Hk :=
[
H

(1)
k H

(2)
k

]
, Gk :=

[
G

(1)
k G

(2)
k

]
.

Algorithm 17: gSDA

input: E0, F0, G0, H0 defining a pencil in SSF-I
output: U ,V spanning respectively the canonical semi-d-stable and semi-d-unstable

subspace
k ←− 0
while a suitable stopping criterion is not satisfied do[

Z11 Z12

Z21 Z22

]
←−

[
G

(1)
k G

(2)
k

H
(1)
k H

(2)
k

]−1
G

(1)
k+1/2 ←− G

(1)
k

G
(2)
k+1/2 ←− G

(2)
k − EkZ21Fk

H
(1)
k+1/2 ←− H

(1)
k − FkZ12Ek

H
(2)
k+1/2 ←− H

(2)
k

Ek+1/2 ←− EkZ11Ek
Fk+1/2 ←− FkZ22Fk

Choose suitable nonsingular normalization factors S
(1)
k ∈ Rn×n, S

(2)
k ∈ Rm×m; e.g.,

compute QR factorizations of HTk+1/2 and GTk+1/2 and set S
(1)
k ←− RGT

k+1/2
,

S
(2)
k ←− RHT

k+1/2

G
(1)
k+1 ←− S

(1)
k G

(1)
k+1/2

G
(2)
k+1 ←− S

(1)
k G

(2)
k+1/2

H
(1)
k+1 ←− S

(2)
k H

(1)
k+1/2

H
(2)
k+1 ←− S

(2)
k H

(2)
k+1/2

Ek+1 ←− S(1)
k Ek+1/2

Fk+1 ←− S(1)
k Fk+1/2

k ←− k + 1
end while
return U ←− nullHk, V ←− nullGk

The iterated application of Remark 11.1 leads to an observation that is useful in the
theoretical analysis.
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Remark 11.2. Let Ak− zEk and A′k− zE ′k, for k = 0, 1, 2, . . . be two sequences obtained with

Algorithm 17, the former with normalization factors S
(1)
k , S

(2)
k and the latter with S′(1)k , S′(2)k .

Then for each k = 0, 1, 2, . . .

A′k − zE ′k =

[
Σ

(1)
k 0

0 Σ
(2)
k

]
(Ak − zEk),

with

Σ
(i)
k = S′

(i)
k

(
S
(i)
k

)−1
S′

(i)
k−1

(
S
(i)
k−1

)−1
· · ·S′(i)0

(
S
(i)
0

)−1
, i = 1, 2.

Convergence in the singular case

The following theorem tries to generalize the convergence results of the standard SDA.

Theorem 11.3 ([MP]). Suppose that the normalization factors S
(i)
k are chosen in Algo-

rithm 17 such that ‖Hk‖ and ‖Gk‖ are bounded, and let

U =

[
U (1)

U (2)

]
∈ R(m+n)×n, V =

[
V (1)

V (2)

]
∈ R(m+n)×m

any two matrices spanning the canonical semi-d-stable and semi-d-unstable subspaces of the
initial pencil (6.19). Then, the following implications hold.

1. if U (1) is nonsingular, then ‖Ek‖ = O(2−k);

2. if ‖Ek‖ = O(2−k), then ‖GkV ‖ = O(2−k);

3. if V (2) is nonsingular, then ‖Fk‖ = O(2−k);

4. if ‖Fk‖ = O(2−k), then ‖HkU‖ = O(2−k);

If the splitting is proper, the convergence is quadratic, and in particular in 3. and 4. the

expression O(2−k) can be replaced by O(ν2
k

), where ν is the dominance factor (2.6) of H.

Proof. We report here only the easier case in which there are no unimodular eigenvalues.
The more involved case in which there are unimodular eigenvalues can be settled with minor
modifications to the argument in [CCG+09, Section 5], which basically extends the same
argument by considering the Jordan blocks relative to unimodular eigenvalues.

In this case, by Theorem 6.16,

AkURs = EkURsT 2k

s , (11.7)

AkV RuT 2k

u = EkV RuT−2
k

u , (11.8)

for two invertible Rs, Ru and two matrices Ts and Tu, having respectively the stable
eigenvalues and the unstable eigenvalues of the pencil.

By comparing the first block rows in the first equation, we get

EkU
(1)Rs = GkURsT 2k

s = O(ρ(Ts)
2k),

so if U (1) is invertible Ek converges to zero itself and the first claim holds. By comparing
the first block rows in the second equation, we get

GkV Ru = EkV
(1)RuT

−2k
u = O(ρ(Ts)

2kρ(Tu)−2
k

) = O(ν2
k

).

The other two claims follow by a similar argument on the second block row.
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Theorem 11.3 looks too weak for our uses: the boundedness of the H and G blocks
can be achieved with a suitable normalization, but the hypothesis that U (1) and V (2) are
invertible is exactly what we were trying to avoid in the first place. However, it is a necessary
hypothesis: there are counterexamples as simple as

A− zE =

[
λ 0
0 1

]
− z

[
1 0
0 λ

]
,

for λ > 1, for which Ek = Fk = λ2
k

, Gk =
[
1 0

]
and Hk =

[
0 1

]
, so nullHk is the

unstable space and nullGk is the stable one, exactly the opposite of our goal.
In fact, there is a way to understand what happens in the framework of a more common

algorithm, (orthogonal) power iteration [GVL96, Section 7.3]. Power iteration for a matrix
A ∈ Rn×n consists in starting from an initial subspace W0 = SpanW0 and iterating the
transformation Wk+1 = AWk, orthogonalizing the columns of Wk when needed in order
to maintain a numerically stable basis for Wk = SpanWk. If w = dimW0, and if the w
dominant eigenvalues of A can be identified (i.e., if we order the eigenvalues of A so that
|λ1| ≥ |λ2| ≥ · · · ≥ |λn|, then we need |λw| > |λw+1|), then Wk converges linearly to the
invariant subspace relative to λ1, λ2, . . . , λw.

Theorem 11.4 ([MP]). Suppose that both E0 and A0 are nonsingular, so that we can form
a nonsingular M = E−10 A0. Then,

• nullHk coincides with the subspace obtained by applying 2k steps of power iteration to
M−1, starting with W0 = [In 0]T ∈ R2n×n.

• nullGk coincides with the subspace obtained by applying 2k steps of power iteration to
M, starting with W0 = [0 In]T ∈ R2n×n;

Proof. Let Uk, Vk ∈ R2n×n be such that SpanUk = nullHk, SpanVk = nullGk, and let

Uk =

[
U

(1)
k

U
(2)
k

]
.

Then,

M2kUk =(E−10 A0)2
k

Uk = (E−1k Ak)Uk =

[
G

(1)
k G

(2)
k

0 Fk

]−1 [
Ek 0

H
(1)
k H

(2)
k

]
Uk

=

[
G

(1)
k G

(2)
k

0 Fk

]−1 [
EkU

(1)
k

0

]
=

[(
G

(1)
k

)−1
EkU

(1)
k

0

]
⊆ Span

[
In
0

]
.

A similar argument starting from M−2kV0 yields the second part.

This fact can be used to provide a more direct proof of Theorem 11.3, if we consider
carefully the behavior of power iteration when λw = λw+1 in presence of nontrivial Jordan
blocks.

It is well established [Wil88] that the presence of rounding errors is usually beneficial
for power iteration, as it often makes the method converge to the correct subspace even
if the starting subspace is deficient along some of the leading eigendirections. Something
similar happens with SDA: when U (1) is singular, the starting subspace U0 and U are not in
generic position (as can be checked by computing UTU0), but still in many cases this exact
orthogonality is lost in computer arithmetic. The computational results in Section 11.3
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suggest that this is what happens indeed in most cases. In view of Theorem 11.3, convergence
to the correct subspace happens if Ek and Fk converge to zero, so this provides a practical
criterion to check that this rounding error magic has happened.

The symplectic case

The most important application of SDA is the solution of continuous-time and discrete-time
algebraic Riccati equations. These applications result in a starting pencil which is symplectic,
i.e., E0 = FT0 , G0 = GT0 , H0 = HT

0 . One can verify directly that in this case all the pencils
generated by the successive steps of SDA are symplectic, i.e., at each step k we have E∗k = Fk,
Gk = G∗k, Hk = H∗k . The implementation in Algorithm 8 can be slightly simplified, since
there is no need to compute Ek+1 and Fk+1 separately, nor to invert both In −GkHk and
Im −HkGk, as the second matrix of both pairs is the transposed of the first.

Traditional SDA preserves this structure, and it is a natural question to ask whether
this happens for Algorithm 17 too, under a suitable choice of the normalization. We have a
partial positive result, which shows that the correct generalization of the Hermitianity of Gk
and Hk is preserved.

Theorem 11.5 ([MP]). Along the iterates of Algorithm 17, HTk and GTk are Lagrangian

subspaces, i.e., H
(2)
k H

(1)
k

T
= H

(1)
k H

(2)
k

T
and G

(2)
k G

(1)
k

T
= G

(1)
k G

(2)
k

T
. Moreover, H

(2)
k ETk =

FkG
(1)
k

T
.

Proof. By Remark 11.2, Algorithm 17 differs from traditional SDA (Algorithm 8) only by a
normalization factor in the form [

Σ
(1)
k 0

0 Σ
(2)
k

]
.

Direct inspection of the blocks shows that these factors must be Σ
(1)
k = G

(1)
k

−1
and Σ

(2)
k =

H
(2)
k

−1
. Since in the traditional SDA the Ek block is the transpose of the Fk block, we

get
(
G

(1)
k

−1
Ek

)T
= H

(2)
k

−1
Fk, that is, H

(2)
k ETk = FkG

(1)
k

T
. Moreover, notice that this

normalization corresponds to choosing new bases for the subspaces HTk and GTk , without
changing the subspaces themselves. It is easy to check using the iterates of traditional

SDA that the subspaces spanned by
[
Hk Im

]T
and

[
In Gk

]T
are Lagrangian, as this

corresponds to Hk and Gk being Hermitian. Since Lagrangianness is a property of the
subspace, and not of the choice of the basis, this also holds for Algorithm 17.

This fact can be exploited in Algorithm 17 to perform a faster (and structured) matrix
inversion in (11.3). Indeed, one sees that[

G(1) G(2)

H(1) H(2)

]−1
= J

[
G(1) G(2)

H(1) H(2)

]T [
0 R−1

R−T 0

]
,

with R = H(1)G(2)T −H(2)G(1)T . The final step can be simplified as well, since nullHk =
JHTk .

On the other hand, the normalization choice suggested in Algorithm 17 (QR factorization
ofHTk+1/2 and GTk+1/2) does not guarantee that Ek = FTk , which would be useful to reduce the
computational costs and ensure structure preservation. Ideally, we would like the following
conditions to hold at the same time.
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P1 Fk = ETk for each k

P2 Hk and Gk have orthonormal rows;

In fact, the following negative results can be proved.

Theorem 11.6 ([MP]). There are no normalization factors S
(1)
k and S

(2)
k in Algorithm 17

ensuring that for all possible starting pencils (6.19) P1 and P2 hold.

Proof. The condition Fk = ETk means that we must choose S
(2)
k = S

(1)
k

T
= Sk at each k.

If this and P2 held at the same time, then SkHk+1/2HTk+1/2S
T
k = STk Gk+1/2GTk+1/2Sk = I,

which would imply that Hk+1/2HTk+1/2 = S−1k S−Tk and Gk+1/2GTk+1/2 = S−Tk S−1k have the
same eigenvalues, and this does not hold in general.

So we cannot have P1 and P2 at the same time. Asking for P1 yields traditional SDA,
or in general algorithms that tend to have convergence problems in the case in which U (1)

and V (2) are close to singular. Asking P2 yields Algorithm 17, which performs better for
this class of problems, according to our experiments.

11.3 Numerical experiments

The experiments in the benchmark suites carex [BLM95a] and darex [BLM95b] are designed
for Riccati equations, i.e., in our language, they assume nonsingular U (1) and V (2) blocks
from the beginning. In order to generate examples with numerically singular U (1) and V (2),
we chose problems in carex and considered the optimal control problem with Hamiltonian
−H instead of H, with a sign change. This has the effect of switching the c-stable and
c-unstable subspaces, that is, swapping U (1), V (2) with V (1), U (2). In this way the original
carex problems with a singular solution X are transformed into problems for which V (2) is
numerically singular. Several of these problems, which are nonetheless bona fide optimal
control problems, lead to convergence failure or large errors in SDA.

For each problem in carex (after the sign switch of the Hamiltonian), we computed the
canonical semi-stable and semi-unstable invariant subspaces U and V with both SDA and
gSDA. For each of them, we tested as an error metric the distance from invariance in the
gap metric, i.e.,

θ(SpanU,SpanHU),

where, according to [GLR06], the distance between subspaces is given by

θ(L,M) = ‖PL − PM‖ ,

with PL and PM the orthogonal projectors on L and M respectively, and ‖·‖ denoting the
matrix norm induced by the Euclidean norm.

Figure 11.1 reports the plot of

max(θ(SpanU,SpanHU), θ(SpanV,SpanHV ))

for all problems in the carex benchmark set. A Cayley transform with parameter γ = 1 was
chosen to transform the pencils to symplectic SSF-I, the only exception being problem 15
for which γ = 2 (since the SSF-I for the pencil with γ = 1 does not exist). On problem 2 and
7, SDA failed to converge, while gSDA converged, though with bad accuracy on problem 2.
On several problems in the set gSDA was significantly more accurate than its counterpart;
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Figure 11.1: Invariant subspace residual for the examples in carex
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on the other hand, in some problems SDA resulted in a marginally better result (no more
than 1 significant digit, two only for problem 10).

According to [BLM95a, table 1], carex problems whose solution X̂ is exactly singular
(and thus V (2) is singular and we expect ill-conditioning in our modified problems) are 2, 6,
15, 17 and 18. The solution X̂ is severely ill-conditioned in problems 7 and 20.

Convergence history

To provide insight on the reasons for the instabilities remaining in the two methods, it is
interesting to report the convergence history of the two methods on some of the problems
where the block V (2) is singular. In Tables 11.1 and 11.2 we report the norms of Ek for both
method at each iterations. For gSDA, the norm of Fk is reported as well (Ek = FTk holds
for SDA, thus the two norms coincide). For SDA, the column labeled cond. contains

max(cond(I −GkHk), cond(I −HkGk));
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for gSDA, it contains
max(cond(RGTk ), cond(RHTk ));

i.e., in both cases the maximum condition number among the matrices to invert at each
step.

On problem 2, numerical errors in SDA do not alter the singularity of the V (2) block,
thus the algorithm diverges; nullHk contains a basis for the unstable subspace at each step,
thus the repeated doubling takes Ek to infinity instead of to 0. In gSDA, a similar behavior
appears until in step 5 the inversion of an ill-conditioned matrix destroys completely the
initial data. The method eventually converges, but to a solution bearing little resemblance to
the correct one. Similar behavior arises in problem 6, where in both methods the growth of
Ek and Fk leads to ill-conditioning in an intermediate matrix and complete loss of accuracy.
On problems 15 and 17, the growth in gSDA is much milder than the one in SDA, thus the
former can obtain a meaningful result.

11.4 Conclusions and research lines

In this chapter we have proposed a generalization of the SDA approach, which is based on
a work in preparation [MP]. It represents a compromise between row orthogonality of the
CS-AB solution, as in the inverse-free disk iteration, and symplectic structure preservation
and numerical efficiency, as in the customary SDA. The generalized framework allows to

construct different variants, based on different choices of the normalization factors S
(1)
k and

S
(2)
k .

Many of the problems included in the benchmark set carex are challenging for most
algorithms to solve Riccati equations; although our variant of SDA cannot handle all of
them, it obtains much better accuracy on a large subset. In some cases, a temporary growth
of the matrices Ek and Fk during the intermediate steps is detrimental for the accuracy.
Though this algorithm cannot be considered a definitive choice for all small- to medium-size
control problems, it represents an improvement over the customary SDA and suggests new
generalizations and research directions.

Other approaches to deal with the singularity of the U (1) and V (2) blocks could be
considered. An idea which we plan to analyze is generating a random orthogonal and
symplectic matrix S and looking for the canonical semi-stable subspace of SHS−1 instead
of H. This would ensure, at least with high probability, that the power iteration underlying
SDA (see Theorem 11.4) does not encounter problems due to rank deficiency in a specific
eigendirection. This idea is similar to the randomized URV decomposition approach suggested
in [DDH07] for spectral division algorithms.
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Table 11.1: Convergence history for SDA and gSDA

Problem 2 from carex

SDA gSDA

k ‖Ek‖ cond. ‖Ek‖ ‖Fk‖ cond.

1 4.6× 10+01 2.2× 10+00 3.6× 10+01 1.2× 10+01 5.5× 10+00

2 4.1× 10+02 2.2× 10+00 3.2× 10+02 1.1× 10+02 1.0× 10+00

3 3.4× 10+04 2.2× 10+00 2.6× 10+04 8.9× 10+03 1.0× 10+00

4 2.2× 10+08 1.3× 10+00 8.9× 10+07 4.3× 10+07 1.9× 10+00

5 8.5× 10+15 1.6× 10+16 4.3× 10+00 3.4× 10+00 9.7× 10+14

6 4.5× 10+01 Inf 1.6× 10+00 1.9× 10−15 1.6× 10+01

7 breakdown 4.0× 10−01 3.1× 10−46 1.0× 10+00

8 2.4× 10−02 3.8× 10−107 1.0× 10+00

9 8.5× 10−05 2.2× 10−228 1.0× 10+00

10 1.1× 10−09 0.0× 10+00 1.0× 10+00

11 1.8× 10−19 0.0× 10+00 1.0× 10+00

12 4.7× 10−39 0.0× 10+00 1.0× 10+00

13 3.3× 10−78 0.0× 10+00 1.0× 10+00

14 1.6× 10−156 0.0× 10+00 1.0× 10+00

15 4.1× 10−313 0.0× 10+00 1.0× 10+00

16 0.0× 10+00 0.0× 10+00 1.0× 10+00

convergence

Problem 6 from carex

SDA gSDA

k ‖Ek‖ cond. ‖Ek‖ ‖Fk‖ cond.

1 4.3× 10+02 2.3× 10+05 5.2× 10+01 5.3× 10+01 9.0× 10+03

2 1.8× 10+03 3.1× 10+06 7.5× 10+01 3.3× 10+02 1.4× 10+04

3 8.8× 10+04 3.0× 10+10 1.1× 10+03 7.9× 10+04 4.7× 10+06

4 2.5× 10+10 3.5× 10+20 5.3× 10+02 4.7× 10+09 1.4× 10+15

5 3.0× 10+20 3.6× 10+43 1.4× 10+03 8.8× 10+16 2.2× 10+31

6 5.2× 10+16 1.2× 10+49 1.3× 10+03 2.5× 10+17 3.1× 10+31

7 5.6× 10+13 1.3× 10+47 8.4× 10+04 4.1× 10+17 1.3× 10+34

8 4.3× 10+13 1.9× 10+44 2.6× 10+05 1.2× 10+15 6.4× 10+32

9 1.5× 10+09 2.7× 10+41 3.4× 10+04 2.0× 10+16 6.9× 10+30

10 2.7× 10−01 1.2× 10+40 1.1× 10+03 2.3× 10+17 5.7× 10+31

11 9.5× 10−22 1.2× 10+40 9.1× 10−01 5.7× 10+18 1.4× 10+31

12 1.2× 10−62 1.2× 10+40 6.8× 10−07 6.8× 10+21 4.3× 10+22

13 1.8× 10−144 1.2× 10+40 3.9× 10−19 1,0.0× 10+27 2.6× 10+14

14 4.1× 10−308 1.2× 10+40 1.3× 10−43 2.1× 10+40 1.8× 10+02

15 0.0× 10+00 1.2× 10+40 1.3× 10−92 9.8× 10+64 1.0× 10+00

16 convergence 1.4× 10−190 2.1× 10+114 1.0× 10+00

17 0.0× 10+00 9.2× 10+212 1.0× 10+00

convergence
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Table 11.2: Convergence history for SDA and gSDA

Problem 15 from carex

SDA gSDA

k ‖Ek‖ cond. ‖Ek‖ ‖Fk‖ cond.

1 1.0× 10+01 1.0× 10+02 1.5× 10+00 9.0× 10+00 4.0× 10+01

2 8.1× 10+01 8.7× 10+01 8.3× 10−01 8.1× 10+01 8.4× 10+01

3 6.6× 10+03 1.4× 10+02 1.1× 10−01 6.6× 10+03 6.7× 10+03

4 4.3× 10+07 1.2× 10+13 6.6× 10−04 4.3× 10+07 4.3× 10+07

5 2.0× 10+02 3.0× 10+19 1.4× 10−08 7.4× 10+01 1.7× 10+02

6 7.0× 10−11 1.6× 10+18 3.8× 10−18 1.9× 10−16 1.0× 10+00

7 1.5× 10−27 1.6× 10+18 2.9× 10−37 1.4× 10−35 1.0× 10+00

8 2.8× 10−60 1.6× 10+18 1.6× 10−75 7.7× 10−74 1.0× 10+00

9 7.7× 10−126 1.6× 10+18 4.8× 10−152 2.3× 10−150 1.0× 10+00

10 5.3× 10−257 1.6× 10+18 4.5× 10−305 2.2× 10−303 1.0× 10+00

11 0.0× 10+00 1.6× 10+18 0.0× 10+00 0.0× 10+00 1.0× 10+00

convergence convergence

Problem 17 from carex

SDA gSDA

k ‖Ek‖ cond. ‖Ek‖ ‖Fk‖ cond.

1 1.8× 10+02 4.4× 10+02 7.9× 10+01 7.9× 10+01 2.1× 10+01

2 6.2× 10+03 1.5× 10+06 8.4× 10+02 8.4× 10+02 1.2× 10+03

3 7.1× 10+05 8.1× 10+10 8.9× 10+03 8.9× 10+03 8.6× 10+05

4 8.0× 10+07 8.1× 10+15 2.3× 10+04 2.3× 10+04 4.2× 10+08

5 5.3× 10+08 1.2× 10+19 8.8× 10+03 8.8× 10+03 2.4× 10+09

6 4.7× 10+07 9.4× 10+18 8.0× 10+02 8.0× 10+02 8.4× 10+07

7 8.3× 10+04 1.3× 10+19 6.7× 10+00 6.7× 10+00 9.1× 10+03

8 2.5× 10−01 3.7× 10+19 4.6× 10−04 4.6× 10−04 1.0× 10+00

9 3.3× 10−12 3.7× 10+19 2.2× 10−12 2.2× 10−12 1.0× 10+00

10 5.4× 10−34 3.7× 10+19 4.9× 10−29 4.9× 10−29 1.0× 10+00

11 1.4× 10−77 3.7× 10+19 2.5× 10−62 2.5× 10−62 1.0× 10+00

12 9.8× 10−165 3.7× 10+19 6.3× 10−129 6.3× 10−129 1.0× 10+00

13 0.0× 10+00 3.7× 10+19 4.2× 10−262 4.2× 10−262 1.0× 10+00

14 convergence 0.0× 10+00 0.0× 10+00 1.0× 10+00

convergence
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Chapter 12

An effective matrix geometric mean

12.1 Introduction

In several contexts, it is natural to generalize the geometric mean of two positive real numbers
a# b :=

√
ab to real symmetric positive definite n× n matrices using (1.15) Several papers,

e.g. [BH06a, BH06b, Moa06], and a chapter of the book [Bha07], are devoted to studying
the geometry of the cone of positive definite matrices Pn endowed with the Riemannian
metric defined by

ds =
∥∥∥A−1/2dAA−1/2∥∥∥ ,

where ‖B‖ =
√∑

i,j |bi,j |
2

denotes the Frobenius norm. The distance induced by this metric

is

d(A,B) =
∥∥∥log(A−1/2BA−1/2)

∥∥∥ (12.1)

It turns out that on this manifold the geodesic joining X and Y has equation

γ(t) =X1/2(X−1/2Y X−1/2)tX1/2 = X(X−1Y )t =: X #t Y, t ∈[0, 1],

and thus A#B is the midpoint of the geodesic joining A and B. An analysis of numerical
methods for computing the geometric mean of two matrices is carried out in [IM09].

It is less clear how to define the geometric mean of more than two matrices. In the seminal
work [ALM04], Ando, Li and Mathias list ten properties that a “good” matrix geometric
mean should satisfy, and show that several natural approaches based on generalization of
formulas working for the scalar case, or for the case of two matrices, do not work well. They
propose a new definition of mean of k matrices satisfying all the requested properties. We
refer to this mean as to the Ando–Li–Mathias mean, or shortly ALM mean.

The ALM mean is the limit of a recursive iteration process where at each step of the
iteration k geometric means of k− 1 matrices must be computed. One of the main drawback
of this iteration is its linear convergence. In fact, the large number of iterations needed
to approximate each geometric mean at all the recursive steps makes it quite expensive
to actually compute the ALM mean with this algorithm. Moreover, no other algorithms
endowed with a higher efficiency are known.

A class of geometric means satisfying the Ando, Li, Mathias requirements has been
introduced in [Lim08]. These means are defined in terms of the solution of certain matrix
equations. This approach provides interesting theoretical properties concerning the means
but no effective tools for their computation.
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In this chapter, we propose a new matrix geometric mean satisfying the ten properties of
Ando, Li and Mathias. Like the ALM mean, our mean is defined as the limit of an iteration
process with the relevant difference that convergence is superlinear with order of convergence
at least three. This property makes it much less expensive to compute this geometric mean
since the number of iterations required to reach a high accuracy is dropped down to just a
few ones.

The iteration on which our mean is based has a simple geometrical interpretation. In the
case k = 3, given the positive definite matrices A = A(0), B = B(0), C = C(0), we generate
three matrix sequences A(m), B(m), C(m). For each m ≥ 0, the matrix A(m+1) is chosen
along the geodesic which connects A(m) to the midpoint of the geodesic connecting B(m)

and C(m). The matrices B(m+1) and C(m+1) are defined similarly, by cycling the letters. In
the case of the Euclidean geometry, just one step of the iteration provides the value of the
limit, i.e., the centroid of the triangle with vertices A, B, C. This is because in a triangle
the medians intersect each other at 2

3 of their length. In the different geometry of the cone
of positive definite matrices, the geodesics which play the role of the medians might even
not intersect each other.

In the case of k matrices A1, A2, . . . , Ak, the matrix A
(m+1)
i is chosen along the geodesic

which connects A
(m)
i with the geometric mean of the remaining matrices, at distance k

(k+1)

from A
(m)
i . In the customary geometry, this point is the common intersection point of all the

“medians” of the k-dimensional simplex with vertices A
(m)
i , i = 1, . . . , k. We prove that the

sequences {A(m)
i }m, i = 1, . . . , k, converge to a common limit A with order of convergence

at least 3. The limit A is our definition of geometric mean of A1, . . . , Ak.
It is interesting to point out that our mean and the ALM mean of k matrices can

be viewed as two specific instances of a class of more general means depending on k − 1
parameters si ∈ [0, 1], i = 1, . . . , k − 1. All the means of this class satisfy the requirements
of Ando, Li and Mathias, moreover, the ALM mean is obtained with s = ( 12 , 1, 1, . . . , 1), for

s = (si), while our mean is obtained with s = (k−1k , k−2k−1 , . . . ,
1
2 ). The new mean is the only

one in this class for which the matrix sequences generated at each recursive step converge
superlinearly.

The article is structured as follows. After this introduction, in Section 12.2 we present the
ten Ando–Li–Mathias properties and briefly describe the ALM mean; then, in Section 12.3,
we propose our new definition of a matrix geometric mean and prove some of its properties
by giving also a geometrical interpretation; in Section 12.4 we provide a generalization which
includes the ALM mean and our mean as two special cases. Finally, in Section 12.5 we
present some numerical experiments of explicit computations involving this means concerning
some problems from Physics. It turns out that, in the case of six matrices, the speed up
reached by our approach with respect to the ALM mean is by a factor greater than 200.

12.2 Known results

We recall that throughout this part we use the positive semidefinite ordering.

Ando–Li–Mathias properties for a matrix geometric mean

Ando, Li and Mathias [ALM04] proposed the following list of properties that a “good”
geometric mean G(·) of three matrices should satisfy.

P1 Consistency with scalars. If A, B, C commute then G(A,B,C) = (ABC)1/3.



Chapter 12. An effective matrix geometric mean 143

P2 Joint homogeneity. G(αA, βB, γC) = (αβγ)1/3G(A,B,C).

P3 Permutation invariance. For any permutation π(A,B,C) ofA, B, C it holdsG(A,B,C) =
G(π(A,B,C)).

P4 Monotonicity. If A ≥ A′, B ≥ B′, C ≥ C ′, then G(A,B,C) ≥ G(A′, B′, C ′).

P5 Continuity from above. If An, Bn, Cn are monotonic decreasing sequences converging
to A, B, C, respectively, then G(An, Bn, Cn) converges to G(A,B,C).

P6 Congruence invariance. For any nonsingular S, G(S∗AS, S∗BS, S∗CS) = S∗G(A,B,C)S.

P7 Joint concavity. If A = λA1 + (1− λ)A2, B = λB1 + (1− λ)B2, C = λC1 + (1− λ)C2,
then G(A,B,C) ≥ λG(A1, B1, C1) + (1− λ)G(A2, B2, C2).

P8 Self-duality. G(A,B,C)−1 = G(A−1, B−1, C−1).

P9 Determinant identity. detG(A,B,C) = (detA detB detC)1/3.

P10 Arithmetic–geometric–harmonic mean inequality:

A+B + C

3
≥ G(A,B,C) ≥

(
A−1 +B−1 + C−1

3

)−1
.

Moreover, it is proved in [ALM04] that P5 and P10 are consequences of the others. Notice
that all these properties can be easily generalized to the mean of any number of matrices.
We call a geometric mean of three or more matrices any map G(·) satisfying P1–P10 or their
analogous for a number k 6= 3 of entries.

The Ando–Li–Mathias mean

Here and hereafter, we use the following notation. We denote by G2(A,B) the usual
geometric mean A#B and, given the k-tuple (A1, . . . , Ak), we define

Zi(A1, . . . , Ak) =(A1, . . . , Ai−1, Ai+1, . . . , Ak), i =1, . . . , k,

that is, Zi is the operator that drops the i-th term of a k-tuple.
In [ALM04], Ando, Li and Mathias note that the previously proposed definitions of

means of more than two matrices do not satisfy all the properties P1–P10, and propose a
new definition that fulfills all of them. Their mean is defined inductively on the number of
arguments k.

Given A1, . . . , Ak positive definite, and given the definition of a geometric mean Gk−1(·)
of k − 1 matrices, they set A

(0)
i = Ai, i = 1, . . . , k, and define for r ≥ 0

A
(r+1)
i :=Gk−1(Zi(A(r)

1 , . . . , A
(r)
k )), i =1, . . . , k. (12.2)

For k = 3, the iteration readsA(r+1)

B(r+1)

C(r+1)

 =

G2(B(r), C(r))
G2(A(r), C(r))
G2(A(r), B(r))

 .
Ando, Li and Mathias show that the k sequences (A

(r)
i )∞r=1 converge to the same matrix Ã,

and finally define Gk(A1, . . . , Ak) = Ã. In the following, we denote by G(·) the Ando–Li–
Mathias mean, dropping the subscript k when not essential.



144 IV. Matrix geometric means

An additional property of the Ando–Li–Mathias mean which turns out to be important
in the convergence proof is the following. Recall that ρ(X) denotes the spectral radius of X,
and let

R(A,B) := max(ρ(A−1B), ρ(B−1A)).

This function is a multiplicative metric, that is, we have R(A,B) ≥ 1 with equality if and
only if A = B, and

R(A,C) ≤ R(A,B)R(B,C).

The additional property is

P11 For each k ≥ 2, and for each pair of sequences (A1, . . . , Ak), (B1, . . . , Bk) it holds

R (G(A1, . . . , Ak), G(B1, . . . , Bk)) ≤
(

k∏
i=1

R(Ai, Bi)

)1/k

.

12.3 A new matrix geometric mean

Definition

We define now for each k ≥ 2 a new mean Gk(·) of k matrices satisfying P1–P11. Let
G2(A,B) = A#B, and suppose that the mean has already been defined for up to k − 1

matrices. Let us denote shortly T
(r)
i = Gk−1(Zi(A

(r)

1 , . . . , A
(r)

k )) and define A
(r+1)

i for
i = 1, . . . , k as

A
(r+1)

i := Gk(A
(r)

i , T
(r)
i , T

(r)
i , . . . , T

(r)
i︸ ︷︷ ︸

k − 1 times

), (12.3)

with A
(0)

i = Ai for all i. Notice that apparently this needs the mean Gk(·) to be already
defined; in fact, in the special case in which k − 1 of the k arguments are coincident, the
properties P1 and P6 alone allow one to determine the common value of any geometric
mean:

G(X,Y, Y, . . . , Y ) =X1/2G(I,X−1/2Y X−1/2, . . . , X−1/2Y X−1/2)X1/2

=X1/2(X−1/2Y X−1/2)
k−1
k X1/2 = X # k−1

k
Y.

Thus we can use this simpler expression directly in (12.3) and set

A
(r+1)

i = A
(r)

i # k−1
k
T

(r)
i . (12.4)

In sections 12.3 and 12.3, we prove that the k sequences (A
(r)

i )∞r=1 converge to a
common limit A with order of convergence at least three, and this enables us to define
Gk(A1, . . . , Ak) := A. In the following, we drop the index k from Gk(·) when it can be easily
inferred from the context.

Geometrical interpretation

In [BH06a], an interesting geometrical interpretation of the Ando–Li–Mathias mean is
proposed for k = 3. We propose an interpretation of the new mean G(·) in the same spirit.
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For k = 3, the iteration defining G(·) readsA
(r+1)

B
(r+1)

C
(r+1)

 =


A

(r)
# 2

3
(B

(r)
#C

(r)
)

B
(r)

# 2
3
(A

(r)
#C

(r)
)

C
(r)

# 2
3
(A

(r)
#B

(r)
)

 .
We can interpret this iteration as a geometrical construction in the following way. To find

e.g. A
(r+1)

, the algorithm is:

1. Draw the geodesic joining B
(r)

and C
(r)

, and take its midpoint M (r);

2. Draw the geodesic joining A
(r)

and M (r), and take the point lying at 2
3 of its length:

this is A
(r+1)

.

If we execute the same algorithm on the Euclidean plane, replacing the word “geodesic”

with “straight line segment”, it turns out that A
(1)

, B
(1)

, and C
(1)

coincide in the centroid
of the triangle with vertices A, B, C. Thus, unlike the Euclidean counterpart of the
Ando–Li–Mathias mean, this process converges in one step on the plane. Roughly speaking,
when A, B and C are very close to each other, we can approximate (in some intuitive
sense) the geometry on the Riemannian manifold Pn with the geometry on the Euclidean
plane: since this construction to find the centroid of a plane triangle converges faster than
the Ando–Li–Mathias one, we can expect that also the convergence speed of the resulting
algorithm is faster. This is indeed what results after a more accurate convergence analysis.

Global convergence and properties P1–P11

In order to prove that the iteration (12.4) is convergent (and thus that G(·) is well defined),
we adapt part of the proof of Theorem 3.2 of [ALM04] (namely, Argument 1).

Theorem 12.1 ([BMP10a]). Let A1, . . . Ak be positive definite.

1. All the sequences (A
(r)

i )∞r=1 converge for r →∞ to a common limit A;

2. the function Gk(A1, . . . , Ak) satisfies P1–P11.

Proof. We work by induction on k. For k = 2, our mean coincides with the ALM mean, so
all the required work has been done in [ALM04]. Let us now suppose that the thesis holds
for all k′ ≤ k − 1. We have

A
(r+1)

i ≤ 1

k

(
A

(r)

i + (k − 1)T
(r)
i

)
≤ 1

k

k∑
i=1

A
(r)

i ,

where the first inequality follows from P10 for the ALM mean Gk(·) (remember that in the
special case in which k − 1 of the arguments coincide, Gk(·) = Gk(·)), and the second from
P10 for Gk−1(·). Thus,

k∑
i=1

A
(r+1)

i ≤
k∑
i=1

A
(r)

i ≤
k∑
i=1

Ai. (12.5)

Therefore, the sequence (A
(r)

1 , . . . , A
(r)

k )∞r=1 is bounded, and there must be a converging
subsequence, say, converging to (A1, . . . , Ak).
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Moreover, for each p, q ∈ {1, . . . , k} we have

R(A
(r+1)

p , A
(r+1)

q ) ≤ R(A
(r)

p , A
(r)

q )1/kR(T (r)
p , T (r)

q )
k−1
k

≤ R(A
(r)

p , A
(r)

q )1/k(R(A
(r)

q , A
(r)

p )
1
k−1 )

k−1
k = R(A

(r)

p , A
(r)

q )2/k,

where the first inequality follows from P11 in the special case, and the second from P11 in
the inductive hypothesis. Passing at the limit of the converging subsequence, one can verify
that

R(Ap, Aq) ≤ R(Ap, Aq)
2/k,

from which we get R(Ap, Aq) ≤ 1, that is, Ap = Aq, because of the properties of R, i.e., the
limit of the subsequence is in the form (A,A, . . . , A). Suppose there is another subsequence
converging to (B,B, . . . , B); then, by (12.5), we have both kA ≤ kB and kB ≤ kA, that is,
A = B. Therefore, the sequence has only one limit point, thus it is convergent. This proves
the first part of the theorem.

We now turn to show that P11 holds for our mean Gk(·). Consider k-tuples A1, . . . , Ak

and B1, . . . , Bk, and let B
(r)

i be defined as A
(r)

i but starting the iteration from the k-tuple
(Bi) instead of (Ai). We have for each i

R(A
(r+1)

i , B
(r+1)

i ) ≤
≤R(A

(r)

i , B
(r)

i )1/kR(G(Zi(A
(r)

1 , . . . , A
(r)

k )), G(Zi(B
(r)

1 , . . . , B
(r)

k )))
k−1
k

≤R(A
(r)

i , B
(r)

i )1/k

∏
j 6=i

R(A
(r)

j , B
(r)

j )
1
k−1


k−1
k

=

k∏
j=1

R(A
(r)

j , B
(r)

j )1/k.

This yields
k∏
i=1

R(A
(r+1)

i , B
(r+1)

i ) ≤
k∏
i=1

R(A
(r)

i , B
(r)

i );

chaining together these inequalities for successive values of r and passing to the limit, we get

R(G(A1, . . . , Ak), G(B1, . . . , Bk))k ≤
k∏
i=1

R(Ai, Bi),

which is P11.
The other properties P1–P4 and P6–P9 (remember that P5 and P10 are consequences of

these) are not difficult to prove. All the proofs are quite similar, and can be established by
induction, using also the fact that since they hold for the ALM mean, they can be applied
to the mean G(·) appearing in (12.4) (since we just proved that all possible geometric means
take the same value if applied with k − 1 equal arguments). For the sake of brevity, we
provide only the proof for three of these properties.

P1 We need to prove that if the Ai commute then G(A1, . . . , Ak) = (A1 · · ·Ak)1/k. Using

the inductive hypothesis, we have T
(1)
i =

∏
j 6=iA

1
k−1

i . Using the fact that P1 holds for
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the ALM mean, we have

A
(1)

i = A
1/k
i

∏
j 6=i

A
1
k−1

j


k−1
k

=

k∏
i=1

A
1/k
i ,

as needed. So, from the second iteration on, we have A
(r)

1 = A
(r)

2 = · · · = A
(r)

k =∏k
i=1A

1/k
i .

P4 Let T
′(r)
i and A

′(r)
i be defined as T

(r)
i and A

(r)

i but starting from A′i ≤ Ai. Using
monotonicity in the inductive case and in the ALM mean, we have for each s ≤ 1 and
for each i

T
(r+1)
i ≤ T ′(r+1)

i

and thus
A

(r+1)

i ≤ A′(r+1)

i .

Passing to the limit for r →∞, we obtain P4.

P7 Suppose Ai = λA′i + (1− λ)A′′i , and let T
′(r)
i , (resp. T

′′(r)
i ) and A

′(r)
i , (resp. A

′′(r)
i ) be

defined as T
(r)
i and A

(r)

i but starting from A′i (resp. A′′i ). Suppose that for some r it

holds A
(r)

i ≥ λA
′(r)
i + (1− λ)A

′′(r)
i for all i. Then by joint concavity and monotonicity

in the inductive case we have

T
(r+1)
i =G(Zi(A

(r)

1 , . . . , A
(r)

k ))

≥G(Zi(λA
′(r)
1 + (1− λ)A

′′(r)
1 , . . . , λA

′(r)
k + (1− λ)A

′′(r)
k ))

≥λT ′(r)i + (1− λ)T
′′(r)
i ,

and by joint concavity and monotonicity of the Ando–Li–Mathias mean we have

A
(r+1)

i =A
(r)

i # k−1
k
T

(r)
i

≥
(
λA
′(r)
i + (1− λ)A

′′(r)
i

)
# k−1

k

(
λT
′(r)
i + (1− λ)T

′′(r)
i

)
≥λA′(r+1)

i + (1− λ)A
′′(r+1)

i .

Passing to the limit for r →∞, we obtain P7.

Cubic convergence

In this section, we use the big-O notation in the norm sense, that is, we write X = Y +O(εh)
to denote that there are universal positive constants ε0 < 1 and θ such that for each
0 < ε < ε0 it holds ‖X − Y ‖ ≤ θεh. The usual arithmetic rules involving this notation hold.
In the following, these constants may depend on k, but not on the specific choice of the
matrices involved in the formulas.

Theorem 12.2 ([BMP10a]). Let 0 < ε < 1, M and A
(0)

i = Ai, i = 1, . . . , k, be positive
definite n× n, and Ei := M−1Ai − I. Suppose that ‖Ei‖ ≤ ε for all i = 1, . . . , k. Then, for

the matrices A
(1)

i defined in (12.4) the following hold.
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C1 We have

M−1A
(1)

i − I = Tk +O(ε3) (12.6)

where

Tk :=
1

k

k∑
j=1

Ej −
1

4k2

k∑
i,j=1

(Ei − Ej)2.

C2 There are positive constants θ, σ and ε < 1 (all of which may depend on k) such that
for all ε ≤ ε it holds ∥∥∥M−11 A

(1)

i − I
∥∥∥ ≤ θε3

for a suitable matrix M1 satisfying
∥∥M−1M1 − I

∥∥ ≤ σε.
C3 The iteration (12.4) converges at least cubically.

C4 We have

M−11 G(A1, . . . , Ak)− I = O(ε3). (12.7)

Proof. Let us first find a local expansion of a generic point on the geodesic A#tB: let
M−1A = I + F1 and M−1B = I + F2 with ‖F1‖ ≤ δ, ‖F2‖ ≤ δ, 0 < δ < 1. Then we have

M−1(A#tB) =M−1A(A−1B)t = (I + F1)
(
(I + F1)−1(I + F2)

)t
=(I + F1)

(
(I − F1 + F 2

1 +O(δ3))(I + F2)
)t

=(I + F1)
(
I + F2 − F1 − F1F2 + F 2

1 +O(δ3)
)t

=(I + F1)
(
I + t(F2 − F1 − F1F2 + F 2

1 )

+
t(t− 1)

2
(F2 − F1)2 +O(δ3)

)
=I + (1− t)F1 + tF2 +

t(t− 1)

2
(F2 − F1)2 +O(δ3),

(12.8)

where we made use of the matrix series expansion (I +X)t = I + tX + t(t−1)
2 X2 +O(X3).

We prove the theorem by induction on k in the following way. Let Cik denote the
assertion Ci of the theorem (for i = 1, . . . 4) for a given value of k. We show that

1. C12 holds;

2. C1k =⇒ C2k;

3. C2k =⇒ C3k,C4k;

4. C4k =⇒ C1k+1.

It is clear that these claims imply that the results C1—C4 hold for all k ≥ 2 by induction;
we now turn to prove them one by one.

1. This is simply equation (12.8) for t = 1
2 .

2. It is obvious that Tk = O(ε); thus, choosing M1 := M(I + Tk) one has

A
(1)

i = M(I + Tk +O(ε3)) = M1(I + (I + Tk)−1O(ε3)) = M1(I +O(ε3)). (12.9)
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Using explicit constants in the big-O estimates, we get∥∥∥M−11 A
(1)

i − I
∥∥∥ ≤ θε3, ∥∥M−1M1 − I

∥∥ ≤ σε
for suitable constants θ and σ.

3. Suppose ε is small enough to have θε3 ≤ ε. We apply C2 with initial matrices A
(1)

i ,
with ε1 = θε3 in lieu of ε and M1 in lieu of M , getting∥∥∥M−12 A

(2)

i − I
∥∥∥ ≤ θε31, ∥∥M−11 M2 − I

∥∥ ≤ σε1.
Repeating again for all the steps of our iterative process, we get for all s = 1, 2, . . .∥∥∥M−1s A

(s)

i − I
∥∥∥ ≤ θε3s−1 = εs,

∥∥M−1s Ms+1 − I
∥∥ ≤ σεs (12.10)

with εs+1 := θε3s and M0 := M .

For simplicity’s sake, we introduce the notation

d(X,Y ) :=
∥∥X−1Y − I∥∥

for any two n× n symmetric positive definite matrices X and Y . It is useful to notice
that ‖X − Y ‖ ≤ ‖X‖

∥∥X−1Y − I∥∥ ≤ ‖X‖ d(X,Y ) and

d(X,Z) =
∥∥(X−1Y − I)(Y −1Z − I) +X−1Y − I + Y −1Z − I

∥∥
≤d(X,Y )d(Y,Z) + d(X,Y ) + d(Y, Z).

(12.11)

With this notation, we can restate (12.10) as

d(Ms, A
(s)

i ) ≤ εs, d(Ms,Ms+1) ≤ σεs.

We prove by induction that, for ε smaller than a fixed constant, it holds

d(Ms,Ms+t) ≤
(

2− 1

2t

)
σεs. (12.12)

First of all, it holds for all t ≥ 1

εs+t = θ
3t−1

2 ε3
t

,

which, for ε smaller than min( 1
8 , θ
−1), implies εs+t

εs
≤ ε

3t−1
2

s ≤ εts ≤ 1
2t+2 .

Now, using (12.11), and supposing additionally ε ≤ σ−1, we have

d(Ms,Ms+t+1) ≤d(Ms,Ms+t)d(Ms+t,Ms+t+1)

+ d(Ms,Ms+t) + d(Ms+t,Ms+t+1)

≤
(

2− 1

2t

)
σεs + σεs

(
σεs+t +

εs+t
εs

)
≤
(

2− 1

2t

)
σεs + σεs

(
2
εs+t
εs

)
≤
(

2− 1

2t

)
σεs + σεs

1

2t+1
=

(
2− 1

2t+1

)
σεs
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Thus, we have for each t

‖Mt −M‖ ≤ ‖M‖
∥∥M−1Mt − I

∥∥ ≤ 2σ ‖M‖ ε,

which implies ‖Mt‖ ≤ 2 ‖M‖ for all t. By a similar argument,

‖Ms+t −Ms‖ ≤ ‖Ms‖ d(Ms+t,Ms) ≤ 2σ ‖M‖ εs, (12.13)

Due to the bounds already imposed on ε, the sequence εs tends monotonically to zero
with cubic convergence rate; thus (Mt) is a Cauchy sequence and therefore converges.
In the following, let M∗ be its limit. The convergence rate is cubic, since passing to
the limit (12.13) we get

‖M∗ −Ms‖ ≤ 2σ ‖M‖ εs.
Now, using the other relation in (12.10), we get∥∥∥A(s)

i −M∗
∥∥∥ ≤∥∥∥A(s)

i −Ms
∥∥∥+ ‖M∗ −Ms‖

≤2 ‖M‖ d(Ms, A
(s)

i ) + 2σ ‖M‖ εs
≤(2σ + 2) ‖M‖ εs,

that is, A
(s)

i converges with cubic convergence rate to M∗. Thus C3 is proved. By
(12.11), (12.12), and (12.10), we have

d(M1, A
(t)

i ) ≤d(M1,Mt)d(Mt, A
(t)

i ) + d(M1,Mt) + d(Mt, A
(t)

i )

≤2σε1εt + 2σε1 + εt ≤ (4σ + 1)ε1 = O(ε3),

which is C4.

4. Using C4k and (12.8) with F1 = Ek+1, F2 = M−1G(A1, . . . , Ak) = Tk+O(ε3), δ = 2kε,
we have

M−1A
(1)

k+1 =M−1
(
Ak+1 # k

k+1
G(A1, . . . , Ak)

)
=I +

1

k + 1
Ek+1 +

k

k + 1
Tk

− k

2(k + 1)2

(
Ek+1 −

1

k

k∑
i=1

Ei

)2

+O(ε3).

(12.14)

Observe that

Tk =
1

k
Sk +

Pk − (k − 1)Qk
2k2

where Sk =
∑k
i=1Ei, Qk =

∑k
i=1E

2
i , Pk =

∑k
i,j=1, i 6=j EiEj . Since S2

k = Pk +Qk and

Sk+1 = Sk +Ek+1, Qk+1 = Qk +E2
k+1, Pk+1 = Pk +Ek+1Sk + SkEk+1, from (12.14)

one finds that

M−1A
(1)

k+1 =I +
1

k + 1
Sk+1 −

k

2(k + 1)2
Qk+1 +

1

2(k + 1)2
Pk+1 +O(ε3)

=I + Tk+1 +O(ε3).

Since the expression we found is symmetric with respect to the Ei, it follows that A
(1)

j

has the same expansion for any j.
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Observe that Theorems 12.1 and 12.2 imply that the iteration (12.4) is globally convergent
with order of convergence at least 3.

It is worth to point out that, in the case where the matrices Ai, i = 1, . . . , Ak, commute

each other, the iteration (12.4) converges in just one step, i.e., A
(1)

i = A for any i. In the

noncommutative general case, one has det(A
(s)

i ) = det(A) for any i and for any s ≥ 1, i.e.,
the determinant converges in one single step to the determinant of the matrix mean.

Our mean is different from the ALM mean, as we show with some numerical experiments
in Section 12.5.

12.4 A new class of matrix geometric means

In this section we introduce a new class of matrix means depending on a set of parameters
s1, . . . , sk−1 and show that the ALM mean and our mean are two specific instances of this
class.

For the sake of simplicity, we describe this generalization in the case of k = 3 matrices
A,B,C. The case k > 3 is outlined. Here, the distance between two matrices is defined in
(12.1).

For k = 3, the algorithm presented in Section 12.3 replaces the triple A,B,C with
A′, B′, C ′ where A′ is chosen in the geodesic connecting A with the midpoint of the geodesic
connecting B and C, at distance 2

3 from A, and similarly is made for B′ and C ′. In our
generalization we use two parameters s, t ∈ [0, 1]. We consider the point Pt = B#t C in the
geodesic connecting B to C at distance t from B. Then we consider the geodesic connecting
A to Pt and define A′ the matrix on this geodesic at distance s from A. That is, we set
A′ = A#s(B#t C). Similarly we do with B and C. This transformation is recursively
repeated so that the matrix sequences A(r), B(r), C(r) are generated by means of

A(r+1) =A(r) #s(B
(r) #t C

(r)),

B(r+1) =B(r) #s(C
(r) #tA

(r)),

C(r+1) =C(r) #s(A
(r) #tB

(r)),

r =0, 1, . . . , (12.15)

starting with A(0) = A, B(0) = B, C(0) = C.
By following the same argument of Section 12.3 it can be shown that the three sequences

have a common limit Gs,t for any s, t ∈ [0, 1]. Moreover, for s = 1, t = 1
2 one obtains the

ALM mean, i.e., G = G1, 12
, while for s = 2

3 , t = 1
2 the limit coincides with our mean, i.e.,

G = G 2
3 ,

1
2
. Moreover, it is possible to prove that for any s, t ∈ [0, 1] the limit satisfies the

conditions P1–P11 so that it can be considered a good geometric mean.
Concerning the convergence speed of the sequence generated by (12.15) we may perform

a more accurate analysis. Assume that A = M(I + E1), B = M(I + E2), C = M(I + E3),
where ‖Ei‖ ≤ ε < 1, i = 1, 2, 3. Then, applying (12.8) in (12.15) yields

A′
.
=M(I + (1− s)E1 + s(1− t)E2 + stE3 +

st(t− 1)

2
H2

2 +
s(s− 1)

2
(H1 + tH2)2)

B′
.
=M(I + (1− s)E2 + s(1− t)E3 + stE1 +

st(t− 1)

2
H2

3 +
s(s− 1)

2
(H2 + tH3)2)

C ′
.
=M(I + (1− s)E3 + s(1− t)E1 + stE2 +

st(t− 1)

2
H2

1 +
s(s− 1)

2
(H3 + tH1)2)
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where
.
= denotes equality up toO(ε3) terms, withH1 = E1−E2, H2 = E2−E3, H3 = E3−E1.

Whence we have A′ = M(I + E′1), B′ = M(I + E′2), C ′ = M(I + E′3), withE′1E′2
E′3

 .
= C(s, t)

E1

E2

E3

+
st(t− 1)

2

H2
2

H2
3

H2
1

+
s(s− 1)

2

(H1 − tH2)2

(H2 − tH3)2

(H3 − tH1)2


where

C(s, t) =

 (1− s)I s(1− t)I stI
stI (1− s)I s(1− t)I

s(1− t)I stI (1− s)I

 .
Observe that the block circulant matrix C(s, t) has eigenvalues λ1 = 1, λ2 = (1 − 3

2s) +

i
√
3
2 s(2t − 1), and λ3 = λ2, with multiplicity n, where i2 = −1. Moreover, the pair

(s, t) = ( 23 ,
1
2 ) is the only one which yields λ2 = λ3 = 0. In fact ( 23 ,

1
2 ) is the only pair which

provides superlinear convergence. For the ALM mean, where t = 1
2 and s = 1 it holds

|λ2| = |λ3| = 1
2 which is the rate of convergence of the ALM iteration [ALM04].

In the case of k > 3 matrices, given the (k−1)-tuple (s1, s2, . . . , sk−1) we may recursively
define Gs1,...,sk−1

(A1, . . . , Ak) as the common limit of the sequences generated by

A
(r+1)
i =A

(r)
i #s1 Gs2,...,sk−1

(Zi(A(r)
1 , . . . , A

(r)
k )), i =1, . . . , k.

Observe that with (s1, . . . , sk−1) = ( 1
2 , 1, 1, . . . , 1) one obtains the ALM mean, while with

(s1, . . . , sk−1) = (k−1k , k−2k−1 , . . . ,
1
2 ) one obtains the new mean introduced in Section 12.3.

12.5 Numerical experiments

We have implemented the two iterations converging to the ALM mean and to the newly
defined geometric mean in Matlab, and run some numerical experiments on a quad-Xeon
2.8Ghz computer. To compute matrix square roots we used Matlab’s built-in sqrtm function,
while for p-th roots with p > 2 we used the rootm function in Nicholas Higham’s Matrix
Computation Toolbox [Higa]. To counter the loss of symmetry due to the accumulation of
computational errors, we chose to discard the imaginary part of the computed roots.

The experiments have been performed on the same data set as the paper [Moa06]. It
consists of five sets each composed of four to six 6×6 positive definite matrices, corresponding
to physical data from elasticity experiments conducted by Hearmon [Hea52]. The matrices
are composed of smaller diagonal blocks of sizes 1 × 1 up to 4 × 4, depending on the
symmetries of the involved materials. Two to three significant digits are reported for each
experiments.

We have computed both the ALM mean and the newly defined mean of these sets; as a
stopping criterion for each computed mean, we chose

max
i

∣∣∣A(r+1)
i −A(r)

i

∣∣∣ < ε,

where |X| := maxi,j |Xij |, with ε = 10−10. The CPU times, in seconds, are reported in
Table 12.1. For four matrices, the speed gain is a factor of 20, and it increases even more for
more than four matrices.

We then focused on Hearmon’s second data set (ammonium dihydrogen phosphate),
composed of four matrices. In Table 12.2, we reported the number of outer (k = 4) iterations
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Data set (number of matrices) ALM mean New mean

NaClO3 (5) 2.3× 10+2 1.3× 10+0

Ammonium dihydrogen phosphate (4) 9.9× 10+0 3.9× 10−1

Potassium dihydrogen phosphate (4) 9.7× 10+0 3.8× 10−1

Quartz (6) 6.7× 10+3 3.0× 10+1

Rochelle salt (4) 1.0× 10+1 5.3× 10−1

Table 12.1: CPU times in seconds for the Hearmon elasticity data

ALM mean New mean

Outer iterations 23 3
Avg. inner iterations 18.3 2

Matrix square roots (sqrtm) 5,052 72
Matrix p-th roots (rootm) 0 84

Table 12.2: Number of inner and outer iterations needed, and number of matrix roots needed

Operation Result∣∣G(A4, I, I, I)−A
∣∣ 3.6× 10−13∣∣G(A4, I, I, I)−A
∣∣ 1.8× 10−14

Table 12.3: Accuracy of two geometric mean computations

needed and the average number of iterations needed to reach convergence in the inner
(k = 3) iterations (remember that the computation of a mean of four matrices requires the
computation of three means of three matrices at each of its steps). Moreover, we measured
the number of square and p-th roots needed by the two algorithms, since they are the most
expensive operation in the algorithm. From the results, it is evident that the speed gain in
the new mean is due not only to the reduction of the number of outer iterations, but also of
the number of inner iterations needed to get convergence at each step of the inner mean
calculations. When the number of involved matrices becomes larger, these speedups add up
at each level.

Hearmon’s elasticity data are not suitable to measure the accuracy of the algorithm, since
the results to be obtained are not known. To measure the accuracy of the computed results,
we computed instead

∣∣G(A4, I, I, I)−A
∣∣, which should yield zero in exact arithmetic (due

to P1), and its analogue with the new mean. We chose A to be the first matrix in Hearmon’s
second data set. Moreover, in order to obtain results closer to machine precision, in this
experiment we changed the stopping criterion choosing ε = 10−13.

The results reported in Table 12.3 are well within the errors permitted by the stopping
criterion, and show that both algorithms can reach a satisfying precision.

The following examples provide an experimental proof that our mean is different from
the ALM mean.
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Consider the following matrices

A =

[
a b
b a

]
B =

[
a −b
−b a

]
, C =

[
1 0
0 c

]
.

Observe that the triple (A,B,C) is transformed into (B,A,C) under the map X → S−1XS,
for S = diag(1,−1). In this way, any matrix mean G(A,B,C) satisfying condition P3 is
such that G = S−1GS, that is, the off-diagonal entries of G are zero. Whence, G must be
diagonal. With a = 2, b = 1, c = 24, for the ALM mean G and our mean G one finds that

G =

[
1.487443626 0

0 4.033766318

]
, G =

[
1.485347837 0

0 4.039457861

]
,

where we reported the first 10 digits. Observe that the determinant of both the matrices is
6, that is, the geometric mean of detA,detB, detC, moreover, ρ(G) < ρ(G).

For the matrices

A =

 2 −1 0
−1 3 −2
0 −2 2

 , B =

2 1 0
1 3 2
0 2 2

 ,
C =

1 0 1
0 10 0
1 0 50

 , D =

 1 0 −1
0 10 0
−1 0 50

 ,
one has

G =

 1.3481 0 −0.3016
0 3.8452 0

−0.3016 0 6.1068

 , G =

 1.3472 0 −0.3106
0 3.8796 0

−0.3106 0 6.0611

 .
Their eigenvalues are (6.1258, 3.8452, 1.3290), and (6.0815, 3.8796, 1.3268), respectively. Ob-
serve that, unlike in the previous example, it holds ρ(G) > ρ(G).

12.6 Conclusions and research lines

In this chapter, we have described a new matrix geometric mean which is constructed with
an iteration similar to the one proposed by Ando, Li and Mathias, but it converges cubically
instead of linearly. Therefore, its computation requires far less CPU time than the original
ALM mean. However, the time required still grows as O(k!) with the number k of matrices
to average. This is an important drawback which prevents from computing matrix means of
large numbers of matrices. As we showed in the examples, even averaging six matrices takes
30 seconds on a modern machine. The problem of reducing this complexity is addressed in
the next chapter.



Chapter 13

Constructing other matrix geometric
means

13.1 Introduction

In the last few years, several papers have been devoted to defining a proper way to generalize
the concept of geometric mean to n ≥ 3 Hermitian, positive definite m × m matrices.
Chapter 12 mention the desirable properties listed by Ando, Li and Mathias [ALM04];
however, these properties do not uniquely define a multivariate matrix geometric mean; thus
several different definitions appeared in literature.

We have already introduced in Chapter 12 the Ando–Li–Mathias mean [ALM04] and a
new mean first described in [BMP10a]. Both are based on iterations reducing a mean of n
matrices to one of n−1 matrices and satisfy all the desired properties, but their computation
requires a number of operations which grows as O(n!) with the number of involved matrices;
therefore, they become quickly impractical even for a moderate number of matrices. Pálfia
[Pál09] proposed a mean based on a similar process involving only means of 2 matrices, and
thus much cheaper to compute, but lacking property P3 (permutation invariance) from the
ALM list. Lim [Lim08] proposed a family of matrix geometric means that are based on an
iteration requiring at each step the computation of a mean of m ≥ n matrices. Since the
computational complexity for all known means greatly increases with n, the resulting family
is useful as an example but highly impractical for numerical computations.

At the same time, Moakher [Moa05, Moa06] and Bhatia and Holbrook [BH06b, Bha07]
proposed a completely different definition, which we call the Riemannian centroid of
A1, A2, . . . , An. The Riemannian centroid GR(A1, A2, . . . , An) is defined as the minimizer
of a sum of squared distances,

GR(A1, A2, . . . , An) = arg min
X

n∑
i=1

δ2(Ai, X), (13.1)

where δ is the geodesic distance induced by a natural Riemannian metric on the space of
symmetric positive definite matrices. The same X is the unique solution of the equation

n∑
i=1

log(A−1i X) = 0, (13.2)

involving the matrix logarithm function. While most of the ALM properties are easy to
prove, it is still an open problem whether it satisfies P4 (monotonicity). The computational
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experiments performed up to now gave no counterexamples, but the monotonicity of the
Riemannian centroid is still a conjecture [BH06b], up to our knowledge.

Moreover, while the other means had constructive definitions, it is not apparent how
to compute the solution to either (13.1) or (13.2). Two methods have been proposed, one
based on a fixed-point iteration [Moa06] and one on the Newton methods for manifolds
[Pál09, Moa06]. Although both seem to work well on “tame” examples, their computational
results show a fast degradation of the convergence behavior as the number of matrices
and their dimension increase. It is unclear whether on more complicated examples there is
convergence in the first place; unlike the other means, the convergence of these iteration
processes has not been proved, as far as we know.

Notation

We recall that throughout this chapter we use the positive-definite ordering on matrices,
and that we denote by Pm the space of Hermitian positive-definite m ×m matrices. We
say that A = (Ai)

n
i=1 ∈ (Pm)n is a scalar n-tuple of matrices if A1 = A2 = · · · = An. We

use the convention that both Q(A) and Q(A1, . . . , An) denote the application of the map
Q : (Pm)n → Pm to the n-tuple A.

13.2 Many examples of (quasi-)means

The matrix geometric mean for n = 2

For n = 2, the ALM properties uniquely define a matrix geometric mean which can be
expressed explicitly as

A#B := A(A−1B)1/2. (13.3)

This is a particular case of the more general map

A#tB := A(A−1B)t, t ∈ R, (13.4)

which has a geometrical interpretation as the parametrization of the geodesic joining A and
B for a certain Riemannian geometry on Pm [Bha07].

The ALM and BMP means

Ando, Li and Mathias [ALM04] recursively define a matrix geometric mean GALMn of n
matrices in this way. The mean GALM2 of two matrices coincides with (13.3); for n ≥ 3,
suppose the mean of n− 1 matrices GALMn−1 is already defined. Given A1, . . . , An, compute
for each j = 1, 2, . . .

A
(j+1)
i := GALMn−1 (A

(j)
1 , A

(j)
2 , . . . A

(j)
i−1, A

(j)
i+1, . . . A

(j)
n ) i = 1, . . . , n, (13.5)

where A
(0)
i := Ai, i = 1, . . . n. The sequences (A

(j)
i )∞j=1 converge to a common (not depending

on i) matrix, and this matrix is a geometric mean of A
(0)
1 , . . . , A

(0)
n .

The mean proposed by Bini, Meini and Poloni [BMP10a] is defined in the same way, but
with (13.5) replaced by

A
(j+1)
i := GBMP

n−1 (A
(j)
1 , A

(j)
2 , . . . A

(j)
i−1, A

(j)
i+1, . . . A

(j)
n ) #1/nAi i = 1, . . . , n. (13.6)

Though both maps satisfy the ALM properties, matricesA,B,C exist for whichGALM (A,B,C) 6=
GBMP (A,B,C).
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While the former iteration converges linearly, the latter converges cubically, and thus
allows one to compute a matrix geometric mean with a lower number of iterations. In fact, if
we call pk the average number of iterations that the process giving a mean of k matrices takes
to converge (which may vary significantly depending on the starting matrices), the total
computational cost of the ALM and BMP means can be expressed as O(n!p3p4 . . . pnm

3).
The only difference between the two complexity bounds lies in the expected magnitude of
the values pk. The presence of a factorial and of a linear number of factors pk is undesirable,
since it means that the problem scales very badly with n. In fact, already with n = 7, 8 and
moderate values of m, a large CPU time is generally needed to compute a matrix geometric
mean [BMP10a].

The Pálfia mean

Pálfia [Pál09] proposed to consider the following iteration. Let again A
(0)
i := Ai, i = 1, . . . , n.

Let us define
A

(k+1)
i := A

(k)
i #A

(k)
i+1, i = 1, . . . , n, (13.7)

where the indices are taken modulo n, i.e., A
(k)
n+1 = A

(k)
1 for all k. We point out that the

definition in the original paper [Pál09] is slightly different, as it considers several possible
orderings of the input matrices, but the means defined there can be put in the form (13.7)
up to a permutation of the starting matrices A1, . . . , An.

As for the previous means, it can be proved that the iteration (13.7) converges to a scalar
n-tuple; we call the common limit of all components GP (A1, . . . , An). As we noted above,
this function does not satisfy P3 (permutation invariance), and thus it is not a geometric
mean in the ALM sense.

Other composite means

Apart from the Riemannian centroid, all the other definitions follow the same pattern:

• build new functions of n matrices by taking nested compositions of the existing
means—preferably using only means of less than n matrices;

• take the common limit of a set of n functions defined as in the above step.

The possibilities for defining new iterations following this pattern are endless. Ando, Li,
Mathias, and Bini, Meini, Poloni chose to use in the first step composite functions using
computationally expensive means of n − 1 matrices; this led to poor convergence results.
Pálfia chose instead to use more economical means of two variables as starting points; this
led to better convergence (no O(n!)), but to a function which is not symmetric with respect
to permutations of its entries (P3, permutation invariance).

As we see in the following, the property P3 is crucial: all the other ones are easily proved
for a mean defined as composition/limit of existing means.

A natural question to ask is whether we can build a matrix geometric mean of n matrices
as the composition of matrix means of less matrices, without the need of a limit process. Two
such unsuccessful attempts are reported in the paper by Ando, Li and Mathias [ALM04], as
examples of the fact that it is not easy to define a matrix satisfying P1–P10. The first is

G4rec(A,B,C,D) := (A#B) #(C #D). (13.8)

Unfortunately, there are matrices such that (A#B) #(C #D) 6= (A#C) #(B#D), so P3
fails. A second attempt is

Grec(A,B,C) := (A4/3 #B4/3) #C2/3, (13.9)
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where the exponents are chosen so that P1 (consistency with scalars) is satisfied. Again,
this function is not symmetric in its arguments, and thus fails to satisfy P3.

A second natural question is whether an iterative scheme such as the ones for GALM ,
GBMP and GP can yield P3 without having a O(n!) computational cost. For example, if
we could build a scheme similar to the ALM and BMP ones, but using only means of n

2
matrices in the recursion, then the O(n!) growth would disappear.

In this chapter, we analyze in more detail the process of “assembling” new matrix means
from the existing ones, and show which new means can be found, and what cannot be
done because of group-theoretical obstructions related to the symmetry properties of the
composed functions. By means of a group-theoretical analysis, we show that for n = 4
a new matrix mean exists which is simpler to compute than the existing ones; numerical
experiments show that the new definition leads to a significant computational advantage.
Moreover, we show that for n > 4 the existing strategies of composing matrix means and
taking limits cannot provide a mean which is computationally simpler than the existing
ones.

13.3 Quasi-means and notation

Let us introduce the following variants to some of the Ando–Li–Mathias properties.

P1” Weak consistency with scalars. There are α, β, γ ∈ R such that if A,B,C commute,
then G(A,B,C) = AαBβCγ .

P2” Weak homogeneity. There are α, β, γ ∈ R such that for each r, s, t > 0, G(rA, sB, tC) =
rαsβtγG(A,B,C). Notice that if P1” holds as well, these must be the same α, β, γ
(proof: substitute scalar values in P1”).

P9’ Weak determinant identity. For all d > 0, if detA = detB = detC = d, then
detG(A,B,C) = d.

We call a quasi-mean a function Q : (Pm)n → (Pm) that satisfies P1”,P2”, P4, P6, P7, P8,
P9’. This models expressions which are built starting from basic matrix means but are not
symmetric, e.g., A#G(B,C,D#E), (13.8), and (13.9).

Theorem 13.1 ([Pol09]). If a quasi-mean Q satisfies P3 (permutation invariance), then it
is a geometric mean.

Proof. From P2” and P3, it follows that α = β = γ. From P9’, it follows that if detA =
detB = detC = 1,

2m = detQ(2A, 2B, 2C) = det
(
2α+β+γQ(A,B,C)

)
= 2m(α+β+γ),

thus α+ β + γ = 1. The two relations combined together yield α = β = γ = 1
3 . Finally, it is

proved in Ando, Li and Mathias [ALM04] that P5 and P10 are implied by the other eight
properties P1–P4 and P6–P9.

For two quasi-means Q and R of n matrices, we write Q = R if Q(A) = R(A) for each
n-tuple A ∈ Pm
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Group theory notation

The notation H ≤ G (H < G) means that H is a subgroup (proper subgroup) of G. Let
us denote by Sn the symmetric group on n elements, i.e., the group of all permutations
of the set {1, 2, . . . , n}. As usual, the symbol (a1a2a3 . . . ak) stands for the permutation
(“cycle”) that maps a1 7→ a2, a2 7→ a3, . . . ak−1 7→ ak, ak 7→ a1 and leaves the other elements
of {1, 2, . . . n} unchanged. Different symbols in the above form can be chained to denote
the group operation of function composition; for instance, σ = (13)(24) is the permutation
(1, 2, 3, 4) 7→ (3, 4, 1, 2). We denote by An the alternating group on n elements, i.e., the
only subgroup of index 2 of Sn, and by Dn the dihedral group over n elements, with
cardinality 2n. The latter is identified with the subgroup of Sn generated by the rotation
(1, 2, . . . , n) and the mirror symmetry (2, n)(3, n− 1) · · · (n2 , n2 + 2) (for even values of n) or
(2, n)(3, n− 1) · · · (n+1

2 , n+3
2 ) (for odd values of n).

Let now H ≤ Sn, and let {σ1, . . . , σr} ⊂ Sn be a transversal for the right cosets Hσ,
i.e., a set of maximal cardinality r = n!/ |H| such that σjσ

−1
i 6∈ H for all i 6= j. The

group Sn acts by permutation over the cosets (Hσ1, . . . ,Hσr), i.e., for each σ there is a
permutation τ = ρH(σ) such that

(Hσ1σ, . . . ,Hσrσ) = (Hστ(1), . . . ,Hστ(r)).

It is easy to check that in this case ρH : Sn → Sr must be a group homomorphism.
Notice that if H is a normal subgroup of Sn, then the action of Sn over the coset space is
represented by the quotient group Sn/H, and the kernel of ρH is H.

Example 13.2. The coset space of H = D4 has size 4!/8 = 3, and a possible transversal is
σ1 = e, σ2 = (12), σ3 = (14). We have ρH(S4) ∼= S3: indeed, the permutation σ = (12) ∈ S4

is such that (Hσ1σ,Hσ2σ,Hσ3σ) = (Hσ2, Hσ1, Hσ3), therefore ρH(σ) = (12), and the
permutation σ̃ = (14) ∈ S4 is such that (Hσ1σ̃, Hσ2σ̃, Hσ3σ̃) = (Hσ3, Hσ2, Hσ1), therefore
ρH(σ̃) = (13). Thus ρH(S4) must be a subgroup of S3 containing (12) and (13), that is,
S3 itself.

With the same technique, noting that σ−1i σj maps the coset Hσi to Hσj , we can prove
that the action ρH of Sn over the coset space is transitive.

Group action and composition of quasi-means

We may define a right action of Sn on the set of quasi-means of n matrices as

(Qσ)(A1, . . . , An) := Q(Aσ(1), . . . , Aσ(n)).

The choice of putting σ to the right, albeit slightly unusual, was chosen to simplify some of
the notations used in Section 13.5.

When Q is a quasi-mean of r matrices and R1, R2, . . . Rr are quasi-means of n matrices,
let us define Q ◦ (R1, R2, . . . Rr) as the map

(Q ◦ (R1, R2, . . . Rr)) (A) := Q(R1(A), R2(A), . . . , Rr(A)). (13.10)

Theorem 13.3 ([Pol09]). Let Q(A1, . . . , Ar) and Rj(A1, . . . An) (for j = 1, . . . , r) be quasi-
means. Then,

1. For all σ ∈ Sr, Qσ is a quasi-mean.

2. (A1, . . . , Ar, Ar+1) 7→ Q(A1, . . . , Ar) is a quasi-mean.
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3. Q ◦ (R1, R2, . . . Rr) is a quasi-mean.

Proof. All properties follow directly from the monotonicity (P4) and from the corresponding
properties for the means Q and Rj .

We may then define the isotropy group, or stabilizer group of a quasi-mean Q

Stab(Q) := {σ ∈ Sn : Q = Qσ}. (13.11)

13.4 Means obtained as map compositions

Let us define the concept of reductive symmetries of a quasi-mean as follows.

• in the special case in which G2(A,B) = A#B, the symmetry property that A#B =
B#A is a reductive symmetry.

• let Q ◦ (R1, . . . , Rr) be a quasi-mean obtained by composition. The symmetry with
respect to the permutation σ (i.e., the fact that Q = Qσ) is a reductive symmetry for
Q ◦ (R1, . . . , Rr) if this property can be formally proved relying only on the reductive
symmetries of Q and R1, . . . , Rr.

For instance, if we takeQ(A,B,C) := A#(B#C), then we can deduce thatQ(A,B,C) =
Q(A,C,B) for all A,B,C, but not that Q(A,B,C) = Q(B,C,A) for all A,B,C. This does
not imply that such a symmetry property does not hold: if we were considering the operator
+ instead of #, then it would hold that A+B +C = B +C +A, but there are no means of
proving it relying only on the commutativity of addition — in fact, associativity is crucial.

As we stated in the introduction, Ando, Li and Mathias [ALM04] showed explicit
counterexamples proving that all the symmetry properties of G4rec and Grec are reductive
symmetries. We conjecture the following.

Conjecture 1. All the symmetries of a quasi-mean obtained by recursive composition from
G2 are reductive symmetries.

In other words, we postulate that no “unexpected symmetries” appear while examining
quasi-means compositions. This is a rather strong statement; however, the numerical
experiments and the theoretical analysis performed up to now never showed any invariance
property that could not be inferred by those of the underlying means.

We prove several result limiting the reductive symmetries that a mean can have; to this
aim, we introduce the reductive isotropy group

RStab(Q) = {σ ∈ Stab(Q) : Q = Qσ is a reductive symmetry}. (13.12)

We prove in the following that there is no quasi-mean Q such that RStab(Q) = Sn. This
shows that the existing “tools” in the mathematician’s “toolbox” do not allow one to
construct a matrix geometric mean (with full proof) based only on map compositions; thus
we need either to devise a completely new construction or to find a novel way to prove
additional invariance properties involving map compositions.

The following results show that when looking for a reductive matrix geometric mean,
i.e., a quasi-mean Q with RStabQ = Sn, we may restrict our search to quasi-means of a
special form.



Chapter 13. Constructing other matrix geometric means 161

Theorem 13.4 ([Pol09]). Let Q be a quasi-mean of r + s matrices, and R1, R2, . . . , Rr,
S1, S2, . . . , Ss be quasi-means of n matrices such that Ri 6= Sjσ for all i, j and every σ ∈ Sn.
Then,

RStab(Q ◦ (R1, R2, . . . , Rr, S1, S2, . . . , Ss))

⊆ RStab(Q ◦ (R1, . . . , Rr, R1, R1, . . . , R1)). (13.13)

Proof. Let σ ∈ RStab(Q◦(R1, R2, . . . , Rr, S1, S2, . . . Ss)); since the only invariance properties
that we may assume on Q are those predicted by its invariance group, it must be the case
that

(R1σ,R2σ, . . . , Rrσ, S1σ, S2σ, . . . Ssσ)

is a permutation of (R1, R2, . . . , Rr, S1, S2, . . . Ss) belonging to RStab(Q). Since Ri 6= Sjσ,
this permutation must map the sets {R1, R2, . . . , Rr} and {S1, S2, . . . Ss} to themselves.
Therefore, the same permutation maps

(R1, R2, . . . , Rr, R1, R1, . . . R1)

to
(R1σ,R2σ, . . . , Rrσ,R1σ,R1σ, . . . R1σ).

This implies that

Q(R1, R2, . . . , Rr, R1, R1, . . . R1) = Q(R1σ,R2σ, . . . , Rrσ,R1σ,R1σ, . . . R1σ)

as requested.

Theorem 13.5 ([Pol09]). Let M1 := Q ◦ (R1, R2, . . . , Rr) be a quasi-mean. Then there is
a quasi-mean M2 in the form

Q̃ ◦ (R̃σ1, R̃σ2, . . . , R̃σr̃), (13.14)

where (σ1, σ2, . . . , σr̃) is a right coset transversal for RStab(R̃) in Sn, such that RStab(M1) ⊆
RStab(M2).

Proof. Set R̃ = R1. For each i = 2, 3, . . . , r if Ri 6= R̃σ, we may replace it with R̃, and by
Theorem 13.4 the restricted isotropy group increases or stays the same. Thus by repeated
application of this theorem, we may reduce to the case in which each Ri is in the form R̃τi
for some permutation τi.

Since {σi} is a right transversal, we may write τi = hiσk(i) for some hi ∈ H and

k(i) ∈ {1, 2, . . . , r̃}. We have R̃h = R̃ since h ∈ Stab R̃, thus Ri = R̃σk(i). The resulting

quasi-mean is Q ◦ (R̃σk(1), . . . , R̃σk(r)). Notice that we may have k(i) = k(j), or some cosets

may be missing. Let now Q̃ be defined as Q̃(A1, A2, . . . , Ar̃) := Q(Ak(1), . . . , Ak(r)); then
we have

Q̃(R̃σ1, . . . , R̃σr̃) = Q(R̃σk(1), . . . , R̃σk(r)) (13.15)

and thus the isotropy groups of the left-hand side and right-hand side coincide.

For the sake of brevity, we define

Q ◦R := Q ◦ (Rσ1, . . . , Rσr),

assuming a standard choice of the transversal for H = StabR. Notice that Q ◦R depends
on the ordering of the cosets Hσ1, . . . ,Hσr, but not on the choice of the coset representative
σi, since Qhσi = Qσi for each h ∈ H.
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Example 13.6. The quasi-mean (A,B,C) 7→ (A#B) #(B#C) is Q◦Q, where Q(X,Y, Z) =
X #Y , H = {e, (12)}, and the transversal is {e, (13), (23)}.
Example 13.7. The quasi-mean (A,B,C) 7→ (A#B) #C is not in the form (13.14), but in
view of Theorem 13.4, its restricted isotropy group is a subgroup of that of (A,B,C) 7→
(A#B) #(A#B).

The following theorem shows which permutations we can actually prove to belong to the
reductive isotropy group of a mean in the form (13.14).

Theorem 13.8 ([Pol09]). Let H ≤ Sn, R be a quasi-mean of n matrices such that
RStabR = H and Q be a quasi-mean of r = n!/ |H| matrices. Let G ∈ Sn be the largest
permutation subgroup such that ρH(G) ≤ RStab(Q). Then, G = RStab(Q ◦R).

Proof. Let σ ∈ G and τ = ρH(σ); we have

(Q ◦R)σ(A) = Q
(
Rσ1σ(A), Rσ2σ(A), . . . , Rσrσ(A)

)
= Q

(
Rστ(1)(A), Rστ(2)(A), . . . , Rστ(r)(A)

)
= Q

(
Rσ1(A), Rσ2(A), . . . , Rσr(A)

)
,

where the last equality holds because τ ∈ Stab(Q).
Notice that the above construction is the only way to obtain invariance with respect to a

given permutation σ: indeed, to prove invariance relying only on the invariance properties
of Q, (Rσ1σ, . . . , Rσrσ) = (Rστ(1), . . . , Rστ(r)) must be a permutation of (Rσ1, . . . , Rσr)
belonging to RStabQ, and thus ρH(σ) = τ ∈ StabQ. Thus the reductive invariance group
of the composite mean is precisely the largest subgroup G such that ρH(G) ≤ StabQ.

Example 13.9. Let n = 4, Q be any (reductive) geometric mean of three matrices (i.e.,
RStabQ = S3), and R(A,B,C,D) := (A#C) #(B#D). We have H = RStabR = D4,
the dihedral group over four elements, with cardinality 8. There are r = 4!/ |H| = 3 cosets.
Since ρH(S4) is a subset of StabQ = S3, the isotropy group of Q ◦R contains G = S4 by
Theorem 13.8. Therefore Q ◦R is a geometric mean of four matrices.

Indeed, the only assertion we have to check explicitly is that RStabR = D4. The
isotropy group of R contains (24) and (1234), since by using repeatedly the fact that
# is symmetric in its arguments we can prove that R(A,B,C,D) = R(A,D,C,B) and
R(A,B,C,D) = R(D,A,B,C). Thus it must contain the subgroup generated by these two
elements, that is, D4 ≤ RStabR. The only subgroups of S4 containing D4 as a subgroup
are the two trivial ones S4 and D4. We cannot have RStabR = S4, since R has the same
definition as G4rec of equation (13.8), apart from a reordering, and it was proved [ALM04]
that this is not a geometric mean.

It is important to notice that by choosing G3 = GALM3 or G3 = GBMP
3 in the previous

example we may obtain a geometric mean of four matrices using a single limit process, the
one needed for G3. This is more efficient than GALM4 and GBMP

4 , which compute a mean of
four matrices via several means of three matrices, each of which requires a limit process in
its computation. We return to this topic in Section 13.6.

Is it possible to obtain a reductive geometric mean of n matrices, for n > 4, starting
from simpler means and using the construction of Theorem 13.8? The following result shows
that the answer is no.

Theorem 13.10 ([Pol09]). Suppose G := RStab(Q ◦ R) ≥ An and n > 4. Then An ≤
RStab(Q) or An ≤ RStab(R).
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Proof. Let us consider K = ker ρH . It is a normal subgroup of Sn, but for n > 4 the only
normal subgroups of Sn are the trivial group {e}, An and Sn [DM96]. Let us consider the
three cases separately.

1. K = {e}. In this case, ρH(G) ∼= G, and thus G ≤ RStabQ.

2. K = Sn. In this case, ρH(Sn) is the trivial group. But the action of Sn over the
coset space is transitive, since σ−1i σj sends the coset Hσi to the coset Hσj . So the
only possibility is that there is a single coset in the coset space, i.e., H = Sn.

3. K = An. As in the above case, since the action is transitive, it must be the case that
there are at most two cosets in the coset space, and thus H = Sn or H = An.

Thus it is impossible to apply Theorem 13.8 to obtain a quasi-mean with reductive
isotropy group containing An, unless one of the two starting quasi-means has a reductive
isotropy group already containing An.

13.5 Means obtained as limits

We describe now a unifying algebraic setting in terms of isotropy groups, generalizing the
procedures leading to the means defined by limit processes GALM , GBMP and GP .

Let S : (Pm)n → (Pm)n be a map; we say that S preserves a subgroup H < Sn if there
is a map τ : H → H such that Sh(A) = τ(h)S(A) for all A ∈ Pm.

Theorem 13.11 ([Pol09]). Let S : (Pm)n → (Pm)n be a map and H < Sn be a permutation
group such that

1. (A)→
(
S(A)

)
i

is a quasi-mean for all i = 1, . . . , n,

2. S preserves H,

3. for all A ∈ (Pm)n, limk→∞ Sk(A) is a scalar n-tuple1,

and let us denote by S∞(A) the common value of all entries of the scalar n-tuple limk→∞ Sk(A).
Then, S∞(A) is a quasi-mean with isotropy group containing H.

Proof. From Theorem 13.3, it follows that A 7→
(
Sk(A)

)
i

is a quasi-mean for each k. Since
all the properties defining a quasi-mean pass to the limit, S∞ is a quasi-mean itself.

Let us take h ∈ H and A ∈ Pn. It is easy to prove by induction on k that Skh(A) =
τk(h)

(
Sk(A)

)
. Now, choose a matrix norm inducing the Euclidean topology on Pm; let

ε > 0 be fixed, and let us take K such that for all k > K and for all i = 1, . . . , n the following
inequalities hold:

•
∥∥(Sk(A)

)
i
− S∞(A)

∥∥ < ε,

•
∥∥(Skh(A)

)
i
− S∞h(A)

∥∥ < ε.

We know that
(
Skh(A)

)
i

=
(
τk(h)Sk(A)

)
i

=
(
Sk(A)

)
τk(h)(i)

, therefore

‖S∞(A)− S∞h(A)‖ ≤
∥∥∥(Sk(A)

)
τk(h)(i)

− S∞(A)
∥∥∥

+
∥∥(Skh(A)

)
i
− S∞h(A)

∥∥ < 2ε.

1Here Sk denotes function iteration: S1 = S and Sk+1(A) = S(Sk(A)) for all k.
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Since ε is arbitrary, the two limits must coincide. This holds for each h ∈ H, therefore
H ≤ StabS∞.

Example 13.12. The map S defining GALM4 is
A
B
C
D

 7→

GALM3 (B,C,D)
GALM3 (A,C,D)
GALM3 (A,B,D)
GALM3 (A,B,C)

 .
One can see that Sσ = σ−1S for each σ ∈ S4, and thus with the choice τ(σ) := σ−1 we get

that S preserves S4. Thus, by Theorem 13.11, S∞ = GALM4 is a geometric mean of four
matrices. The same reasoning applies to GBMP .

Example 13.13. The map S defining GP4 is
A
B
C
D

 7→

A#B
B#C
C #D
D#A

 .
S preserves the dihedral group D4. Therefore, provided the iteration process converges to a
scalar n-tuple, S∞ is a quasi-mean with isotropy group containing D4.

As in the previous section, we are interested in seeing whether this approach, which
is the one that has been used to prove invariance properties of the known limit means
[ALM04, BMP10a], can yield better results for a different map S.

Theorem 13.14 ([Pol09]). Let S : (Pm)n → (Pm)n preserve a group H. Then, the
invariance group of each of its components Si, i = 1, . . . , n, is a subgroup of H of index at
most n.

Proof. Let i be fixed, and set Ik := {h ∈ H : τ(h)(i) = k}. The sets Ik are mutually disjoint
and their union is H, so the largest one has cardinality at least |H| /n, let us call it Ik.

From the hypothesis that S preserves H, we get Sih(A) = Sk(A) for each A and each
h ∈ Ik. Let g be an element of Ik; then Sih(g−1A) = Sk(g−1A) = Si(A). Thus the isotropy
group of Si contains all the elements of the form hg−1, h ∈ Ik, and those are at least
|H| /n.

The following result holds.

Theorem 13.15 ([DM96, page 147]). For n > 4, the only subgroups of Sn with index at
most n are:

• the alternating group An,

• the n groups Tk = {σ ∈ Sn : σ(k) = k}, k = 1, . . . , n, all of which are isomorphic to
Sn−1,

• for n = 6 only, another conjugacy class of 6 subgroups of index 6 isomorphic to S5.

Analogously, the only subgroups of An with index at most n are:

• the n groups Uk = {σ ∈ An : σ(k) = k}, k = 1, . . . , n, all of which are isomorphic to
An−1,
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• for n = 6 only, another conjugacy class of 6 subgroups of index 6 isomorphic to A5.

This shows that whenever we try to construct a geometric mean of n matrices by taking
a limit processes, such as in the Ando–Li–Mathias approach, the isotropy groups of the
starting means must contain An−1. On the other hand, by Theorem 13.8, we cannot generate
means whose isotropy group contains An−1 by composition of simpler means; therefore,
there is no simpler approach than that of building a mean of n matrices as a limit process
of means of n − 1 matrices (or at least quasi-means with StabQ = An−1, which makes
little difference). This shows that the recursive approach of GALM and GBMP cannot be
simplified while still maintaining P3 (permutation invariance).

13.6 Computational issues and numerical experiments

The results we have exposed up to now are negative results, and they hold for n > 4. On
the other hand, it turns out that for n = 4, since An is not a simple group, there is the
possibility of obtaining a mean that is computationally simpler than the ones in use. Such a
mean is the one we described in Example 13.9. Let us take any mean of three elements (we
use GBMP

3 here since it is the one with the best computational results); the new mean is
therefore defined as

GNEW4 (A,B,C,D) := GBMP
3 ((A#B) #(C #D), (A#C) #(B#D),

(A#D) #(B#C)) . (13.16)

Notice that only one limit process is needed to compute the mean; conversely, when computing
GALM4 or GBMP

4 we are performing an iteration whose elements are computed by doing four
additional limit processes; thus we may expect a large saving in the overall computational
cost.

We may extend the definition recursively to n > 4 elements using the construction
described in (13.6), but with GNEW instead of GBMP . The total computational cost,
computed in the same fashion as for the ALM and BMP means, is O(n!p3p5p6 . . . pnm

3).
Thus the undesirable dependence from n! does not disappear; the new mean should only
yield a saving measured by a multiplicative constant in the complexity bound.

We have implemented the original BMP algorithm and the new one described in the
above section with Matlab and run some tests on the same set of examples used by Moakher
[Moa06] and Bini et al. [BMP10a]. It is an example deriving from physical experiments on
elasticity. It consists of five sets of matrices to average, with n varying from 4 to 6, and
6× 6 matrices split into smaller diagonal blocks.

For each of the five data sets, we have computed both the BMP and the new matrix
mean. The CPU times are reported in Table 13.1. As a stopping criterion for the iterations,
we used

max
i,j,k

∣∣∣(A(h)
i )jk − (A

(h+1)
i )jk

∣∣∣ < 10−13.

As we expected, our mean provides a substantial reduction of the CPU time which is
roughly by an order of magnitude.

Following Bini et al. [BMP10a], we then focused on the second data set (ammonium
dihydrogen phosphate) for a deeper analysis; we report in Table 13.6 the number of iterations
and matrix roots needed in both computations.
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Data set (number of matrices) BMP mean New mean

NaClO3 (5) 1.3× 10+00 3.1× 10−01

Ammonium dihydrogen phosphate (4) 3.5× 10−01 3.9× 10−02

Potassium dihydrogen phosphate (4) 3.5× 10−01 3.9× 10−02

Quartz (6) 2.9× 10+01 6.7× 10+00

Rochelle salt (4) 6.0× 10−01 5.5× 10−02

Table 13.1: CPU times for the elasticity data sets

BMP mean New mean

Outer iterations (n = 4) 3 none
Inner iterations (n = 3) 2.0 (avg.) 2

Matrix square roots (sqrtm) 72 15
Matrix p-th roots (rootm) 84 6

Table 13.2: Number of inner and outer iterations needed, and number of matrix roots needed
(ammonium dihydrogen phosphate)

BMP mean New mean

Outer iterations (n = 4) 4 none
Inner iterations (n = 3) 2.5 (avg.) 3

Matrix square roots (sqrtm) 120 18
Matrix p-th roots (rootm) 136 9

Table 13.3: Number of inner and outer iterations needed, and number of matrix roots needed
(on matrices (13.17))

The examples in these data sets are mainly composed of matrices very close to each
other; we consider here instead an example of mean of four matrices whose mutual distances
are larger:

A =

1 0 0
0 1 0
0 0 1

 , B =

3 0 0
0 4 0
0 0 100

 , C =

2 1 1
1 2 1
1 1 2

 , D =

 20 0 −10
0 20 0
−10 0 20

 .
(13.17)

The results regarding these matrices are reported in Table 13.3.

Accuracy

It is not clear how to check the accuracy of a limit process yielding a matrix geometric mean,
since the exact value of the mean is not known a priori, except for the cases in which all the
Ai commute. In those cases, P1 yields a compact expression for the result. So we cannot
test accuracy in the general case; instead, we have focused on two special examples.

As a first accuracy experiment, we computed G(M−2,M,M2,M3) −M , where M is
taken as the first matrix of the second data set on elasticity; the result of this computation
should be zero according to P1. As a second experiment, we tested the validity of P9
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Operation Result∥∥GBMP (M−2,M,M2,M3)−M
∥∥
2

4.0× 10−14∥∥GNEW (M−2,M,M2,M3)−M
∥∥
2

2.5× 10−14∣∣det(GBMP (A,B,C,D))− (det(A) det(B) det(C) det(D))1/4
∣∣ 5.5× 10−13∣∣det(GBMP (A,B,C,D))− (det(A) det(B) det(C) det(D))1/4
∣∣ 2.1× 10−13

Table 13.4: Accuracy tests

(determinant identity) on the means of the four matrices in (13.17). The results of both
computations are reported in Table 13.4; the results are well within the errors permitted by
the stopping criterion, and show that both algorithms can reach a satisfying precision.

13.7 Conclusions and research lines

The results of this chapter show that, by combining existing matrix means, it is possible to
create a new mean which is faster to compute than the existing ones. Moreover, we show
that using only function compositions and limit processes with the existing proof strategies,
it is not possible to achieve any further significant improvement with respect to the existing
algorithms. In particular, the dependency from n! cannot be removed. New attempts should
focus on other aspects, such as:

• finding new “unexpected” algebraic relationships involving the existing matrix means,
which would allow to break out of the framework of Theorem 13.8–Theorem 13.11;
or, on the other hand, proving that there are no such unexpected algebraic relations
(Conjecture 1).

• introducing new kinds of matrix geometric means or quasi-means, different from the
ones built using function composition and limits.

• proving that the Riemannian centroid (13.1) is a matrix mean in the sense of Ando–Li–
Mathias (currently P4 is an open problem), and providing faster and reliable algorithms
to compute it.

It is an interesting question in itself whether it is possible to construct a quasi-mean whose
isotropy group is exactly An.





Chapter 14

Conclusions

We have presented a unitary introduction to a number of matrix equations appearing in
applications and in mathematical literature, and some old and new algorithms for their
solution. The relationships between the different quadratic vector and matrix equations are
partially exploited to give better algorithms and unified proofs. However, some details still
cannot be embedded elegantly in the theory, and many algorithms for one equation of the
class have no counterpart for the others.

Among the iterative algorithms for matrix equations, an important role is played by
the Structured Doubling Algorithm. We explored the connection between SDA and cyclic
reduction and introduced a couple of implementation tricks that could help in implementing
effectively this algorithm and adapting it to other equations and problems.

Moreover, two auxiliary problems related to quadratic matrix equations are considered:
the structure preservation in displacement rank-structured Riccati equations, and the problem
of extending the matrix geometric mean to several matrices.

We linked the solution of the NARE appearing in neutron transport to the theory of
Cauchy-like matrices; recognizing and exploiting their computational properties has a great
impact in the numerical solution of this equation, and is a necessary step in all algorithms
that aim to reach a reasonable computational efficiency.

The problem of finding a sensible generalization of the matrix geometric mean is mathe-
matically fascinating; we introduced some construction that lead to more computationally
effective matrix means satisfying all the required properties, and presented a negative result
that shows that the existing techniques cannot be pushed further.

Many research problems are still open in the area of quadratic matrix equations; we
hope that the results described in this thesis helped casting some light on the mathematical
picture behind the solution algorithms, and we look forward to exploring the research lines
that were briefly summarized at the end of each chapter.
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# , 4
.∗, 5
: , 5

transversal, see coset transversal

An, see alternating group
alternating group, 159, 162, 164
Ando–Li–Mathias

mean, 141, 153, 156, 163, 164
properties, 142, 145, 155

applicability
of cyclic reduction, 42
of SDA, 61, 79
of SDA-ss, 75

arithmetic–geometric–harmonic mean in-
equality, 143

augmented matrix, 84

backslash operator (Matlab), 102
bilinear form, 1, 38
BLAS, 98

Cγ , see Cayley transform
c-stable and related terminology starting

with c-, see stable
cache memory, 87, 98, 104
canonical

factorization, 72
semi-stable subspace, 12, 48, 60, 119,

121, 127, 130
Cauchy matrix, 84, 89
Cauchy-like matrix, 83, 87, 96, 105, 107
Cayley transform, 11, 57, 61, 62, 68, 120,

122, 123, 133
central eigenvalue, 48
centroid (of a triangle), 142, 145
commutative diagram, 57
condition number

of a matrix, 98, 101, 123

of a subspace or an eigenvalue, 48,
123, 124

continuous-time algebraic Riccati equa-
tion, 2, 63, 64, 117, 120, 132

controllable pair, 12, 118
coset transversal, 159, 161
CR, see cyclic reduction
critical, 27, 32, 39, 50, 78, 112
CS-AB problem, 55, 59, 129, 135
cyclic reduction, 2, 41, 63, 69, 114

d-stable and related terminology starting
with d-, see stable

deflating subspace, 9, 58, 60, 118, 120
depth (algorithm), 20
derivative of an eigenvector, 30
detectable pair, 12
Dn, see dihedral group
diag(·), 5
dihedral group, 159
discrete-time algebraic Riccati equation,

121
displacement rank, 84, 107
dominance factor, 12, 60, 62, 76
downdating, 90, 94
drift, 47
dual equation, 46, 49

e, 5
E1–E4, see Even Kronecker canonical form
eig, 33
eigs, 33
EKCF, see even Kronecker canonical form
elasticity experiments, 152, 153, 165, 166
Euclidean geometry, 142, 145
even

Kronecker canonical form, 9, 119
matrix pencil, 9, 118

extended matrix, 87, 89
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extinction probability, 27

feasible LMI, 118
fixed-point iteration, see functional itera-

tion
fluid queue, 45, 47
Fréchet derivative, 7, 17, 49
functional

formulation of CR, 42
iteration, 17, 18, 52, 105

functional iteration, 29

G4rec, 157
GALM , see Ando–Li–Mathias mean
GBMP , 156, 163, 165
GP , 157, 163, 164
Grec, 158
Gauss–Seidel, 19
Gaussian

elimination, 41, 87, 90, 93, 100, 107
Toeplitz matrix, 99

generalized SDA, 128, 129, 133
generator (of a Cauchy-like matrix), 84,

92, 95, 103
generator growth, 99, 100, 112
geodesic, 141, 142, 145, 148
geometric mean (of matrices), 4, 141, 143,

156, 158
Gershgorin’s theorem, 47
GKO algorithm, 83, 85, 93, 95, 100, 103
golden section search, 123
Graeffe iteration, 40, 43
group inverse, 30

H, 2
Hadamard product, 5, 43
Hamiltonian

eigensymmetry, 10, 122
matrix, 2, 10, 64, 122
of a NARE, 2, 69

inclusion-exclusion principle, 28
individual, 27
infinity

eigenvalues at, 8
injective vector, 84, 89, 92
invariant subspace, 46, 52, 64
inverse-free

disk iteration, 57, 58, 135
NMS iteration, 56

irreducible matrix, 5
isotropy group, 160

J , 2, 10
Jacobian, 21, 31, 106
Jk, 8
Jordan chain, 10, 48, 50, 121, 130

K, 2
KCF, see Kronecker canonical form
Kk, 8
Kronecker

canonical form, 8, 121
product, 49, 107

Lagrangian
subspace, 10, 12, 119, 132

Laurent power series, 73
Levinson algorithm, 83, 99, 100
linear matrix inequality, 118
Lk, 8
LMI, see linear matrix inequality
local convergence, 29
logarithmic reduction, 2, 40, 44, 69
LR, see Logarithmic reduction
LU factorization, 42, 70, 85, 87, 95, 122
Lu’s

iteration, 106, 109
simple equation, 3, 105

Lur’e equations, 4, 117

M, 2
M-matrix, 6, 46, 49, 50, 62–64, 76, 105,

108
machine precision, 51, 76
Markov

chain, 39
process, 39, 45

Markovian binary tree, 27
matrix

pencil, 8, 54, 58, 63, 65, 124
polynomial, 7, 42, 46, 63, 65

matrix sign
function, 54
iteration, see NMS iteration

maximal eigenvector, 29
median (of a triangle), 142
minimal solution, 16, 41, 45, 46, 49
Mk, 8
Möbius transformation, 10
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model reduction, 117, 118
modified Newton’s method, 21, 43
Moore–Penrose pseudoinverse, see pseu-

doinverse

NARE, see nonsymmetric algebraic Ric-
cati equation

neutral subspace, 119, 121
neutron transport equation, 45, 77, 105
Newton’s method, 7, 20, 43, 53, 79, 105,

106
Newton-Kantorovich theorem, 7
Nk, 8
NMS iteration, 54, 57, 62
node (of a Cauchy-like matrix), 84
non-reconstructible matrix, 96
nonnegative matrix, 62, 64
nonsingular (case for matrix equations),

47, 105
nonsymmetric algebraic Riccati equation,

2, 45, 61, 63
normal

rank, 8, 119
subgroup, 159

normalization, 29, 38, 128, 132, 133, 135
NP-hard problem, 26
null recurrent, 39, 48, 50, 105, 106

observable pair, 12
optimal control, 117, 133
order (algorithm), 20
ordering

componentwise, 5
positive definite, 5

orthogonal iteration, see power iteration

Pn, 141, 145, 156
P1”,P2”,P9’, 158
P11, 144
partial pivoting, 86, 93, 96
partially reconstructible matrix, 84, 87, 92
pencil, see matrix pencil
pencil arithmetic, 54
permutation invariance, 143, 155, 157, 158
Perron

iteration, 30
value, 28
vector, 28

Perron–Frobenius theorem, 6, 28, 47, 48,
112

perturbation, 51, 117
Poisson equation, 41
Popov function, see spectral density func-

tion
positive recurrent, 39, 48, 49, 78
positive solution, 50
positivity pattern, 23
power iteration, 33, 131, 135
PPT, see principal pivot transform
preservation (of a subgroup), 163
principal pivot transform, 61
probabilistic interpretation, 28
proper splitting, 130
pseudoinverse, 30

QBD process, 39, 78
QR factorization, 55, 132
quadratic

eigenvalue problem, 2
form, 38
vector equation, 1, 15

quasi-Cauchy matrix, 84, 89
quasi-mean, 158, 159
quotient group, 159
QVE, see quadratic vector equation

R+, 5
random process, 39
randomized URV decomposition, 135
reductive

isotropy group, 160–162
symmetry, 160

regular
matrix polynomial, 8
pencil, 58, 118, 120, 125

ρH(σ), 159
ρ(·), 5
Riemannian

centroid, 155
geometry, 145
metric, 141

right-similarity, 10, 56, 58, 60, 66, 128
RStab, see reductive isotropy group

Sn, see symmetric group
Schur

complement, 61, 84, 85, 87, 108, 120
form, 52, 53

SDA, see structured doubling algorithm
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Sherman–Morrison–Woodbury formula, 6,
74, 75, 107

shift technique, 62, 106, 111
shrink-and-shift technique, 63, 68
simplex (k-dimensional), 142
singular value decomposition, 122
SMW formula, see Sherman–Morrison–Woodbury

formula
spectral

density function, 118
division, 62, 135

splitting, 12, 40, 47, 59, 61, 63, 67, 69
(M-matrix), 52
partial, 12
proper, 12

SSF-I, see standard structured form I
Stab, see isotropy group
stability region, 11
stabilizable pair, 12, 118
stabilizer group, see isotropy group
stable

matrix, 11, 123
space, 11, 48, 52, 54, 67, 119, 127, 133

standard structured form, 58, 60, 63, 120,
122, 133

stochastic matrix, 39
structured doubling algorithm, 2, 58, 60,

63, 71, 105, 114, 120–122
subcritical, 27, 34
supercritical, 27, 32
superfast algorithm, 83, 114
survival probability, 28
Sylvester equation, 52, 106
symmetric group, 159, 163, 164
symmetrization, 43
symplectic

eigensymmetry, 10, 122
matrix, 10, 135
pencil, 10, 121, 122, 132, 133

Taylor expansion, 17
thicknesses (algorithm), 20
Toeplitz matrix, 83, 85, 98
Toeplitz-like matrix, 83
tournament mean, 162, 165
transient, 39, 47, 49, 105
Trummer-like matrix, 22, 84, 92, 102, 104,

107

UL factorization, 66, 70

unilateral quadratic matrix equation, 2,
63, 78

unstable, see stable
UQME, see unilateral quadratic matrix

equation

vectorization, 16

W1–W4, see Kronecker canonical form
weak SSF-I, 128

Z-matrix, 6, 46
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