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Compendio

Nonostante la disponibilità di numerosi nuovi materiali, l’acciaio rimane il ma-
teriale di base della moderna società industriale. L’uso dell’ acciaio con peculiari
caratteristiche (durezza, resistenza all’uso, malleabilità etc.) è perciò assai diffuso
in molti settori della tecnica. La sua importanza è dovuta soprattutto al fatto che
larga parte delle proprietà desiderate a scopi industriali è ottenibile tramite un trat-
tamento termico mirato. Svariati trattamenti termici dell’acciaio sono noti e utilizzati
sin dall’antichità. Essi si basano sul riscaldamento e raffreddamento del materiale in
diversi cicli e a diverse velocità. La durezza, per esempio, può essere ottenuta tramite
riscaldamento seguito da rapido raffreddamento. Un processo che mira all’indurimento
di uno strato esterno soltanto, lasciando la parte interna duttile, prende il nome di
’case hardening’. Tuttora, nell’industria, l’approccio più diffuso ai trattamenti termici
è basato sull’ esperienza accumulata negli anni e sui dati ricavati da tentativi sperimen-
tali, fino ad ottenere un risultato soddisfacente. Questo modo di procedere presenta
lo svantaggio di necessitare di un gran numero di esperimenti, risultando quindi dis-
pendioso e non facilmente riproducibile e controllabile. Da ciò nasce l’esigenza di un
controllo più preciso del processo, volto a minimizzare il consumo energetico e, di con-
seguenza, economico. A tal fine, gli apporti della ricerca nel campo dell’ingegneria,
della fisica, della chimica e anche – in gran misura - della matematica sono cruciali.

La prima indagine analitica della trasformazione di fase solido-solido che ha luogo
durante i trattamenti termici nell’ acciaio risale ai lavori pionieristici di M.Avrami
e A.Kolmogorov negli anni trenta dello scorso secolo. Da quel momento, essendo
chiara l’utilità dell’ approccio analitico, le ricerche sulla modellizzazione matematica a
riguardo si sono estese e numerosi risultati sperimentali sono stati pubblicati riguardo
le trasformazioni di fase nell’acciaio. Ciononostante, la prima trattazione matematica
rigorosa di questo problema può essere fatta risalire a A.Visintin con alcuni lavori
della metà degli anni ottanta. La quantità degli studi dedicati alla modellizzazione
delle trasformazioni di fase è notevolmente aumentata nelle ultime due decadi, a se-
guito della crescente domanda e dell’ampio impiego nell’industria di processi in cui
le trasformazioni di fase rivestono un ruolo di primo piano. Un Istituto dedito da
anni ad approfondite ricerche sull’argomento è il Weierstraß Insitute für Angewandte
Analysis und Stochastik (WIAS) di Berlino, dove la presente tesi è stata scritta. Esso
vanta una decennale ricerca di matematica applicata nell’ambito dell’analisi e dell’
ottimizzazione dei più significativi trattamenti termici dell’acciaio, in collaborazione
con Istituti di ingegneria e di scienza dei materiali.

Dal punto di vista della modellizzazione matematica, un trattamento termico in gen-
erale può essere descritto come combinazione dei processi di trasferimento termico e di
trasformazioni di fase, che sono responsabili delle diverse strutture cristalline possibili
nell’acciaio. Questi fenomeni fisici sono descrivibili attraverso un sistema di equazioni
alle derivate parziali di evoluzione e, nel caso di trattamenti termico-chimici, equazioni
aggiuntive sono necessarie per descrivere la diffusione di altre sostanze chimiche. Il
processo industriale oggetto della presente tesi è la più diffusa variante di ’case harden-
ing’, cosiddetta ’gas carburizing’, che prevede la variazione della composizione chimica
dell’acciaio, nello strato superficiale, mediante la diffusione di un gas costituito prin-
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cipalmente da carbonio. Infatti, per ottenere un certo grado di durezza, è necessaria
una quantità percentuale di carbonio, che non è presente negli acciai di base più usati,
i quali sono a basso contenuto di carbonio.

La presente tesi si occupa della modellizzazione matematica, a livello macroscopico,
del ’gas carburizing’, della sua analisi matematica, e infine presenta un lavoro di sim-
ulazione del modello proposto.
La parte introduttiva della tesi è volta alla descrizione dei principali fenomeni fisici che
hanno luogo nell’acciaio al variare della temperatura, per giungere alla formulazione
di un modello matematico. Il modello è costituito da un sistema di due equazioni
paraboliche alle derivate parziali, che descrivono l’evoluzione della temperatura e quella
del contenuto in carbonio all’interno della componente meccanica, accoppiate a due
equazioni differenziali ordinarie che descrivono le transizioni di fase (solido-solido) che
hanno luogo nell’acciaio sottoposto al trattamento termico. Vengono affrontate le
questioni di esistenza e unicità di una soluzione del problema al bordo associato al
sistema di equazioni del modello completo, con condizioni al bordo di terzo tipo per le
equazioni paraboliche. Successivamente si analizza un problema correlato a quello di
partenza, vale a dire il sistema quasilineare costituito dalle due equazioni paraboliche
alle derivate parziali, riuscendo ad indebolire sensibilmente le ipotesi che sembravano
necessarie nella prima parte, col vantaggio di rispecchiare con maggior fedeltà alcune
caratteristiche fisiche del problema. In questo caso, la tecnica usata è ispirata ad un
metodo proposto da J.Nečas originalmente per la risoluzione di equazioni ellittiche con
condizioni al bordo lineari, ma che consente di trattare anche una condizione al bordo
non lineare per l’equazione descrivente l’evoluzione della temperatura. Altrettanto
utili nella trattazione dell’unicità e continuità della soluzione rispetto ai dati sono al-
cune classi di spazi di Sobolev anisotropici, introdotti da O.V. Besov, che risultano
particolarmente adatti a trattare il problema della diversa regolarità della soluzione
in direzione tangenziale e normale. L’analisi è valida nei casi di dimensione spaziale
minore o uguale a tre, tenendo conto che quello rilevante nelle applicazioni è il caso
tridimensionale. In conclusione vengono presentate alcune simulazioni che mostrano
l’applicabilità del modello considerato, finalizzate ad essere comparate con risultati
sperimentali.
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Zusammenfassung

Stahl ist, obwohl die Entwicklung und Nutzung neuer vielseitiger Werkstoffe und
Materialen immer bedeutsamer wird, nach wie vor der Grundwerkstoff einer modernen
industriellen Gesellschaft. Er ist der am meist verwendete metallische Werkstoff. Mit
seinen garantierten Eigenschaften (Festigkeit, Korrosionsverhalten, Verformbarkeit,
Schweißeignung usw.) deckt er in der Technik ein weites Anwendungsfeld ab. Nach
der klassischen Definition ist Stahl eine Eisen-Kohlenstoff-Legierung, die weniger als
2,06 % (Masse) Kohlenstoff enthält. Die grundsätzliche Bedeutung des Kohlenstoffs
ergibt sich aus seinem Einfluss auf das Phasenumwandlungsverhalten und damit auf
die mechanischen Eigenschaften des Stahls, was vor allem man sich in der Wärme-
behandlung zu Nutze macht. Die Wärmebehandlung von Stahl blickt auf eine über
tausend jährige Geschichte zurück. Das Grundidee bei der Wärmebehandlung besteht
darin, einen Stahl mit bestimmten gewünschten Eigenschaften durch eine geeignete
Kombination von kontrollierter Erhitzung und Abkühlung zu erzeugen. So kann z.B.
die Härte eines Stahls durch starke Erwärmung gefolgt von einer schnellen Abkühlung
deutlich erhöht werden. Ein spezielles Verfahren, das sich auf eine relative dünne, ober-
flächennahe Schicht beschränkt, heißt ’Randschichthärten’. Bei diesem Verfahren wird
nur die äußerste Schicht des Werkstücks gehärtet, was den Verschleiß bei mechanischer
Beanspruchung deutlich verringert. Das Innere hingegen behält seine Duktilität was
insbesondere für die Dauerfestigkeit eines Bauteils von Vorteil ist.

In der vorliegenden Arbeit wird eine spezielle verfahren des Randschichthärten un-
tersucht, dass so genannte ’Einsatzhärten’. Bei diesem Verfahren wird in die Oberfläche
von Werkstücken aus kohlenstoffarmen Stahl von außen durch Diffusion Kohlenstoff
eingebracht. Das Werkstück bezieht dabei den zur Diffusion notwendigen Kohlenstoff
aus einer kohlenstoffreichen Gasatmosphäre. Auch in der heutigen hoch technolo-
gisierten Industrie ist es gängige Methode die Prozessparameter für das Einsatzhärten
experimentell zu ermitteln. In der Regel werden Erfahrungswerte mit zusätzlichen ex-
perimentellen Studien kombiniert um eine optimale Wärmebehandlungstrategie für ein
bestimmtes Bauteil zu entwickeln. Ein großer Nachteil hierbei ist, dass trotz aller Op-
timierungsversuche oft viele kostspielige und zeitaufwändige Experimente notwendig
sind. Es bleibt also festzustellen, dass die Eisen- und Stahlwerkstoffe mit ihren vielfälti-
gen Anwendungsmöglichkeiten in der Industrie eine zentrale Rolle einnehmen, wen-
ngleich aus den unterschiedlichen Anforderungen auch die Notwendigkeit erwächst, die
Produktionsprozesse in ihrer ganzen Komplexität zu verstehen und zu beherrschen. In
diesem Punkt können die Ingenieurwissenschaften, die Physik, die Chemie, aber auch
in einem hohem Masse die Mathematik entscheidende Beiträge iefern.

Die mathematische Beschreibung von fest-fest-Phasenumwandlungen in Stahl, die in
den dreißiger Jahren des letzten Jahrhunderts mit den ersten Arbeiten von M.Avrami
und A.Kolmogorov seinen Anfang nahm, ist bis heute Gegenstand weitreichender Un-
tersuchungen, wie sich eindrucksvoll Anhand der zahlreichen Veröffentlichungen über
die Modellierung und die numerische Simulation von diffusiven Phasenumwandlungen
in Stahl belegen lässt.
Eine erste mathematische Studie zu Austenit-Perlit-Phasenübergängen, ist von A. Vis-
intin in den achtziger jahren des letzten Jahrhunderts vorgelegt worden. Aufgrund der
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zunehmenden Bedeutung der Phasenumwandlungen in der industriellen Anwendung
ist die Zahl der wissenschaftlichen Publikationen zu dieser Problematik n den letzten
Jahrzehnten stark angestiegen. In diesem Zusammenhang ist auch das Weierstraß In-
stitut für angewandte Analysis und Stochastik (WIAS Berlin) zu nennen wo im Rah-
men des Forschungsschwerpunkts „Optimale Steuerung von Produktionsprozessen“ der
Forschungsgruppe 4 seit vielen Jahren an diesem Thema gearbeitet wird und dessen
Erfahrung in großem Maße in die vorliegende Arbeit eingeflossen ist.

Aus Sicht der mathematischen Modellierung lässt sich die Wärmebehandlung von
Stahl als eine Kombination von Wärmeleitungs- und Phasenentwicklungsprozessen
verstehen, die letztendlich für die Entstehung der verschiedenen Kristallsorten im
Stahl verantwortlich sind. Diese Vorgänge werden in der Regel durch ein System
von Evolutionsgleichungen beschrieben, das im Wesentlichen aus Gleichungen für die
zeitliche Entwicklung der verschiedenen Phasen, der Temperatur und, im Falle des
Einsatzhärtens, aus einer Diffusionsgleichung für den Kohlenstoff besteht.

Ziel der vorliegenden Arbeit ist die mathematische Beschreibung des Einsatzhärtens
auf makrospkopischer Ebene, die mathematische Untersuchung der Modellgleichungen
und numerische Simulationen, die die Eigenschaften des Modells illustrieren.
Im ersten Kapitel werden die grundsätzlichen physikalischen Phänomene beschrieben,
die im Stahl bei Variation der Temperatur ablaufen, was schliesslich auf die Modell-
gleichungen führt, die ein nichlineares, gekoppeltes System von gewönlichen und par-
tiellen Differentialgleichungen darstellen. Die beiden partiellen Differentialgleichun-
gen parabolischen Typs beschreiben die Temperaturentwicklung und die Evolution
der Kohlenstoffkonzentration im Bauteil. Die gewöhnlichen Differentialgleichungen
modellieren die Phasenentwicklung. Im zweiten Kapitel wird die Frage nach der Ex-
istenz einer eindeutigen Lösung des Rand-Anfangswertproblems diskutiert, das aus
den Modellgleichungen zusammen mit Randbedingungen dritter Art entsteht. Um die
für den Beweis der Eindeutigkeit einer Lösung des Gesamtmodells relativ starken Vo-
raussetzungen abschwächen zu können, wird zusätzlich ein Teilproblem eingeführt und
analysiert, das aus einem quasilinearen, parabolischen System von nur zwei gekoppel-
ten, partiellen Differentialgleichungen besteht. Für dieses System konnte eine Technik
entwickelt werden, die auf einer Methode von J. Necas basiert. Ursprünglich war diese
Methode zur Lösung von elliptischen Differentialgleichungen mit linearen Randbedin-
gungen gedacht, sie konnte aber auf den parabolischen Fall mit einer nichtlinearen
Randbedingung für die Temperatur erweitert werden.
Ein weiteres wichtiges Werkzeug zur Behandlung der Frage der Eindeutigkeit der Lö-
sung und deren stetiger Abhängikeit von den Daten sind die anisotropischen Sobolev-
Räume die von O.V. Besov eingeführt wurden. Sie ermöglichen es Probleme mit
unterschiedlichen Regularitäten in tangentialer und normaler Richtung zu behandeln.
Die bewiesenen Existenz- und Eindeutigkeitssätze gelten für Raumdimensionen kleiner
gleich drei, wobei der dreidimensionale Fall aus Anwendungsicht die grösste Relevanz
besitzt. Die numerischen Simulationen am Ende der Arbeit, die durch einen Vergleich
mit experimentellen Ergebnissen noch validiert werden können, belegen die prinzipielle
Anwendbarkeit des entwickelten Modells.
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Introduction

Outline

Despite the creation of numerous new functional materials, steel is still the basic
material for the sustainable development of modern industrial society. Its applications
are very diverse and widespread in all major branches of industry. Heat treatment
of steel is a fundamental process which dates back thousands of years. Thanks to
the tremendous flexibility of steel to various kinds of treatments, it is now possible to
produce it with a large variety of desired properties.
The basic principle involved in heat treatment is the process of heating and cooling.
In steel for example, hardness can be achieved by heating followed by rapid cooling.
In general, two important properties of ferrous materials are contact fatigue strength
and wear resistance, which depend mainly on the physical and chemical properties of a
superficial layer. A special treatment acting on a relatively thin superficial layer of steel
workpieces is called case hardening, because its aim is to harden just the workpiece
case (i.e an encasing layer), letting the inner part softer. In nowadays high-technology
industry the approach to case hardening often involves trial and error methods, based
on previous experiences and empirical analysis. This kind of procedure requires costly
and time-consuming experiments.

Due to its importance, there is a huge technical literature on the subject of heat
treatment of steel, mostly of engineering type. On the other hand, the thermal pro-
cessing of steel has also attracted the attention of mathematicians. The mathematical
description of solid-solid phase transitions in steel started with the seminal works of
Avrami [4] and Kolmogorov [29] in the thirties of last century. Since then the subject
has been widely studied and, stimulated by the development of ever-faster computer
hardware, numerous papers were published on the numerical simulation of the diffu-
sion controlled phase transitions in steel. The first analytical investigation of phase
transitions in steel, concerned with austenite-pearlite transition, is reported by A. Vis-
intin [48]. Similar models have been studied in connection with polymerisation models
[2]. The amount of works dedicated to the modelling of the phase transitions in steel
has been increasing in the last decades, due to the numerous applications in industry.
Studies about phase transitions in metallic alloys have been particularly undertaken at
WIAS (Weierstrass Institute for Applied Analysis and Stochastics), where this thesis
has been written, exploiting the large experience accumulated on the subject.
From the modelling point of view, heat treatments of steel include heat transfer and

ix
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transition processes involving the many different crystalline species in steel. Occa-
sionally, as in the specific case of carburizing processes, more equations are needed to
describe the evolution of added chemicals.

The heat treatment that we want to investigate in the present work is the most
widely used variant of case hardening, named gas carburizing. Carbon is indeed the
key to the hardening of steel by the heating and quick cooling mechanism. If the
used steel does not contain sufficient carbon to provide the required hardness, then
its composition is altered only on the surface layer so that it can become hard during
subsequent cooling. In carburizing, the workpiece is heated up to a certain tempera-
ture, then it is brought in contact with an environment of sufficient carbon potential
to cause the carbon absorption at the surface and, by diffusion favoured by the high
temperature, to create a carbon concentration gradient inside the workpiece. Then
the workpiece is rapidly cooled down, so that the carbon diffusivity drops practically
to zero and carbon atoms remain frozen within the iron lattice. This causes an atomic
disorder and results in distortion of the lattice which manifests itself in the form of
hardness and/or strength. Regarding this process, we do not know any reference
to previously formulated models, though the literature dedicated to modelling phase
transition in steel during heat treatments (like induction or flame hardening) is quite
large (see the remarkable group of papers [18], [19], [20], [22]). Within the engineering
literature, the process of gas carburizing is divided and investigated in two distinct
parts: first carburization, then cooling. In the studies regarding the carburization
stage, the focus is almost exclusively on the carbon evolution, described through a
diffusion equation often with constant coefficients and disregarding of the coupling
with temperature. This approach does not permit, for instance, to take into account
further diffusion of carbon into the workpiece in a lower temperature range during
the stage preceding quenching, which nevertheless is very important for the control
of the carbon profile and the accuracy of the whole process. Among them, we quote
for example [9], [12], [15], [43], [44] and [45]. A huge amount of studies regarding
exclusively the quenching of steel in correlation with its hardening is available (see
for instance [13], [24], [38] and the monograph [47]). To the best of our knowledge a
complete model including all the possible effects has not yet been examined.

Objective

The aim of the present thesis is the development and analysis of a mathematical
model for the process of gas carburizing, taking into account the basic characteris-
tics under the actual conditions of the industrial process and relating the quality of
the treatment with the technological parameters of the process. In view of the lack
of mathematical studies concerning this process, we start with an analytical study,
which focuses on the examination of the mathematical model and on the related
mathematical questions. Then we present some numerical simulations to illustrate
the applicability of our model to a concrete example.
The work is organised as follows.
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Chapter 1 starts with some fundamental concepts regarding steel from the point
of view of materials science and with the description of its most important metallur-
gical properties. We focus on a special type of case hardening process, named gas
carburizing and come to the formulation of a mathematical model for this process, at
the macroscopic level, in term of a set of differential equations, one for the diffusion
of carbon, one for the thermal evolution, both coupled with the equations describing
the evolution of the phase fractions, which are, in our case, two ordinary differential
equations.

In Chapter 2 we analyse the complete model presented in the previous chapter. We
examine the question of the existence of a weak solution of the corresponding initial-
boundary value problem and consider the question of the uniqueness of the solution.
As in the case of many evolutionary problems arising from the physics, the problem
consists of a second order parabolic initial boundary value problems and requires the
treatment of a quasilinear problem. In order to avoid further complications we have
neglected all the mechanical effects (like e.g. shrinking accompanying cooling, stress
analysis, etc.).

In order to deepen the analysis of some challenging questions which have arisen,
we dedicate Chapter 3 to deepening the mathematical investigation. We concentrate
therefore on a sub-problem strictly related to the one examined in Chapter 2. On the
domain QT = Ω× (0, T ), with Ω ⊂ RN we consider the parabolic problem:

∂θ

∂t
− div(a(x, t)∇θ) = r(θ, c)

∂c

∂t
− div

(
D(θ, c)∇c

)
= 0

∂θ

∂ν
+ h(x, θ, θΓ(x, t)) = 0

−D(θ, c)
∂c

∂ν
= b(x, t)

with prescribed initial conditions. They represent, respectively: heat transfer, car-
bon diffusion, heat exchange and carbon exchange. We address first the question of
existence and L∞ -boundness of the solutions. We are particularly interested in the
question concerning uniqueness and regularity of the solutions of the system above.
The question of uniqueness is well known to be more involved than the one of exis-
tence. We are aware of the amount of (also very recent) results concerning this topic,
which employ disparate techniques, enabling to treat very general cases in abstract
settings, under very weak assumptions (see [14],[17] and references therein). Never-
theless, at present, a general theory covering all the possible cases is not available
and every approach presents different advantages and disadvantages. A certain theory
usually addresses particular issues and develops specific techniques to that aim. Some
drawbacks are always present and render these approaches sometimes inapplicable to
concrete cases. For instance, an undesired restriction on the dimension of the spatial
domain often occurs.
After these considerations, we consider worthy to develop a technique which is self-
contained and elementary as far as possible, in order to solve this problem. We have
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been able to work also in a three-dimensional setting, which is the relevant case for
the applications, with very weak assumptions, which can realistically suit a number
of application problems. From this point of view, the present study achieves some
progresses in the theoretical analysis on quasilinear parabolic systems, pursuing a new
technique - to our knowledge - to treat the question of uniqueness, regularity and
continuous dependence on the data for a certain class of partial differential equations
systems.
A fundamental tool employed in our approach to the problem are the anisotropic
Sobolev spaces, which are found to be particularly adequate in the treatment of equa-
tions presenting different regularity in tangential and in normal directions, that is the
case of our system with associated third-type boundary conditions. Besides this, we
proved a refined version of the Gronwall lemma, that we believe to have some in-
dependent interest, to conclude the proof of uniqueness. In the chapter we came to
prove a theorem that can be read as a generalisation of some embedding theorems for
the classical Sobolev spaces, to anisotropic Sobolev spaces. Also this theorem and its
corollaries should be of interest to the readership interested in parabolic systems.

In Chapter 4 we present some simulation work. The simulations, performed with
realistic data parameters, have been implemented with a software based on finite el-
ements and cover all the stages of the process and show a possible application of the
model in a concrete situation. Finally we comment about possible further develop-
ments concerning both the mathematical aspects and applications.

A shorter and unified version of Chapters 1 and 2 has been accepted for publication
in [21] and the content of Chapter 3 has been submitted in [31].



Chapter 1

Physical background and modelling

1.1 Phase transitions in iron-carbon equilibrium di-
agram

There is a wide choice of textbooks and monographs dealing with iron and steel in
the context of physics and engineering. The description of the principles of heat
treatment and hardening processes presented in this chapter is based on [3], [7] and
on the monograph [47]. Iron is an allotropic metal, that is it can exist in more than
one type of lattice structure depending upon temperature.

Figure 1.1: The iron-iron carbide equilibrium diagram, (from [47]).

The temperature at which the allotropic changes take place in iron is strongly influ-
enced by alloying elements, the most important of which is carbon. The basis for a
description of steel transformations is the diagram shown in Figure 1.1. It represents

1



2 CHAPTER 1. PHYSICAL BACKGROUND AND MODELLING

the metastable iron-iron carbide diagram, which is the part of interest, in practical
applications, of the iron-carbon phase diagram. It is the part between pure iron and
an interstitial compound of iron and carbon, called iron carbide or cementite, (denoted
Fe3C) containing 6.67 % carbon by weight. Therefore, this portion of the iron-carbon
diagram is called iron-iron carbide equilibrium diagram. It is not a true equilibrium di-
agram, since equilibrium implies no change of phase with time, whereas the compound
iron carbide decomposes into iron and carbon. Although iron-carbide is metastable,
its decomposition takes a very long time at room temperature and under conditions
of relatively slow temperature changes the system can be considered to cross quasi-
equilibrium states represented in the iron-carbide diagram.
A phase is a portion of an alloy, physically, chemically, or crystallographically homo-
geneous throughout, which is separated from the rest of the alloy by distinct bounding
surfaces. Phases that occur in iron-iron carbide alloys are austenite (γ phase), fer-
rite (α phase), cementite and graphite. They are shown in Figure 1.1. Besides these
phases, there are many different structures in steel. On the basis of carbon content
it is usual to divide the iron-carbon diagram into two parts. Those alloys containing
less than 2 % carbon are known as steel, and those containing more than 2 % carbon
are known as cast irons. The interesting region for many heat treatments is the one
with carbon content less than 0.8%, the region of hypo-eutectoid steels. Steels with
carbon content approximately 0.05-0.15% are called low-carbon steels. The micro-
scopic structure of steel relies on the configuration of the iron lattice. Depending on
temperature, two different lattice structures can occur: a body-centred-cubic (b.c.c.)
and a face-centred cubic (f.c.c.) lattice. Above a certain temperature, steel is in the
austenitic phase, the so-called γ-solid solution, an interstitial solid solution of carbon
dissolved in f.c.c. iron. In this phase the solubility of carbon in iron is maximal. Below
this temperature, the f.c.c. iron lattice is no longer stable. But before the lattice can
change its configuration to form a b.c.c. structure, carbon atoms do diffuse, due to the
fact that the solubility of carbon in b.c.c. iron is only about 1.4 % of the solubility in
f.c.c. iron. The result is a lamellar aggregate of ferrite and cementite, called pearlite,
where ferrite is a solid solution of carbon in b.c.c.. Figure 1.2 shows the two different
lattice structures.

Figure 1.2: Crystal lattice structures of α-iron and γ-iron, (from [47]).

The transformation behaviour associated with various slow cooling rates is called
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diffusion-controlled because the carbon diffusion is dominating. The gamma-to-alpha
transformation takes place by a process of nucleation and growth and is time-dependent.
Increasing the cooling rate, if a critical cooling rate is overcome, the time for the car-
bon to diffuse out of solution is insufficient and the structure cannot become b.c.c.
while the carbon is trapped in solution. The resultant structure, called martensite, is
a solid solution of carbon trapped in a body-centred tetragonal structure.
The microstructure and distribution of different phases are of great importance, due
to the fact that each of them possesses different hardness and mechanical properties.
Martensite doesn’t appear in diagram 1.1 since it is a metastable phase of steel, formed
by a transformation of austenite below a certain temperature. It appears in the dia-
grams that will be shown in the next section.It is important for our aim to note that
the difference in carbon solubility mentioned above makes it possible to produce de-
fined microstructures and defined mechanical properties by technical heat treatment.

1.2 Time-temperature-transformation diagrams

From the iron-carbon diagram it is possible to derive some important facts regarding
the properties of steel undergoing some heating or cooling. The kinetics of the phase
transitions depicted in the previous section can be indeed described in an isothermal-
transformation (IT) diagram, where temperature is plotted against time. Other names
for the same curves are time-temperature-transformation (TTT) curves. These dia-
grams are constructed according to a standard procedure requiring heat treatment
and metallographic experiments on samples. As a result of these experiments, two
points can be plotted, namely, the time for the beginning and the time for the end of
transformation. The entire experiment is repeated at different critical temperatures
until sufficient points are determined to draw a curve showing the beginning of trans-
formation. Portions of these lines are often shown as dashed lines to indicate a high
degree of uncertainty.
Each different steel composition has its own TTT curve: an example is depicted in
Figure 1.3. However, patterns are generally the same for all steels as far as shape of
the curves is concerned. The most outstanding difference in the curves among differ-
ent steels is the distance between the vertical axis and the nose of the S curve. This
distance between the vertical axis and the nose of the S curve has a profound effect on
how the steel must be cooled to form the hardened structure, martensite. The start
of the transformation in the diagram is marked by the line at which 1% of the new
microstructure is formed from the austenite. The curve for complete transformation
is drawn for the point at which 1% of austenite is left. Above the critical temperature
Ac3, austenite is stable. The area on the left of the beginning of transformation con-
sists of unstable austenite. The area on the right of the end of transformation line is
the product to which austenite will transform at constant temperature. The area be-
tween the beginning and the end of the transformation consists of the microstructures:
pearlite (P), ferrite (F), bainite (B) and martensite (M).
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Figure 1.3: (a) Isothermal transformation diagram for the steel 41Cr4; (b) volume fraction
of microstructures (solid lines) and Vickers hardness measured at room temperature (dotted
line), (from [47]).

The temperature at which the martensite transformation starts is denoted by Ms. It
is almost impossible to determine experimentally with precision the temperature at
which the martensite formation is finished, for this reason we can find very seldom
time-temperature-transformation diagrams with the indication ofMf , but rather with
M50 or M90, denoting respectively the temperature at which the amount of formed
martensite is 50% or 90%.
Phase transformations in steel, during different heat treatments, represent a wide field
of investigation. For discussion concerning the material properties of steel in correla-
tion with phase transformations and heat treatment, we refer to [3], [9] and[47].
As the austenite-pearlite transformation is a nucleation and growth process, it is gov-
erned by the nucleation rate (the amount of nuclei of the new phase formed per unit
time and volume) and by the growth rate of the nuclei. Both of these factors depend
on temperature, but in a different way: while the growth rate is high at high temper-
ature and then decreases with decreasing temperature, the nucleation rate increases
with decreasing temperature. This behaviour explains the ’nose shape’ of the pearlite
transformation curves.
Bainite is the product of a transformation which may take place, depending on the
type of steel, in the temperature range between the pearlitic and martensitic phase.
This additional transformation is shown very distinctly in the TTT diagrams of low-
alloyed steels (see for instance Figure 1.3). Bainite is a microstructure made of carbide
and martensite. It is generally difficult to recognize it with precision since the bainitic
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transformation presents similar features to the martensitic one and bainite presents
a similar aspect to martensite (the german name for bainite ’Zwischenstufengefüge’,
means ’phase in between’ and it is denoted by ZW).
In Figure 1.4, the microstructure of austenite is shown on the right. It is visible that the
lower the temperature at which transformation takes place, the higher the hardness.
It is also evident that all the structures from the top to the region where marteniste
forms are time-dependent, but the formation of martensite is not time-dependent.

Figure 1.4: TTT diagram for an eutectoid carbon steel (0.77% C), (from [7]).

The austenite-martensite transformation is responsible for the outstanding position of
steel, because it permits the extreme hardenability of this material. Concerning the
martensitic transformation, which is important for the process that we are going to
study, we list, below, its main properties.

• The martensitic transformation proceeds only during cooling and ceases if cool-
ing is interrupted. If the steel is held at any temperature below the Ms, the
transformation to martensite will stop and will not proceed again unless the
temperature is dropped.

• Martensite can be considered as a transition structure from the unstable austen-
ite phase to the final equilibrium condition of a mixture of ferrite and cementite.
The most significant property of martensite is its great hardness; the distortion
occurring in the lattice during cooling is its prime reason. Although martensite
is harder than the austenite from which it forms, extreme hardness is possible
only in steels containing sufficient carbon. The maximum hardness obtainable
from steel in the martensitic phase is a function of carbon content only.



6 CHAPTER 1. PHYSICAL BACKGROUND AND MODELLING

• The martensite transformation of a given alloy cannot be suppressed, nor can
the Ms temperature be changed by changing the cooling rate. The temperature
range of the formation of martensite is characteristic of a given alloy. Many
formulas have been experimentally determined for the dependency of Ms upon
composition of steels. According to [47], one is:

Ms(K) = 812− 423(%C)− 30.4(%Mn)− 17.7(%Ni)− 12.1(%Cr)− 7.5(%Mo)

The main dependency is clearly upon carbon concentration. The temperature
Ms is lowered as the carbon content in the austenite increases. Theoretically, the
austenite to martensite transformation is never complete, and small amounts of
retained austenite will remain even at low temperatures. The transformation of
the last traces of austenite becomes more and more difficult as the amount of
austenite decreases. The influence of carbon on the Ms and Mf temperatures is
shown in Figure 1.5.
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Figure 1.5: Influence of carbon on the martensite formation.

The IT diagram shows the time-temperature relationship for austenite transformation
only as it occurs at constant temperature, but most heat treatments involve transfor-
mation on continuous cooling. Therefore, for the planning of heat treatments, it is
important to predict the (nonisothermal) evolution of the phase fractions. This can
be done by means of another type of diagram, the continuous-cooling-transformation
(CCT) diagram, which describes the transformation of austenite during countinuous
cooling. Figure 1.6 shows a CCT diagram for the steel whose TTT diagram has been
previously shown (Fig. 1.3). As for the isothermal transformation, in general the start
is defined as the temperature, at which 1% of the new microstructure has formed. The
transformation is completed when only 1% of the original austenite is left. At each
cooling curve these points are connected by smooth curves which represent the CCT
diagram. The end of the formation of a microsctructure is not clearly marked if an-
other microstructure follows with decreasing temperature, as in the case of martensite
after bainite. The end of the transformation in the martensite range is difficult to
detect and therefore is not generally drawn.
Cooling curves are often characterised by the time taken for the specimen to cool from
800oC to 500oC or from Ac3 to 500oC. CCT diagrams must be interpreted by follow-
ing cooling curves. The start of the austenite transformation and the microstructures
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formed can be read from each cooling curve. Additional information on the volume
fractions of the microstructures and the hardness of the specimen at room temperature
are plotted as a function of cooling time in Figure 1.6 (b).

Figure 1.6: (a) Diagram for transformation during continuous cooling (CCT diagram) for the
steel 41Cr4. The numbers on the cooling curves denote the volume fraction of microstructure
constituents at room temperature; the numbers at the end of the cooling curves are the Vick-
ers hardness at room temperature. (b) Volume fraction of microstructure constituents (solid
lines) and Vickers hardness as function of cooling rate (dotted line) at room temperature,
(from [47]).

Considering the IT diagram in relation to the location of the lines of the CCT diagram
the ’nose’ has been moved downward and to the right by continuous cooling.
The relation between the CCT diagram and the equilibrium diagram is plotted in
Figure 1.7. With infinitely slow cooling or heating rate, the CCT diagram is identical
to the equilibrium diagram for the composition of the steel. The equilibrium diagram is
the limit to the transformation diagrams for infinite transformation time and infinitely
slow cooling rate, respectively.
Figure 1.8 shows the relation between time, temperature and carbon content. The
cooling curves are not depicted on this diagram for better readability. The line at 0.1
seconds shows the change of the Ms temperature depending on the carbon content.
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Figure 1.7: Equilibrium diagram of the system iron-carbon (right) as limitation of the CCT
diagram of the steel 41Cr4 (left) with infinite low cooling rate, (from [47]).

Figure 1.8: Three-dimensional presentation of the transformation characteristic of a
14NiCr14 steel, for continuous cooling, after austenization at 1023 K (Symbols: ZW bai-
nite, M martensite, P pearlite, F ferrite), (from [47]).

Since we are interested in steels with carbon content varying from the core to the
boundary, therefore diagrams as the one plotted in Figure 1.8 would also be needed in
order to follow the transformation at all carbon levels, instead of a single CCT diagram
for a steel with fixed carbon content. The cross sections for fixed carbon percentages
give CCT diagrams like the one plotted in the left part of Figure 1.7. However, we
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note that such three-dimensional diagrams are very rare in literature and, as it will be
shown in Chapter 4, other strategies are needed to determine the parameters entering
in the equations describing the phase transitions.

1.3 Heat treatment of steel: case hardening

According to a definition given in [3], heat treatment of steel is a combination of heat-
ing and cooling operations, applied to a metal or alloy in the solid state in a way that
will produce the desired properties.
All basic heat-treating processes for steel involve the transformation or decomposition
of austenite. The nature and appearance of these transformation products determine
the physical and mechanical properties of any given steel. All the different heat treat-
ment processes consist of the following three stages, possibly cyclically repeated in
different sequences:
1) heating of the material to some temperature in or above the critical range in order
to form austenite;
2) holding the temperature for a certain period of time;
3) cooling, usually to room temperature.
The temperature and time for the various stages depend on the desired effect. During
heating and cooling there exist temperature gradients between the outside and interior
portion of the material, whose magnitude depends on the size and geometry of the
workpiece.
All the heat treatments are associated with phase transformations in steel and indeed
the phase transformations are the reason of the feasibility of the treatment itself. Gen-
erally, phase transformations may lead to mechanical deformation of the workpiece.
Because of the mathematical complexity of the model that we are going to introduce,
we will not include mechanical behaviour (e.g. thermo-elasticity, transformation in-
duced plasticity) in our model. Therefore, distortion, in particular that related to the
case hardening, can not be described by the model that we are going to propose.
This thesis is concerned with a particular kind of heat treatment, named case harden-
ing, which is the production of parts that have hard, wear-resistant surfaces, but softer
and/or tougher cores. It can be accomplished by two distinct methods. One approach
is the use of a grade of steel that already contains sufficient carbon to provide the
required surface after heat treatment (as flame or induction hardening). The surface
areas requiring the higher hardness are then selectively heated and quenched. The
second method is the use of a steel that is not normally capable of being hardened to
the desired degree, altering the composition of the surface layers by diffusion so that
it either can be hardened during processing.
For practical purposes, case hardening of the second type can be broadly classified
into four groups: carburizing, carbonitriding, nitriding and nitrocarburizing. Of these
processes, carburizing is by far the most widely used.
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1.4 Modelling of gas carburizing

1.4.1 Carbon diffusion in austenite

The primary object of carburizing is to provide a hard, wear-resistant surface with
surface residual compressive stresses, that results in an improvement in the life of fer-
rous engineering components. In carburizing, austenitized ferrous metals are brought
into contact with an environment of sufficient carbon potential to cause absorption of
carbon at surface, creating, by diffusion, a concentration gradient between the surface
and the interior of the metal.
Carburizing may be done in a gaseous environment (gas carburizing), a liquid salt
bath (liquid carburizing), or with all the surfaces of the workpiece covered with a solid
carbonaceous compound (pack carburizing). Regardless of the process, the objective
of carburizing is to start with a relatively low-carbon steel (0.2% C) and to increase
the carbon content in the surface layers, resulting in a high-carbon, hardenable steel
on the outside with a gradually decreasing carbon content to the underlying layers.
Process control to keep the desired carbon level is an important part of any carburizing
process. Usually, although not always, approximately 0.8% is desired. Among the car-
burizing variants, the commercially most important is called gas carburizing, in which
source of carbon is a carbon-rich furnace atmosphere: we will focus on this method. It
is more effective, with deeper and higher carbon content cases obtained more rapidly
and more adaptable for mass production than other carburizing processes.
During the process, the carbon-bearing atmosphere can be continuously replenished
so that a high carbon potential can be maintained. A wide variety of furnaces are
used for gas carburizing; selection of furnace type depends largely on workpiece shape
and size, total production required and production flow.
It must be said that carburizing is a distinctly separate operation, taking place at
constant temperature, high enough to have an austenitic microstructure, followed in
most case by quenching, to form a martensitic microstructure, which produces the
desired hardening effect. We will present a model for the complete process, including
carburization and cooling.
The quality of the carburized samples is determined on the basis of the hardness and
case depth required for a particular application and of compliance with given specifica-
tions and tolerances. Therefore it is necessary to understand the mechanism of carbon
transfer and to accurately predict the carbon concentration profile and the case depth
during heat treatment process.
The process of carburization can be divided in: transport of carbon to surface, reac-
tion on the surface and diffusion of the carbon in the solid. The model we are going to
present is a phenomenological description at the macroscopic level. Temperature and
carbon concentration, in weight percent, are the physical variables playing the main
role during carburization.
For an insight into aspects like atmosphere composition and kinetics of carbon transfer
refer, for example, to [47].
The mechanisms of carbon transfer during carburizing is shown in Figure 1.9, where
the most important physical parameters involved in the process are indicated: the mass
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transfer coefficient (β), defining carbon atoms flux (j) from the atmosphere through
the steel surface, and the coefficient of carbon diffusion in steel (D) at austenitizing
temperature.
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Figure 1.9: Schematic representation of carbon transport in carburizing.

The mass transfer coefficient, β, in the gas phase controls the rate of carbon uptake
during the initial stage of carburizing. Several efforts to measure β have been made
under variable temperature, atmosphere composition and carburizing potential. Ac-
cording to [15], [43], [44], its value ranges from 1 ·10−9 to 2 ·10−4 cm/s at temperatures
between 800oC and 1000oC; nevertheless in many circumstances, it is not significant
error assuming β constant.
The ability of the furnace atmosphere to supply carbon to the heated steel is called
carbon potential, denoted with cp (see Figure 1.9) and is defined as the percent carbon
(by weight) in a piece of steel which has achieved thermodynamic equilibrium with
the atmosphere. For example, if a part with 0.6% carbon neither takes carbon from
the furnace atmosphere, nor gives up carbon to it, the atmosphere is said to have a
carbon potential of 0.6%C. In such atmosphere, a part with 0.5%C would take carbon
from the atmosphere (i.e. would be carburized) and a part with 0.7%C would be de-
carburized, (from [50]).
According to Fick’s first law, the flow of substance is proportional to the concentration
gradient

j = −D(θ, c)∇c,

where the diffusivity D = D(θ, c) is a function of the concentration c and the temper-
ature θ.
The unsteady process of diffusion of carbon in γ-iron (austenite) is described by the
following parabolic equation

∂c

∂t
− div(aD(θ, c)∇c) = 0.

The factor a in front of the diffusion coefficient D(θ, c) reflects the fact that enrichment
with carbon only takes place in the austenite phase. Now the boundary conditions
must be assigned. Since the difference in carbon potential between the surface and the
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workpiece provides the driving force for carbon diffusion, we prescribe the following
boundary condition:

−aD(θ, c)
∂c

∂ν
= β(θ)(c− cp)

where β, the mass transfer coefficient, controls the rate at which carbon is absorbed
by the steel during carburizing and cp is the carbon concentration in the furnace. ∂c

∂ν

denotes the outward normal derivative. There are many formulas in literature for the
carbon diffusivity in austenite, D(θ, c), according to the kinetic and thermodynamic
behaviour of carbon in austenite. We refer to Chapter 4 for some comments about
this coefficient.

1.4.2 Phase transformations

In this study, we take into account the phase transitions from austenite to pearlite
and from austenite to martensite. In other words we assume that all the austenite
present at the beginning of the transformation will be completely turned into pearlite
and martensite, at the end. However, a more elaborate model accounting for all the
phase transitions occurring during the heat treatment of steel can be found in [22],
[49] and references therein.
Since the densities of the phases in steel differ only very little from each other (for
fixed temperature), we do not distinguish between mass and volume fractions of the
phases. Therefore, in the following, we will refer only to the ’phase fractions’.
As already mentioned before, in this study, we do not consider the heating stage and
assume that cooling takes place from the high temperature phase austenite with phase
fraction a to two different product phases, pearlite with fraction p and martensite with
fraction m.
The model that we are going to present is a mathematical description of the phe-
nomenologically observed phase transitions in steel. The basic assumption for our
approach is that all the information about the evolution of phase transitions in a
specific steel is contained in the isothermal and non-isothermal time-temperature-
transformation diagrams. We propose the simplest phenomenological model able to
describe our situation, that was developed, in the context of heat treatment problems,
in a series of papers ([18], [19], [22]), to which we refer for an exhaustive discussion
about modelling and for comparisons with other possible models. We consider the
following equations to describe the evolution of p and m:

ṗ = (1− p−m)g1(θ, c) (1.4.1a)
ṁ = [m(θ, c)−m]+g2(θ, c) (1.4.1b)

p(0) = 0 (1.4.1c)
m(0) = 0 (1.4.1d)

where c is the concentration of carbon. Here the bracket [ ]+ denotes the positive part
function [x]+ = max{x, 0} and the dot means the derivative with respect to t.
While the growth rate of pearlite ṗ is assumed to be proportional to the remaining
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austenite fraction, the rate of martensite growth ṁ is zero if m exceeds either the
non-perlitic fraction 1 − p, or the threshold m, depending on both temperature and
carbon concentration. The quantity m(θ, c) represents the maximum attainable value
of martensite fraction and is defined as

m(θ, c) = min{mKM(θ, c); 1− p}.

The function mKM describes the volume fraction of martensite according to the
Koistinen-Marburger formula [28], i.e.,

mKM(θ, c) =
(

1− e−ckm(c)(Ms(c)−θ)
)
H(Ms(c)− θ),

where H is the heaviside function, ckm and Ms here are parameters depending on the
carbon concentration and can be drawn from the respective TTT diagram. If during
some stage of the heat treatment θ ≥ Ms, owing to the heaviside function, we have
ṁ = 0, whence no martensite is produced during this stage. ckm is a constant reflect-
ing the transformation rate and varying with the steel composition. We note that,
since ṁ = 0, the irreversibility of the martensite transformation is incorporated in
the model. The functions g1 and g2 are positive given functions that can be identified
from the time-temperature-transformation diagrams described before. In Chapter 4
we will illustrate how this identification can be done for a specific steel. The final
hardness is obtained by accumulating the contributions of the different phases formed
along cooling.

1.4.3 Heat transfer

With the purpose of obtaining the temperature equation governing the whole process,
we start considering the energy balance. For an incompressible, rigid body, it holds
(see for instance [10]) the following balance of energy

ρ
∂e

∂t
+ div q = 0,

where e is the specific internal energy, q is the heat flux and ρ is the density. Con-
sidering the whole process, we assume that the specific internal energy has the form
e = ê(θ, p,m), with a differentiable material function ê. Applying the Fourier’s law we
obtain

q = k(θ)∇θ,

where k(θ) is the heat conductivity of the material and we derive the following equation
for the temperature

ρ
∂ê

∂θ

∂θ

∂t
+ ρ

∂ê

∂p

∂p

∂t
+ ρ

∂ê

∂m

∂m

∂t
− div(k(θ)∇θ) = 0.
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We denote the partial derivatives

∂e

∂θ
= α̂(θ, p,m),

∂e

∂p
= −L̂p(θ, p,m),

∂e

∂m
= −L̂m(θ, p,m).

Concerning the material functions α̂, L̂p, L̂m, we follow the modelling of [22], where
they only depend on θ: α̂(θ, p,m) := α(θ), L̂p(θ, p,m) := Lp(θ), L̂m(θ, p,m) := Lm(θ).
Here α(θ) represents the specific heat and Lp(θ) and Lm(θ) denote latent heats of the
austenite-pearlite and the austenite-martensite phase changes, respectively. They are
related to the enthalpy of the transformation and to the rate of transformation. Overall,
we have obtained that the heat equation during the whole process can be written as

ρα(θ)
∂θ

∂t
− div

(
k(θ)∇θ

)
= ρLp(θ)ṗ+ ρLm(θ)ṁ. (1.4.2)

The heat source stems from the latent heats due to the phase transformations occurring
during cooling. During the phase transitions from austenite to pearlite and from
austenite to martensite, heat is released, therefore the functions Lp(θ) and Lm(θ) are
always positive. Since the terms ṗ, ṁ, given through the formulas (1.4.1a),(1.4.1b) are
positive as well, we can immediately see that the right-hand side of equation (1.4.2) is
a positive quantity. We pass now to assigning the initial condition and the boundary
condition, neglecting conduction and radiation effect:

−k(θ, c)
∂θ

∂ν
= h(θ − θΓ)

θ(x, 0) = θ0(x).

Here θΓ is the external temperature, θ0(x) is the temperature at the beginning of
the process and h is the heat transfer coefficient. Since we do not take into account
mechanical effects, we assume the density ρ to be constant.
In conclusion, the evolution of temperature during the process can be described by
the non-linear problem:

ρα(θ)
∂θ

∂t
− div

(
k(θ)∇θ

)
= ρLp(θ)ṗ+ ρLm(θ)ṁ (1.4.3)

−k(θ)
∂θ

∂ν
= h(θ − θΓ) (1.4.4)

θ(x, 0) = θ0(x). (1.4.5)

1.4.4 Complete model of gas carburizing

We collect now the equations from the previous sections. Let Ω ⊂ R3 be an open
bounded set with boundary ∂Ω and QT := Ω × (0, T ) the corresponding parabolic
cylinder, where T represents the end time of the process. We obtain the following
initial-boundary value problem.
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ρα(θ)
∂θ

∂t
− div

(
k(θ)∇θ

)
= ρLp(θ)pt + ρLm(θ)mt in QT (1.4.6)

∂c

∂t
− div

(
(1− p−m)D(θ, c)∇c

)
= 0 in QT (1.4.7)

pt = (1− p−m)g1(θ, c) in QT (1.4.8)
mt = [min{m(θ, c); 1− p} −m]+g2(θ, c) in QT (1.4.9)

−k(θ)
∂θ

∂ν
= h(θ − θΓ) on ∂Ω× (0, T ) (1.4.10)

−(1− p−m)D(θ, c)
∂c

∂ν
= β(θ)(c− cp) on ∂Ω× (0, T ) (1.4.11)

θ(x, 0) = θ0(x) in Ω (1.4.12)
c(x, 0) = c0(x) in Ω (1.4.13)

p(0) = 0 in Ω (1.4.14)
m(0) = 0 in Ω (1.4.15)

The central part of this thesis is the analytical investigation of the mathematical model
presented above.
It permits to evaluate the effects of all the possible interactions between carbon diffu-
sion, heat treatment and growth of phases in every stage of the process. Actually it
would be capable to describe more general situations, for instance any other process
composed of many cycles of heating and cooling, associated to the diffusion of a sub-
stance and to the evolution of temperature. Motivated by its relevance in industrial
applications, we decided to concentrate on the analysis of the process of gas carburiz-
ing.
In the previous sections, we were concerned with the physical phenomena occurring
during case hardening. For clarity, now we summarise the process schedule and fix it
in a schematic representation (Figure 1.10).
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Figure 1.10: Schematic carburizing cycle.

We distinguish three characteristic times: the beginning of the carburization process
t0, the end of the carburization period t1, the end of the diffusion period t2 and the
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end of the cooling T .
First, the workpiece is heated up in a neutral atmosphere to a predetermined temper-
ature θ0 in the range from 1100 to 2150. During heating, steel is transformed to the
austenite phase. Note that this period is not covered by the system (1.4.6)-(1.4.15).
Then a carbon rich gas such as propane, butane or methane is injected into the fur-
nace. The workpiece is held at this temperature, to allow for the diffusion of carbon
into the case. During this stage of the process, no phase transformation takes place,
since the workpiece remains at the austenitizing temperature, well above the temper-
ature where the formation of other phases can start. This fact is clearly observable
in Figure ??. After the main carburizing stage, a slow diffusion period is sometimes
allowed, through which the workpiece is brought to a lower specified temperature θ1,
whilst the carbon potential is lowered and the furnace is slowly cooled down. This
diffusion step is used to remove the marked fluctuation in carbon concentration in the
near-surface layer, which arises in the process of initial saturation. By allowing such a
diffusion period, moreover, the surface carbon content can be reduced to any desired
value. Again, in this further diffusive stage, the workpiece remains at a temperature
high enough to prevent the formation of new phases, namely in the region where only
the presence of austenite is possible.
After the diffusion period, the components are quenched to obtain the required hard-
ness and wear resistance on the surface. The duration of quenching is few minutes.
Depending on the required depth of carburization, the total time of the process varies
from one hour to several hours.
Of course for each different stage in which the whole process can be divided, as shown
in Figure 1.10, we can consequently specify the coefficients involved in the boundary
conditions:

• Stage 1: carburizing in a furnace, hence β ≥ 0 and h = 0, since the carburizing
takes place at constant temperature.

• Stage 2: diffusion period, with β ≥ 0, cp smaller than in Stage 1 and h ≥
0, serving as a linearized radiation law (a non linearized radiation law will be
separately considered in Chapter 3).

• Stage 3: quenching with β = 0 and h ≥ 0. Actually, during quenching, the first
consideration to be made is that the carbon potential cp should be zero. However,
it can reasonably be asserted that we do not commit any error assuming β equal
zero, since during the few seconds of quenching this coefficient is negligible.



Chapter 2

Analysis of the complete model

2.1 Problem statement and strategy

This chapter is devoted to the analysis of the system (1.4.6)-(1.4.15), that we rewrite
below for clarity:

ρα(θ)
∂θ

∂t
− div

(
k(θ)∇θ

)
= ρLp(θ)pt + ρLm(θ)mt in QT (2.1.1)

∂c

∂t
− div

(
(1− p−m)D(θ, c)∇c

)
= 0 in QT (2.1.2)

pt = (1− p−m)g1(θ, c) in QT (2.1.3)
mt = [min{m(θ, c); 1− p} −m]+g2(θ, c) in QT (2.1.4)

−k(θ)
∂θ

∂ν
= h(θ − θΓ) on ∂Ω× (0, T ) (2.1.5)

−(1− p−m)D(θ, c)
∂c

∂ν
= β(c− cp) on ∂Ω× (0, T ) (2.1.6)

θ(x, 0) = θ0(x) in Ω (2.1.7)
c(x, 0) = c0(x) in Ω (2.1.8)

p(0) = 0 in Ω (2.1.9)
m(0) = 0 in Ω (2.1.10)

The model accounts for the coupling of temperature, phase transitions and carbon
diffusion. We will prove existence and uniqueness of a weak solution of system (2.1.1)-
(2.1.10).
The proof of existence is carried out using a nested fixed point argument. We divide
the proof in three steps. The first is a preliminary lemma concerning the ODE system
(2.1.3),(2.1.4),(2.1.9),(2.1.10) only, for θ and c prescribed. It is the case of a ODE
system with discontinuous right-hand side, where the derivatives are defined almost
everywhere. We will show that the conditions of the Charathéodory existence theorem
are satisfied and, afterwards, that the solution is unique.
The second step is the coupling of the ODE system with the temperature equation,
which gives a solution p,m, θ depending on c. The third and last step is the further

17
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coupling with the equation for c. To prove existence of a solution for the whole system,
we proceed applying twice the Schauder fixed point theorem. To obtain uniqueness
we must consequently develop an ad hoc technique.

2.2 Assumptions and main results

During this chapter we assume that Ω ⊂ R3 and ∂Ω is its C2-boundary and we denote
QT := Ω× (0, T ) the corresponding space-time cylinder. During this and the following
chapter we make use of the following notations:

• W 1,∞(0, T ;L∞(Ω)) = { v ∈ L∞(0, T ;L∞(Ω)) : vt ∈ L∞(0, T ;L∞(Ω)) }.

• W r,s
p (QT ) = Lp(0, T ;W r

p (Ω)) ∩W s
p (0, T ;Lp(Ω)).

• We denote by V the space W 1
2 (Ω) and by V ∗ the space (W 1

2 (Ω))∗.
W (0, T ) = { v ∈ L2(0, T ;V ) : vt ∈ L2(0, T ;V ∗) }, endowed with the norm

‖v‖W (0,T ) =
( T∫

0

(‖v(t)‖2
V + ‖v′(t)‖2

V ∗)dt
) 1

2
.

Throughout the chapter we will make use of the following assumptions:

(A1) ρ and k are positive constants.

(A2) α ∈ C(R) and there exist positive constants α0, α1 such that α0 ≤ α(·) ≤ α1.
Lp, Lm ∈ L∞(R) and they are Lipschitz-continuous.

(A3) θΓ is a positive constant. h ∈ L∞(∂Ω) with h(x) ≥ 0 a.e. in ∂Ω. θ0 ∈ W 1
2 (Ω),

θΓ ≥ θ0.

(A4) g1, g2 are Lipschitz-continuous in both arguments and there exist positive con-
stants γ1, γ2 such that 0 ≤ g1(θ, c) ≤ γ1, 0 ≤ g2(θ, c) ≤ γ2, ∀ θ, c ∈ R.

(A5) m is Lipschitz-continuous satisfying m(θ, c) ∈ [0, 1] for every θ, c ∈ R.

(A6) D(θ, c) is Lipschitz-continuous in both arguments and there are positive costants
γ3, γ4 such that γ3 ≤ D(θ, c) ≤ γ4, ∀θ, c ∈ R.

(A7) cp is a positive constant. β ∈ L∞(∂Ω) with β ≥ 0 a.e. in ∂Ω. c0 ∈ L2(Ω)

We are going to prove that, under the hypothesis above, the considered problem has
a weak solution.
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Theorem 2.2.1 (Existence of a weak solution). Assume (A1)-(A7), then there exists
a weak solution (θ, c, p,m) to problem (2.1.1)-(2.1.10) such that θ ∈ W 2,1

2 (QT ), c ∈
W (0, T ), p,m ∈ W 1,∞(0, T ;L∞(Ω)).

The following proposition is also important from the physical point of view, since it
provides a uniform bound on the temperature and on the carbon concentration, as we
can expect from the process observation.

Proposition 2.2.2. Assume (A1)-(A7). Moreover assume that θ0 ∈ L∞(Ω) and there
exist positive constants C1, C2 such that C1 ≤ cp ≤ C2 in ∂Ω×(0, T ) and C1 ≤ c0 ≤ C2

a.e. in Ω. Then
θΓ ≤ θ ≤ θ0 a.e inQT

C1 ≤ c ≤ C2 a.e. inQT .

Theorem 2.2.3 (Uniqueness). Suppose that (A1)-(A7) are satisfied. Assume more-
over that α is constant, D = D(θ), h, β ∈ W 1

5 (∂Ω), θ0, c0 ∈ W 2
5 (Ω). Then the solution

to (2.1.1)-(2.1.10) is unique.

Remark 1. (a) Concerning Theorem 2.2.1: the regularity assumptions on the bound-
ary and initial values could be weakened. To avoid unnecessary technicalities we
assumed θΓ and cp to be constants, but they could be in fact functions of space
and time, according, for instance, to [36].

(b) Concerning Proposition 2.2.2: also in this case some weaker assumptions might
be sufficient. Regarding θΓ and cp, it is indeed sufficient their boundedness, but
we preferred to keep the setting used for the existence theorem.

2.3 Proof of existence

As already mentioned, the proof is carried out using a nested fixed point argument.
The first step is a preliminary lemma concerning the ODE system (2.1.3),(2.1.4) only,
for θ and c prescribed. The second step is the coupling of the ODE system and the
temperature equation, which gives a solution p,m, θ depending on c and the third is
the further coupling with the equation for c. We begin with considering the initial
value problem

zt = f(z, θ, c) in QT (2.3.1a)
z(0) = 0 in Ω (2.3.1b)

where z = (p,m)T and f = (f1, f2)T denotes the right-hand side of (2.1.3),(2.1.4).

Lemma 2.3.1. Under the assumption (A4),(A5) the following statements are valid:

(a) For every θ, c ∈ L2(QT ) problem (2.3.1) has a unique solution z such that p ≥
0,m ≥ 0 and

‖|z|‖W 1,∞(0,T ;L∞(Ω)) ≤M
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for a constant M independent of θ and c. Moreover, there exists a constant cT
such that

0 ≤ p(x, t) +m(x, t) ≤ cT < 1 for a.e. (x,t) in QT .

(b) There are constants M1 ,M2 > 0 such that for every θ1, θ2, c1, c2 ∈ Lp(QT ), for
almost all t ∈ (0, T ) and all p ≥ 2 we have

‖|z1(t)− z2(t)|‖pW 1,p(Ω) ≤M1

t∫
0

‖θ1 − θ2‖pLp(Ω)ds+M2

t∫
0

‖c1 − c2‖pLp(Ω)ds(2.3.2)

where pi,mi is the solution corresponding to (θi, ci), and | · | is the Euclidean
norm in R2.

We will derive global existence and uniqueness on the interval (0,T) making use of the
following classical result, which can be found for instance in [11, Theorem 1.1, Chap.
2]

Theorem 2.3.1 (Theorem of Carathéodory). We consider the initial value problem:

u′(t) = F (u(t), t) on J, (P )

u(t0) = u0,

where J ⊂ R with t0 ∈ J and the map F is of the form F : K × J → RN , where K
is a compact set in RN . We assume:
(i) F : K × J → RN satisfies the Carathéodory condition, i.e.

• t→ Fi(u, t) is measurable on J for each u ∈ K

• u→ Fi(u, t) is continuous on K for almost all t ∈ J

(ii) There exists a Lebesgue-integrable function M : J → R such that |Fi(t, u)| < M(t)
for all (t, u) ∈ J ×K and all i.

Then there exists a solution u of problem (P) defined on a neighbourhood U of t0, ’in
the extended sense’, which means that u is absolutely continuous, u(·) satisfies (P)
almost everywhere on J and satisfies the initial condition.

Now we can start the proof of Lemma 2.3.1.

Proof of Lemma 2.3.1 In order to prove (a) it is convenient to rewrite problem (2.3.1)
as:

zt = F (z, t) in (0, T ) (2.3.3a)
z(0) = 0 (2.3.3b)

with F (z, ·) = f(z, θ(·), c(·)).
First of all we are going to show that the hypothesis of the Carathéodory’s Theorem
are satisfied:
(i)
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• t→ F (z, t) is measurable on (0, T ) for each z ∈ [0, 1]× [0, 1];

• z → F (z, t) is continuous on [0, 1]× [0, 1] for almost all t ∈ (0, T ).

These conditions follow from the definition of F as a consequence of the measurability
of θ and c on (0, T ) and of the fact that g1(θ, c), g2(θ, c) are Lipschitz continuous in
both variables.
(ii) Using assumption (A4),(A5) we have

|F1(z, t)| ≤ |1− p−m|g1(θ, c) ≤ γ1 on [0, 1]× [0, 1]× (0, T ),

|F2(z, t)| ≤ |m−m|g2(θ, c) ≤ γ2 on [0, 1]× [0, 1]× (0, T ).

According to Carathéodory Theorem, system (2.3.3) has a solution in the extended
sense on some time interval [0, T+), for some T+ > 0.
Next we are going to show that the solution is unique. To this end we have to prove
that there holds

|F (z1, t)− F (z2, t)| ≤ L|z1 − z2| ∀(z1, t), (z1, t) ∈ [0, 1]× [0, 1]× (0, T ). (2.3.4)

Indeed, according to the definition of F :

|F (z1, t)− F (z2, t)|2 = |(1− p1 −m1)g1(t)− (1− p2 −m2)g1(t)|
+
∣∣[min{m(t); 1− p1} −m1]+g2(t)− [min{m(t); 1− p2} −m2]+g2(t)

∣∣.
Thanks to the boundedness of g1 and g2, we obtain
|(1− p1 −m1)g1(t)− (1− p2 −m2)g1(t)| ≤ γ1(|p1 − p2|+ |m2 −m1|)
and

|[min{m(t); 1− p1} −m1]+g2(t)− [min{m(t); 1− p2} −m2]+g2(t)|
≤ γ2|min{m(t); 1− p1} −m1 −min{m(t); 1− p2}+m2|.

We shall now distinguish some cases.
If either min{m(t); 1 − pi} = 1 − pi or min{m(t); 1 − pi} = m(t), for i = 1, 2, (2.3.4)
immediately follows.
If min{m(t); 1−p1} = 1−p1 and min{m(t); 1−p2} = m(t) (the same holds for inverted
indices), we have p2 < 1− m̄ < p1, therefore

γ2|min{m(t); 1− p1} −m1 −min{m(t); 1− p2}+m2|

≤ γ2(|m1 −m2|+ |1− p1 −m(t)|) ≤ γ2

(
|m1 −m2|+ |p1 − p2|

)
. (2.3.5)

Thus, there exists a positive constant L such that

|F (z1, t)− F (z2, t)| ≤ L|z1 − z2|.

Hence we have proved uniqueness of z on (0, T+).
Now, we define Tε as the maximal time such that the solution to system (2.3.3) exists
and Z < 1− ε on (0, Tε), where Z = p+m.
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The last step in order to prove part (a) of the lemma is to show that for any T > 0
there exists an ε such that |Z| ≤ 1− ε in [0, T ].
This will be done by means of a classical comparison criterium for ODEs (see for
instance [27, Prop. 3.1, Chap. 1]. Z satisfies, on [0, Tε):

Ż(t) = (1− Z(t))g1(t) + [min{m(t); 1− p(t)} −m(t)]+g2(t)

≤ g(t, Z(t)) := (1− Z(t))(g1(t) + g2(t)),

Z(0) = 0.

Now, if we consider on [0, T+] the auxiliary problem:

V̇ (t) = (1− V (t))(g1(t) + g2(t)) = g(t, V (t))

V (0) = 0

the solution is given by

V (t) = 1− e−
R t
0 (g1+g2)(s)ds ∀ t ∈ [0, T ]

and we immediately have that there exists a constant CT > 0 such that:

0 ≤ V (t) ≤ CT < 1 on [0, T+).

Notice that g(t, V (t)) = (1 − V (t))(g1(t) + g2(t)) is Lipschitz continuous on [0, T+)
with respect to V .
Thus, choosing ε = 1− CT , we have

Z(t) ≤ V (t) ≤ 1− ε on [0, T+].

Since Tε was chosen maximally such that Z(t) ≤ 1 − ε on [0, Tε], it follows that
Tε ≥ T and we have concluded part (a) of Lemma [?].

(b) Let us consider again the equation zt = f(z, θ, c). Let zi be the solution to the
system (2.3.1), corresponding to θi, ci, i = 1, 2. Denoting z = z1 − z2, subtracting the
equations and taking the scalar product with the function |z|p−2z, we obtain:

1

p

∫
Ω

|z(t)|pdx =

t∫
0

∫
Ω

(
f(z1, θ1, c1)− f(z1, θ2, c2)

)
· z|z|p−2dxds. (2.3.6)

Invoking (A4), f is Lipschitz-continuous in all variables, thus, proceeding from (2.3.6),
the conclusion follows through standard application of Young’s inequality and Gron-
wall lemma. The proof is thus completed. �

Next, we define

B(θ, c) := ρLp(θ)ṗ + ρLm(θ)ṁ, (2.3.7)

where (p,m) depends on θ, c as characterized by the previous lemma.



2.3. PROOF OF EXISTENCE 23

Lemma 2.3.2. Suppose that (A2), (A4), (A5) hold. Then the operator B defined
by (2.3.7) has the following properties

(a) There exists a constant B̄ independent of θ, c such that, for all θ ∈ L2(QT ),
c ∈ L2(QT ) there holds

‖B(θ, c)‖L∞(QT ) ≤ B̄.

(b) Given c ∈ L2(QT ), let θk ⊂ L2(QT ) be any sequence converging strongly in L2(QT )
to θ ∈ L2(QT ). Then for every p ∈ [1,∞), we have

B(θk, c)→ B(θ, c) strongly in Lp(QT ). (2.3.8)

(c) There are constants K1, K2 > 0 such that for all θ1, θ2, c1, c2 ∈ L2(QT ) and for
almost all x ∈ Ω and every t ∈ (0, T )

t∫
0

∣∣B(θ1(x, s), c1(x, s))−B(θ2(x, s), c2(x, s))
∣∣2ds

≤ K1

t∫
0

|θ1(x, s)− θ2(x, s)|2 ds+K2

t∫
0

|c1(x, s)− c2(x, s)|2ds.

Proof of Lemma 2.3.2 (a) follows directly from assumptions (A2),(A4),(A5) and Lemma
2.3.1 (a).
(b) We have

ṗθ,c = (1− p−m)g1(θ, c)

ṁθ,c = [min{m(θ, c); 1− p} −m]+g2(θ, c).

Let x ∈ Ω \N , with N ⊂ Ω of zero measure and consider z = (p,m). By Lemma 2.3.1
(a), ‖ zθk ‖W 1,∞(0,T ;L∞(Ω))≤ M ∀k, thus ‖ zθk ‖W 1,p(0,T ;L∞(Ω))≤ M ∀k, ∀p < ∞. Thus,
there exists a subsequence, {θk′}, and some ẑ such that

zθk′ (x, ·)→ ẑ(x, ·) weakly − star in W 1,∞(0, T ), for a.e. x ∈ Ω.

Thus, we have

żθk′ (x, ·)→ ˙̂z(x, ·) weakly in Lp(0, T ) ∀p <∞, for a.e. x ∈ Ω.

zθ′k(x, ·)→ ẑ(x, ·) strongly in C[0, T ], for a.e. x ∈ Ω..

Since the solution to system (2.3.1) is unique, we have ẑ(x, ·) = zθ(x, ·) and the
convergence holds for the whole sequence, hence we can conclude that zθk(x, t) →
zθ(x, t) pointwise in QT . Since θk → θ strongly in L2(QT ), using assumption (A4),
possibly extracting a subsequence, we have

ρLp(θk′)ṗθk′,c + ρLm(θk′)ṁθk′,c
→ ρLp(θ)ṗθ + ρLm(θ)ṁθ a.e in QT . (2.3.9)
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But, applying Lebesgue theorem, we get

B(θk′ , c)→ B(θ, c) strongly in Lp(QT ).

Since the limit does not depend on the extracted subsequence the convergence holds
for the whole sequence {θk}, hence we obtain (2.3.8).
(c) follows directly from assumption (A2) and Lemma 2.3.1 (b). �

Lemma 2.3.3. Suppose (A2),(A4) hold. Let ĉ ∈ L2(0, T ;L2(Ω)). Then there exists
a unique θ(ĉ) ∈ W 2,1

2 (QT ) and a unique z(ĉ) = (p(ĉ),m(ĉ)) ∈ W 1,∞(0, T ;L∞(Ω)) ×
W 1,∞(0, T ;L∞(Ω)), satisfying

ρα(θ)
∂θ

∂t
− div

(
k∇θ

)
= B(θ, ĉ) in QT (2.3.10a)

−k ∂θ
∂ν

= h(θ − θΓ) on ∂Ω× (0, T ) (2.3.10b)

θ(x, 0) = θ0 in Ω (2.3.10c)
zt = f(z, θ, ĉ) in QT (2.3.10d)

z(0) = 0 in Ω. (2.3.10e)

where f is defined as in (2.3.1a). Moreover, there exist λ1, λ2 > 0 such that

‖θ1 − θ2‖2
L2(0,t;L2(Ω)) ≤ λ1

t∫
0

‖ĉ1 − ĉ2‖2
L2(0,s;L2(Ω))ds (2.3.11)

and

‖|z1 − z2|‖2
L2(0,t;L2(Ω)) ≤ λ2

t∫
0

‖ ĉ1 − ĉ2 ‖2
L2(0,s;L2(Ω)) ds, (2.3.12)

where (θi, zi) is the solution corresponding to ĉi, i = 1, 2.

Proof of Lemma 2.3.3 Existence. We introduce the operator

P : L2(QT )→ L2(QT ),

θ = P θ̂,

by demanding θ to be the solution of the linear parabolic problem

ρα(θ̂)
∂θ

∂t
− k4θ = B(θ̂, ĉ) in QT (2.3.13a)

−k ∂θ
∂ν

= h(θ − θΓ) on ∂Ω× (0, T ) (2.3.13b)

θ(x, 0) = θ0 in Ω. (2.3.13c)

According to classical results about parabolic equations, problem (2.3.13) has a unique
strong solution θ ∈ W 2,1

2 (QT ) (see, for instance, [36, Chap. 4, Theorem 1.1]), therefore



2.3. PROOF OF EXISTENCE 25

the operator P is well-defined. Moreover, thanks to Lemma 2.3.2 (a), there exists a
constant M > 0, independent of θ̂, such that:

‖θ‖W 2,1
2 (QT ) ≤M. (2.3.14)

We shall now show the continuity of the operator P .
Let (θ̂n) ⊂ L2(QT ) with θ̂n → θ̂ strongly in L2(QT ). Defining θn = P θ̂n, in view of
(2.3.14), ‖θn‖W 2,1

2 (QT ) ≤M . Thus, we can find a sub-sequence θ̂n′ such that

θn′ → θ weakly in W 2,1
2 (QT ), strongly in L2(QT ), (2.3.15a)

θn′ → θ a.e. in QT . (2.3.15b)

Testing equation (2.3.13a), written for the index n′, by φ ∈ L2(0, t;W 1
2 (Ω)), we get

t∫
0

∫
Ω

ρα(θ̂n′)θn′,s φ dx ds+ k

t∫
0

∫
Ω

∇θn′∇φ dx ds

+

t∫
0

∫
∂Ω

h(σ)(θn′ − θΓ)φ dσ ds −
t∫

0

∫
Ω

B(θ̂n′ , ĉ)φ dx ds = 0. (2.3.16)

By means of (2.3.15a), (2.3.15b) we can pass to the limit in the last three terms of
(2.3.16). We can break the first term in two terms

ρ

t∫
0

∫
Ω

α(θ̂n′)θn′,sφ dx ds = ρ

t∫
0

∫
Ω

α(θ̂n′)(θn′,s − θs)φ dx ds + ρ

t∫
0

∫
Ω

α(θ̂n′)θsφ dx ds.

Thanks to the continuity of α, we have that

α(θ̂n′)φ→ α(θ̂)φ a.e. in QT

thus, using Lebesgue theorem, ρα(θ̂n′)φ→ ρα(θ̂)φ strongly in L2(QT ) while θn′,s → θs

weakly in L2(QT ). Thus,
t∫

0

∫
Ω

α(θ̂n′)(θn′,s − θs)φ dx ds→ 0 and

ρ

t∫
0

∫
Ω

α(θ̂n′)θn′,sφ dx ds→ ρ

t∫
0

∫
Ω

α(θ̂)θsφ dx ds.

Hence we have obtained

ρ

t∫
0

∫
Ω

α(θ̂)θsφ dx ds+ k

t∫
0

∫
Ω

∇θ∇φ dx ds

+

t∫
0

∫
∂Ω

h(σ)(θ − θΓ)φ dσ ds −
t∫

0

∫
Ω

B(θ̂, ĉ)φ dx ds = 0.
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As the solution to the parabolic system (2.3.13) is unique, we have

θ = P θ̂ a.e. in QT

and, since the limit does not depend on the extracted sub-sequence, it follows that

P θ̂n → P θ̂

weakly in W 2,1
2 (QT ) and strongly in L2(QT ).

Now, let
K := {u ∈ L2(QT ) :‖ u ‖W 2,1

2 (QT )≤M}.
K is non-empty, convex, closed and relatively compact subset of L2(QT ) and P : K ⊂
L2(QT ) → K is a continuous mapping. By the Schauder fixed point theorem, there
exists a fixed point of the mapping P , i.e. there exists a weak solution θ ∈ W 2,1

2 (QT )
to (2.1.1),(2.1.5),(2.1.7).

Uniqueness and stability. Let

J(θ) :=

θ∫
0

ρα(ξ)dξ. (2.3.17)

Integration of (1.4.6) with respect to time leads to
t∫

0

B(θ, c)(x, s)ds = J(θ(x, t))− J(θ0(x))− k∆

t∫
0

θ(x, s)ds. (2.3.18)

Now, let θ1, θ2 ∈ W 2,1
2 (QT ) be solutions to the system (2.3.13) corresponding to ĉ1, ĉ2

respectively. Inserting these solutions into (2.3.18), subtracting both equations, and
testing by θ := θ1 − θ2, we find

t∫
0

∫
Ω

( s∫
0

B(θ1(x, ξ), ĉ1(x, ξ))−B(θ2(x, ξ), ĉ2(x, ξ))dξ
)
θ(x, s)dx ds

=

t∫
0

∫
Ω

[J(θ1(x, s))− J(θ2(x, s))]θ(x, s)dx ds + k

t∫
0

∫
Ω

∇
( s∫

0

θ(x, ξ)dξ
)
∇θ(x, s)dx ds

+

t∫
0

∫
∂Ω

( s∫
0

h(σ)θ(σ, ξ)dξ
)
θ(σ, s)dσ ds. (2.3.19)

Concerning the last term we can see that
t∫

0

∫
∂Ω

( s∫
0

h(σ)θ(σ, ξ)dξ
)
θ(σ, s)dσ ds =

t∫
0

∫
∂Ω

h(σ)
( s∫

0

θ(σ, ξ) dξ
)
θ(σ, s) dσds

=
1

2

t∫
0

∫
∂Ω

h(σ)
d

ds

( s∫
0

θ(σ, ξ) dξ
)2

dσds =
1

2

∫
∂Ω

h(σ)
( t∫

0

θ(σ, s)ds
)2

dσ.
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Thus, from (2.3.19) we obtain

t∫
0

∫
Ω

( s∫
0

B(θ1(x, ξ), ĉ1(x, ξ))−B(θ2(x, ξ), ĉ2(x, ξ))(x, ξ))dξ
)
θ(x, s)dx ds

≥ α0ρ

t∫
0

∫
Ω

θ2(x, s)dx ds +
k

2

∫
Ω

∣∣∣∇ t∫
0

θ(x, s)ds
∣∣∣2dx

+
1

2

∫
∂Ω

h(σ)
( t∫

0

θ(σ, s)ds
)2

dσ ≥ α0ρ

t∫
0

∫
Ω

θ2(x, s)dx ds .

Using Holder’s and Young’s inequalities and Lemma 2.3.1 it follows that∣∣∣∣∣∣
t∫

0

∫
Ω

( s∫
0

B(θ1(x, ξ), ĉ1(x, ξ))−B(θ2(x, ξ), ĉ2(x, ξ))dξ
)
θ(x, s)dx ds

∣∣∣∣∣∣
≤ 1

4δ

t∫
0

∫
Ω

( s∫
0

B(θ1(x, ξ), ĉ1(x, ξ))−B(θ2(x, ξ), ĉ2(x, ξ))dξ
)2

dx ds

+ δ

t∫
0

‖θ(·, s)‖2
L2(Ω) ds

≤ T

4δ

t∫
0

∫
Ω

s∫
0

(
K1|θ1(x, ξ)− θ2(x, ξ)|2 + K2|ĉ1(x, ξ)− ĉ2(x, ξ)|2

)
dξdx ds

+ δ

t∫
0

‖θ(·, s)‖2
L2(Ω) ds

≤ CT

4δ

t∫
0

‖θ‖2
L2(0,s;L2(Ω)) ds +

CT

4δ

t∫
0

‖ĉ‖2
L2(0,s;L2(Ω)) ds + δ

t∫
0

‖θ(·, s)‖2
L2(Ω) ds,

where C = min{K1,K2}. Thus, we have

α0ρ

t∫
0

∫
Ω

θ2(x, s)dx ds ≤ CT

4δ

t∫
0

‖θ‖2
L2(0,s;L2(Ω))ds

+
CT

4δ

t∫
0

‖ĉ‖2
L2(0,s;L2(Ω)) ds+ δ

t∫
0

‖θ(·, s)‖2
L2(Ω) ds.
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Choosing δ = α0ρ
2

we have:

‖ θ ‖2
L2(0,t;L2(Ω))≤M1

t∫
0

‖θ‖2
L2(0,s;L2(Ω))ds +M2

t∫
0

‖ĉ‖2
L2(0,s;L2(Ω))ds

with constants M1, M2 > 0.

Hence, applying Gronwall lemma, we find a constant C1 such that

‖θ1 − θ2‖2
L2(0,t;L2(Ω)) ≤ C1

t∫
0

‖ĉ1(s)− ĉ2(s)‖2
L2(0,s;L2(Ω))ds. (2.3.20)

Inequality (2.3.12) follows immediately from Lemma 2.3.1 (b) and estimate (2.3.11).
The proof of Lemma 2.3.3 is thus completed.

�

Now, we are in a position to prove Theorem 2.2.1.

Proof of Theorem 2.2.1
Let us denote

µ(θ, c) := (1− p−m)D(θ, c).

We note that, in view of (A6) and Lemma 4.1 (b), µ is Lipschitz-continuous with
respect to θ and c.
We define an operator

T : L2(QT ) −→ L2(QT ),

T ĉ = c, (2.3.21)

by demanding c to be the solution of the parabolic problem

∂c

∂t
− div(µĉ∇c) = 0 in QT (2.3.22a)

−µĉ
∂c

∂ν
= β(c− cp) on ∂Ω× (0, T ) (2.3.22b)

c(x, 0) = c0 in Ω. (2.3.22c)

where µĉ = (1 − pĉ −mĉ)D(θĉ, ĉ), (θĉ, pĉ,mĉ) being the solution to problem (2.3.10),
with respect to given ĉ. Denoting

a(c, φ; t) :=

∫
Ω

µĉ∇c∇φ dx +

∫
∂Ω

β c φ dσ,

〈f(t), φ〉 :=

∫
∂Ω

βcpφ dσ, φ ∈ W 1
2 (Ω)
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we have that problem (2.3.22) is equivalent to the following one. We seek a function
c such that, for all φ ∈ W 1

2 (Ω) and a.e in t ∈ (0, T )〈 d
dt
c(t), φ

〉
+ a(c(t), φ; t) = 〈f(t), φ〉, (2.3.23a)

c(0) = c0, (2.3.23b)
c ∈ W (0, T ), (2.3.23c)

where 〈 , 〉 denotes the duality between W 1
2 (Ω) and (W 1

2 (Ω))∗.
In view of (A3),(A6),(A7), problem (2.3.23) admits a unique solution c ∈ W (0, T ) (cf.
[35, Theorem 1.2, Chap. 2]). Moreover, there exists a constant M independent of ĉ,
such that:

‖c‖W (0,T ) ≤M. (2.3.24)

To derive the continuity of the operator T , let {ĉn} ⊂ L2(0, T ;L2(Ω)), with ĉn → ĉ
strongly in L2(QT ). Defining cn = T ĉn, thanks to (2.3.24), we have ‖cn‖W (0,T ) ≤ M .
Thus, there exists a sub-sequence {ĉn′} such that

cn′ −→ c weakly inW (0, T ). (2.3.25)

We test (2.3.22a) by

Φ(x, t) = ψ(t)φ(x) with ψ ∈ C1[0, T ], ψ(T ) = 0, φ ∈ W 1
2 (Ω). (2.3.26)

Denoting T ĉn′ := cn′ , we have
T∫

0

∫
Ω

cn′,s Φ dx ds+

T∫
0

∫
Ω

µĉn′∇cn′∇Φ dx ds+

T∫
0

∫
∂Ω

β(cn′ − cp)Φ dσds = 0. (2.3.27)

Concerning the first term in (2.3.27) we have

T∫
0

∫
Ω

cn′,s Φ dx ds = −
∫
Ω

cn′(x, 0) Φ(x, 0)dx −
T∫

0

∫
Ω

cn′ Φs dx ds.

Now, ∫
Ω

cn′(x, 0) Φ(x, 0)dx =

∫
Ω

c0 Φ(x, 0)dx ,

and, by virtue of (2.3.25),

T∫
0

∫
Ω

cn′ Φs dx ds→
T∫

0

∫
Ω

cΦs dx ds a.e. in QT .

The second term can be rearranged as
T∫

0

∫
Ω

µĉn′∇cn′∇Φ dx ds =

T∫
0

∫
Ω

µĉn′ (∇cn′ −∇c)∇Φ dx ds +

T∫
0

∫
Ω

µĉn′∇c∇Φ dx ds.
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Since µ is continuous and bounded as a function of c, possibly extracting a subse-
quence, we obtain: µĉn′ (x, t)→ µĉ(x, t) a.e in QT , therefore µĉn′ (x, t)∇Φ→ µĉ(x, t)∇Φ
pointwise, moreover µĉn′ (x, t)∇Φ is bounded in L2 thus, using Lebesgue theorem, we
have

µĉn′∇Φ→ µĉ∇Φ strongly in L2(QT ).

Moreover, (∇cn′ −∇c)→ 0 weakly in L2(QT ) because of (2.3.25), thus we obtain

T∫
0

∫
Ω

µĉn′∇cn′∇Φ dx ds→
T∫

0

∫
Ω

µĉ∇c∇Φ dx ds.

Applying the trace theorem, the last term in (2.3.27) converges too.
Thus, we can pass to the limit in (2.3.27) obtaining

−ψ(0)

∫
Ω

c0 φ(x)dx−
T∫

0

∫
Ω

c ψsφ dx ds

+

T∫
0

ψ

∫
Ω

µĉ∇c∇φ dx ds+

T∫
0

ψ

∫
∂Ω

β(c− cp)φ dσds = 0. (2.3.28)

Consequently

T∫
0

ψ
(∫

Ω

cs φ dx +

∫
Ω

µĉ∇c∇φ dx +

∫
∂Ω

β(c− cp)φ dσ
)
ds = 0.

The above is true for φ, ψ satisfying (2.3.28). Therefore (2.3.28) gives, a.e in t ∈ (0, T )〈 d
dt
c(t), φ

〉
+ a(t; c(t), φ) = 〈F (t), φ〉 ∀φ ∈ W 1

2 (Ω).

Since the solution of (2.3.22) is unique, we can conclude

T ĉ = c,

and, since the limit does not depend on the extracted sub-sequence, it follows that

T ĉn → T c (2.3.29)

weakly in W (0, T ) and strongly in L2(QT ).
Now, let

K := {v ∈ L2(QT ) : ‖v‖W (0,T ) ≤M}.

K is convex and compact in L2(QT ) and F : K ⊂ L2(QT ) → K is a continuous
mapping. By the Schauder fixed point theorem the proof of the existence of solutions
is concluded. �
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Proof of Proposition 2.2.2

We prove now that θ ∈ L∞(QT ).
To this end, we write the weak form of equation (2.1.1):

t∫
0

〈
ρα
∂θ

∂t
, φ

〉
ds +

t∫
0

∫
Ω

k∇θ∇φ dx ds+

t∫
0

∫
∂Ω

h(θ − θΓ)φ dσds (2.3.30)

=

t∫
0

〈B(θ, c)φ〉 ds.

Testing with the function φ = (θ − θΓ)− = −min{θ − θΓ, 0}, through integration by
parts, we obtain from the first term:

t∫
0

ρ

〈
α
∂θ

∂t
, φ

〉
ds ≥ ρα1

t∫
0

〈
∂θ

∂t
, φ

〉
ds

= ρα1

t∫
0

〈
∂(θ − θΓ)

∂t
, φ

〉
ds = ρα1

1

2

∫
Ω

|φ(t)|2dx, (2.3.31)

from the second term

k

t∫
0

∫
Ω

∇θ∇φ dx ds =

t∫
0

∫
{x∈Ω:θ−θΓ≤0}

∇φ∇φ dxds

=

t∫
0

∫
Ω

|∇φ|2 dxds ≥ 0, (2.3.32)

from the third term

t∫
0

∫
∂Ω

h(θ − θΓ)φ dσds =

t∫
0

∫
{σ∈∂Ω:θ−θΓ≤0}

h(θ − θΓ)2 dσds ≥ 0. (2.3.33)

Regarding the right-hand side of (2.3.30), we notice that if (θ− θΓ)− 6= 0, then θ ≤ θΓ,
but in this range of temperature we know that B(θ, c) = 0, since gi = 0 and vice-versa:
if B(θ, c) 6= 0, then (θ − θΓ)− = 0. Therefore the right-hand side is always zero and
we can conclude, from (2.3.30)-(2.3.33), that:

1

2

∫
Ω

|(θ − θΓ)−(t)|2dx ≤ 0 ∀t ∈ (0, T ),

thus

(θ − θΓ)−(t) = 0 ∀t ∈ (0, T ) a.e. in Ω
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and θ(x, t) ≥ θΓ, ∀t ∈ (0, T ).
A similar argument, using the test function φ = (θ− θ0)+, leads to θ(x, t) ≤ θ0(x) a.e.
in QT .

Now we pass to consider the weak form of equation (2.1.2):

t∫
0

〈
∂c

∂t
, φ

〉
ds +

t∫
0

∫
Ω

µθ,c∇c∇φ dx ds+

t∫
0

∫
∂Ω

β(c− cp)φ dσds = 0, (2.3.34)

∀φ ∈ L2(0, t;W 1
2 (Ω)) and for every t ∈ (0, T ), where 〈 , 〉 denotes the duality pairing

between W 1
2 (Ω) and (W 1

2 (Ω))∗.
Testing with the function φ = (c − C1)− = −min{c − C1, 0}, through integration by
parts, we get from the first term:

t∫
0

〈
∂c

∂t
, φ

〉
ds =

t∫
0

〈
∂(c− C1)

∂t
, φ

〉
ds =

1

2

∫
Ω

|φ(t)|2dx, (2.3.35)

from the second term

t∫
0

∫
Ω

µθ,c∇c∇φ dx ds =

t∫
0

∫
{x∈Ω:c−C1≤0}

µθ,c∇φ∇φ dxds

=

t∫
0

∫
Ω

µθ,c|∇φ|2 dxds ≥ 0 (2.3.36)

and from the third term

t∫
0

∫
∂Ω

β(c− cp)φ dσds =

t∫
0

∫
{σ∈∂Ω:c−C1≤0}

β(c− cp)(c− C1) dσds

≥
t∫

0

∫
{σ∈∂Ω:c−C1≤0}

β(c− C1)2 dσds ≥ 0 (2.3.37)

Thus, from (2.3.34)-(2.3.37), we obtain

1

2

∫
Ω

|(c− C1)−(t)|2dx ≤ 0 ∀t ∈ (0, T ),

thus

(c− C1)−(t) = 0 ∀t ∈ (0, T ) a.e. in Ω

and c(x, t) ≥ C1, ∀t ∈ (0, T ). A similar argument, using the test function φ = (c−C2)+,
leads to c(x, t) ≤ C2 a.e in QT . �
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2.4 Proof of uniqueness

We commence with the following regularity result:

Lemma 2.4.1. Under the assumptions of Theorem 3.2, the solutions θ, c to the initial-
boundary values problems related to equations (2.1.1)–(2.1.2) are in W 2,1

5 (QT ).

Proof. Until now we have proved the existence of at least one solution for the initial-
boundary value problems related to equations (2.1.1), (2.1.2) and we proved that the
solutions are bounded in L∞(QT ) (Prop. 2.2.2). Then we can directly apply a classical
result from Lady̆zenskaja ([32, Theorem 10.1, Chap. 3]), which gives us that θ and c are
Hölder continuous functions, with Hölder exponent depending, among the others, also
on the maximum of the functions over QT . It follows that the right-hand sides of the
ODEs (2.1.3)–(2.1.4) are continuous functions, therefore the corresponding solutions,
p and m, are continuously differentiable.
Thus, the PDEs (2.1.1)–(2.1.2) have continuous coefficients and, since θ0, c0 ∈ W 2

5 (Ω)
and h, β ∈ W 1

5 (∂Ω), we can apply another classical result from Lady̆zenskaja ([32,
Theorem 9.1, Chap. 4] ) which yields: θ, c ∈ W 2,1

5 (QT ). �

Lemma 2.4.2. Assuming that α is constant, we have that, for every c1, c2 ∈ L2(QT ),
there exists a constant M > 0 such that, for the corresponding θ1, θ2, it holds:

‖θ1 − θ2‖2
W 2,1

2 (QT )
≤M‖c1 − c2‖2

L2(QT ). (2.4.1)

Proof.

We consider the heat equation of our system:

ραθt = k∆θ + ρLppt + ρLmmt. (2.4.2)

We write (2.4.2) for θ1, c1, p1,m1 and θ2, c2, p2,m2. Subtracting and denoting as usual
θ = θ1 − θ2, we see that the difference satisfies the following system:

ραθt − k∆θ = ρ(Lp(θ1)p1,t − Lp(θ2)p2,t) + ρ(Lm(θ1)m1,t − Lm(θ2)m2,t) =: f

−k ∂θ
∂ν

= hθ

θ(x, 0) = 0.

Applying again standard parabolic theory (cf.[36, Theorem 6.2, Chap. 4] ), we know
that there exists a positive constant K such that we can estimate the norm of the
solution as follows:

‖θ‖W 2,1
2 (QT ) ≤ K‖f‖L2(QT ).

Now we can estimate the term ‖f‖L2(QT ), by means of Lemma 2.3.1 (b) and assump-
tions (A2), as:

‖ρ(Lp(θ1)p1,t − Lp(θ2)p2,t) + ρ(Lm(θ1)m1,t − Lm(θ2)m2,t)‖L2(QT )

≤ K1‖θ1 − θ2‖L2(QT ) +K2‖c1 − c2‖L2(QT ),

with K1, K2 positive constants. Now, using Lemma 2.3.3, we can estimate the term
‖θ1 − θ2‖L2(QT ) and therewith finish the proof. �
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Lemma 2.4.3. Let u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1
2 (Ω)), then there holds

T∫
0

‖u(t)‖10/3

L10/3(Ω)
dt ≤

( T∫
0

‖u(t)‖2

L6(Ω)
dt
)
‖u‖4/3

L∞(0,T ;L2(Ω))
.

Proof. Owing to Riesz’ convexity theorem (cf. [8, Oss. 2, Chap. 4]), we have

‖u‖Lr(Ω) ≤ ‖u‖1−Θ

Lq1 (Ω)
‖u‖Θ

Lq2 (Ω)
,

for all u ∈ Lq1(Ω) ∩ Lq2(Ω) with 1 ≤ q1, q2 < ∞, 0 < Θ < 1, and 1
r

= 1−Θ
q1

+ Θ
q2
.

Invoking the continuous embedding W 1
2 (Ω) ⊂ L6(Ω), the assertion follows by defining

q1 = 6, q2 = 2, Θ = 2
5
, and r = 10

3
. �

We are now in a position to prove Theorem 2.2.3.

Proof of Theorem 2.2.3
We write equation (2.1.2) for c1 and c2, subtract, integrate over QT and test by c1−c2.
In the sequel we will use the following notations: c = c1 − c2, θ = θ1 − θ2, p =
p1 − p2, m = m1 −m2.
We have:

1

2

∫
Ω

c2(t)dx+

t∫
0

∫
Ω

(
(1− p1 −m1)D(θ1)∇c1 − (1− p2 −m2)D(θ2)∇c2

)
∇c dxds

+

t∫
0

∫
∂Ω

βc2dσds = 0.

Now,

t∫
0

∫
Ω

(
(1− p1 −m1)D(θ1)∇c1 − (1− p2 −m2)D(θ2)∇c2

)
∇c dxds

=

t∫
0

∫
Ω

(1− p1 −m1)D(θ1)|∇c|2dxds−
t∫

0

∫
Ω

(p+m)D(θ1)∇c2∇c dxds

+

t∫
0

∫
Ω

(1− p2 −m2)(D(θ1)−D(θ2))∇c2∇c dxds . (2.4.3)

Denoting, in the sequel, by Ki generic positive constants independent of θ and c, we
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obtain:

1

2

∫
Ω

c2(t)dx+K1

t∫
0

‖∇c‖2
L2(Ω)dxds

≤
t∫

0

∫
Ω

|p+m||D(θ1)||∇c2||∇c| dxds

+

t∫
0

∫
Ω

|1− p2 −m2||D(θ1)−D(θ2)||∇c2||∇c| dxds. (2.4.4)

By means of Lemma 2.4.1, we know that c2 ∈ W 2,1
5 (QT ). According to Amann (cf [1,

Theorem 1.1], Theorem 1.1), we have the embedding W 2,1
5 (QT ) ↪→ C([0, T ];W 1

5 (Ω)).
Thus, we can estimate the first term in the right hand-side of (2.4.4) as:

t∫
0

∫
Ω

|p+m||D(θ1)||∇c2||∇c| dxds

≤
t∫

0

‖p+m‖L10/3(Ω)‖∇c2‖L5(Ω)‖D(θ1)‖L∞(Ω)‖∇c‖L2(Ω)ds

≤ K1

4

t∫
0

‖∇c‖2
L2(Ω)ds+

4K2

K1

t∫
0

‖p+m‖2
L10/3(Ω)ds. (2.4.5)

Moreover, thanks to Lemma 2.3.1 (b), we get:

t∫
0

‖p+m‖2
L10/3(Ω)ds =

t∫
0

∫
Ω

|p+m|10/3dx

3/5

ds

≤ K3

t∫
0

 s∫
0

∫
Ω

θ10/3dxdτ

3/5

ds + K4

t∫
0

 s∫
0

∫
Ω

c10/3dxdτ

3/5

ds. (2.4.6)

Now, we apply Lemma 2.4.3, Young’s inequality and the embedding W 1
2 (Ω) ↪→ L6(Ω)

to the right-hand side of (2.4.6), obtaining:

t∫
0

 s∫
0

∫
Ω

θ10/3dxdτ

3/5

ds ≤
t∫

0

 s∫
0

K5‖θ‖2
W 1

2 (Ω)dτ

3/5

‖θ‖4/5

L∞(0,s;L2(Ω))ds

≤ 3K5

5

t∫
0

s∫
0

‖θ‖2
W 1

2 (Ω)dτds +
2

5

t∫
0

‖θ‖2
L∞(0,s;L2(Ω))ds.

(2.4.7)
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Analogously, it holds:

t∫
0

 s∫
0

∫
Ω

c10/3dxdτ

3/5

ds ≤ K5
3

5

t∫
0

s∫
0

‖c‖2
W 1

2 (Ω)dτds +
2

5

t∫
0

‖c‖2
L∞(0,s;L2(Ω))ds.(2.4.8)

Regarding the second term in the right-hand side of (2.4.4), using Lemma 4.1, assump-
tion (A6) and Young’s inequality again, we have:

t∫
0

∫
Ω

|1− p2 −m2||D(θ1)−D(θ2)||∇c2||∇c| dxds ≤ ‖∇c2‖L∞(0,t;L3(Ω))

t∫
0

‖θ‖L6(Ω)‖∇c‖L2(Ω)ds

≤ K6

t∫
0

‖θ‖2
W 1

2 (Ω)ds +
K1

4

t∫
0

‖∇c‖2
L2(Ω)ds. (2.4.9)

Using (5.4) to (2.4.9), we find that

min
{1

2
,
K1

2

}∫
Ω

c2(t)dx+

t∫
0

‖∇c‖2
L2(Ω)ds

≤K7

( t∫
0

‖θ‖2
W 1

2 (Ω)ds +

t∫
0

‖θ‖2
L∞(0,s;L2(Ω))ds

)

+
3K5

5

t∫
0

s∫
0

‖θ‖2
W 1

2 (Ω)dτds+K8

( t∫
0

s∫
0

‖c‖2
W 1

2 (Ω)dτds +

t∫
0

‖c‖2
L∞(0,s;L2(Ω))ds

)
.

(2.4.10)

Thanks to the embedding W 2,1
2 (QT ) ↪→ C([0, T ];W 1

2 (Ω)) (see [2], Theorem 1.1) and
Lemma 5.2, we obtain for the first term in the right-hand side of (2.4.10):

t∫
0

‖θ(s)‖2
W 1

2 (Ω)ds ≤
t∫

0

‖θ‖2
L∞(0,s;W 1

2 (Ω))ds ≤ K9

t∫
0

‖θ‖W
2
2,1
Qs

ds ≤
t∫

0

K10

s∫
0

‖c‖2
L2(Ω)dτds

Analogous estimates hold for the other terms involving θ. Thus we end up with:

‖c(t)‖2
L2(Ω) +

t∫
0

‖∇c‖2
L2(Ω)ds ≤ K11

t∫
0

‖c‖2
L∞(0,s;L2(Ω))ds

+K12

t∫
0

s∫
0

‖∇c‖2
L2(Ω)dτds+K13

t∫
0

s∫
0

‖c‖2
L2(Ω)dτds ∀t ∈ [0, T ].
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Taking the essential supremum over [0, t̂] for some t̂ ∈ [0, T ] in the previous inequality,
we obtain:

‖c(t)‖2
L∞(0,t̂L2(Ω)) +

t̂∫
0

‖∇c‖2
L2(Ω) ≤ K11

t̂∫
0

‖c‖2
L∞(0,s;L2(Ω))ds

+K12

t̂∫
0

s∫
0

‖∇c‖2
L2(Ω)dτds+K13

t̂∫
0

s∫
0

‖c‖2
L2(Ω)dτds.

Since
t̂∫

0

s∫
0

‖c‖2
L2(Ω)dτds ≤ T

t̂∫
0

‖c‖2
L∞(0,s;L2(Ω))ds, we can apply the Gronwall lemma and

conclude the proof of Theorem 3.2. �
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Chapter 3

Analysis of a related quasilinear
parabolic system

3.1 Problem statement and strategy

The uniqueness result presented in the previous chapter has been obtained under quite
strong assumptions. This leads us to consider a related system constituted of the two
quasilinear parabolic equations, with the same structure of those present in the com-
plete model, under weaker assumptions, not coupled though with the two additional
ODEs for the phase transitions. It seems, in fact, that the analysis performed in this
chapter can’t be carried over to the whole system considered previously. Nevertheless
we believe in the intrinsic mathematical interest of this chapter, dealing with a quite
general and relevant class of parabolic systems, often encountered in problems arising
from physics. Very similar systems of quasilinear parabolic equations are studied also
for other applications (see for instance, [41] and [42]).
Here we examine, in the domain QT = Ω × (0, T ), Ω ⊂ RN , the following system of
equations:

∂θ

∂t
−∆θ = r(θ, c) (3.1.1)

∂c

∂t
− div

(
D(θ, c)∇c

)
= 0 (3.1.2)

with boundary conditions

∂θ

∂ν
+ h(x, θ, θΓ(x, t)) = 0 (3.1.3)

−D(θ, c)
∂c

∂ν
= b(x, t) (3.1.4)

and initial conditions

θ(x, 0) = θ0(x) (3.1.5)
c(x, 0) = c0(x) . (3.1.6)

39
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The properties of the nonlinearities r,D, and h, as well as the hypotheses on the data
b, θΓ, θ0, and c0 will be specified in the next section.

This system presents differences from the one studied in the previous chapter, mainly
in the nonlinear boundary condition for θ, in the boundary condition for c and in the
fact that we allow the coefficient D to depend both on θ and c. Hence, in comparison
with the analysis contained in Chapter 2, we conduct here a different proof of existence
of solutions and of uniqueness as well.
The first part of our analysis aims to show the existence of a generalized solution (θ, c)
of the system (3.1.1)–(3.1.6), under appropriate regularity assumptions, with

θ ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)), c ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′).

Together with the existence, employing a maximum principle and a Moser iteration,
we also prove that the solution θ(x, t) is positive and uniformly bounded from above
in QT , only assuming linear growth of r(θ, c).
Then we come to the discussion of the more delicate question of uniqueness. After the
usual observation that, in order to prove a uniqueness result, it is useful to proceed with
analyzing the regularity of solutions, we address explicitly the question of regularity.
To the subject of nonlinear parabolic equations of second order are dedicated many
monographs, among the quite recent ones, we mention [1], [30] and [34]. Since it seemed
to us that no complete result is available in literature for the case of system (3.1.1)–
(3.1.6), we develop a strategy technically involved but self contained and elementary
as far as possible. We are able to show that, for N ≤ 3, θ possesses the regularity

∇θ ∈ L2(0, T ;L∞(Ω) ∩ Cα(Ω)),

for some α > 0. To this aim, we proceed in several steps. Due to the nonlinearity
in the boundary condition (3.1.3), we first regularize the boundary condition with a
parameter δ > 0 that we will eventually let tend to zero. A fundamental tool employed
in our approach to the problem are the anisotropic Sobolev spaces, which are found to
be particularly adequate in the treatment of equations presenting different regularity
in tangential and in normal directions, that is the case of our system with associated
third-order boundary conditions.
Regarding the assumptions, we notice that no assumption about the regularity of the
gradient of the solution, in particular its boundedness, was made. We were inspired
from the estimation technique proposed in [39] for elliptic equations with linear bound-
ary conditions. Here, however, we obtain different estimates in tangential and normal
directions and it is necessary to use an embedding theorem for anisotropic spaces that
we prove in a separate section, by the methods of Besov ([6]).
The last part contains the proof of uniqueness and stability for the whole system. We
prove uniqueness and continuous dependence on the data, θΓ, b, θ

0 and c0. The proof
is based on an Lp-variant of the Gronwall lemma. If the standard Gronwall lemma
can be viewed as a result of the fact that the L∞-norm of the function v is bounded
above by its weighted L1-norm, what we show is that an Lp-Gronwall estimate still
holds if the L∞-norm on the left-hand side is replaced with an Lp-norm for p > 1.
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Remark 2. Although it is not possible to describe the whole process of case hardening
through this system, still the stages without phase fractions growth may be therewith
correctly modelled. In this scenario, the interaction between temperature evolution
and diffusion of carbon would be reflected in the carbon diffusion coefficient D(θ, c)
and in the heat source term r(θ, c). The function θΓ would be again the external
temperature of the atmosphere in the furnace and the flux of carbon through the
surface of the workpiece would be expressed by the function b(x, t). In this contest we
point out that a relevant issue for applications is the fact that the boundary condition
for the θ, if interpreted as temperature, encompasses heat exchanges by conduction,
convection and radiation. This is also a reason why we require no growth restriction
on h(x, θ, θΓ), and the boundary condition (3.1.3) thus includes thus the case

∂θ

∂ν
+ α(x)(θ − θΓ) + β(x)(θ4 − θ4

Γ) = 0,

with coefficients α(x), β(x) ≥ 0, α(x) + β(x) ≥ α0 > 0.

3.2 Main results

We state for system (3.1.1)–(3.1.6) two sets of hypotheses: Hypothesis 3.2.1 for exis-
tence and its stronger version 3.2.2 for regularity and uniqueness. Note that we do
not assume any upper bound for the growth of h.

Hypothesis 3.2.1. The domain Ω ⊂ RN , N ≤ 3, is bounded and has Lipschitz-
continuous boundary.
We prescribe the data b ∈ L2(∂Ω × (0, T )), c0 ∈ L2(Ω), θ0 ∈ V ∩ L∞(Ω), and let
0 ≤ θ∗ := ess infθ0.
The function h is measurable in x and continuous in θ and θΓ, with the properties

h(x, θ∗, θΓ) ≤ 0 ,

∃a > 0 ∀m > 0 ∃Cm > 0 : θΓ ≤ m, θ ≥ 0 ⇒ h(x, θ, θΓ) ≥ aθ − Cm.

Furthermore,

– θΓ ∈ L∞(∂Ω× (0, T )), (θΓ)t ∈ L2(∂Ω× (0, T )), θΓ ≥ θ∗ a. e.,

– r,D are continuous and there exist constants d0, d1, r1 such that

0 < d0 ≤ D(θ, c) ≤ d1, 0 ≤ r(θ, c) ≤ r1(|θ|+ |c|).

Hypothesis 3.2.2. In addition to Hypothesis 3.2.1, we assume that the domain Ω is
of class C2,1, that is, the outward normal vector has Lipschitz-continuous derivatives
until the second order. There exist connected relatively open subsets Γj of ∂Ω, j =
1, . . . , n, which are C2,1-diffeomorphic to open bounded subsets of R2, and a function
h0 ∈ W 2,∞(∂Ω) such that h(x, θ, θΓ) = h0(x)(θ − θΓ) on ∂Ω \

⋃n
j=1 Γj. Furthermore,

– θ0 ∈ W 2,2(Ω),
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Ω

Γ1

Γ2

Figure 3.1: An admissible domain Ω. Thick lines denote the set of nonlinear boundary
conditions.

– h is of class W 2,∞
loc with respect to all variables,

– θΓ ∈ L2(0, T ;W 2,2(∂Ω)), (θΓ)t ∈ L2(0, T ;W 1,2(∂Ω)),
– r, F, ∂θF are globally Lipschitz-continuous with respect to both variables θ and c,
where we set

F (θ, c) =

∫ c

0

D(θ, c′)dc′ .

– ∂θF is globally bounded.

We deal with the following weak formulation of (3.1.1)–(3.1.4).∫
Ω

(θt ϕ+∇θ · ∇ϕ− r(θ, c)ϕ) dx+

∫
∂Ω

(h(x, θ, θΓ(x, t))ϕ dS = 0 (3.2.1)∫
Ω

(ct ψ +D(θ, c)∇c · ∇ψ) dx+

∫
∂Ω

b(x, t)ψ dS = 0 (3.2.2)

for every test functions ϕ, ψ ∈ V .

Theorem 3.2.3. (Existence) Let Hypothesis 3.2.1 hold. Then there exists K0 > 0
and a solution (θ, c) to the system (3.2.1)–(3.2.2) with initial conditions (3.1.5)–
(3.1.6), with the regularity θ ∈ L∞(0, T ;V ), θt ∈ L2(QT ), ∇θ ∈ L∞(0, T ;L2(Ω)),
c ∈ L2(0, T ;V ), ct ∈ L2(0, T ;V ′), and such that θ∗ ≤ θ(x, t) ≤ K0 a. e.

Theorem 3.2.4. (Regularity) Let Hypothesis 3.2.2 hold. Then every solution (θ, c) to
(3.2.1)–(3.2.2) from Theorem 3.2.3 has the additional regularity ∇θ ∈ L2(0, T ;L∞(Ω)).

To simplify the notation, we introduce the symbol

|w(t)|p =

(∫
Ω

|w(x, t)|pdx
)1/p

for t ∈ (0, T ) , (3.2.3)
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to denote the partial Lp(Ω)-norm of a generic function w : QT → Rd, d ≥ 1, with an
obvious modification for p =∞.

An important achievement of this chapter is the following uniqueness and continuous
dependence result. It will be based on the partial Kirchhoff transform

u = F (θ, c) (3.2.4)

with F from Hypothesis 3.2.2.

Theorem 3.2.5. (Uniqueness and continuous data dependence) Let Hypothesis 3.2.2
hold, and let (θ1, c1), (θ2, c2) be two solutions with the regularity from Theorem 3.2.4
corresponding to the same h(x, ·), and to different data θ0

i , c
0
i , θΓi, bi, i = 1, 2, satisfying

Hypothesis 3.2.2. Let ui = F (θi, ci), i = 1, 2, be defined by the Kirchhoff transform
(3.2.4). Set θ̄ = θ1−θ2, ū = u1−u2, c̄0 = c0

1−c0
2, θ̄0 = θ0

1−θ0
2, θ̄Γ = θΓ1−θΓ2, b̄ = b1−b2.

Then there exists a positive constant M > 0 depending only on θ0
1, c

0
1, θΓ1, b1, such that

the inequality

|θ̄(t)|22 +

∣∣∣∣∇ ∫ t

0

ū(τ)dτ

∣∣∣∣2
2

+

∫ t

0

(
|∇θ̄|22 + |ū|22

)
(τ) dτ ≤ M α(t) , (3.2.5)

holds for every t ∈ [0, T ], where we set

α(t) = |θ̄0|22 + |c̄0|22 +

∫ t

0

∫
∂Ω

|θ̄Γ(x, τ)|2dS dτ +

∫ t

0

∫
∂Ω

|b̄(x, τ)|2dS dτ . (3.2.6)

3.3 Proof of existence

We fix some K > 0 that will be specified later, and set

hK(x, θ, θΓ) = h(x,max{θ∗,min{θ,K}}, θΓ) .

Instead of (3.2.1)–(??), we consider the decoupled and truncated problem∫
Ω

(θt ϕ+∇θ · ∇ϕ− r(θ, ĉ)ϕ) dx+

∫
∂Ω

hK(x, θ, θΓ(x, t))ϕ dS = 0 (3.3.1)∫
Ω

(
ct ψ +D(θ̂, ĉ)∇c · ∇ψ

)
dx+

∫
∂Ω

b(x, t)ψ dS = 0 (3.3.2)

for every test functions ϕ, ψ ∈ V , with given functions θ̂, ĉ ∈ L2(QT ), and with
initial conditions (3.1.5)–(3.1.6). We now use the Schauder fixed point theorem. For
mc,mθ > 0, we fix the set

Z(mθ,mc) =

{
(θ, c) ∈ L2(QT )× L2(QT ) :

∫ T

0

|θ(t)|22 dt ≤ mθ ,

∫ T

0

|c(t)|22 dt ≤ mc

}
.

Approximating the functions θ and c by Faedo-Galerkin expansions into the system of
eigenfunctions of the Laplacian with homogeneous Neumann boundary conditions (see
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[35]), we obtain by compactness argument the existence of solutions to (3.3.1)–(3.3.2),
as well as the estimates∫ T

0

(|θt(t)|22 + |∆θ(t)|22) dt+ sup
t∈(0,T )

|∇θ(t)|22 ≤ C

(
1 +

∫ T

0

|ĉ(t)|22 dt

)
, (3.3.3)

∫ T

0

(|ct(t)|2V ′ + |∇c(t)|22) dt+ sup
t∈(0,T )

|c(t)|22 ≤ C , (3.3.4)

where R1, R2 are constants independent of θ̂ and ĉ. It now suffices to choose mc =
TR1 and mθ = TR2(1 + TR1) to check that the solution (θ, c) belongs to Z(mθ,mc)
whenever (θ̂, ĉ) ∈ Z(mθ,mc). Z(mθ,mc) is closed, convex and the solution mapping
associated with (3.3.1)–(3.3.2) is compact in L2(QT )×L2(QT ), hence it admits a fixed
point, which is a solution to (3.2.1)–(3.2.2) with h replaced by hK .

It remains to find uniform bounds θ∗ ≤ θ ≤ K0 independent of K. Choosing K > K0,
we eventually obtain the assertion.

To do so, we first choose in (3.3.1) ϕ = −(θ∗− θ)+, where z+ denotes the positive part
of an element z ∈ R. We obtain

1

2

d

dt

∫
Ω

|(θ∗ − θ)+|2 dx+

∫
Ω

|∇(θ∗ − θ)+|2 dx ≤ 0 ,

hence θ(x, t) ≥ θ∗ a. e.

The upper bound is obtained by Moser iterations as in [32]. Set f(x, t) = r(θ(x, t), c(x, t))
and θK = min{θ,K}. Estimates (3.3.4)–(3.3.3), Sobolev embeddings, and interpola-
tions in Lebesgue spaces yield f ∈ L2(0, T ;L6(Ω)) ∩ L∞(0, T ;L2(Ω)) ⊂ Lq(QT ) for
q = 10/3.

The function θ is a solution of the equation∫
Ω

(θt ϕ+∇θ · ∇ϕ− f(x, t)ϕ) dx+

∫
∂Ω

h(x, θK , θΓ(x, t))ϕ dS = 0 (3.3.5)

for every ϕ ∈ V . We may choose in particular ϕ = pθp−1
K for p > 1, with the intention

to let p tend to∞. In the remaining part of this section, we denote by C any constant
independent of K and p. Setting vKp = θ

p/2
K , we obtain from (3.3.5) after integration

with respect to t that

|vKp(t)|22 +

∫ t

0

|∇vKp(τ)|22 dτ + ap

∫ t

0

∫
∂Ω

|vKp(x, τ)|2 dS dτ (3.3.6)

≤ Cp + Cp

(∫ t

0

∫
Ω

|f | |vKp|2/p
′
dx dτ +

∫ t

0

∫
∂Ω

|vKp(x, τ)|2/p′ dS dτ

)
,

where prime denotes here and in the sequel the conjugate exponent. Using Hölder’s
inequality, we eliminate the boundary integrals and obtain

|vKp(t)|22 +

∫ t

0

|∇vKp(τ)|22 dτ ≤ Cp + Cp

∫ t

0

∫
Ω

|f | |vKp|2/p
′
(x, τ) dx dτ (3.3.7)

≤ Cp + Cp‖f‖q‖vKp‖2/p′

2q′ ,
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where we use for simplicity the notation

‖v‖r =

(∫ T

0

∫
Ω

|v(x, t)|r dx dt

)1/r

for v ∈ Lr(Ω× (0, T )) and r ≥ 1. Set q0 = (N/2)+1. Then q0 < q and we define % > 0
by the formula q′0 = (1 + %)q′. From the Gagliardo-Nirenberg inequality we obtain the
estimate

‖vKp‖2
2q′0
≤ C

(
sup
t∈(0,T )

|vKp(t)|22 +

∫ T

0

|∇vKp(τ)|22 dτ

)
,

hence, by virtue of (3.3.7) and Young’s inequality, we obtain

‖vKp‖2
2q′0
≤ Cp max

{
1, Cp, ‖vKp‖2

2q′

}
, (3.3.8)

that is,
‖θK‖pq′0 ≤ (Cp)1/p max {C, ‖θK‖pq′} , (3.3.9)

with a constant C independent of K and p. We now set pj = (1 + %)j, zj = ‖θK‖pjq′0 ,
and yj = max{C, zj} for j = 0, 1, 2, . . . . Then (3.3.9) has the form

yj ≤ (Cpj)
1/pj yj−1 for j ∈ N . (3.3.10)

This can be rewritten as

log yj ≤ C (1 + %)−j(1 + j) + log yj−1 for j ∈ N , (3.3.11)

hence the sequence yj is bounded by a constant C independent of K. Consequently,
there exists K0 such that

‖θK‖p ≤ K0 (3.3.12)

independently of p and K, which is the desired estimate that enables us to complete
the proof of Theorem 3.2.3. �

3.4 Proof of regularity

We give here a straightforward proof of Theorem 3.2.4, which will follow from a regu-
larity result for linear heat equation with nonlinear boundary condition. We consider∫

Ω

(vt ϕ+ A(x)∇v · ∇ϕ+B(x, t) · ∇ϕ− f(x, t)ϕ) dx+

∫
∂Ω

h(x, v, vΓ(x, t))ϕ dS = 0

(3.4.1)
for every test function ϕ ∈ W 1,2(Ω), with initial condition v(x, 0) = v0(x), where
A = (Aij)

N
i,j=1 : Ω → RN×N

sym is a symmetric matrix function such that there exists
κ > 0 with the property

∀ξ ∈ RN : A(x)ξ · ξ ≥ κ |ξ|2 a. e. , (3.4.2)
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and f : QT → R, B : QT → RN , h : ∂Ω×R2 → R, and vΓ : ∂Ω× (0, T )→ R are given
functions.

The reasons for introducing the functions A(x) and B(x, t), which do not appear in
(3.2.1), are purely technical. They arise as a result of deformations of the domain and
partition of unity.

Consider a set Ω ⊂ RN of the form

Ω = {(x′, xN) ∈ RN−1 × R : xN > g(x′)} , (3.4.3)

with a given function g. and assume that there exists a ball Ωk0 centered at 0 of radius
k0 > 0 such that

B(x, ·) = f(x, ·) = h(x, ·, ·) = 0 for x ∈ Ω \ Ωk0 . (3.4.4)

The regularity results read as follows.

Theorem 3.4.1. Let Ω be as in (3.4.3), and let g ∈ W 2,∞(RN−1). We make the
following assumptions:

– h is a globally Lipschitz-continuous function in all variables; furthermore, with
v, vΓ ∈ R fixed, the functions h(·, v, vΓ), ∂`h(·, v, vΓ) belong to L2(∂Ω) for all
` = 1, . . . , N − 1;

– A ∈ W 1,∞(Ω; RN×N
sym ), B ∈ L2(0, T ;W 1,2(Ω; RN)), Bt ∈ L2(QT ; RN);

– v0 ∈ W 1,2(Ω), f ∈ L2(QT ), vΓ ∈ L2(0, T ;W 1,2(∂Ω)), (vΓ)t ∈ L2(0, T ;L2(∂Ω)).

Let v ∈ L2(0, T ;V ) such that vt ∈ L2(0, T ;V ′) be a solution to (3.4.1). Then v has the
regularity vt ∈ L2(QT ), v ∈ L2(0, T ;W 2,2(Ω)), and ∇v ∈ L∞(0, T ;L2(Ω)).

Theorem 3.4.2. Let Ω be as in (3.4.3), and let g ∈ W 3,∞(RN−1). We make the
following assumptions:

– h is of class W 2,∞ with respect to all variables; furthermore, with v, vΓ ∈ R
fixed, the functions h(·, v, vΓ), ∂`h(·, v, vΓ), ∂`∂mh(·, v, vΓ) belong to L2(∂Ω) for
all `,m = 1, . . . , N − 1;

– A ∈ W 2,∞(Ω; RN×N
sym ), B ∈ L2(0, T ;W 2,2(Ω; RN)), Bt ∈ L2(QT ; RN);

– v0 ∈ W 2,2(Ω), f ∈ L2(0, T ;W 1,2(Ω)), vΓ ∈ L2(0, T ;W 2,2(∂Ω)),
(vΓ)t ∈ L2(0, T ;W 1,2(∂Ω)).

Let v ∈ L2(0, T ;V ) such that vt ∈ L2(0, T ;V ′) be a solution to (3.4.1). If N ≤ 3, then
v has the regularity vt ∈ L2(QT ), v ∈ L2(0, T ;W 2,2(Ω)), and ∇v ∈ L2(0, T ;C(Ω̄)).

We do not know of any reference for Theorem 3.4.2. Although the boundary nonlin-
earity is quite weak, it cannot be easily removed, because the trace of vt would come
into play, for which no estimate is available. Therefore we propose a proof rather tech-
nical but with elementary tools, based on the method from [39] designed originally for
elliptic equations with linear boundary conditions.
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We first consider the case where Ω is a half-space of the form

Ω = RN
+ := {(y′, yN) : y′ ∈ RN−1, yN > 0} . (3.4.5)

For a general function w ∈ W 1,2(RN
+ ), we have the identity

w2(y′, yN)− w2(y′, 0) = 2

∫ yN

0

w(y′, z) ∂Nw(y′, z) dz ,

hence, for every M > 0, integrating w.r.t. yN , we have by Fubini Theorem that

w2(y′, 0) ≤ 1

M

∫ M

0

w2(y′, yN) dyN + 2

∫ M

0

|w(y′, z)| |∂Nw(y′, z)| dz .

Letting M tend to ∞, we obtain the trace interpolation formula

|w(·, 0)|2L2(RN−1) ≤ 2|w|2 |∂Nw|2 , (3.4.6)

or, as a consequence,

∀ε > 0 ∃Cε > 0 ∀w ∈ W 1,2(RN
+ ) : |w(·, 0)|2L2(RN−1) ≤ Cε |w|22 + ε |∇w|22 . (3.4.7)

For domains of the form (3.4.3) with a Lipschitz-continuous function g, this inequality
reads after substitution in the integrals as

∀ε > 0 ∃Cε > 0 ∀w ∈ W 1,2(Ω) :

∫
∂Ω

|w(x)|2 dS ≤ Cε |w|22 + ε |∇w|22 . (3.4.8)

By a partition of unity argument, we obtain (3.4.8) for every Lipschitz-continuous
domain Ω, see also [39].

In the context of (3.4.5), we rewrite Eq. (3.4.1) as∫
RN+

(vt ϕ+ (A∇v +B) · ∇ϕ− f ϕ) dy +

∫
RN−1

h(y′, v(y′, 0, t), vΓ(y′, t))ϕ(y′, 0) dy′ = 0.

(3.4.9)
We will also deal with the regularized problem∫

RN+
(vt ϕ+ (A∇v +B) · ∇ϕ− f ϕ) dy (3.4.10)

+

∫
RN−1

(δ∇y′v(y′, 0, t) · ∇y′ϕ(y′, 0) + h(y′, v(y′, 0, t), vΓ(y′, t))ϕ(y′, 0)) dy′ = 0

with some δ ≥ 0, where ∇y′ denotes the partial gradient ∇y′v = (∂1v, . . . , ∂N−1v),
which has to be satisfied in the case δ > 0 for every test function ϕ(y′, yN) from the
space

W = {ϕ ∈ W 1,2(RN
+ ) : ϕ(·, 0) ∈ W 1,2(RN−1)} .

Our goal is to derive bounds for its solution independent of δ, which then imply the
corresponding estimates for the solution of (3.4.9).
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Lemma 3.4.3. Let v0 ∈ W 1,2(RN
+ ), f ∈ L2(RN

+ × (0, T )), A ∈ W 1,∞(RN
+ ; RN×N

sym ),
B ∈ L2(0, T ;W 1,2(RN

+ ; RN)), and vΓ ∈ L2(0, T ;W 1,2(RN−1)) be given. Let there exist
a function h1 ∈ L2(RN−1)∩L∞(RN−1) such that h together with all its first derivatives
is bounded above by h1. Then there exists a constant C1 > 0 independent of δ ≥ 0
such that the solution v to (3.4.10) satisfies for all t ∈ [0, T ] the estimate

|∂`v(t)|22 +

∫ T

0

|∇∂`v(t)|22 dt+ δ

∫ T

0

∫
RN−1

|∂`∂mv(y′, 0, t)|2 dy′ dt ≤ C1 (3.4.11)

for all `,m = 1, . . . , N − 1.

Proof. A solution v ∈ L2(0, T ;W ) such that vt ∈ L2(0, T ;W ′) to (3.4.10) can be
constructed e. g. as follows. For k > k0 (cf. (3.4.4)), we denote by RN

k the intersection
of RN

+ with the ball Ωk, and by Γ0
k,Γ

1
k the flat and the curved part of the boundary of

RN
k , respectively. Instead of (3.4.10), we consider the problem∫

RNk
(vt ϕ+ (A∇v +B) · ∇ϕ− f ϕ) dy (3.4.12)

+

∫
Γ0
k

(δ∇y′v(y′, 0, t) · ∇y′ϕ(y′, 0) + h(y′, v(y′, 0, t), vΓ(y′, t))ϕ(y′, 0)) dy′ = 0 ,

with zero Dirichlet boundary condition on Γ̄1
k. We define the spaces

Wk = {ϕ ∈ W 1,2(RN
k ) : ϕ(·, 0) ∈ W 1,2(Γ0

k), ϕ = 0on Γ̄1
k}

Using Faedo-Galerkin approximations, the compactness lemma in [35, Section 1.5], and
the compact embedding of Wk in the space Hk = {ϕ ∈ L2(RN

k ) : ϕ(·, 0) ∈ L2(Γ0
k)},

we prove the existence of a solution vk to (3.4.12), which we extend by 0 to RN
+ . The

solution is unique and satisfies the bound

|vk(T )|22 +

∫ T

0

|∇vk(t)|22 dt+ δ

∫ T

0

∫
RN−1

|∇y′vk(y′, 0, t)|2 dy′ dt ≤ C0 (3.4.13)

by virtue of (3.4.7), (3.4.4), and Gronwall lemma, with a constant C0 independent of δ
and k. This, and the fact that the nonlinear term has compact support independent of
k, enable us to pass to the limit as k →∞ and find a solution v to (3.4.10) satisfying
the estimate (3.4.13).

To obtain higher order estimates, we denote by e` for ` = 1, . . . , N the `-th unit
coordinate vector, and by D`

s for s 6= 0 the linear mapping

D`
s(v)(y, t) =

1

s
(v(y + se`, t)− v(y, t)).

Let ϕ ∈ W be given. In (3.4.10), we choose consecutively test functions ϕ̃(y) = ϕ(y)
and ϕ̃(y) = ϕ(y−se`) for some ` = 1, . . . , N −1, and subtract the two identities. This
yields, after a suitable substitution, that∫

RN+

(
D`
svt ϕ+

(
A(y + se`)∇(D`

sv) + (D`
sA)∇v +D`

sB
)
· ∇ϕ+ f(y, t)D`

−sϕ
)
dy(3.4.14)

+

∫
RN−1

(
δ∇y′D`

sv(y′, 0, t) · ∇y′ϕ(y′, 0) +D`
s

(
h(y′, v(y′, 0, t), vΓ(y′, t))

)
ϕ(y′, 0)

)
dy′ .
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For ϕ(y) = D`
sv(y, t), we have in particular the estimate

1

2

d

dt

∣∣D`
sv(t)

∣∣2
2

+ κ
∣∣∇(D`

sv(t))
∣∣2
2

+ δ

∫
RN−1

|∇y′D`
sv(y′, 0, t)|2 dy′ (3.4.15)

≤ |∇A|∞ |∇v(t)|2
∣∣∇(D`

sv(t))
∣∣
2

+ (|f(t)|2 + |∇B(t)|2)
∣∣∇(D`

sv(t))
∣∣
2

+

∫
RN−1

h1(y′)(1 + |D`
svΓ(y′, t)|+ |D`

sv(y′, 0, t)|) |D`
sv(y′, 0, t)| dy′ .

We can pass to the limit as s → 0 and obtain from (3.4.13), (3.4.7), and Gronwall
lemma the bound

|∂`v(t)|22 +

∫ T

0

|∇∂`v(t)|22 dt+ δ

∫ T

0

∫
RN−1

|∇y′∂`v(y′, 0, t)|2 dy′ dt (3.4.16)

≤ C
(

1 + C0 + |∇v0|22 + |∇A|2∞ +

∫ T

0

(
|f(t)|22 + |∇B(t)|22

)
dt+

∫ T

0

|∇y′vΓ(t)|22,RN−1dt
)

with a constant C independent of δ, which we wanted to prove. �

Lemma 3.4.4. Under the hypotheses of Lemma 3.4.3, assume in addition that (vΓ)t ∈
L2(RN−1 × (0, T )) and Bt ∈ L2(RN

+ × (0, T ); RN). Then there exists a constant C2

independent of δ ≥ 0 such that the solution v to (3.4.10) satisfies for every t ∈ [0, T ]
the estimate

δ

∫
RN−1

|∇y′v(y′, 0, t)|2 dy′+ |∇v(t)|22 +

∫ T

0

(
|v(t)|2W 2,2(RN+ ) + |vt(t)|22

)
dt ≤ C2. (3.4.17)

Proof. We discretize Eq. (3.4.10) in time, test by the time increment of v, and let the
time step tend to 0. In the limit we obtain the identity∫

RN+

(
|vt|2 − f vt −Bt · ∇v

)
dy +

d

dt

∫
RN+

(
1

2
A(y)∇v +B

)
· ∇v dy (3.4.18)

+
d

dt

∫
RN−1

(
δ

2
|∇y′v|2 + ĥ(y′, v, vΓ)

)
dy′ =

∫
RN−1

∂vΓ
ĥ(y′, v, vΓ) (vΓ)t dy′ ,

where
ĥ(y′, v, vΓ) =

∫ v

0

h(y′, u, vΓ) du .

We have
ĥ(y′, v, vΓ) ≤ h1

2
v2 + |v| (h1|vΓ|+ |h(y′, 0, 0)|)

and
|∂vΓ

ĥ(y′, v, vΓ)| ≤ h1|v| .
This yields the estimate

δ

∫
RN−1

|∇y′v(y′, 0, t)|2 dy′ +

∫ t

0

|vt(τ)|22 dτ + |∇v(t)|22 (3.4.19)

≤ C
(

1 + |∇v0|22 +

∫ t

0

|f(τ)|22dτ +

∫
RN−1

|vΓ(y′, t)|2dy′

+

∫ t

0

∫
RN−1

|(vΓ)t(y
′, t)|2dy′ dτ

)
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with a constant C independent of δ and t as a consequence of (3.4.7) and Gronwall
lemma. By Lemma 3.4.3, we have ∇∂`v ∈ L2(RN

+ × (0, T )) for all ` = 1, . . . , N −
1. To finish the proof, we now choose in Eq. (3.4.10) any test function ϕ = ϕ0 ∈
L2(0, T ;W 1,2(RN

+ )) with a compact support in RN
+ . We integrate by parts in all terms

except for ANN∂Nv ∂Nϕ, and obtain an identity of the form∫ T

0

∫
RN+
ANN(y)∂Nv(y, t) ∂Nϕ0(y, t) dy dt =

∫ T

0

∫
RN+

Ψ(y, t)ϕ0(y, t) dy dt (3.4.20)

with a function Ψ ∈ L2(RN
+×(0, T )). Hence, ∂N(ANN(y)∂Nv(y, t)) belongs to L2(RN

+×
(0, T )). By (3.4.2), we have ANN(y) ≥ κ, and since ANN ∈ W 1,∞(RN

+ ), we obtain the
L2-bound for ∂2

Nv, and the proof of Lemma 3.4.4 is complete. �

Lemmas 3.4.3 and 3.4.4 enable us to rewrite Eq. (3.4.10) in strong form

vt − div (A(y)∇v +B(y, t))− f(y, t) = 0 a. e. in RN
+ × (0, T ) , (3.4.21)

N∑
j=1

ANj∂jv +BN − δ∆y′v + h(y′, v, vΓ(y′, t)) = 0 a. e. in RN−1 × (0, T ) ,(3.4.22)

where ∆y′ is the Laplacian with respect to y′.

Lemma 3.4.5. Let N ≤ 3 and δ > 0. Under the hypotheses of Lemma 3.4.4, assume
in addition that v0 ∈ W 2,2(RN

+ ), f ∈ L2(0, T ;W 1,2(RN
+ )), A ∈ W 2,∞(RN

+ ; RN×N
sym ), B ∈

L2(0, T ;W 2,2(RN
+ ; RN)), vΓ ∈ L2(0, T ;W 2,2(RN−1)), (vΓ)t ∈ L2(0, T ;W 1,2(RN−1)),

and that there exists a function h2 ∈ L2(RN−1) ∩ L∞(RN−1) such that h together
with all its first and second derivatives is bounded above by h2. Then there exists a
constant C3 > 0 independent of δ such that the solution v to (3.4.10) satisfies for all
t ∈ [0, T ] the estimate

|∂m∂`v(t)|22+

∫ T

0

|∇∂m∂`v(t)|22 dt+δ

∫ T

0

∫
RN−1

|∂`∂m∂kv(y′, 0, t)|2 dy′ dt ≤ C3 (3.4.23)

for all `,m, k = 1, . . . , N − 1.

Proof. Passing to the limit in (3.4.14) as s→ 0, we obtain∫
RN+

(
∂`vt ϕ+ (A∇∂`v + (∂`A)∇v + ∂`B) · ∇ϕ− ∂`f(y, t)ϕ

)
dy (3.4.24)

+

∫
RN−1

(δ∇y′∂`v · ∇y′ϕ+ ∂`(h(y′, v(y′, 0, t), vΓ(y′, t)))ϕ(y′, 0) dy′ = 0 .

We proceed as in (3.4.14), applying to (3.4.24) the operator Dm
s with m ∈ {1, . . . , N−

1}, and set ϕ(y) = Dm
s ∂`v(y, t), with the intention to proceed as in the proof of

Lemma 3.4.3. Here, the situation is more delicate because the second derivatives of
the nonlinear term h(y′, v, vΓ) will be involved. We obtain the inequality

1

2

d

dt
|Dm

s ∂`v(t)|22 + κ |∇(Dm
s ∂`v(t))|22 + δ

∫
RN−1

|∇y′Dm
s ∂`v(y′, 0, t)|2 dy′ (3.4.25)

≤ γ(t) + C

∫
RN−1

(|∂`v||∂mv|+ |∂`∂mv|)|∂`∂mv|(y′, 0, t) dy′ ,
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where γ ∈ L1(0, T ) includes all terms that have already been estimated above, and C
is a constant independent of t and δ. The right hand side of (3.4.25) is in L1(0, T ) by
virtue of Lemmas 3.4.3 and 3.4.4 and of the interpolation inequality

|ψ|L4(RN−1) ≤ C(|ψ|L2(RN−1) + |ψ|1/2
L2(RN−1)

|∇y′ψ|1/2L2(RN−1)
) (3.4.26)

for every ψ ∈ W 1,2(RN−1). Indeed, the bound still depends on δ, and this dependence
has to be removed. Passing to the limit in (3.4.25) as s → 0 and using (3.4.26), we
obtain

1

2

d

dt
|∂m∂`v(t)|22 + κ |∇∂m∂`v(t)|22 + δ

∫
RN−1

|∇y′∂m∂`v(y′, 0, t)|2 dy′ (3.4.27)

≤ γ(t) + C

∫
RN−1

(|∇y′v|4 + |∂`∂mv|2)(y′, 0, t) dy′

≤ γ(t) + C

∫
RN−1

|∂`∂mv|2(y′, 0, t) dy′

+C
(
|∇y′v(·, 0, t)|4L2(RN−1) + |∇y′v(·, 0, t)|2L2(RN−1) |∆y′v(·, 0, t)|2L2(RN−1)

)
,

with a possibly different function γ ∈ L1(0, T ) and different constants C independent
of t and δ. Formula (3.4.6) enables us to estimate the right hand side of (3.4.27) from
above by

γ(t) + C
(
|∂`∂mv|2|∂N∂`∂mv|2 + |∇y′v|22|∂N∇y′v|22 + |∇y′v|2|∂N∇y′v|2|∆y′v|2|∂N∆y′v|2

)
.

By Lemma 3.4.3, we have |∇y′v|2 ≤ C1, and β(t) := |∂N∇y′v(t)|2 belongs to L2(0, T ).
Hence, by Young’s inequality, we obtain from (3.4.27) the estimate

d

dt

2∑
`,m=1

|∂m∂`v(t)|22 +
2∑

`,m=1

|∇∂m∂`v(t)|22 ≤ γ(t) + C
2∑

`,m=1

(
|∂`∂mv|22 + β2(t)|∆y′v|22

)
,

(3.4.28)
and from Gronwall’s argument we obtain (3.4.5). �

We now let δ tend to 0 and prove the following step.

Lemma 3.4.6. Under the hypotheses of Lemma 3.4.5, there exists a constant C4 > 0
such that the solution v to (3.4.9) satisfies for all t ∈ [0, T ] the estimate

|∂N∂`v(t)|22 +

∫ T

0

|∇∂N∂`v(t)|22 dt ≤ C4. (3.4.29)

for all ` = 1, . . . , N − 1.

Proof. From Lemma 3.4.5 it follows that the solution v to (3.4.9) satisfies (3.4.21)–
(3.4.23) with δ = 0. Let us consider now test functions ϕ with compact support in
RN

+ , and apply the operator DN
s to Eq. (3.4.9). As a counterpart of (3.4.14), we obtain∫

RN+

(
DN
s vt ϕ+ (A(y+ seN)∇(DN

s v) + (DN
s A)∇v+DN

s B) ·∇ϕ−DN
s f(y, t)ϕ

)
dy = 0 .

(3.4.30)
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Passing to the limit as s→ 0 yields∫
RN+

(
∂Nvt ϕ+ (A(y)∇∂Nv + (∂NA(y))∇v + ∂NB(y, t)) · ∇ϕ− ∂Nf(y, t)ϕ

)
dy = 0 .

(3.4.31)
Let V0 denote the spaceW 1,2

0 (RN
+ ). We choose any ϕ0 ∈ V0, set ϕ = AN` ϕ0 in (3.4.24),

ϕ = ANN ϕ0 in (3.4.31), and obtain, using the formula

A∇∂`v · ∇(AN` ϕ0) = A∇(AN` ∂`v) · ∇ϕ0 + (A∇∂`v · ∇AN`)ϕ0 − ∂`v(A∇AN` · ∇ϕ0) ,

that∫
RN+

(
AN` ∂`vt ϕ0 + A∇(AN` ∂`v) · ∇ϕ0 + (A∇∂`v · ∇AN`)ϕ0︸ ︷︷ ︸

I

− ∂`v(A∇AN` · ∇ϕ0)︸ ︷︷ ︸
II

(3.4.32)

+ (∂`A∇v + ∂`B) · ∇(AN` ϕ0)︸ ︷︷ ︸
III

−AN` ∂`f(y, t)ϕ0

)
dy = 0

for all ` = 1, . . . , N . Consider now the function w =
∑N

`=1 AN`∂`v. Summing up
the above identities over ` and using (3.4.22), we see that w is a solution of the
nonhomogeneous Dirichlet problem∫

RN+

(
wt ϕ0 + A(y)∇w · ∇ϕ0 − f1(y, t)ϕ0

)
dy = 0 ∀ϕ0 ∈ V0 , (3.4.33)

with boundary condition

w(y′, 0, t) +BN(y′, 0, t) + h(y′, v(y′, 0, t), vΓ(y′, t)) = 0 (3.4.34)

on RN−1 × (0, T ) as a consequence of (3.4.22) with δ = 0. The function f1 in (3.4.33)
has the form

f1 =
N∑
`=1

(
AN`∂`f − A∇∂`v · ∇AN`︸ ︷︷ ︸

I

− div ((∂`v)A∇AN`)︸ ︷︷ ︸
II

+AN`div ((∂`A)∇v + ∂`B)︸ ︷︷ ︸
III

)
,

(3.4.35)
hence it belongs to L2(RN

+ × (0, T )). The symbols I, II, III denote corresponding
terms in (3.4.32) and (3.4.35). We now fix a smooth function % with compact support
in R+ and such that %(0) = 1, and set

w1(y, t) = BN(y, t) + %(yN)h(y′, v(y, t), vΓ(y′, t)) . (3.4.36)

The function w0 := w−w1 is a solution to the homogeneous Dirichlet problem for the
following counterpart of (3.4.33)∫

RN+

(
(w0)t ϕ0 + A(y)∇w0 · ∇ϕ0 − f2(y, t)ϕ0

)
dy = 0 ∀ϕ0 ∈ V0 , (3.4.37)

where
f2 = f1 − (w1)t + divA(y)∇w1 . (3.4.38)
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Let us check that f2 ∈ L2(RN
+ × (0, T )). By virtue of Lemmas 3.4.4–3.4.5, this will be

the case provided we prove that

∇v ∈ L4(RN
+ × (0, T )) . (3.4.39)

To this end, we refer to [6, Vol I, Theorem 10.2], see also Remark 3, which states that
there exists a constant C > 0 such that for every function ξ ∈ L2(RN

+×(0, T )) with the
regularity ∂2

` ξ, ∂Nξ ∈ L2(RN
+ × (0, T )) for all ` = 1, . . . , N − 1, and for every σ ∈ (0, 1]

we have the inequality (note that N ≤ 3!)

|ξ|4 ≤ C

(
σ−1/2|ξ|2 + σ1/2

(
|∂Nξ|2 +

N−1∑
`=1

|∂2
` ξ|2

))
. (3.4.40)

This can be equivalently written as

|ξ|4 ≤ C

|ξ|2 + |ξ|1/22

(
|∂Nξ|2 +

N−1∑
`=1

|∂2
` ξ|2

)1/2
 . (3.4.41)

In (3.4.41), we choose ξ = ∂kv(t) for k = 1, . . . , N and a. e. t. From Lemmas 3.4.4–
3.4.5 we obtain (3.4.39), hence f2 ∈ L2(RN

+ × (0, T )).

Following the same idea as in the proof of Lemma 3.4.3, we now apply the operator
D`
s to Eq. (3.4.37) for ` = 1, . . . , N − 1 and test by ϕ0 = D`

sw0. Using the identity∫
(D`

sw1)tD
`
sw0 dy =

∫
(w1)tD

`
−sD

`
sw0 dy, we may let s tend to 0 and conclude that

∂`∇w0 belongs to L2(RN
+ × (0, T )) for all ` = 1, . . . , N −1. By Lemma 3.4.5, and since

ANN ≥ κ, we obtain that ∂`∂2
Nv ∈ L2(RN

+ × (0, T )) for all ` = 1, . . . , N − 1, and the
proof is complete. �

3.5 An anisotropic embedding theorem

We prove here an embedding theorem for anisotropic Sobolev spaces that is needed
for the proof of Theorem 3.4.1. For a vector p = (p1, . . . , pN) , 1 ≤ pi <∞, we define
the space Lp(RN) as the subspace of L1(RN) of functions u such that the norm

‖u‖p =

∫
R

(
. . .

∫
R

(∫
R
|u(x)|p1 dx1

)p2/p1

dx2 . . .

)pN/pN−1

dxN

1/pN

(3.5.1)

is finite. For a matrix P = (Pij)
N
i,j=1, Pij = 1/pij, 1 ≤ pij < ∞, we define the

anisotropic Sobolev space

W 1,P(RN) =

{
u ∈ L1(RN) :

∂u

∂xi
∈ Lpi(RN) , i = 1, . . . , N

}
, (3.5.2)

where pi = (pi1, . . . , piN).
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We denote by I the identity N ×N matrix, and by 1 the vector 1 = (1, 1, . . . , 1). The
spectral radius %(P) of P is defined as

%(P) = max{|λ| : λ ∈ C, det(P− λI) = 0} = lim sup
n→∞

|Pn|1/n . (3.5.3)

Theorem 3.5.1. Let %(P) < 1, and let

(I−P)−11 = b = (b1, . . . , bN) . (3.5.4)

Then W 1,P(RN) is embedded in L∞(RN), and there exists a constant C > 0 such that
each u ∈ W 1,P(RN) has for all x, z ∈ RN the Hölder property

|u(z)− u(x)| ≤ C ‖u‖W 1,P(RN )

N∑
i=1

|zi − xi|1/bi . (3.5.5)

The identity (3.5.4) can be written as

b = (I + P + P2 + . . . ) 1 .

Since all entries of P are positive, we obtain bi > 1 for all i, so that the right hand side of
(3.5.5) is meaningful. Note also that in the isotropic case pij = p, Theorem 3.5.1 gives
the well-known embedding condition p > N with Hölder exponent 1/b = 1− (N/p).

Proof. Following [6], we fix a smooth function Φ with compact support in RN such
that

∫
RN Φ(x) dx = 1, and for σ > 0 and u ∈ W 1,P(RN) set

uσ(x) = σ−|b|
∫

RN
Φ
(x− y

σb

)
u(y) dy , (3.5.6)

where |b| =
∑N

i=1 bi and

x− y
σb

=

(
x1 − y1

σb1
, . . . ,

xN − yN
σbN

)
.

By substitution, we have the identity

uσ(x) =

∫
RN

Φ(z)u(x− σbz) dz , (3.5.7)

which implies that
lim
σ→0
|uσ − u|1 = 0 . (3.5.8)

We differentiate uσ with respect to σ, integrate by parts with respect to y, and obtain

∂uσ(x)

∂σ
= −

N∑
i=1

σ−|b|−1+bi

∫
RN

Ψi

(x− y
σb

)∂u(y)

∂yi
dy , (3.5.9)

where
Ψi(z) = bizi Φ(z) for z ∈ RN .
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By the anisotropic Hölder inequality we have∣∣∣∣∂uσ(x)

∂σ

∣∣∣∣ ≤ N∑
i=1

σ−|b|−1+bi

∥∥∥Ψi

( ·
σb

)∥∥∥
p′i

∥∥∥∥ ∂u∂yi
∥∥∥∥

pi

, (3.5.10)

where p′i is the componentwise conjugate of pi. By substitution, we have∥∥∥Ψi

( ·
σb

)∥∥∥
p′i

= σ
PN
j=1 bj/p

′
ij‖Ψi‖p′i = σ|b|−(Pb)i‖Ψi‖p′i . (3.5.11)

This and (3.5.4) yield the following estimate independent of σ and x:∣∣∣∣∂uσ(x)

∂σ

∣∣∣∣ ≤ N∑
i=1

σbi−(Pb)i−1‖Ψi‖p′i

∥∥∥∥ ∂u∂yi
∥∥∥∥

pi

=
N∑
i=1

‖Ψi‖p′i

∥∥∥∥ ∂u∂yi
∥∥∥∥

pi

=: U . (3.5.12)

For σ > σ̃ > 0 we have
|uσ(x)− uσ̃(x)| ≤ (σ − σ̃)U ,

hence uσ converges uniformly in L∞(RN) as σ → 0. In view of (3.5.8), its limit is u,
which thus belongs to L∞(RN) ∩ C(RN), and we have for all σ > 0 the embedding
inequality

|u(x)| ≤ |uσ(x)|+ σU ≤ |Φ|∞σ−|b||u|1 + σU . (3.5.13)

To prove the Hölder estimate, we replace u(x) in (3.5.13) by u(x+ hei)− u(x), where
ei is the i-th unit coordinate vector and h > 0 is arbitrary. We obtain

|u(x+ hei)− u(x)| ≤ |uσ(x+ hei)− uσ(x)|+ 2σU , (3.5.14)

where

uσ(x+ hei)− uσ(x) = σ−|b|
∫

RN
Φ
(x− y

σb

)
(u(y + hei)− u(y)) dy (3.5.15)

= −σ−|b|
∫ h

0

∫
RN

Φ
(x− y

σb

) ∂u
∂yi

(y + sej) dy ds .

This and (3.5.11) entail

|uσ(x+ hei)− uσ(x)| ≤ hσ−|b|
∥∥∥Ψi

( ·
σb

)∥∥∥
p′i

∥∥∥∥ ∂u∂yi
∥∥∥∥

pi

≤ hσ−(Pb)i‖Ψi‖p′i

∥∥∥∥ ∂u∂yi
∥∥∥∥

pi

.

(3.5.16)
We thus conclude from (3.5.14) that there exists a constant C > 0 such that for all
u ∈ W 1,P(RN), x ∈ RN , σ > 0, and h > 0 we have

|u(x+ hei)− u(x)| ≤ C
(
hσ−(Pb)i + σ

) N∑
j=1

∥∥∥∥ ∂u∂yj
∥∥∥∥

pj

. (3.5.17)

In particular, for σ = h1/bi we obtain, by virtue of (3.5.4), the formula

|u(x+ hei)− u(x)| ≤ C h1/bi ‖u‖W 1,P(RN ) , (3.5.18)

and (3.5.5) follows from the triangle inequality. �
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Corollary 3.5.2. The space Y defined in (3.5.23) satisfies the condition in Theorem
3.5.1 if and only if

p′0
p1q0

+
1

q1

<
1

N − 1
. (3.5.19)

Proof. The matrix P− λI has the form

P− λI =


1/q1 − λ 1/q1 . . . 1/q1 1/p1

1/q1 1/q1 − λ . . . 1/q1 1/p1

. . .
1/q1 1/q1 . . . 1/q1 − λ 1/p1

1/q0 1/q0 . . . 1/q0 1/p0 − λ

 ,

and its determinant is

det(P− λI) = (−λ)N−2

((
N − 1

q1

− λ
)(

1

p0

− λ
)
− N − 1

q0p1

)
.

We easily check that all roots of the equation det(P − λI) = 0 are in absolute value
smaller that 1 if and only if condition (3.5.19) holds. �

Remark 3. The embedding formula (3.4.40) in R3 can be derived in a straightforward
way from (3.5.6), where we set b1 = b2 = 1

2
, b3 = 1. Put u(y′, yN) = ξ(y′, yN) for

yN > 0, u(y′, yN) = ξ(y′,−yN) for yN < 0. Assuming that Φ(z) = Φ(−z), we may set
Ψ̂1(z) =

∫ z1
−∞Ψ1(s, z2, z3)ds, Ψ̂2(z) =

∫ z2
−∞Ψ2(z1, s, z3)ds. Then Ψ̂1, Ψ̂2 have compact

support and we may integrate by parts in (3.5.9) to obtain

∂uσ

∂σ
(x) = −

2∑
i=1

σ−|b|−1+2bi

∫
R3

Ψ̂i

(x− y
σb

)∂2u(y)

∂y2
i

dy

−σ−|b|−1+b3

∫
R3

Ψ3

(x− y
σb

)∂u(y)

∂y3

dy .

Integrals of the form
∫

R3 Ψ∗

(
x−y
σb

)
u∗(y) dy with u∗ ∈ L2(R3) can be estimated in

L4(R3) using the Young inequality for convolutions as∣∣∣ ∫
R3

Ψ∗

( · − y
σb

)
u∗(y) dy

∣∣∣
4
≤ σ(3/4)|b||Ψ∗|4/3|u∗|2. (3.5.20)

Hence, by virtue of the choice of b, we have∣∣∣∂uσ
∂σ

∣∣∣
4
≤ Cσ−1/2

(∣∣∣∂2u

∂y2
1

∣∣∣
2

+
∣∣∣∂2u

∂y2
2

∣∣∣
2

+
∣∣∣ ∂u
∂y3

∣∣∣
2

)
, |uσ|4 ≤ Cσ−1/2|u|2 , (3.5.21)

and (4.37) follows from the inequality

|u|4 ≤ |uσ|4 +
∣∣∣ ∫ σ

0

∂uσ
′

∂σ′
dσ′
∣∣∣
4
. (3.5.22)
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Now, we can proceed to the conclusion of the proof of Theorem 3.4.1.
We now define the anisotropic spaces

Xp,q =

{
w ∈ L1(RN

+ ) :

∫ ∞
0

(∫
RN−1

|w(y′, yN)|qdy′
)p/q

dyN <∞

}
.

We can extend the functions defined on RN
+ by symmetry to RN , and use Corollary

3.5.2 of the previous section to obtain the embedding

Y :=
{
w ∈ L1(RN

+ ) : ∂Nw ∈ Xp0,q0 , ∇y′w ∈ Xp1,q1
}
⊂ Cα(RN

+ )∩L∞(RN
+ ) (3.5.23)

in the space Cα(RN
+ ) ∩ L∞(RN

+ ) of bounded α-Hölder continuous functions for some
α > 0, provided

p′0
p1q0

+
1

q1

<
1

N − 1
,

where p′0 is the conjugate exponent to p0. As a direct consequence, we have

Lemma 3.5.3. Under the conditions of Lemma 3.4.5, we have ∇v ∈ L2(0, T ;L∞(RN
+ )).

Proof. The functions ∂`v for ` = 1, . . . , N − 1 belong to L2(0, T ;W 2,2(RN
+ )), which is

embedded into L2(0, T ;L∞(RN
+ )) by classical Sobolev embedding theorems, see [6, 8].

For w(y, t) = ∂Nv(y, t) and a. e. t ∈ (0, T ), we have

|∂`w(t)|X6,6 = |∂`w(t)|6 ≤ C (|∂`w(t)|2 + |∇∂`w(t)|2) for ` = 1, . . . , N − 1 ,

|∂Nw(t)|X2,q ≤ C (|∂Nw(t)|2 + |∇y′∂Nw(t)|2)

with a constant C > 0 and for every q ≥ 2. Hence, (3.5.23) is fulfilled with p0 = 2,
q0 = q, p1 = q1 = 6, and it suffices to integrate over t. �

This enables us to prove here Theorems 3.4.1 and 3.4.2.

Proof of Theorems 3.4.1 and 3.4.2. We substitute in (3.4.1) new variables y′ = x′,
yN = xN−g(x′), and obtain for the new unknown function ṽ(y′, yN) = v(y′, yN +g(y′))
the equation∫

RN+

(
ṽt ϕ+ (Ã∇ṽ + B̃) · ∇ϕ− f̃ ϕ

)
dy+

∫
RN−1

h̃(y′, ṽ(y′, 0, t), vΓ(y′, t))ϕ(y′, 0) dy′ = 0

(3.5.24)
for every ϕ ∈ W 1,2(RN

+ ), where

f̃(y′, yN , t) = f(y′, yN + g(y′), t),

ṽΓ(y′, t) = vΓ(y′, g(y′), t) ,

h̃(y′, v, vΓ) = h(y′, g(y′), v, vΓ)
√

1 + |∇y′g(y′)|2 ,

Ã(y′, yN) = LT (y′)A(y′, yN + g(y′))L(y′),

B̃(y′, yN , t) = LT (y′)B(y′, yN + g(y′), t),
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and where the matrix L has the same form as in

L =


1 0 . . . 0 −∂1g
0 1 . . . 0 −∂2g

. . .
0 0 . . . 1 −∂N−1g
0 0 . . . 0 1

 .

Theorem 3.4.1 now follows from Lemma 3.4.4, Theorem 3.4.2 is a consequence of
Lemma 3.5.3. �

We are now ready to prove Theorem 3.2.4.

Proof of Theorem 3.2.4. The nonlinear boundary condition is active only on the subsets
Γj of ∂Ω for j = 1, . . . , n. We choose a covering Ω̄ ⊂

⋃n
j=1 Ωj of Ω with the property

that Γj ⊂ Ωj and Γi ∩ Ω̄j = ∅ for i 6= j. We now find a smooth partition of unity 1 =∑n
j=1 λj(x) on Ω̄ such that suppλj ⊂ Ωj, and set vj = θ λj, f(x, t) = r(θ(x, t), c(x, t)).

After suitable deformations and rotations, we may assume that each set Ωj can be
extended to a domain Ω̃j of the form (3.4.3). To derive the equation for vj, we test
the equation∫

Ω

(θt ϕ+∇θ · ∇ϕ− f(x, t)ϕ) dx+

∫
∂Ω

h(x, θ, θΓ(x, t))ϕ dS = 0 (3.5.25)

by ϕ = λjϕ̃, and obtain∫
Ω̃j

((vj)t ϕ̃+∇vj · ∇ϕ̃+Bj · ∇ϕ̃− fj(x, t) ϕ̃) dx+

∫
∂Ω̃j

h(x, vj, vΓj(x, t)) ϕ̃ dS = 0 ,

(3.5.26)
with Bj = −θ∇λj, fj = fλj −∇θ · ∇λj, vΓj = θΓλj. Here we have used the fact that
λj = 1 on Γj, and that h is linear on ∂Ω̃j \ Γj.

The assumptions of Theorem 3.4.1 are satisfied; hence, each vj has the regularity
(vj)t ∈ L2(Ωj × (0, T )), vj ∈ L2(0, T ;W 2,2(Ωj)). From the formula θ =

∑n
j=1 vj it fol-

lows that θt ∈ L2(Ω× (0, T )), θ ∈ L2(0, T ;W 2,2(Ω)). Consequently, we may use Theo-
rem 3.4.2 and obtain ∇vj ∈ L2(0, T ;L∞(Ωj)) for each j, hence ∇θ ∈ L2(0, T ;L∞(Ω)).

�

3.6 Proof of continuous data dependence

Let the hypotheses of Theorem 3.2.5 hold. In terms of (θi, ui), Eqs. (3.2.1)–(3.2.2)
have the form∫

Ω

((θi)t ϕ+∇θi · ∇ϕ−R(θi, ui)ϕ) dx+

∫
∂Ω

h(x, θi, θΓi(x, t))ϕ dS = 0 (3.6.1)∫
Ω

(G(θi, ui)t ψ +∇ui · ∇ψ −H(θi, ui)∇θi · ∇ψ) dx+

∫
∂Ω

bi(x, t)ψ dS = 0 (3.6.2)
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for every test functions ϕ, ψ ∈ V , where G, H, and R are defined by the identities

F (θ,G(θ, u)) = u , H(θ, u) =
∂F

∂θ
(θ,G(θ, u)) , R(θ, u) = r(θ,G(θ, u)) . (3.6.3)

Hypothesis 3.2.2 implies thatG,H,R are Lipschitz-continuous in both variables, 1/d1 ≤
∂uG ≤ 1/d0.

Set Ui(x, t) =
∫ t

0
ui(x, τ) dτ , u0

i = F (θ0
i , c

0
i ), Ū = U1 − U2. We consider the difference

of the equations (3.6.1) for i = 1 and i = 2, tested by ϕ = θ̄, integrate the difference of
the equations (3.6.2) for i = 1 and i = 2 from 0 to t, and test by ψ = Ūt. We denote
by C any constant independent of the solutions, and by ε a small parameter, which
will be suitably chosen. Since θi and θΓi are uniformly bounded, we may assume that
h is Lipschitz-continuous in θ and θΓ. Hence, using (3.4.8) for an appropriate ε, we
obtain

∫
Ω

(
θ̄t θ̄ + |∇θ̄|2

)
dx ≤

∫
Ω

(R(θ1, u1)−R(θ2, u2))θ̄ dx+ C

∫
∂Ω

(|θ̄Γ|+ |θ̄|)θ̄ dS

≤ C

∫
Ω

(|θ̄|+ |Ūt|)|θ̄| dx+ C

∫
∂Ω

|θ̄Γ|2 dS , (3.6.4)

∫
Ω

(G(θ1, U1t)−G(θ2, U2t)) Ūt(x, t) dx+
1

2

d

dt

∫
Ω

|∇Ū |2(x, t) dx (3.6.5)

=

∫
Ω

(∫ t

0

(
H(θ1, U1t)∇θ1 −H(θ2, U2t)∇θ2

)
(x, τ) dτ

)
· ∇Ūt(x, t) dx

−
∫
∂Ω

(∫ t

0

b̄(x, τ) dτ

)
Ūt(x, t) dS +

∫
Ω

(G(θ0
1, u

0
1)−G(θ0

2, u
0
2)) Ūt(x, t) dx

=
d

dt

∫
Ω

(∫ t

0

(
H(θ1, U1t)∇θ1 −H(θ2, U2t)∇θ2

)
(x, τ) dτ

)
· ∇Ū(x, t) dx

−
∫

Ω

(
H(θ1, U1t)∇θ1 −H(θ2, U2t)∇θ2

)
· ∇Ū(x, t) dx

− d

dt

∫
∂Ω

(∫ t

0

b̄(x, τ) dτ

)
Ū(x, t) dS +

∫
∂Ω

b̄(x, t) Ū(x, t) dS

+

∫
Ω

(c0
1 − c0

2) Ūt(x, t) dx .

Integrating Eq. (3.6.5)–(3.6.4) with respect to t and using the hypotheses on the data,
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we obtain

1

2

∫
Ω

|θ̄|2(x, t) dx+

∫ t

0

∫
Ω

|∇θ̄(x, τ)|2dx dτ (3.6.6)

≤ C

∫ t

0

∫
Ω

(|θ̄|+ |Ūt|)|θ̄|(x, τ) dx dτ + C

∫ t

0

∫
∂Ω

|θ̄Γ|2dS dτ +
1

2

∫
Ω

|θ̄0|2(x) dx ,

1

d1

∫ t

0

∫
Ω

|Ūt(x, τ)|2 dx dτ +
1

2

∫
Ω

|∇Ū |2(x, t) dx (3.6.7)

≤ C

∫
Ω

(∫ t

0

(
(|θ̄|+ |Ūt|)|∇θ1|+ |∇θ̄|

)
(x, τ) dτ

)
|∇Ū(x, t)| dx

+C

∫ t

0

∫
Ω

(
(|θ̄|+ |Ūt|)|∇θ1|+ |∇θ̄|

)
(x, τ) |∇Ū(x, τ)| dx dτ

+

∫
∂Ω

(∫ t

0

|b̄(x, τ)| dτ
)
|Ū(x, t)| dS +

∫ t

0

∫
∂Ω

|b̄(x, τ)| |Ū(x, τ)| dS dτ

+C

∫ t

0

∫
Ω

|θ̄(x, τ)| |Ūt(x, τ)| dx dτ + C

∫
Ω

|c̄0| |Ū(x, t)| dx .

Using Hölder’s and Young’s inequalities, we may rewrite (3.6.6)–(3.6.7) as

|θ̄(t)|22 +

∫ t

0

|∇θ̄(τ)|22 dτ (3.6.8)

≤ C

(
α(t) +

∫ t

0

|θ̄(τ)|22 dτ

)
+ ε

∫ t

0

|Ūt(τ)|22dτ ,∫ t

0

|Ūt(τ)|22 dτ + |∇Ū(t)|22 (3.6.9)

≤ C

∫
Ω

(∫ t

0

(
(|θ̄|+ |Ūt|)|∇θ1|+ |∇θ̄|

)
(x, τ) dτ

)2

dx

+C

∫ t

0

(
(|θ̄|2 + |Ūt|2)|∇θ1|∞ + |∇θ̄|2

)
(τ) |∇Ū(τ)|2 dτ

+C

(
α(t) +

∫ t

0

|θ̄(τ)|22dτ

)
+ ε

(
|Ū(t)|22 +

∫ t

0

∫
∂Ω

|Ū(x, τ)|2 dS dτ +

∫
∂Ω

|Ū(x, t)|2 dS

)
,

with α(t) defined by (3.2.6). The first two integrals on the right hand side of (3.6.9)
will be estimated using Minkowski’s inequality(∫

Ω

(∫ t

0

(
(|θ̄|+ |Ūt|)|∇θ1|+ |∇θ̄|

)
(x, τ) dτ

)2

dx

)1/2

(3.6.10)

≤
∫ t

0

(∫
Ω

(
(|θ̄|+ |Ūt|)|∇θ1|+ |∇θ̄|

)2
(x, τ) dx

)1/2

dτ

≤
∫ t

0

(
(|θ̄|2 + |Ūt|2)|∇θ1|∞ + |∇θ̄|2

)
(τ) dτ ,
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and Hölder’s and Young’s inequalities

C

∫ t

0

(
(|θ̄|2 + |Ūt|2)|∇θ1|∞ + |∇θ̄|2

)
(τ) |∇Ū(τ)|2 dτ (3.6.11)

≤ C

∫ t

0

(
1 + |∇θ1(τ)|2∞

)
|∇Ū(τ)|22 dτ + ε

∫ t

0

(
|θ̄|22 + |Ūt|22 + |∇θ̄|22

)
(τ) dτ .

respectively. Using the inequality d
dt
|Ū(t)|2 ≤ |Ūt(t)|2 a. e., we have in (3.6.9)

|Ū(t)|22 ≤
(∫ t

0

|Ūt(τ)|2 dτ

)2

.

For the boundary terms in (3.6.9), we refer to the trace embedding (3.4.8). Using the
inequality d

dt
|Ū(t)|2 ≤ |Ūt(t)|2 a. e., we have in (3.6.9)

|Ū(t)|22 ≤
(∫ t

0

|Ūt(τ)|2 dτ

)2

,

∫ t

0

|Ū(τ)|22dτ ≤ 1

2

∫ t

0

(t2 − τ 2)|Ūt(τ)|22dτ.

Choosing ε sufficiently small, we thus obtain from (3.6.8)–(3.6.10) the inequality
Choosing ε sufficiently small, we thus obtain from (3.6.8)–(3.6.10) the inequality

|θ̄(t)|22 + |∇Ū(t)|22 +

∫ t

0

(
|∇θ̄|22 + |Ūt|22

)
(τ) dτ (3.6.12)

≤ C

(
α(t) +

∫ t

0

(1 + |∇θ1|∞)2 (|θ̄|22 + |∇Ū |22
)

(τ) dτ

)
+C

(∫ t

0

(1 + |∇θ1|∞)
(
|∇θ̄|22 + |Ūt|22

)1/2
(τ) dτ

)2

.

Inequality (3.6.12) is of the form

v(t) +

∫ t

0

s2(τ) dτ ≤ C

(
α(t) +

∫ t

0

β2(τ) v(τ) dτ +

(∫ t

0

β(τ) s(τ) dτ

)2
)
, (3.6.13)

with

β = 1 + |∇θ1|∞ ∈ L2(0, T ) , v(t) = |θ̄(t)|22 + |∇Ū(t)|22 , s2(t) = |∇θ̄(t)|22 + |Ūt(t)|22.
(3.6.14)

To estimate v(t) and s(t), we derive below in Lemma 3.6.2 a refined variant of the
Gronwall lemma. Recall first the classical Gronwall estimate.

Lemma 3.6.1. Let α ∈ L∞(0, T ) and γ ∈ L1(0, T ) be given nonnegative functions,
and let a nonnegative function v ∈ L∞(0, T ) satisfy for a. e. t ∈ (0, T ) the inequality

v(t) ≤ α(t) +

∫ t

0

γ(τ) v(τ) dτ .

Then for a. e. t ∈ (0, T ) we have

v(t) ≤ α(t) +

∫ t

0

α(τ) γ(τ) e
R t
τ γ(σ) dσ dτ ≤ sup ess

0<τ<t
α(τ) e

R t
0 γ(σ) dσ .
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Sketch of the proof. The assertion follows directly by integrating the inequality

d

dt

(
e−

R t
0 γ(σ) dσ

∫ t

0

γ(τ) v(τ) dτ

)
≤ e−

R t
0 γ(σ) dσ α(t) γ(t) .

�

Lemma 3.6.1 can be viewed as a result of the fact that the L∞-norm of the function v is
bounded above by its weighted L1-norm. We now show that an Lp-Gronwall estimate
still holds if the L∞-norm on the left-hand side is replaced with an Lp-norm for p > 1.

Lemma 3.6.2. Let p > 1 and its conjugate exponent p′ = p/(p − 1) be fixed, and let
α ∈ L∞(0, T ), γ1 ∈ L1(0, T ), and γ2 ∈ Lp

′
(0, T ) be given. Let nonnegative functions

v ∈ L∞(0, T ), s ∈ Lp(0, T ) satisfy for a. e. t ∈ (0, T ) the inequality

v(t) +

∫ t

0

sp(τ) dτ ≤ α(t) +

∫ t

0

γ1(τ) v(τ) dτ +

(∫ t

0

γ2(τ) s(τ) dτ

)p
.

Then there exists a constant M such that for a. e. t ∈ (0, T ) we have

v(t) +

∫ t

0

sp(τ) dτ ≤M sup ess
0<τ<t

α(τ) . (3.6.15)

Proof . Set G2 =
(∫ T

0
γp
′

2 (τ) dτ
)1/p′

. We fix δ such that for every t ∈ [0, T ] we have(∫ t

(t−δ)+

γp
′

2 (τ) dτ

)1/p′

≤ 1

2
,

and consider first t ∈ [0, δ]. By Hölder’s inequality we have(∫ t

0

γ2(τ) s(τ) dτ

)p
≤
(∫ t

0

γp
′

2 (τ) dτ

)p−1 ∫ t

0

sp(τ) dτ ≤ 2−p
∫ t

0

sp(τ) dτ ,

and the assertion follows from Lemma 3.6.1. Assume now that inequality (3.6.15) is
proved for t ∈ [0, kδ] with a constant M = Mk, and consider t ∈ (kδ, (k + 1)δ]. We
have(∫ t

0

γ2(τ) s(τ) dτ

)p
=

(∫ t−δ

0

γ2(τ) s(τ) dτ +

∫ t

t−δ
γ2(τ) s(τ) dτ

)p
≤ 2p−1

((∫ t−δ

0

γ2(τ) s(τ) dτ

)p
+

(∫ t

t−δ
γ2(τ) s(τ) dτ

)p)

≤ 2p−1Gp
2

∫ t−δ

0

sp(τ) dτ +
1

2

∫ t

t−δ
sp(τ) dτ

≤ 2p−1Gp
2 Mk sup

0≤τ≤kδ
α(τ) +

1

2

∫ t

0

sp(τ) dτ .

Using Lemma 3.6.1 again, we complete the proof by induction over k. �

We are able now to finish the proof of Theorem 3.2.5. Indeed, inequality (3.6.13) has
the same form as in Lemma 3.6.2, with p = 2, α replaced by Cα, γ1 = Cβ2, and
γ2 = C1/pβ, with v and s given by (3.6.14). The assertion of Theorem 3.2.5 therefore
follows from inequality (3.6.13) and Lemma 3.6.2. �



Chapter 4

Numerical results

4.1 Introduction

In the present chapter we present some numerical simulations to show how the model
developed and analysed in the previous chapters can be applied in concrete situations.
In the last decade, the simulation of heat treatments has covered great importance
in research as well as in industrial applications, being able to simulate more or less
complex three-dimensional geometries. The practice of heat treatment simulations is
used as a tool to deliver quantifying information about the characteristic properties of
critical component regions regarding previous production steps and the initial state of
the material.
Among the papers concerned with gas carburizing, we mention: [9], [23], [38], [43],
[44], [45]. Often they are not concerned with the analysis of the underlying model, but
they rather use the empirical trial and error method. Currently, there are several pos-
sibilities to perform gas carburizing under very different conditions, starting from the
choice of the steel, the type of furnace and of gaseous atmosphere. For an overview of
the very recent engineering literature dealing with gas carburizing and case hardening,
we refer, for instance, to [37], [49] and references therein.
We investigate first the carburization stage and then we pass to consider the effect of
an inhomogeneous carbon distribution in the workpiece on the kinetics of the phases
under cooling, in comparison with the results obtained in presence of a homogenous
carbon distribution.
We conclude bringing together these two main stages of the process, by showing some
simulations performed for a two-dimensional configuration, a gear sector, where both
carbon diffusion and quenching have been included.

63
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The simulations were performed on the basis of our model:

ρα
∂θ

∂t
− div

(
k∇θ

)
= ρLppt + ρLmmt in Ω× (0, T ) (4.1.1)

∂c

∂t
− div

(
(1− p−m)D(θ, c)∇c

)
= 0 in Ω× (0, T ) (4.1.2)

pt = (1− p−m)g1(θ, c) in Ω× (0, T ) (4.1.3)
mt = [m(θ, c)−m]+g2(θ, c) in Ω× (0, T ) (4.1.4)

−k ∂θ
∂ν

= h(θ − θout) on ∂Ω× (0, T ) (4.1.5)

−(1− p−m)D(θ, c)
∂c

∂ν
= β(c− cp) on ∂Ω× (0, T ) (4.1.6)

θ(x, 0) = θ0 in Ω (4.1.7)
c(x, 0) = c0 in Ω (4.1.8)
p(0) = 0 in Ω (4.1.9)
m(0) = 0 in Ω (4.1.10)

where

m(θ, c) = min{mKM(θ, c), 1− p}, mKM(θ, c) =
(

1− e−ckm(c)(Ms(c)−θ)
)
H(Ms(c)− θ).(4.1.11)

Denoting with T the end time, we divide the interval [0, T ] as it is shown in Figure
4.1, as

[0, T ] = [t0, t1] ∪ [t1, t2] ∪ [t2, T ].

We do not take into account in this study the first time interval [0, t0], corresponding
to the heating stage. In any case the heating phase presents no difficulty from the
point of view of the mathematics and of the simulations.

2tt1

!1

!0

t =00heating carburizing diff. cooling time

te
m

pe
ra
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re

T

Figure 4.1: Schema of the gas carburizing cycle.

A general problem consists in determining the material parameters. As we do not
have complete experimental data, we proceed as follows: we determine the parameters
concerning the phase transitions from the TTT diagrams, for a certain steel, differing
by carbon content. By interpolation, we obtain the necessary parameters as function
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of carbon content. We consider the low-alloyed steel 1320; its TTT diagrams for six
different carbon contents (taken from [46], page 17) are shown in Figure 4.2.

Figure 4.2: TTT diagrams for the steel 1320 for six different carbon contents (from [46]).
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From these diagrams we can directly read the values forMs andM90 orM50 depending
on carbon content, from which we can extract the parameters Ms(c) and cKM(c),
entering in the formulas in (4.1.11). They are depicted in Figure 4.3.
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Figure 4.3: Plot of Ms(c) and cKM (c), extracted from the TTT diagrams of Figure 4.2.

We point out that F+C in Figure 4.2 corresponds, in our model, to what we denoted
by ’pearlite’ (a lamellar structure of ferrite and cementite). A close investigation
of the diagrams shows that a small amount of ferrite is formed for carbon content
smaller than 0.6%. For carbon content larger that 0.8% there is a prior precipitation
of carbides. These two effects are neglected in the following.
The function g1(θ, c) in the equation (4.1.3) can be determined with the help of the
TTT diagrams of Figure 4.2 arguing as follows. Since no martensite transformation
happens above the temperature Ms and no pearlite growth takes place below Ms, in
the area θ > Ms, we have m = 0.
We take as limits of the integration interval ts, where pearlite is 1% and tf , where
pearlite is 99%. These two values can be derived from the TTT diagram, for a fixed
temperature and for a fixed carbon content. Therefore, for fixed c, it holds:

(tf − ts)g1(θ, c) =

∫ tf

ts

g1(θ, c)dt =

∫ 0.99

0.01

dp

1− p
= [−log(1− p)]0.99

0.01 = −log
(0.01

0.99

)

=⇒ g1(θ, c) = − 1

tf − ts
log
(0.01

0.99

)
The functions so obtained by interpolation between some discrete temperature values,
for six different values of c (those occurring in the TTT diagrams), are plotted in Fig-
ure 4.4 on the left. On the right can be seen a three dimensional plot of the function
g1(θ, c) by interpolation also in c.
The value for g2 has been taken after the suggestion of [49] as 1/50 s−1. A constant
value has been found to be sufficient to describe the kinetics of the phase transforma-
tions, since temperature and carbon effects are already incorporated in m̄.
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Figure 4.4: g1 as a function of temperature, for different carbon contents (left). g1(θ, c) after
interpolation in θ and c.

Further necessary material parameters are listed in Table 4.1.

Lp Lm ρ α k

77000 J/Kg 82000 J/Kg 7800 kg/m3 600 J/Kg K 35 W/mK

Table 4.1: Metallurgical parameters for the steel 1320.

The simulations were performed with Comsol Multiphysics, a software oriented to the
solution of PDEs based on the finite element method. The unit system SI is adopted.

4.2 Carburization

The desired carbon profile is achieved through the carburization and diffusion stages.
The two main factors influencing the final case depth of carbon are the temperature
and the duration of carburization. Also significant for the final result is the presence
of a diffusion period before quenching. Therefore we focused the simulations on the
effect of time and temperature of carburization and on the consecutive diffusion stage.
We start considering as sample geometry a one-dimensional domain Ω = [0, 0.05],
assuming the point 0 to be the boundary and the other extreme of the interval the
’inner part’ of the workpiece. The initial temperature of carburization, θ0, is chosen
above the austenitization temperature, such that we may assume the workpiece to be
homogeneously austenitic, at the beginning.
The values c0, the initial carbon concentration and cp, the carbon potential, are both
given in weight %. The expression for the diffusion coefficient of carbon in austenite
is

D(θ, c) = 0.000047exp(−1.6c− (37000− 6600c)/(1.987θ)) m2/s.
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This formula is taken from Ref. [43] and the value for β = 6 · 10−7 as well. A plot of
D(θ, c) is depicted in Figure 4.5 (a comparison of different formulas for this coefficient
can be found in [40]).
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Figure 4.5: Coefficient of carbon diffusion in austenite (upper figure); surface representation
as a function of temperature (below on the left), as a function of carbon content (below on
the right). According to [43].

Effect of temperature

Regarding the carburized case, it can vary between a few tenths and several millimitres
and must be matched to the function and the size of the component. Its thickness
depends strongly on duration and temperature of carburization.
The results, plotted in Figure 4.6 show a good agreement with the ones contained
in [43] by C.A. Stickels, which are based on the experiments conducted in [16]. The
results obtained in [43] are plotted in Figure 4.7.
The maximum rate at which carbon can be added to steel is limited by the rate of
diffusion of carbon in austenite. This diffusion rate increases greatly with increasing
temperature; the rate of carbon addition at 1228 K is about 40% greater than at 1144
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K. It is mainly for this reason that the most common temperature for gas carburizing
is 1200 to 1250 K. For shallow-case carburizing in which the case depth must be kept
within a specified narrow range, lower temperature are frequently used, because case
depth can be more accurately controlled with the slower carburizing rates obtained
with low temperatures.
The indication ’effective case depth’ specifies the depth at which the carbon content
is 0.4%. Generally, "case depth" is specified as the depth below the surface at which
a defined value of some property occurs. A case depth to a hardness of 50 HRC and a
case depth to a carbon content of 0.4% are examples of a specifications for an effective
case depth.
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25 2.00 2.30 2.70 3.20
30 2.30 2.59 2.90 3.40

Data derived from the simulations.

Figure 4.6: Plot of effective case depth versus carburizing time at four selected temperatures.
Graph based on data in table.

Figure 4.7: Picture taken from [43] depicting the total case depth versus carburizing time
at four selected temperatures, based on the experimental data contained in [16].

Effect of time

The depth of case depth achieved versus time is not a linear relationship, but it is
more like an inverse proportionality relationship to the fifth power. Referring again
to the Table in Figure 4.6, it can be seen that the gain in case depth with increasing
time for fixed carburizing temperature is a matter of rapidly diminishing returns. For
example, at any of the four temperatures shown, to double the case depth obtained in
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1 hour, the time is approximately quintupled.

Effect of the diffusion stage

We examine here the effect of the further carbon diffusion inside the workpiece, during
the diffusion period of carbon into the workpiece allowed sometimes before quenching
(referring to Figure 4.1, it is the interval [t1, t2]). The carbon profiles at time t2 are
depicted in Figure 4.8, depending on the length of the interval [t1, t2], for different
values of t2.
We recall that the carbon potential assumed in the interval [0, t1] is cp = 1.2. The
green line, which represents the profile of carbon along the interval at time t1, is
a monotonically decreasing function, starting approximately from the value 1.2, as
expected. Then this profile falls gradually as t2 increases in presence of a lower carbon
potential cp and of a lower external temperature θout; the corresponding profiles after
different end times t2 are indicated with the blue, red and black lines. The rate of
decline in this stage is the effect of the diffusion within the steel, the surface reaction
rate and the rate at which the atmosphere composition changes. The conditions of
the process, specified in Table 4.2, are chosen in compatibility to those used in [44].
Indeed, the results of our simulations have been compared with those contained in
[44], which are shown in Figure 4.9. Here we see the computed carbon gradient in the
workpiece at the end of the carburization stage (line 1) and at the end of a diffusion
stage of 5000 s. (line 2). The process parameters used by the author of [44], C. A.
Stickels, are specified in the same figure. From the comparison between Figure 4.8
and 4.9, we can conclude that the results agree qualitatively and quantitatively.

Time t2 = t1 t
′
2 t

′′
2 t

′′′
2 θ0 θout cp β

8 h 24 h 48 h 72 h 1158K 800K 0.8 2 · 10−7

Table 4.2: Specified carburizing conditions in the time interval [t1, t2] for t1 = 8h.
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Figure 4.8: Computed carbon gradient at the end of different diffusion times on the lenght
of the radius (left) and in an enlargement around the boundary (right).
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Specified carburizing conditions referred to the
figure on the left:

Stage 1 Stage 2
Temperature, K 2113 1158

Carbon potential cp 1.15 0.8
β 2 · 10−7 2 · 10−7

Time, h 4 1.5

Figure 4.9: Picture taken from [44], showing the carbon gradient in a workpiece after carbur-
ization (line 1) and additional diffusion (line 2), with the corresponding process parameters
in the table on the right.

4.3 Quenching

Now we consider separately the cooling stage of the process, which takes place at a
different time scale than the diffusion stage. To this end, we need to specify further
process parameters :

h θ0 θout T − t2
20000 W/m2K 1228 K 300 K 500 s

Table 4.3: Further necessary process parameters.

To understand the effect of an inhomogeneous carbon distribution in the workpiece,
we first performed simulations for two homogeneous carbon contents, 0.5% and 0.2%,
with Ω = [0, 0.05]. The results are respectively plotted in Figure 4.10 and 4.11. We
assumed a heat flux active in x=0 (boundary) while at the other extreme of the
interval (inside the body), we assume thermal insulation. The first picture shows the
profile of austenite, pearlite and martensite over the interval at the end of quenching;
the deviation of the workpiece temperature from the external temperature (T/Tout)
is also depicted. The following five pictures represent the phases and temperature
evolution in time at five selected points, a, b, c, d, e at increasing distance from the
boundary.
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Final phase distributions.
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Figure 4.10: Final phases distribution for a homogeneous carbon content 0.5% (upper left)
and five pictures with the evolution of phases and temperature during quenching at five
selected points.
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Final phase distributions.
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Figure 4.11: Final phases distribution for a homogeneous carbon content 0.2% (upper left)
and five pictures with the evolution of phases and temperature during quenching at five
selected points.

Through the line depicting T/Tout, it is visible how the cooling rate decreases from
the boundary to the interior of the workpiece. Correspondingly, in both cases, we
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note the usual diversification in the formation of pearlite and martensite: the faster
the quenching is, the higher is the amount of marteniste and the lower the one of
pearlite formed. We can also see how the phases are monotone function of the spacial
coordinate. The kinetic behaviours of the phases in the case of 0.2% carbon and 0.5%
carbon are similar, but there are differences in the quantity of phase produced.
Now we pass to the case of a workpiece with inhomogeneous carbon distribution: the
carbon profile decreases from 0.5% near the boundary to 0.2% in the middle of the
body, which corresponds to the green profile depicted in the first picture of Figure
4.12. As in the previous Figure, we show in Figure 4.12 the resulting final phase
distributions over the depth and five plots for the five points selected to observe the
time evolution.

Final phase distributions.
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Figure 4.12: Final phases distribution for an inhomogeneous carbon profile (upper left) and
evolution of phases and temperature at five selected points.

From Figure 4.12 it appears that the final phases distribution is not monotonic with
respect to the space, but presents a non monotonicity around the point denoted with
d. Looking the pictures in sequence it appears that until the point d the behaviour is
similar to the one shown in the case of constant carbon content, i.e., the amount of
martensite is high at the boundary, decreasing gradually ; correspondingly the higher
amount of pearlite is formed far from the boundary, where the cooling rate is lower.
This course is however interrupted passing from point d to point e, where it turns in
the opposite direction, as it can be seen from the reduction of the pearlite level.
The phenomenon relies indeed on the differences in carbon content: corresponding to
point d is 0.4% and corresponding to e is about 0.27%.
Although a correct interpretation of the phase transformations during cooling would
require the continuous cooling diagrams, we still can have some qualitative indications
from the TTT diagrams in Figure 4.2. There, one can see that to a decrease in carbon
percentage there corresponds a shift to the right of the bulge in the curve denoting
the end of the pearlite formation. This results in the fact that more time is needed for
the complete formation of pearlite, or, equivalently, in a reduced amount of pearlite
producible in a certain interval of time.
In other words, from the diagrams we can infer that when the martensite formation
starts, the percentage of pearlite formed at point e is lower than the percentage at the
point d. In our pictures we see that, at point d, the maximal percentage of pearlite of
almost 90%, whereas at point e this maximum is around 0.75%.
Other carbon configurations between the constant cases 0.2% and 0.5%, could also be
wished to suit particular uses; in Figure 4.13 we show three possible profiles and the
corresponding final phase distributions.
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Figure 4.13: Three different carbon profiles with relatives final phase distributions.

4.4 Simulation of the complete process

In conclusion of the chapter, we consider a more complex geometry, namely a gear,
which is a mechanical component often subject to case hardening. In this case we
performed the simulations of the complete process. For reason of symmetry, it is
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enough to consider a section of the gear with half a tooth (see Figure 4.14 and 4.15).

Figure 4.14: Steel gear (top) and its
horizontal section (bottom).

We employ the same set of parameters as for
the one dimensional simulations (T0=1228 K,
h=20000 W/m2K) on the domain Ω is visible in
Figure 4.15, of length 14 cm and we suppose that
the carbon and the heat fluxes are active on the
side of Ω representing the tooth, where the mesh
is refined in order to capture what happens in the
very thin external boundary layer. We assume
t1 = t2 =10000s and T=10500 s.
With these simulations we focus on the effect of
the carbon potential, which is a determinant pa-
rameter during carburization and, together with
the final martensite distribution, determines the
final hardness at room temperature.
Four different carbon potentials cp relevant in the
practice (0.2%, 0.4%, 0.6%, 0.8%) were employed.
Experimentally it can be seen that the maximal
hardenability is achieved indeed for carbon con-
tent around 0.8% and that higher carbon amounts
do not favour hardness, therefore values of cp
higher than 0.8% are not meaningful. The next
simulations show the effect of the different carbon
potentials through its influence on the final martensite and carbon distribution. The
relation between carbon content, martensite amount and hardness is in Figure 4.21.
Figure 4.15 shows the mesh used and the final temperature distribution. Figure 4.16
is a view of the results of the simulations performed with cp = 0.2%

Figure 4.15: Used mesh (top), final temperature distribution (bottom). Colour indicates
the temperature value in Kelvin.
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Figure 4.16: Results obtained with cp = 0.2%: final martensite distribution (left), enlarge-
ment (centre), carbon distribution (right) where green colour means 0.2%. The legend refers
to the picture in the middle.

Figure 4.16, with the colour green, explains the absence of an effective carbon diffusion,
since the steel has 0.2% carbon and 0.2% is also the carbon present in the atmosphere.
On the other hand, in Figure 4.17, where the final martensite and carbon distributions
are plotted in 0.4%, 0.6%, 0.8% cp sequence, the carbon distribution, plotted in the
right column, is inhomogeneous. The diffusion occurs only in a very thin boundary
layer, around 0.5 mm thick and no difference is recognizable for different carbon po-
tentials, whereas slight but visible changes in the marteniste distribution can be seen
near the boundary.

cp = 0.4%

cp = 0.6%

cp = 0.8%

Figure 4.17: Pictures of the final martensite (left column) and carbon (right column) dis-
tribution in an enlargement around the carburized layer, starting from the top with carbon
potential cp=0.2% to the bottom with cp=0.8%.
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To enlighten the differences present in the pictures of Figure 4.17, we select now two
segments (see Figure 4.18) along which we plot the martensite and carbon percentage,
in Figure 4.19.

Figure 4.18: Segments a and b depicted on the total view of the final martensite distribution
(obtained with cp=0.2).

Profiles along the segment a

cp = 0.2%
0 0.005 0.01 0.015 0.02 0.025 0.03

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Arc−length, [m]
 

 

carbon
martensite

Profiles along the segment b

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Arc−length, [m]
 

 

carbon
martensite

cp = 0.4%
0 0.005 0.01 0.015 0.02 0.025 0.03

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Arc−length, [m]
 

 

carbon
martensite

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Arc−length, [m]
 

 

carbon
martensite

cp = 0.6%
0 0.005 0.01 0.015 0.02 0.025 0.03

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Arc−length, [m]
 

 

carbon
martensite

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Arc−length, [m]
 

 

carbon
martensite

cp = 0.8%
0 0.005 0.01 0.015 0.02 0.025 0.03

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Arc−length, [m]
 

 

carbon
martensite

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Arc−length, [m]
 

 

carbon
martensite



80 CHAPTER 4. NUMERICAL RESULTS

Figure 4.19: Plot of martensite and carbon percentages along the segments a (left) and b
(right).

Both segments are 2cm long. Along the segment a, the martensite fraction is 0.9%
on the boundary and less lower at the depth of 2 cm; the non monotonic profile is
explicable in the same way as in the one dimensional case. Along the segment b the
martensite fraction decays more rapidly. This difference between the case a and b
reflects the different curvatures in the workpiece.
We conclude with a short consideration about the final hardness. As it can be seen
in Figure 4.20, it is possible to achieve different hardening depths, depending on the
requests: the grey zone indicates the hardened part. The hardness measurements are
obtained experimentally (cf. [5] e.g.). Figure 4.21 shows, schematically, the depen-
dence of hardness on the martensite fraction and on the carbon content. It clearly
appears that the maximum hardness is attained for 99% martensite and 0.8% carbon
percent. For this reason a carbon potential higher than 0.8% is considered in most
cases useless. In other words, a high amount of martensite does not provide high hard-
ness if the carbon level is low. The resulting hardness depth in our two dimensional
simulations, in view of the diagram in Figure 4.21, is qualitatively as the one in the
right in Figure 4.20, where the entire gear tooth has been hardened.

Figure 4.20: Two different hardening depths.

Figure 4.21: Relation between the carbon content (x-axis) and the hardenability (y-axis),
depending on the martensite amount after hardening (from [5]).
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In conclusion, the purpose of the simulation work of this chapter was to show a pos-
sible concrete application of the proposed model. In absence of direct experimental
confirmations, we based our simulation on realistic data taken from literature and we
have performed numerical simulations using a software based on finite-element method
first for a one-dimensional geometry and then for a sector of a gear.
The simulations confirmed, on one side, the expected scenarios in the case of constant
carbon content and, on the other side, show interesting phenomena due to the pres-
ence of a inhomogeneous carbon distribution, that we have investigated with the help
of the time-temperature-transformation diagrams for the considered steel. Under this
regard, a cooperation with some engineering institute could be very desirable in order
to compare our simulations with the experiments.
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Chapter 5

Conclusions

We have modelled carbon diffusion, heat conduction and phase transformations in
steel and developed a macroscopic mathematical model for a special variant of case
hardening, called gas carburizing. In our model steel was considered as a co-existing
mixture of phases, which do not diffuse but rather stay in the position where they
have grown. The model allow to describe, from a phenomenological point of view, the
kinetics of carburization and the subsequent transformation during cooling. It con-
sists of a coupled system of two parabolic equations for carbon diffusion through the
austenite and for heat conduction and ordinary differential equations for the evolution
of the phase fractions.
The complete model has been analysed, covering all the stages of the process, and it
was shown, under suitable assumptions, the existence of a weak solution through a
nested fixed point argument. Under stronger assumptions, also the uniqueness of a
solution has been proven.
Next we examined a related problem constituted by a quasilinear system of two
parabolic equations with nonlinear boundary conditions, since it was reckoned of in-
trinsic mathematical interest. Also in this case, we examined the question of the
existence of a weak solution of the corresponding initial-boundary value problem and
we focused in particular on the question of the uniqueness of the solutions, trying to
allow weaker assumptions than those necessary for the whole system. In order to do
that, the regularity of the solutions has been investigated. A major achievement is the
technique developed to prove the necessary regularity in order to accomplish the proof
of uniqueness. We concluded the chapter with an embedding theorem for a wide class
of anisotropic Sobolev spaces, that we believe to be of its own interest, which contains
as special cases some embedding theorems in the classical Sobolev spaces.
Lastly we have demonstrated how to apply the model developed to a concrete situa-
tion: for a one dimensional configuration we have performed numerical simulations.
Despite its simplicity, this configuration provides a very useful insight in the compre-
hension of the behaviour of the phases and of carbon. We selected a specific type of
steel for which data were available from literature. Still we had to face the question
of how to determine the phase transition rates as functions of the carbon concentra-
tion. We bypassed this obstacle using appropriately the available time-temperature-
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transformation diagrams for the steel considered. The peculiarities due to the presence
of an in-homogeneous carbon content have been pointed out and investigated. Finally
we showed the simulations performed taking as sample work-piece a gear sector and
showed that a thorough description of the process of carburization was obtained.

Future research

There are natural developments for future research both in mathematical sense and
in the direction of the applications. From the point of view of the possible application
of our model, a co-operation with engineering research institutes would be of great
advantage, to enlighten and detail the numerical simulation aspect. The comparisons
with the experimental results would require indeed more precise data. The difficulty
encountered in this sense, during the development of the thesis, is due to the fact
that an exhaustive databank for the material behaviour of steel is still the aim of very
active research in the engineering field nowadays and it is not a simple question.

From the point of view of modelling and mathematics, there are other relevant ques-
tions that could be investigated. In our study, mechanical deformations are neglected
and the distortion, in particular the one related to case hardening, can not be described
by the proposed model. The modelling of material behaviour of steel is a large field
of current research. Because of the high complexity of some material phenomena of
steel, as for example deformations, plasticity, transformation induced plasticity, phase
transformation, e.g., it is common practice to study these phenomena by experiments
in more or less isolated situations in order to find the basic relations and then to in-
clude them in a bulk model of material behaviour, as the one we presented.
In fact, the model treated in the present thesis can be extended via a building-block
principle, extending it possibly to a more general material behaviour of steel, including
also the mechanical effects. In order to capture the distortion effect, it is necessary to
add a momentum balance as well as additional constitutive equations to the model.
For modelling of mechanical behaviour of steel including carbon diffusion and phase
transformations, we refer to [25], [26] and references therein.

Another interesting research subject, equally important for the mathematical as-
pects and the applications, is how to optimize the carburizing process. Indeed, control-
ling gas carburizing still presents many difficulties, since all the different phenomena
occurring on the steel surface have a crucial influence and it is quite complicated trying
to drive the whole process to a desired target. Nonetheless, optimization techniques
are strongly requested in order to meet quality requirements, by shortening cycle time,
enhancing furnace capacity and thereby reducing the energy consumption. In many
installations, certain parameters such as the atmosphere composition and the time of
exposure are fixed, while the external temperature and the carbon potential are var-
ied to achieve different targets. An ideal objective would be to formulate an optimal
control strategy aimed at obtaining a desired carbon profile and a desired temperature
at the end of the process. A first approach would consists therefore in minimizing a
suitable cost functional subjected to the state equations (1.4.6)-(1.4.15), with control
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parameters the carbon potential, previously denoted with cp and the external temper-
ature, θΓ. We can expect that, due to the quasilinearity of system (1.4.6)-(1.4.15), in
conjuction with the further requests coming form the specificity of the optimal control
problem treatment, the analysis would pose many difficulties. Globally this can be
foreseen to result in challenging mathematical problem with an immediate relevant
application.
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