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Introduction

In this thesis we start investigating the intersection theory of the

Artin stack M0 of nodal curves of genus 0, following a suggestion of

Rahul Pandharipande.

Intersection theory on moduli spaces of stable curves has a not

so long, but very intense history. It started at the beginning of the

’80’s with Mumford’s paper [Mum2], where he laid the foundations

and carried out the first calculations. Many people have contributed

to the theory after this (such as Witten and Kontsevich), building an

imposing structure.

The foundations of intersection theory on Deligne-Mumford stacks

have been developed by Gillet and Vistoli. The first step towards an

intersection theory on general Artin stacks (like those that arise from

looking at unstable curves) was the equivariant intersection theory that

Edidin and Graham developed, following an idea of Totaro. Their

theory associates a commutative graded Chow ring A∗(M) with every

smooth quotient stack M of finite type over a field.

Unfortunately many stacks of geometric interest are not known to

be quotient stacks (the general question of when a stack is a quotient

stack is not well understood). Later, A. Kresch developed an intersec-

tion theory for general Artin stacks; in particular, he associates a Chow

ring A∗(M) with every smooth Artin stack M locally of finite type over

a field, provided some technical conditions hold, which are satisfied in

particular for stacks of pointed nodal curves of fixed genus.

Since there is not yet a theory of Chow rings of such stacks that

extends the theory of stacks of stable curves, there does not seem to be

much else to do than look at specific examples: and the first example

is the stack M0 of nodal connected curves of genus 0. However, even

this case turns out to be extremely complicated.

In this thesis we compute the rational Chow ring of the open sub-

stack M≤3
0 consisting of nodal curves of genus 0 with at most 3 nodes:

it is a Q-algebra with 10 generators and 11 relations.

The techniques that we use, and the problems that we encounter,

are discussed below.
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4 INTRODUCTION

Description of contents.

Chapter 1. The material here is fairly standard. We show that M0

is an Artin stack. It is not of finite type; however, for each n the

open substack M≤n
0 consisting of families of curves whose geometric

fibers have at most 2 nodes is of finite type, and its complement has

codimension n. The stack M0
0 of smooth rational curves is simply the

classifying stack BPGL2.

We give an example of a smooth projective surface S with a family

C → S of nodal curves of genus 0 with at most 2 nodes in each fiber, in

which C is an algebraic space not scheme-like. This is a simple variant

on Hironaka’s standard example of a smooth threefold that is not a

scheme, but does not seem to be in the literature.

We introduce one of the basic tools that we use, that is the strat-

ification by topological type. The topological type of a nodal curve

of genus 0 is represented by a tree, with the vertices corresponding to

components and edges corresponding to nodes. For each tree Γ, there

is a natural smooth locally closed substack MΓ
0 ; we show that this is

a quotient stack. This allows to apply Kresch’s theory and define a

Chow ring A∗(M0).

Finally, we study the geometry of MΓ
0 , and in Section 1.5 we de-

scribe the normal bundle to the embedding MΓ
0 ↪→M0.

Chapter 2. We start by recalling some of the basic facts of equi-

variant intersection theory, and of Kresch’s intersection theory on Artin

stacks. We apply the first to the calculation of all the rings A∗(MΓ
0 )⊗Q

for all trees Γ with no more than three nodes.

Denote by Mn
0 the smooth locally closed substack of M0 consisting

of curves with exactly n nodes; this is a disjoint union of the MΓ
0 over all

trees Γ with n edges. Its closure in M0 is the substack M≥n
0 consisting

of curves with at least n nodes. We describe a procedure to extend

each class in Mn
0 to a class in M≥n

0 .

Our technique is to compute A∗(M≤n
0 )⊗Q for n ≤ 3 by induction on

n. For n = 0 we have M0
0 = BPGL2, and this case is well understood.

The inductive step is based on the following fact: if n ≤ 4, then the

top Chern class of the normal bundle of Mn
0 into M≤n

0 is not a 0-divisor

in A∗(Mn
0 )⊗Q. As a consequence, by an elementary algebraic Lemma

we can reconstruct the ring A∗(M≤n
0 )⊗Q from the rings A∗(M≤n−1

0 )⊗Q
and A∗(Mn

0 )⊗Q, provided that we have an explicit way of extending

each class in A∗(M≤n−1
0 ) ⊗ Q to a class in A∗(M≤n

0 ) ⊗ Q, and then

computing the restriction of this extension to A∗(Mn
0 )⊗Q.
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As a corollary we see that the restriction homomorphism from

A∗(M≤3
0 )⊗Q to the product of the A∗(MΓ

0 )⊗Q over all trees Γ with

at most three edges is injective.

Chapter 3. Here we define the basic classes, the classes of strata

and the Mumford classes.

For each tree Γ with δ nodes we get a class γΓ of codimension δ

in M0, the class of the closure of MΓ
0 in M0. We also compute the

restriction of each γΓ to all the rings A∗(MΓ′
0 ) ⊗ Q for any other tree

Γ′.

The other kinds of classes that we need are the Mumford classes.

These should be defined as follows: let C Π−→M0 be the universal curve.

Call K ∈ A1(C)⊗Q the first Chern class of the relative dualizing sheaf

ωC/M0 , and set

ki = Π∗(K
i+1).

However, here we encounter an unfortunate technical problem: the

morphism C →M0 is not projective, not even represented by schemes,

as Example 1.4 shows: and in Kresch’s theory one does not have ar-

bitrary proper pushforwards, only pushforwards along projective mor-

phisms.

We are able to circumvent this problem only for curves with at

most 3 nodes. This works as follows. We show that the pushforward

Π∗ω
∨
C/M0

is a locally free sheaf of rank 3 on the the open substack M≤3
0

(this fails for curves with 4 nodes). Hence we have Chern classes c1, c2
and c3 of Π∗ω

∨
C/M0

in A∗(M≤3
0 ).

We have a pushforward Π∗A
∗(CΓ) ⊗ Q → A∗(MΓ

0 ) ⊗ Q along the

restriction CΓ Π−→ MΓ
0 of the universal curve, because the stacks in-

volved are quotient stacks, and arbitrary proper pushforwards exists

in the theory of Edidin and Graham. This allows, with Grothendieck-

Riemann-Roch, to compute the restriction of the Mumford classes to

each A∗(MΓ
0 )⊗Q, even without knowing that the Mumford classes ex-

ist. It turns out that for each tree Γ with at most 3 nodes, the Mumford

classes in A∗(MΓ
0 )⊗Q are the Newton polynomials in the restrictions

of c1, c2 and c3, thought of as elementary symmmetric polynomials in

three variables. Then we define the classes ki ∈ A∗(M≤3
0 ) ⊗ Q as the

Newton polymomials in the c1, c2 and c3.
Since A∗(M≤3

0 ) ⊗ Q injects into the product of A∗(MΓ
0 ) ⊗ Q over

trees with at most three nodes, this gives the right definition.

Chapter 4. We put everything together, and we calculate A∗(M≤3
0 ).

We find 10 generators: the classes γΓ for all trees Γ with at most
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three nodes (they are 5), plus the Mumford class k2. The remaining 4

generators are somewhat unexpected.

To go beyond the case of three nodes there are two problems, the

one mentioned above with the Mumford classes, and the fact that the

inductive technique will break down for curves with five nodes, because

the top Chern class of the normal bundle to M5
0 in M≤5

0 is a 0-divisor

anymore. But also, it seems clear that the calculations will become

quickly unwieldy, and one will need a unifying principle that is still

missing.

Acknowledgements. I wish to thank my advisor Angelo Vistoli

for his patient and constant guidance.

I also wish to thank Rahul Pandharipande, who suggested the prob-

lem to my advisor.



CHAPTER 1

Description of the stack M0

1.1. Rational nodal curves

Let SchC be the site of schemes over the complex point SpecC
equipped with the étale topology.

Definition 1.1. We define the category of rational nodal curves M0

as the category over SchC whose objects are flat and proper morphisms

of finite presentation C
π−→ T (where C is an algebraic space over C and

T is an object in SchC) such that for every geometric point SpecΩ
t−→ T

(where Ω is an algebraically closed field) the fiber Ct

Ct

�

t′ //

π′

��

C

π

��
SpecΩ

t // T

is a projective reduced nodal curve such that

h0(Ct,OCt) = 1 (that is to say Ct is connected;)

h1(Ct,OCt) = 0 (thus the arithmetic genus of the curve is 0).

Morphisms in M0 are cartesian diagrams

C ′

�

//

π′

��

C

π

��
T ′ // T

The projection pr : M0 −→ SchC is the forgetful functor

pr :


C ′

�

//

π′

��

C

π

��
T ′ // T

 7→ {T ′ −→ T}

Proposition 1.2. The category M0 is fibered in groupoids over

SchC in the sense of [De-Mu].

Proof. This proof is straightforward owing to the existence of fibered

products for algebraic spaces (see Chapter 2 [Knu] Proposition 1.5) and

the fact that flat and proper maps are stable for base change. �
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8 1. DESCRIPTION OF THE STACK M0

Now we study the geometric fibers of the curves in M0. Given

an algebraically closed field Ω, let us define a rational tree (on Ω) to

be a connected nodal curve with finite components each of them is

isomorphic to P1
Ω and which has no closed chains.

Proposition 1.3. Let Ω be an algebraically closed field extention

of C. A curve C
π−→ SpecΩ is an object of M0(SpecΩ) if and only if it

is a rational tree.

Proof. Let C
π−→ SpecΩ be an object in M0(SpecΩ). Owing to the

fact that π is a proper map, it has finite irreducible components. Let

us consider one among these components C0 ⊆ C. The curve C0 is

irreducible and by definition reduced, consequently it is normal. Let I

to be the ideal sheaf of C0 in C.

From the following exact sheaf sequence of sheaves

0→ I→ OC → OC0 → 0

we have the exact cohomologic sequence

H1(C,OC)→ H1(C0,OC0)→ H2(C, I).

Now by definition H1(C,OC) = 0, furthermore dimΩC = 1, so we have

H2(C, I) = 0. Consequently we have H1(C0,OC0) = 0. The curve C0

is therefore projective, normal and with genus zero, so it is isomorphic

to P1
Ω.

Let us suppose that the curve C has a closed chain and fix a singular

point P of this chain. Consider the desingularization of C in P

C ′ ρ−→ C.

We have for all i ≥ 0 (see Ex. 8.2 [Hrt])

H i(C ′,OC′) ∼= H i(C, ρ∗OC′).

Then consider the following exact sheaf sequence

0→ OC → ρ∗OC′ → KP → 0

where KP is the skyscraper sheaf on P . The related cohomologic exact

sequence is

0→ Ω→ H0(C ′,OC′)→ Ω→ H1(C,OC)→ H1(C ′,OC′)→ 0.

Owing to the fact that C ′ is connected, we have that the groupH0(C ′,OC′)

maps to 0 and so we have

H1(C,OC) ∼= H1(C ′,OC′)⊕ Ω,

thus H1(C,OC) cannot be 0.

Consequently the curve C is a rational tree.
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On the other hand let us suppose that the curve C
π−→ SpecΩ is a

rational tree. Since the curve C is connected, we have that h0(C,OC) =

1. Now we prove that

h1(C,OC) = 0(1)

by induction on the number of components. If C = P1
k we have

h0(C,OC) = 1 and h1(C,OC) = 0.

Let us consider again the desingularization C ′ of C at a singular

point P . We have again the exact sequence

0→ Ω→ H0(C ′,OC′)→ Ω→ H1(C,OC)→ H1(C ′,OC′)→ 0,

but now we have that C ′ has two connected components and so h0(C ′,OC′) =

2, that is to say that

h1(C,OC) = h1(C ′,OC′).

By induction the two connected components of C ′ have both arithmetic

genus 0, consequently also h1(C ′,OC′) is equal to 0. �

It is important to notice that by definition geometric fibers of a

family of curves C
π−→ T in M0 are projective and therefore are schemes.

But it is further known (see [Knu] V Theorem 4.9) that a curve (as an

algebraic space) over an algebraically closed field Ω is a scheme.

Notwithstanding the fact that we consider families of curves whose

fibers and bases are schemes we still need algebraic spaces because there

exist families of rational nodal curves C
π−→ T where C is not a scheme.

Let us consider the following example which is based on Hironaka’s

example [Hir] of an analytic threefold which is not a scheme (this

example can be found also in [Knu], [Hrt] and [Shf ]).

Example 1.4. Let S be a projective surface over C and i an invo-

lution without fixed points. Suppose that there is a smooth curve C

such that C meets transversally the curve i(C) in two points P and Q.

Let M be the product S × P1
C and let e : S → M be the embedding

S × 0. On M − e(Q), first blow up the curve e(C −Q) and then blow

up the strict transform of e(i(C)−Q). On M − e(P ), first blow up the

curve e(i(C)− P ) and then blow up the strict transform of e(C − P ).

We can glue these two blown-up varieties along the inverse images of

M − e(P )− e(Q). The result is a nonsingular complete scheme M̃ .

We have an action of C2 on M induced by the action of C2 on S

and the trivial action on P1
C. Furthermore we can lift the action of C2

to M̃ such that we obtain an equivariant map

M̃
π−→ S;
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we still call i the induced involution on M̃ . We have an action of C on

M̃ which is faithful and we obtain geometric quotients f and g

M̃

π

��

f // M̃/C2

eπ
��

S
g // S/C2

Now we notice that π is a family of rational nodal curves. In partic-

ular the generic geometric fiber is isomorphic to P1
C. Geometric fibers

on the two curves C and i(C) have one node except those on P and

Q which have two nodes. Similarly we have that also π̃ is a family of

rational nodal curves whose fibers with a node are on g(C) = g(i(C))

and there is only one fiber on g(P ) = g(Q).

Since C2 acts faithfully on S and S is projective we have that S/C2

is a scheme. Furthermore we mention (see [Knu] Chapter 4) that

the category of separated algebraic spaces is stable under finite group

actions. Consequently the family π̃ belongs to M0(S/C2). But M̃/C2

is not a scheme.

In order to prove this we follow the same argument of [Hrt] Appen-

dix B Example 3.4.2. Let R be a point on the curve C ⊂ S different

from P and Q. The curve π−1(R) ⊂ M̃ has two rational components,

we call l the one which comes from the blow up of M . In the same way

we call l0 and m0 the two exceptional components of π−1(Q), where

m0 is the component with two nodes.

Set

m := i(l)

m′
0 := i(l0)

l′0 := i(m0)

and we have the following algebraic equivalences

l ∼ l0

m ∼ m′
0

l ∼ l′0 +m′
0

m ∼ l0 +m0

from which it follows

l0 +m′
0 ∼ 0.
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As l0 +m′
0 is invariant for the involution we have also the following

homological equivalence

2f(l0) = f(l0 +m′
0) ∼ 0

from which f(l0) ∼ 0, and this show that M̃/C2 cannot be a scheme.

Indeed let P be a point of f(l0). Then P has an affine neighborhood U

in M̃/C2. Let H be an irreducible surface in U which passes through

P but does not contain f(l0). Extend H by closure to a surface H in

M̃/C2. Now H meets f(l0) in a finite nonzero number of points, so

the intersection number of H with f(l0) is defined and is 6= 0. But the

intersection number is defined on homology classes, so we cannot have

f(l0) ∼ 0. Hence M̃/C2 is not sheme-like.

In order to complete our example, we have to exhibit a surface which

satisfies the requested properties. Take the Jacobian J2 = Div0(C) of

a genus 2 curve C. Let us choose on C two different points p0 and q0
such that 2(p0 − q0) ∼ 0. Let us consider the embedding

C → J2

p ∈ C 7→ |p− q0|.

We still call C the image of the embedding. Let i be the translation

on J2 of |p0− q0|. By definition i is an involution such that C and i(C)

meets transversally in two points: 0 and |p0 − q0|.

1.1.1. Stratifications. Given an object C
π−→ T in M0, we have

in C the relative singular locus of C, which will be denoted as Crs,

where geometric fibers have nodes. Further it is possible to define on

T closed subschemes {T≥k → T}k≥0 where for each integer k ≥ 0 the

fiber product T≥k ×T C is a family of rational curves with at least k

nodes. In order to give a structure of closed subspaces to Crs and to the

various subschemes T≥k, we will describe them through Fitting ideals.

We construct the closed subspace Crs and the T≥k locally in the

Zariski topology, so we consider a family of rational nodal curve C
π−→

SpecA for some C−algebra A.

Now we follow [Mum1] Lecture 8.

As the map π has relative dimension 1 the relative differential sheaf

ΩC/T has rank 1. Further because π is a map of finite presentation and

A is a Noetherian ring, we have that the sheaf ΩC/T is coherent. For

every point p ∈ C we set

e(p) = dimk(p)(ΩC/T,p ⊗ k(p))

where k(p) is the residual field of p.
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Choose {ai}i=1,...,e(p) in ΩC/T whose images in ΩC/T,p ⊗ k(p) are a

basis of this vector space, then these ai extend to a generating system

for ΩC/T,p. Furthermore we have an extension of this generating system

to ΩC/T restricted to an étale neighborhood of p. So we have a map

O
⊕e(p)
C → ΩC/T

which is surjective up to a restriction to a possibly smaller neighbor-

hood of p. At last (after a possibly further restriction) we have the

following exact sequence of sheaves

O
⊕f
C

A−→ O
⊕e(p)
C → ΩC/T → 0

where A is a suitable matrix f × e of local sections of OC . Let us

indicate with Fi(ΩC/T ) ⊂ OC the ideal sheaf generated by rank e(p)− i
minors of A. These sheaves are known as Fitting sheaves and they don’t

depend on the choice of generators (see [Lang] XIX, Lemma 2.3).

Definition 1.5. We define the relative singular locus to be the

closed algebraic subspace Crs ⊆ C associated with F1(ΩC/T ).

Now let us fix a point t ∈ T , we have that t belongs to T≥k iff

Fk−1(π∗(OCrs)t) = 0⇐⇒ dimk(t)(π∗(OCrs)t ⊗ k(t)) ≥ k

so T≥k is the subscheme whose geometric fibers have at least k nodes.

Set

T 0 := T − T≥1(2)

T k := T≥k − T≥k+1(3)

we have that for every k ∈ N the subscheme T k is locally closed in T ,

further, given a point t ∈ T and set

k := dimk(t)(π∗(OCrs)t ⊗ k(t)) ≥ 0

we have that t belongs to a unique T k.

Consequently, given a curve C
π−→ T where T is an affine Noetherian

scheme, the family

{T k|T k 6= ∅}

defined above is a stratification for T .

Now we want to give a local description of this stratification.

First of all we consider an affine open subset SpecA of T and we

reduce to the restricted curve C
π−→ SpecA.
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As π is of finite presentation by definition of M0, from Theorem

8.9.1 [EGA IV] we have that there exists a cartesian diagram as fol-

lows 1

C

π

��
�

f // C0

π

��
SpecA

g // SpecA0

where A0 is a Noetherian ring chosen from the subalgebras of A of finite

type on C and π is a finite type morphism.

As A is the inductive limit of its sub-algebras Aλ of finite type on

C such that

A0 ⊂ Aλ,

for each λ we have the following

C

π

��
�

f // Cλ

�

f //

π

��

C0

π

��
SpecA

g // SpecAλ
g // SpecA0

where, by abuse of notation, we call f all the arrows at the top and g

all the arrows at the bottom.

For each λ we can find an open subset Uλ of SpecAλ such that in

the diagram

C

π

��
�

f // Cλ

�

f //

π

��

C0

π

��
SpecA

g // Uλ
g // SpecA0

the map Cλ → Uλ is a curve in M0.

If we construct for each curve Cλ
π−→ Uλ a closed sub space Cλ,rs ⊂

Cλ such that

(*) for each µ ≥ λ we have Cµ,rs = g−1(Cλ,rs)

we obtain Crs as inductive limit of the Cλ,rs. Similarly if we have for

each SpecAλ a closed subscheme T≥kλ such that we have the equivalent

of property (*), we obtain canonically a subscheme T≥k of T .

So we consider a family C
π−→ T where T is an affine noetherian

scheme.

1We explain here with some details what is called reduction to the noetherian
case (see Section 8 [EGA IV]). In the following we just mention it when we refer
to facts which in literature are proved requiring noetherianity for the base. It is
anyhow fundamental that the map π be of finite presentation.
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Let s be a point in Crs and let us define t := π(s). Let us write

Rt = ÔT,t. As s in C ×T SpecRt is a simple node, π is flat and proper

and T is noetherian, we have

ÔC,s = RtJx, yK/(xy − fs)

where fs belongs to Rt.

Let us consider the following diagram

Crs ×C SpecÔC,s

�

//

��

SpecÔC,s

��
Crs // C

Crs ×C SpecÔC,s is defined from the ideal sheaf

F1(ΩC/T )⊗ ÔC,s = F1(ΩC/T ⊗ ÔC,s).

Let us fix Ω̂C/T as the sheaf ΩC/T ⊗ ÔC,s on SpecÔC,s. This sheaf can

be written in the following way

ÔC,s dx⊕ ÔC,s dy

y dx+ x dy

and locally admits the following exact sequence

ÔC,s
A−→ Ô2

C,s → Ω̂C/T → 0,

where A is the matrix 1 × 2 : (y x), the sheaf F1(ΩC/T ⊗ ÔC,P ) is

generated by minors whose rank is 1, that is to say x and y.

This means that the local neighborhood of s in Crs is isomorphic

as a scheme to Spec(Rt/fs). This means that Crs is locally isomorphic

to a closed subscheme of T and the map π : Crs → T is finite and it is

not ramified.

As we have seen above, in order to have well defined Crs and T≥k

for every scheme T we have to prove the following

Proposition 1.6. Let g : S → T be a morphism of affine Noether-

ian schemes and let C
π−→ T be a curve on T . With reference to the

following diagram

CS

�

f //

π

��

C

π

��
S

g // T
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we have

CS,rs = f−1(Crs)(4)

S≥k = g−1(T≥k)(5)

Proof. The equivalence (4) follows from

ΩCS/S = f ∗(ΩC/T ),

indeed

F1(ΩCS/S) = F1(f
−1(ΩC/T )⊗O(C) O(CS)) ∼= f−1(F1(ΩC/T ))OCS

from which we have

OCS
/F1(ΩCS/S)

∼=
(
OC/F1(ΩC/T )

)
⊗OC

OCS

In a similar way, in order to prove the equivalence (5), we have to show

that for every integer k ≥ 1 the following holds

OS/Fk−1(π∗(OCS,rs
)) ∼= (OT/Fk−1(π∗(OCrs)))⊗OT

OS.

We can proceed exactly as before if we have

π∗(OCS,rs
) = g∗(π∗(OCrs)

and this follows from what we have proved above

OCS,rs
∼= g∗(OCrs).

Indeed in the following cartesian diagram

CS,rs

�

//

π

��

Crs

π

��
S

g // T

vertical maps are finite and consequently

π∗(g
∗(OCS,rs

)) ∼= g∗(π∗(OCrs)).

�

1.1.2. Local projectivity. From the construction in Example 1.4

above, we have that M̃/C2 is locally in the étale topology a projective

scheme. More precisely if S ′ is the disjoint union of S − P and S −Q
we have

M̃ ′

�

//

π′

��

M̃/C2

eπ
��

S ′ // S/C2

In general we can state the following result
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Proposition 1.7. Every object in M0 is locally projective in the

étale topology.

Proof. Given a curve C
π−→ T , fix a geometric point SpecΩ

t−→ T .

Let k be the number of irreducible components of the fiber Ct. On

each component we can choose a smooth point and we have k sections

Ct

�

//

π

��

C

π

��
SpecΩ

t //

s1

66

··· sk

DD

T

Let U be a scheme and U → C a representable étale covering, then

Ut := SpecΩ×TU is an étale covering over the scheme Ct. Consequently

we can lift each si to section to Ut (which we still call si).

We know (see [EGA IV] 17.16.4) that there exists an étale map

T ′ → T with T ′ affine where these sections extend, more precisely, for

i = 1 . . . k we have the following diagram

Ut

�

//

π

��

U ′

�π

��

// U

π

��
SpecΩ //

si

DD

T ′ //

si

DD

T

and T ′ is affine.

By composition with the covering U ′ → C ′ := T ′ ×T C we obtain

sections

C ′

�π

��

// C

π

��
T ′ //

si

DD

T

If for some i we have (see Sction 1.3 for the definition of the relative

singular locus C ′
rs)

si(T
′) ∩ C ′

rs 6= ∅

we can restrict to a smaller neighborhood in order to have that each

si(T
′) lies in the relative smooth locus. Further (as we have seen in

Section 1.3) we can restrict to a smaller neighborhood T ′ of t where

all geometric fibers have at most k irreducible components (essentially

because having more than k nodes is a closed condition).

We consider the divisor
∐k

i=1 si(T
′) which is a closed scheme-like

subspace of C ′. The associated ideal sheaf is an invertible sheaf; let us

call L its inverse. We have that L is ample (with respect to π) on C ′.
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Indeed, since L is ample on each geometric fiber we have an open

covering of T ′

{T ′α
fα−→ T ′}α ∈ I

such that for each α ∈ I the sheaf L|π−1(fα(Uα)) is ample. Consequently

L is ample on C ′. �

1.2. Description of M0 as an Artin stack

Let us start to prove that M0 is an Artin stack. First of all we have

the following

Proposition 1.8. The category M0 on SchC (fibered in groupoids)

is a stack.

Proof. By definition (see Appendix B) M0 is a stack if it satisfies

the following two conditions.

A For every scheme T in SchC and for every pair of curves C and

D in M0(T ) the functor IsomT (C,D) is a sheaf for the étale topology.

In order to prove this , given an object U
f−→ T in SchC/T , let us

consider an étale covering {ϕα : Uα → U}α∈I . Set

DU := f ∗D CU := f ∗C

DUα := ϕ∗αDU CUα := ϕ∗αCU .

We obtain the following coverings for the curves

DUα

ψ′α−→ D

CUα

ψα−→ C.

Given a family of isomorphisms {ξα : CUα → DUα}α∈I respecting the

cocycle condition, we notice that for all α the isomorphism ξα belongs

to IsomT (C,D)(Uα).

Let us consider the family {ψ′α ◦ ξα}α∈I and notice that ψ′α ◦ ξα ∈
DU(CUα). We are looking for a morphism ξ such that for every α we

have that the following diagram is cartesian

DUα

ψ′α // DU

CUα

ξα

OO

ψ′α◦ξαzzz

<<zzz

ψα // CU

ξ

OO�
�
�

The family {ψ′α ◦ ξα : CUα → DU}α∈I is an étale covering.

Because DU is an algebraic space, it is a sheaf for the étale topology,

consequently we have our unique morphism CU
ξ−→ DU .
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By exchanging C and D we obtain that ξ is an isomorphism.

B For every scheme T ∈ SchC, given an étale covering {ϕα : Tα →
T}α∈I , any descent datum in M0 relative to it is effective.

To see it, we recall that every descent datum is effective in the

category of algebraic spaces (see [Knu] Chapter 2), thus for every de-

scent datum {Cα
πα−→ Tα}α∈I there exists an algebraic space C

π−→ T

and a family of morphisms {ψα : Cα → C}α∈I such that the following

diagram is cartesian

Cα

�πα

��

ψα // C

π

��
Tα

ϕα // T

and the map π is flat and proper.

Let us consider a geometric point SpecΩ → T , owing to the fact

that {Tα → T}α∈I is an étale covering, we have for a suitable α

Tα ×T SpecΩ //

��

SpecΩ

��wwp p p p p p p

Tα // T

Indeed, when Tα×T SpecΩ is different from ∅, the map Tα×T SpecΩ→
SpecΩ is étale, so Tα ×T SpecΩ is an union of finite copies of SpecΩ

and we obtain a map which factorises SpecΩ→ T . Geometric fibers of

C
π−→ T are therefore geometric fibers of suitable Tα which are rational

trees by hypothesis. �

In the argument of condition A we have shown that the functor

IsomT (C,D) is a sheaf for the étale topology. But it has a stronger

property.

Proposition 1.9. For every scheme T in SchC and for every pair

of curves C and D in M0(T ) the sheaf IsomT (C,D) is represented by

a separated algebraic space locally of finite type.

Proof. From [Art2] we know that for any proper and flat mor-

phism of algebraic spaces Y → X, the functor HilbX(Y )

HilbX(Y ) : (SchC/X)opp → (Sets)

{X̃ → X} 7→
{

closed algebraic subspaces

Z ⊆ Y ×X X̃ flat over X̃

}
is a separated algebraic space.
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Therefore it is sufficient to show that IsomT (C,D) is an open sub-

sheaf of HilbT (C ×T D) and that it is of finite type.

First of all let us notice that for every object T ′
f−→ T in SchC/T we

have

IsomT (C,D)(T ′) =


Z ′ ∈ HilbT (C ×T D)(T ′) :

pr1 : Z ′ → C ′ := C ×T T ′
pr2 : Z ′ → D′ := D ×T T ′

are both

isomorphisms


where the equality is given by the map

ξ ∈ IsomT (C,D)(T ′) 7→ graph of ξ

Z ′ ⊆ C ′ ×T ′ D′ = (C ×T D)×T T ′

In order to prove that we have an open subsheaf we must verify that

for all map T ′ → HilbT (C ×T D), that is to say (by Yoneda) for every

closed algebraic space Z ′ ⊆ (C ×T D) ×T T ′ flat over T ′, the fiber

product

T̃ ′ := IsomT (C ×T D)×HilbT (C×TD) T
′

�

//

��

T ′

��
IsomT (C ×T D) // HilbT (C ×T D)

is an open immersion in T ′. So we have to show that the sheaf T̃ ′ is

represented by an open subscheme T1 ⊆ T ′. This is equivalent to say

that there exists an open subscheme T1 in T ′ which has the following

property:

for all maps T ′′
ϕ−→ T ′ the natural projections

C ′′

Z ′′ := Z ′ ×T ′ T ′′ ⊆ C ′′ ×T ′ D′′

pr1

55kkkkkkkkkkkkkkkkk

pr2
))TTTTTTTTTTTTTTTTT

D′′

are isomorphisms if and only if, there exists a map T ′′ → T1 which

factorises T ′′ → T ′.

The map f : Z ′ → T ′ is flat over T ′ for hypothesis and proper

because it is the composition of two proper maps

Z ′ pr1−−→ C ′ π−→ T ′.
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Let us consider the following diagram

Z ′′

�

ϕ //

pr1
��

f

��

Z ′

pr1
��

f

��

C ′′

�π

��

ϕ // C ′

π

��
T ′′

ϕ // T ′

If pr1 : Z ′′ → C ′′ is an isomorphism we have

ϕ(Z ′′) ⊆ Z ′ − S

where

S := {z ∈ Z ′ : dimz(pr
−1
1 pr1(z)) > 0}.

As pr1 is proper, for the semicontinuity property (see Theorem 7.7.5

[EGA III] and reduction to the noetherian case) S is closed and f(S)

is closed because f is proper. Now we restrict to the open subscheme

(which could also be empty) of T ′ where pr1 is a finite map.

Let us consider the following exact sheaf sequence

OC′ → pr1∗OZ′ → Q→ 0

where Q is the quotient sheaf.

As before ϕ(pr1(Z
′′)) is not contained in supp Q, π(supp Q) ⊆ T ′

is closed, so after restricting to an open subscheme we can suppose to

have the following exact sheaf sequence

0→ I→ OC′ → pr1∗OZ′ → 0

where I is the kernel sheaf. Since f is flat we have that pr1∗ is flat

on T ′. This means (see Proposition 2.1.8 [EGA IV]) we also have the

exact sequence

0→ ϕ∗(I)→ ϕ∗(OC′)→ ϕ∗(pr1∗OZ′)→ 0

As pr1 is finite we have that ϕ ∗ pr1∗(OZ′) = pr1∗ϕ
∗(OZ′), further pr1∗

is an isomorphism and so ϕ∗(I) = 0. If I is different from zero So we

have found an open sub scheme of T ′, which we denote as T ′C , which

factorises all morphisms ϕ inducing an isomorphism between Z ′′ and

C ′′ and further we have by construction

Z ′ ×T ′ T ′C ∼= C ′ ×T ′ T ′C .

In the same way we obtain T ′D and so we can define:

T1 := T ′C ∩ T ′D.
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It remains to prove that the separated algebraic space IsomT (C,D) is

of locally of finite type.

As the property of being locally of finite type is local in the étale

topology we can assume from Proposition (1.7) that both C → T and

D → T are projective morphisms (and a fortiori C and D are schemes).

It is known that if Y → X is projective and P is a numerical

polynomial, the functor

HilbX,P (Y ) : (SchC/X)opp → (Sets)

{X̃ → X} 7→


closed algebraic subspaces

Z ⊆ Y ×X X̃ flat over X̃

whose Hilbert polynomial is P


is represented by a finite type scheme.

If we prove that, given C,D, T as above, only finite Hilbert poly-

nomial are allowed, we have done.

Let us fix a closed immersion i

C ×T D

��

i // PNT

zzvvvvvvvvvv

T

For every morphism T ′
ϕ−→ T we have an induced closed immersion

C ′ ×T ′ D′ i−→ PNT
and for each closed subscheme Z ′ ⊂ C ′ ×T ′ D′ flat on T ′ and equipped

with isomorphisms to C ′ and D′ we have a closed immersion in PNT . We

can compute its Hilbert polinomial on each complex fiber and we have

a rational tree embedded in PNC whose degree cannot be greater than

N . So we have a finite number of possible Hilbert polynomial. �

Proposition 1.10. The stack M0 is an Artin stack.

Proof. By definition M0 is an Artin stack (see Appendix B) if it

satisfies the following properties.

C For every pair of schemes X, Y in SchC with maps to M0 (that

is to say for any pair of objects C → X and D → Y in M0) the fibered

product

X ×M0 Y //

��

Y

��
X // M0

is represented by a locally of finite type separated algebraic space.
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We just notice that as a functor X ×M0 Y is the same as

IsomX×Y (C ×X (X × Y ), D ×Y (X × Y ))

then we apply Proposition (1.9).

D There exists a surjective smooth map U → M0 where U is a

scheme that is locally of finite type.

Let N be a positive integer, P ∈ Z+[t] a polynomial of the form

dt+ 1 and T an object in SchC. Let us consider the scheme (separated

and locally of finite type)

HilbSpecC,P (PNC ).

Let us define the following functor

M0(P,N) : (SchC)opp → (Sets)

T 7→


closed algebraic subspaces

Z ⊆ PNT flat over T

whose Hilbert polynomial is P

and such that Z → T is in M0(T )


We have an obvious map

M0(P,N)→M0.

Set

M0(N) :=
∐
d∈Z+

M0(dt+ 1, N).

In the following we prove that for each curve C
π−→ T in M0 we have

that the projection

T := M0(N)×M0 T → T

is a smooth covering of T if π locally in the étale topology is projective

with a closed immersion in PNT . Consequently we obtain the requested

smooth covering by taking the disjoint union of M0(N) over all N .

Now we invoke Grothendieck criterion of smoothness. Let A be an

Artinian ring and B ∼= A/I where I is isomorphic to K = A/mA. We

have to show that for each map SpecA→ T and for each commutative

diagram

SpecB //

��

T

��
SpecA //

<<y
y

y
y

y

T

there exists a lifting SpecA → T . This is equivalent to say that there

exists a lifting of the composition

SpecA→ T →M0
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to M0(N).

The previous data give us a cartesian diagram

CB

�

//

��

C

��
SpecB // T

together with a closed embedding of CB
fB−→ PNB . This is equiva-

lent to have an invertible sheaf LB = f ∗B(O(1)) over CB plus a basis

(s0, . . . , sN) of H0(CB, LB) without base points

We have to show that all these data extend to give an embedding

C → PNA .

As topological spaces CB is equal to C. Let us call C0 the fiber of

C on SpecK. We have an isomorphism OC0 ' 1 + IOC and an exact

sequence

1→ OC0 → O∗
C → O∗

CB
→ 1

which gives us

Pic(C)→ Pic(CB)→ H2(C0,OC0) = 0.

So we can extend LB to an invertible sheaf L on C.

If we tensor the following

0→ K→ A→ B → 0

with OC ⊗OSpecK L we obtain

0→ L|C0 → L→ LB → 0

from which

H0(L)→ H0(LB)→ H1(L|C0).

Now we claim that H1(L|C0) = 0. Indeed, as L|C0 is very ample, there

exists a section s which does not vanishes identically on any component

of C0. So we can write

0→ OC0

s−→ L|C0 → Q→ 0

for some finite sheaf Q. Clearly we have H1(OC0) = H1(Q) = 0 conse-

quently H1(L|C0) = 0.

So we can extend the sections (s0, . . . , sN) ∈ H0(LB) to sections

(s1, . . . , sN) ∈ H0(L) without base points. So we have a map C
f−→ PNA

whose restriction CB
fB−→ PNB is an embedding. We say that f is an

embedding. Indeed f is finite (that is to say proper with finite fibers).

So it remains to show that the map OPN
A
→ f∗OC is surjective. In fact

the quotient sheaf Q is such that Q ⊗ OPN
B

= 0 and for Nakayama we

have Q = 0. �
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1.3. Stratification of M0 by nodes

Let S be an Artin stack over SchC. A family of locally closed sub-

stacks {Sα}α∈N represents a stratification for S if, for all morphisms

T → S

where T is a scheme, the family of locally closed subschemes

{Tα := Sα ×S T 6= ∅}

is such that every point t ∈ T is in exactly one subscheme Tα, that is

to say that {Tα} is a stratification for T in the usual sense.

Definition 1.11. With reference to (2) we define M≥k
0 as the full

subcategory of M0 whose objects C
π−→ T are such that T≥k = T .

We further define Mk
0 to be the subcategory whose objects C

π−→ T

are such that T k = T .

Proposition 1.12. For every k ∈ N the stack M≥k
0 is a closed

substack of M0.

Proof. Let us consider the functorial immersion M≥k
0 →M0. For

every map T →M0 we have for every T−scheme S:

(M≥k
0 ×M0 T )(S) = {(C π−→ S, ϕ : S → S) s.t.

S = S≥k;ϕ is an isomorphism}
= {s : S → T≥k} = T≥k(S).

This proves that the functorial immersion M≥k
0 →M0 is representable

and it is a closed immersion and so we have also that it is an Artin

stack.

�

The family {Mk
0}k∈N is therefore a family of locally closed substacks

(a representable functor is an Artin substack). Further, given a geo-

metric point

SpecΩ
t−→M0

the associated curve Ct → SpecΩ belongs to exactly one of the Mk
0, so

this family is a stratification for M0.

Proposition 1.13. For each k ∈ N the morphism

M≥k
0

k−→M0

is a regular embedding of codimension k.
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Proof. Let us consider a smooth covering

U
f−→M0

and let C
π−→ U be the associated curve. we have to prove that the

morphism

Uk := Mk
0 ×M0 U → U

is a regular embedding of codimension k.

Fix a point p ∈ Uk ⊂ U and let A := Ôsh
U,p be the completion of

the strict henselisation of the local ring OU,p. (see [EGA IV] Definiton

18.8.7). Consider the following diagram

CA

�π

��

// C

π

��
SpecA // U

As p is a point of Uk we have that CA,rs is the union of k nodes q1, . . . , qk.

For each i = 1, . . . , k we have

ÔCA,qi = AJx, yK/(xy − fi)

with f1, . . . , fk ∈ A. So we can write

M := OCA,rs
=

k∏
i=1

(A/fi).

Let us consider M as an A−module, we have the following exact se-

quence of A−module

Ak
D−→ Ak −→M → 0

where D is the diagonal matrix

(6)

 f1 · · · 0
...

. . .
...

0 · · · fk


So we have Fk−1(M) = (f1, . . . , fk) and this means that

B := Ôsh
U≥k,p = A/(f1, . . . , fk).

From deformation theory we have that {f1, . . . , fk} is a regular se-

quence, consequently the map U≥k → U is regular of codimension k as

claimed. �
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1.4. Description of strata as quotient stacks.

Now let us fix a useful notation. Given an algebraically closed

field k such that SpecΩ ∈ SchC, let us consider an isomorphism class

C in M0(SpecΩ). We define the dual graph of C, denoted Γ(C) or

simply Γ, to be the graph which has as many vertices as the irreducible

components of C and two vertices are joined by an edge if and only if

the two corresponding lines meet each other.

For example we have the following correspondence

7→

•

•
oooooooo

OOOOOOOO

• •

We can associate at least one curve with every tree by this map, but

such a curve is not in general unique; an example is the following tree

•

• • •

•

In the following we think of a tree Γ as a finite set of vertices with a

connection law given by the set of pairs of vertices which corresponds

to the edges. Given a graph Γ we call multiplicity of a vertex P the

number e(P ) of edges to which it belongs and we call E(P ) the set of

edges to which it belongs. Furthermore we call the maximal multiplicity

of the graph Γ the maximum of multiplicities of its vertices. We also

define ∆n the set of vertex with multiplicity n.

Remark 1.14. We can associate an unique isomorphism class of

curves in M0(SpecΩ) to a given tree Γ if and only if the maximal

multiplicity of Γ is at most 3.

For every tree Γ, let us indicate with δi the number of its vertices

with multiplicity i. Tree graphs classify the topological type of rational

trees.

Now let us fix a stratum Mk
0, there are as many topological types

of curves with k nodes as trees with k + 1 vertices.

Given a curve C
π−→ T in Mk

0 where T is a connected scheme, the

curves of the fibers are of the same topological type. So we can state

the following
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Definition 1.15. For each tree Γ with k+1 vertices we define MΓ
0

as the full subcategory of Mk
0 whose objects are curves C

π−→ T such

that on each connected component of T we have curves of topological

type Γ.

For each Γ MΓ
0 is an open (and closed) substack of MΓ

0 and we can

consequently write

Mk
0 =

∐
Γ

MΓ
0

where Γ varies among trees with k + 1 vertices.

On M0 we can consider the universal curve defined in the following

way:

Definition 1.16. Let C be the fibered category on SchC whose

objects are families C
π−→ T of M0 equipped with a section T

s−→ C and

whose arrows are arrows in M0 which commute with sections.

Proposition 1.17. The morphism

C Π−→M0

that forgets sections is representable. Consequently C is an Artin stack.

Proof. Let us consider a map T → M0 (which corresponds to a

curve C → T ), the fiber product

C ×M0 T

is equivalent to C. Indeed for each scheme S we have

(C ×M0 T ) (S) = {S → T such that S ×T C admits a section

+ a section S → S ×T C}
= {S → T which admit a factorization through C

+ a map S → C}
= C(S)

�

Now we restricts the universal curve to MΓ
0

CΓ Π−→MΓ
0 .

and consider the normalization (see [Vis] Definition 1.18)

ĈΓ N−→MΓ
0 .
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Given a curve C
π−→ T in MΓ

0 (that is to say a morphism T
f−→ MΓ

0 )

we define Ĉ as T ×MΓ
0

ĈΓ
0 . With reference to the following cartesian

diagram

Ĉ

�

//

n

��

ĈΓ

N

��
C

�π

��

// C

Π
��

T
f // MΓ

0 .

We notice that when T is a reduced and irreducible scheme Ĉ
n−→ C is

the normalization.

The map πn : Ĉ → T is proper as ΠN :

cuΓ → MΓ
0 is. Then there exists a finite covering T̃ −→ T (see [Knu]

Chapter 5, Theorem 4.1) such that we have the following commutative

diagram

Ĉ

g

����
��
��
��
��
��
��
�
n

��
C

π

��

T̃ // T

where the map g has connected fibers.

Definition 1.18. We define M̃Γ
0 as the fibered category on SchC

whose objects are rational nodal curves C
π−→ T in MΓ

0 equipped with

an isomorphism ϕ :
∐Γ T̃ over T and maps are morphisms in MΓ

0 that

preserve isomorphisms.

Proposition 1.19. The forgetful morphism

M̃Γ
0 →MΓ

0

is representable finite étale and surjective (consequently we have that

M̃Γ
0 is an Artin stack).

Proof. We have to prove that for each morphism T → MΓ
0 (that

is to say a curve C
π−→ T in MΓ

0 ) the projection

M̃Γ
0 ×MΓ

0
T → T

is a finite étale and surjective map.

First of all we notice that if Ĉ → T̃ is the Stein factorization de-

scribed above, we have a section T̃ → Ĉ such that (by composition
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with Ĉ
n−→ C) gives an embedding i : T̃ → C that makes commute the

following diagram

C

π

��
T T̃ .oo

i
__???????

For each scheme S we have that an object of
(
M̃Γ

0 ×MΓ
0
T
)

is the datum

of a map S → T plus, given the curve

CS := C ×T S
π−→ S,

an isomorphism ϕ :=
∐Γ S → S̃.

With reference to the following cartesian diagram

S̃

�

//

i
��

T̃

i

��
CS

�π

��

// C

π

��
S // T

from the composition
∐Γ S

i◦ϕ−−→ CS we obtain a family sΓ : S → CS
of sections that separate components. On the other hand if we have Γ

sections that separates components we can give an isomorphism ϕ :=∐Γ S → S̃.

Now we have that the projection

M̃Γ
0 ×MΓ

0
T → T

is étale and surjective from the fact that the property of having Γ

sections that separate components is local for the étale topology and

we obtain a finite morphism with the same order of the monodromy

group of the étale covering T̃ → T . �

Definition 1.20. We call Mn
0,i (resp. M≥n

0,i ) the stack of rational

curves with (resp. at least) n nodes with i sections.

Proposition 1.21. We have the following equivalence

M̃Γ
0
∼=
∏
P∈Γ

(M0
0,e(P ))

Proof. The right term does not depend on the edges of Γ. In order

to give the equivalence, we have to make a choice: for each P ∈ Γ we

fix an order for the sections of M0
0,e(P ) and for each edge λ = (P,Q) ∈ Γ

we choose a pair of sections sλP in M0
0,e(P ) and sλQ in M0

0,e(Q).
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We define a map ∏
P∈Γ

(M0
0,e(P ))→ M̃Γ

0

as follows. Given an object∏
P∈Γ

(BP → T ; s1, . . . , se(P )) ∈

(∏
P∈Γ

(M0
0,e(P ))

)
(T )

we obtain an object in M̃Γ
0 (T ) by gluing along sections which corre-

spond by edges. On the other hand given an object in M̃Γ
0 (T ) we obtain

one in
(∏

P∈Γ(M0
0,e(P ))

)
(T ) by normalization. �

Proposition 1.22. For each tree Γ the stack MΓ
0 is a quotient

stack.

Proof. We have seen above that we have a finite morphism∏
P∈Γ

(M0
0,e(P ))→MΓ

0 .

Each M0
0,E(P ) is a quotient stack. More precisely, if we call P1

C,E(P ) the

curve P1
C with e(P ) marked points.

We conclude by noting that product of quotient stacks is still a

quotient stack and that a stack which admits an étale covering (and

consequently flat and projective) by quotient stack is a quotient stack

itself (see Lemma 2.13 [EHKV]). �

Proposition 1.23. Each MΓ
0 is smooth.

Proof. We have an étale covering∏
P∈Γ

(M0
0,e(P ))→MΓ

0

as each M0
0,e(P ) is smooth we have that also MΓ

0 is. �

1.4.1. Classifying spaces. In this subsection any tree Γ has max-

imal multiplicity ≤ 3.

Given a (linear) algebraic group G over C, let BG be the classifying

space [SpecC/G].

More generally, if a group G acts on a scheme X ∈ SchC let us define

the quotient stack [X/G] as the stack of G principal bundles equipped

with an equivariant map on X; in the case X is the geometric point

SpecC we reduce to the classifying space BG.

Now we want to prove that for every tree Γ with maximal multi-

plicity at most 3, the locally closed substack MΓ
0 is equivalent to the

classifying space of Aut(C0) where C0 is a curve in M0(SpecC).
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What we really need is just to verify that every object in MΓ
0 admits

a local trivialization in the étale topology (see Proposition B.3).

Let us start with M0
0, this is the stack BS2 of Brauer-Severi rank

2 algebraic spaces (see [Grot1]) and it is known its equivalence with

BPGl2.

Theorem 1.24. [Grot1] Theorem 8.2

Given an object C
π−→ T of BS2(T ), there exists an étale morphism

T ′ −→ T such that T ′ ×T C ∼= P1
C ×SpecC T

′.

In order to describe the substack MΓ
0 (where Γ has maximal multi-

plicity at most 3) as a classifying space we state the following

Proposition 1.25. Every curve C
π−→ T in MΓ

0 is locally trivial for

the étale topology.

Proof. Let us consider the Stein factorization

C̃

��

����
��
��
��
��
��
��
�

C

π

��

T̃ // T

The family C̃ → T̃ is an object of BS2where are fixed at most three

sections on each connected component of T̃ , then from [Grot1] The-

orem 8.2 it admits a local trivialization. Now we can reconstruct a

trivialization for π.

�

So we have the equivalence

MΓ
0 ' BAut(C0).

In order to describe the group Aut(C0) we fix coordinates [X, Y ] on

each component of C0 such that

• on components with one node the point [1, 0] is the node,

• on components with two nodes the points [0, 1] and [1, 0] are

the nodes,

• on components with two nodes the points [0, 1], [1, 1] and [1, 0]

are the nodes.
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Let us define on each component

0 := [0, 1]

1 := [1, 1]

∞ := [1, 0]

We have a canonical surjective morphism

Aut(C0)
g−→ Aut(Γ)

which sends each automorphism to the induced graph automorphism.

On the other side we can fix for every element of Aut(Γ) an automor-

phism of C0 such that we obtain a section s of the previous map

Aut(C0)
g
// Aut(Γ)

soo

Now we want to describe the section s. Given an element h of Aut(Γ),

there exists a unique automorphism γ of C0 such that

• γ permutes components of C0 by following the permutation of

vertices given by h

• on components with one node, γ makes correspond the points

0, 1,∞
• on components with two nodes, γ makes correspond the point

1.

Now let us consider the normal subgroup g−1(id) of automorphisms of

C0 which do not permute components. It is the direct product of groups

of automorphisms of each component which fix nodes. In particular let

E ⊂ PGL2 the group of automorphisms which fix ∞; if

σ :=

 a b

c d


is an element of PGL2 it belongs to E if and only if c = 0, so we must

have a 6= 0 and we can write

σ =

 1 b

0 d

 .
The group which fixes 0 and ∞ is gives by elements of the following

type [
1 0

0 d

]
.

and it is isomorphic to Gm. Through this description we have a

monomorphism ψ of Gm into E.
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Also the additive group Ga has an injection in E

ϕ : Ga → E

b 7→

[
1 b

0 1

]
.

There is also an epimorphism

ρE → Gm 1 b

0 d

 7→

[
1 0

0 d

]
,

consequently we have obtained that E is the semidirect product of Gm

and Ga

0 // Ga

ϕ // E
ρ
// Gm

ψoo // 1.

At last we have that there is only identity which fixes three points

in P1
C. So we can conclude that

g−1(id) = Eδ1 ×Gδ2
m

and we have a (not canonical) injection

Eδ1 ×Gδ2
m → Aut(C0)

Then Aut(C0) is the semi-direct product given by the exact se-

quence

(7) 1 // Gδ2
m × Eδ1 // Aut(C0) // Aut(Γ)

oo // 1

and we write it as

(8) Aut(Γ) n (Gm)δ2 × Eδ1 .

Similarly we obtain that when Γ has maximal multiplicity at most

3 the following holds

M̃Γ
0 = B(Gm)δ2 × Eδ1 .

Example 1.26. Let us consider the following graph

•
SSSSSSS

• • •
•

kkkkkkk
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it corresponds to curves of the following topological type

Now let us consider a coordinate system with the properties above, for

example we fix on each component the following points

•∞ •∞

• 1 • 0 •∞ •
∞

•∞ •
0

where we join with dotted lines points which correspond in the curve.

We notice that in our example Aut(Γ) = C2 and we have

Aut(C0) ∼= C2 n E3 ×Gm

1.5. Dualizing and normal bundles

In this section we briefly give the descripition of basic bundles over

M0 and its strata whose Chern classes (in the sense of section 2.3.1)

are among the natural generators of the whole Chow ring. In particular

we point out their restriction to M≤3
0 .

On M0 we consider the universal curve C Π−→MΓ
0 .

Let U →M0 be a smooth covering and let us consider the following

cartesian diagram

CU

�Π
��

// C

Π
��

U // M0

Definition 1.27. We define the relative dualizing sheaf ω0 of C Π−→
M0 as the dualizing sheaf ωCU/U on CU .

This is a good definition because for each curve C
π−→ T in M0 there

is the dualizing sheaf ωC/T and its formation commutes with the base

change.

For each curve C → T in M≤δ
0 we have the push forward of the

sheaf ω∨C/T in order to have a well defined push forward of (ω0)
∨ we

need that for each curve in M≤δ
0 the sheaf π∗ω

∨
C/T is locally free of
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constant rank and it should respect the base change. We can do it

when δ is 3. In particular we have the following

Proposition 1.28. Let C
π−→ T be a curve in M≤3

0 . Then π∗ω
∨
C/T

is a locally free sheaf of rank 3 and its formation commutes with base

change.

Proof. First of all we prove that it is locally free and its forma-

tion commutes with base change. It is enough to show that for every

geometric point t of T

H1(Ct, ω
∨
C/T ) = 0.

From Serre duality

H1(Ct, ω
∨
Ct/t) = H0(Ct, ω

⊗2
C/T )∨.

When the fiber is isomorphic to P1 we have

ω⊗2
Ct/t

= (O(−2))⊗2 = O(−4)

and we do not have global sections different from 0.

When Ct is singular we have that the restriction of ω⊗2
Ct/t

to com-

ponents with a node is (O(−1))⊗2 = O(−2) and consequently the re-

striction of sections to these components must be 0. The restriction to

components with two nodes is O(0) (so restriction of sections must be

constant) and restriction to components with three nodes is O(2) (in

this case the restriction of sections is a quadratic form on P1).

Given these conditions, global sections of ω⊗2
Ct/t

on curves with at

most three nodes (as they have to agree on the nodes) must be zero.

Similarly we verify that h0(Ct, ω
∨
Ct/t

) = 3 and conclude by noting

that

(π∗(ω
∨
C/T ))t = H0(Ct, ω

∨
Ct/t).

�

We notice that in M≤4
0 there are curves C

π−→ SpecΩ for which there

are global sections for ω⊗2
C/SpecΩ. When we have a curve of topological

type

•

• • •

•
the restriction of global sections on the central component are quartic

forms on P1
Ω which vanishes on four points, thus we have

H0(C, ω⊗2
C/SpecΩ) = Ω.
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1.5.1. The normal bundle. Given a tree Γ we consider the (lo-

cal) regular embedding

MΓ
0

in−→M≤δ
0

where δ is the number of edges in Γ. From [Kre] Section 5 we have

that there exists a relative tangent bundle Tin on MΓ
0 which injects in

in∗(T
M≤δ

0
).

Definition 1.29. Let us consider the following exact sequence of

sheaf

0→ Tin → in∗(T
M≤δ

0
)→ in∗(T

M≤δ
0

)/Tin → 0.

We define the normal bundle as the quotient sheaf on MΓ
0

Nin := in∗(T
M≤δ

0
)/Tin

When Γ has maximal multiplicity at most 3, we can describe it as

the quotient of first order deformations by Aut(C0) in the following

way. Let us consider the irreducible components CΓ
2 of C0. The space

of first order deformations near a node P where two curves Cα and Cβ
meet is (see [Ha-Mo] p. 100)

TP (Cα)⊗ TP (Cβ).

Consequently the space NΓ of first order deformations of C0 is

α<β⊕
#(Cα ∩ Cβ)TP (Cα)⊗ TP (Cβ).

On NΓ there is an action of Aut(C0) which we will describe in Section

3.1.

2Let X and I be two sets. We define XI to be the set∏
I

X.

When we give an injective map I
ϕ−→ X we have a family of elements of X with

indices in I

xI := {xα : xα = ϕ(α), α ∈ I};
with abuse of notation we say that the set xI has I elements. If we have two families

xI and yI with maps I
ϕ−→ xI and I

ϕ′

−→ yI from the same set of indices I. We
denote with xI

I−→ yI the unique map which make commute the following diagram

I
ϕ //

ϕ′
  @

@@
@@

@@
@ xI

I

��
yI



CHAPTER 2

Intersection theory on Artin stacks

The aim of this section is to recall some basic facts about intersec-

tion theory on Artin stacks. The main reference is [Kre]. This theory

is useful to give a global description of the intersection ring of M0 and

of M≤n
0 for n ≥ 2 because in this cases we don’t have a description of

M≤n
0 as a quotient stack.

Futhermore, to study the Chow ring of each MΓ
0 we use the equi-

variant intersection theory developed by Edidin, Graham [Ed-Gr1]

and Totaro [Tot].

2.1. Equivariant intersection theory

In this section we follow [Ed-Gr1].

Let SchftC be the category of finite type schemes 1 over C. For every

i ∈ N we have on SchC the functor

CHi : SchftC → (Groups)

where the evaluation on every scheme is the abelian group respectively

of dimension and codimension i up to rational equivalence.

In the same way we have the Chow functor

CH∗ : SchftC → (Groups)

which gives the Chow group.

Let X be a scheme of dimension n in SchftC such that Xred is quasi-

projective and G a (linear) algebraic group G over C of dimension g

which acts on X and whose action on Xred is linearized with respect

to some projective embedding.

Now we define the equivariant Chow groups of X with respect to

the group G.

Definition 2.1. Let V be any representation of dimension l of G

over C such that the group G freely acts out of a closed subset S ⊂ V

1There is equivariant intersection theory also for algebraic spaces of finite type
over C, but in this work we apply it to schemes.

37
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G−equivariant of codimension ≥ s. For every i < s let us define 2

CHn−i([X/G]) := CHn+l−g−i((X × U)/G)

where U = V − S.

This is a good definition in the sense that for every i < s the groups

CHn−i((X × U)/G) is independent both of the representation V and

of the closed S of codimension ≥ s (see 2.2 [Ed-Gr1]).For this reason

we’ll say that (X ×U)/G is an approximation of order s of [X/G] and

we call it Xs
G (when we will write Ai+l−g(X

s
G) we mean that s ≥ n− i).

These equivariant Chow groups are also independent of the repre-

sentation of the quotient stack [X/G].

As we can choose s large enough, we obtain a well defined graded

group depending on the action of G on X

AG∗ (X) :=

0≤i≤∞⊕
CHn−i([X/G]).

Instead of AG∗ (SpecC) we will write AG∗ .

Let f : X → Y be a G−equivariant map. If f is proper, then by

descent, the induced map

fG : XG → YG

is also proper. Likewise, if f is flat of relative dimension k then fG is

flat of dimension k.

Definition 2.2. Define proper pushforward

f∗ : AGi (X)→ AGi (Y ),

and flat pullback

f ∗ : AGi (Y )→ AGi−k(X)

as

fG∗ : Ai+l−g(XG)→ Ai+l−g(YG)

f ∗G : Ai+l−g(YG)→ Ai+l−g+k(XG)

respectively.

If f is smooth, then fG is also smooth. Furthermore, if f is a

regular embedding, then fG is also a regular embedding and if f is a

l.c.i morphism then fG is also l.c.i.

2The quotient (X × U)/G is well defined as algebraic space.
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Definition 2.3. If f : X → Y is l.c.i. of codimension d then define

f ∗ : AGi (Y )→ AGi−d(X) as

f ∗G : Ai+l−g(YG)→ Ai+l−g−d(XG).

Equivariant Chow groups satisfy all the formal properties of or-

dinary Chow groups (see [Ful], Chapters 1-6). In particular, if X is

smooth, there is an intersection product on the the equivariant Chow

groups AG∗ (X) which makes ⊕AGi (X) into a graded ring.

Define equivariant operational Chow groups

AiG(Y → X)

as the group of bivariant classes (see [Ful], Chapter 17)

c(Y → X) : A∗(XG)→ A∗−i(YG)

for every G−map Y → X. As for ordinary bivariant Chow groups,

these operations are compatible with the operations on equivariant

Chow groups defined above (pullback for l.c.i. morphisms, proper push-

forward, etc.). We define ith cohomology Chow group

AiG(X) := AiG(X
id−→ X).

Further we define

A∗
G(X) :=

⊕
i∈Z

AiG(X).

For any X smooth, A∗
G(X) has a ring structure. The ring A∗

G(X)

is graded, and AiG(X) can be non-zero for any i ≥ 0. 3

We recall Proposition 4 [Ed-Gr1].

Proposition 2.4. If X is smooth then for every i we have the

following isomorphism between Chow groups

AiG(X) ' AGn−i(X).

As a consequence we have a group isomorphism between A∗
G(X) and

AG∗ (X). Furthermore the group A∗
G(X) keeps a graded ring structure.

If f : Y → X is a flat map or a l.c.i. embedding between smooth

schemes we have from Proposition (2.4) a group homomorphism

f ∗ : A∗
G(X)→ A∗

G(Y )

which is a ring homomorphism.

Now we briefly give the definition of equivariant Chern classes and

the equivariant version of Grothendieck-Riemann-Roch Theorem.

3Note that by construction, the equivariant Chern classes we will define in the
the following, are elements of the equivariant operational Chow ring.
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Let E be a vector bundle over an algebraic space X which is equi-

variant for the action of a linear algebraic group G. For every approx-

imation (X × U)/G of order s, there is a vector bundle

Es
G := (E × U)/G −→ (X × U)/G.

For every i < s the following Chern class is well defined

cGi (E) := ci(E
s
G).

If we consider an approximation of order greater than the rank r of E,

we obtain the equivariant Chern roots α1, . . . , αr.

Definition 2.5. We have a well defined Chern character (see Ex-

ample 3.2.3 [Ful])

chG(E) :=
r∑
i=1

eαi

= r + cG1 (E) +
1

2
(cG1 (E)2 − 2cG2 (E)) +

+
1

6
(cG1 (E)3 − 3cG1 (E)cG2 (E) + 3cG3 (E)) + . . .

= r +
∞∑
j=1

1

j!
nGj (E).

where the nj are known as Newton polynomials.

Similarly we have the Todd class

TdG(E) :=
r∏
i=1

αi
1− e−αi

= 1 +
1

2
cG1 (E) +

1

12
(cG1 (E)2 + cG2 (E)) +

1

24
cG1 (E)cG2 (E) + . . .

Now we can state the equivariant version of the Grothendieck-

Riemann-Roch theorem ([Ed-Gr2]).

Theorem 2.6. Let f : X → Y be a G-equivariant morphism of

locally complete intersection schemes or a smooth and G−equivariantly

quasi-projective morphism and let E be a G−equivariant vector bundle

over X, then we have

chG(f∗E) = f∗(Td
G(Tf )ch

G(E)),

where Tf is the relative tangent bundle.
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2.1.1. The category of actions. In the following we describe a

natural way to relate Chow rings of different group actions. In partic-

ular we define a pull-back map between Chow groups.

In order to do that we define the category of actions Act C whose

objects are triples (X,G, γ) where γ : G × X → X is the action of

an algebraic group G over an X ∈ SchftC and whose morphisms (f, φ) :

(X ′, G′, γ′) → (X,G, γ) are pairs where φ : G′ → G is a morphism of

algebraic groups and f : X ′ → X is a φ−equivariant morphism.

When X is smooth we call A∗ the functor such that

A∗(X,G, γ) := A∗
G(X)

where in the right term we forget the action; furthermore, given a

morphism (f, φ) where f is flat or l.c.i. we give a morphism of graded

rings

(f, φ)∗ : A∗
G(X)→ A∗

G′(X
′).

Let Xs
G := (X × U)/G and X ′s

G′ := (X ′ × U ′)/G′ be two approxi-

mations of order s respectively of [X/G] and [X ′/G′]. In order to have

the pull-back morphism we give another approximation X̂ ′s
G′ of [X ′/G′]

and a morphism X̂ ′s
G′ → Xs

G (flat or l.c.i.). First of all we define an

action of G′ over U ′ × U

(g′, u′, u) 7→ (g′u′, φ(g′)u);

in order that the morphism

X ′ × U ′ × U −→ X × U
(x′, u′, u) 7→ (f(x′), u)

is φ−equivariant. Consequently it induces a map

X̂ ′s
G′ := (X ′ × U ′ × U)/G′ (f,φ)G′,G−−−−−→ Xs

G.

Similarly as above, if f is flat (resp. l.c.i.), the map (f, φ)sG′,G is flat

(resp. l.c.i.).

Consequently we have a well defined pull-back morphism

(f, φ)∗ : A∗
G(X)→ A∗

G′(X
′).

which is a ring homomorphism.

If we have f = idX (resp. φ = idG) we’ll write φ∗ (resp. f ∗) instead

of (f, φ)∗.

Let (f, φ) : (X ′, G′, γ′) → (X,G, γ) be a morphism in Act C. When

(f, φ)sG′,G is proper we have a well defined push-forward

(f, φ)∗ : A∗
G′(X

′)→ A∗
G(X).
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If we have f = idX (resp. φ = idG) we’ll write φ∗ (resp. f∗) instead

of (f, φ)∗.

Remark 2.7. If φ is injective (that is to say if G′ is a subgroup of

G) we can chose X̂ ′s
G′ := X ′ × U/G′. Moreover if f = idX and X is

smooth and G′ is finite in G, then the map X̂ ′s
G′ → Xs

G is proper and

so φ∗ is a well defined morphism of graded groups.

2.2. Some results on particular classifying spaces

As we have seen in Section 1.4, if Γ is a tree with k + 1 edges and

maximal multiplicity at most three, we have a natural identification

of MΓ
0 with the classifying space BAut(C0) where C0 is a fixed curve

of MΓ
0 (SpecC). Let us call respectively ∆1,∆2,∆3 the sets of vertices

with multiplicity 1, 2, 3. We recall that

Aut(C0) = Aut(Γ) n
(
E∆1 ×G∆2

m

)
.

We also have that the group E∆1 × G∆2
m is a normal subgroup of

Aut(C0).

In the following we mainly refer to [Vez]. Due to the following

Proposition, we can state that

A∗
Aut(C0) ⊗Q ∼= (A∗

E∆1×(Gm)∆2 ⊗Q)Aut(Γ)

Proposition 2.8. Given an exact sequence of algebraic groups over

C

1 // H
φ // G

ψ // F // 1.

with F finite and H normal in G, we have

A∗
G ⊗Q ∼= (A∗

H ⊗Q)F

Proof. With (A∗
H ⊗ Q)F we mean the subring of A∗

H ⊗ Q whose

elements are invariant for the action of F . In the proof we render

explicit the action of F on A∗
H induced by the exact sequence.

Let σ be the cardinality of F and let Rs
G := U/G be an approxima-

tion of BG with s large enough.

Now we define an action of F over Rs
H := U/H (as H is a sub group

of G it acts on U). Given an f ∈ F , we have that there exists a g ∈ G
such that ψ(g) = f . Given a point [u]H ∈ U/H, we set

f([u]H) := [g(u)]H .

This is a goog definition because if g′ is another element of G such that

ψ(g′) = f there exists an h ∈ H such that g′ = hg. This means that

[g(u)]H = [g′(u)]H .
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The action of F on Rs
H induces an action on A∗(Rs

H)⊗Q.

In order to verify the requested isomorphism, it is sufficient to prove

the following

A∗(U/G)⊗Q ∼= (A∗(U/H)⊗Q)F .

Furthermore the morphism (which we call φs)

U/H
φs

H,G−−−→ U/G

is an F -principal bundle for normality of H. In particular f is a finite

proper map. So we have the following morphisms of groups

A∗(U/G)⊗Q φs∗
−−→ A∗(U/H)⊗Q

A∗(U/H)⊗Q φs
∗−→ A∗(U/G)⊗Q

and by the projection formula (see p.323 [Ful])

φs∗φ
s∗ : A∗(U/H)⊗Q → A∗(U/H)⊗Q

a 7→ σa

this means that φs∗φ
s∗ is a (group) isomorphism and in particular φs∗

is injective (as ring homomorphism).

The image of φs∗ is exactly (A∗(U/H) ⊗ Q)F as we need. Indeed

if α is an element of A∗
G ⊗ Q we have that φs∗(α) is invariant for the

action of F . On the other hand if a is an element of (A∗(U/H)⊗Q)F ,

it follows that

φs∗φs∗(a) = σa

�

So we have reduced to compute A∗
E∆1×(Gm)∆2

and the action of

Aut(Γ) on it.

Proposition 2.9. The group A∗
E∆1×(Gm)∆2

⊗Q is Q[x∆1 , y∆2 ]
4, that

is to say it is algebraically generated by ∆1∪∆2 independent generators

of degree 1.

Proof. We use the following fact (see [Vez] Proposition 2.8):

4Let R be a Q-algebra and let sI be a subset of R for some set of indices I. If
fJ are J polynomials (for some set J) in Q[xI ], we write

R = Q[sI ]/(fJ(sI))

to indicate that the ring R is generated by sI and the kernel of the evaluation map

Q[xI ] −→ R

xI
I−→ sI

is generated by fJ . When there are no fJ this means that R is a free Q-algebra in
the fJ .
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Claim 2.10. For every linear algebraic group G, we have

A∗
G×Gm

∼= A∗
G ⊗Z A

∗
Gm
.

By recalling that A∗
Gm
⊗Q is isomorphic to Q[r], where r is an order

one class, we have

A∗
E∆1×(Gm)∆2 ⊗Q ∼= A∗

E∆1 ⊗Q Q[y∆2 ].

As we have seen in Section 1.4, the group E is the semidirect product

0 // Ga

ϕ // E
ρ
// Gm

ψoo // 1,

consequently, for each n ∈ N+, the group En is the semidirect product

(9) 0 // (Ga)
n

ϕn

// En

ρn
// (Gm)n

ψn

oo // 1

Let R := U/E an approximation of BE of order as large as needed.

In the same way we have Rn := Un/En as an approximation of right

order of BEn. Now we notice that

Un

(Ga)n
∼=
(
U

Ga

)n
ϕGn

a ,En

−−−−→ Un

En
∼=
(
U

E

)n
is a (Gm)n−principal bundle. LetW −→ (U/E)n be the vector bundle of

rank n associated with the principal bundle above. We call L −→ U/E

the line bundle associated to the Gm−principal bundle U/Ga −→ U/E.

We clearly have

W =
n∏
L.

If we define for every 1 ≤ i ≤ n

Li := (U/E)× · · · × L× · · · × (U/E)

where L is in the ith position, we have the following isomorphism of

vector bundles over (U/E)n

W ∼=
n⊕
i=1

Li.

From [Grot2], if we have a linear algebraic group G and a G-principal

bundle P
π−→ X over an algebraic space X and V → X is its associated

line bundle, we have that the pullback map

A∗(X)
π∗−→ A∗(P )
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is surjective and its kernel is generated by the Chern roots of V . Con-

sequently we obtain

A∗
(

Un

(Ga)n

)
∼=

A∗(U/E)n

(c1(L1), . . . , c1(Ln))
.

Because (Ga)
n is unipotent we have that A∗

(Ga)n
∼= Z (see [Vez] Propo-

sition 2.6), consequently A∗
En is generated by (c1(L1), . . . , c1(Ln)). In

the same way we notice that A∗
(Gm)n is generated by n classes whose

images through (ρn)∗ corresponds to each c1(Li), so we have that (ρn)∗

is surjective. The injectivity of (ρn)∗ follows from the fact that the

sequence (9) splits. So we have that the pullback morphism (ρn)∗ is an

isomorphism and we can write

A∗
E∆1 ⊗Q ∼= Q[x∆1 ].

�

Now we describe the action of Aut(Γ) on

A∗
E∆1×G∆2

m

∼= Q[x∆1 , y∆2 ].

At this point we need a more explicit description of the classes x∆1 , y∆2 .

Let us fix a curve C0 of topological type Γ and consider the étale

covering

M̃Γ
0

φ−→MΓ
0

defined in Section 1.3. We have seen that this map corresponds to

(M0
0,1)

∆1 × (M0
0,2)

∆2 × (M0
0,3)

∆3
φ−→ MΓ

0 .

Since M0
0,3 ' SpecC we have

(M0
0,1)

∆1 × (M0
0,2)

∆2
φ−→ MΓ

0 .

For what we have seen in Section 1.4

M0
0,1 ' BE

M0
0,2 ' BGm

consequently we can write

B(E∆1 ×G∆2
m )

φ−→ BAut(C0)

Let P be a vertex of Γ such that e(P ) = 1 or 2. On the component

M0
0,e(P ) let us consider the universal curve

CP
eΠ−→M0

0,e(P ).
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On P1
C we fix coordinates and we define the points

z∞ := [1, 0]

z0 := [0, 1]

We can write (see Section 1.4)

• CP ' [P1
C/E] when e(P ) = 1

• CP ' [P1
C/Gm] when e(P ) = 2

Let us consider on P1
C the linear bundles O(z∞) and O(z0). We have

a natural action of Gm on global sections of both of them induced by

the action of Gm (that, we recall, fixes z∞ and z0) on P1
C. Similarly

we have an action of the group E on global sections of O(z∞). When

e(P ) = 1 set

ψ
e(P )
∞,P := cE1 (H0(O(z∞),P1

C));

while, if e(P ) = 2 set

ψ
e(P )
∞,P := cGm

1 (H0(O(z∞),P1
C))

ψ
e(P )
0,P := cGm

1 (H0(O(z0),P1
C)).

Clearly, when e(P ) = 2, we have

ψ2
∞,P + ψ2

0,P = 0

Now we define

tP := ψ1
∞,P when e(P ) = 1

rP := ψ2
∞,P when e(P ) = 2

We can write for each P such that e(P ) = 2

rP =
ψ2
∞,P − ψ2

0,P

2
.

Clearly all the classes t∆1 and r∆2 are of order one and indipendent.

From what we have seen above these classes generates the ringA∗(M̃Γ
0 )⊗

Q and we have

A∗(M̃Γ
0 )⊗Q ' Q[t∆1 , r∆2 ].

Now we can describe the action of AutΓ on Q[t∆1 , r∆2 ]. An element

g ∈ Aut(Γ) acts on C0 with a permutation g1 on the components with

one node and a permutation g2 of components with two nodes. As we

have chosen coordinates on C0 such that ∞ corresponds to the node

of the terminal components, we make g1 act directly to the set {t∆1}.
We make g2 act similarly on the set {r∆2} but we have in addition

to consider the sign, that is to say that when g2 sends a vertex P of

Γ to another vertex Q (such that e(P ) = e(Q) = 2), we have two

possibilities
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• the automorphism g exchange coordinates 0 and∞ and so we

have

g(rP ) = g

(
ψ2
∞,P − ψ2

0,P

2

)
=
ψ2

0,Q − ψ2
∞,Q

2
= −rQ

• the automorphism g sends 0 in 0 and ∞ in ∞; in this case we

have

g(rP ) = rQ.

2.3. Chow groups for Artin stacks

Let X be an integral stack of finite type over SchC
5. We set Zi(X)

the free abelian group of the set of integral closed substacks of X of

dimension i.

Set

Z∗(X) :=
⊕
i∈Z

Zi(X),

A rational function onX is a morphism U → A1
C defined on a nonempty

open substack U of X. Rational functions form a field C(X) called

quotient field of X.

Now we can define the group of rational equivalences on X as

Wi(X) :=
⊕
V⊆X

C(V )∗

where the sum is taken over all integral substacks V of X of dimension

i+ 1. Set

W∗(X) :=
⊕
i∈Z

Wi(X).

For every i there is a map

∂i : Wi(X)→ Zi(X)

which locally for the smooth topology sends a rational function to the

corresponding Weyl divisor. Futhermor we have the map

∂∗ : W∗(X)→ Z∗(X).

Following the notation of [Kre] we define the naive Chow groups of

X as

A◦
i (X) := Zi(X)/∂Wi(X)

A◦
∗(X) :=

⊕
i∈Z

A◦
i (X).

5Throughout this section all stacks are integral of finite type over C
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For naive Chow groups we have the pullback defined as follow. Let

f : Y → X be a flat representable morphism of constant relative

dimension and let [V ] an element of A◦
∗(X), we define

f ∗[V ] := [Y ×X V ].

If f : Y → X is a proper representable morphism we define 6

f∗[V ] := deg(V/W )[W ]

where W is the image of V in X. From Proposition 3.7 [Vis] these are

a well defined group homomorphisms.

In order to define intersection classes for Artin stacks, we need

at first a straightforward generalization of the Edidin-Graham-Totaro

classes which are defined for quotient stacks.

Definition 2.11. The Edidin-Graham-Totaro Chow groups are de-

fined, for X connected by

Âi(X) := lim−→
BX

A◦
i+rk(E)

(where BX is the set of isomorphism classes of vector bundles over X ,

partially ordered by declaring E � F whenever there exists a surjection

of vector bundles F → E), and for X = X1

∐
· · ·
∐
Xr by

Âi(X) :=
r⊕
j=1

Âi(Xj).

Set

Â∗(X) :=
⊕
i∈Z

Âi(X).

Given a flat morphism of constant 7 relative dimension d, f : Y →
X of stacks, let E → X be a vector bundle over X. We consider the

following cartesian diagram

F

�

ef //

��

E

��
Y

f // X

6The degree of a representable proper morphism Y → X is a straightforward
extension of Definition 1.15 [Vis]. Given a smooth covering U → X we define
deg(Y/X) as deg(Y ×X U/U).

7In [Kre] we have a good definition of flat pullback also for morphisms of locally
relative constant dimension.
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the map f is still a flat morphism of constant relative dimension d, so

it remains defined a flat pullback

f̃ ∗ : A◦
∗(E)→ A◦

∗+d(F )

which define a pullback map

f ∗ : Â∗(X)→ Â∗+d(Y ).

Similarly we define the pushforward for representable proper maps.

Given a morphism f : Y → X with Y connected, we define the

restricted Edidin- Graham-Totaro Chow groups to be the groups

Âfi (Y ) := lim−→
BX

A◦
i+rk(f

∗E)

If Y = Y1

∐
· · ·
∐
Yr with each Yj connected, we set

Âfi (Y ) :=
r⊕
j=1

Âfi (Yj)

Let X be an Artin stack. We call UX the set of isomorphism classes

of projective X−stacks with the partial ordering given by inclusion of

components.

If p1 : T → Y and p2 : T → Y are projective morphisms, Then we

set

B̂p1,p2
k (Y ) := {p2∗β2 − p1∗β1| (β1, β2) ∈ Âp1k (T )⊕ Âp2k (T ) and

ιp1(β1) = ιp2(β2)}

which is a subgroup of Âk(Y ).

If we have a stack morphism as above f : Y → X, we call B̂k(Y )

the union of all subgroups B̂p1,p2
k (Y ) such that the map f ◦ p1 is 2-

isomorphic to f ◦ p2. So we can state the following:

Definition 2.12. Let X be an Artin stack. We call Chow groups

of X

Ak(X) := lim−→
UX

Âk(Y )/B̂k(Y ).

At last we define flat pullback for the above intersection groups

(see Section 2.2 [Kre]). Given a flat morphism f : Y → X of constant

relative dimension d, let h : X ′ → X be a projective morphism. We

consider the following

Y ′

�

ef //

h
��

X ′

h
��

Y
f // X
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Since flat pullback on A◦
∗ commutes with projective pushforward,

the map

f̃ ∗ : Â∗(X
′)→ Â∗(Y

′)

descends to give a map

Â∗(X
′)

B̂∗(X ′)
→ Â∗(Y

′)

B̂∗(Y ′)

which passes to the limit to give us

f ∗ : A∗(X)→ A∗(Y ).

We redirect to Theorem 2.1.12 [Kre] for the main properties of

this functor group. We just point out that a ring structure is given for a

stack which is smooth and can be stratified by locally closed substacks

which are each isomorphic to the quotient stack of an algebraic group

acting on a scheme.

We will denote a tipical element of A∗(X) as a pair (f, α) where f

is a projective map Y → X and α is a class in Âk(Y ). On the other

hand we forget the map f when it is the identity map.

The definition of projective pushforward is tautological. Given a

projective morphism g : X → Z, we define

g∗(f, α) := (g ◦ f, α).

Further we have that in a fiber diagram projective pushforward on A∗
commutes with flat pullback.

With reference to Section 6 [Kre] we have that if X is a smooth

Artin stack of finite type over C, we have an intersection product on

X. In this situation we define

Ai(X) := An−i(X)
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where n is the dimension 8 of X and

A∗(X) :=
⊕
i∈Z

Ai(X).

We give to A∗(X) the graded ring structure given by the intersection

product. From Proposition 3.4.2 [Kre] we have

Ai(X) = 0

for each i < 0.

Remark 2.13. Except from the finite type condition, we have seen

in the first Chapter that M0 has the above properties. In order to apply

Kresh’s theory we notice that for any k ∈ N the stack M≤k
0 is of finite

type (as it comes out from proof of Proposition 1.10). Further, for each

r ≥ k we have

Ak(M≤k
0 ) = Ak(M≤r

0 );

consequently we can define

Ak(M0) = Ak(M≤r
0 )

for each r ≥ k.

In this work we compute A∗(M0 ≤ 3) and in particular we have

A≤3(M0) = A≤3(M≤3
0 ).

2.3.1. Chern classes. One of the main tools we need to do inter-

section theory is the top Chern class operation.

Let X be a connected Artin stack, and let E → X be a vector

bundle on X of rank r.

Then we have a map

Âj(X)→ Âj−r(X)

which, for any vector bundle F → X, with rank k, sends α ∈ A◦
j+k(F )

to s∗α ∈ Âj+k(F ⊕ E), where s is the zero section of F ⊕ E → F . We

8For the definition of dimension of an Artin stack X we refer to [L-MB]. If

U
f−→ X

is a smooth covering we have the notion of relative dimension of f . For each
morphism T → X (where T is a scheme), the projection map

U ×X T
f ′

−→ T

is smooth and we call dim(f) the relative dimension of f ′. This definition is inde-
pendent from T → X. So we can define

dim(X) = dim(U)− dim(f).

Note that stacks could have negative dimension.
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denote the image class in Âj−r(X) by αE. When Y is not connected

we take for αE the sum on each connected component.

Definition 2.14. Let X be a stack, and let E → X be a vector

bundle of rank r. We define the top Chern class operation

ctop(E) ∩ − : Aj(X)→ Aj−r(X)

by (f, α)→ (f, αf
∗E).

This is a good definition because the map respects equivalence.

With reference to Section 3 of [Kre] we have from top Chern classes

the usual Segre and Chern classes, the Whitney formula for exact se-

quence of vector bundles and the projection formula.

2.4. Gysin maps and excess intersection formula

Now we mainly follow [Kre] and use definitions of cone and normal

bundles for Artin stacks given in Section 1.5.

Let i : F → G be a regular local immersion of Artin stacks of

codimension d, and let g : G′ → G an arbitrary morphism. Let us

consider the following diagram

CF ′G
′

p

�� %%KKKKKKKKKKK

CFG×F F ′

�

//

��

F ′

�

j //

f

��

G′

g

��
CFG // F

i // G

As i is a local immersion, also the map j : F ′ → G′ is a local

immersion, and we may form the deformation space M◦
F ′G

′ → P1 with

general fiber G′ and special fiber over the infinity point CF ′G
′. In

particular we have an isomorphism

G′ × (P1C/(∞))
∼−→M◦

F ′G
′/CF ′G

′;

we also call s the closed immersion CF ′G
′ →M◦

F ′G
′. Now we have

a map

ϕ : A∗(G
′)→ A∗(CFG×F F ′)

defined as the composition

A∗(G
′) // A∗+1(G

′ × (P1C/(∞))

∼
��

A∗+1(M
◦
F ′G

′/CF ′G
′)
s∗ // A∗(CF ′G

′)
p∗ // A∗(CFG×F F ′)
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where the last map is the pushforward via the closed immersion p.

Furthermore, as the local immersion is also regular we have more

over that the normal cone CFG (and consequently its fiber product

with F ′) is a vector bundle over F (resp. over F ′), so the pullback

map:

ψ : A∗−dF → A∗(CFG×F F ′)

is an isomorphism.

Now we can state the following

Definition 2.15. Given a regular local immersion of Artin stacks

i : F → G of codimension d and given an arbitrary morphism g : G′ →
G; we call the refined Gysin map

f ! : A∗(G
′)→ A∗−d(F

′)

the composition

ψ−1 ◦ ϕ.

We have the equivalent of excess intersection formula (see The-

orem 6.3 [Ful]) for Artin stacks.

Proposition 2.16. Let X
i−→ Y be a regular local embedding of

Artin stacks and let Y ′ g−→ Y and Y ′′ q−→ Y ′ be two arbitrary maps.

Furthermore we suppose that the projection

j : X ′ := X ×Y Y ′ → Y ′

is a regular embedding of Artin stacks.

With reference to the normal bundles (see Section 1.5) N := NXY,N
′ :=

NX′Y
′ and to the cartesian diagram

X ′′

�

//

p

��

Y ′′

q

��
X ′

�

j //

f

��

Y ′

g

��
X

i // Y

given a class α ∈ A∗(Y
′′) we have the following

i!α = j!α · ctop(p∗(E))

where E is the vector bundle

f ∗(N)/(N ′).
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Proof. We simply follow the proof in [Ful].

Set

Q := P(p∗(N)⊕ 1)

Q′ := P(p∗(N ′)⊕ 1)

and set ξ and ξ′ respectively as the universal quotient bundles on Q

and Q′.

We start by proving the Proposition when α is the class [V ] of an

integral closed substack V of Y ′′. Let us define:

W := X ′′ ×Y ′′ V

and C as the cone CWV , we have: C ⊆ N ′ ⊆ N .

Set

P := P(C ⊕ 1).

We have an exact sequence of bundles over Q′

0→ ξ′ → ξ|Q′ → r∗(p∗E)→ 0.(10)

Claim 2.17. (For the proof we follow p.94 [Ful])

Let i : F → G and g : G′ → G be as before. Set

Q := P(f ∗(NFG)⊕ 1)

and let ξ be the universal quotient bundle on Q. We call r the projection

of Q on F ′. Then for every integral closed substack V ⊆ G′ we have

i!([V ]) = r∗(ctop(ξ) ∩ [P(CWV ⊕ 1)]).

From the Claim we have

i!([V ]) = r∗(ctop(ξ) · P ).

By applying Whitney formula we have

i!([V ]) = r∗(ctopξ
′ · ctopr∗(p∗E) · P ;

it follows from the projection formula:

i!([V ]) = ctop(p
∗E) · r∗(ctop(ξ′) · P )

and again from the Claim

i!([V ]) = j!([V ]) · ctop(p∗(E)).

Now we consider a class (s, α) ∈ A∗Y
′′ that is to say a projective mor-

phism s : Z → Y ′′ and a class α ∈ Â∗(Z)/B̂∗(Z). Take a representative
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class β ∈ Â∗(Z) and a representative of it γ ∈ A◦
∗(V ) for some vector

bundle π : V → Z. Now we refer to the following diagram

U

�

u

%%ψ //

��

W

�

r //

��

X ′′

�

p //

��

X ′

�

f //

j

��

X

i
��

V

v

99
π // Z

s // Y ′′ q // Y ′ g // Y

We can apply what we have proved above and write

i!γ = j!γ · ctop(v∗(E))

this relation passes to the limit on BZ and so we have

i!β = j!β · ctop(v∗(E)).

We conclude by noting that the relation above is clearly true also for

α (It passes through the limit on UY ′′). �

2.5. Deformation of curves and extension of classes

In this section all graphs will be with maximal multiplicity at most

3.

The previous formula will be applied in order to compute extension

of strata classes. More precisely, given two graphs Γ and Γ′ respectively

with δ and δ′ nodes (δ′ > δ) and a polynomial a in A∗(MΓ
0 ) ⊗ Q we

define a class in M≤δ′
0 (whose restriction to MΓ

0 is a) and compute its

restriction to MΓ′
0 . This depends on the way of deforming Γ in Γ′.

Definition 2.18. Given two graphs as above we call an ordered

deformation of Γ into Γ′ any surjective map of vertices d : Γ′ → Γ such

that

(1) for each P,Q ∈ Γ′ we have d(P ) = d(Q) = A ∈ Γ′ only if for

each R in the connected path from P to Q we have d(R) = A;

(2) for each edge (P,Q) ∈ Γ′ such that d(P ) 6= d(Q) there must

be an edge in Γ between d(P ) and d(Q).

We denote by defo(Γ,Γ
′) the set of deformations.

Example 2.19. Let Γ and Γ′ be the following graphs

•A •B
•P

SSSSSSS

•R •S •T
•
Q

kkkkkkk

we have the following 8 ordered deformations
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1)(P,R, S, T ) 7→ A Q 7→ B 5)Q 7→ A (P,R, S, T ) 7→ B

2)(Q,R, S, T ) 7→ A P 7→ B 6)P 7→ A (Q,R, S, T ) 7→ B

3)(P,Q,R) 7→ A (S, T ) 7→ B 7)(S, T ) 7→ A (P,Q,R) 7→ B

4)(P,Q,R, S) 7→ A T 7→ B 8)T 7→ A (P,Q,R, S) 7→ B

There exist two different equivalence relations in def0(Γ,Γ
′). We

say that two elements d1, d2 are in ∼Γ if there exists a γ ∈ Aut(Γ) such

that d2 = γd1. Similarly we say that two elements d1, d2 are in ∼Γ′ if

there exists a γ′ ∈ Aut(Γ′) such that d2 = d1γ
′.

Definition 2.20. We call Γ−deformations (or simply deforma-

tions) from Γ to Γ′ the set

defΓ(Γ,Γ′) := defo(Γ,Γ
′)/ ∼Γ .

We call Γ′−deformations from Γ to Γ′ the set

defΓ′(Γ,Γ
′) := defo(Γ,Γ

′)/ ∼Γ′ .

In the above example we can take as representatives of Γ−deformations

the first 4 ordered deformations. On the other hand we have 1 ∼Γ′ 2

and 5 ∼Γ′ 6.

Claim 2.21. Let C
π−→ T be a family of rational nodal curves over

an irreducible scheme T . Suppose further that the generic fiber has

topological type Γ, then there exists a fiber of topological type Γ̂ only if

there exists an ordered deformation of Γ into Γ̂.

Proof. We may assume that T is reduced and of finite type over

C. We know (see Section 1.3) that T −T>δ is open, so when Γ̂ has the

same number of nodes of Γ, it must be Γ. In this case we can take as

deformation any automorphism of Γ. When the geometric fiber Ct (for

some geometric point t ∈ T ) is of topological type Γ̂ with δ̂ nodes such

that δ̂ > δ we have exactly n := δ̂ − δ nodes P1, . . . , Pn where

ÔCrs,Pi
6= ÔT,t.

By extending local sections we have a way (unique up to an automor-

phism of Γ) to send each of the two components which have Pi as a node

to an irreducible component of the curve associated with Γ. Otherwise

if P is a node of Γ such that

ÔCrs,P = ÔT,t

we send P to the corresponding edge of Γ (up to automorphism of

Γ) and the components which have P as a node to the corresponding

components. In this way we have obtained a deformation of Γ into

Γ̂. �
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Now let us consider the étale map

M̃Γ
0

φ−→MΓ
0 .

We have given in Section 2.2 a description of A∗M0 as the subring of

polynomials of A∗(M̃Γ
0 ) in the classes 9 t1, . . . , tδ1 , r1, . . . , rδ2 invariant

for the action of Aut(Γ).

We call M0,i the stack of rational nodal curves with i sections. Let(
M̃Γ

0

)≤δ′−δ
be the substack of

(M0,1)
∆1 × (M0,2)

∆2 × (M0,3)
∆3

whose fibers have at most δ′− δ nodes (the sum of nodes is taken over

all the connected components). Polynomials in Q[t1, . . . , tδ1 , r1, . . . , rδ2 ]

has a natural extension to
(
M̃Γ

0

)≤δ′−δ
. Let us fix one of such polyno-

mials a which are invariants for the action of AutΓ.

We have seen that the étale covering

M̃Γ
0

φ−→MΓ
0

is obtained by gluing sections in a way which depends on Γ.

By gluing sections in the same way we obtain a functor(
M̃Γ

0

)≤δ′−δ Π−→Mδ′

0 .

Proposition 2.22. With the above notation we have that the clo-

sure M
Γ

0 of MΓ
0 in M≤δ′

0 is

Π

((
M̃Γ

0

)≤δ′−δ)
.

Proof. From claim 2.21 we have

Π

((
M̃Γ

0

)≤δ′−δ)
.

On the other hand let CΩ
π−→ SpecΩ be the image in Mδ′

0 of a geometric

point of
(
M̃Γ

0

)≤δ′−δ
. The dual graph ΓΩ of CΩ is a deformation of Γ.

In order to show that CΩ
π−→ SpecΩ is a geometric point of M

Γ

0 , we fix

a deformation d : ΓΩ → Γ. For each vertex A of Γ, the set d−1(A) is a

subtree of ΓΩ. We can give a deformation CA
π−→ T of CΩ such that the

generic fiber is P1. Furthermore we can define on CA
π−→ T a family of

E(A) that respect d. At last we glue all CA along sections and obtain

a deformation C
π−→ T of CΩ

π−→ SpecΩ in M
Γ

0 (SpecΩ). �

9corresponding to sections of M̃Γ
0
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As a consequence we have that the image of Π is the closed substack

M
def(Γ,δ′)
0 ⊂M≤δ′

0 .

Proposition 2.23. The map

Π :
(
M̃Γ

0

)δ′−δ
→M≤δ′

0

is finite.

Proof. We have to prove that Π is representable, with finite fibers

and proper. The not trivial property to verify is properness. We prove

it through the valutative criterion (see [Hrt] p.101).

Let R be a valuation ring and K be its residual field. Let us consider

a commutative diagram

SpecK //

��

(
M̃Γ

0

)δ′−δ
Π

��

SpecR // M≤δ′
0

we have to prove that there exist a unique morphism

SpecR→
(
M̃Γ

0

)δ′−δ
which make the diagram commute. This is equivalent to the following

statement

given a curve CR → SpecR in M≤δ′
0 (R) and a lifting

CK to
(
M̃Γ

0

)δ′−δ
(K) of its restriction CK → SpecK,

there exists a unique lifting CR which induces C̃K.

Now the normalization C̃K of CK is the same of the normalization of

CK, furthermore if C̃R is the normalization of CR we have

C̃K = C̃R ×SpecR SpecK.

By gluing with the same rule of CK we obtain a lifting CR. �

Therefore the map Π is finite (of order σ) so we have the push

forward

Π∗ : A∗
((

M̃Γ
0

)δ′−δ)
→ A∗

(
M

def(Γ,δ′)
0

)
Let us consider a polynomial a in A∗(MΓ

0 )⊗Q. With reference to

the étale covering

M̃Γ
0

φ−→MΓ
0
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we define

ã :=
φ∗a

σ
∈ A∗(M̃Γ

0 )⊗Q,

this means that φ∗(ã) = a. Since ã can be written as a polynomial in

the classes ψ (defined in Section 2.2) that depends only from edges of

Γ, it has a natural extension to A∗
((

M̃Γ
0

)δ′−δ)
⊗Q.

If Γ′ is a deformation of Γ with δ′ edges, with reference to the

inclusion

MΓ′

0
in−→M≤δ′

0 ,

we want to describe the class

in∗(Π∗(ã)) ∈ A∗(MΓ′

0 )⊗Q.

In order to do that we consider the cartesian product

Ψ(Γ,Γ′) := MΓ′

0 ×Mδ′
0

(
M̃Γ

0

)δ′−δ
.

We refer to the corresponding diagram

Ψ(Γ,Γ′)

�

pr2 //

pr1

��

(
M̃Γ

0

)≤δ′−δ
Π

��

MΓ′
0

in // M≤δ′
0

Proposition 2.24. We have

Ψ(Γ,Γ′) =

µ∐
α=1

Ψ(Γ,Γ′)α

where the union is taken over the set of ordered deformations up to

∼Γ′.

Proof. Clearly we have that Ψ(Γ,Γ′) is an inclusion of components

in the union of all stacks(
M̃Γ

0

)δ′−δ
=
∏
A∈Γ

MnA

0,E(A)

where nΓ is a set of integers such that∑
A∈Γ

nA = δ′ − δ.

Let d be a deformation of Γ into Γ′. For each vertex A in Γ, the set

d−1(A) is a subtree of Γ′. We denote with E(d,A) the set of edges of

d−1(A). We indicate with

M(d,A)
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the unique component of

M
E(d,A)
0,E(A)

which respects the deformation d.

Therefore we can associate with each d the following connected

components of Ψ(Γ,Γ′) ∏
A∈Γ

M(d,A).

On the other hand each connected components Ψ(Γ,Γ′) of Ψ(Γ,Γ′) is

a connected component of(
M̃Γ

0

)δ′−δ
=
∏
A∈Γ

MnA

0,E(A)

for some family of integer nΓ such that∑
A∈Γ

nA = δ′ − δ.

and such that gluing along edges of Γ we obtain a covering of MΓ′
0

10.

Now we want to describe all the deformations of Γ into Γ′ which

respects Ψ(Γ,Γ′)α. For each A ∈ Γ the connected component which

we have in MnA

0,E(A) determines the topological type of the subtree of Γ′

which we can send into A. This means that the deformation is uniquely

determined up to ∼Γ′ . �

Example 2.25.

Let Γ and Γ′ be the graphs of the Example 2.19. We have δ′−δ = 3

and

M̃Γ
0 = M0

0,1 ×M0
0,1

with a double covering

M̃Γ
0

φ−→MΓ
0 .

Clearly Ψ(Γ,Γ′) is an inclusion of components in

(11)
∐

i,j:i+j=3

(
Mi

0,1 ×M
j
0,1

)
We have that Ψ(Γ,Γ′) has 6 components which corresponds to de-

formations (enumerated in Example 2.19) up to ∼Γ′ , with the following

inclusions:

• deformation 1 (which is Γ′-equivalent to 2) and 4 correspond

to two connected components of M3
0,1 ×M0

0,1

• deformation 3 corresponds to a connected component of M2
0,1×

M1
0,1

10We will determine in the following the order of this covering
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• deformation 7 corresponds to a connected components of M1
0,1×

M2
0,1

• deformation 5 (which is Γ′-equivalent to 6) and 8 corresponds

to two connected components of M0
0,1 ×M3

0,1

For every α we have the related commutative diagram

Ψ(Γ,Γ′)α
prα

2 //

prα
1

��

(
M̃Γ

0

)≤δ′−δ
Π

��

MΓ′
0

in // M≤δ′
0

The map prα2 is a closed immersion of codimension δ′ − δ. Let us still

call ã the pullback of the polynomial ã through prα2 . By the excess

intersection formula 2.16 (which we apply when p is the identity map)

we have

in!(ã) =

µ∑
α=1

(ã · ctop[(prα∗1 Nin)/Nprα
2
].

By applying the push forward along prα1 we write

µ∑
α=1

prα1∗(ã · ctop[(prα∗1 Nin)/Npr2 ] =:

µ∑
α=1

prα1∗(ã · ctop(Nα)).

For each α we have an étal covering

fα : M̃Γ′ → Ψ(Γ,Γ′)α

that glue along sections.

For every α = 1, . . . , µ let us call σ′α the order of prα1 .

We have the following commutative diagram

M̃Γ′
0

fα //

φ !!C
CC

CC
CC

C
Ψ(Γ,Γ′)α

prα
1zzuuu

uuu
uuu

u

MΓ′
0

from which we have

ordφ = ordfα · ordσ′α.

Remark 2.26. The order of fα is the number of g ∈ Aut(Γ′) such

that for each deformation d associated to α the deformation d ◦ g is

Γ′-equivalent to d.



62 2. INTERSECTION THEORY ON ARTIN STACKS

We want to write φ∗prα1∗(ã · ctop(Nα)) in A∗(M̃Γ
0 )⊗Q. We have

(12) φ∗prα1∗(ã · ctop(Nα)) =

µ∑
α=1

σ′αf
∗
α(ã) · ctop(Ñα)

where

Ñα := f ∗αN
α.

We postpone to the following Chapter the computation of ctop(Ñ
α) ∈

A∗(M̃Γ
0 )⊗Q. Anyway we still need the pullback of ψ classes along fα.

We clarify how to do it with the following example.

Example 2.27. Let Γ and Γ′ be trees again as in Example 2.19.

We have two ψ classes in A∗(M̃Γ
0 ) that are tA and tB. Let Ψ(Γ,Γ′)α be

the component associated to deformation 4, then we have

f ∗α(tA) = tS

f ∗α(tB) = tT .

2.5.1. Algebraic lemmas. Now we recall Lemma 4.4 [Ve-Vi]:

Lemma 2.28. Let A,B and C be rings, f : B → A and g : B → C

ring homomorphism. Let us suppose that there exists an homomor-

phism of abelian groups φ : A→ B such that:

the sequence

A
φ−→ B

g−→ C −→ 0

is exact; the composition f ◦ φ : A → A is multiplication by a central

element a ∈ A which is not a 0-divisor.

Then f and g induce an isomorphism of ring

(f, g) : B → A×A/(a) C,

where the homomorphism A
p−→ A/(a) is the projection, while C

q−→
A/(a) is induced bya the isomorphism C ' B/ ker g and the homomor-

phism of rings f : B → A.

Proof. Owing to the fact that a is not a 0-divisor we immediately

have that ρ is injective. Let us observe that the map (f, g) : B →
A×A/(a)C is well defined for universal property and for commutation(?)

of the diagram:

B
g //

f

��

C

q

��

A
p // A/(a)

Now let us exhibit the inverse function A×A/(a)C
ρ−→ B. Given (α, γ) ∈

A ×A/(a) C, let us chose an element β ∈ B such that g(β) = γ. By
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definition of q we have that f(β)− α lives in the ideal (a) and so (it is

an hypothesis on f ◦ φ) there exists in A an element α̃ such that:

f(β)− α = f(φ(α̃))

from which:

f(β − φ(α̃)) = α

we define then ρ(α, γ) := β − φ(α̃). In order to verify that it is a good

definition, let us suppose that there exist an element β0 ∈ B such that

(f, g)(β0) = 0, to be precise there exists an element α0 ∈ A such that:

φ(α0) = 0 and furthermore

0 = f(φ(α0)) = aα0

but we have that a is not a divisor by zero, so necessary we have α0 = 0

and β0 = 0. we conclude by noting that from the definition of ρ we

have immediately that it is an isomorphism. �

The Lemma 2.28 will be used for computing the Chow ring of

M≤n+1
0 when the rings A ∗ [M≤n

0 ]⊗Q and A ∗ [Mn+1
0 ]⊗Q are known.

As a matter of fact, given an Artin stack X and a closed Artin substack

Y
i−→ X of positive codimension, we have the exact sequence (see [Kre]

Section 4)

A∗(Y)⊗Q i∗−→ A∗(X)⊗Q j∗−→ A∗(U) −→ 0

By using the Self-intersection Formula, it follows that:

i∗i∗1 = i∗[Y] = ctop(NY/X),

when ctop(NY/X) is not 0-divisor we can apply the Lemma.

In the following it will be used also the following algebraic Lemma:

Lemma 2.29. Given the morphisms

A1
p1−→ A1 −→ B ←− A2

p2←− A2

in the category of rings, where the maps p1 e p2 are quotient respectively

for ideals I1 e I2. Then it is defined an isomorphism

A1 ×B A2
∼=
A1 ×B A2

(I1, I2)
.

Proof. Let us consider the map

(p1, p2) : A1 ×B A2 → A1 ×B A2,

by surjectivity of p1 e p2 this map is sujective, while the kernel is the

ideal (I1, I2). �





CHAPTER 3

Fundamental classes on M0

In this Chapter we work on a fixed tree Γ with maximal multiplicity

at most 3 and δ edges. We indicate with ∆1,∆2,∆3 the sets of vertices

that belongs respectively to one, two and three edges (and with δ1, δ2, δ3
their cardinalities).

We have seen in Section 1.4 that

MΓ
0 = BAut(C0)

where Aut(C0) is the group Aut(Γ) n
(
E∆1 ×G∆2

m

)
. Let us call σ the

order of AutΓ.

We have an étale covering of order σ

M̃Γ
0

φ−→ MΓ
0

BH
φ−→ BAut(C0)

where H is the group E∆1 ×G∆2
m .

Let us call C0 a rational nodal curve of topological type Γ where

we have fixed coordinates as in Section 1.4. If CΓ is the universal curve

(see Section 1.5) on MΓ
0 we have that

CΓ = [C0/Aut(C0)]

Furthermore the functor

Π : CΓ Π−→ BAut(C0)

that forgets the map on C0 is proper since it comes from the proper

map C0 → SpecC equivariant for Aut(C0). Consequently, as seen in

Section 2.1, we have the pushforward

Π∗ : A∗
Aut(C0)(C0)⊗Q→ A∗

Aut(C0).

3.1. Classes of strata

We define γi as the class in A∗(M≤i
0 ) of Mi

0. We will indicate with

γi ∈ A∗(M0) also the class of the closure of Mi
0 in M0. Similarly we

define γΓ as the class of the closure of MΓ
0 in M0.

65
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For every tree Γ of maximal multiplicity at most three 1, let us

consider the regular embedding (see Proposition 1.13)

MΓ
0 = BAut(C0)

in−→M≤δ
0

where δ is the number of edges of Γ. We still call γΓ ∈ A∗(MΓ
0 ) the

pullback φ∗(γΓ).

Let ∆1,∆2,∆3 be respectively the sets of points of Γ with multi-

plicity 1,2,3. We denote with ∆ the set ∆1 ∪∆2.

Let CΓ be the components of C0 (which we see as vertex of Γ). Let

E(Γ) be the set of edges. If (α, β) ∈ E(Γ) we call zαβ the common

point of Cα and Cβ.

Let us consider the normal bundle

NΓ := N
MΓ

0 /M
≤δ
0 .

From what we have seen in Section 1.5 we have that NΓ = defΓ is the

space of first order deformations of MΓ
0

(α,β)∈E(Γ)⊕
Tzαβ

(Cα)⊗ Tzαβ
(Cβ).

Now we have to describe the action of Aut(C0) on NΓ. As usual let us

consider the étale covering

M̃Γ
0

φ−→MΓ
0

and set ÑΓ = φ∗NΓ. We notice that, given coordinates as in Section

1.3, the point zαβ on each component Cα (which we call zαβ|α) is 0, 1

or ∞.

By using notation of Section 2.2 we have on M̃Γ
0

cGm
1 (Tzαβ

(Cα)) = ψ
e(α)
zαβ |α,α

which is zero when e(P ) > 2, consequently

c
(Gm)∆

top (ÑΓ) =

(α,β)∈E(Γ)∏ (
ψ
e(α)
zαβ |α,α + ψ

e(α)
zαβ |β ,β

)
.

We racall the following relation in A∗(MΓ
0 )

(13) in∗in ∗ [MΓ
0 ] = c

(Gm)∆

top (NΓ) ∩ [MΓ
0 ].

and so

φ∗γΓ = c
(Gm)∆

top (ÑΓ)

Now it is easy to compute the classes of restricted to each stratum of

M≤3
0 (we fix coordinates on C0 and order components of ∆1 and ∆2)

1Except the single point
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Graph (Γ) class of stratum φ∗γΓ

• • t1 + t2

• • • (t1 − r1)(t2 + r1)

• • • • (t1 − r1)(r1 + r2)(t2 − r2)
•

•
ooooooo

OOOOOOO

• •

t1t2t3

Remark 3.1. We have also shown that these classes are not 0-

divisor in A∗(MΓ
0 ) for each Γ above, so we can apply Lemma 2.28.

This fails if we consider more than four nodes. For example if we

consider the following graph Γ

• •

• •

• •
we have φ∗γΓ = 0.

Proposition 3.2. The Chow ring A∗(M≤3
0 ) ⊗ Q injects into the

product of A∗(MΓ
0 )⊗Q over trees with at most three edges.

Proof. From the above remark, we have, for each δ ≤ 3, the fol-

lowing exact sequence of additive groups

0→ A∗(Mδ
0)⊗Q iδ∗−→ A∗(M≤δ)⊗Q j∗δ

−→ A∗(M≤(δ−1)).

Let us consider the morphism

A∗(M≤3
0 )⊗Q ψ−→

3∏
δ=0

Mδ
0

as the product of the maps

i3∗

i2∗j3∗

i1∗j2∗j3∗

j1∗j2∗j3∗

Let a be an element of A∗(M≤3
0 )⊗Q different from zero. If ψ(a) is zero

then it cannot be in the image of i3∗ consequently j3∗(a) ∈ A∗(M≤2
0 )

is different from zero. We can continue till we obtain that j1∗j2∗j3∗ is

different from zero: absurd. �
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3.2. Restriction of classes of strata

Given two trees Γ and Γ′ (with maximal multiplicity at most 3

and number of edges respectively equal to δ and δ′) such that Γ′ is a

deformation of Γ, we want to describe the restriction of γΓ to MΓ′
0 . In

order to do that we consider the following diagram (see Proposition

2.24).

Ψ(Γ,Γ′)

�

pr2 //

pr1

��

(
M̃Γ

0

)≤δ′−δ
Π

��

MΓ′
0

in // M≤δ′
0

We have

Ψ(Γ,Γ′) =

µ∐
α=1

Ψ(Γ,Γ′)α

where the union is taken over the set of ordered deformations up to

∼Γ′ .

We refer to Section 2.26. In this case the polynomial a of equation

(12) is 1, consequently ã is 1/σ. With reference to the étale covering

M̃Γ′
0

φ−→MΓ′
0 and the inclusion MΓ′

0
in−→Mδ′

0 , from formula 12 we obtain

µ∑
α=1

σ′α
σ
ctop(Ñ

α)

For each α, we have an exact sequence of sheaves

0→ Ñprα
2
→ Ñin → Ñα → 0.

We have seen above how to compute ctop(Ñin), similarly we can com-

pute ctop(Ñprα
2
) and finally we consider the following relation (that fol-

lows from the exact sequance)

ctop(Ñin) = ctop(Ñprα
2
) · ctop(Ñα).

Example 3.3. Let Γ and Γ′ be trees as defined in the Example 2.19.

We consider the component Ψ(Γ,Γ′)α associated to the deformation 4.

We compute

ctop(Ñin) = −tP tQrS(tT + rS)

ctop(Ñprα
2
) = −tP tQrS

from which

ctop(Ñ
α) = (tT + rS).
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We carry on the calculation for trees with at most three nodes in

the last Chapter.

3.3. Mumford classes

On CΓ we have the restriction of the dualizing sheaf ω0 := ωC/M0

we have defined in Section 1.5. We call ωΓ
0 := ωCΓ/MΓ

0
its restriction.

We consider two kinds of classes on A∗
Aut(C0) induced by the sheaf

ωΓ
0 :

(1) the pushforward of polynomial of the Chern class 2 K :=

c1(ω
Γ
0 );

(2) the Chern classes of the pushforward of ω0.

The first kind will give us the equivalent of Mumford classes, but

on M≤3
0 we can only define classes of the second type (see Section 1.5).

The aim of this section is to compute classes of the first kind for

Γ with at most three nodes and to describe them as polynomials in

classes of the second kind. If this description is indipentent from the

graph Γ then we can define them as elements of A∗(M≤3
0 ).

First of all we define on CΓ and MΓ
0 the following classes

K := c1(ω
Γ
0 ) ∈ A1(CΓ),

ki := Π∗(K
i+1) ∈ Ai(MΓ

0 ).

Such classes ki (introduced in [Mum2] for the moduli spaces of

stable curves) are called Mumford classes.

3.3.1. Mumford classes on M0
0. As we have seen in Section 1.4

the stack M0
0 is BPGl2.

Let us consider the universal curve

[P1
C/PGl2]

Π−→ BPGl2.

We call Π the induced map P1
C → SpecC and ω0

0 a lifting of ω0
0 on P1

C.

We notice that (ω0
0)
∨

= TΠ
3, we set

K := cPGl2
1 (TΠ) = −cPGl2

1 (ω0
0).

Furthermore Π∗(TΠ) = H0(P1
C, TΠ) = sl2 seen as adjoint represen-

tation of PGl2.

2As usual, given a bundle E → X on an Artin stack we identify Chern classes
ci(E) with

ci(E) ∩ [X] ∈ Ai(X)

3TΠ is the relative tangent bundle along Π
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By applying the GRR Theorem we obtain

ch(Π∗(ω
∨
0 )) = Π∗(Td(TΠ)ch(ω∨0 ))

chPGl2(sl2) = Π∗(Td
PGl2(TΠ)chPGl2(TΠ))

3− cPGl2
2 (sl2) = Π∗

[(
e−(K)

)( −K
1− eK

)]
By applying GRR to the trivial linear bundle we obtain:

1 = Π∗

[
−K

1− eK

]
If we subtract the second equation from the first, we obtain

2− cPGl2
2 (sl2) = Π∗

[(
1− eK

eK

)(
−K

1− eK

)]
= Π∗

[
−Ke−K

]
,

from which we get

k0 = −2

k2 = 2cPGl2
2 (sl2).

3.3.2. Mumford classes on strata of singular curves. Now

let us consider the following cartesian diagram

(14) [
δ+1∐

P1
C/H]

�

eF

  

ξ //

eN
��

ĈΓ

F

��

N

��
[C0/H]

�eΠ
��

// CΓ

Π

��

BH
φ

// BAut(C0)

where N : ĈΓ → CΓ is the normalization of CΓ described in Section 1.5.

In the following we call ω̃Γ
0 the sheaf

ξ∗N∗(ωΓ
0 ).

and K̃ := c1(ω0).

Proposition 3.4. Using the above notation, the Mumford classes

ki ∈ Ai(BF nH)⊗Q are described by the following relation

φ∗F̃∗(K̃
i+1) = σki,
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Proof. Let us fix an index i ∈ N. Since the map N is finite and

generically of degree 1 we have

N∗N
∗ = id

therefore

ki := Π∗K
i+1 = Π∗(N∗N

∗)Ki+1 = F∗(N
∗Ki+1),

since F is projective and φ is étale we can apply the projection formula

and obtain

φ∗F∗(N
∗Ki+1) = F̃∗ξ

∗(N∗Ki+1).

Furthermore the map N ◦ ξ is finite and so

ξ∗N∗c1(ω
Γ
0 )i+1 = c1(ξ

∗N∗(ωΓ
0 ))i+1 = K̃i+1.

We conclude by noting that φ∗φ
∗ is multiplication by σ. �

From the previous Proposition, we have reduced the problem to

computing K̃ and then writing pushforward along F̃ . With respect to

each component of the stack

ĈΓ =
δ+1∐

[P1
C/Aut(C0)]

we fix coordinates on P1
C which are compatible with coordinates chosen

on C0. By forgetting the action of Aut(Γ) we keep the same system of

coordinates on
δ+1∐

P1
C when we consider

δ+1∐
[P1

C/H].

Giving a bundle on a quotient stack [X/G] is equivalent to giving

a bundle U → X equivariant for the action of G (see Section 2.1). By

abuse of notation we still call ω̃Γ
0 any lifting of ω̃Γ

0 on
δ+1∐

P1
C.

In order to make computations we need to render explicit the action

of H := E∆1 ×G∆2
m on

F̃∗(ω̃0) = H0

(
δ+1∐

P1
C, ω̃

Γ
0

)
.

Set ∆ := ∆1 ∪∆2, from the inclusion Gm → E we have a cartesian

diagram of stacks

B(Gm)∆

�

φ //

Ψ

��

B(Aut(Γ) n (Gm)∆)

Ψ
��

BH
φ // BAut(C0)

Roughly speaking we can say that we obtain the stacks in the top row

by fixing the point 0 on components with a node. The functor Ψ forgets
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these points. From what we have seen in Section 2.2 that we have the

following ring isomorphisms

A∗
H

Ψ∗−→ A∗
(Gm)∆

A∗
Aut(C0)

Ψ∗−→ A∗
Aut(Γ)n(Gm)∆ .

We have defined the classes t∆1 , r∆2 in A∗
H . By using the same notation

of Section 2.2, the map Ψ∗ is the identity on r∆2 . For each vertex P in Γ

such that e(P ) = 1 the map Ψ∗ sends tP to cGm
1 (H0(P1

C,O(z∞))) of the

same component, which we still call tP . Consequently, with reference

to the following diagram

[
∆∐

P1
C/(Gm)∆]

eF
��

B(Gm)∆

φ
// B(Aut(Γ) n (Gm)∆)

we have reduced the problem to consider the action of (Gm)∆ on

F̃∗(ω̃
Γ
0 ) = H0

(
∆∐

P1
C, ω̃

Γ
0

)
where, again with abuse of notation, we call ω̃Γ

0 the sheaf Ψ∗(ω̃Γ
0 ).

The map F̃ is the union of maps

F̃P := [P1
C/(Gm)∆]→ B(Gm)∆

where only the component of (Gm)∆ corresponding to P ∈ ∆ does not

acts trivially on P1
C and the action is

γ : Gm × P1
C → P1

C

(λ, [X0, X1]) 7→ [X0, λX1].

Set

P0 := [0, 1], P1 := [1, 1], P∞ := [1, 0].

We have that F := (ω̃0)
∨ is the sheaf on

∆∐
P1

C such that restricted:

• to the components with one node it is FP := (ω ⊗ O(z∞))∨

• to the components with two nodes it is FP := (ω⊗O(z∞+z0))
∨

• to the components with three nodes it is FP := (ω ⊗ O(z∞ +

z0 + z1))
∨



3.3. MUMFORD CLASSES 73

where ω is the canonical bundle on P1
C.

In the following, Chern classes will be equivariant for the action

of Gm. For each P ∈ ∆ let us indicate with KP the class cGm
1 (ω) ∈

A1
Gm

(P1
C) on each component, withRP the class cGm

1 (O(z∞)) ∈ A1
Gm

(P1
C),

and with QP the class cGm
1 (O(P0)) ∈ A1

Gm
(P1

C).

We have

cGm
1 (F∆1) = −K∆1 −R∆1

cGm
1 (F∆2) = −K∆2 −R∆2 −Q∆2 .

In order to determine Mumford classes it is then necessary to compute

the pushforward classes

F̃∆1∗(−K∆1 −R∆1)
h and

F̃∆2∗(−K∆2 −R∆2 −Q∆2)
h

for every natural h.

Let us start with computing the push-forward along F̃∆ of every

power of K∆ = cGm
1 (ω).

We have

F̃∆1∗(ω
∨) = H0(P1

C, ω
∨).

Now it is necessary to determine the action of (Gm) on global sec-

tions of ω∨. Let z := X1/X0 be the local coordinate around z∞, the

global sections of ω∨ are generated as a vectorial space by ∂
∂z
, z ∂

∂z
, z2 ∂

∂z
.

Relatively to this basis, the action of Gm is given by

γ : Gm ×H0(P1
C, ω

∨) → H0(P1
C, ω

∨)

(λ, a
∂

∂z
+ bz

∂

∂z
+ cz2 ∂

∂z
) 7→ (aλ

∂

∂z
+ bz

∂

∂z
+ c

1

λ
z2 ∂

∂z
)

the multiplicity of the action is therefore (1, 0,−1), so the Chern char-

acter of F̃∆∗(ω
∨) is et∆ + 1 + e−t∆ .

Let us observe that ω∨ is the tangent bundle relative to F̃∆, so by

applying the GRR Theorem we get

1 + et∆ + e−t∆ = F̃∆∗

[(
e−(K∆)

)( −K∆

1− eK∆

)]
By applying GRR to the trivial linear bundle we obtain:

1 = F̃∆∗

[
−K∆

1− eK∆

]
If we subtract the second equation from the first, we obtain

et∆ + e−t∆ = F̃∆∗

[(
1− eK∆

eK∆

)(
−K∆

1− eK∆

)]
= F̃∆∗

[
−K∆e

−K∆
]
,

from this, by distinguishing between even and odd cases, it follows that
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F̃∆∗K
2h
∆ = 0

F̃∆∗K
2h+1
∆ = −2t2h∆

Let us notice that there exist two equivariant sections of F̃∆ given

by the fixed points z0 and z∞, that we will call respectively s0 and s∞

B(Gm)∆
s0 //
s∞
// [P1

C/(Gm)∆]

From the self intersection formula we have

s∗0(Q∆) = −t∆, s∗0(R∆) = 0, s∗0(K∆) = t∆

s∗∞(Q∆) = 0, s∗∞(R∆) = t∆, s
∗
∞(K∆) = −t∆;

then by applying the projection formula (see [Ful] p.34) for every cycle

D ∈ A∗
(Gm)∆(P1) we have

Q∆ ·D = s0∗(1) ·D = s0∗(s
∗
0D)

R∆ ·D = s∞∗(1) ·D = s∞∗(s
∗
∞D).

With reference to the previous relations, the Mumford classes are deter-

mined on every component (we separate between even and odd cases)

F̃∆∗(−K∆ −R∆)2h = F̃∆
∗ (K∆)2h +

2h∑
a=1

(
2h

a

)
F̃∆∗(R

a
∆ ·K2h−a

∆ )

=
2h∑
a=1

(
2h

a

)
(F̃∆∗s∞∗)s

∗
∞(Ra−1

∆ ·K2h−a
∆ )

=
2h∑
a=1

(
2h

a

)
(−1)a−1t2h−1

∆ = −t2h−1
∆

and in a completely analogous way, we have the following relations

F̃∆1∗(−K∆1 −R∆1)
2h+1 = t2hi

F̃∆2∗(−K∆2 −R∆2 −Q∆2)
h = 0.

The last relation allows us to ignore components with two nodes. By

following the notation of Proposition 3.4 we notice that

F̃∗K̃
m+1 =

∑
P∈∆1

F̃P∗(−1)m+1(−KP −RP )m+1

and consequently, if we order elements of ∆1 from 1 to δ1, we have

km = −φ∗
tm1 + · · ·+ tmδ1

σ
.(15)
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3.3.3. Definition of Mumford classes on M≤3
0 . Now we con-

sider the universal curve

C≤3 Π−→M≤3
0 .

We have seen in Section 1.5 that the pushforward Π∗
(
ω≤3

0

)∨
is a well

defined rank three vector bundle. Consequently from [Kre] Section 3.6

we have that ci(Π∗
(
ω≤3

0

)∨
) = 0 for i > 3. We fix the following notation

c1 := c1(Π∗
(
ω≤3

0

)∨
)

c2 := c2(Π∗
(
ω≤3

0

)∨
)

c3 := c3(Π∗
(
ω≤3

0

)∨
).

We still call c1, c2, c3 their restriction to each stratum of M≤3
0 .

Definition 3.5. We define in A∗(M≤
0 ) Mumford classes k1, k2, k3 as

follows

k1 := −c1
k2 := 2c2 − c2

1

k3 := −c3
1 + 3c1c2 − 3c3

that is to say we define Mumford classes as the opposites of Newton

polynomials (see Definition 2.5) in c1, c2, c3.

From Proposition 3.2, the Chow ring A∗(M≤3
0 )⊗Q injects into the

product of A∗(MΓ
0 ) ⊗ Q over trees with at most three edges. Conse-

quently in order to verify that the above is a good definition we only

need to prove that the restrictions of Mumford classes to each stratum

are the opposites of Newton polynomials.

Proposition 3.6. Let Γ be a tree with at most three edges. Then

we have

k1 = −n1(Π∗
(
ωΓ

0

)∨
)

k2 = −n2(Π∗
(
ωΓ

0

)∨
)

k3 = −n2(Π∗
(
ωΓ

0

)∨
)

Proof. We consider first of all the case MΓ
0 = M0

0. Here we have

n1

(
Π∗
(
ωΓ

0

)∨)
= nPGl2

1 (sl2) = 0

n2

(
Π∗
(
ωΓ

0

)∨)
= nPGl2

2 (sl2) = −cPGl2
2 (sl2)

n3

(
Π∗
(
ωΓ

0

)∨)
= nPGl2

3 (sl2) = 0
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and we can conclude because on M0
0 we have seen that k1 = k3 = 0 and

k2 = cPGl2
2 (sl2).

Now let us consider any other tree Γ with at most three edges.

With reference to diagram 14, as Chern classes commutes with base

changing, we have

φ∗ci(Π∗
(
ωΓ

0

)∨
) = ci(Π̃∗

(
ω̃Γ

0

)∨
).

Given Γ we order elements of ∆1 from 1 to δ1. By putting together the

above relation and the equation (15), we reduce to show

ch(Π̃∗
(
ω̃Γ

0

)∨
) = 3 +

∞∑
m=1

tm1 + · · ·+ tmδ1
m!

.

We recall that the universal curve C̃Γ on M̃Γ
0 = B(E∆1 × G∆2

m ) is the

quotient stack

[C0/E
∆1 ×G∆2

m ].

Since we have a morphism

Ψ : B(Gm)∆ → M̃Γ
0

such that Ψ∗ : A∗(M̃Γ
0 )→ A∗

(Gm)∆ is an isomorphism, with reference to

the cartesian diagram

[C0/G∆
m]

�

Ψ //

eΠ
��

[C0/E
∆1 ×G∆2

m ]

bΠ
��

BG∆
m

Ψ // BE∆1 ×G∆2
m

we reduce to consider the pullback sheaf Ψ∗ (ω̃Γ
0

)∨
which we still call(

ω̃Γ
0

)∨
as its lifting to C0. As H1(C0,

(
ω̃Γ

0

)∨
) = 0 (see proof of Preposi-

tion 1.28), we have

ch(Π̃∗
(
ω̃Γ

0

)∨
) = chG∆

m(H0(C0,
(
ω̃Γ

0

)∨
))

On curves of topological type

• •
• • •
• • • •

we have that global sections of
(
ω̃Γ

0

)∨
are sections of OP1

C
(1) on extremal

components and OP1
C

on the other components, which agree on nodes.

Since H0(P1
C,OP1

C
(0)) = C, global sections of

(
ω̃Γ

0

)∨
are sections of

OP1
C
(1) on the two extremal components which are equal on nodes.
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On each extremal component we fix coordinates [X ′
0, X

′
1] and [X ′′

0 , X
′′
1 ].

Sections on OP1
C
(1) are linear forms

a1X
′
0 + b1X

′
1

a2X
′′
0 + b2X

′′
1

which agree at z∞ = [1, 0]. This happens if and only if a1 = a2. We

have only (Gm)∆1 which does not acts trivially on H0(C0,
(
ω̃Γ

0

)∨
) and

the action is

γ : (Gm ×Gm)×H0(C0,
(
ω̃Γ

0

)∨
) → H0(C0,

(
ω̃Γ

0

)∨
)

(λ1, λ2), (a, b1, b2) 7→ (a, λ1b1, λ2b2)

so the Chern character of Π̃∗ω
∨
0 is

1 + et1 + et2 = 3 +
∞∑
m=1

tm1 + tm2
m!

as we claimed.

The last case to consider is Γ equals to

•

•
oooooooo

OOOOOOOO

• •

we have that global sections of
(
ω̃Γ

0

)∨
are sections of OP1

C
(1) on ex-

tremal components and OP1
C
(−1) on the central component which agree

on nodes. Since H0(P1
C,OP1

C
(−1)) = 0, global sections of

(
ω̃Γ

0

)∨
are

sections of OP1
C
(1) on the three extremal components which are zero

on nodes. On each extremal component we fix coordinates [X ′
0, X

′
1],

[X ′′
0 , X

′′
1 ] and [X ′′′

0 , X
′′′
1 ]. Sections on OP1

C
(1) are linear forms

a1X
′
0 + b1X

′
1

a2X
′′
0 + b2X

′′
1

a3X
′′′
0 + b3X

′′′
1

which are zero on nodes if and only if a1 = a2 = a3 = 0. We have that

only (Gm)∆1 does not acts trivially on H0(C0,
(
ω̃Γ

0

)∨
) and the action is

γ : (Gm ×Gm ×Gm)×H0(C0,
(
ω̃Γ

0

)∨
) → H0(C0,

(
ω̃Γ

0

)∨
)

(λ1, λ2, λ3), (b1, b2, b3) 7→ (λ1b1, λ2b2, λ3b3)

so the Chern character of Π̃∗ω
∨
0 is

et1 + et2 + et3 = 3 +
∞∑
m=1

tm1 + tm2 + tm3
m!
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as we claimed. �



CHAPTER 4

The Chow ring of M≤3
0

In this Chapter we calculate A∗(M≤3
0 )⊗Q.

4.1. The open substack M0
0

Γ := • From Theorems (1.24) and (B.3) we have that the stack M0
0

is the classifying space of PGl2, owing to the fact that PGl2 ∼= SO3,

following [Pan] we have

A∗(M0
0)⊗Q ∼= Q[c2(sl2)].

Since (see Section 3.3) c2(sl2) = −(1/2)k2 we can write

A∗(M0
0)⊗Q = Q[k2].

4.2. The first stratum

Γ := • • We order the two components.

The automorphism group is C2 n (E × E), (where C2 is the order

two multiplicative group) and the action of its generator τ over E ×E
exchanges the components.

Then on the ring A∗
E×E ⊗ Q ∼= Q[t1, t2](see Proposition 2.9), it

exchanges the first Chern classes t1 and t2. The invariant polynomials

are the symmetric ones which are geometrically generated by: {(t1 +

t2)/2, (t
2
1+t

2
2)/2}. By recalling the description (15) of Mumford classes,

we have

A∗(M1
0)⊗Q = Q[k1, k2].

Let us consider the two inclusions i e j (respectively closed and open

immersions) and the étale covering φ

(16) M̃1
0

φ // M1
0

i

!!C
CC

CC
CC

C

M0
0 j

// M≤1
0

we obtain the following exact sequence

A∗(M1
0)⊗Q i∗−→ A∗(M≤1

0 )⊗Q j∗−→ A∗(M0
0)⊗Q −→ 0

79
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for what we have seen we have:

Q[k1, k2]
i∗−→ A∗(M≤1

0 )⊗Q j∗−→ Q[k2] −→ 0.

Now with reference to the paragraph (1.5) we have that the first Chern

class of the normal bundle NM1
0
M≤1

0 is

i∗i∗[M
1
0] = φ∗

1

2
(t1 + t2) = −k1

Since A∗M1
0 is an integral domain we can apply Lemma (2.28) and

obtain the ring isomomorphism

A∗(M≤1
0 )⊗Q ∼= Q[k1, k2]×Q[k2] Q[k2] ∼= Q[k1, k2].

where the map q : Q[k2] → Q[k1, k2]/(k1) = Q[k2] tautologically sends

k2 into k2.

4.3. The second stratum

Γ := • • • We order the two components with one node.

In this case the group of automorphism of the fiber is

Aut(CΓ2) ∼= C2 n (Gm × E × E) =: C2 nH,

where the action of τ sends an element g ∈ Gm into g−1 and exchange

the components isomorphic to E. Following the notation of Section 2.2

we identify A∗(B(Gm)3) with A∗(M̃Γ2
0 ) and A∗(BAut(Γ)n (Gm)3) with

A∗(MΓ
0 ). Set

t1 = ψ1(∞, 1)

t2 = ψ1(∞, 2)

r = ψ2(∞)

the action induced by τ on these classes is

τ(r, t1, t2) = (−r, t2, t1).

With reference to the map

B(Gm)3 φ−→ BAut(Γ) n (Gm)3

we recall that φ∗ is an isomorphism betweenA∗(M1
0)⊗Q andA∗(B(Gm)3)C2

(see Proposition 2.8).

We can describe A∗(BH) ⊗ Q = Q[r, t1, t2] as the polynomial ring

in r with coefficients in Q[t1, t2], so we write a polynomial P (r, t1, t2)

as
k∑
i=0

riPi(t1, t2).
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The polynomial P is invariant for the action of τ iff the coefficients

of the powers of r in P (r, t1, t2) are equal to those of the polynomial

P (−r, t2, t1).
That is to say that Pi with even index are invariant for the exchange

of t1 and t2, while those with odd index are anti-invariant. An anti-

invariant polynomial Q is such that

Q(t1, t2) +Q(t2, t1) = 0

and consequently it is the product of (t1 − t2) by an invariant polyno-

mial. It is furthermore straightforward verifying that any such polyno-

mial is invariant for the action of τ .

So an algebraic system of generators for (A∗
(Gm)3 ⊗Q)C2 is given by

u1 := t1 + t2
u2 := t21 + t22,

u3 := r(t1 − t2),
u4 := r2.

We know that (see Sections 3.3 and 3.1)

φ∗k1 = −u1

φ∗k2 = −u2

φ∗(γ2) = (t1 − r)(t2 + r) =
1

2
(u2

1 − u2) + u3 − u4

where γ2 = c2(NM2
0/M

≤2
0

), and there exists a class x ∈ A2M2
0 ⊗Q such

that

u3 = π∗x

Claim 4.1. The ideal of relations is generated on Q[k1, k2, γ2, x] by

the polynomial

(2x+ (2k2 + k 2
1 ))2 − (2k2 + k 2

1 )(4γ2 − k 2
1 ) = 0(17)

Proof. From direct computation we have that relation (17) holds

and the polynomial is irreducible. On the other hand let us consider

the map

f : A3
Q → A4

Q

(t1, t2, r) 7→ (u1, u2, u3, u4)

if the generic fiber of f is finite then f(A3
Q) is an hypersurface in A4

Q
and we have done. Now for semicontinuity it is sufficient to show that a

fiber is finite. Let us consider the fiber on 0. We have that u1, u2, u3, u4

are simultaneously zero iff t1 = t2 = r = 0. �
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Set

η := 2x+ (2k2 + k2
1),

we have that A∗(M2
0)⊗Q is isomorphic to the graded ring

Q[k1, k2, γ2, η]/I.

where the ideal I is generated by the polynomial

η2 − (2k2 + k 2
1 )(4γ2 − k 2

1 ).

Sinse φ∗φ∗ is multiplication by two, we also have the following relation

η = φ∗

(
1

2
(t1 − t2)(2r − t1 + t2)

)
.

Let us consider the fiber diagram

A∗(M≤2
0 )⊗Q

�

j∗ //

i∗

��

Q[k1, k2]

q

��

Q[k1, k2, γ2, η]/I
p // Q[k1, k2, η]/I

where I is the ideal generated by η2 + (2k2 + k 2
1 )k 2

1 .

The map q is injective so i∗ is injective too.

We set in A∗(M≤2
0 )⊗Q

γ2 := i∗1

q := i∗η,

the ring we want (from injectivity of i∗) is isomorphic to the subring

of A∗(M2
0)⊗Q generated by k1, k2, γ2, γ2η so we have

A∗(M≤2
0 )⊗Q =

Q[k1, k2, γ2, q]

(q2 + γ2
2(2k2 + k 2

1 )(k 2
1 − 4γ2))

4.4. The third stratum

The third stratum has two components.

4.4.1. The first component.

Γ′3 :=

•

•
ooooooo

OOOOOOO

• •
We order components in ∆1. Let us note that the component cor-

responding to the central vertex has three points fixed by the other

three components, consequently, given a permutation of the external

vertices, there is an unique automorphism related to the central vertex.

The group Aut(CΓ′3) is therefore isomorphic to S3 n (E3).
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As usual from proposition (2.9) it follows that

A∗
E3 ⊗Q ∼= Q[w1, w2, w3],

on which S3 acts by permuting the three classes

w1 := ψ1
∞,1

w2 := ψ1
∞,2

w3 := ψ1
∞,3

So we have
φ∗k1 = −(w1 + w2 + w3),

φ∗k2 := −(w2
1 + w2

2 + w2
3),

φ∗k3 := −(w3
1 + w3

2 + w3
3);

conesequently

A∗(M
Γ′3
0 )⊗Q ∼= Q[k1, k2, k3].

As before we fix the following notation

M̃
Γ′3
0

φ

''

f // Ψ(Γ2,Γ
′
3)

pr2 //

pr1

��

(
M̃Γ2

0

)≤2

Π

��

M
Γ′3
0

in // M≤3
0

where f is the union of all fα.

First of all let us notice that the class

φ∗γ′3 := π∗c3(Ni) = w1w2w3

depends on Mumford classes in the following way

6γ′3 = −(k 3
1 − 3k1k2 + 2k3)

so we can write

A∗(M
Γ′3
0 )⊗Q = Q[k1, k2, γ

′
3].

The restriction of γ2 to A∗(M
Γ′3
0 )is

γ2 := pr1∗
1

2
c2(pr

∗
1(Nin)/Npr2) = φ∗f

∗1

2
c2(pr

∗
1(Nin)/Npr2)

=
1

2
π∗(w1w3)
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from which

φ∗γ2 = w1w3 + w1w2 + w2w3

consequently, by writing

2γ2 = k 2
1 − k2

we have

A∗(M
Γ′3
0 )⊗Q = Q[k1, γ2, γ

′
3].

In order to restrict the class q let us notice thet we can write

f ∗r = 0

f ∗t1 = w1

f ∗t2 = w3

from which we have

f ∗
(

1

2
(t1 − t2)(2t− t1 + t2)

)
= −1

2
(w1 − w3)

2

and so

φ∗q = φ∗φ∗

(
−1

2
(w1 − w3)

2w1w3

)
= −((w1 − w3)

2w1w3 + (w1 − w2)
2w1w2 + (w2 − w3)

2w2w3)

we can therefore write q = −γ2(k 2
1 − 4γ2) + 3γ′3k1. With reference to

the inclusions

M
Γ′3
0

i−→M≤2
0 ∪M

Γ′3
0

j←−M≤2
0

we have the fiber square:

A∗(M≤2
0 ∪M

Γ′3
0 )⊗Q

�

j∗ //

i∗

��

Q[k1, k2, γ2, q]/I

ϕ

��
Q[k1, γ2, γ

′
3]

p // Q[k1, γ2]

where I is the ideal generated by the polynomial q2−γ2
2(2k2−k 2

1 )(k 2
1 −

4γ2) and the map ϕ is surjective and such that

kerϕ = (q + γ2(k 2
1 − 4γ2), k2 + 2γ2 − k 2

1 ).

Now let us observe that from Lemma (2.29) the ring in question is

isomorphic to

A/(0, I) :=
Q[k1, γ2, γ

′
3]×Q[k1,γ2] Q[k1, k2, γ2, q]

(0, I)
.

Set, with abuse of notation

k1 := (k1, k1) γ2 := (γ2, γ2) γ′3 := (γ′3, 0)

k2 := (k 2
1 − 2γ2, k2) q := (−γ2(k 2

1 − 4γ2), q)
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Now we prove the following

Proposition 4.2. The classes k1, γ2, γ
′
3, k2, q generate the ring A.

Proof. A pair of polynomials

(P1(k1, γ2, γ
′
3), P2(k1, γ2, k2, q))

is in A if and only if

P1(k1, γ2, 0) = P2(k1, γ2, k 2
1 − 2γ2,−γ2(k 2

1 − 4γ2)).

From this it follows that the pair of polynomials can be written in A

as

P2(k1, γ2, k2, q) + (P1(k1, γ2, γ
′
3)− P1(k1, γ2, 0), 0);

we end by noting that the second term can be written as

γ′3Q(k1, γ2, γ
′
3),

with Q suitable polynomial. �

Let us compute the ideal of relations. Let T (k1, γ2, γ
′
3, k2, q) be

a polynomial in Q[k1, γ2, γ
′
3, k2, q], it is zero in A iff T (k1, γ2, γ

′
3, k 2

1 −
2γ2,−γ2(k 2

1−4γ2)) and T (k1, γ2, 0, k2, q) are respectively zero in Q[k1, γ2, γ
′
3]

and Q[k1, γ2, k2, q]: in particular this imply that T is in the ideal of γ′3.

Consequently the polynomial T =: γ′3T̂ is zero in A iff T̂ (k1, γ2, γ
′
3, k 2

1 −
2γ2,−γ2(k 2

1 − 4γ2)) is zero in Q[k1, γ2, γ
′
3]. The ideal of relations in A

is so generated by

γ′3(−k2 + 2γ2 − k 2
1 )

γ′3(q + γ2(k 2
1 − 4γ2)).

Finally let us notice that the ideal (0, I) is generated in A by the

polynomial q2 + γ2
2(2k2 + k 2

1 )(k 2
1 − 4γ2). So we can conclude that

A∗(M≤2
0 ∪M

Γ′3
0 )⊗Q = Q[k1, k2, γ2, γ

′
3, q]/J,

where J is the ideal generated by the polynomials

q2 + γ2
2(2k2 + k 2

1 )(k 2
1 − 4γ2)

γ′3(−k2 + 2γ2 − k 2
1 )

γ′3(q + γ2(k 2
1 − 4γ2))



86 4. THE CHOW RING OF M≤3
0

4.4.2. The second component. Γ′′3 := • • • •
The group of Aut(CΓ′3) is C2 n (E × E × Gm × Gm). The action

of τ on this group exchange simultaneously the components related to

Gm and those related to E.

We have the isomorphism

A∗
E×E×Gm×Gm

⊗Q ∼= Q[v1, . . . , v4]

where

v1 = ψ1
∞,1

v2 = ψ1
∞,2

v3 = ψ2
∞,1

v4 = ψ2
∞,2

by gluing curves such that the two central components corresponds in

the point at infinity.

It follows that the action induced by τ is

τ(v1, v2, v3, v4) = (v2, v1, v4, v3).

Since C2 has order 2, the invariant polynomials are algebraically gener-

ated by the invariant polynomials of degree at most two (see. Theorem

7.5 [CLO]). It is easy to see that a basis for the linear ones is given

by u1 := v1 + v2, u2 := v3 + v4. For the vector subspace of invari-

ant polynomials of degree two, we can compute a linear basis by using

Reynolds’ operator

u3 := v2
1 + v2

2, u6 := v1v3 + v2v4,

u4 := v2
3 + v2

4, u7 := v1v2,

u5 := v1v4 + v2v3, u8 := v3v4

now we note that
u6 = u1u2 − u5,

u7 = (u2
1 − u3)/2,

u8 = (u2
2 − u4)/2

Consequently we can write

A∗M
Γ′3
0 ⊗Q ∼= Q[u1, . . . , u5]/I,

where I is the ideal generated by the polynomial

(18) 2u3u4 + 2u1u2u5 − u2
2u3 − u2

1u4 − 2u2
5

With reference to the degree two covering

M̃
Γ′3
0

φ−→M
Γ′3
0
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we have:

−u1 = φ∗k1 − u3 = φ∗k2.

In order to compute the restriction of the closure of the classes γ2 and

q of M≤2
0 let us fix the notation of the following diagram

M1
0,1 ×M0

0,2 ×M0
0,1

pr
′
2

))SSSSSSSSSSSSSSSSSSSSS

M̃
Γ′3
0

f1

55llllllllllllllllllllll

f3

))RRRRRRRRRRRRRRRRRRRRRR

φ

((

f2 // (M0
0,1 ×M1

0,2 ×M0
0,1)

I
pr
′′
2 //

(
M̃Γ2

0

)≤2

Π

��

M0
0,1 ×M0

0,2 ×M1
0,1

pr1

��

pr
′′′
2

55kkkkkkkkkkkkkkkkkkkkk

M
Γ′′3
0

i // M≤3
0

where (M0
0,1×M1

0,2×M0
0,1)

I is the component where the marked points

of the central curve (which is singular) are on different components.

As φ∗ is an isomorphism to the algebra of polynomials which are

invariants for the action of C2, let us choose in A∗(M
Γ′′3
0 ) ⊗ Q classes

ρ, λ, µ such that

u2 = φ∗ρ , u4 = φ∗λ , u5 = φ∗µ

First of all let us compute the restriction of the closure of γ2 ∈ A∗(M≤2
0 )⊗

Q, the polynomial in the classes ψ is 1
2
, we have

c3(φ
∗(Ni)) = (v1 − v3)(v3 + v4)(v2 − v4)

c1(f
∗
1 (Npr

′
2
)) = (v1 − v3)

c1(f
∗
2 (Npr

′′
2
)) = (v3 + v4)

c1(f
∗
3 (Npr

′′′
2

)) = (v2 − v4)

from which we obtain the following relations

φ∗γ′3 = (v1 − v3)(v3 + v4)(v2 − v4)

= φ∗
(
ρ

(
1

2

(
k 2
1 + ρ2 − k2 − λ

)
− µ

))
φ∗γ2 = ((v3 + v4)(v2 − v4) + (v1 − v3)(v2 − v4) + (v1 − v3)(v3 + v4))

= −ρk1 − µ+
1

2
(k 2

1 − ρ2 + k2 − λ)
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In order to have γ2 among the generators, set

λ = −2ρk1 − 2µ+ k 2
1 − ρ2 + k2 − 2γ2;

the equation (18) becomes

(19) K : σ2 − (2k2 + k 2
1 )((−k1 + 3ρ)(k1 + ρ)− 4γ2)

where we have set

σ = 2µ− 2k2 − k 2
1 + k1ρ.

Then we can write the ring A∗(M
Γ′′3
0 )⊗Q as

Q[k1, ρ, k2, γ2, σ]/K.

In the new basis we have

γ′3 = ρ(ρ2 − ρk1 + γ2).

Let us restricts the closure of q ∈ A∗(M≤2
0 )⊗Q to MΓ1

0 . We recall that

the related polynomial in classes ψ of M̃Γ2
0 is:

1

2
(t1 − t2)(2r − t1 + t2)

On M1
0,1 ×M0

0,2 ×M0
0,1 we have

f ∗1 t1 = v3

f ∗1 t2 = v2

f ∗1 r = −v4,

on (M0
0,1 ×M1

0,2 ×M0
0,1)

I we have

f ∗2 t1 = v1

f ∗2 t2 = v2

f ∗2 r =
ψ2
∞ − ψ2

0

2
=
v3 − v4

2
,

and in the end on M0
0,1 ×M0

0,2 ×M1
0,1 we have

f ∗3 t1 = v1

f ∗3 t2 = v4

f ∗3 r = v3,

consequently the polynomials related to the three components of Ψ(Γ2,Γ
′′
3)

are

P1 =
1

2
(v3 − v2)(v2 − v3 − 2v4)

P2 =
1

2
(v1 − v2) (v4 − v3 − v1 + v2)

P3 =
1

2
(v4 − v1)(v1 − 2v3 − v4)
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from which

φ∗q = 2
3∑

α=1

(PαNα)

= φ∗((3ρ+ k1)γ
′′
3 + (ρ2 − γ2)σ)

this means that the image of q in B := A∗(M
Γ′′3
0 )⊗Q/γ′′3 is

(ρ2 − γ2)σ.

Further let us notice that the image of γ′3 in B is 0.

In order to compute A∗(M≤3
0 )⊗Q, let us consider its isomorphism

with the fibered product

A∗(M≤3
0 )⊗Q

�

j∗ //

i∗

��

Q[k1, k2, γ2, γ
′
3, q]/J

ϕ

��
Q[k1, ρ, k2, γ2, σ]/K

p // B

With reference to the fiber square

A

�

j∗ //

i∗

��

Q[k1, k2, γ2, γ
′
3, q]

ϕ

��
Q[k1, ρ, k2, γ2, σ]/K

p // B

we have that the ring in question is isomorphic to the quotient A/(0, J).

Now we look for generators of the ring A.

Proposition 4.3. The following elements of A

k1 := (k1, k1); k2 := (k2, k2); γ2 := (γ2);

γ′3 := (0, γ′3); q := ((ρ2 − γ2)σ, q); γ′′3 := (γ′′3 , 0);

r := (γ′′3ρ, 0); s := (γ′′3σ, 0) t := (γ′′3ρ
2, 0);

u := (γ′′3ρσ, 0)

are generators of the ring.

Proof. The image through j∗ of these elements generates the whole

Q[k1, k2, γ2, γ
′
3, q], consequently we just need to show that this system,

through i∗, generates the kernel of p, that is to say the ideal generated

by γ′′3 .

Let P be a polynomial in the ideal (γ′′3 ), it can be written uniquely

as

P := γ′′3

(
N1∑
i=0

Qiρ
i +

N2∑
j=0

Rjρ
jσ

)
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where Qi and Rj are polynomials in k1, k2, γ2. We can then write P in

the following way:

P :=

N1∑
i=0

i∗(Qi)γ
′′
3ρ

i +

N2∑
j=0

i∗(Rj)γ
′′
3ρ

jσ.

Let us recall the following equation

γ′′3 = ρ3 + ρ2k1 + ργ2,

so, for every i > 2, we have:

(γ′′3 )2ρi−3 = γ′′3ρ
i + γ′′3ρ

i−1k1 + γ′′3ρ
i−2γ2

from which it follows by induction that for every i > 2 the element

γ′′3ρ
i can be written as pull-back of a polynomial in k1, γ2, γ

′′
3 , r, t.

Now let us notice that i∗q = ρ2σ − γ2σ, from which for every i > 1

we have:

γ′′3ρ
i−2i∗q = γ′′3ρ

iσ − γ′′3ρi−2γ2σ,

consequently (by considering the previous equation) we can again verify

by induction that for every i > 1 the element γ′′3ρ
iσ can be written as

pull-back of a polynomial in k1, γ2, γ
′′
3 , r, s, t, u, as requested. �

Now let us call Ã the ring Q[k1, k2, γ2, γ
′
3, γ

′′
3 , q, r, s, t, u]. We have

by fact defined a surjective homomorphism a : Ã → A; we call again

j∗ and i∗ their composition with a, we have:

ker a = ker i∗ ∩ ker j∗.

Now, for what we’ve seen, we have:

ker i∗ =


γ′3;

r2 − γ′′3 t;
rs− γ′′3u;
s2 − (γ′′3 )2(2k2 + k 2

1 )((−k1 + 2ρ)(k1 + ρ) + 4γ2)


ker j∗ = (γ′′3 , r, s, t, u)

and so:

ker a =

 γ′3γ
′′
3 ; γ′3r; γ′3s; γ′3t; γ′3u;

r2 − γ′′3 t; rs− γ′′3u;
s2 − (γ′′3 )2(2k2 + k 2

1 )((−k1 + 2ρ)(k1 + ρ) + 4γ2)


We make the quotient of A = A′/ ker a by the ideal (0, J) and we

obtain the following:

Theorem 4.4. The ring A∗(M≤3
0 )⊗Q is:

Q[k1, k2, γ2, γ
′
3, γ

′′
3 , q, r, s, t, u]/L,
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where L is the ideal generated by the polynomials

γ′3(−k2 + 2γ2 − k 2
1 ); γ′3(q + γ2(k 2

1 − 4γ2));

γ′3γ
′′
3 ; γ′3r; γ′3s; γ′3t; γ′3u;

r2 − γ′′3 t; rs− γ′′3u;
q2 + (γ2)

2(2k2 + k 2
1 )(k 2

1 − 4γ2);

s2 − (2k2 + k 2
1 )((−k1γ

′′
3 + 2r)(k1γ

′′
3 + r) + 4γ2(γ

′′
3 )2)

We notice that the degree of the generators are

(1, 2, 2, 3, 3, 4, 4, 5, 5, 6)

and that the 11 relations have degree

(5, 7, 6, 7, 8, 8, 9, 8, 9, 8, 10).





APPENDIX A

Algebraic spaces

In this Appendix we give some definitions about algebraic spaces

which we used throughout this work. The main reference is [Knu].

Definition A.1. An algebraic space X is a sheaf

X : (SchC)opp → (Sets)

in the étale topology such that there exists a scheme U and a map of

sheaves U → X such that for every scheme V and every map V → X

the fiber product U ×X V is representable and the projection to V

is an étale surjective map. Further we request a quasiseparatedness

condition: the map of schemes

U ×A U → U ×C U

is quasicompact.

A map U → X as in the definition is called a representable étale

covering of X.

The structure sheaf of rings O on SchC can be extended to the

category of algebraic spaces over C. Given an algebraic space X, we

call OX the restriction of O to the local étale topology of X.

An algebraic space X is quasicompact if X has a covering U → X

which is quasicompact.

Now we define extention to algebraic spaces of properties of the

category SchC.

An algebraic space X with a representable étale covering U → X

is reduced, nonsingular, normal, n−dimensional if U is.

A map f : X → Y of algebraic schemes is surjective, flat, faithfully

flat, universally open, étale, locally of finite presentation, locally of

finite type, locally quasifinite if for some representable étale coverin

U → Y and for some étale covering V → U ×Y X the induced map

V → U has the corresponding property. A map f : X → Y is of finite

presentation, of finite type or quasifinite if f is quasicompact and has

the locally property. All these maps are stable for base extension.

A map f : X → Y of algebraic spaces is an open immersion, a closed

immersion, an immersion, an affine morphism a quasiaffine morphism
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if for any scheme T and map T → Y the fiber product X ×Y T is a

scheme (that is to say that f is representable) and the projection map

X ×Y T → T has the corresponding property. All these maps satisfy

effective descent.

A map of algebraic spaces f : X → Y is separeted if the induced

map X → X ×Y X is a closed immersion.

Definition A.2. Let X be an algebraic space. A point of X is a

morphism

Speck → X

where k is a field. Two points p1, p2

p2

i2
��

p1

f
>>}

}
}

} i2 // X

are called equivalent if there is an isomorphism f such that i2f = i1.

The associated underlying topological space of X, |X|, is defined

as the set of points modulo equivalence whose topological structure is

given by taking a subset V ⊂ |X| to be closed if V is of the form |Y |
for some closed subspace Y of X.

Let f : X → Y be a map of algebraic spaces. We say that f is

closed or universally closed if the induced map between the underlying

topological spaces is.

A map f : X → Y is proper if it is separated, of finite type and

universally closed.

We can define sheaves of OX−modules and we have as in the case of

schemes push forwards of sheaves and pull back maps of OX−modules.

We say that a sheaf F of OX−modules is quasi coherent, coherent,

locally free of rank n if for some covering ϕ : U → X the sheaf ϕ∗(F)

is. A locally free OX−module of rank 1 is called invertible sheaf.

Let X be an algebraic space over C. We define PnX as PnC ×C X,

projective n−space over X. There is a canonical invertible sheaf O(1)

on PnC and we use the map PnX → PnC to induce a canonical invertible

sheaf O(1) on PnX .

A map f : X → Y of algebraic spaces is quasiprojective if there

is an integer n and an immersion i : X → PnY such that f is the

composition X → PnY → Y . The map f is projective if for some such

i, i is a closed immersion.



APPENDIX B

Algebraic stacks

Now we give some basic definitions about algebraic stacks. We

mainly use the following references: [De-Mu], [L-MB], Appendix

[Vis]. A particular kind of algebaic stack are the quotient stacks. We

will prove Theorem B.3, which gives a condition to the points of an

algebraic stack in order to be a quotiont stack.

Definition B.1. Let C be a category and pr : S→ C a category over

C. For each X ∈ Obj(C), we denote by S(X) the fibre pr−1(X, id). The

category S is fibered in groupoids over C if the following two conditions

are verified

a For all ϕ : X → Y in C and y ∈ Obj(S(Y ))

x_

��

f //___ y
_

��
X

ϕ // Y

there is a map f in S with pr(f) = ϕ.

b Given a diagram

x

f

��
y

g // z

in S, let

X

ϕ

��
Y

ψ // Z

be its image in C. Then for all θ : X → Y such that ϕ = ψθ, there is

a unique h : x→ y such that f = gh and pr(h) = θ.

Condition b implies that the f : x→ y whose existence is asserted

in a is unique up to canonical isomorphism.

A stack is a category S fibered in groupoids over a site mathcalC

(equipped with a Grothendieck topology) such that

A for every object T in C and for every pair of objects x and y in

S(T ) the functor IsomT (x, y) is a sheaf for the topology on C;
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B for every object T ∈ C, given a covering {ϕα : Tα → T}α∈I , any

descent datum in S relative to it, is effective.

An Artin stack is a stack S over SchC equipped with the étale topol-

ogy, which satisfies the following properties:

C for every pair of schemes X, Y in SchC with maps to S (that is

to say for any pair of objects x and y in S) the fibered product

X ×S Y //

��

Y

��
X // S

is represented by a finite type separated algebraic space;

D there exists a surjective smooth map U → S where U is a scheme.

Definition B.2. Let X be a scheme in SchC and G a linear al-

gebraic group which operates on X. We denote by [X/G] the stack

whose sections over a scheme T in SchC is the category of principal

homogeneous spaces E over T , with structural group G, provided with

a G−morphism ϕE → X.

Theorem B.3. Let G be a (linear) algebraic group on SpecC and

let X be an algebraic stack such that for every algebraically closed field

k which extends C, every object in X(Speck) is isomorphic to a fixed

object C0 and

G = IsomSpecC(C0, C0).

If for every object C
π−→ T ∈ X there exists an étale covering in SchC

U := {Tα
ϕα−→ T}α∈I

such that for every α we have an isomorphism

ϕ∗α(C) ∼= C0 ×SpecC Tα.

then X is equivalent to the classifying space BG.

Proof. We can associate to the object π the sheaf of isomorphisms

FC := IsomT (C0 × T,C) : SchC/T
opp → (Sets).

By hypothesis this sheaf coincides locally in the étale topology to the

sheaf F0 := IsomT (C0 × T,C0 × T ) : SchC/T
opp → (Sets) which is

represented by the scheme AutC0×SpecCT = G×SpecCT , furthermore we

know that an étale sheaf locally representabl is globally representable i

the category of algebraic spaces. Let us call such scheme associated to

the object C
π−→ T as P (C)

Π−→ T . As the associated sheaf AutC0
acts

to FC through composition with the action of G on C0, it follows that

P (C) is a G-principal bundle.
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For every T ∈ SchC we have then defined a map:

f : X(T )→ BG(T )

which extends to a functor:

f : X → BG.

Now we show that the functor f is an equivalence of fibered

categories.

Let us fix T ∈ SchC and let U := {Tα
ϕα−→ T} be an f.p.p.f covering

of T .

Let us call the full subcategory of BG(T ) (resp. of XU(T )) made

of objects that admit a trivialization on U (resp. XU(T )) as BGU(T ).

We observe that f restricts to a functor:

f : SU(T )→ BGU(T ),

because Tα ×T P (C) ∼= P (Tα × C). We have just to prove that this

restriction is an equivalece of fibered categories as we can always find

a simoultanous(?) trivialization.

Let C
π−→ T be an object of X that admits a trivialization on U and

let us choose a family of isomorphisms:

{ψα : ϕ∗α(C) =: Cα ∼=−→ Cα
0 := C0 ×SpecC Tα}α∈I .

Set:

Cαβ := C ×T Tα ×T Tβ
Cαβ

0 := C0 ×SpecC Tα ×T Tβ
and let us consider the following commutative diagram:

Cαβ
0 Cβ

0

Cα
0

Cαβ
pr2 //

pr1

||yy
yy

yy

��

ψ1
α

OO

ψ2
β

OO

Cβ

��

~~||
||

||

ψβ

OO

Cα //

��

ψα

OO

C

��

Tαβ
pr2 //

pr1

||zz
zz

zz
Tβ

ϕβ~~~~
~~

~~

Tα ϕα

// T
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where ψ1
α := pr∗1(ψα) and ψ2

β := pr∗2(ψβ). Let us define the isomor-

phism:

gαβ := ψ1
α ◦ (ψ2

β)
−1 : Cαβ

0

∼=−→ Cαβ
0 ,

The isomorphism gαβ is an element ofG(Tαβ) and furthermore defines

a cocycle for G, that is to say an object:

{gαβ}α,β∈I ∈ CocU(G).

We can extends to a functor f ′ : SU(T )→ CocU(G).

Let us consider the following diagram:

BGU(T )

∼= g

��

XU(T )

f 66mmmmmmm

f ′ ((QQQQQQ

CocU(G)

and we end by noting that there is a canonical isomorphism of f ′ with

g ◦ f . �
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