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Introduction

Overview

The main objects of investigation of this thesis are moduli stacks of hyperel-
liptic curves. The moduli stack of hyperelliptic curves of genus g is denoted Hg,
and its objects consist of the datum of a family of smooth curves of genus g and
an involution, such that the quotient of the family of curves with respect to the
involution is a family of smooth rational curves.

We study two types of invariants of Hg: the integral Chow ring and the graded-
commutative ring of cohomological invariants. For what concerns the first invariant,
our main result is the following computation.

Theorem A. Let g ≥ 3 be an odd number and let k0 be a field of characteristic
0 or > 2g + 2. Then we have:

CH(Hg) = Z[τ, c2, c3]/(4(2g + 1)τ, 8τ2 − 2g(g + 1)c2, 2c3)

where the degree of τ is 1, the degree of c2 is 2 and the degree of c3 is 3.

We also provide a geometric interpretation of the generators in terms of Chern
classes of vector bundles over Hg.

Our second main result is the following computation of the additive structure
of Inv•(Hg) with coefficients in F2.

Theorem B. Let k0 be an algebraically closed field of characteristic 6= 2, and
let g ≥ 3 be an odd number.

Then the graded-commutative ring of cohomological invariants Inv•(Hg) with
coefficients in F2, regarded as a graded F2-vector space, has a basis given by the
elements

1, x1, w2, x2, ..., xg+1, xg+2

where the degree of each xi is i and w2 is the second Stiefel-Whitney class coming
from Inv•(BPGL2).

Finally, we focus on the geometric meaning and multiplicative structure of
cohomological invariants. The following theorem is obtained in collaboration with
Roberto Pirisi. In what follows, we indicate as {n} the equivalence class of a non-
zero element n of a field K inside K∗/(K∗)2.

Theorem C (joint with R. Pirisi). Fix a base field k0 of characteristic 6= 2
and an even number g ≥ 2.

Then there exist 2g + 2 cohomological invariants βi for i = 1, . . . , 2g + 2 and
an exceptional cohomological invariant ηg+2 such that:

(1) The invariants 1, β1, . . . , βg+1, ηg+2 are F2-linearly independent, βi = 0
for i > g + 2 and βg+2 = {2} · βg+1.

i
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(2) The multiplicative structure is given by the formulas:

βr · βs = {−1}m(r,s)βr+s−m

βi · ηg+2 = 0 for i 6= g + 1
βg+1 · ηg+2 = {−1}g+1ηg+2

ηg+2 · ηg+2 = {−1}g+2ηg+2

where m(r, s) is computed as follows: write r in dyadic form as
∑

2i for
i ∈ R ⊂ {0, 1, 2, . . . }, and write s as

∑
2i for i ∈ S ⊂ {0, 1, 2, . . . }. Then

m(r, s) =
∑

2i for i ∈ R ∩ S.

(3) If k0 is algebraically closed, then the invariants 1, β1, . . . , βg+1, ηg+2 form
a basis of Inv•(Hg) as an F2-vector space.

In the next section we give a more detailed description of the contents of the
thesis, together with some background informations.

Motivations and discussion of the main results

Moduli theory and algebraic stacks. Moduli theory is a fascinating area of
algebraic geometry: its roots can be traced back to the pioneering observations of
Riemann on the dimension of parameter spaces (nowadays called moduli spaces) of
Riemann surfaces of fixed genus. The development of moduli theory has prompted
a lot of further research in algebraic geometry over the years.

The idea behind moduli theory is the following: given a class of geometrical
objects that share some common properties (e.g. Riemann surfaces of fixed genus,
closed subschemes of a fixed algebraic variety, coherent quotient sheaves of a fixed
coherent sheaf), we can look for a moduli scheme that “parametrizes” those objects.

A first attempt to formally define what “parametrizes” means would be to ask
for a bijection between geometric points of the moduli scheme and isomorphism
classes of the objects. This request ends to be too naive, as it is easy to see that the
disjoint union of points over the set of isomorphism classes of objects of the given
kind satifies this property.

We want more: a moduli scheme should be a scheme whose geometry captures
the behaviour of our objects in families. The language of category theory can help
us to formulate in a precise way what we are looking for:

Definition. Let F : (Sch)op → (Set) be a functor from the opposite category
of schemes to the category of sets. We say that a scheme F represents the functor
F if there is an equivalence Hom(−,F)→ F(−).

In particular, if the functor F comes from a moduli problem and it is represented
by a scheme F, we say that F is a fine moduli scheme.

Examples of fine moduli schemes are:
(1) Grassmannians: consider the moduli functor

S 7−→

 ϕ : O⊕nS → V such that
ϕ is surjective and

V is locally free of rank m


The associated fine moduli scheme is the Grassmannian Gr(m,n).

(2) Hilbert scheme: let X be a relatively projective scheme over a noetherian
base B. We can consider the moduli functor from the category (Sch/B)op
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to (Set) defined as follows:

S 7−→
{
Closed subschemes Z ⊂ X × S

flat and proper over S

}
This functor is represented by the Hilbert scheme HilbX/B (see [Gro95b]).

(3) Quot scheme: let X be a relatively projective scheme over a noetherian
base B and let F be a coherent OX -module. We can consider the following
functor:

S 7−→

Surjective OX×S-linear morphisms ϕ : FS → E
with E coherent sheaf on X × S

properly supported and flat over S


The associated fine moduli scheme is the Quot scheme QuotE,X/B (see
[Gro95b]).

Consider the moduli functor of Riemann surfaces of fixed genus, or over a general
base the moduli functor of algebraic smooth curves of fixed genus, defined as

Mg : S 7−→

{
C → S proper and smooth morphisms

whose geometric fibres are curves of genus g

}
isomorphism

where by curves we mean proper and geometrically connected schemes of dimension
1: then this functor cannot be represented by a fine moduli scheme.

Algebraic stacks were introduced to somehow solve this issue: they had been
first envisioned by Grothendieck ([Gro95a]) and independently by Mumford in
[Mum65], and then formally defined in the subsequent works of Deligne and Mum-
ford ([DM69]) and M. Artin ([Art74]).

Let us explain the basic ideas behind algebraic stacks by focusing on the par-
ticular case of moduli of smooth curves of fixed genus: observe that the moduli
functor we exhibited above can be upgraded to a pseudofunctor from the category
(Sch)op to the category of groupoids (Grpd) by removing the identification between
isomorphic families.

More precisely, we defineMg as the pseudofunctor that sends a scheme S to the
groupoid whose objects are given by families of curves over S and whose morphisms
are given by isomorphisms of the families over the base. The pullback morphisms
are induced by taking the pullback of families of curves.

This is not a strict functor, because the composition of pullback morphisms is
only isomorphic to the pullback of the composition, and it is not stricty equal to it.

As shown in [DM69], the pseudofunctorMg enjoys some very nice properties,
namely:

(1) The natural diagonal transformation δ :Mg →Mg×Mg is representable:
this boils down to the claim that, given any two families of curves C → B
and C ′ → B, the isomorphism functor IsomB(C,C ′) that sends a scheme
S to the set of isomorphisms between the families CS → S and C ′S → S
is represented by a separated and quasi-compact scheme.

(2) There exists a natural transformation Φ : hU → Mg from a functor of
points of a scheme U such that Φ is representable, étale and surjective:
this means that given any other scheme T and a natural transformation
hT → Mg, the fibred product hU ×Mg

hT is equivalent to the functor
of points of a scheme S and in addition the corresponding morphism of
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schemes S → T is étale and surjective.

A pseudofunctor satisfying these properties is a Deligne-Mumford stack, a particular
class of algebraic stacks. Therefore,Mg is a Deligne-Mumford stack that basically
by definition represents the moduli pseudofunctor of smooth curves of fixed genus.

Though abstract in nature, we can still do geometry on Deligne-Mumford
stacks. Many geometric invariants originally defined only for schemes had been
generalized to this setting, e.g. cohomology groups, Chow groups, K-theory, de-
rived categories, and so on. The extension of these notions to the realm of Deligne-
Mumford or algebraic stacks had been the result of many efforts in the last fifty
years ([Mum65], [Gil84], [Vis89], [Kre99] and others).

This thesis deals with a specific Deligne-Mumford stack, the stack Hg of hy-
perelliptic curves of genus g, and it aims at investigating two specific invariants of
this stack: the integral Chow ring CH(Hg) and the graded-commutative ring of
cohomological invariants Inv•(Hg).

Integral Chow ring of Hg. The notion of Chow groups plays a central role
in intersection theory. Given a scheme of finite type over a field, its Chow groups
can be thought as an homology theory built up from algebraic cycles (i.e. algebraic
closed subvarieties) instead of topological cycles, and with homological equivalence
relation substituted by rational equivalence relation.

The idea of Chow groups was proposed by Severi in the Thirties, but a formal
definition first appeared in the Chow’s paper [Cho56]. In the second half of the
last century Fulton, MacPherson and others gave a firm foundation to this theory
(see [Ful98]), exploiting the language of schemes developed by Grothendieck and
his collaborators.

Chow groups of a smooth variety over a field inherit an additional structure of
graded ring, with the multiplication given by the intersection product.

The moduli stack of smooth curves Mg (resp. the proper moduli stack of
stable curves Mg) admits a so called coarse moduli scheme Mg (resp. Mg), i.e.
there exists a morphismMg →Mg (resp. Mg →Mg) that induces a bijection on
geometric points and it is initial among all the morphisms fromMg (resp. Mg) to
a scheme.

The coarse moduli schemes Mg and Mg are not smooth, but in the landmark
paper [Mum83] Mumford showed that there is a well defined intersection product
on their Chow groups with rational coefficients, i.e. the Chow groups tensorized
withQ. Actually, this is an aspect of a more general phenomenon: in [Vis89] Vistoli
defined the notion of rational Chow ring of a smooth Deligne-Mumford stack, and
he also showed that this coincides with the rational Chow ring of its coarse moduli
scheme.

In the paper [Mum83] Mumford also computed an explicit presentation of the
rational Chow rings CH(M2)Q and CH(M2)Q in terms of generators and relations,
saying that it seems very worthwile to work out CH(Mg) for other small values of
g, in order to get some feeling for the properties of these rings and their relation to
the geometry of Mg.

Since then, other rational Chow rings of moduli of curves had been computed:
in [Fab90a], [Fab90b] Faber gave a presentation of CH(M3)Q, CH(M3)Q and
CH(M4)Q. In [Iza95] Izadi computed the rational Chow ring ofM5, and in [PV15]
Penev and Vakil obtained an explicit presentation of CH(M6)Q.

Generalizing some ideas of Totaro contained in [Tot99], Edidin and Graham
developed in [EG98] an intersection theory with integral coefficients for quotient
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stacks, which are a specific class of algebraic stacks. This theory applies in particular
to the cases of moduli of curves.

Edidin and Graham also showed that for Deligne-Mumford stacks which are
quotient stacks, the tensor product of their integral Chow ring with Q and the
rational Chow ring as defined by Vistoli are isomorphic.

In the last twenty years, some integral Chow rings of moduli stack of curves
had been computed: in [EG98] Edidin and Graham determined CH(M1,1), the
integral Chow ring of the moduli stack of stable elliptic curves, and Vistoli in the
appendix [Vis98] computed CH(M2), the integral Chow ring of the moduli stack of
curves of genus 2. Edidin and Fulghesu obtained in [EF08] an explicit presentation
of the integral Chow ring of the moduli stack of at most 1-nodal rational curves,
and in [EF09] they computed the integral Chow ring of the stack of hyperelliptic
curves of even genus.

The first main result of this thesis is an explicit presentation of the integral
Chow ring of Hg, the moduli stack of hyperelliptic curves of genus g, when g ≥ 3
is an odd number.

Theorem A (Theorem 2.5.2). Let k0 be a field of characteristic 0 or > 2g+ 1,
and let Hg be the stack over k0 of hyperelliptic curves of odd genus g, with g ≥ 3.
Then we have:

CH(Hg) = Z[τ, c2, c3]/(4(2g + 1)τ, 8τ2 − 2g(g + 1)c2, 2c3)

where the degree of τ is 1, the degree of c2 is 2 and the degree of c3 is 3.

We also provide a geometrical interpretation of the generators of this ring.
The content of the theorem above had already been presented in the paper

[FV11], but recently Pirisi pointed out a mistake in the proof of [FV11, lemma
5.6] which is crucial in order to complete the computation. Actually, we prove
that the proof of [FV11, lemma 5.6] cannot be fixed, because its consequences, in
particular [FV11, lemma 5.3], are wrong.

Cohomological invariants of Hg. The second part of the thesis focuses on
another invariant of algebraic stacks, the graded-commutative ring of cohomological
invariants.

The idea behind the notion of cohomological invariants comes from the theory of
characteristic classes in topology: first introduced by Stiefel and Whitney as a tool
to study vector bundles on manifolds, characteristic classes were later generalized
to principal bundles.

Fix a topological group G and a cohomology theory H: then characteristic
classes are a functorial way to associate to every principal G-bundle over a topo-
logical space X a cohomology class in H(X). In other terms, characteristic classes
are natural transformations from the functor

BG : (Top) −→ (Set), X 7−→ {G-bundles over X} / '

to the cohomology functor X 7→ H(X).
Cohomological invariants first appeared as a reformulation of this idea in an

algebraic setting. More precisely, fix a positive number p, a field k0 such that p
is invertible in k0 and an algebraic group G. Then we replace the category (Top)
with (Field/k0), the category of field extensions of k0, and the cohomology theory
H with

H• : (Field/k0) −→ (GrCommRing), K 7−→ ⊕iHi
ét(Spec(K), µ⊗ip )

where µp denotes the group of pth-roots of unity. We also substitute BG with its
algebro-geometrical counterpart, namely the classifying stack BG or, better, its
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functor of points:
PBG : (Field/k0) −→ (Set), K 7−→ {G-torsors over Spec(K)} / '

Cohomological invariants are then defined by copying the definition of characteristic
classes in topology:

Definition ([GMS03, Def. 1.1]). A cohomological invariant of BG with co-
efficients in Fp is a natural transformation of functors

PBG −→ H• := ⊕iHi
ét(−, µ⊗ip )

The graded-commutative ring of cohomological invariants is denoted Inv•(BG).

The first appearance of cohomological invariants, though not in this formula-
tion, can be traced back to the seminal paper of Witt [Wit37] and since then they
have been extensively studied (see [GMS03]).

In the recent work [Pir18a], Pirisi extended the notion of cohomological in-
variants from classifying stacks to smooth algebraic stacks over k0:

Definition ([Pir18a, Def. 1.1]). Let X be a smooth algebraic stack over k0.
Then a cohomological invariant of X is a natural transformation

PX −→ H•

from the functor of points of X to H• which satisfies a certain continuity condition
(see [Pir18a, Def. 1.1]).

The graded-commutative ring of cohomological invariants of a smooth algebraic
stack X is denoted Inv•(X ).

The second main result of this thesis is the following:

Theorem B (Theorem 3.1.1). Let k0 be an algebraically closed field of char-
acteristic 6= 2, and let Hg denotes the moduli stack over k0 of smooth hyperelliptic
curves of odd genus g ≥ 3.

Then the graded-commutative ring of cohomological invariants Inv•(Hg) with
coefficients in F2, regarded as a graded F2-vector space, has a basis given by the
elements

1, x1, w2, x2, ..., xg+1, xg+2

where the degree of each xi is i and w2 is the second Stiefel-Whitney class coming
from Inv•(BPGL2).

The cohomological invariants Inv•(Hg) with coefficients in Fp, when g is even
or equal to three, had already been computed by Pirisi in [Pir17] and [Pir18b]
when the base field is algebraically closed and its characteristic does not divide p.

When g is odd and p 6= 2, the generators of Inv•(Hg) can also be deduced from
the main result of [Pir18b]. The importance of the case p = 2 is due to the fact
that under this assumption, the cohomological invariants of Hg present a richer
structure.

The third main result of this thesis concerns the multiplicative structure of
Inv•(Hg) with coefficients in F2 when g ≥ 2 is even.

Theorem C (Theorem 4.2.14, joint with R. Pirisi). Fix a base field k0 of
characteristic 6= 2 and an even number g ≥ 2.

Then there exist 2g + 2 cohomological invariants βi for i = 1, . . . , 2g + 2 and
an exceptional cohomological invariant ηg+2 such that:

(1) The invariants 1, β1, . . . , βg+1, ηg+2 are F2-linearly independent, βi = 0
for i > g + 2 and βg+2 = {2} · βg+1.
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(2) The multiplicative structure is given by the formulas:
βr · βs = {−1}m(r,s)βr+s−m

βi · ηg+2 = 0 for i 6= g + 1
βg+1 · ηg+2 = {−1}g+1ηg+2

ηg+2 · ηg+2 = {−1}g+2ηg+2

where m(r, s) is computed as follows: write r in dyadic form as
∑

2i for
i ∈ R ⊂ {0, 1, 2, . . . }, and write s as

∑
2i for i ∈ S ⊂ {0, 1, 2, . . . }. Then

m(r, s) =
∑

2i for i ∈ R ∩ S.

(3) If k0 is algebraically closed, then the invariants 1, β1, . . . , βg+1, ηg+2 form
a basis of Inv•(Hg) as an F2-vector space.

Methods

The starting point for our computations is the presentation of the moduli stack
of hyperelliptic curves of odd genus as a quotient stack contained in [AV04]: let
A(1, 2g+2) be the affine space of binary forms of degree 2g+2, and let PGL2×Gm
act on this scheme as follows:

(A, λ) · f(x, y) := λ−2 det(A)gf(A−1(x, y))
Observe that the determinant of an element of PGL2 is not well defined, but the
action above is well defined though. Let ∆′1,2g+2 be the divisor in A(1, 2g + 2) of
singular forms, which is invariant with respect to the action above. Then [AV04,
cor. 4.7] tells us that:

Hg ' [(A(1, 2g + 2) \∆′1,2g+2)/PGL2 ×Gm]
This implies that:

CH(Hg) ' CHPGL2×Gm
(A(1, 2g + 2) \∆′1,2g+2)

where on the right we have the PGL2 × Gm-equivariant Chow ring of the scheme
A(1, 2g + 2) \∆′1,2g+2 as defined by Edidin and Graham in [EG98].

Moreover, by [Pir18a, th. 4.9] we also deduce:
Inv•(Hg) ' A0

PGL2×Gm
(A(1, 2g + 2) \∆′1,2g+2)

where on the right we have the zeroth PGL2 × Gm-equivariant Chow group with
coefficients in étale cohomology, as defined by Rost in [Ros96].

The group PGL2 is a non-special group, i.e. there exist PGL2-torsors over
certain base schemes that are not Zariski-locally trivial but only étale-locally trivial.
Equivariant computations involving non-special groups may be hard to handle. For
instance, not every projective space endowed with an action of PGL2 can be seen
as the projectivization of a PGL2-representation: this makes the computation of
the PGL2-equivariant Chow ring of Pn a non trivial challenge.

On the other hand, equivariant computations involving a special group, i.e.
a group G such that every G-torsor can be trivialized Zariski-locally, are more
approachable. An important example of special group is the general linear group
GLn. A key result of the present work is the following theorem, where a presentation
of Hg as a quotient stack with respect to the action of a special group is explicitly
obtained:

Theorem. Let g ≥ 3 be an odd number, and let A(2, 2)3 be the scheme of
quadratic forms in three variables of rank 3, endowed with the GL3 × Gm-action
given by the formula:

(A, λ) · q(x, y, z) := det(A)q(A−1(x, y, z))
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Then there exists a GL3 × Gm-equivariant vector bundle Vg+1,3 over A(2, 2)3 and
an invariant divisor D′3 inside Vg+1,3 such that

Hg = [(Vg+1,3 \D′3)/GL3 ×Gm]

To obtain the presentation above, we use a fairly standard construction applied
to the case of PGL2-schemes, to which we refer to as the construction of a GL3-
counterpart of a PGL2-scheme (and of the GL3×Gm-counterpart of a PGL2×Gm-
scheme): given a PGL2-scheme X, the GL3-counterpart is a GL3-scheme Y such
that [X/PGL2] ' [Y/GL3] (and similarly for PGL2 ×Gm-scheme).

The new presentation is then exploited in the following two ways: on one side,
it shows that the integral Chow ring is isomorphic to the GL3 × Gm-equivariant
Chow ring of Vg+1,3\D′3, and the fact that GL3×Gm is special enables us to reduce
to the action of the subtorus of diagonal matrices: in this setting, we have much
more invariant subvarieties that we can use to make computations.

On the other side, the new presentation shows that the moduli stack Hg is
an open substack of the quotient stack [Vg+1/GL3 × Gm], where Vg+1 is a vector
bundle over the scheme A(2, 2)[3,1] parametrizing non-zero quadratic forms. This
new feature turns to be particularly helpful when it comes to compute the zeroth
equivariant Chow group with coefficients of Vg+1,3 \D′3.

To investigate the multiplicative structure of the cohomological invariants of
Hg for g ≥ 2 an even number, we exploit the existence of a well defined morphism

W : Hg −→ BS2g+2

that sends a family of hyperelliptic curves C → S with involution ι to WC/S → S,
where WC/S is the Weierstrass divisor, i.e. the ramification locus of the quotient
morphism C → C/〈ι〉.

This fact will allow us to deduce the multiplicative structure of Hg from the
one of BS2g+2.

Description of contents

Chapter 1: preliminary results. In chapter 1 we collect both introductory
materials and new technical results.

In section 1.1 we give a quick introduction to equivariant Chow groups, mainly
following [EG98]: in particular, we sketch their definition and main properties and
we exhibit some explicit computations.

In section 1.2 we discuss equivariant Chow group with coefficients in étale
cohomology, as defined in [Ros96]: we outline their construction and some useful
results.

In section 1.3, we construct the GL3-counterpart of a PGL2-scheme and we
apply this to those cases that are relevant to our purposes.

Chapter 2: the Chow ring of the stack of hyperelliptic curves of
odd genus. In chapter 2 we compute the integral Chow ring of Hg, the stack of
hyperelliptic curves of genus g, where g ≥ 3 is an odd number.

In section 2.1 we give a new presentation of Hg, for g ≥ 3 an odd number. We
also introduce a class of vector bundles, denoted Vn, which will play a central role
in the rest of the dissertation.

In section 2.2, we study some intersection theoretical properties of the projective
bundles P(Vn).

In section 2.3 we begin the computation of the Chow ring of Hg, obtaining the
generators and some relations.
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Section 2.4 is the technical core of the chapter: here is where the new presen-
tation of Hg will prove to be particularly useful in order to find other relations in
CH(Hg).

The computation of CH(Hg) is completed in section 2.5, where we also provide
a geometrical interpretation of the generating cycles of CH(Hg).

Chapter 3: cohomological invariants of the stack of hyperelliptic
curves of odd genus. In chapter 3 we compute the F2-module structure of the
graded-commutative ring of cohomological invariants with coefficients in F2 of Hg,
for g > 3 an odd number.

In section 3.1 we prove the main theorem of the paper, assuming for the moment
the key lemma 3.1.3, whose proof is postponed to section 3.4. The strategy of proof
is similar to the one contained in [Pir18b]. The remainder of the chapter is devoted
to develop the theory necessary to prove the key lemma 3.1.3.

In section 3.2 we study the geometry of the fundamental divisor D of the
projective bundle P(Vn).

The observations made in this section are then applied in section 3.3 in order to
do some intersection theoretical computations useful to prove the key lemma 3.1.3:
the proof is finally completed in section 3.4.

Chapter 4: Cohomological invariants of the stack of hyperelliptic
curves of even genus, multiplicative structure. In chapter 4 we study the
multiplicative structure of Inv•(Hg) with coefficients in F2 when g ≥ 2 is an even
number.

In section 4.1 we recall the classical theory of cohomological invariants for
étale algebras and quadratic forms.

In section 4.2 we first investigate the multiplicative structure of Inv•(Bg), where
Bg is the stack of vector bundles E → S of rank 2 with a Cartier divisor D ⊂ P(E)
which is étale of degree 2g + 2 over S. We derive from this results part of the
multiplicative structure of Inv•(Hg).

Afterward, we give a construction of what we call the exceptional cohomological
invariant, i.e. a cohomological invariant of Hg that does not come from Bg, and we
complete then the computation of the multiplicative structure of Inv•(Hg).

At the end of thesis the reader can find a brief chapter where we outline some
possible future directions of research.

Assumptions and notation

Every scheme is assumed to be of finite type over Spec(k0). The assumptions
on the base field k0 will be specified in each section, as they depend on the specific
results we will be discussing.

A variety is a separated and integral scheme.
Every algebraic group is assumed to be linear.
The word curve will mean a proper, geometrically connected scheme of dimen-

sion 1.
If X is a variety, the notation H•(X) will stand for the graded-commutative

ring ⊕iHi
ét(ξX , µ⊗ip ), where ξX is the generic point of X and p is a positive number

that will be specified in every section.
Sometimes, we will write H•(R), where R is a finitely generated k0-domain, to

indicate H•(Spec(R)). Observe that if k0 is algebraically closed H•(k0) ' Fp.
The Chow groups with coefficients in H• will be denotedAi(−,H•) orAi(−,H•),

whether we adopt the grading by codimension or dimension. At a certain point we
will use the shorthand Ai(−) to denote Chow groups with coefficients in H• of codi-
mension i, and we will drop the apex to indicate the direct sum of Chow groups
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with coefficients of every codimension. A Chow group with coefficients is said to
be trivial when it is isomorphic to H•(k0). Similarly, the graded-commutative ring
of cohomological invariants of a stack is said to be trivial when it is isomorphic to
H•(k0).

To denote the G-equivariant Chow groups with coefficients in H• we will write
AiG(−,H•) or AiG(−), and we will write AiG to indicate AiG(Spec(k0)). Similar
notations will be used for Chow groups CHi(−). We will write CHi(−)Fp

for the
tensor product CHi(−)⊗ Fp.

Given an element x in a field K, its class in K∗/(K∗)2 will be denoted {x}.
In particular, for K = k0, the element {x} regarded as a constant cohomological
invariant has degree 1.

We will denote A(n, d) the affine space of forms in n+ 1 variables of degree d,
and P(n, d) its projectivization.

Throughout the thesis, a relevant role will be played by A(2, 2), the space of
quadratic ternary forms. The subschemes of A(2, 2) parametrising forms of rank
r will be denoted A(2, 2)r, and the subschemes parametrising forms of rank in the
interval [b, a] will be denoted A(2, 2)[a,b].

Given a relative scheme X → A(2, 2), its pullback to A(2, 2)r or A(2, 2)[a,b] will
be denoted Xr or X[a,b]. At any rate, these definitions will be frequently repeated
along the thesis.

Similarly, we will denote P(2, 2)r (resp. P(2, 2)[a,b]) the subscheme of P(2, 2)
parametrising conics of rank r (resp. of rank r such that a ≥ r ≥ b). If X is a
scheme over P(2, 2), its pullback to P(2, 2)r (resp. P(2, 2)[a,b]) will be denoted Xr

(resp. X[a,b]).



CHAPTER 1

Preliminary results

In the first two sections we give an overview of Chow groups and Chow groups
with coefficients. In the last section we introduce the notion of GL3-counterpart of
a PGL2-scheme and we outline some applications.

1.1. Equivariant Chow groups

We give here a brief introduction to equivariant Chow groups. These were first
introduced in the papers [Tot99] and [EG98]. A nice account of this theory can
be found in [FV18, sections 2-4].

Let X be a scheme of finite type over the ground field k0, and let G be an
algebraic group acting on it. By [EG98, lemma 9], for any i > 0 we can always
find a G-representation V with an open subscheme U ⊂ V such that G acts freely
on U and the complement V \ U has codimension > i.

Suppose that X is equidimensional and quasi-projective, and that the action of
G is linearizable: by [EG98, prop. 23] there exists a G-torsor X×U → (X×U)/G
in the category of schemes. We can define the G-equivariant Chow group of X of
codimension i as:

CHi
G(X) := CHi((X × U)/G)

This definition does not depend on the chosen representation ([EG98, prop. 1]).
Equivariant Chow groups enjoy most of the properties of standard Chow groups:

Proposition 1.1.1. Let X and Y be equidimensional, quasi-projective schemes
of finite type over k0, endowed with a linearizable G-action. Then we have:

(1) Proper pushforward: every G-equivariant, proper morphism f : X → Y
induces a homomorphism of groups

f∗ : CHG
i (X) −→ CHG

i (Y )

such that f∗[V ] = [k(V ) : k(f(V ))][f(V )] for every subvariety V ([k(V ) :
k(f(V ))] = 0 if dim(V ) > dim(f(V ))).

(2) Flat pullback: every G-equivariant, flat morphism f : X → Y of relative
constant dimension induces a homomorphism of groups

f∗ : CHi
G(Y ) −→ CHi

G(X)

such that f∗[V ] = [f−1V ], where the term on the right is the fundamental
class of an equidimensional closed subscheme.

(3) Localization exact sequence: given a closed, G-invariant subscheme Z i
↪−→

X whose open complement is U
j
↪−→ X, there exists an exact sequence

CHG
i (Z) i∗−→ CHG

i (X) j∗−→ CHG
i (U)→ 0

1



2 1. PRELIMINARY RESULTS

(4) Compatibility: given a cartesian square of G-schemes

Y
f
//

g

��

X

g′

��

Y ′
f ′
// X ′

where the horizontal morphisms are G-equivariant and proper, and the
vertical morphisms are G-equivariant and flat of relative constant dimen-
sion d, we get a commutative diagram:

CHG
k (Y ′)

f ′∗ //

g∗

��

CHG
k (X ′)

g′∗

��

CHG
k+d(Y ) f∗ // CHG

k+d(X)

(5) Homotopy invariance: if π : E → X is a G-equivariant, finite rank vector
bundle, then we have an isomorphism

π∗ : CHi
G(X) ' CHi

G(E)

(6) Projective bundle formula: If P(E) → X is the projectivization of a G-
equivariant , finite rank vector bundle, then for i < rk(E) we have:

CHi
G(P(E)) ' ⊕ij=0CH

j
G(X)

(7) Ring structure: if X is smooth, then CHG(X) inherits a graded ring
structure.

(8) Projection formula: if f : X → Y is a G-equivariant, proper and flat
morphism between smooth schemes, then we have:

f∗(ξ · f∗η) = f∗ξ · η

(9) Gysin homomorphism: every G-equivariant, local complete intersection
morphism f : X → Y induces a homomorphism of groups:

f ! : CHi
G(Y ) −→ CHi

G(X)

such that, if f is a closed embedding and V is a subvariety which intersect
transversally Y , then f ![V ] = [V ∩X].

Given an equivariant vector bundle E → X of rank r, we can define the equi-
variant Chern classes of E as homomorphisms:

cGi (E) : CHk
G(X) −→ CHk+i

G (X)

where i ranges from 0 to r. If X is equidimensional and [X] denotes its cycle class,
the cycles cG1 (E)([X]) will also be called equivariant Chern classes of E.

If X is smooth, we can restate the projective bundle formula 1.1.1.(6) by saying
that, given an equivariant vector bundle E → X of rank r, we have:

CHG(P(E)) = CHG(X)[h]/(hr + cG1 (E)hr−1 + cG2 (E)hr−2 + · · ·+ cGr (E)

where h = cG1 (O(1)).
If f : X → Y is a G-equivariant flat morphism between equidimensional

schemes and E → Y is an equivariant vector bundle, we have:

f∗cGi (E) = cGi (f∗E)

This enables us to formulate a projection formula also for not necessarily flat mor-
phism.
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Proposition 1.1.2. Let f : X → Y be a proper morphism between G-schemes
of finite type, and let E → X be an equivariant vector bundle. Then for any ξ in
CHG

i (X) and for any k, we have:

f∗(cGk (f∗E)(ξ)) = cGk (E)(f∗ξ)

The next proposition is of fundamental importance for computational purposes.

Proposition 1.1.3. [EG98, prop. 6] Let G be a connected reductive special
group with maximal subtorus T split and Weyl group W . Then for any G-scheme
X we have:

CHG(X) = CHT (X)W

Next we list some explicit presentations of equivariant Chow rings.

Proposition 1.1.4. [EG98, pg. 14]
(1) Let T = G⊕nm be a split torus. Then

CHT (Spec(k0)) = Z[λ1, . . . , λn]
where λi is the equivariant first Chern class of the T -representation in-
duced by the projection T → Gm on the ith factor.

(2) We have:
CHGLn(Spec(k0)) = Z[c1, . . . , cn]

where ci is the ith equivariant Chern class of the standard representation
of GLn.

Remark 1.1.5. There is a natural inclusion CHGLn
(X) ↪→ CHG⊕n

m
(X) which

sends each ci into the elementary symmetric polynomial of degree i in the variables
λ1, . . . , λn. Given a GLn-scheme X, let U be an open subscheme of a representation
such that the complement has codimension > i and the geometric quotient (X ×
U)/GLn exists in the category of schemes: then there is a flat morphism (X ×
U)/G⊕nm → (X × U)/GLn, and the inclusion of equivariant Chow rings above is
induced by the pullback along this flat map.

Proposition 1.1.6. [FV18, lemma 2.1] Let G be a special algebraic group and
let T ⊂ G be a maximal subtorus. Let X be a smooth G-scheme and I ⊂ CHG(X)
an ideal. Then:

I · CHT (X) ∩ CHG(X) = I

The following lemma is useful to perform computations:

Lemma 1.1.7. [EF09, lemma 2.4] Let E be a T -representation and let H ⊂
P(E) be a T -invariant hypersurface defined by the homogeneous equation f = 0,
with f in SymdE∨. Let χ : T → Gm be the character such that for every element t
of T we have t · f = χ−1(t)f . Then:

[H] = cT1 (O(d)) + c1(χ)
inside CH1

T (P(E)), where c1(χ) is the first Chern class of the 1-dimensional T -
representation associated to the character χ.

Take a quasi-projective scheme X endowed with a linearized G-action and let
L→ X be an equivariant line bundle. Define L∗ as the complement in L of the zero
section. Observe that L∗ inherits the G-action and that it has a natural structure
of Gm-torsor, where Gm acts by scalar multiplication.

This second fact can also be seen by noting that L∗ ' IsomX(L,A1
X) and that

Gm acts on the second scheme as follows: given a morphism S → X, a trivialization
ϕ : LS ' A1

S and an element λ : A1
S ' A1

S of Gm(S), we can define λ · ϕ := λ ◦ ϕ.
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Proposition 1.1.8. [Vis98, pg. 638] Let L→ X be an equivariant line bundle
over a G-scheme, and let L∗ be the associated Gm-torsor. Then we have:

CHi
G(L∗) = CHi

G(X)/(cG1 (L)(CHi−1
G (X))

Sketch of proof. Applying the localization exact sequence (prop. 1.1.1.(3))
for the zero section X ↪→ L we get:

CHG(X) −→ CHG(L) −→ CHG(L∗) −→ 0

Homotopy invariance (proposition 1.1.1.(5)) tells us that CHG(L) ' CHG(X). To
complete the proof, we only have to observe that the induced morphism

CHG(X) −→ CHG(L) ' CHG(X)

coincides by construction with the first Chern class of L. �

1.2. Equivariant Chow groups with coefficients

In this section, we fix a positive number p and an algebraically closed base field
k0 such that p is invertible in k0. Every scheme is assumed to be of finite type over
k0 and equidimensional.

1.2.1. Main definitions and properties. We will collect together some ba-
sic definitions and useful properties of equivariant Chow groups with coefficients in
H•. Our interest in these groups is due to the following result:

Theorem 1.2.1. [Pir18a, th. 4.9] If X is a smooth, quasi-projective scheme
endowed with a linearized action of an algebraic group G, then we have

A0
G(X,H•) ' Inv•([X/G])

where A0
G(−,H•) is the zeroth equivariant Chow group with coefficients in H•, en-

dowed with its natural structure of graded-commutative ring, and Inv•(−) is the
graded-commutative ring of cohomological invariants.

First, let us sketch the construction of the standard Chow groups with coeffi-
cients in H•. The paper of Rost [Ros96] is devoted to the foundation of the more
general theory of Chow groups with coefficients in a cycle module M . Here we are
only interested in the case M = H•, though most of what we say is true for any
cycle module. The proof that H• is a cycle module in the sense of [Ros96, def. 2.1]
can be found in [Ros96, remarks 1.11 and 2.5].

Another nice introduction to Chow groups with coefficients in H• is [Gui07, sec.
2]: in particular, the equivariant case is discussed in [Gui07, sec. 2.3].

Remark 1.2.2. The hypothesis that the characteristic of the base field does
not divide p is necessary for H• to be a cycle module.

Without this hypothesis, many things can go wrong: for instance, the proof
that H• satisfies the axiom D3 (see [Ros96, remark 1.11]) does not work, as we do
not have a norm residue homomorphism.

This is a consequence of the fact that the sequence of sheaves in the étale
topology:

0 −→ µp −→ Gm
·p−→ Gm −→ 0

is not exact if we remove the assumption on the characteristic of the base field (see
[Sta19, Tag 03PM]).

A possible way to circumvent this issue could be to consider cohomology in the
fppf or syntomic topology, but we have not checked all the details.

https://stacks.math.columbia.edu/tag/03PM
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Let X be a scheme, d a positive integer and define:

Ci(X,Hd) = ⊕x∈X(i)Hd
ét(k(x), µ⊗dp ))

where the sum is taken over all the points x of X having dimension equal to i. We
define Ci(X,H•) := ⊕d≥0Ci(X,Hd). In this way Ci(X,H•) has a natural bigrading
given by the cohomological degree d and the dimension i.

For every i ranging from 0 to the dimension of X and for every d ≥ 1, there
exists a differential:

δdi : Ci(X,Hd) −→ Ci+1(X,Hd−1)
whose precise definition can be found in [Ros96, (3.2)]. We set δ0

i := 0. By taking
the direct sum over d ≥ 0 of the δid, we can define:

δi : Ci(X,H•) −→ Ci+1(X,H•)

The Chow groups with coefficients are then defined as:

Ai(X,H•) := ker(δi)/im(δi−1)

As we are assuming every scheme to be equidimensional, it makes sense to
introduce also the codimensionally-graded Chow groups with coefficients Ai(X,H•):
these are equal by definition to An−i(X,H•), where n is the dimension of X.

Chow groups with coefficients have two natural gradings, one given by codimen-
sion and the other given by the cohomological degree: an element α has codimension
i and degree d if it is an element of Ai(X,Hd) := ker(δdn−i)/im(δdn−i−1).

The whole theory of Chow groups with coefficients has an equivariant coun-
terpart, first introduced in [Gui07, sec. 2.3]. Let G be an algebraic group acting
on a scheme X. Suppose moreover that X is quasi-projective with linearized G-
action. Using the same ideas of [EG98], one can define the equivariant groups
AiG(X,H•) as follows: take a representation V of G such that G acts freely on an
open subscheme U ⊂ V whose complement has codimension greater than i+ 1. By
[EG98, lemma 9] such a representation always exists. Then we define:

AiG(X,H•) := Ai((X × U)/G,H•)

The content of [EG98, prop. 23] assures us that the quotient (X ×U)/G exists in
the category of schemes, and by the double filtration argument used in the proof
of [EG98, prop. 1] we see that the definition above does not depend on the choice
of U .

We list now some properties of equivariant Chow groups with coefficients that
will be frequently used:

Proposition 1.2.3. Let X and Y be equidimensional, quasi-projective schemes
of finite type over k0, endowed with a linearized G-action. Then we have:

(1) CHG
i (X)⊗ Fp = AGi (X,H0).

(2) Proper pushforward: every G-equivariant, proper morphism f : X → Y
induces a homomorphism of groups

f∗ : AGi (X,H•) −→ AGi (Y,H•)

which preserves the cohomological degree.
(3) Flat pullback: every G-equivariant, flat morphism f : X → Y of relative

constant dimension induces a homomorphism of groups

f∗ : AiG(Y,H•) −→ AiG(X,H•)

which preserves the cohomological degree.
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(4) Localization exact sequence: given a closed, G-invariant subscheme Z i
↪−→

X whose open complement is U
j
↪−→ X, there exists a long exact sequence

· · · → AGi (X,H•) j∗−→ AGi (U,H•) ∂−→ AGi−1(Z,H•) i∗−→ AGi−1(X,H•)→ · · ·
The boundary homomorphism ∂ has cohomological degree −1, whereas the
other homomorphisms have cohomological degree zero.

(5) Compatibility: given a cartesian square of G-schemes

Y
i //

��

X

��

Y ′
i′ // X ′

where all the morphisms are G-equivariant closed embeddings, we get a
commutative square

AGk (Y ′ \ Y,H•)
i′′∗ //

∂

��

AGk (X ′ \X,H•)

∂

��

AGk−1(Y,H•) i∗ // AGk−1(X,H•)

where i′′ is the restriction of i′ to Y ′ \ Y .
(6) Homotopy invariance: if π : E → X is a G-equivariant, finite rank vector

bundle, then we have an isomorphism
π∗ : AiG(X,H•) ' AiG(E,H•)

which preserves the cohomological degrees.
(7) Projective bundle formula: If P(E) → X is the projectivization of a G-

equivariant , finite rank vector bundle, then for i < rk(E) we have:

AiG(P(E),H•) ' ⊕ij=0A
j
G(X,H•)

The isomorphism above preserves the cohomological degrees.
(8) Ring structure: if X is smooth, then AG(X,H•) inherits the structure of

a graded-commutative Fp-algebra, where the graded-commutativity should
be understood in the following sense: if α has codimension i and degree d,
and β has codimension j and degree e, then α · β = (−1)deβ · α, and the
product has codimension i+ j and degree d+ e.

Sketch of proof. All the properties above, which are formulated for equi-
variant Chow groups with coefficients, follow from the analogous properties for the
non-equivariant ones, hence it is enough to prove (1)-(7) in this second setting.

To prove (1), observe that ker(δ0
i ) = Ci(X,H0). We have

H0
ét(k(x),Fp) = Fp

hence Ci(X,H0) = Zi(X)⊗ Fp, the group of i-dimensional cycles mod p.
Recall that H1

ét(k(y), µp) = k(y)∗/(k(y)∗)p, so that the group Ci−1(X,H1) can
be seen as a quotient of the group of non-zero rational functions on i−1-dimensional
subvarieties of X.

Unwinding the definition of the differential δ1
i−1 (see [Ros96, (3.2)]), we deduce

that δ1
i−1(ϕ) = div(ϕ), where ϕ is the equivalence class in k(y)∗/(k(y)∗)p of a

rational function ϕ defined over a subvariety Y ⊂ X whose generic point is y , and
div(ϕ) is the associated divisor, which is a well defined element of Zi(X)⊗Fp. This
implies that:

(Zi(X)/ ∼rat)⊗ Fp ' ker(δ0
i )/im(δ1

i−1)
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where ∼rat is the rational equivalence relation, and it proves (1).
The proofs of (2)-(5) are the content of [Ros96, sec. 4], (6) is [Ros96, prop.

8.6], (7) is [Pir17, prop. 2.4] and (8) is [Ros96, th. 14.6]. �

There is also a well defined theory of equivariant Chern classes for equivariant
Chow groups with coefficients in H•, which resembles the theory of Chern classes for
the usual Chow groups. The foundation of this theory can be found in [Pir17, sec.
2.1],

Let X be a quasi-projective scheme endowed with a linearized G-action and
let E → X be an equivariant vector bundle of rank r. Then for every i the vector
bundle E induces a degree-preserving homomorphism of equivariant Chow groups
with coefficients:

cGi (E) : AG∗ (X,H•) −→ AG∗−i(X,H•)
which is the ith equivariant Chern class of E.

Using the language of Chern classes, the projective bundle formula 1.2.3.(7)
can be restated (see [Pir17, prop. 2.4]) by saying that, if π : P(E) → X is the
projectivization of an equivariant vector bundle, then we have:

AiG(P(E),H•) ' ⊕ij=0c
G
1 (OP(E)(1))i−j(π∗AjG(X,H•))

If X is smooth, there exist cycles γi in AiG(X,H0) such that the equivariant
Chern classes are equal to the multiplication by γi (see [Pir17, cor. 2.6]). Therefore,
in this case it makes perfect sense to think of equivariant Chern classes as elements
in AG(X,H•).

In particular, for π : P(E) → X the projectivization of an equivariant vector
bundle of rank r over a smooth scheme, we can consider the element h = cG1 (O(1))
in A1

G(P(E),H0) and proposition 1.2.3.(7) can be reformulated as follows:

AG(P(E),H•) ' AG(X,H•)[h]/(hr + cG1 (E)hr−1 + cG2 (E)hr−2 + · · ·+ cGr (E))

This isomorphism preserves the cohomological degree.

1.2.2. Examples. We collect here some computations of equivariant Chow
groups with coefficients which will be useful for our purposes.

Proposition 1.2.4. [Pir17, prop. 2.11][Pir18b, prop. 3.1, prop. 3.2] We
have:

(1) Let E be the standard representation of GL3, regarded as an equivariant
vector bundle of rank 3 over Spec(k0). Then

AGL3(Spec(k0),H•) = Fp[c1, c2, c3]

where ci := cGL3
i (E). In particular, AGL3(Spec(k0),H•) is concentrated

in degree 0.
(2) Fix p = 2 and let E be the standard representation of GL3, on which PGL2

acts via the adjoint representation. Set ci := cPGL2
i (E). Then

APGL2(Spec(k0),H•) = F2[c2, c3]⊕ F2[c2, c3] · w2 ⊕ F2[c2, c3] · τ1

as an F2-vector space. The generator w2 has codimension 0 and degree 2,
the generator τ1 has codimension 1 and degree 1 and c1 = 0.

(3) Fix p = 2. Then A0
PGL2

(P1,H•) ' F2.

Remark 1.2.5. Proposition 1.2.3.(7) and 1.2.4.(3) are not in contradiction, as
P1 is not the projectivization of any PGL2-representation of rank 2.

Here it is an analogue of proposition 1.1.8.
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Proposition 1.2.6. Let X be an equidimensonal, quasi-projective scheme over
k0, endowed with a linearized G-action, and let L → X be an equivariant line
bundle, with associated Gm-torsor L∗. Then we have:

AG(L∗,H•) '
(
AG(X,H•)/im(cG1 (L))

)
⊕ ker(cG1 (L))[1]

as Fp-vector spaces.

Proof. Here AnG(−) stands for AnG(−,H•). Using proposition 1.2.3.(4) applied
to the zero section i : X ↪→ L, we get:

· · · → An−1
G (X) i∗−→ AnG(L)→ AnG(L∗)→ AnG(X) i∗−→ An+1

G (X)→ · · ·

From proposition 1.2.3.(6), we know that there exists an isomorphism (π∗)−1 :
AG(L) ' AG(X). By definition of the Chern classes (see in particular [Pir17, def.
2.2]) we have cG1 (L) = (π∗)−1◦i∗, so that the exact sequence above can be rewritten
as:

· · · → An−1
G (X) cG

1 (L)−−−−→ AnG(X)→ AnG(L∗)→ AnG(X) cG
1 (L)−−−−→ An+1

G (X)→ · · ·

This implies the formula for AG(L∗). �

1.3. GL3-counterpart of PGL2-schemes

In this section we introduce the notion of GL3-counterpart of a PGL2-scheme
(definition 1.3.5). This is a particular case of a fairly simple but interesting phenom-
enon: given an injective morphism of algebraic groups H ↪→ G, there is a functor
F from the category of H-schemes to the category of G-schemes such that the quo-
tient stacks [X/H] and [F (X)/G] are isomorphic. What we do is to apply this fact
to the injective morphism PGL2 ↪→ GL3 and to give some explicit constructions.

We also state a simple result (proposition 1.3.8) which enables us to replace
morphisms between PGL2-equivariant Chow groups of PGL2-schemes with mor-
phisms between GL3-equivariant Chow groups of their GL3-counterparts.

We will denote A(n, d) the affine space of homogeneous forms in n+1 variables
of degree d, and P(n, d) will stand for the projectivization of P(n, d).

We will denote A(2, 2)r the locally closed subscheme of A(2, 2) of forms of rank
r, and A(2, 2)[a,b] will stand for the subscheme of forms of rank r with a ≥ r ≥ b.
In particular, the scheme A(2, 2)3 parametrizes smooth forms.

Given a scheme X over A(2, 2)[3,1], we will denote the pullback of X to A(2, 2)r
(resp. A(2, 2)[a,b]) as Xr (resp. X[a,b]).

1.3.1. Basic definitions and some properties. Let f : X → X ′ be a
PGL2-equivariant morphism between two schemes of finite type over a base field
k0. We can form the quotient stacks [X/PGL2] and [X ′/PGL2].

The morphism f induces a representable morphism between the two quotient
stacks. Observe that both [X/PGL2] and [X ′/PGL2] are stacks over BPGL2, and
that both structure morphisms are representable.

We have:

Proposition 1.3.1. Let A(2, 2)3 denote the scheme parametrising smooth qua-
dratic ternary forms, endowed with the GL3-action defined by the formula:

A · q(x, y, z) := det(A)q(A−1(x, y, z))

Then [A(2, 2)3/GL3] ' BPGL2.

We start with two technical lemmas:
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Lemma 1.3.2. Let L be an invertible sheaf on a scheme π : X → S such
that π∗L is a globally generated locally free sheaf of rank n + 1. Then giving an
isomorphism π∗L ' O⊕n+1

S induces a morphism f : X → PnS and an isomorphism
f∗O(1) ' L, and vice versa.

Proof. One implication is obvious. For the other one, suppose to have a
morphism f : X → PnS and an isomorphism f∗O(1) ' L. For functoriality of the
pushforward we obtain an isomorphism π∗L ' π∗f

∗O(1). We want to produce an
isomorphism of the sheaf on the right with O⊕n+1

S .
Let pr2 : Pn × S → S be the canonical projection. Then we have a surjective

morphism of locally free sheaves pr∗2pr2∗O(1)→ O(1) that composed with f∗ and π∗
induces a surjective morphism of locally free sheaves α : π∗π∗pr2∗O(1)→ π∗f

∗O(1).
Observe that we have a canonical chain of isomorphisms:

O⊕n+1
S ' π∗π∗O⊕n+1

S ' π∗π∗pr2∗O(1)

Thus, composing these isomorphisms with α we get a surjective morphism of locally
free sheaves O⊕n+1

S → π∗f
∗O(1). The hypotheses imply that this morphism is

actually an isomorphism, and we are done. �

Lemma 1.3.3. Let π : C → S be a smooth and proper morphism whose fibres
are curves of genus zero. Then the sheaf π∗ω−1

C/S is a locally free sheaf on S of rank
3 which satisfies the base change property. The morphism π∗π∗ω

−1
C/S → ω−1

C/S is
surjective and induces a closed immersion C ↪→ P(π∗ω−1

C/S).

Proof. Follows from the base change theorem in cohomology ([Har77, Th.
III.12.11]) applied to π∗ω−1

C/S . �

Consider the prestack in groupoids over the category (Sch/k0) of schemes

E(S) =
{

(π : C → S, α : π∗ω−1
C/S ' O

⊕3
S )
}

where C → S is a family of smooth rational curves, and the morphisms

(C → S, α : π∗ω−1
C/S ' O

⊕3
S )→ (C ′ → S′, α′ : π′∗ω−1

C′/S′ ' O
⊕3
S′ )

are given by triples (ϕ : S′ → S, ψ : C ′ ' ϕ∗C, φ : π′∗ω−1
C′/S′ ' ϕ∗π∗ω

−1
C/S), where

φ must commute with α and α′. It can be easily checked that this prestack is
equivalent to a sheaf.

Observe that there is a free and transitive action of GL3 on E , which turns E
into a GL3-torsor sheaf over BPGL2. Consider also the auxiliary prestack

E ′(S) =
{

((D), β : i∗O(1) ' ω−1
C/S)

}
where (D) is a commutative diagram of the form

C �
� i //

��

P2
S

��

S

with C → S a family of smooth rational curves, and i a closed immersion. Recall
that A(2, 2)3 is the scheme parametrising quadratic ternary forms of rank 3.

Lemma 1.3.4. There are isomorphisms E ' E ′ ' A(2, 2)3.

Proof. The first isomorphism follows from lemma 1.3.2: given a pair (π :
C → S, α : π∗ω−1

C/S ' O
⊕3
S ), the trivialization α determines a closed embedding
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i : C ↪→ P2
S and an isomorphism β : i∗O(1) ' ω−1

C/S , hence an object of E ′(S), and
viceversa.

Suppose to have a commutative triangle

C �
� i //

��

P2
S

��

S

and an isomorphism ϕ : i∗O(1) ' ω−1
C/S . This one can be seen as a non-zero section

of H0(C, i∗O(1)⊗ ωC/S). We have the following chain of isomorphisms:

H0(C, i∗O(1)⊗ ωC/S) ' H0(P2
S , i∗(i∗O(1)⊗ ωC/S))

' H0(P2
S , i∗(i∗(O(1)⊗ ωP2

S
⊗ I−1))

' H0(P2
S ,O(−2)⊗ I−1 ⊗ i∗OC)

where I denotes the ideal sheaf of i(C) ⊂ P2
S and in the last line we used the

projection formula and the canonical isomorphism ωP2 ' O(−3). If L := O(−2)⊗
I−1, then by twisting the exact sequence

0→ I → OP2
S
→ i∗OC → 0

by L and by taking the associated long exact sequence in cohomology, we easily
deduce the isomorphism

H0(P2
S , L⊗ i∗OC) ' H0(P2

S , L)
Now observe that a non-zero global section of L induces an isomorphism I ' O(−2),
and vice versa.

Thus, by dualizing the injective morphism of sheaves I ↪→ OP2
S
and by applying

the isomorphism above, we obtain a morphism OP2
S
→ O(2), which is equivalent to

choosing a global section q of O(2), that will be smooth because of the hypotheses
on C.

It is easy to check that the induced morphism
E ′ −→ A(2, 2)3, ((D), ϕ) 7−→ q

is an isomorphism, whose inverse is given by sending q to the object ((D), ϕ), where
(D) is the commutative triangle

Q �
� i //

��

P2
S

��

S

and the isomorphism ϕ : i∗O(1) ' ω−1
Q/S is induced by

IQ ' ωP2
S
(1) ' O(−2)

�

Proof of prop. 1.3.1. From lemma 1.3.4 we know that A(2, 2)3 ' E , and
E is a GL3-torsor over BPGL2 by construction. We only have to check that the
action of GL3 on A(2, 2)3 is the correct one, but this immediately follows from the
isomorphism I ' ωP2

S
(1) seen in the proof of lemma 1.3.4. �

In other terms, there is a morphism A(2, 2)3 → BPGL2 which is a GL3-torsor.
We can pull back along this torsor the map [X/PGL2]→ [X ′/PGL2]: what we get
is a GL3-equivariant morphism g : Y → Y ′ between GL3-schemes.
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Definition 1.3.5. Let X and X ′ be two schemes of finite type over Spec(k0)
endowed with a PGL2-action, and let f : X → X ′ be a PGL2-equivariant morphism.
Then the GL3-equivariant morphism g : Y → Y ′ obtained with the construction
above is the GL3-counterpart of f .

The GL3-scheme Y (resp. Y ′) is the GL3-counterpart of X (resp. X ′).

The construction of GL3-counterparts is functorial. Observe also that if f is
proper (resp. flat) then g will also be proper (resp. flat).

There is another way to think of GL3-counterparts. The inclusion i : PGL2 ↪→
GL3 induces a representable morphism of classifying stacks BPGL2 → BGL3: this
morphism sends a PGL2-torsor P → S to the associated GL3-torsor P×PGL2GL3 →
S, where P ×PGL2 GL3 := (P ×GL3)/PGL2 and the (right) action on the product
is defined by the formula:

(x, g) · h := (h−1x, gi(h))
In general, given an algebraic group G, the functor X 7→ [X/G] induces an equiv-
alence between the category of G-equivariant schemes over k0 and the category of
algebraic stacks over BG with representable structure morphism: therefore, given a
PGL2-scheme X, we get a representable morphism [X/PGL2]→ BPGL2 → BGL3,
hence a GL3-equivariant scheme over k0.

Let X be a scheme of finite type over k0, endowed with an action of PGL2×Gm.
We can form the cartesian diagram

X

��

// [X/PGL2 ×Gm]

��

Spec(k0) // B(PGL2 ×Gm)

Regarding A(2, 2)3 as a GL3 × Gm-scheme, where the action of Gm is the trivial
one, we have that A(2, 2)3 → B(PGL2 × Gm) is a GL3 × Gm-torsor. We can take
the pullback of [X/PGL2 ×Gm] along this last morphism, obtaining in this way a
scheme Y .

Definition 1.3.6. LetX be a scheme of finite type over Spec(k0) endowed with
a PGL2 × Gm-action. Then the scheme Y obtained with the construction above
is the GL3 × Gm-counterpart of X. In particular, we have that [Y/GL3 × Gm] '
[X/PGL2 ×Gm].

Definition 1.3.7. Let X and X ′ be two schemes of finite type over Spec(k0)
endowed with a PGL2×Gm-action, and let f : X → X ′ be a PGL2×Gm-equivariant
morphism. The pullback g : Y → Y ′ of the induced morphism [X/PGL2 ×Gm]→
[X ′/PGL2×Gm] along the map A(2, 2)3 → B(PGL2×Gm) is called the GL3×Gm-
counterpart of f .

The following proposition is immediate to prove:

Proposition 1.3.8. Let f : X → X ′ be a PGL2-equivariant proper morphism
between two PGL2-schemes, and let g : Y → Y ′ be its GL3-counterpart. Then we
have:

(1) a commutative diagram of equivariant Chow groups of the form

CHPGL2
i (X) f∗ //

��

CHPGL2
i (X ′)

��

CHGL3
i (Y ) g∗ // CHGL3

i (Y ′)
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where the vertical arrows are isomorphisms.

(2) a commutative diagram of equivariant Chow groups with coefficients of the
form

APGL2
i (X,H•) f∗ //

��

APGL2
i (X ′,H•)

��

AGL3
i (Y,H•) g∗ // AGL3

i (Y ′,H•)
where the vertical arrows are isomorphisms.

(3) The same results hold for PGL2 × Gm-equivariant morphisms and their
GL3 ×Gm-counterpart.

1.3.2. Applications. We apply now the machinery above to a particular case.
Let P(1, 2n) be the projective space of binary forms of degree 2n. This scheme has
a natural action of PGL2 given by A · f(x, y) = f(A−1(x, y)). We want to find its
GL3-counterpart.

Consider the scheme A(2, 2)[3,1] = A(2, 2) \ {0} of non-zero quadratic ternary
forms. This is a Gm-torsor over the projective space P(2, 2) of plane conics.

Definition 1.3.9.
(1) We denote Q ⊂ P(2, 2)× P2 the universal conic over P2.
(2) We denote Q̂ ⊂ A(2, 2)[3,1] × P2 the pullback of the universal conic Q →

P(2, 2) along the Gm-torsor A(2, 2)[3,1] → P(2, 2).

Let pr1 and pr2 be respectively the projection on the first and on the second
factor of P(2, 2)× P2. We have a short exact sequence of locally free sheaves:

0 −→ IQ ⊗ pr∗2O(n) −→ pr∗2O(n) −→ pr∗2O(n)|Q −→ 0
where IQ ' pr∗1O(−1)⊗ pr∗2O(−2) is the ideal sheaf of Q.

Pushing everything forward along pr1, and applying the projection formula for
sheaves (see [Har77, ex. III.8.3]) we get:

0→ pr1∗pr∗2O(n− 2)⊗O(−1)→ pr1∗pr∗2O(n)→ pr1∗(pr∗2O(n)|Q)→ 0
where exactness on the right is due to the vanishing of R1pr1∗pr∗2O(n − 2), which
follows from the base change theorem in cohomology (see [Har77, th. III.12.11])
combined with the well known vanishing of H1(P2,O(n− 2)).

Observe that the first two sheaves appearing in the exact sequence above are
locally free. From this we deduce that also the one on the right is locally free.

Definition 1.3.10.
(1) We define V n as the vector bundle associated to the locally free sheaf

Vn := pr1∗(pr∗2O(n)|Q)
Its projectivization is denoted P(V n).

(2) We define Vn → A(2, 2)[3,1] as the vector bundle obtained by pulling back
V n along the Gm-torsor A(2, 2)[3,1] → P(2, 2). Its projectivization is de-
noted P(Vn).

Equivalently, Vn is the vector bundle associated to the locally free sheaf
Vn := pr1∗(pr∗2O(n)|

Q̂
)

Another way to think of the vector bundle Vn is as follows: consider the following
injective morphism of (trivial) vector bundles over A(2, 2)[3,1]:

A(2, 2)[3,1] × A(2, n− 2) −→ A(2, 2)[3,1] × A(2, n), (q, f) 7−→ (q, qf)



1.3. GL3-COUNTERPART OF PGL2-SCHEMES 13

Then the vector bundle Vn is equal to the cokernel of the morphism above.

Remark 1.3.11. The points of P(V n) can be thought as pairs (q, [f ]), where q is
the projective equivalence class of a non-zero quadratic ternary form (equivalently,
a conic) and [f ] is the equivalence class of a non-zero ternary form of degree n,
where f ∼ f ′ if and only if g divides f − f ′ or f ′ is a non-zero scalar multiple of f .
The same description holds for the points of P(Vn), with the exception that in this
case we really look at the ternary quadratic form q and not at the associated conic.

Proposition 1.3.12. The GL3-counterpart of P(1, 2n) is P(Vn)3, endowed with
the GL3-action:

A · (q, [f ]) := (det(A)q(A−1(x, y, z)), [f(A−1(x, y, z))])

where q is a smooth ternary forms of degree 2 and f is a representative of the
equivalence class [f ] of a ternary form of degree n.

Proof. The quotient [P(1, 2n)/PGL2] is the stack whose objects are pairs
(C → S,D), where C → S is a family of smooth rational curves and D ⊂ C is a
divisor such that the induced morphism D → S is flat and finite of degree 2n.

Therefore the GL3-counterpart of P(1, 2n) is the fibred product:

[P(1, 2n)/PGL2]×BPGL2 A(2, 2)3

This can be described as the stack whose objects are triples ((D), β,D), where
((D), i) is an object of A(2, 2)3 ' E ′ (see lemma 1.3.4) and D ⊂ C is as before.

First we construct a morphism from this stack to P(Vn)3. Clearly, there is a
natural morphism p : [P(1, 2n)/PGL2]×BPGL2 A(2, 2)3 → A(2, 2)3.

Given an object ((D), β,D), consider the injective morphism of sheaves ID ↪→
OC . After twisting by O(n) and pushing forward along π : C → S, we get the
injective morphism:

π∗ID(n) −→ π∗OC(n)
By cohomology and base change (see [Har77, Th. III.12.11]) we see that the
first sheaf is invertible, whilst the second one, using the projection formula for
vector bundles, can easily be proved to be isomorphic to p∗Vn,3. The well known
characterization of the morphisms to projective bundles yields a morphism of sets

[P(1, 2n)/PGL2]×BPGL2 A(2, 2)3(S)→ P(Vn)3(S)

As everything is functorial, we get a morphism from the GL3-counterpart of P(1, 2n)
to P(Vn)3.

To construct an inverse of this morphism, consider the pullback π : Q → P(V n)
of the universal conic Q→ P(2, 2). We have a cartesian diagram:

Q

π

��

ρ
// Q

p

��

P(V n) r // P(2, 2)

The Euler exact sequence for P(V n), pulled back to Q, together with the definition
of the locally free sheaf Vn associated to the vector bundle V n (see definition 1.3.10),
yields an injective morphism:

π∗OP(V n)(−1) −→ π∗r∗p∗(pr∗2OP2(n)|Q) = ρ∗p∗p∗(pr∗2OP2(n)|Q)

Observe that there is a surjective morphism

ρ∗p∗p∗(pr∗2OP2(n)|Q) −→ ρ∗pr∗2OP2(n)|Q
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Hence, after twisting by ρ∗pr∗2OP2(−n)|Q we can construct a morphism:

π∗OP(V n)(−1)⊗ ρ∗pr∗2OP2(−n)|Q −→ OQ

It is immediate to verify that this defines a Cartier divisor D ⊂ Q: the restricted
morphism D3 → P(V n)3 is finite of degree 2n.

Therefore, if we denote Q̂3 the pullback of Q to P(Vn)3 and D3 the pullback
of D, the pair (Q̂3,D3) is an object of [P(1, 2n)/PGL2] ×BPGL2 A(2, 2)3(P(Vn)3),
hence induces a morphism P(Vn)3 → [P(1, 2n)/PGL2] ×BPGL2 A(2, 2)3. It is easy
to check that this second morphism is the inverse of the first morphism that we
defined, which concludes the proof of the proposition. �

Remark 1.3.13. Another way to think of the points of P(Vn)3 is as pairs (q, E),
where E is an effective divisor of degree 2n of the smooth plane conic C defined by
the equation q = 0.

Let F and G be the plane curves respectively defined by the equations f = 0
and g = 0, and suppose that they do not contain C as an irreducible component.

By the classical Noether’s theorem AF + BG, the intersection of F with C is
equal to the intersection of G with C if and only if the difference f − g is divisible
by q, or in other terms if and only if f−g is in the image of A(2, 2)3×A(2, n−2)→
A(2, 2)3 × A(2, n).

From this we deduce that the points of P(Vn)3 are in bijection with the pairs
(q, E), where E is an effective divisor of degree 2n.

This can be reformulated by saying that P(Vn)3 is the relative Hilbert scheme
of points Hilb2n

Q̂3/A(2,2)3
, where Q̂3 is the pullback of the universal conic Q over

P(2, 2): the isomorphism is given by the universal object (Q̂3,D3), where D3 is the
universal divisor constructed in the proof of proposition 1.3.12.

Similarly, the scheme P(V n)3 is the relative Hilbert scheme Hilb2n
Q3/P(2,2)3

.
Observe also that the scheme P(1, 2n) can be thought as the Hilbert scheme

Hilb2n
P1

k
of 2n points on P1. Its quotient [P(1, 2n)/PGL2] can be identified with the

Hilbert stack Hilb2n
P/BPGL2

of 2n points relative to the universal torsor P over the
classifying stack BPGL2.

So proposition 1.3.12 gives us the following presentation of this stack as a
quotient stack:

Hilb2n
P/BPGL2

' [Hilb2n
Q̂3/A(2,2)3

/GL3]

An interesting feature of this new presentation is that provides us with a natural
way to partially extend the Hilbert stack Hilb2n

P/BPGL2
over the stack of genus 0 and

at most 1 nodal curvesM≤1
0 by taking the quotient stack [P(Vn)[3,2]/GL3], where

P(Vn)[3,2] denotes the restriction of P(Vn) over the open subscheme A(2, 2)[3,2] of
quadratic forms of rank ≥ 2.

In the proof of proposition 1.3.12 we constructed a subscheme D of P(V n)×P2,
whose fibre over a point (q, [f ]) of P(V n) is the subscheme of P2 defined by the
homogeneous ideal I = (q, f).

Definition 1.3.14.
(1) Let Dram be the locus defined by the 0th Fitting ideal of the sheaf of

relative differentials Ω1
D/P(V n). Then we define D as the image of the

projection of Dram onto P(V n).
(2) We define the fundamental divisor D as the pullback of D → P(2, 2) along

the morphism A(2, 2)[3,1] → P(2, 2).
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Remark 1.3.15. By [Sta19, Tag 0C3I], the subscheme Dram is the ramification
locus of D → P(Vn).

Moreover, due to the fact that taking the scheme theoretic image commutes
with flat base change ([Sta19, Tag 081I],) we deduce that D is the projection onto
A(2, 2)[3,1] of the ramification locus of D → A(2, 2)[3,1].

We can think of the points of D as those pairs (q, [f ]), where q is a ternary
quadratic form defined up to scalar multiplication and [f ] is the equivalence class
of a ternary form of degree n (see remark 1.3.11), such that closed subscheme of P2

determined by the homogeneous ideal I = (q, f) is either singular or it contains a
line.

Let D3 be the restriction of D to A(2, 2)3: then D3 is a Cartier divisor whose
points can be regarded as pairs (q, [f ]) such that the subscheme in P2 defined by
the ideal I = (q, f) is singular.

Let ∆1,2n be the divisor of singular forms in P(1, 2n). Then proposition 1.3.12,
together with proposition 1.3.8, immediately implies the following result:

Corollary 1.3.16. The GL3-counterpart of ∆1,2n is D3. We also have com-
mutative diagrams

CHPGL2
i (∆1,2n) i∗ //

��

CHPGL2
i (P(1, 2n))

��

CHGL3
i (D3) i∗ // CHGL3

i (P(Vn)3)

APGL2
i (∆1,2n) i∗ //

��

APGL2
i (P(1, 2n))

��

AGL3
i (D3) i∗ // AGL3

i (P(Vn)3)
where the vertical arrows are all isomorphisms.

Let Vn,3 be the restriction of the vector bundle Vn → A(2, 2)[3,1] (see definition
1.3.10) over A(2, 2)3.

Proposition 1.3.17. The GL3-counterpart of A(1, 2n) is Vn,3. Moreover, if we
endow A(1, 2n) with the Gm-action given by scalar multiplication, then the GL3 ×
Gm-counterpart of A(1, 2n) is Vn,3, where Gm acts as λ · (q, f) := (q, λf).

Proof. Observe that A(1, 2n) \ {0} is the total space of the Gm-torsor as-
sociated to the tautological line bundle OP(1,2n)(−1) of P(1, 2n). It is almost im-
mediate to check, using proposition 1.3.12, that the GL3-counterpart of the total
space of this Gm-torsor is equal to the total space of the Gm-torsor associated to
OP(Vn)3(−1). From this the proposition easily follows. �

Let ∆′1,2n ⊂ A(1, 2n) be the PGL2-invariant, closed subscheme parametrising
singular binary forms of degree 2n. In other terms, the points of ∆′1,2n correspond
to global sections σ of OP1

k
(2n) with multiple roots. We want to find its GL3-

counterpart.

Definition 1.3.18. We define the closed subscheme D′ ⊂ Vn as the closure of
the pullback of the fundamental divisor D ⊂ P(Vn) (see definition 1.3.14) along the
Gm-torsor Vn \ σ0 → P(Vn), where σ0 denotes the zero section of Vn.

The following result follows from corollary 1.3.16:

Proposition 1.3.19. Let D′3 be the restriction of D′ to P(Vn)3. Then we have:

https://stacks.math.columbia.edu/tag/0C3I
https://stacks.math.columbia.edu/tag/081I
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(1) D′3 is the GL3-counterpart and the GL3 ×Gm-counterpart of ∆′1,2n.
(2) Vn,3\D′3 is the GL3-counterpart and the GL3×Gm-counterpart of A(1, 2n)\

∆′1,2n.



CHAPTER 2

The Chow ring of the stack of hyperelliptic curves
of odd genus

In this chapter we compute the integral Chow ring of the stack of hyperelliptic
curves of odd genus g, when g ≥ 3 is an odd number and the characteristic of the
base field is equal to zero or > 2g + 2. The main result is theorem 2.5.2.

2.1. A new presentation of Hg as a quotient stack

Fix a base field k0 of characteristic 6= 2 and let g ≥ 3 be an odd integer.
Recall that by a family of smooth rational curves over S we mean a proper and

smooth scheme over a k0-base scheme S such that every fiber is a curve of genus 0.
Then a family of hyperelliptic curves of genus g over S is defined as a pair

(C → S, ι) where C → S is a proper and smooth scheme over a base k0-scheme S
such that every fiber is a curve of genus g, and ι ∈ Aut(C) is an involution such
that C/〈ι〉 → S is a family of smooth rational curves.

Let Hg be the moduli stack of smooth hyperelliptic curves of genus g, whose
objects are families of hyperelliptic curves of genus g as defined above, and the
morphisms are the isomorphisms over S (the condition of commuting with the
involutions is automatically satisfied). The goal of this section is to give a pre-
sentation of this stack as a quotient stack [U ′/GL3 × Gm], where U ′ is an certain
scheme that will be defined later. This is done in theorem 2.1.1.

2.1.1. Properties of hyperelliptic curves. We briefly recall some basic
facts about hyperelliptic curves (for an extensive treament see [KL79]). Let C → S
be a family of hyperelliptic curves of genus g. By definition there exists a global
involution ι which induces the hyperelliptic involution on every geometric fiber.

There exists also a canonical, finite, surjective S-morphism f : C → C ′ of
degree 2 that on each geometric fiber corresponds to taking the quotient w.r.t.
the hyperelliptic involution. The scheme C ′ → S is a family of smooth rational
curves. The morphism f can also be described as the canonical morphism f : C →
P(π∗ωC/S) whose image is C ′.

Families of hyperelliptic curves have a canonical subscheme WC/S , called the
Weierstrass subscheme, that is the ramification divisor of f endowed with the
scheme structure given by the zeroth Fitting ideal of Ω1

C/C′ . It is finite and étale
over S of degree 2g + 2, and its associated line bundle, when seen as an effective
Cartier divisor, is the dualizing sheaf ωf relative to the finite morphism f . Clearly,
f induces an isomorphism between WC/S and the branch divisor D on C ′.

2.1.2. The main result. Let A(1, 2g+2)\∆′1,2g+2 be the scheme parametris-
ing smooth binary forms of degree 2g + 2. There is an action of PGL2 × Gm over
this scheme defined as follows:

(A, λ) · (f(x, y)) = λ−2 det(A)g+1f(A−1(x, y))

Observe that the action above is well defined, though the determinant of an element
of PGL2 is not. In [AV04, cor. 4.7] the authors proved that Hg is isomorphic to

17
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the quotient stack
[A(1, 2g + 2) \∆′1,2g+2/PGL2 ×Gm]

Therefore, a new presentation of Hg as a quotient stack with respect to the action
of GL3×Gm can be obtained by finding a GL3×Gm-counterpart of the PGL2×Gm-
scheme A(1, 2g + 2) \∆′1,2g+2.

Theorem 2.1.1. Let U ′ be the complement in (Vg+1,3 \σ0) of D′3, where Vg+1,3
is the vector bundle over A(2, 2)3 introduced in definition 1.3.10, σ0 is the zero
section and D′3 is as in definition 1.3.18. Then we have an isomorphism:

Hg ' [U ′/GL3 ×Gm]

where the action on U ′ is given by the formula

(A, λ) · (q, f) = (det(A)q(A−1(x, y, z)), λ−2f(A−1(x, y, z)))

Proof. Proposition 1.3.19.(2) tells us that a GL3×Gm-counterpart of A(1, 2g+
2) \ ∆′1,2g+2, with Gm acting by simple multiplication, is Vg+1,3 \ D′3, where the
action of GL3 ×Gm is:

(A, λ) · (q, f) := (det(A)q(A−1(x, y, z), λf(A−1(x, y, z))

It is easy to see that the GL3 ×Gm-counterpart of A(1, 2g + 2) \∆′1,2g+2 with Gm
acting by λ−2 is Vg+1,3 \D′3, with Gm acting by multiplication for λ−2. �

The theorem above can be rephrased by saying that Vg+1,3 \D′3 is a GL3×Gm-
torsor over Hg. It is well known that to every GL3 ×Gm-torsor over a base X one
can associate a rank 4 vector bundle of the form E ⊕ L, where E is a rank 3 vector
bundle and L is a line bundle, such that the total space of the original torsor will
be equal to Isom(E ,O⊕3)×X Isom(L,O). We want to find the vector bundle over
Hg associated to Vg+1,3 \D′3.

Observe that Vg+1,3 \ D′3, seen as a stack in sets, has as objects the triples
(S, q, f) where:

• S is a scheme.
• q is a global section of OP2

S
(2) whose zero locus Q ⊂ P2

S is smooth over S.
• f is a global section of OQ(g + 1) over Q.

and GL3 × Gm acts as described in theorem 2.1.1. This stack is equivalent to the
stack P whose objects are

((D), ϕ, L, σ, α)
where:

(1) (D) is a commutative diagram of the form

C ′
� � i //

π

��

P2
S

~~
S

with C ′ → S a family of smooth rational curves and i a closed immersion.
(2) ϕ : i∗O(1) ' TC′/S .
(3) L is a line bundle over C ′ of degree −(g + 1)/2.
(4) σ is a global section of L−⊗2.
(5) α : π∗(L−1 ⊗ T−⊗(g+1)/2

C′/S ) ' OS .
The elements (1) and (2) above induce by lemma 1.3.2 an isomorphism

β : π∗TC′/S ' O⊕3
S
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and vice versa. Therefore, it is easy to prove that the stack P is equivalent to the
stack P ′ whose objects are

(π : C ′ → S,L, σ, α, β)
where:

• π : C ′ → S is a family of smooth rational curves.
• L is a line bundle of degree −(g + 1)/2 over C ′.
• σ is a global section of L−⊗2.
• α : π∗(L−1 ⊗ T−⊗(g+1)/2

C′/S ) ' OS .
• β : π∗TC′/S ' O⊕3

S .
Let H∼g be the stack whose objects are triples (C ′ → S,L, σ), where C ′ → S is a
family of smooth rational curves, L is a line bundle on C ′ of degree −g − 1 and σ
is a global section of L−⊗2 whose support is étale on S. In [AV04, prop. 3.4], the
authors proved that Hg ' H∼g .

There is a morphism P ′ → H∼g defined as:

(π : C ′ → S,L, σ, α, β) 7−→ (π : C ′ → S,L, σ)
that realizes P ′ as a GL3×Gm-torsor over H∼g , because GL3 acts by multiplication
on β and Gm acts by multiplication on α.

This description of P ′ → H∼g allows us to determine the associated rank 4
vector bundle: it coincides with E ⊕ L, where E is the rank 3 vector bundle over
H∼g functorially defined as:

E : (π : C ′ → S,L, σ) 7−→ π∗TC′/S

and L is the line bundle over H∼g functorially defined as

L : (π : C ′ → S,L, σ) 7−→ π∗(L−1 ⊗ T−⊗(g+1)/2
C′/S )

We may ask for a description of the vector bundles E and L as vector bundles
over Hg. This can be easily deduced from the description we gave before: indeed,
if C → S is a family of hyperelliptic curves of genus g which is a double cover of
C ′ → S via the morphism η : C → C ′, and if WC/S is the associated Weierstrass
divisor, then:

(1) η∗TC′/S ' ω−1
C/S ⊗O(WC/S).

(2) η∗L ' O
(
− g+1

2 WC/S

)
.

From the formulas above it can be easily deduced that the vector bundle E , seen
as a vector bundle over Hg, is functorially defined as

E((π : C → S, ι)) = π∗ω
−1
C/S

(
WC/S

)
whereas L, seen as a line bundle over Hg, is functorially defined as

L((π : C → S, ι)) = π∗ω
⊗ g+1

2
C/S

(
1− g

2 WC/S

)
These considerations will be used at the end of the chapter in order to provide a
geometrical description of the generators of the Chow ring of Hg.

2.2. Intersection theory of P(Vn)3

The aim of this section is to study the vector bundles P(Vn)3 on A(2, 2)3 that
were introduced in the previous section (see definition 1.3.10). In particular, in
the first subsection we concentrate on the geometry of P(Vn)3, and we show that
over certain particular open subschemes of A(2, 2)3 the vector bundles Vn,3 become
trivial (lemma 2.2.2). We also study some interesting morphisms between P(Vn)3
for different n.



20 2. THE CHOW RING OF THE STACK OF HYPERELLIPTIC CURVES OF ODD GENUS

In the second subsection we do some computations in the T -equivariant Chow
ring of P(Vn)3, where T ⊂ GL3 is the subgroup of diagonal matrices, focusing on
the cycle classes of some specific T -invariant subvarieties (lemmas 2.2.7, 2.2.8 and
2.2.9).

2.2.1. Properties of P(Vn)3. We will use the following notational shorthand:
an underlined letter i will indicate a triple (i0, i1, i2), and the expression Xi will
indicate the monomial Xi0

0 X
i1
1 X

i2
2 .

A form f of degree n in three variables with coefficients in a ring R can then
be expressed as f =

∑
biX

i, where the bi are elements of R and the sum is taken
over the triples i such that |i| := i0 + i1 + i2 = n.

The coefficients bi give us coordinates in A(2, n), thus homogeneous coordinates
in P(2, n). The symbols ai will be used only for the coefficients of quadrics, or
equivalently for the coordinates of A(2, 2).

Finally, we say that i ≤ j iff iα ≤ jα for α = 0, 1, 2. This is equivalent to the
condition Xi|Xj .

Definition 2.2.1. We define A(2, 2)i3 as the open subscheme of A(2, 2)3 where
the coordinate ai is not zero. We also define Y i as the complement of A(2, 2)i3.

The open subschemes A(2, 2)(0,2,0)
3 , A(2, 2)(0,1,1)

3 and A(2, 2)(0,0,2)
3 are an open

covering of A(2, 2)3: indeed, a point not in the union of these three open subschemes
will necessarily parametrise a quadric divisible by X0, thus not smooth. The open
subschemes A(2, 2)i3 share another property, expressed in the following lemma:

Lemma 2.2.2. The projective bundles P(Vn)3 are trivial over the open sets
A(2, 2)i3.

The proof of the lemma above relies on a lemma of linear algebra concerning
the vector spaces of forms in three variables of fixed degree.

Lemma 2.2.3. Let i be a triple such that |i| = 2 and let Bn be the set of
monomials of degree n in three variables not divisible by Xi.

Fix a quadric q in three variables with non-zero coefficient ai. Define B′n to be
the set of polynomials obtained by multiplying q with a monomial of degree n− 2 in
three variables. Then the two sets Bn and B′n are disjoint and Bn ∪ B′n is a base
for the vector space of homogeneous polynomials of degree n in three variables with
coefficients in a field k.

Proof. The fact that Bn and B′n are disjoint is obvious, because every mono-
mial in B′n is divisible by Xi.

The monomials form a base for the vector space of homogeneous polynomials
of degree n in three variables. Let M be the matrix representing the unique linear
transformation that sends the base of monomials to the set Bn∪B′n in the following
way: monomials not divisible by Xi are sent to themselves, and monomials of the
form Xif are sent to qf .

Observe that, after possibly reordering the monomials of the form Xif , the
matrix M will be upper triangular, with either 1 or ai on the diagonal: this shows
that the determinant of M is invertible, thus B′n ∪Bn is a base. �

Proof of lemma 2.2.2. From lemma 2.2.3 we see that over A(2, 2)i3 the co-
ordinates bk, for |k| = n and i � k, induce a trivialization of the vector bundle
Vn|A(2,2)i

3
. �

Consider the following morphisms:
πn,m : P(1, 2n)× P(1, 2m) −→ P(1, 4n+ 2m), (f, g) 7−→ f2g
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whose GL3-counterparts are
π′n,m : P(Vn)3 ×A(2,2)3 P(Vm)3 −→ P(V2n+m)3, (q, f, g) 7−→ (q, f2g)

Applying proposition 1.3.8 we deduce the following commutative diagrams of equi-
variant Chow rings:

CHGL3(P(Vn)3)⊗CHGL3 (A(2,2)3) CHGL3(P(Vm)3)
π′n,m∗

//

∼=

��

CHGL3(P(V2n+m)3)

∼=

��

CHPGL2(P(1, 2n))⊗CHP GLt
CHPGL2(P(1, 2m))

πn,m∗
// CHPGL2(P(1, 4n+ 2m))

Observe that we also have the following class of closed linear immersions of
projective bundles:

jn,r,l : P(Vn−r−l)3 ↪→ P(Vn)3, (q, f) 7−→ (q,Xr
0X

l
1f)

These are not GL3-equivariant but only T -equivariant, where T is the maximal
subtorus of diagonal matrices.

Definition 2.2.4. The T -invariant, closed subscheme Wn,r,l ⊂ P(Vn)3 is de-
fined as the schematic image of jn,r,l.

2.2.2. Computations in the T -equivariant Chow ring of P(Vn)3. Let us
introduce another little piece of notation: with λ we mean the triple (λ1, λ2, λ3). If
i is another triple (most of the times, we will have i = (i0, i1, i2)), we indicate with
i · λ their scalar product.

As already observed, there is a well defined action of GL3 on P(Vn)3 and there-
fore an induced action of the split torus T of diagonal matrices. We can consider the
T -equivariant Chow ring CHT (P(Vn)3). If Z ⊂ P(Vn)3 is a T -invariant subvariety,
its T -equivariant cycle class will be denoted [Z]T .

Recall from proposition 1.1.4 that we have:
CHT (Spec(k0)) ' Z[λ1, λ2, λ3]

where λi is the first Chern class of the representation associated to the ith-projection
T → Gm. Let σi be the elementary symmetric polynomial of degree i in λ1, λ2 and
λ3.

Proposition 2.2.5. Suppose that the characteristic of k0 is 6= 2. Then we have
CHT (A(2, 2)3) ' Z[λ1, λ2, λ3]/(σ1, 2σ3)

Proof. Observe that A(2, 2)3 is a Gm-torsor over P(2, 2)3, whose associated
line bundle is O(−1)⊗D, where D is the pullback of the determinant representation
of GL3 regarded as a T -representation. Applying proposition 1.1.8, we deduce:

CHT (A(2, 2)3) = CHT (P(2, 2)3)/(σ1 − h)
where h is the restriction of the hyperplane section of P(2, 2).

The localization exact sequence (proposition 1.1.1.(3)) for the open embedding
P(2, 2)3 ↪→ P(2, 2) is:

CHT (P(2, 2)[2,1])
i∗−→ CHT (P(2, 2)) −→ CHT (P(2, 2)3) −→ 0

By the projective bundle formula (proposition 1.1.1.(6)) we see that the ring in the
middle is isomorphic to CHT (Spec(k0))[h]/(f), where f =

∏
a+b+c=2(aλ1 + bλ2 +

cλ3) is the equivariant top Chern class of the T -representation A(2, 2) = Sym2E∨

(here E is the standard representation of GL3 regarded as a T -representation).
Let W be the closed subscheme inside P(2, 2)× P2 defined as:

W = {(q, p) such that qX0(p) = qX1(p) = qX2(p) = 0}
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Observe that W |P(2,2)2 → P(2, 2)2 is an isomorphism, and also the morphism ϕ :
P(2, 1) → P(2, 2)1 that sends a linear form to its square is an isomorphism. If we
denote π : W → P(2, 2) the induced projection, these last two remarks imply that
im(i∗) = im(π∗) + im(ϕ∗).

The generators of im(ϕ∗) had been computed in [EF08, pg. 10], and they are:
4(h3 − 2σ1h

2 + (σ2
1 + σ2)h+ (σ3 − σ1σ2))

2h(h3 − 2σ1h
2 + (σ2

1 + σ2)h+ (σ3 − σ1σ2))
h2(h3 − 2σ1h

2 + (σ2
1 + σ2)h+ (σ3 − σ1σ2))

To compute the generators of im(π∗), first observe that W is a projective sub-
bundle of P(2, 2) × P2 → P2. This implies that the generators of CHT (W ) as a
CHT (Spec(k0))-module are of the form hi · tj , where t is the pullback of the hyper-
plane section of P2, and h is the restriction of the hyperplane section of P(2, 2) to
W .

The projection formula (proposition 1.1.1.(8)) tells us that π∗(hi ·tj) = hi ·π∗tj ,
so we only have to compute π∗([W ]T · tj) for j = 0, 1, 2. We can write:

[W ]T = ξ3 + ξ2t+ ξ1t
2

where ξi come from CHT (P(2, 2)). Applying the compatibility formula (proposition
1.1.1.(4)) we deduce that π∗([W ]T · tj) = ξ1+j .

To compute [W ]T , we can apply lemma 1.1.7, because W is the complete in-
tersection of the hypersurfaces:

H1 := {qX0(p) = 0} , H2 := {qX1(p) = 0} , H3 := {qX2(p) = 0}
A simple computation gives us the following result:

[W ]T = (h+ t− λ1)(h+ t− λ2)(h+ t− λ3)
= (h+ t)3 − σ1(h+ t)2 + σ2(h+ t)− σ3

= (h3 − σ1h
2 + σ2h− σ3) + t(3h2 − 2σ1h+ σ2) + t2(3h− σ1) + t3

= (h3 − σ1h
2 + σ2h− 2σ3) + t(3h2 − 2σ1h) + t2(3h− 2σ1)

where in the last equality we used the relation t3 = −σ1t
2 − σ2t− σ3. We deduce:

ξ3 = h3 − σ1h
2 + σ2h− 2σ3

ξ2 = 3h2 − 2σ1h

ξ1 = 3h− 2σ1

Putting everything together, we get the desired conclusion. �

The projective bundle formula (proposition 1.1.1.(6)) together with the previous
proposition implies that

CHT (P(Vn)3) ' Z[λ1, λ2, λ3, hn]/(σ1, 2σ3, pn(hn))
where hn is the hyperplane section of P(Vn)3 and pn(hn) the T -equivariant top
Chern class of Vn,3.

Let A(2, 2)i3 and Y i be as in definition 2.2.1: the T -equivariant Chow ring of
P(Vn)3|A(2,2)i

3
can be easily computed.

Lemma 2.2.6. We have CHT (P(Vn)3|A(2,2)i

3
) ' CHT (P(Vn)3)/(i · λ).

Proof. From the localization exact sequence (proposition 1.1.1.(3)) we get:

CHT (P(Vn)3|Y i) i∗−→ CHT (P(Vn)3) j∗−→ CHT (P(Vn)3|A(2,2)i

3
)→ 0

We want to prove that im(i∗) = (i · λ).
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Let t be the hyperplane section of P(Vn)3|Y i , so that the T -equivariant Chow
ring of P(Vn)3|Y i is generated as CHT (Spec(k0))-module by elements of the form
p
′∗α · td for d ≤ 2n, where p′ is the projection map to Y i.

This implies that im(i∗) is generated by the elements i∗(p
′∗α ·td). Observe that

i∗hn = t. From the cartesian square

P(Vn)3|Y i
i //

p′

��

P(Vn)3

p

��

Y i
i′ // A(2, 2)3

and the projection and compatibility formula (proposition 1.1.1.(4),(8)) we deduce:

i∗(p
′∗α · td) = i∗(p

′∗α · i∗hdn)

= i∗p
′∗α · hdn = p∗i′∗α · hdn

This means that im(i∗) = p∗(im(i′∗)).
Observe that Y i is an open subscheme of a representation of T , namely the

vector subspace of forms of degree 2 with the coefficient ai equal to zero. This
implies that CHT (Y i) is generated by 1 as a CHT (Spec(k0))-module, from which
we deduce that im(i′∗) is generated, as an ideal, by [Y i]T .

Because of the fact that the closure of Y i inside A(2, 2) is defined as the zero
locus of the coordinate ai, the class of this closure can be computed using lemma
1.1.7: we obtain [Y i]T = c1− i ·λ. From the explicit presentation of CHT (A(2, 2)3)
that we have obtained in proposition 2.2.5 we deduce that [Y i]T = −i · λ. �

We previously defined T -invariant closed subschemes Wn,r,l ⊂ P(Vn)3 (see def-
inition 2.2.4). The cycle classes [Wn,r,l]T have degree 2r + 2l. We can pull back
them via the open immersion

j : P(Vn)3|A(2,2)(0,0,2)
3

' P2n × A(2, 2)(0,0,2)
3 ↪→ P(Vn)3

so that they can be actually computed. Indeed, here we have homogeneous co-
ordinates given by the coefficients bk, for |k| = n and (0, 0, 2) � k and we see
that

j−1Wn,r,l = {bk = 0 for k0 < r or k1 < l}
from which we deduce that they are complete intersection. Using lemma 1.1.7 we
get:

j∗[Wn,r,l]T =
∏

(hn − k · λ) for k s.t. |k| = n, k2 < 2, k0 < r or k1 < l

Combining this with lemma 2.2.6 we deduce:

Lemma 2.2.7. We have

[Wn,r,l]T =
∏

(hn − k · λ) + 2λ3ξ for k s.t. |k| = n, k2 < 2, k0 < r or k1 < l

where ξ is an element of CHT (P(Vn)3).

In particular, all these classes are monic in hn. Another useful property is the
following: the set-theoretic intersection of Wn,r,0 and Wn,0,l is exactly Wn,r,l. This
is also true at the level of Chow rings: indeed Wn,r,l is the only component of
Wn,r,0 ∩Wn,0,l, all the varieties involved are smooth and it is easy to check that
the intersection is transversal. This implies the following result:

Lemma 2.2.8. We have [Wn,r,0]T · [Wn,0,l]T = [Wn,r,l]T .
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Recall that we have defined the morphism
π′n,m : P(Vn)3 ×A(2,2)3 P(Vm)3 −→ P(V2n+m)3

as π′n,m(q, f, g) = (q, f2g). If we restrict this morphism to Wn,1,n−1×A(2,2)3 P(Vm)3
we obtain a birational surjective morphism

Wn,1,n−1 ×A(2,2)3 P(Vm)3 −→W2n+m,2,2n−2

This implies the following result:

Lemma 2.2.9. We have π′n,m∗([Wn,1,n−1×A(2,2)3 P(Vm)3]T ) = [W2n+m,2,n−2]T .

2.3. The Chow ring of Hg: generators and first relations

The goal of this section is to do the first steps in the computation of the Chow ring
of Hg, finding the generators and some relations. The intermediate result that we
find is the content of corollary 2.3.12.

2.3.1. Some preliminary results. In this subsection we prove two technical
results that we will be used frequently.

The following proposition is a generalization of the classical construction of the
projection morphism from a projective subspace.

Proposition 2.3.1. Let X be a scheme of finite type over k0 and suppose to
have an exact sequence of locally free sheaves over X of the form:

0 −→ F −→ E −→ G −→ 0
We can form the projective bundle π : P(G)→ X.

Consider the flat morphism f : P(E) \ P(F) → X obtained by composing the
open embedding of P(E)\P(F) into P(E) with the projection of this projective bundle
onto X.

Then there exists a canonical morphism β : P(E) \ P(F)→ P(G). Moreover, if
there is a section σ : E → F , the scheme P(E) \ P(F) is isomorphic to the vector
bundle over P(G) associated to the locally free sheaf π∗F ⊗OP(G)(1).

Proof. To define a morphism β : P(E) \ P(F)→ P(G) over X we have to find
an invertible sheaf L over P(E) \ P(F) and an embedding of locally free sheaves
L ↪→ f∗G.

Let ρ : P(E) → X be the projection morphism. We have a canonical inclusion
OP(E)(−1) ↪→ ρ∗E . Restricting this morphism to the open subscheme P(E) \ P(F)
and composing it with the morphism f∗E → f∗G, we get:

OP(E)(−1)|P(E)\P(F) −→ f∗G
This last morphism is injective because the image of OP(E)(−1)|P(E)\P(F) inside f∗E
does not intersect the image of f∗F .

To prove the second claim of the proposition, is enough to show that on the
site of P(G)-schemes there is an isomorphism of sheaves:

Hom(−,P(E) \ P(F)) ' π∗F ⊗OP(G)(1)
Take a P(G)-scheme S and a morphism β : S → P(E) \ P(F) over P(G): due to the
fact that P(G) is a scheme over X, the morphism β can be regarded as a morphism
of X-schemes, and it induces an inclusion

OP(E)(−1)|S ↪→ E|S
The fact that β is a morphism of P(G)-schemes implies that:

(1) OP(E)(−1)|S ' OP(G)(−1)|S .
(2) After identifyingOP(E)(−1)|S withOP(G)(−1)|S , the composition of β with

the morphism E|S → G|S is equal to the inclusion OP(G)(−1)|S ↪→ G|S .
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Therefore, the sheaf Hom(−,P(E)\P(F)) on the site of P(G)-schemes is isomorphic
to the sheaf

F : S 7−→
{
OP(G)(−1)|S ↪→ E|S that commutes with the morphisms to G|S

}
Using the section σ : E → F we can construct an isomorphism F ' π∗F ⊗OP(G)(1)
as follows: in one direction, we send an inclusion i : OP(G)(−1)|S ↪→ E|S to σ ◦ i,
and then we twits by OP(G)(−1)|S . In this way we get a morphism

OS −→ F|S ⊗OP(G)(1)|S
In the other direction, given a morphism OS → F|S ⊗OP(G)(1)|S we first twist

it by OP(G)(−1)|S , obtaining in this way a morphism α : OP(G)(−1)|S → F|S .
After that, we take the unique lifting i : OP(G)(−1)|S → E|S of the canonical

inclusion OP(G)(−1)|S ↪→ G|S having the property that σ ◦ i = α.
This construction gives us a well defined isomorphism of sheaves F ' π∗F ⊗

OP(G)(1). �

The next proposition will be used to compute equivariant cycle classes of in-
variant subvarieties.

Proposition 2.3.2. Suppose to have a flat, GL3-equivariant morphism f :
U → P(2, 2) and form the cartesian diagram

U
q

//

��

U

f

��

A(2, 2)[3,1] // P(2, 2)

Denote P(Vn)U the pullback of P(Vn) (see definition 1.3.10) along U → A(2, 2)[3,1].
Then we have:

(1) There exists a closed subscheme Y ⊂ U × P(2, n) and a flat morphism
p : U × P(2, n) \ Y −→ P(Vn)U

.
(2) There exists an isomorphism

Φ : CHk
GL3

(P(Vn)U ) −→ CHk
GL3

(U × P(2, n))/(pr∗1f∗s− c1)

where s = cGL3
1 (OP(2,2)(1)) and k < 2n.

(3) Let Z ⊂ P(Vn)U be a subvariety of codimension < 2n and let Z ⊂ U ×
P(2, n) be a subvariety such that

(q × id)−1(Z|U×P(2,n)\q(Y )) = p−1(Z)

Then Φ[Z] = [Z] modulo the relation pr∗1f∗s− c1 = 0.

Proof. Consider the diagram:

P(2, 2)× P2

pr1
$$

pr2
xx

P(2, 2) P2

Recall from definition 1.3.10 that we have an exact sequence of locally free sheaves
on P(2, 2):

0 −→ pr1∗pr∗2O(n− 2)⊗OP(2,2)(−1) −→ pr1∗pr∗2O(n− 2) −→ Vn −→ 0
and that Vn is the vector bundle associated to the locally free sheaf Vn, the pullback
of Vn to A(2, 2)[3,1].
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From this we deduce the following exact sequence of locally free sheaves on U :

0 −→ pr1∗pr∗2O(n− 2)U −→ pr1∗pr∗2O(n− 2)U −→ VnU
−→ 0

Therefore, we can apply proposition 2.3.1, which gives us a morphism:

p : U × P(2, n) \ U × P(2, n− 2) −→ P(Vn)|U
This proves (1), with Y := U × P(2, n− 2).

It is easy to see that p∗ induces an isomorphism at the level of Chow groups.
Using the localization exact sequence (proposition 1.1.1.(3)) we get an isomorphism:

Φ1 : CHk
GL3

(P(Vn)|U ) p∗−→ CHk
GL3

(U × P(2, n) \ Y ) (j∗)−1

−−−−→ CHk
GL3

(U × P(2, n))

where j is the open embedding (U × P(2, n)) \ Y ↪→ U × P(2, n).
Observe that U → U is the Gm-torsor associated to the equivariant invert-

ible sheaf f∗OP(2,2)(−1) ⊗ D, where D is the determinant representation of GL3,
whose equivariant first Chern class is c1, the generator of CH1

GL3
(see proposition

1.1.4.(2)). From this we deduce that U × P(2, n) → U × P(2, n) is the Gm-torsor
associated to the line bundle pr∗1f∗OP(2,2)(−1)⊗D. Applying proposition 1.1.8, we
get:

Φ2 : CHk
GL3

(U × P(2, n)) ' CHk
GL3

(U × P(2, n))/(f∗pr∗1s− c1)
We define Φ := Φ2 ◦ Φ1. This proves (2).

To prove (3), is enough to observe that with those assumptions we have:

Φ1[Z] = (j∗)−1p∗[Z] = (q × id)∗[Z] = Φ−1
2 [Z]

�

2.3.2. Computation of the generators. Theorem 2.1.1 tells us that the
Chow ring CH(Hg) is isomorphic to the equivariant Chow ring CHGL3×Gm

(U ′),
where U ′ is the open subscheme of Vg+1,3 consisting of all the pairs (q, f) such
that the intersection of the plane curves {q = 0} and {f = 0} is smooth, i.e. the
intersection consists of 2g + 2 distinct points.

Let D′3 be the complement of U ′ in Vg+1,3. It is easy to see that D′3 is a closed
subscheme of codimension 1. In this section, we will always assume n = g+ 1. The
localization exact sequence in this case is

CHGL3×Gm(D′3) i∗−→ CHGL3×Gm(Vn,3) j∗−→ CHGL3×Gm(U ′)→ 0

Observe that Vn,3 is a GL3 × Gm-equivariant vector bundle over A(2, 2)3, hence
from proposition 1.1.1.(6) we deduce

(1) CHGL3×Gm
(Vn,3) ' CHGL3×Gm

(A(2, 2)3)

with Gm acting trivially. We know an explicit presentation of CHT (A(2, 2))3 thanks
to proposition 2.2.5: applying proposition 1.1.3 we get

(2) CHGL3×Gm
(A(2, 2)3) ' Z[τ, c2, c3]/(2c3)

where τ is the first Chern class of the standard Gm-representation and c2, c3 are re-
spectively the second and the third Chern class of the standard GL3-representation.

We have found a set of generators for CH(Hg). To find the relations among
them, we have to compute the generators of the ideal im(i∗) inside the equivariant
Chow ring of Vn,3.

Consider the projective bundle P(Vn)3 and its open subscheme U , whose preim-
age in Vn,3 \ σ0 is exactly U ′ (recall that σ0 : A(2, 2)3 → Vn is the zero section).
Observe that Vn,3 \ σ0 is equivariantly isomorphic to the Gm-torsor over P(Vn)3



2.3. THE CHOW RING OF Hg: GENERATORS AND FIRST RELATIONS 27

associated to the line bundle O(−1)⊗ E−⊗2, where E is the standard representa-
tion of Gm pulled back to P(Vn)3. The same thing holds for U ′ over U . Applying
proposition 1.1.8 we obtain:

CHGL3×Gm(U ′) ' CHGL3×Gm(U)/(−hn − 2τ)

where hn is the restriction of the hyperplane section of P(2, 2).
This means that, if p(hn) is a relation in CHGL3×Gm

(U), then p(−2τ) is a
relation in CHGL3×Gm

(U ′), and all the relations in this last ring are obtained from
relations in the Chow ring of U in this way.

The action of Gm on P(Vn)3 is trivial, so that we can restrict ourselves to
consider only the GL3-action. Is then enough, in order to determine the equivariant
Chow ring of U ′, to compute the GL3-equivariant Chow ring of U .

Again, we have the localization exact sequence (proposition 1.1.1.(4)):

CHGL3(D3) i∗−→ CHGL3(P(Vn)3) j∗−→ CHGL3(U)→ 0

The projective bundle formula (proposition 1.1.1.(6)) tells us that the ring in the
middle is isomorphic to:

(3) CHGL3(A(2, 2)3)[hn]/(pn(hn)) ' Z[c2, c3, hn]/(2c3, pn(hn))

where pn(hn) is monic of degree 2n+ 1. We have to compute the generators of the
ideal im(i∗).

Observe that the closed subscheme D3 admits a stratification

D3,n ⊂ D3,n−1 ⊂ ... ⊂ D3,1 = D3

where D3,m is the locus of pairs (q, f) such that Q∩F = 2E+E′, with deg(E) = m
(here Q is the vanishing locus of q and F is the vanishing locus of f). All these sets
are clearly GL3-invariant. Observe moreover that D3,2s coincides with the image
of the equivariant, proper morphism

π′2s : P(Vs)3 ×A(2,2)3 P(Vn−2s)3 −→ P(Vn)3, (q, f, g) 7−→ (q, f2g)

which coincides with the morphism π′s,n−2s that we have defined in subsection 2.2.1.
This induces a scheme structure on D3,2s.

Consider also the GL3-invariant closed subscheme Y1 ⊂ P(V1)3 defined as:

Y1 = {(q, l) such that the plane curve {q = 0} is tangent to the line {l = 0}}

and let us define the closed subschemes Y2s+1 as the image of the morphisms

φ : Y1 ×A(2,2)3 P(Vs)3 −→ P(V2s+1)3, (q, l, f) 7−→ (q, lf2)

We can think of Y2s+1 as the locus of quadrics plus a divisor of the form 2E, with
deg(E) = 2s+ 1.

Consider the equivariant morphism:

ψn,m : P(1, 2n)× P(1, 2m) −→ P(1, 2n+ 2m), (f, g) 7−→ fg

It is immediate to verify that its GL3-counterpart is given by:

ψ′n,m : P(Vn)3 ×A(2,2)3 P(Vm)3 −→ P(Vn+m)3, (q, f, g) 7−→ (q, fg)

Restricting the morphism ψ′2s+1,n−2s−1 to Y2s+1×A(2,2)3 we obtain a proper mor-
phism

π′2s+1 : Y2s+1 ×A(2,2)3 P(Vn−2s−1)3 −→ P(Vn)3

whose image is D3,2s+1. This induces the scheme structure on D3,2s+1.
The stratification defined above resembles the stratification

∆n,2n ⊂ ... ⊂ ∆1,2n ⊂ P(1, 2n)
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that has been introduced in [FV11, pg. 5]. Indeed, we have that D3,s is the GL3-
counterpart of ∆s,2n. Furthermore, it is easy to see that the GL3-counterparts of
the morphisms

π2s : P(1, 2s)× P(1, 2n− 4s) −→ P(1, 2n), (f, g) 7−→ f2g

are exactly the morphisms π′2s : P(Vs)3 ×A(2,2)3 P(Vn−2s)3 → P(Vn)3. Applying
proposition 1.3.8 we obtain the commutative diagram:

CHPGL2(P(1, 2s)× P(1, 2n− 4s))

��

' // CHGL3(P(Vs)3 ×A(2,2)3 P(Vn−2s)3)

��

CHPGL2(P(1, 2n)) ' // CHGL3(P(Vn)3)

We also have that Y1 is the GL3-counterpart of P1, as we can think of Y1 as the
tautological conic over A(2, 2)3, and in general the closed subschemes Y2s+1 ⊂
P(V2s+1) are the GL3-counterparts of P(1, 2s+ 1) sitting inside P(1, 4s+ 2) via the
square map, so that we have

CHPGL2 (P(1, 2s + 1)× P(1, 2n− 4s− 2)) ' //

��

CHGL3 ((Y2s+1)×A(2,2)3 P(Vn−2s−1)3)

��
CHPGL2 (P(1, 4s + 2)× P(1, 2n− 4s− 2)) ' //

��

CHGL3 (P(V2s+1)3 ×A(2,2)3 P(Vn−2s−1)3)

��

CHPGL2 (P(1, 2n)) ' // CHGL3 (P(Vn)3)

Combining [FV11, lemma 3.1] with the diagrams above we obtain:

Lemma 2.3.3. Suppose that the characteristic of the base field k0 is 0 or >
2g + 2. Then the ideal im(i∗) is the sum of the ideals im(π′s∗), and these ideals are
equal to im(πs∗) via the isomorphisms of the diagrams above.

From now on, we will assume that the characteristic of k0 is > 2g + 2.

2.3.3. Computation of the first relations. The following result allows us
to compute the first relations in the Chow ring of Hg:

Proposition 2.3.4. We have im(π′1∗) = (2h2
n − 2n(n− 1)c2, 4(n− 2)hn).

The remainder of this subsection is devoted to prove the proposition above.
Recall that in the proof of proposition 1.3.12 we constructed a closed subscheme

of P(V n)×P2 that we called D: let D be its pullback to P(Vn)×P2. We can think of
the points of D as triples (q, [f ], p) such that the plane curves {q = 0} and {f = 0}
intersect in p.

Let Z be the ramification locus of D3 → P(Vn)3, i.e. the locus defined by the
0th-Fitting ideal of Ω1

D3/P(Vn)3
.

Observe that it is GL3-invariant, where GL3 acts on P2 in the standard way
(we can think of P2 as the projectivization of the standard representation of GL3).

The image of Z via the projection on P(Vn)3 is D3, and moreover pr1 : Z → D3
is injective over D3,1 \D3,2. Before going on, let us pause a moment to study the
geometry of Z. We start with a well known technical result.

Lemma 2.3.5. Let p be a point of P2 and let Q, F be the plane projective
curves defined by the homogeneous polynomials q and f . Let J(q, f) be the 2 × 3-
jacobian matrix, and suppose that Q and F intersect in p. Then their intersection
is transversal iff there exists one 2 × 2- minor of J(q, f) whose determinant does
not vanish in p.
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Let us denote the determinant of the minor of J(q, f) obtained by removing
the column with the partial derivatives w.r.t. X0 (resp. X1 and X2) as det0 J(q, f)
(resp. det1 J(q, f) and det2 J(q, f)). Then we have the following equational char-
acterization of Z, which directly follows from the lemma above:

Lemma 2.3.6. Consider Z restricted to P(Vn)|A(2,2)l

3
× P2, where l = (1, 0, 0)

(resp. (0, 1, 0) and (0, 0, 1)). Then Z is defined by the following equations in p and
in the coefficients aj, bk, for l � k, of q and f :

• q(p) = 0
• f(p) = 0
• deti J(q, f)(p) = 0, for i = 0 (resp. i = 1 and i = 2)

A first step in the proof of proposition 2.3.4 is the following, which enables us
to work with the morphism ρ : Z → P(Vn)3 rather than π′1 : Y1×A(2,2)3 P(Vn−1)3 →
P(Vn)3.

Lemma 2.3.7. We have Y1 ×A(2,2)3 P(Vn−1)3 ' Z and the isomorphism com-
mutes with the morphisms to P(Vn)3.

Proof. Consider the morphism Y1 ×A(2,2)3 P(Vn−1)3 → P(Vn)3 × P2 which
sends a triple (q, l, [f ]) to (q, [lf ], p) where p is the point of tangency of Q and L.

By construction, the image of this morphism is Z. We want to define an inverse
Z → Y1×S P(Vn−1): this is done by sending a triple (q, [f ], p) of Z to (q, l, [fl−1]),
where L = {l = 0} is the only line tangent to Q in p. Details are omitted. �

Corollary 2.3.8. We have im(π′1∗) = im(ρ∗).

In order to prove proposition 2.3.4 is then equivalent to compute im(ρ∗).
Let us call t the hyperplane section of P2, so that the equivariant Chow ring
CHGL3(P(Vn)3 × P2) is generated as CHGL3(A(2, 2)3)-algebra by pr∗1hn and pr∗2t:
with a little abuse of notation we will keep calling these cycles hn and t.

The class [Z] can then be written as a polynomial in t of degree 3 with coef-
ficients in CHGL3(P(Vn)3): indeed, the dimension of Y1 ×A(2,2)3 P(Vn−1)3 is equal
to 2n + 4, which by lemma 2.3.7 is equal to the dimension of Z, so that we
deduce that the codimension of Z in P(Vn)3 × P2 is equal to 3. We then have
[Z] = β1(hn)t2 + β2(hn)t+ β3(hn).

Lemma 2.3.9. We have im(ρ∗) = (β1(hn), β2(hn), β3(hn)).

The lemma above reduces the computation of the generators of im(ρ∗) to the
computation of the class [Z] inside CHGL3(P(Vn)3 × P2). Before proving lemma
2.3.9 we need some preliminary results.

Lemma 2.3.10. The closed subscheme Z is a projective subbundle of P(Vn)3×P2

over the universal smooth quadric Q̂3 ⊂ P2 × A(2, 2)3.

Proof. First recall that Q̂3 = {(q, p) such that q(p) = 0}. We can work
Zariski-locally on Q̂3, so that Z is described by the equations of lemma 2.3.6,
which are linear in the coefficients of f : this proves the lemma. �

Lemma 2.3.11. The image of i∗ : CHGL3(Z) → CHGL3(P(Vn)3 × P2) is gen-
erated as an ideal by i∗1 = [Z].

Proof. We claim that the equivariant Chow ring of Z is generated as a
i∗pr∗2(CHGL3(P2))-algebra by i∗hn, so that every element is a sum of monomi-
als of the form i∗pr∗2ξ · i∗hrn. If this is the case, the projection formula (proposition
1.1.1.(8)) imply that i∗(i∗pr∗2ξ · i∗hrn) = pr∗2ξ · hrn · [Z], and we are done.
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From lemma 2.3.10 we know that the equivariant Chow ring of Z is generated
by i∗hn as CHGL3(Q̂3)-algebra, where Q̂3 is the universal smooth quadric and
CHGL3(Q̂3) acts via the pullback morphism induced by the projection φ : Z → Q̂3.

Consider the trivial vector bundle P2×A(2, 2) over P2, which contains the vector
subbundle Q̂ defined by the equation q(p) = 0, which is linear in the coefficients of
q. By homotopy invariance (proposition 1.1.1.(5)), the equivariant Chow ring of Q̂
is isomorphic to the one of P2 via the pullback along the projection map.

Moreover Q̂3 is an open subscheme of Q̂, thus from the localization exact se-
quence (see proposition 1.1.1.(3)) we deduce that CHGL3(Q̂3) is generated by 1 as
a j∗pr∗2CHGL3(P2)-module, where j : Q̂3 ↪→ A(2, 2)3 × P2 is the closed embedding.

To finish the proof, one has only to observe that φ∗j∗pr∗2 = i∗pr∗2. �

Proof of lemma 2.3.9. Due to the fact that ρ = pr1 ◦ i, from lemma 2.3.11
we deduce that im(ρ∗) is generated, as an ideal, by elements of the form

pr1∗([Z] · pr∗1ξ · pr∗2tk) = ξ · pr1∗([Z] · pr∗2tk)
The compatibility formula (proposition 1.1.1.(4)) applied to the cartesian dia-

gram
P(Vn)3 × P2 pr2 //

pr1

��

P2

��

P(Vn)3 // Spec(k0)

implies that pr1∗pr∗2td it is zero unless d = 2, in which case is equal to 1.
Therefore, we have pr1∗([Z]·pr∗2tk) = β1+k where [Z] = β3 +β2 ·pr∗2t+β1 ·pr∗2t2.

This finishes the proof. �

Thanks to lemma 2.3.9 to prove proposition 2.3.4 we only have to compute the
GL3-equivariant cycle class of Z.

Let Z ′ be the GL3-invariant, closed subscheme of P(2, 2)× P(2, n)× P2 whose
points are triples (q, f, p) such that

q(p) = f(p) = 0, det
i
J(q, f)(p) = 0, i = 0, 1, 2

We can apply proposition 2.3.2 to the morphism P(2, 2)3 × P2 → P(2, 2): this tells
us that there is an isomorphism

Φ : CH3
GL3

(P(Vn)3 × P2) ' CH3
GL3

(P(2, 2)3 × P(2, n)× P2)/(s− c1)
where s is the hyperplane section of P(2, 2). Moreover, it also tells us Φ[Z] = [Z ′]
modulo the relations s− c1 = 0, c1 = 0 and 2c3 = 0. Therefore, all we have to do
is to compute the cycle class of Z ′.

Observe that Z ′ it is not a complete intersection, but it becomes so if we restrict
to the open subscheme of P2 consisting of points where one of the homogeneous
coordinates does not vanish. Let us consider the auxiliary cycle class [Z ′2], where
Z ′2 is the closed subscheme defined by the equations

q(p) = f(p) = 0, det
2
J(q, f)(p) = 0

It is easy to check that this locus has two irreducible components, Z ′ and W2,
whereW2 is defined by the equations q(p) = 0, f(p) = 0 and p2 = 0 (here p2 stands
for the third homogeneous coordinate of P2).

Thus, we would like to write [Z ′] = [Z ′2]− [W2]. Unfortunately, the subschemes
Z ′2 and W2 are not GL3-invariant.

We can use the following trick: we first pass to the action of the maximal
subtorus T ⊂ GL3, and we observe that Z ′2 and W2 are equivariant with respect



2.4. OTHER GENERATORS OF im(i∗) 31

to the T -action. Then we compute their T -equivariant classes in the T -equivariant
Chow ring of P(2, n)×P(2, 2)×P2: by proposition 1.1.3, their difference will be S3-
invariant, hence after expressing it in terms of elementary symmetric polynomials
σi and substituting σi with ci we will obtain the GL3-equivariant cycle [Z ′].

Both Z ′2 and W2 are complete intersections, hence their cycle classes can be
computed using lemma 1.1.7:

[Z ′2]T − [W2]T = (s+ 2t)(hn + nt)(s+ hn + nt− λ1 − λ2)
− (s+ 2t)(hn + nt)(t+ λ3) =
= (s+ 2t)(hn + nt)(s+ hn + (n− 1)t− σ1)

Observe that the cyle classes of Z ′2 and W were not symmetric with respect to λi
but they become so when combined together, precisely how we expected.

In order to find the coefficients β1, β2 and β3 we have to put this expression
in its canonical form, by using the relation t3 = −c3 − c2t − c1t

2 coming from the
equivariant Chow ring of P2. In the end we obtain:

[Z ′] =(s2hn + sh2
n − shnc1 − 2n(n− 1)c3)+

((n− 1)s2 + (2n+ 1)shn − nsc1 + 2h2
n − 2hnc1 − 2n(n− 1)c2)t

(((n− 1)2 + 3n− 1)s+ (4n− 2)hn − 2nc1 − 2n(n− 1)c1)t2

Substituting s = c1 = 0 and 2c3 = 0, we obtain β1 = (4n−2)hn, β2 = 2h2
n−2n(n−

1)c2 and β3 = 0. This proves proposition 2.3.4.

Corollary 2.3.12. The Chow ring of Hg is a quotient of the ring

Z[τ, c2, c3]/(4(2g + 1)τ, 8τ2 − 2g(g + 1)c2, 2c3)

Proof. The only thing we need to prove is that pn(−2τ) is contained in the
ideal above. This works exactly as in [FV11, proposition 6.4]. �

The next section will be devoted to check if there are other relations in the Chow
ring of Hg, or if they all come from the pullback to CHGL3×Gm

(Vn) of im(π′1∗).

2.4. Other generators of im(i∗)

As before, we assume char(k0)=0 or > 2g+ 2. The value of n is always assumed to
be even.

In this section, we first compute im(i∗) with Z[ 1
2 ]-coefficients, which means that

we do the computations in the equivariant Chow ring tensored over Z with Z[ 1
2 ].

The main result is the following proposition:

Proposition 2.4.1. We have im(π′r∗)⊗Z Z[ 1
2 ] ⊂ im(π′1∗)⊗Z Z[ 1

2 ].

In other terms, using Z[ 1
2 ]-coefficients, the ideal im(i∗) coincides with the ideal

im(π′1∗), whose generators we computed in the previous section (proposition 2.3.4).
Next, we pass to Z(2)-coefficients. What we deduce at the end is the following

result:

Proposition 2.4.2. We have im(i∗) ⊗Z Z(2) = (2h2
n − 2n(n − 1)c2, 4(n −

2)hn, π′2∗(h2
1 × [P(Vn−2)])) and the inclusion im(π′1∗) ⊗Z Z(2) ⊂ im(i∗) ⊗Z Z(2) is

strict.

The last two propositions together imply:

Corollary 2.4.3. We have im(i∗) = (2h2
n − 2n(n− 1)c2, 4(n− 2)hn, π′2∗(h2

1 ×
[P(Vn−2)])).
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Using proposition 1.3.8 we see that the corollary above, interpreted in the
PGL2-equivariant setting, says that the image of

i∗ : CHPGL2(∆1,2n) −→ CHPGL2(P(1, 2n))

is equal to the image of

π1∗ : CHPGL2(P(1, 1)× P(1, 2n− 2)) −→ CHPGL2(P(1, 2n))

plus the cycle π2∗(H2 × 1), where H is the hyperplane section of P(1, 2) and the
morphism π2 is

π2 : P(1, 2)× P(1, 2n− 4) −→ P(1, 2n), (f, g) 7−→ f2g

and the inclusion im(π1∗) ⊂ im(i∗) is strict. Instead, in [FV11, proposition 5.3] is
stated that im(πr∗) ⊂ im(π1∗).

To prove proposition 2.4.2, we initially work with GL3-equivariant Chow rings,
we pass then to the T -equivariant ones, and we complete the computation of
im(iT∗ )⊗Z Z(2) in this different setting. Then, using what we have found exploiting
the T -equivariant Chow rings, we go back to the GL3-context and we finish the
computation of the generators of im(i∗)⊗Z Z(2) .

We initially follow the path of [FV11] but at a certain point we diverge. Indeed,
as said before, the computation is completed in the T -equivariant setting, mainly
because we start working with cycle classes of subvarieties that are only T -invariant
and not GL3-invariant. In particular, these classes do not have an analogue in the
PGL2-equivariant setting that is adopted in [FV11]. This is where we really need
the new presentation given by theorem 2.1.1.

2.4.1. Computations with Z[ 1
2 ]-coefficients. Let us recall the content of

[FV11, lemma 5.4]:

Lemma 2.4.4. Let X be a smooth scheme on which PGLn acts, and consider
the induced action of SLn via the quotient map SLn → PGLn. Then the kernel of
the pullback map CHPGLn

(X)→ CHSLn
(X) is of n-torsion.

From now until the end of the current subsection, every Chow ring is assumed
to be tensored over Z with Z[ 1

2 ]. The strategy adopted here is substantially the
same as the one used in [FV11]. Consider first the commutative square

CHGL3(P(Vs)3 ×A(2,2)3 P(Vn−2s)3) //

∼=

��

CHGL3(P(Vn)3)

∼=

��

CHPGL2(P(1, 2s)× P(1, 2n− 4s)) //

��

CHPGL2(P(1, 2n))

��

CHSL2(P(1, 2s)× P(1, 2n− 4s)) // CHSL2(P(1, 2n))

where the three horizontal arrows are the pushforward along the maps π′2s, π2s and
πSL2

2s .
Recall that π′2s(q, [f ], [g]) := (q, [f2g]), and that π2s(f, g) = f2g, and πSL2

2s is
defined in the same way.

Then from lemma 2.4.4 we deduce that the two last vertical arrows, when
using Z[ 1

2 ]-coefficients, are injective, so that it is enough to prove proposition 2.4.1,
r = 2s, for the SL2-equivariant Chow rings. This can be done copying verbatim
[EF09, section 4], with the additional relation c1 = 0.
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The case r = 2s+ 1 is handled similarly, using the commutative square

CHGL3(Y2s+1 ×A(2,2)3 P(Vn−2s−1)3) //

∼=

��

CHGL3(P(Vn)3)

∼=
��

CHPGL2(P(1, 2s+ 1)× P(1, 2n− 4s− 2)) //

��

CHPGL2(P(1, 2n))

��

CHSL2(P(1, 2s+ 1)× P(1, 2n− 4s− 2)) // CHSL2(P(1, 2n))

This concludes the proof of proposition 2.4.1 stated at the beginning of the section.

2.4.2. Computations with Z(2)-coefficients, first part. Throughout this
subsection, we will assume that every Chow ring and every ideal appearing is ten-
sored over Z with Z(2), also when is not explicitly written. The main result of this
section is the next proposition.

Proposition 2.4.5. The ideal im(i∗) ⊗Z Z(2) is equal to the sum of the ideal
im(π′1∗)⊗ZZ(2) and the ideal generated by the elements π′2s∗(h2s

s ·1) for s = 1, ..., n/2

Recall from lemma 2.3.3 that when the characteristic of k0 is 0 or > 2g+ 2 the
ideal im(i∗) is the sum of the ideals im(π′r∗).

Lemma 2.4.6. We have im(π′2s+1∗)⊗Z Z(2) ⊂ im(π′1∗)⊗Z Z(2).

Proof. Consider the commutative square

Y1 ×A(2,2)3 P(Vs)3 ×A(2,2)3 P(Vn−2s−1)3 //

φ×id
��

Y1 ×A(2,2)3 P(Vn−1)3

π′1
��

Y2s+1 ×A(2,2)3 P(Vn−2s−1)3
π′2s+1

// P(Vn)3

where the top horizontal arrow ψ sends a tuple (q, l, f, g) to (q, l, f2g). Observe
that the vertical arrow on the left is finite of degree 2s + 1, thus the pushforward
induces an isomorphism at the level of Chow rings (we are using Z(2)-coefficients).
The commutativity of the square implies that

(π′2s+1)∗ = (π′1)∗ ◦ (ψ)∗ ◦ (φ× id)−1
∗

and this implies the lemma. �

Now we want to study the image of π′2s∗. Observe that this ideal is generated
by the pushforward of the classes hi2s · h

j
n−2s, for i = 0, ..., 2s and j = 0, ..., 2n− 4s,

where we use the notational shorthand hi2s ·h
j
n−2s to indicate what should be more

correctly denoted as pr∗1hi2s · pr∗2h
j
n−2s. An intermediate result is the following

lemma:

Lemma 2.4.7. We have that π′2s∗(his · h
j
n−2s) is in im(π′1∗) for i = 0, ..., 2s− 1

and j = 0, ..., 4n− 2s.

In order to prove the lemma above we need a technical result, which can be
found also in [FV11], with the exception that there the authors claim the result
also for i = 2s. The proof works exactly in the same way.

Lemma 2.4.8. We have that π′2s∗(his · h
j
n−2s) is 2-divisible for i = 0, ..., 2s − 1

and j = 0, ..., 4n− 2s.
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Proof. We start with the case s = n/2. Observe that π′n∗(hin/2), for i =
0, ..., n−1, is 2-divisible if and only if π′n∗(hin/2) ·hn is 2-divisible. This follows from
the uniqueness of the representation of cycles in CHT (P(Vn)3) as polynomials in
hn of degree less or equal to 2n.

We also have that π′∗n hn = 2hn/2, and from this we deduce that

π′n∗(hin/2) · hn = π′n∗((hin/2) · π
′∗
n hn) = 2π′n∗hi+1

n/2

Now consider the general case, and observe that we have a factorization of π′2s as
follows:

P(Vs)3 ×A(2,2)3 P(Vn−2s)3
π′′2s×id−−−−→ P(V2s)3 ×A(2,2)3 P(Vn−2s)3

π2s,n−2s−−−−−→ P(Vn)3

where π′′2s((q, f)) = (q, f2). At the level of Chow rings, the first morphism coincides
with

CHGL3(P(Vs)3)⊗CHGL3 (A(2,2)3) CHGL3(P(Vn−2s)3)

π′′2s∗⊗id∗
��

CHGL3(P(V2s)3)⊗CHGL3 (A(2,2)3) CHGL3(P(Vn−2s)3)

From the previous case we deduce that

π′2s∗(his · h
j
n−2s) = 2π2s,n−2s∗(π′′2s∗hi+1

s · hjn−2s)

which concludes the proof of the lemma. �

Remark 2.4.9. We cannot extend the previous lemma to the classes in which
h2s
s appears. Indeed, for s = n/2, write π′n∗hnn/2 as a polynomial α0h

2n
n +α1h

2n−1
n +

...+ α2n. Then we have

π′n∗h
n
n/2 · hn = (α0h

2n
n + α1h

2n
n + ...α2n) · hn = α0(hn+1

n − pn(hn)) + ...+ α2nhn

and the first coefficient will always be 2-divisible, no matter if α0 is even or not.

Proof of lemma 2.4.7. Consider again the commutative diagram

CHGL3(P(Vs)3 ×A(2,2)3 P(Vn−2s)3) //

∼=

��

CHGL3(P(Vn)3)

∼=

��

CHPGL2(P(1, 2s)× P(1, 2n− 4s)) //

��

CHPGL2(P(1, 2n))

��

CHSL2(P(1, 2s)× P(1, 2n− 4s)) // CHSL2(P(1, 2n))

where the three horizontal arrows are respectively the pushforward along the mor-
phisms π′2s, π2s and πSL2

2s .
Recall that the kernel of the two last vertical maps is (c3) and that, from

[EF09], we already know that im(πSL2
2s∗ ) is contained in im(πSL2

1∗ ). This implies that
there exists a cycle ξ such that π′2s∗(his · h

j
n−2s) + c3 · ξ is contained in im(π′1∗).

Observe that this last ideal is contained in (2) and, by lemma 2.4.8, so is
π′2s∗(his · h

j
n−2s). From this we deduce that c3ξ is contained in (c3) and (2), but

(c3) ∩ (2) = (0), thus c3 · ξ = 0 and consequently π′2s∗(his · h
j
n−2s) is contained in

im(π′1∗). �

So far we have proved that the ideal im(i∗) is equal to the sum of the ideal
im(π′1∗) and the ideal generated by the elements π′2s∗(h2s

s · h
j
n−2s) for s = 1, ..., n/2

and j = 0, ..., 2n−4s. We are in position to prove the main result of this subsection.
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Proof of proposition 2.4.5. The key observation is that π′∗2shn = 2hs +
hn−2s. This implies the following chain of equalities:

π′2s∗(h2s
s · h

j
n−2s) = π′2s∗(h2s

s · h
j−1
n−2s · (hn−2s + 2hs − 2hs))

= π′2s∗(h2s
s · h

j−1
n−2s · π

′∗
2shn)− 2π′2s∗(h2s+1

s · hj−1
n−2s)

= π′2s∗(h2s
s · h

j−1
n−2s) · hn − 2π′2s∗((α0h

2s
s + ...+ α2s) · hj−1

n−2s)

By lemma 2.4.7 we see that the cycle π′2s∗(h2s
s · h

j
n−2s) is in the ideal im(π′1∗) +

(π′2s∗(h2s
s · h

j−1
n−2s)). Iterating this argument, we see that for every j > 0 the cycle

π′2s∗(h2s
s · h

j
n−2s) is contained in the ideal im(π′1∗) + (π′2s∗(h2s

s · 1)). Applying this
to every s we conclude the proof of the lemma. �

2.4.3. Interlude: computations in the T -equivariant setting. Let again
T ⊂ GL3 be the maximal subtorus of diagonal matrices. In this subsection the fact
that we work with the T -equivariant Chow ring will be essential. For the sake of
clarity, the morphisms between T -equivariant Chow rings will be denoted with a T
in the apex. Moreover, we will keep using Z(2)-coefficients, so that every ring and
ideal is assumed to be tensored over Z with Z(2), where not explicitly written.

What we have found in the last subsection implies that

im(iT∗ ) = im(π
′T
1∗ ) + (π

′T
2s∗(h2s

s · 1), π
′T
n∗(hnn/2)), s = 1, ..., n/2− 1

Recall that we defined in the third section the T -invariant subvarieties Wn,r,l of
P(Vn)3 whose points are the pairs (q,Xr

0X
l
1f) (see definition 2.2.4). We will prove

the following result:

Proposition 2.4.10. Inside CHT (P(Vn)3), we have

im(iT∗ ) = (2h2
n − 2n(n− 1)c2, 4(n− 2)hn, [Wn,2,0]T )

All what we need in order to prove the proposition above is the following lemma:

Lemma 2.4.11. We have im(iT∗ ) = im(π′T1∗ ) + ([Wn,2,2s−2]T )s=1,...,n/2.

Proof. From lemma 2.2.7 we know that the cycle class [Ws,1,s−1]T contained
in the T -equivariant Chow ring of P(Vs)3 is a monic polynomial in hs of degree 2s.
We already know from lemma 2.4.7 that the cycles π′T2s∗(his · 1), for i < 2s, are in
im(π′T1∗ ).

Combining this with our initial observation, we get

im(π
′T
1∗ ) + π′2s∗(h2s

s · 1) ⊂ im(π
′T
1∗ ) + (π

′T
2s∗([Ws,1,s−1]T × 1))

because we have

π
′T
2s∗(h2s

s · 1) = π
′T
2s∗([Ws,1,s−1]T × 1)−

∑
ξiπ

′T
2s∗(his · 1)

for i < 2s. The other inclusion is obvious because the ideal on the right is by
construction contained in im(iT∗ ), that coincides with the ideal on the left.

To finish the proof of the lemma, is enough to observe that, by lemma 2.2.9,
we have π′T2s∗([Ws,1,s−1]T × 1) = [Wn,2,2s−2]T . �

Proof of proposition 2.4.10. From lemma 2.2.8 we see that the ideal

([Wn,2,2s−2]T ), s = 1, ..., n/2

is actually generated by [Wn,2,0]T .
Together with lemma 2.4.11 this implies that im(iT∗ ) = im(π′T1∗ ) + ([Wn,2,0]T ).

The fact that the inclusion im(π′T1∗ ) ⊂ im(iT∗ ) is strict follows from the fact that
im(π′T1∗ ) ⊂ (2) whereas [Wn,2,0]T is not 2-divisible, as lemma 2.2.7 shows. �



36 2. THE CHOW RING OF THE STACK OF HYPERELLIPTIC CURVES OF ODD GENUS

2.4.4. Computations with Z(2)-coefficients, part two. We want to de-
duce from proposition 2.4.10 what are the generators of im(i∗)⊗Z Z(2). Again, all
the ideals and the Chow rings will be assumed to be tensorized over Z with Z(2),
where not explicitly stated.

Observe that the ideal im(iT∗ ) is equal to the sum of ideals im(π′Tr∗ ), where
r ranges from 1 to n. In particular, proposition 2.4.5 remains true also in the
T -equivariant setting, so that we actually know that

im(iT∗ ) = im(π
′T
1∗ ) + (π

′T
2s∗(h2s

s · 1))s=1,...,n/2

and from lemma 2.4.7, which also remains true in the T -equivariant setting, we
know that the cycles of the form π

′T
2s∗(his · h

j
n−2s) are in im(π′T1∗ ) for i = 0, ..., 2s− 1

and j = 0, ..., 4n− 2s.
We proved in proposition 2.4.10 that im(iT∗ ) is equal to im(π′T1∗ ) plus the ideal

generated by the cycle class [Wn,2,0]T = π
′T
2∗ ([W1,1,0]T × 1). The equality

[W1,1,0]T = (h1 − λ2)(h1 − λ3) = h2
1 − (λ2 + λ3)h1 + λ2λ3

is immediate to check, using the fact that P(V1)3 = P(2, 1)×A(2, 2)3 and the usual
formula for cycle classes of complete intersections (lemma 1.1.7)

Putting all together, we readily deduce that
im(iT∗ ) = im(π

′T
1∗ ) + ([Wn,2,0]T ) ⊂ im(π

′T
1∗ ) + (π

′T
2∗ (h2

1 · 1)) ⊂ im(iT∗ )
which implies the following result:

Corollary 2.4.12. We have im(iT∗ ) = im(π′T1∗ ) + (π′T2∗ (h2
1 · 1))

The corollary above gives explicit generators for the ideal im(iT∗ ) that are also
symmetric in the λi, hence using proposition 1.1.3 we deduce proposition 2.4.2,
which was stated at the beginning of the section.

2.5. The Chow ring of Hg: end of the computation

In this section we finish the computation of CH(Hg). Recall that in corollary 2.4.3
we proved that

im(i∗) = (2h2
n − 2n(n− 1)c2, 4(n− 2)hn, π′2∗(h2

1 × [P(Vn−2)]))
In order to obtain the relations inside the Chow ring of Hg, we need to pull back
the generators of the ideal above along the Gm-torsor p : Vn,3 \σ0 → P(Vn)3, where
σ0 denotes the image of the zero section A(2, 2)3 → Vn.

We have already computed some of these relations in the third section (see
corollary 2.3.12). Let us call I the ideal appearing in that corollary, that is

I = (4(2g + 1)τ, 8τ2 − 2g(g + 1)c2, 2c3)
By construction, it coincides with the pullback of the ideal im(π′1∗). Unfortunately,
the ideal im(i∗) is not equal to im(π′1∗) inside CHGL3(P(Vn)3), so we can’t conclude
that I is the whole ideal of relations, though this claim may still be true, because
when pulling back the only generator of im(i∗) not in im(π′1∗) we may obtain a
cycle contained in I.

Moreover, the fact that we do not know an explicit expression for the last
generator, namely π′2∗(h2

1× [P(Vn−2)3]), prevents us from finishing the computation
in a direct way.

Recall that in the previous section we also deduced that
im(iT∗ ) = im(π

′T
1∗ ) + ([Wn,2,0]T )

inside the T -equivariant Chow ring of P(Vn)3, and observe that the relations inside
the Chow ring of Hg are exactly the pullback of the elements of im(iT∗ ), symmetric
in λi, along the Gm-torsor p : Vn,3 \ σ0 → P(Vn)3.
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If ξ is in im(i∗), seeing it as an element of the T -equivariant Chow ring through
the embedding CHGL3(P(Vn)3) ↪→ CHT (P(Vn)3) (see remark 1.1.5), then we have
ξ = α · π′1∗ξ + β · [Wn,2,0]T .

Lemma 2.5.1. Let ξ = α0h
2n
n + α1h

2n−1
n + ... + α2n be a cycle in im(i∗), con-

sidered as an ideal in the GL3-equivariant Chow ring of P(Vn)3, and suppose that
α2n is 2-divisible. Then p∗ξ is in I.

The proof of the lemma is postponed to the end of the section. Write ξ as a
polynomial in hn of degree less or equal to 2n. If we prove that ξ, written in this
form and evaluated in hn = 0, is 2-divisible, then by lemma 2.5.1 we can conclude
that p∗ξ must be in I, thus I is the whole ideal of relations.

We already know that every element in the image of π′1∗ is 2-divisible, so that
we only need to check that β · [Wn,2,0]T , seen as a polynomial in hn of degree less
than or equal to 2n and evaluated in hn = 0, is 2-divisible.

Clearly, it is enough to prove this claim when β = hdn, where d = 0, ..., 2n. For
matters of clarity, let us work with Z/2Z-coefficients, so that what we need to prove
is that β · [Wn,2,0]T , seen as a polynomial in hn of degree less or equal to 2n and
evaluated in hn = 0, is equal to 0.

Write [Wn,2,0]T as h4
n + η1 · h3

n + ...+ η4. Observe that, with these coefficients,
we have h2n+1

n = 0. This implies that the product hdn · [Wn,2,0]T is equal to
χ4h

d+4
n + χ3η1h

d+3
n + ...+ χ0η4h

d
n

where χj = 0 for j + d > 2n, and equal to 1 otherwise. In particular, for d > 0
the evaluation of this polynomial in hn = 0 is zero. In other terms, we have shown
that hdn · [Wn,2,0]T , written as a polynomial in hn of degree less or equal to 2n and
evaluated in hn = 0, is 2-divisible for d > 0.

Now we only need to prove that [Wn,2,0]T itself has this property. Recall from
lemma 2.2.7 that

[Wn,2,0]T =
∏

(hn − k · λ) + 2λ3ξ for k s.t. |k| = n, k2 < 2, k0 < 2

The 2-divisibility of [Wn,2,0]T when evaluated in hn = 0 is then equivalent to
studying the 2-divisibility of the product

∏
(−k · λ), where |k| = n, k2 < 2, k0 < 2.

Observe that there are only four triples k that verify the conditions above,
namely (0, n, 0), (0, n − 1, 1), (1, n − 1, 0) and (1, n − 2, 1). This implies that the
product above is a multiple of nλ2, thus it is 2-divisible because n = g + 1 is even.

To conclude the proof of theorem 2.5.2 we only need to show the technical
lemma 2.5.1.

Proof of lemma 2.5.1. We can assume that ξ is not in im(π′1∗), otherwise
the conclusion is obvious. Moreover, we can also assume that ξ is in im(π′2s∗),
because we have proved in the last section that im(π′2s+1∗) is contained in im(π′1∗).

Consider again the commutative diagram

CHGL3(P(Vs)3 ×A(2,2)3 P(Vn−2s)3) //

∼=

��

CHGL3(P(Vn)3)

∼=

��

CHPGL2(P(1, 2s)× P(1, 2n− 4s)) //

��

CHPGL2(P(1, 2n))

��

CHSL2(P(1, 2s)× P(1, 2n− 4s)) // CHSL2(P(1, 2n))

Then it must be true that ξ = π′1∗ζ + c3 · η: we know from [EF09] that the image
of the last horizontal map is contained in the image of πSL2

1∗ , and that the kernel of
the last two vertical maps, which are surjective, is generated as an ideal by c3.
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Let us briefly comment on the surjectivity of these maps: first recall that
P(1, 2m) is the projectivization of a PGL2-representation, hence CHPGL2(P(1, 2m))
is generated by the hyperplane section and the Chern classes c2 and c3. Similarly,
the ring CHPGL2(P(1, 2m)× P(1, 2m′)) is generated by the hyperplane sections of
the two factors plus c2 and c3.

Moreover, it is well known that CHSL2 is generated by c2: therefore the SL2-
equivariant Chow ring of P(1, 2m)×P(1, 2m′) is generated by c2 and the hyperplane
sections, and the surjectivity of the two last vertical maps in the diagram above
follows, because all the projective spaces that we considered parametrise forms of
even degree.

Observe that we can assume that η, seen as a polynomial in hn, has only odd
coefficients: indeed, if we write η = η′ + 2η′′ then

c3 · η = c3 · η′ + 2c3 · η′′ = c3 · η′

We deduce then that η must be equal to hn · γ, because by hypothesis when we
evaluate ξ in hn = 0 we must obtain something even, and η has only odd coefficients.
In the end, we have that ξ = π′1∗ζ + hn · c3 · γ. We now pull back ξ to Vn,3 \ σ0,
which we saw to be equivalent to substituting hn with −2τ , so we get:

p∗ξ = p∗π′1∗ζ − 2τ · c3 · p∗γ = p∗π′1∗ζ

where in the last equality we used the relation 2c3 = 0. This concludes the proof
of the lemma. �

Putting all together, we have finally proved the

Theorem 2.5.2. Let g be an odd integer ≥ 3. Suppose that the characteristic
of the base field k0 is 0 or > 2g + 2, and let Hg be the moduli stack over k0 of
hyperlliptic curves of genus g. Then we have:

CH(Hg) = Z[τ, c2, c3]/(4(2g + 1)τ, 8τ2 − 2g(g + 1)c2, 2c3)
where the degree of τ is 1, the degree of c2 is 2 and the degree of c3 is 3.

We want to give a geometrical interpretation of the generators of CH(Hg).
Recall that in order to do the computations of the last three sections we used
the isomorphism [U ′/GL3 × Gm] obtained in theorem 2.1.1, where U ′ is the open
subscheme of Vg+1 whose points are pairs (q, f) such that the plane curves {q = 0}
and {f = 0} intersect transversely.

We also showed, at the end of section 2.1, that the rank 4 vector bundle over
Hg associated to the GL3 × Gm-torsor U ′ is the vector bundle E ⊕ L, where L is
the line bundle over Hg functorially defined as

L((π : C → S, ι)) = π∗ω
⊗ g+1

2
C/S

(
1− g

2 W

)
and E is the rank 3 vector bundle over Hg functorially defined as

E((π : C → S, ι)) = π∗ω
∨
C/S (W )

Then by construction the generator τ coincides with c1(L) and c2 and c3 coincide
respectively with c2(E) and c3(E), whereas c1(E) = 0. This analysis agrees with the
one made in the last section of [FV11].



CHAPTER 3

Cohomological invariants of the stack of
hyperelliptic curves of odd genus

In this chapter we deal with the computation of the graded F2-vector space
structure of the cohomological invariants with coefficients in F2 of Hg, the stack of
hyperelliptic curves of odd genus, when g > 3 is an odd number. As already said in
the introduction, this is the only case left open, because for g even, g = 3 or p 6= 2
this type of result can be found in [Pir17].

The main obstruction to generalize the computation of Inv•(H3) done by Pirisi
in [Pir18b] consists in proving that a certain morphism of PGL2-equivariant Chow
groups with coefficients is zero.

More precisely, let P(1, 2n) denote the projective space of binary forms of degree
2n, endowed with the GL2-action

A · f(x, y) := det(A)nf(A−1(x, y))

This action descends to a well defined action of PGL2 on the same scheme. Let
∆1,2n ⊂ P(1, 2n) be the closed, PGL2-invariant subscheme parametrising singular
forms. Then to extend the results of Pirisi on Inv•(H3) is enough to prove the
following:

Key Lemma. Let k0 be an algebraically closed field of characteristic 6= 2, and
let i : ∆1,2n ↪→ P(1, 2n) be the inclusion of the subscheme of singular forms into
the projective space of binary forms of degree 2n over k0. Then the pushforward
homomorphism:

i∗ : A0
PGL2

(∆1,2n,H•) −→ A1
PGL2

(P(1, 2n),H•)

between equivariant Chow groups with coefficients in H• := ⊕iHi
ét(−, µ

⊗i
2 ) vanishes.

The notion of GL3-counterpart of a PGL2-scheme will play a central role in the
proof of the key lemma. The main result is theorem 3.1.1.

3.1. Cohomological invariants of Hg

In this section, we fix p = 2, so that H•(−) = ⊕d≥0H
d
èt(−, µ

⊗d
2 ). We assume

the base field k0 to be algebraically closed and of characteristic 6= 2. We will also
adopt the shorter notation AG(−) instead of AG(−,H•) to denote Chow groups
with coefficients.

In this section we will prove our main theorem, which is the following:

Theorem 3.1.1. Let k0 be an algebraically closed field of characteristic 6= 2, 3,
and let Hg denotes the moduli stack of smooth hyperelliptic curves of odd genus
g ≥ 3 over k0.

Then the graded-commutative ring of cohomological invariants Inv•(Hg) with
coefficients in F2, regarded as a graded F2-vector space, has a basis given by the
elements

1, x1, w2, x2, ..., xg+1, xg+2

39
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where the degree of each xi is i and w2 is the second Stiefel-Whitney class coming
from Inv•(BPGL2).

The case g = 3 is [Pir18b, th. 0.1]. Actually, the only obstruction to generalize
the result contained there to any odd genus is given by [Pir18b, corollary 3.9
], where the assumption g = 3 is strictly necessary. Once one generalizes that
corollary, the computation of the cohomological invariants is basically done.

Therefore, what we present here is essentially a rewriting of the proof contained
in [Pir18b, sec. 3]: the only difference is in the key lemma 3.1.3, which is a
generalization of [Pir18b, corollary 3.9 ]. The proof of this key result, which is
rather non-trivial, is postponed to section 3.4, as we need to develop more theory
in order to complete it.

3.1.1. Setup. Let A(1, n) be the affine space of binary forms of degree n and
let Xn be the open subscheme parametrising forms with distinct roots. Recall
[AV04, cor. 4.7], which tells us the following:

Hg ' [X2g+2/PGL2 ×Gm]

The action of PGL2×Gm on X2g+2 descends from the action of GL2×Gm defined
by the formula:

(A, λ) · f(x, y) := λ−2 det(A)g+1f(A−1(x, y))

This presentation and theorem 1.2.1 imply that:

(4) Inv•(Hg) ' A0
PGL2×Gm

(X2g+2)

Therefore, to obtain the cohomological invariants of Hg is enough to compute the
codimension 0 part of an equivariant Chow ring with coefficients.

Let P(1, 2n) be the projective space of binary forms of degree 2n, and denote
∆1,2n the divisor in P(1, 2n) parametrising singular forms. We are first going to
compute A0

PGL2
(P(1, 2g + 2) \∆1,2g+2), and then we will use the fact that

X2g+2 −→ P(1, 2g + 2) \∆1,2g+2

is a PGL2×Gm-equivariant Gm-torsor to get a presentation of A0
PGL2×Gm

(X2g+2).

3.1.2. Proof of the main theorem. As already stated at the beginning of
this section, we will always be assuming p = 2. The proposition below is the starting
point to determine Inv•(Hg).

Proposition 3.1.2. [Pir18b, cor. 3.10] The graded-ring A0
PGL2

(P(1, 2n) \
∆1,2n) is freely generated as F2-module by n + 2 elements 1, x1, ..., xn, w2 where
the degree of xi is i and w2 is the second Stiefel-Whitney class coming from the
cohomological invariants of BPGL2.

The proof of this proposition is by induction on n. To set up the induction
argument, we need the following technical lemma, which is of fundamental impor-
tance:

Key Lemma 3.1.3. For n ≥ 1 the boundary morphism

∂ : A0
PGL2

(P(1, 2n)) −→ A0
PGL2

(∆1,2n)

is surjective.

The key lemma above is proved by Pirisi only for n ≤ 8 (see [Pir18b, cor.
3.9]): he shows that, for every n ≥ 1 there exists an element g2n in APGL2(P(1, 2n))
such that, for every α in A0

PGL2
(∆1,2n), we have g2n · i∗α = 0 (what here is called

P(1, 2n) is denoted P 2n by Pirisi).
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From this, he deduces that if i∗α 6= 0 then g2n · cG1 (O(1)) is divided by another
element f2n of APGL2(P(1, 2n)), and this cannot be the case for 2n ≤ 8 but can be
true for 2n > 8: the last two assertions follow from the explicit construction of f2n
and g2n contained in [Pir18b, lm. 3.7, pr. 3.8].

In this way, Pirisi proves that i∗ = 0 for 2n ≤ 8, which implies the key lemma
3.1.3 for n ≤ 4. This allows him to prove proposition 3.1.2 only for this values of
n, and to compute Inv•(Hg) only for g = 3.

In section 3.4 we will prove key lemma 3.1.3 for every n ≥ 1, adopting a
completely different strategy. For the remainder of the section, we assume key
lemma 3.1.3.

We will also need the following results:

Lemma 3.1.4. We have:
(1) for n ≥ 2, there is an isomorphism

A0
PGL2

(∆1,2n) ' A0
PGL2

((P(1, 2n− 2) \∆1,2n−2)× P1)

(2) for n ≥ 1, the pullback morphism

A0
PGL2

(P(1, 2n) \∆1,2n)→ A0
PGL2

((P(1, 2n) \∆1,2n)× P1)

is surjective with kernel generated by w2, the Stiefel-Whitney class coming
from the cohomological invariants of PGL2.

Proof. Before proceeding with the proof, let us warn the reader that what is
called P(1, 2n) here is denoted P 2n in [Pir18b].

From [Pir18b, pr. 2.2] we know that

A0
PGL2

(∆1,2n \∆2,2n) ' A0
PGL2

((P(1, 2n− 2) \∆1,2n−2)× P1)

where ∆2,2n is the closed subscheme of P(1, 2n) parametrising forms which have
two double roots. To prove (1), it is then enough to show that A0

PGL2
(∆1,2n) '

A0
PGL2

(∆1,2n \∆2,2n).
The key lemma 3.1.3 together with [Pir18b, cor. 3.5] imply that the condition

S1(2n) (resp. S2(2n)) of [Pir18b, pg. 14] hold true for every n ≥ 1 (resp. for every
n ≥ 2).

Condition S1(2n) is exactly (2), and condition S2(2n) says that the pullback
morphism A0

PGL2
(∆1,2n) → A0

PGL2
(∆1,2n \ ∆2,2n) is an isomorphism, from which

we deduce (1). �

Proof of prop. 3.1.2. The key lemma 3.1.3, applied to the localization ex-
act sequence (see proposition 1.2.3.(4)) associated to the closed subscheme ∆1,2n,
gives us the following short exact sequence of F2-vector spaces:

0→ A0
PGL2

(P(1, 2n))→ A0
PGL2

(P(1, 2n) \∆1,2n) ∂−→ A0
PGL2

(∆1,2n)→ 0

From this we deduce:

A0
PGL2

(P(1, 2n) \∆1,2n) ' A0
PGL2

(P(1, 2n))⊕A0
PGL2

(∆1,2n)[1]

where the notation APGL2(∆1,2n)[1] means that everything is degree-shifted by one.
The projective space P(1, 2n) is the projectivization of a PGL2-representation,

hence using the projective bundle formula (proposition 1.2.3.(7)) we deduce

A0
PGL2

(P(1, 2n)) ' A0
PGL2

and the F2-vector space on the right is known (see proposition 1.2.4.(2)).
To compute A0

PGL2
(∆1,2n), we proceed by induction on n. To prove the base

case n = 1, observe that ∆1,2 ' P1, and A0
PGL2

(P1) is trivial by proposition
1.2.4.(3).
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Lemma 3.1.4.(1) tells us that:

A0
PGL2

(∆1,2n) ' A0
PGL2

((P(1, 2n− 2) \∆1,2n−2)× P1)

and lemma 3.1.4.(2) says that the F2-vector space on the right is isomorphic to
A0

PGL2
(P(1, 2n− 2) \∆1,2n−2)/F2 · w2. Using the inductive hypothesis, we get the

desired result. �

As announced at the beginning of the section, we will use proposition 3.1.2 to
compute A0

PGL2×Gm
(X2n). We will use the following result:

Lemma 3.1.5. [Pir18b, proposition 2.3] Let Y be a scheme endowed with an
action of PGL2, and let Gm act trivially on it. Then

APGL2×Gm(Y ) ' APGL2(Y )[t]

where t has codimension 1 and degree 0. In particular, we get an isomorphism on
the codimension zero part.

We observed that X2n → P(1, 2n) \ ∆1,2n is a PGL2 × Gm-equivariant Gm-
torsor. Let L be the line bundle associated to X2n.

Lemma 3.1.6. The codimension zero part of ker(cPGL2×Gm
1 (L)) is generated as

an F2-vector space by a single element xn of degree n.

Proof. The proof of [Pir18b, th. 3.12], once we know the key lemma 3.1.3
for every n ≥ 1, works for all n ≥ 1. �

We now have all the elements necessary to prove the main result of the paper.

Proof of theorem 3.1.1. We know from (4) that

Inv•(Hg) ' A0
PGL2×Gm

(X2g+2)

Applying proposition 1.2.6 to the Gm-torsor X2g+2 → P(1, 2g + 2) \ ∆1,2g+2, we
get:

A0
PGL2×Gm

(X2g+2) ' A0
PGL2×Gm

(P(1, 2g + 2) \∆1,2g+2)⊕ ker(cPGL2×Gm
1 (L))[1]

where L is the line bundle on P(1, 2g + 2) \ ∆1,2g+2 associated to the Gm-torsor
X2g+2, and we consider only the codimension zero part of ker(cPGL2×Gm

1 (L)).
The first summand is isomorphic to A0

PGL2
(P(1, 2g + 2) \ ∆1,2g+2) by lemma

3.1.5, and this F2-vector space can be computed using proposition 3.1.2 with n =
g + 1.

The second summand is also known, thanks to lemma 3.1.6. Putting all to-
gether, we get the desired conclusion. �

3.2. The geometry of the fundamental divisor

In this section we will study the geometry of D2, the restriction of the funda-
mental divisor D (see definition 1.3.14) to P(Vn)2, and we will show that D2 has
two irreducible components (proposition 3.2.5).

We will also consider the proper transform D′[2,1] of D[2,1] inside a certain
variety P̃(Vn)[2,1] equipped with a birational morphism to P(Vn)[2,1] (see definition
3.2.11), and we will show that the restriction of D′[2,1] to the exceptional locus of
this morphism has two irreducible components (proposition 3.2.14).
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3.2.1. The geometry of D2. Recall definition 1.3.10, where we introduced
the vector bundles V n and Vn defined respectively over P(2, 2) and over A(2, 2)[3,1],
the scheme of non-zero quadratic forms in three variables. The points of P(V n) can
be thought as pairs (q, [f ]), where q is the projective equivalence class of a non-zero
quadratic ternary form and [f ] is the equivalence class of a non-zero ternary form
of degree n (see remark 1.3.11).

Let D2 denote the pullback of D → P(2, 2) to the subscheme of rank 2 conics
P(2, 2)2: then it follows from the last lines of remark 1.3.15 that the points of D2
are pairs (q, [f ]) where q = l1l2 is a quadratic form of rank 2 (well defined up to
multiplication by a non-zero scalar) and the subscheme defined by the homoge-
neous ideal I = (l1l2, f) of P2 is either singular or has an irreducible component of
dimension 1 (this happens when one of the linear factors of q divides f).

Definition 3.2.1.
(1) We define the subset D1

2 ⊂ P(V n)2 as the set of points (q, [f ]) such that
q = l1l2, where l1 and l2 are two distinct linear forms, and the closed
subscheme of P2 defined by the ideal I = (l1, l2, f) is non-empty.

(2) We define the subset D1
2 as the preimage of D1

2 along the Gm-torsor
P(Vn)2 → P(V n)2.

Thanks to the next proposition, we can make the subsets D1
2 and D1

2 into closed
subschemes.

Proposition 3.2.2. There is a scheme structure on D
1
2 (resp. on D1

2) which
turns it into an irreducible divisor inside P(V n)2 (resp. P(Vn)2). Moreover, we
have that D1

2 (resp. D1
2) is an irreducible component of D2 (resp. D2).

Proof. It is enough to show that D1
2 is an irreducible divisor inside P(V n)2.

Let Y1 be the subscheme of P(2, 1)× P(2, 1)× P(2, n)× P2 defined as follows:

Y1 = {(l1, l2, f, p) such that l1(p) = l2(p) = f(p) = 0}

Observe that Y1 → P2 is a projective bundle over P2, hence it is irreducible, and
its fibres have codimension 3 in P(2, 1)× P(2, 1)× P(2, n).

Call Y 1 the image of the projection morphism pr123 : Y1 → P(2, 1)× P(2, 1)×
P(2, n), where by image we mean the smallest closed subscheme of P(2, 1)×P(2, 1)×
P(2, n) through which pr123 factors (see [Sta19, Tag 01R7]).

The morphism Y1 → Y 1 is generically finite, hence Y 1 is closed, irreducible
and it has codimension 1. Moreover, due to the properness of pr123, the points of
Y 1 correspond to triples (l1, l2, f) such that the closed subscheme of P2 defined by
the ideal I = (l1, l2, f) is not empty.

Consider the projective morphism:

π : P(2, 1)× P(2, 1)× P(2, n) −→ P(2, 2)× P(2, n)

which sends a triple (l1, l2, f) to (l1l2, f). Observe that the image of π is P(2, 2)[2,1]×
P(2, n), and that π is finite of degree 2 over its image. This implies that π(Y 1),
regarded as a subscheme inside P(2, 2)[2,1] × P(2, n), is closed, irreducible, it has
codimension 1 and its points correspond to pairs (l1l2, f) such that the closed
subscheme of P2 defined by the ideal I = (l1, l2, f) is not empty.

Recall that V n is a quotient of the vector bundle associated to the locally
free sheaf pr1∗pr∗2O(n) by the subsheaf pr1∗pr∗2O(n − 2) ⊗ O(−1) (see definition
1.3.10.(1)). Applying proposition 2.3.1, we obtain a morphism:

(P(2, 2)× P(2, n)) \ im(i) −→ P(V n)

https://stacks.math.columbia.edu/tag/01R7
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where i : P(2, 2)×P(2, n−2) ↪→ P(2, 2)×P(2, n) is the inclusion of (trivial) projective
bundles which sends a pair (q, f) to (q, qf). The quotient morphism sends a pair
(q, f) to (q, [f ]), where [f ] denotes the equivalence class of f in the quotient.

This morphism restricts to the morphism:
p : (P(2, 2)[2,1] × P(2, n)) \ im(i)[2,1] −→ P(V n)[2,1]

We can restrict π(Y 1) to (P(2, 2)[2,1]×P(2, n)) \ im(i)[2,1] and take its image via p,
which we denote Z1. By construction, we have that Z1 is closed and irreducible.
Moreover, by [Sta19, Tag 01R8.(4)], it contains D1

2 as an open, dense subset.
Observe that p is a topological quotient: this implies that D1

2 is closed because
its preimage, which is the restriction of π(Y 1) to (P(2, 2)[2,1] × P(2, n)) \ im(i)[2,1],
is closed. We deduce that D1

2 = Z1, hence that D1
2 is irreducible because Z1 is so.

Again by proposition 2.3.1, the morphism p makes (P(2, 2)[2,1] × P(2, n)) \
im(i)[2,1] into a vector bundle over P(V n)[2,1], whose restriction over D1

2 is π(Y 1),
which has codimension 1 in (P(2, 2)[2,1] × P(2, n)) \ im(i)[2,1]: from this we deduce
that D1

2 has codimension 1.
Finally, we have to show that D1

2 ⊂ D2: this follows from the fact that if
(l1l2, [f ]) is a point ofD1

2, then the subscheme of P2 defined by the ideal I = (l1l2, f)
either contains a line or it has a singular point p, which is the unique point such
that l1(p) = l2(p) = 0. �

Definition 3.2.3.
(1) We define the subset D2

2 ⊂ P(V n)2 as the set of points (q, [f ]) such that
q = l1l2, where l1 and l2 are two linerarly independent linear forms, and
there is an i such that the two plane curves defined respectively by the
equations li = 0 and f = 0 do not intersect transversally. This is equiva-
lent to the condition that the subscheme of P2 defined by the homogeneous
ideal I = (li, f) is either singular or a line.

(2) We define the subscheme D2
2 as the preimage of D2

2 along the Gm-torsor
P(Vn)2 → P(V n)2.

Proposition 3.2.4. There is a scheme structure on D
2
2 (resp. on D2

2) which
turns it into an irreducible divisor inside P(V n)2 (resp. P(Vn)2). Moreover, we
have that D2

2 (resp. D2
2) is an irreducible component of D2 (resp. D2).

Proof. It is enough to prove the proposition for D2
2.

We will argue as in the proof of proposition 3.2.2. Let Y2 be the subscheme of
P(2, 1)× P(2, n)× P2 defined as follows:

Y2 :=
{

(l, f, p) such that l(p) = f(p) = det
i
J(l, f)(p) = 0 for i = 1, 2, 3

}
where deti J(l, f) denotes the ith-minor of the Jacobian matrix associated to the
forms l and f .

Zariski-locally, to verify if a triple (l, f, p) is in Y2, it is enough to check the
vanishing of only one of the three minors of J(l, f): for instance, if Uz denotes the
open subscheme of P2 where the coordinate z 6= 0, then Y2 ∩ P(2, 1)× P(2, n)×Uz
is the locus where:

l(p) = f(p) = lx(p)fy(p)− ly(p)fx(p) = 0
LetH ⊂ P(2, 1)×P2 be the universal line: then Y2 can be regarded as a codimension
2 projective subbundle of P(2, n)×H over H, hence Y2 is irreducible.

Denote Y 2 the image of the projection of Y2 on P(2, 1) × P(2, n). Due to the
fact that Y2 → Y 2 is generically finite, we obtain that Y 2 is irreducible, it has

https://stacks.math.columbia.edu/tag/01R8
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codimension 1 and its points are pairs of forms (l, f) such that the associated plane
curves do not intersect transversally.

Consider the projective morphism:

π : P(2, 1)× P(2, 1)× P(2, n) −→ P(2, 2)× P(2, n)

which sends a triple (l1, l2, f) to (l1l2, f). The scheme theoretic image π(P(2, 1) ×
Y 2) will be closed, irreducible, of codimension 1 and its points will be pairs (l1l2, f)
such that there exists an i ∈ {1, 2} such that the plane curves defined respectively
by the equations li = 0 and f = 0 do not intersect transversally.

From here the proof works exactly as the proof of proposition 3.2.2: one has
only to substitute π(Y 1) with π(P(2, 1)× Y 2) and D1

2 with D2
2. �

We are ready to prove the first main result of this section:

Proposition 3.2.5. The closed subscheme D2 (resp. D2) of P(V n)2 (resp.
P(Vn)2) has two irreducible components, both GL3-invariants and of codimension
1, which are D1

2 and D2
2 (resp. D1

2 and D2
2).

Proof. We prove the proposition only for D2, as the other case easily follows
from this one.

We know from propositions 3.2.2 and 3.2.4 thatD1
2 andD2

2 are both irreducible,
of codimension 1 and are contained in D2. The GL3-invariance of both divisors is
easy to check.

We have to show that D1
2 and D2

2 are the only irreducible components of D2.
The points of D2 are pairs (l1l2, [f ]) such that l1 6= l2 and the closed subscheme Z
of P2 associated to the ideal I = (l1l2, f) is either singular or it contains a line (see
remark 1.3.15). If Z contains a line, than the point (q, [f ]) is in D1

2 ∩D
2
2.

Otherwise, the subscheme Z must be supported on a set of points, and it must
be singular: we can either have that the support of every singular point lays on
only one of the two lines defined respectively by the equations l1 = 0 and l2 = 0,
or that there exists a singular point whose support lays on the intersection of the
two lines.

In the first case, there must exist a line, say the one defined by the equation
l1 = 0, such that its intersection with the plane curve F defined by the equation
f = 0 is somewhere non-transversal, thus the point (l1l2, [f ]) is in D2

2.
In the second case, the only possibility left is that the plane curve F contains

the intersection point of the two lines: this implies that (l1l2, [f ]) is in D1
2. �

Finally, we have the following simple result on D1:

Proposition 3.2.6. We have D1 = P(V n)1 and D1 = P(Vn)1.

Proof. All the points in P(V n)1 are of the form (l2, f), hence their associated
subschemes of P2 are all singular, and by construction the points in D1 are those
pairs (l2, f) such that the associated subschemes are either singular or contain a
line (see remark 1.3.15).

The same argument works also for D1. �

3.2.2. The geometry of D′1. Recall (definition 1.3.9) that Q → P(2, 2) is
the universal conic and Q̂ → A(2, 2)[3,1] is the pullback of Q along the Gm-torsor
A(2, 2)[3,1] → P(2, 2).

Definition 3.2.7. We define Qsing
[2,1] (resp. Q̂

sing
[2,1]) as the closed subscheme of

Q[2,1] (resp. Q̂[2,1], see definition 1.3.9) whose associated sheaf of ideals is the
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1th-Fitting ideal of the sheaf of relative differentials of
Ω1
Q[2,1]/P(2,2)[2,1]

(resp. Ω1
Q̂[2,1]/A(2,2)[2,1]

)

Observe that both Qsing
[2,1] and Q̂

sing
[2,1] inherit a GL3-action.

Remark 3.2.8.
(1) We have:
Qsing

[2,1] = {(q, p) such that qx(p) = qy(p) = qz(p) = 0} ⊂ P(2, 2)× P2

If the characteristic of the base field is 6= 2, we deduce that Qsing
[2,1] → P2 is

a projective bundle: actually, it is a projective subbundle of P(2, 2)× P2.
(2) By [Sta19, Tag 0C3I] we have that Q̂sing

[2,1] is the pullback of Qsing
[2,1] along

the Gm-torsor A(2, 2)[2,1] → P(2, 2)[2,1].
We also know from [Sta19, Tag 0C3K] that Qsing

[2,1] (resp. Q̂sing
[2,1]) is

the subscheme of Q[2,1] (resp. Q̂sing
[2,1]) where the projection onto P(2, 2)[2,1]

(resp A(2, 2)[2,1]) is not smooth.

Proposition 3.2.9. Suppose that the characteristic of the base field is 6= 2.
Then the morphism Qsing

[2,1] → P(2, 2)[2,1] is an isomorphism over P(2, 2)2. Moreover,
the restriction Qsing

1 → P(2, 2)1 is a projective bundle. Similarly, we have that
Q̂sing

[2,1] → A(2, 2)[2,1] is an isomorphism over A(2, 2)2 and the restriction Q̂sing
1 →

A(2, 2)1 is a projective bundle.

Proof. The restriction Qsing
2 → P(2, 2)2 has a section, which sends a point

(l1l2) in P(2, 2)2 to the pair (l1l2, p) where p is the unique point in P2 such that
l1(p) = l2(p) = 0. This proves that Qsing

2 → P(2, 2)2 is actually an isomorphism.
The restriction Qsing

1 can be described by the following equations:
Qsing

1 =
{

(l2, p) such that 2l(p)lx(p) = 2l(p)ly(p) = 2l(p)lz(p) = 0
}
⊂ P(2, 2)1 × P2

At least one of the partial derivatives of l, evaluated in p, is invertible, hence the
subscheme can be equivalently describes as:

Qsing
1 =

{
(l2, p) such that l(p) = 0

}
This proves that Qsing

1 → P(2, 2)1 is a projective subbundle of P(2, 2)1 × P2.
The assertions on Q̂sing

[2,1] and Q̂
sing
1 easily follow from what we have just proved,

because we have the cartesian diagrams:

Q̂sing
[2,1]

��

// Qsing
[2,1]

��

A(2, 2)[2,1] // P(2, 2)[2,1]

Q̂sing
1

��

// Qsing
1

��

A(2, 2)1 // P(2, 2)1

This concludes the proof. �

We are ready to give the main definitions of this subsection.

Definition 3.2.10.
(1) We define P̃(V n)[2,1] as the pullback of P(V n)[2,1] along the morphism

Qsing
[2,1] → P(2, 2)[2,1]. Similarly, we define P̃(Vn)[2,1] as the pullback of

P(Vn)[2,1] along the morphism Q̂sing
[2,1] → A(2, 2)[2,1].

(2) We define P̃(V n)1 as the restriction of P̃(V n)[2,1] over P(2, 2)1. Similarly
we define P̃(Vn)1 as the restriction of P̃(Vn)[2,1] to A(2, 2)1.

https://stacks.math.columbia.edu/tag/0C3I
https://stacks.math.columbia.edu/tag/0C3K
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Definition 3.2.11.
(1) We define D′[2,1] (resp. D′[2,1]) as the closure of the preimage of D2 (resp.

D2) inside P̃(V n)[2,1] (resp. P̃(Vn)[2,1]).
(2) We define D′1 (resp. D′1) as the pullback of D′[2,1] (resp. D′[2,1]) to P̃(V n)1

(resp. P̃(Vn)1).

All the objects defined above inherit a GL3-action or are GL3-equivariant sub-
schemes.

Lemma 3.2.12. The restriction P̃(V n)2 of P̃(V n)[2,1] over Qsing
2 is isomorphic

to P(V n)2.

Proof. Follows directly from proposition 3.2.9. �

Let D1
2 and D

2
2 (resp. D1

2 and D2
2) be as in the definitions 3.2.1 and 3.2.3.

Briefly, D1
2 is the subscheme of P(V n)2 whose points are pairs (q, [f ]) with q = l1l2

a quadratic ternary form of rank 2 and f a ternary form of degree n such that there
exists a point p in P2 with l1(p) = l2(p) = f(p) = 0.

On the other hand, the points of D2
2 are the pairs (q, [f ]) with q = l1l2 and

such that the plane curves li = 0 and f = 0 do not intersect transversely, for some
i ∈ {1, 2}.

Definition 3.2.13.
(1) We define D′i[2,1] as the closure inside P̃(V n)[2,1] of the preimage of Di

2 for
i = 1, 2. We also define D′i1 as the restriction of D′i[2,1] to P̃(V n)1.

(2) We define D′i[2,1] as the closure inside P̃(Vn)[2,1] of the preimage of Di
2 for

i = 1, 2. We also define D′i1 as the restriction of D′i[2,1] to P̃(Vn)1.

Proposition 3.2.14. We have that D′1 (resp. D′1) is a codimension 1, GL3-
invariant closed subscheme of P̃(V n)1 (resp. P̃(Vn)1) with two GL3-invariant ir-
reducible components of codimension 1, which are D′11 and D′

2
1 (resp. D′11 and

D′21 ).

Proof. It is enough to prove the proposition for D′1. By proposition 3.2.5
we know that D1

2 and D2
2 are the only two irreducible components of D2: due to

the fact that P̃(V n)[2,1] → P(V n)[2,1] is an isomorphism over P(V n)2, we deduce
that D′i[2,1], where i = 1, 2 (see definition 3.2.13.(1)), are the only two irreducible
components of D′[2,1].

This implies that D′1 is the union of the two closed subschemes D′11 and D′21.
We have to show that these two closed subschemes are distinct and have codimen-
sion 1: both these properties will be easy to verify once we know what are the
points of D′11 and D′21.

Recall from definition 3.2.1 that the points of D1
2 are pairs (l1l2, [f ]) with l1 6= l2

linear forms and such that there exists a point p in P2 with l1(p) = l2(p) = f(p) = 0.
Therefore, the points of the preimage D′12 of D1

2 inside P̃(V n)2 (see lemma 3.2.12)
are equal to triples (l1l2, [f ], p) with l1(p) = l2(p) = f(p) = 0.

Let R be a DVR over k0 with quotient fieldK, and take a morphism Spec(R)→
D′

1
[2,1] such that the induced map from Spec(K) factors through D′12 and the closed

point lands in P̃(V n)1: then the image of this point will be of the form (l2, [f ], p)
with l(p) = f(p) = 0, and every such point can be obtained in this way. This gives
us a description of the points of D′11
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On the other hand, the points in D′
2
2 will be triples (l1l2, [f ], p) with l1(p) =

l2(p) = 0 and such that the plane curve F defined by the equation f = 0 in
P2 intersects non-transversely one of the two lines (see definition 3.2.3). Given a
morphism Spec(R) → D′

2
[2,1] whose generic point lands in D′

2
2, and whose closed

point is sent to a point in P̃(V n)1, such a point will be of the form (l2, [f ], p) with
l(p) = 0 and the plane curve F intersecting non-transversely the line l = 0. This
gives us a description of the points of D′21.

Putting all together, we obtain that D′11 6= D′
2
1.

Finally, propositions 3.2.2 and 3.2.4 tell us that both D
1
2 and D

2
2 have codi-

mension 1 in P(V n)2, thus D′
1
[2,1] and D′

2
[2,1] have codimension 1 in P̃(V n)[2,1] by

lemma 3.2.12. When restricting a subvariety to another, the codimension can only
decrease: therefore, both D′11 and D′21 must have codimension 1 in P̃(V n)1, as they
do not coincide with the whole P̃(V n)1. �

Remark 3.2.15. From the proof of proposition 3.2.14 we deduce an explicit
description of the points of D′11 and D′21 . More precisely, a triple (l2, [f ], p) is in D′11
if and only if l(p) = f(p) = 0, that is if the plane curves defined by the equations
l = 0 and f = 0 intersect in p (this condition does not depend on the representative
of the equivalence class [f ]).

On the other hand, the points of D′21 are the triples such that l(p) = 0 and the
plane curves l = 0 and f = 0 do not intersect transversally.

3.3. Some equivariant intersection theory

The main goal of this section is to compute the cycle classes of some schemes
that we introduced in section 3.2, namely Di

2 (see definitions 3.2.1 and 3.2.3) and
D′i1 (see definitions 3.2.13) for i = 1, 2. These results will be used to give a proof of
the key lemma 3.1.3 in section 3.4.

3.3.1. Cycle classes of Di
2. From now on, we will always assume the char-

acteristic of the base field to be 6= 2.
We will write CHGL3(X)F2 for CHGL3(X)⊗ F2 and we will denote A(2, d) the

affine space of forms in three variables of degree d.
As before, the notation A(2, 2)r will stand for the scheme of quadratic forms in

three variables of rank r and A(2, 2)[a,b] for the scheme of quadratic forms of rank
r with a ≥ r ≥ b. A similar notation will be adopted for the subschemes of P(2, 2).

Recall that GL3 acts on A(2, 2)3 via the formula:

A · q(x, y, z) := det(A)q(A−1(x, y, z))

and that A(2, 2)3 is a GL3-equivariant Gm-torsor over P(2, 2)3.
Recall that in definition 3.2.1 we introduced the divisor D1

2 ⊂ P(Vn)2 whose
points correspond to pairs (q, [f ]) where q = l1l2 is a rank 2 quadric and the
subscheme of P2 associated to the homogeneous ideal I = (l1, l2, f) is non-empty.
In proposition 3.2.2 we proved that D1

2 is irreducible.
Let D1

[3,2] be the embedding of D1
2 inside P(Vn)[3,2].

Lemma 3.3.1. We have [D1
[3,2]] = c1h 6= 0 in CH2

GL3
(P(Vn)[3,2])F2 .

Proof. Consider the GL3-invariant, closed subscheme of P(2, 2)×P(2, n)×P2

defined as:

Z1 := {(q, f, u) such that qx(u) = qy(u) = qz(u) = f(u) = 0}

Let Z1 be its image via the projection on P(2, 2)× P(2, n).
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By proposition 2.3.2.(2) applied to the morphism P(2, 2)[3,2] ↪→ P(2, 2), we get
an isomorphism:

Φ : CH2
GL3

(P(Vn)[3,2]) ' CH2
GL3

(P(2, 2)[3,2] × P(2, n))/(s− c1)

where s = cGL3
1 (OP(2,2)[3,2](1)).

Moreover, by proposition 2.3.2.(3), we have that the cycle class of the restriction
of Z1 to P(2, 2)[3,2]×P(2, n) is equal to Φ[D1

[3,2]], thus to prove the lemma is enough
to compute [Z1] inside CH2

GL3
(P(2, 2)[3,2] × P(2, n))F2 and substitute s with c1.

Observe that pr12∗[Z
1] = [Z1] because pr12 restricted to Z1 is an isomorphism.

We compute now the cycle class of Z1 inside the T -equivariant Chow ring of
P(2, 2)× P(2, n)× P2, which is isomorphic to

Z[λ1, λ2, λ3, s, h, t]/(t3 + t2σ1(λi) + tσ2(λi) + σ3(λi), Rs, Rh)
where s = cT1 (OP(2,2)(1)), h = cT1 (OP(2,n)(1)), t = cT1 (OP2(1)), the λi come from
CHT (Spec(k0)) (see proposition 1.1.4.(1)), σi is the elementary symmetric polyno-
mial of degree i in three variables and Rs and Rh are monic polynomials respectively
in s and h, with coefficients in CHGL3(Spec(k0)). To obtain this isomorphism, one
has to apply two times the projective bundle formula (proposition 1.1.1.(6)).

The scheme Z1 is a complete intersection of four T -invariant hypersurfaces,
which are

H1 := {qx(p) = 0}, H2 := {qy(p) = 0}
H3 := {qz(p) = 0}, H4 := {f(p) = 0}

Thanks to lemma 1.1.7, we can compute the cycle class of each hypersurface and
then we can use the fact that [Z1]T =

∏
[Hi]T . The final result is:

[Z1]T = (s+ t− λ1)(s+ t− λ2)(s+ t− λ3)(h+ nt)
Using the relation t3 + t2σ1(λi) + tσ2(λi) + σ3(λi) = 0 and after tensoring with F2,
we get:

[Z1]T = t2(s2 + sh+ sσ1(λi)) + tξ1 + ξ2 for n odd

[Z1]T = t2(hs) + tξ1 + ξ2 for n even
We have a cartesian diagram:

P(2, 2)× P(2, n)× P2 //

��

P2

��

P(2, 2)× P(2, n) // Spec(k0)

Hence, using the compatibility (proposition 1.1.1.(4)) and the projection formula
(proposition 1.1.1.(8)), we deduce:

[Z1]T = s2 + sh+ sσ1(λi) for n odd

[Z1]T = hs for n even

inside CH2
T (P(2, 2)× P(2, n))F2 . We apply now proposition 1.1.3 to deduce that:

[Z1] = s2 + sh+ sc1 for n odd

[Z1] = hs for n even

inside CH2
GL3

(P(2, 2)× P(2, n))F2 , because the Weyl group associated to the maxi-
mal subtorus T ⊂ GL3 is the symmetric group.
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Finally, substituting s with c1, we get [Z1] = c1h mod 2, hence [D1
[3,2]] = c1h.

This last element is not zero because by the projective bundle formula (proposition
1.1.1.(6)) we have that CH1

GL3
(A(2, 2)[3,2])F2 · h = F2 · c1h is a non-zero direct

summand. �

Recall that we defined another divisor D2
2 in P(Vn)2, whose points are the pairs

(q, [f ]) such that q = l1l2 has rank 2 and the plane curves li = 0 and f = 0 do not
intersect transversally in P2 for some i (see definition 3.2.3).

By proposition 3.2.4 we know that D2
2 is an irreducible divisor in P(Vn)2. Let

D2
[3,2] be its embedding in P(Vn)[3,2].

Lemma 3.3.2. We have [D2
2] = 0 in CH1

GL3
(P(Vn)2)F2 and [D2

[3,2]] = 0 in
CH2

GL3
(P(Vn)[3,2])F2 .

Proof. Clearly, it is enough to show that [D2
2] = 0 in CH1

GL3
(P(Vn)2)F2 .

Recall that in the proof of proposition 3.2.4 we proved that there exists a closed
subscheme Y 2 ⊂ P(2, 1)× P(2, n) whose points are pairs (l, f) such that the plane
curves l = 0 and f = 0 do not intersect transversally. Consider the image of
P(2, 1)× Y 2 via the morphism

π : P(2, 1)× P(2, 1)× P(2, n) −→ P(2, 2)[2,1] × P(2, n)

which sends (l1, l2, f) to (l1l2, f), and let Z2 be the restriction of this image to
P(2, 2)2 × P(2, n).

By proposition 2.3.2 applied to the morphism f : P(2, 2)2 → P(2, 2), we get an
isomorphism:

Φ : CH1
GL3

(P(Vn)2) ' CH1
GL3

(P(2, 2)2 × P(2, n))/(f∗s− c1)

such that Φ[D2
2] = [Z2] modulo f∗s− c1. Hence, it is enough to show that [Z2] = 0

in CHGL3(P(2, 2)2 × P(2, n))F2 .
We claim that [Y 2] = 0 in CH1

GL3
(P(2, 1)×P(2, n))F2 . From this the proposition

would easily follow, because the morphism P(2, 1)×Y 2 → Z
2 is generically bijective.

To compute [Y 2] we will first find an explicit expression for [Y2], regarded as
an element of CHGL3(P(2, 1)× P(2, n)× P2), where:

Y2 :=
{

(l, f, p) such that l(p) = f(p) = det
i
J(l, f)(p) = 0

}
Here deti J(l, f) stands for the determinant of the minor of the Jacobian matrix
J(l, f) obtained by removing the ith column.

This would enable us to compute [Y 2] because pr12∗[Y2] = [Y 2].
Observe that the scheme Y2 is not a complete intersection but, if we restrict

to the open subscheme of P2 where p2 6= 0, then we need exactly three equations
to describe the restriction over this open subscheme of Y2, namely l(p) = f(p) =
det3 J(l, f)(p) = 0.

Consider the T -invariant subscheme

Y2
1 :=

{
(l, f, p) such that l(p) = f(p) = det

3
J(l, f)(p) = 0

}
where T is the usual subtorus of GL3 made of the diagonal matrices. Then we
have that Y2

1 has two irreducible components, which are Y2 and the T -invariant
subscheme

Y2
2 := {(l, f, p) such that l(p) = f(p) = p2 = 0}

From this we deduce that [Y2]T = [Y2
1 ]T − [Y2

2 ]T in CHT (P(2, 1)× P(2, n)× P2).
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Observe that Y2
1 is a complete intersection of three T -invariant hypersurfaces

H1, H2 and H3 and that Y2
2 is a complete intersections of three T -invariant hyper-

surfaces H1, H2 and H4, where:

H1 = {l(p) = 0}
H2 = {f(p) = 0}

H3 =
{

det
3
J(l, f)(p) = 0

}
H4 = {p2 = 0}

Hence [Y2
1 ]T = [H1]T [H2]T [H3]T and [Y2

2 ]T = [H1]T [H2]T [H4]T . We have that
CHT (P(2, 1) × P(2, n) × P2) is generated as a CHT (Spec(k0))-algebra by the fol-
lowing elements:

v = pr∗1cT1 (OP(2,1)(1))
h = pr∗2cT1 (OP(2,n)(1))

t = pr∗3cT1 (OP2(1))

We can compute [Hi]T using the formula given in lemma 1.1.7. In the end we get:

[Y2
1 ]T − [Y2

2 ]T = (s+ t)(h+ nt)(s+ h+ (n− 1)t− λ1 − λ2)
− (s+ t)(h+ nt)(t+ λ3) =
= (s+ t)(h+ nt)(s+ h+ (n− 2)t− σ1(λi))

Expanding the expression above, using the identity t3+σ1(λi)t2+σ2(λi)t+σ3(λi) =
0 and after tensoring with F2, we obtain that

[Y2]T = tξ1 + ξ2

for some ξi in CHT (P(2, 1)× P(2, n)). The compatibility property (see proposition
1.1.1.(4)) applied to the diagram

P(2, 1)× P(2, n)× P2 //

��

P2

��

P(2, 1)× P(2, n) // Spec(k0)

implies that [Y 2]T = pr12∗[Y2]T = 0.
By injectivity of the morphism CHGL3(P(2, 1) × P(2, n)) ↪→ CHT (P(2, 1) ×

P(2, n)) (see proposition 1.1.3), we conclude that [Y 2] = 0. �

3.3.2. Cycle classes of D′i1 . Let Q̂ → A(2, 2)[3,1] be the pullback of the
universal conic Q → P(2, 2), and let Q̂sing be the closed subscheme of singular
points, i.e. the scheme defined by 1th-Fitting ideal of Ω1

Q̂/A(2,2)[3,1]
.

Recall that Q̂sing
[2,1] → A(2, 2)[2,1] is a birational morphism, which is an isomor-

phism over A(2, 2)2 (see lemma 3.2.12). Moreover, the fibre Q̂sing
1 over A(2, 2)1 is a

projective subbundle of A(2, 2)1 × P2, defined by the equation:

Q̂sing
1 =

{
(l2, p) such that l(p) = 0

}
Observe that all these schemes inherits a GL3-action, which comes from the diagonal
action of GL3 on the product A(2, 2)× P2.

In what follows, the projective bundle Q̂sing
1 will be simply denoted E1, because

we think of it as an exceptional divisor.



52 3. COHOMOLOGICAL INVARIANTS OF HYPERELLIPTIC CURVES OF ODD GENUS

Lemma 3.3.3. We have

CHGL3(E1) ' Z[c1, c2, c3, t, v]/(c1 − 2v, ft, fv)

where t is the restriction to E1 of cGL3
1 (OP2(1)), ft is a polynomial of degree 2

monic in t and fv is a polynomial of degree 3 monic in v.

Proof. We have that E1 → A(2, 2)1 is a projective bundle, hence applying
the projection bundle formula (proposition 1.1.1.(6)) we get:

CHGL3(E1) ' CHGL3(A(2, 2)1)[t]/(ft)

where t is the restriction to E1 ⊂ A(2, 2)1 × P2 of cGL3
1 (OP2(1)).

Observe that A(2, 2)1 is the Gm-torsor over P(2, 2)1 associated to the equivari-
ant line bundle OP(2,2)(−1)|P(2,2)1 ⊗ D, where D is the determinant representation
of GL3. Applying proposition 1.1.8 we deduce:

CHGL3(A(2, 2)1) ' CHGL3(P(2, 2)1)/(c1 − s)

where s = cGL3
1 (OP(2,2)(1)|P(2,2)1).

There is an equivariant isomorphism

ϕ : P(2, 1) −→ P(2, 2)1, l 7−→ l2

which induces an isomorphism at the level of Chow rings:

ϕ∗ : CHGL3(P(2, 2)1) ' CHGL3(P(2, 1)) ' Z[c1, c2, c3, v]/(fv)

where v = cGL3
1 (OP(2,1)(1)).

Observe that ϕ∗(OP(2,2)(−1)|P(2,2)1 ⊗ D) = OP(2,1)(−2)⊗ D, hence:

CHGL3(P(2, 2)1)/(s− c1) ' Z[c1, c2, c3, v]/(fv, c1 − 2v)

This concludes the proof of the lemma. �

Recall from definition 3.2.10 that P̃(Vn)[2,1] denotes the pullback of P(Vn)[2,1] →
A(2, 2)[2,1] along the morphism Q̂sing

[2,1] → A(2, 2)[2,1], and that P̃(Vn)1 is the restric-
tion of P̃(Vn)[2,1] to E1 = Q̂sing

1 .
We also introduced in definition 3.2.11 the divisor D′[2,1], which is the closure

of the preimage of D2 in P̃(Vn)[2,1]. We also defined D′1 as the restriction of D′[2,1]
to E1.

By proposition 3.2.14, we know that the divisor D′1 has two irreducible compo-
nents, denoted D′11 and D′21 : the points of D′11 are the triples (l2, [f ], p) such that
l(p) = f(p) = 0. The points of D′21 are the triples (l2, [f ], p) such that l(p) = 0
and the plane curves l = 0 and f = 0 do not intersect transversally (see definition
3.2.13 and remark 3.2.15).

We want to compute the cycle classes of these two components.

Lemma 3.3.4. We have [D′11 ] = h + nt in CH1
GL3

(P̃(Vn)1), where h denotes
the hyperplane section of the projective bundle P̃(Vn)1 → E1 and t comes from the
hyperplane section of P2.

Proof. Consider the cartesian diagram:

E1

��

// E1

g

��

A(2, 2)[3,1] // P(2, 2)
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where E1 = Qsing
1 . We can apply proposition 2.3.2 to the diagram above: we obtain

an isomorphism

Φ : CHGL3(P̃(Vn)1) ' CHGL3(E1 × P(2, n))/(g∗s− c1)

Let Z ′1 ⊂ E1 × P(2, n) be the GL3-invariant subvariety defined as:

Z ′
1 :=

{
(l2, f, p) such that l(p) = f(p) = 0

}
Then proposition 2.3.2 also implies that Φ[D′11 ] = [Z ′1] modulo the relation g∗s−
c1 = 0.

Consider the cartesian diagram

ϕ∗E1 //

��

E1

��

P(2, 1) ϕ
// P(2, 2)1

where ϕ sends [l] to [l2]. The horizontal arrows are then equivariant isomorphisms.
We have an induced isomorphism:

ϕ∗ : CHGL3(E1 × P(2, n))/(g∗s− c1) ' CHGL3(ϕ∗E1 × P(2, n))/(ϕ∗g∗s− c1)
' Z[c1, c2, c3, t, v, h]/(2v − c1, ft, fv, fh)

where h = cGL3
1 (OP(2,n)(1)) and the other generators are as in lemma 3.3.3. The

isomorphism ϕ∗ sends [Z ′1] to [ϕ−1Z ′
1]. To compute the cycle class of ϕ−1Z ′

1 we
consider the subscheme of P(2, 1)× P(2, n)× P2 defined as:

W1 = {(l, f, p) such that f(p) = 0}

If i : ϕ∗E1 × P(2, n) ↪→ P(2, 1) × P(2, n) × P2 is the closed immersion, then we
have i![W1] = [Z ′1] (see proposition 1.1.1.(9)). Thanks to lemma 1.1.7, we get
[W1] = h+ nt, hence:

[Z ′1] = i![W1] = h+ nt

Here there is a little and quite common abuse of notation, as we are denoting t
both the pullback of cGL3

1 (OP2(1)) to P(2, 1)×P2 and its restriction to ϕ∗E1. This
concludes the proof. �

Observe that D′11 can also be seen as a codimension 2 integral subscheme of
P̃(Vn)[2,1].

Lemma 3.3.5. The class [D′11 ] is non-zero in CH2
GL3

(P̃(Vn)[2,1])F2 .

To prove the lemma above, we need a technical result.

Lemma 3.3.6. The cycle class [E1] is not zero in CH1
GL3

(Q̂sing
[2,1])F2 .

Proof. From remark 3.2.8.(2) we know that there is a cartesian diagram:

Q̂sing
[2,1]

f ′
//

q′

��

Qsing
[2,1]

q

��

A(2, 2)[3,1]
f
// P(2, 2)

Therefore, the top horizontal morphism is a Gm-torsor whose associated equivariant
line bundle is q∗OP(2,2)(−1)⊗D, where the latter is the determinant representation
of GL3.
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This implies (proposition 1.1.8) that the pullback morphism

f ′∗ : CHGL3(Qsing
[2,1]) −→ CHGL3(Q̂sing

[2,1])

is surjective with kernel the ideal (c1 − q∗s). In particular, to compute [E1] we
can equivalently check that [E1] is not zero modulo the ideal (c1 − q∗s), where
E1 = Qsing

1 . This is because we have the cartesian diagram:

E1 //

��

Q̂sing
[2,1]

��

E1 // Qsing
[2,1]

The equivariant Chow ring ofQsing
[2,1] can be easily determined applying the projective

bundle formula (proposition 1.1.1.(6)), because Qsing
[2,1] is a projective bundle over P2

(see remark 3.2.8). We have:

CHGL3(Qsing
[2,1]) = Z[c1, c2, c3, s, t]/(Rs, Rt)

where t is the pullback of the hyperplane section of P2 and s is the restriction of
the hyperplane section of P(2, 2).

Proposition 1.1.3 tells us that for any GL3-scheme X we have an inclusion of
CHGL3(X) inside CHT (X), where T denotes the subtorus of diagonal matrices:
applying this to our case, we deduce that it is enough to show that [E1]T 6= 0
modulo the ideal (σ1(λi) − s), where the λi are the generators of CHT (Spec(k0))
(see proposition 1.1.4).

Let U be the open, T -invariant subscheme P2 \ {[1 : 0 : 0], [0 : 1 : 0]} of P2.
Denote Qsing

[2,1]|U (resp. E1|U ) the restriction over U of Qsing
[2,1] → P2 (resp. E1).

The localization exact sequence (proposition 1.1.1.(3)) implies that the restriction
morphism induces an isomorphism

CH1
T (Qsing

[2,1]|U )/(σ1(λi)− s) ' CH1
T (Qsing

[2,1])/(σ1(λi)− s)
' Z〈λ1, λ2, λ3, s, t〉 /〈σ1(λi)− s〉

so that we have reduced ourselves to show that [E1|U ]T 6= 0 modulo σ1(λi)− s.
We can write [E1|U ]T = ns+mt+

∑3
i=1 kiλi, where n, m and ki are coefficients

in F2. Observe that it is enough to prove m 6= 0. If p : E1|U → U is the usual
projection, then we have:

p∗([E1|U ] · s2) = np∗s
3 +

3∑
i=1

kiλi · p∗s2 +mt · p∗s2 = ξ +mt

where ξ is linear polynomial in the λi. In the identity above we used several facts:
the projection formula (proposition 1.1.1.(8)) to obtain mp∗(t · s2) = mt · p∗s2, the
fact that for every projective bundle p : P(E)→ X whose fibres have dimension d we
have p∗c1(OE(1))d = [X] (see [Ful98, prop. 3.1.(a).ii]) and finally that the relation
Rs = 0 is a monic polynomial of degree 3 in s with coefficients in CHT (Spec(k0)). If
we prove that m 6= 0, we are done, because {λ1, λ2, λ3, t} is a basis for CH1

T (P2)F2 .
Let H1 be the T -invariant hyperplane in the projective bundle P(2, 2)×U → U

whose points are those pairs (q, p) such that q(1, 0, 0) = 0. Similarly, define H2 as
the hyperplane whose points are pairs (q, p) such that q(0, 1, 0) = 0. The equations
defining these two hyperplanes are respectively q11 = 0 and q22 = 0, where q =
q11x

2 + q22y
2 + . . . .
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Lemma 1.1.7, together with the description above of Hi, tells us that [Hi]T =
cT1 (OP(2,2)(1)) + 2λi. Observe that

i : Qsing
[2,1]|U ↪→ P(2, 2)× U

is a regular embedding because both the domain and the target are smooth, hence
there is a well defined Gysin homomorphism (proposition 1.1.1.(9)):

i! : CHT (P(2, 2)× U) −→ CHT (Qsing
[2,1]|U )

In particular, i!([H1]T · [H2]T ) = s2 in CHT (Qsing
[2,1]|U )F2 . On the other hand, we

have that i!([H1]T [H2]T ) = [H1 ∩H2 ∩Qsing
[2,1]|U ]T , where:

H1 ∩H2 ∩Qsing
[2,1]|U =

(q, p) such that qx(p) = qy(p) = 0
qz(p) = q(1, 0, 0) = q(0, 1, 0) = 0

and p 6= [1 : 0 : 0], [0 : 1 : 0]


We can write p∗[E1]T · s2 = p∗[E1 ∩H1 ∩H2]T , and E1 ∩H1 ∩H2 is sent by p onto
the restriction to U of the unique line L = {z = 0} that passes through (1, 0, 0) and
(0, 1, 0). Moreover, E1 ∩H1 ∩H2 is 1:1 on L, therefore

p∗[E1 ∩H1 ∩H2]T = [L]T = t+ λ3

This proves that [E1|U ]T = t+ξ in CHT (Qsing
[2,1]|U )F2 , where ξ is a linear combination

of λi and s, and it concludes the proof. �

Now we are ready to give a proof of lemma 3.3.5.

Proof of lemma 3.3.5. From lemma 3.3.4 we know that [D′11 ] = h + nt

in CH1
GL3

(P̃(Vn)1), where h is the hyperplane section of the projective bundle
P̃(Vn)1 → E1 and t is the pullback of the hyperplane section of P2 along the
morphism P̃(Vn)1 → E1 → P2.

Let j : E1 → Q̂sing
[2,1] be the closed immersion, so that we have a cartesian square:

P̃(Vn)1
j′
//

p′

��

P̃(Vn)[2,1]

p

��

E1
j
// Q̂sing

[2,1]

We want to prove that j′∗[D′11 ] is non-zero in CH2
GL3

(P̃(Vn)[2,1])F2 .
We have:

j′∗[D′11 ] = j′∗h+ nj′∗t = j′∗(h · p′∗1) + j′∗p
′∗cGL3

1 (OP2(1))

= h · p∗j∗1 + p∗j∗c
GL3
1 (OP2(1))

where in the second identity we applied the projection formula for not necessarily
flat morphisms (proposition 1.1.2) to the proper morphism j′: with a common
abuse of notation, we used the symbol h to denote both the hyperplane section of
P̃(Vn)[2,1] and its pullback along j.

The third identity is a consequence of the compatibility property (proposition
1.1.1.(4)).

The projective bundle formula (prop. 1.1.1.(6)) applied to CH2
GL3

(P̃(Vn)[2,1])
tells us that this group decomposes as a direct sum

CH2
GL3

(P̃(Vn)[2,1]) ' p∗CH2
GL3

(Ã(2, 2)[2,1])⊕ p∗CH1
GL3

(Ã(2, 2)[2,1]) · h

⊕ p∗CH0
GL3

(Ã(2, 2)[2,1]) · h2
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Hence it is enough to check that [E1] 6= 0 in CH1
GL3

(Q̂sing
[2,1]), which follows from

lemma 3.3.6. �

We focus now on D′21 (definition 3.2.13). Recall that the points of D′21 can
be seen as triples (l2, [f ], p) such that the plane curves l = 0 and f = 0 does not
intersect transversely at p. This property is clearly independent of the choice of a
representative of [f ].

Observe that, just as for D′11 , this scheme can be seen both as a codimension 1
subvariety of P̃(Vn)1 and as a codimension 2 subvariety of P̃(Vn)[2,1].

Lemma 3.3.7. We have that [D′21 ] = 0 in CH1
GL3

(P̃(Vn)1)F2 . The same thing
holds in CH2

GL3
(P̃(Vn)[2,1])F2 .

Proof. Clearly, the second assertion follows from the first one. Applying
proposition 2.3.2 exactly in the same way as in the proof of lemma 3.3.4, we see
that it is enough to show [Z ′2] = 0 in CH1

GL3
(E1 × P(2, n))/(g∗s− c1), where g is

the obvious morphism to P(2, 2) and Z ′2 is the subvariety whose points are triples
(l2, f, p) such that the plane curves l = 0 and f = 0 intersect non transversally in
p.

As in the proof of lemma 3.3.4, we have a cartesian diagram

ϕ∗E1 //

��

E1

��

P(2, 1) ϕ
// P(2, 2)1

where ϕ sends [l] to [l2], and the horizontal arrows are equivariant isomorphisms.
Therefore, there is an equivariant isomorphism ψ : ϕ∗E1 × P(2, n) ' E1 ×

P(2, n). After identifying the equivariant Chow rings of these two schemes, we have
that [Z ′2] = [ψ−1Z ′

2].
Recall that in the proof of lemma 3.3.2 we introduced the subscheme Y 2 of

P(2, 1) × P(2, n) whose points are pairs (l, f) such that the plane curves l = 0
and f = 0 do not intersect transversally, and we also proved that [Y 2] = 0 in
CH1

GL3
(P(2, 1)× P(2, n))F2 .

Observe that the embedding i : ϕ∗E1×P(2, n) ↪→ P(2, 1)×P(2, n)×P2 is a local
complete intersection, because both schemes are regular. We can apply proposition
1.1.1.(9), which tells us that there is a well defined Gysin homomorphism:

i! : CHGL3(P(2, n)× P(2, 1)× P2) −→ CHGL3(ϕ∗E1 × P(2, n))

In particular, we have i![Y 2 × P2] = [ψ−1Z ′
2], thus the latter cycle class is zero in

CHGL3(ϕ∗E1 × P(2, n))F2 . �

3.4. The key lemma

In this section, we will always be working with Chow groups with coefficients in
F2. The goal is to prove the key lemma 3.1.3, which is the only missing ingredient
for completing the computation of the cohomological invariants of Hg (see section
3.1). Let us restate here what we want to prove:

Key Lemma. Fix an algebraically closed base field k0 of characteristic 6= 2.
Let P(1, 2n) be the projective space of degree 2n binary forms, endowed with the
PGL2-action:

A · f(x, y) = f(A−1(x, y))
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Let ∆1,2n be the divisor parametrising singular forms and denote i the closed em-
bedding ∆1,2n ↪→ P(1, 2n). Then i∗ : A0

PGL2
(∆1,2n) → A1

PGL2
(P(1, 2n)) is zero for

every n.

From now on, we assume that the characteristic of the base field k0 is 6= 2.

3.4.1. Proof of the key lemma. Corollary 1.3.16 implies that

A0
PGL2

(∆1,2n) −→ A1
PGL2

(P(1, 2n))

is zero if and only if is zero the morphism

i∗ : A0
GL3

(D3) −→ A1
GL3

(P(Vn)3)

If Q̂3 denotes the pullback to A(2, 2)3 of the universal smooth conic Q3 → P(2, 2)3,
then P(Vn)3 is isomorphic to the relative Hilbert scheme of points Hilb2n

Q̂3/A(2,2)3

(see remark 1.3.13), and D3 is the divisor parametrizing subschemes non-étale over
the base.

We know almost nothing about A0
GL3

(D3) but, on the other side, we know a
lot about A1

GL3
(P(Vn)3). Indeed, from the formula for equivariant Chow rings with

coefficients of projective bundles (proposition 1.2.3.(7)), we have

A1
GL3

(P(Vn)3) ' A1
GL3

(A(2, 2)3)⊕A0
GL3

(A(2, 2)3) · h

where h is equal to cGL3
1 (O(1)), which is an element of codimension 1 and degree

0. Proposition 1.3.8 applied to the PGL2-scheme Spec(k0), whose GL3-counterpart
is A(2, 2)3, tells us that APGL2(Spec(k0)) ' AGL3(A(2, 2)3). Combining this with
proposition 1.2.4, we readily deduce that

A1
GL3

(P(Vn)3) ' (CH1
GL3

(P(Vn)3)F2)⊕ F2 · τ1 ⊕ F2 · w2h

where the first addend coincides with the elements of degree 0, the element τ1 has
codimension and degree both equal to 1, and finally w2 has codimension 0 and
degree 2, so that w2h has codimension 1 and degree 2.

Thanks to the fact that i∗ preserves the degree (proposition 1.2.3.(2)), every
element in A0

GL3
(D3) of degree greater than 2 will be sent by i∗ to 0. We need to

find out if there is any element α of degree smaller or equal to 2 such that i∗α is
not zero.

Lemma 3.4.1. The morphism i∗ : CH0
GL3

(D3)F2 → CH1
GL3

(P(Vn)3)F2 is zero.

Proof. We have to show that the cycle class [D3] = 0 in CH1
GL3

(P(Vn)3)F2 .
From 2.3.4 we have that [D3] = 4(n − 2)h in CHGL3(P(Vn)3), where h is equal to
cGL3

1 (OP(Vn)3(1)). This implies the lemma. �

We have a closed embedding of P(Vn)2 inside P(Vn)[3,2], whose open comple-
ment is P(Vn)3. Moreover, if we pullback D[3,2] along this closed embdding, we
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obtain D2. By compatibility (proposition 1.2.3.(5)) we get:

(5) A0
GL3

(D[3,2])
i

[3,2]
∗ //

j∗D
��

A1
GL3

(P(Vn)[3,2])

j∗

��

A0
GL3

(D3) i∗ //

∂D

��

A1
GL3

(P(Vn)3)

∂

��

A0
GL3

(D2)
i2∗ //

fD∗

��

A1
GL3

(P(Vn)2)

f∗

��

A1
GL3

(D[3,2])
i

[3,2]
∗ // A2

GL3
(P(Vn)[3,2])

Observe that the vertical sequences are exact.

Lemma 3.4.2. The Chow group with coefficients A1
GL3

(P(Vn)[3,2]) is concen-
trated in degree 0. In particular, if α is an element of A0

GL3
(D3) of degree greater

than 0, then i∗α = 0 if and only if i2∗(∂Dα) = 0.

Proof. Using the projective bundle formula (proposition 1.2.3.(7)) we have

A1
GL3

(P(Vn)[3,2]) = A1
GL3

(A(2, 2)[3,2])⊕A0
GL3

(A(2, 2)[3,2]) · h

where h = cGL3
1 (OP(Vn)[3,2](1)). The scheme A(2, 2)[3,2] is an open subscheme of

A(2, 2) whose complement has codimension 3. The localization exact sequence
(proposition 1.2.3.(4)) implies that:

AiGL3
(A(2, 2)[3,2]) = AiGL3

(A(2, 2)) for i = 0, 1

The GL3-representation A(2, 2) can be regarded as a GL3-equivariant vector bundle
over Spec(k0), hence by homotopy invariance (proposition 1.2.3.(6)) we obtain:

AiGL3
(A(2, 2)) = AiGL3

(Spec(k0))

By proposition 1.2.4, there are no non-zero elements of degree greater than 0 in
this ring, therefore A1

GL3
(P(Vn)[3,2]) is concentrated in degree 0.

Let α be an element of A0
GL3

(D3) of degree greater than 0. Then i∗α = 0 implies
that i2

∗(∂D) = 0 because of the commutativity of the middle square of diagram 5.
On the other hand, if i2

∗(∂Dα) = 0 then the exactness of the vertical sequences of
diagram 5 implies that i∗α = j∗β for some β in A1

GL3
(P(Vn)[3,2]).

By proposition 1.2.3.(2) and 1.2.3.(3), we have deg(α) = deg(i∗α) = deg(β),
thus β = 0 because A1

GL3
(P(Vn)[3,2]) is concentrated in degree 0. �

Proposition 3.4.3. If α in A0
GL3

(D3) has degree 1, then i∗α = 0.

Proof. By hypothesis, ∂Dα is a degree zero element of A0
GL3

(D2): the degree
zero part of this group can be identified with CH0

GL3
(D2)F2 (proposition 1.2.3.(1)).

From proposition 3.2.5 we deduce that

CH0
GL3

(D2)F2 ' CH0
GL3

(D1
2)F2 ⊕ CH0

GL3
(D2

2)F2 ' F2 ⊕ F2

where D1
2 and D2

2 are the two irreducible components of D2 (see definition 3.2.1
and 3.2.3).

Write ∂Dα = (n,m). From lemma 3.4.2 we have that i∗α = 0 if and only if

0 = i2∗(n,m) = n[D1
2] +m[D2

2] ∈ CH1
GL3

(P(Vn)2)F2
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Because of the exactness of the left vertical sequence of the diagram 5, we have
fD∗(∂Dα) = 0. This implies that

0 = i
[3,2]
∗ fD∗(∂Dα) = n[D1

2] +m[D2
2]

in CH2
GL3

(P(Vn)[3,2]). By lemma 3.3.1 we know that [D1
1] = c1h 6= 0 and lemma

3.3.2 tells us that [D2
2] = 0: we deduce 0 = nc1h, thus n = 0 and ∂Dα = (0,m)

In particular i2∗∂Dα = m[D2
2] in CH1

GL3
(P(Vn)2), and by lemma 3.3.2 we know

that this last term is zero: this concludes the proof. �

Let Q̂sing
[2,1] → A(2, 2)[2,1] be the singular locus of Q̂[2,1] → A(2, 2)[2,1], where

Q̂[2,1] is the pullback to A(2, 2)[2,1] of the universal conic Q[2,1] → P(2, 2)[2,1] re-
stricted over the closed subscheme of conics of rank < 3 (see definition 3.2.7).
Denote E1 the restriction of Q̂sing

[2,1] → A(2, 2)[2,1] over A(2, 2)1. Recall that Q̂sing
2 →

A(2, 2)2 is an isomorphism, and that E1 → A(2, 2)1 is a projective bundle (see
proposition 3.2.9).

Let P̃(Vn)[2,1] be the pullback of P(Vn)[2,1] → A(2, 2)[2,1] along the morphism
Q̂sing

[2,1] → A(2, 2)[2,1], and define P̃(Vn)1 as the restriction of P̃(Vn)[2,1] over E1 (see
definition 3.2.10). The restriction P̃(Vn)2 of P̃(Vn)[2,1] over Q̂sing

2 is isomorphic to
P̃(Vn)2 (see lemma 3.2.12).

Finally, let D′[2,1] be as in definition 3.2.11 and let D′1 be the restriction of
D′[2,1] over E1. Then by compatibility (proposition 1.2.3.(5)), we get the following
commutative diagram, whose vertical sequences are exact:

(6) A0
GL3

(D′[2,1])
i′∗ //

j∗D

��

A1
GL3

(P̃(Vn)[2,1])

j∗

��

A0
GL3

(D2)
i2∗ //

∂D

��

A1
GL3

(P(Vn)2)

∂
��

A0
GL3

(D′1)
i′1∗ //

fD∗

��

A1
GL3

(P̃(Vn)1)

f∗

��

A1
GL3

(D′[2,1])
i′∗ // A2

GL3
(P̃(Vn)[2,1])

Observe that lemma 3.2.12 allowed us to identify in the diagram above A0
GL3

(D′2) '
A0

GL3
(D2) and A0

GL3
(P̃(Vn)2) ' A0

GL3
(P(Vn)2).

Lemma 3.4.4. We have:
• A0

GL3
(Q̂sing

[2,1]) ' A
0
GL3

(P2)

• A1
GL3

(Q̂sing
[2,1]) ' A

1
GL3

(P2)

Proof. Let Q̂sing be the closed subscheme of A(2, 2)× P2 defined as follows:

Q̂sing := {(q, p) such that qx(p) = qy(p) = qz(p) = 0}

Observe that Q̂sing → P2 is a GL3-equivariant vector subbundle of the (trivial)
vector bundle A(2, 2) × P2 → P2. Therefore, for the homotopy invariance of the
Chow groups with coefficients (see proposition 1.2.3.(6)) we get A1

GL3
(Q̂sing) '

A1
GL3

(P2).
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The scheme Q̂sing
[2,1] is the complement in Q̂sing of the zero section, which has

codimension 3. The localization exact sequence (see proposition 1.2.3.(4)) implies
that, if Z is a closed subscheme of codimension > i of a scheme X, then the Chow
group with coefficients of codimension i of X and X \ Z coincide.

Applying this to our case, we deduce that AiGL3
(Q̂sing) ' AiGL3

(Q̂sing
[2,1]) for

i = 0, 1. �

Lemma 3.4.5. The Chow group with coefficients A1
GL3

(P̃(Vn)[2,1]) is concen-
trated in degree 0. In particular, given an element β of A0

GL3
(D2) whose degree is

greater than 0, then i2∗β = 0 if and only if i′1∗ (∂Dβ) = 0.

Proof. Applying the projective bundle formula (proposition 1.2.3.(7)) we get:

A1
GL3

(P̃(Vn)[2,1]) ' A1
GL3

(Q̂sing
[2,1])⊕A

0
GL3

(Q̂sing
[2,1]) · h

We know from lemma 3.4.4 that AiGL3
(Q̂sing

[2,1]) is concentrated in degree 0 for i = 0, 1:
this proves the first part of the lemma.

Given an element β in A0
GL3

(D2) of degree > 0, suppose that i′1∗ (∂Dβ) = 0.
The commutativity of diagram 6 implies that ∂(i2∗β) = 0, and the exactness of the
right vertical sequence tells us that i2∗β = j∗γ. Observe that

0 < deg(β) = deg(i2∗β) = deg(j∗γ) = deg(γ)

because pushforwards and pullback preserve the degree (see proposition 1.2.3.(2)
and 1.2.3.(3)). The group A1

GL3
(P̃(Vn)[2,1]) is concentrated in degree 0, hence γ = 0

and this concludes the proof. �

Proposition 3.4.6. If β is an element of degree 1 in A0
GL3

(D2), then i2∗β = 0.

Proof. By lemma 3.4.5, we can equivalently show that i′1∗ (∂Dβ) = 0. Ob-
serve that ∂D(β) has degree 0. The degree 0 part of A0

GL3
(D′1) is isomorphic to

CH0
GL3

(D′1)F2 by proposition 1.2.3.(1). Recall that D′1 is the union of two irre-
ducible components (see proposition 3.2.14), hence we have:

CH0
GL3

(D′1)F2 = CH0
GL3

(D′11 )F2 ⊕ CH0
GL3

(D′21 )F2

By exactness of the left vertical sequence of diagram 6, we have that fD∗(∂Dβ) =
0, thus i′∗fD∗(∂Dβ) = 0. If we write ∂Dβ as (n,m), then we are saying that
n[D′11 ] + m[D′21 ] = 0 in CH1

GL3
(P̃(Vn)[2,1])F2 . By corollary 3.3.5 and lemma 3.3.7

we know that [D′11 ] 6= 0 and [D′21 ] = 0, thus n = 0.
We have proved that ∂Dβ = (0,m). This implies that i′1∗ (∂Dβ) = m[D′21 ],

which is equal to zero by lemma 3.3.7. �

We are ready to prove the key lemma 3.1.3.

Proof of key lemma 3.1.3. We want to prove that:

i∗ : A0
GL3

(D3) −→ A1
GL3

(P(Vn)3)

is zero. As already observed, A1
GL3

(P(Vn)3) is concentrated in degree 0, 1 and 2,
hence every element α in A0

GL3
(D3) of degree > 2 will be sent to 0, because i∗

preserves the degree (see proposition 1.2.3.(1)).
Suppose deg(α) = 0. The morphism i∗ restricted to the degree 0 part is equal

to
i∗ : CH0

GL3
(D3)F2 → CH1

GL3
(P(Vn)3)F2

by proposition 1.2.3.(1), and we know that this morphism is zero by lemma 3.4.1.
Suppose deg(α) = 1. Then proposition 3.4.3 tells us that i∗α = 0.
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The only case left is when deg(α) = 2. By lemma 3.4.2 we have that i∗α = 0
if and only if i2∗(∂Dα) = 0. Observe that deg(∂Dα) = 1, hence we can apply
proposition 3.4.6 to deduce that i2∗(∂Dα) = 0. This finishes the proof. �





CHAPTER 4

Cohomological invariants of the stack of
hyperelliptic curves of even genus: multiplicative

structure

In this chapter we investigate the multiplicative structure of Inv•(Hg), the
graded-commutative ring of cohomological invariants with coefficients in F2 of the
stack of hyperelliptic curves of even genus g ≥ 2. Our main result is theorem
4.2.14. All the results of this chapter had been obtained in collaboration with
Roberto Pirisi.

4.1. Cohomological invariants of étale algebras

The goal of this section is to recall some results on cohomological invariants
of classifying stacks. We will be mainly concerned with BS2n, regarded as the
stack that classifies étale algebras of degree 2n, and BO2n, the classifying stack of
quadratic forms of degree 2n. All this material can be found in [GMS03]: more
precise references will be given along the way.

Whenever we write Inv•(−), we will always be thinking of cohomological in-
variants with coefficients in F2. Therefore, the base field k0 will always be assumed
to be of characteristic 6= 2.

Recall that the classifying stack BSn over k0, where Sn is the symmetric group
on n elements, is equivalent to the stack whose objects are degree n étale morphisms
X → S of k0-schemes: the equivalence in given by the functor that sends a degree
n étale morphism X → S to the Sn-torsor IsomS(X,

∐n
i=1 S) → S, where Sn acts

on the right by permutation.
Cohomological invariants of BSn with coefficients in F2 have been extensively

studied (in particular, see [GMS03, ch. VII]). We briefly summarize here their
main features.

Proposition 4.1.1.
(1) There is a well defined cohomological invariant α1 that sends an étale K-

algebra E ' K[x]/(x2−a) to the element {a} in K∗/(K∗)2 (we are using
the well known identification of this group with H1

ét(Spec(K), µ2)).

(2) We have Inv•(BS2) ' H•(k0)[α1]/(α2
1 − {−1} · α1)

Proof. As the characteristic of k0 is 6= 2, we have the following chain of
isomorphisms:

BS2 ' Bµ2 ' [(A1 \ {0})/Gm]
where Gm acts by multiplication by λ2. As Gm is special, this implies that A1 \{0}
is a smooth-Nisnevich cover and the cohomological invariants of BS2 are those of
A1 \ {0} which are invariant with respect to the action of Gm.

The invariants of A1\{0} can be easily computed using the long exact sequence
associated to the open embedding A1 \ {0} ⊂ A1 (see proposition 1.2.3.(4)). We
have:

0→ A0(A1)→ A0(A1 \ {0})→ A0({0})→ A1(A1)

63
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The last morphism vanishes because A1(A1) ' H•(k0)⊗ CH1(A1) = 0.
Moreover, we have a splitting A0({0})→ A0(A1 \ {0}) given by multiplication

by α′1, where α′1 is the invariant that sends a morphism Spec(K) → A1 \ {0},
which is equivalent to the datum of β in K∗, to the equivalence class of β in
H1

ét(Spec(K), µ2) ' K∗/(K∗)2. The fact that ∂(α′1) = 1 follows from the fact that
α′1 does not extend to a cohomological invariant of A1, because it is not trivial.
Therefore we have:

A0(A1 \ {0}) ' H•(k0) · 1⊕H•(k0) · α′1
Observe that α′1 descends to an invariant α1 of [A1 \ {0}/Gm], where Gm acts by
multiplication for λ2: if we identify BS2 with the classifying stack of quadratic
étale algebras, we see that α1 is the invariant described in (1).

We are left with proving that α2
1 = {−1} · α1: observe that a quadratic

étale algebra E can be regarded as a rank 2 K-vector space with a quadratic form
defined as y 7→ TrE(my2), where my2 denotes the multiplication by y2, regarded as
a K-linear application on the K-vector space E, and TrE(−) is the usual trace.

In particular, if we have E ' K[x]/(x2 − a), the associated quadratic form
will be diagonal of the form 〈2, 2a〉. This shows that, if q : BS2 → BO2 is the
morphism induced by the construction above, then α1 = q∗w1, where w1 is the first
Stiefel-Whitney invariant of quadratic forms (see [GMS03, 17.1]), which sends a
quadratic form to its determinant.

Then (2) follows from the relation w2
1 = {−1} · w1 (see [GMS03, (19.3)]). �

The inclusion S×n2 ↪→ S2n which sends σi to (i, i + 1) induces a morphism of
classifying stacks f : BS×n2 → BS2n, hence we have a pullback morphism f∗ :
Inv•(BS2n)→ Inv•(BS×n2 ).

By proposition 4.1.1 we deduce that:

Inv•(BS×n2 ) ' H•(k0) · 1⊕H•(k0) · pr∗1α1 ⊕ · · · ⊕H•(k0) · pr∗nα1

as H•(k0)-module. Observe that there is an action of Sn on Inv•(BS×n2 ) given by
permuting the pr∗iα1.

Theorem 4.1.2. [GMS03, Th. 25.6] The pullback morphism

f∗ : Inv•(BS2n) −→ Inv•(BS×n2 )

induces an isomorphism of H•(k0)-algebras:

Inv•(BS2n) ' Inv•(BS×n2 )Sn

In particular Inv•(BS2n) is freely generated as H•(k0)-module by 1, α1, . . . , αn,
where deg(αi) = i.

To get some feeling for the cohomological invariants αi appearing in theorem
4.1.2, take a multiquadratic étale algebra E of degree 2n, i.e. E is isomorphic
to a product of n quadratic étale algebras Ej ' K[x]/(x2 − aj). Then αi(E) =
σi({a1}, . . . , {an}), where σi is the ith-elementary symmetric polynomial and the
product is the cup product in H•(K).

There is another way to describe the cohomological invariants of BS2n, as
showed in [GMS03, 25.7].

Definition 4.1.3. We define the morphism of classifying stack q : BS2n →
BO2n as follows: given an étale morphism f : T → S , we define the quadratic form
qT on the locally free OS-sheaf f∗OT as the one that sends an element y to the
trace of my2 , the OS-linear morphism given by multiplication for y2.
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In particular, if E is an étale K-algebra, we get a K-quadratic form qE :=
q(Spec(E)). Using the morphism q we can pull back cohomological invariants from
BO2n to BS2n.

Cohomological invariants of BOn, or equivalently cohomological invariants of
non-degenerate quadratic forms of rank n, are discussed in [GMS03, 17]: we recall
here just some basic facts.

Write 〈a1, . . . , an〉 to indicate the diagonal quadratic form of rank n whose
diagonal entries are a1, . . . , an. Then we define the ith Stiefel-Whitney invariant
wi as the cohomological invariant that sends q ' 〈a1, . . . , an〉 to σi({a1} . . . , {an}),
where as before σi is the elementary symmetric polynomial of degree i in the {aj},
which we regard as elements of K∗/(K∗)2 ' H1

ét(Spec(K), µ2), and the product is
the cup product of H•(K). It can be proved that wi is well defined, i.e. does not
depend on how we diagonalize q.

Theorem 4.1.4. [GMS03, 17.3 and remark 17.4.(1)] The graded-commutative
H•(k0)-algebra Inv•(BOn) is generated as H•(k0)-module by the Stiefel-Whitney
invariants 1, w1, . . . , wn

The multiplicative structure is given by the relations of the form

wr · ws = {−1}m(r,s) · wr+s−m(r,s)

where m(r, s) is obtained as follows: write r in dyadic form as
∑

2i for i ∈ R ⊂
{0, 1, 2, . . . }, and write s as

∑
2i for i ∈ S ⊂ {0, 1, 2, . . . }. Then m =

∑
2i for

i ∈ R ∩ S.

The theorem above gives a rather complete picture of the graded-commutative
ring Inv•(BOn). In particular, as observed in [GMS03, remark 17.4.(1)], the in-
variants w2i generate Inv•(BOn).

Theorem 4.1.5. Let q : BS2n → BO2n be the morphism introduced in definition
4.1.3.

(1) We have:

αi = q∗wi + {2} · q∗w1 · q∗wi−2 for i ≤ n
q∗wi = 0 for i > n+ 1
q∗wn+1 = 0 if n is even
q∗wn+1 = {2} · q∗wn if n is odd

(2) We have that Inv•(BS2n) is freely generated as H•(k0)-module by

1, q∗w1, . . . , q
∗wn

In particular, the induced morphism of graded-commutative rings

q∗ : Inv•(BO2n)/(wn+2, . . . , w2n) −→ Inv•(BS2n)

has kernel (wn+1) if n is even and has kernel equal to (wn+1 − {2} · wn)
if n is odd.

Proof. Point (1) is [GMS03, thm. 25.13]. For (2), observe that (1) im-
plies that the morphism of H•(k0)-modules q∗ is surjective with kernel equal to
(wn+1, . . . , w2n) if n is even and equal to (wn+1 − {2} · wn, wn+2, . . . , w2n) if n is
even. Therefore, if we mod out by the kernel, we get an isomorphism of H•(k0)-
modules, hence of graded-commutative rings. �

The theorem above describes the multiplicative structure of Inv•(BS2n), build-
ing on what we already know about Inv•(BO2n) from theorem 4.1.4.
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4.2. Multiplicative structure of Inv•(Hg)

We assume as usual that the base field k0 has characteristic 6= 2. All the
cohomological invariants are implicitly assumed to be with coefficients in F2.

In this section we study the multiplicative structure of Inv•(Hg) for g ≥ 2 even.
Our main result is theorem 4.2.14.

4.2.1. Cohomological invariants of Bg. Let g be any integer ≥ 2. Recall
from [AV04, ex. 3.5] that the stackHg is isomorphic to the stackH∼g whose objects
are triples (π : C → S,L, s), where π : C → S is a family of smooth rational curves,
L is a line bundle of degree −g−1 and s is a global section of L−⊗2 whose vanishing
locus is étale over S.

For us it will be more convenient to work with H∼g rather than Hg, though
everything we say can be restated in terms of objects of the latter stack.

Definition 4.2.1.
(1) We define Bg as the stack whose objects are triples (π : C → S,L,D)

where π : C → S is a family of smooth rational curves, L is a line bundle
on C of degree −g−1 and D is a divisor of C étale over S of degree 2g+2.

(2) We define the morphism F : H∼g → Bg as the one that sends a triple
(π : C → S,L, s) to the triple (π : C → S,L,Ds) where Ds is the divisor
defined as the vanishing locus of s.

(3) We define pr : Bg → BS2g+2 as the morphism that sends a triple (π : C →
S,L,D) to the étale morphism D → S.

Observe that the morphism F : H∼g → Bg makes Bg into a Gm-torsor over H∼g ,
and in particular shows that Bg is a smooth Artin stack.

Proposition 4.2.2.
(1) The pullback morphism of graded-commutative H•(k0)-algebras

pr∗ : Inv•(BS2g+2)→ Inv•(Bg)

is injective.

(2) If k0 is algebraically closed, then pr∗ is an isomorphism when g is even,
and has cokernel equal to F2 ·w2 when g is odd, where w2 is the cohomolog-
ical invariant pulled back via the morphism Bg → BPGL2 that remembers
only the family of smooth rational curves.

Proof. Suppose that pr∗αi 6= 0 for i = 1, . . . , g + 1. We can rewrite pr∗ =
⊕g+1
i=0 pr∗i , where pr∗i : Invi(BS2g+2) → Invi(Hg) is the homogeneous part of degree

i. By theorem 4.1.2 we know that Invi(BS2g+2) ' F2 · αi, hence our assumption
implies the injectivity of pr∗i for each i, hence of pr∗.

Proving that pr∗αi 6= 0 is equivalent to finding an étale K-algebra E of the
form K[x]/(f) such that αi(E) 6= 0: given such an algebra E, then Spec(E) will
be by construction a divisor D in P1

K of degree 2g + 2. The hyperelliptic curve
(C → Spec(K), ι) obtained by taking the double cover of P1

K ramified along D
will be such that pr∗αi((C → Spec(K), ι)) = αi(E) 6= 0, which will imply that
pr∗αi 6= 0.

By [GMS03, 12.3] αi(Ever) 6= 0, where Ever is the versal S2g+2-torsor, which
is the algebra

Ever ' k0(c1, . . . , c2g+2)[t]/(tn + c1t
n−1 + · · ·+ cn)
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over K = k0(c1, . . . , cn) (see [GMS03, ex. 5.6.(2)]). This K-point thus lifts to a
K-point of Hg, and we are done.

For point (2), when k0 is algebraically closed we know from [Pir17, cor. 4.7]
and proposition 3.1.2 that for even g the F2-vector space Inv•(Bg) is generated by
g + 2 elements 1, x1, . . . , xg+1, where deg(xi) = i, whereas if g is odd Inv•(Bg) is
generated by g+ 2 elements and the Stiefel-Whitney invariant w2. This implies the
surjectivity of pr∗ when g is even, and that the cokernel is equal to F2 ·w2 when g
is odd. �

Definition 4.2.3. We define the Weierstrass morphism W : Hg → BS2g+2 as
the composition of pr ◦F with the isomorphism Hg ' H∼g , where pr and F are the
morphisms introduced in definition 4.2.1.

In other terms, the Weierstrass morphism sends a family of hyperelliptic curves
(C → S, ι) to the Weierstrass divisor WC/S , regarded as an étale scheme over S.

Corollary 4.2.4. The morphism of graded-commutative H•(k0)-algebras
W ∗ : Inv•(BS2g+2) −→ Inv•(Hg)

induced by the Weierstrass morphism (definition 4.2.3) is injective.

Proof. Recall that W = pr ◦ F . From proposition 4.2.2.(1) we know that
pr∗ is injective, and F ∗ is injective because F : Hg → Bg is a Gm-torsor, hence
smooth-Nisnevich. �

Definition 4.2.5. For 1 ≤ i ≤ 2g+ 2 we define the cohomological invariant βi
of Hg as

βi := W ∗q∗wi

where W : Hg → BS2g+2 is the Weierstrass morphism (definition 4.2.3) and q :
BS2g+2 → BO2g+2 is the morphism introduced in definition 4.1.3.

Proposition 4.2.6. Let k0 be a field of characteristic 6= 2 and fix a positive
integer g ≥ 2. Then the cohomological invariants of Hg

1, β1, . . . , βg+1

are F2-linearly independent, βi = 0 for i > g + 2, βg+2 = 0 if g is odd and it is
equal to {2} · βg+1 if g is even.

Their multiplicative structure is given by the formula:
βr · βs = {−1}mβr+s−m

where m is computed as follows: write r in dyadic form as
∑

2i for i ∈ R ⊂
{0, 1, 2, . . . }, and write s as

∑
2i for i ∈ S ⊂ {0, 1, 2, . . . }. Then m =

∑
2i for

i ∈ R ∩ S.

Proof. As deg(βi) = i, we can equivalently show that βi 6= 0 for i = 1, . . . , g+
1. We know from corollary 4.2.4 that W ∗ is injective, hence we only have to check
q∗wi 6= 0 for i = 1, . . . , g + 1, which follows from theorem 4.1.5.(1).

The same theorem also implies the statements on βi for i > g + 1.
Finally, the multiplicative structure is deduced from the one of the Stiefel-

Whitney invariants stated in theorem 4.1.4. �

4.2.2. The exceptional invariant. Suppose that g ≥ 2 is even. Recall from
the previous section that Bg is the smooth Artin stack whose objects are triples
(π : C → S,L,D) where π : C → S is a family of smooth rational curves, L is a
line bundle on C of degree −g − 1 and D is a divisor of C étale over S of degree
2g + 2.

Proposition 4.2.7.
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(1) Let (π : Cg → Bg,Lg,Dg) be the universal object over Bg. Then Cg is a
smooth Artin stack and

π∗ : Inv•(Bg) −→ Inv•(Cg)

is an isomorphism.

(2) Let C∼g be the pullback of Cg along F : H∼g → Bg (see definition 4.2.1.(2)).
Then:

Inv•(H∼g ) ' Inv•(C∼g )
In particular, the induced map of graded-commutative H•(k0)-algebras
Inv•(Bg)→ Inv•(Hg) is injective.

Proof. By definition L has degree −g−1, hence the line bundle on Cg defined
asM := ω

g
2
π ⊗L−1

g has degree 1. This implies that there is an isomorphism between
P(π∗M) ' Cg.

Observe that Bg is isomorphic to the stack [(P(1, 2g+2)\∆1,2g+2)/GL2], hence
Cg is the projectivization of an equivariant vector bundle E over P(1, 2g+2)\∆1,2g+2.
From this and the usual isomorphism between cohomological invariants of quotient
stacks and equivariant 0-cycles with coefficients of the cover (see [Pir18a, thm.
4.16]) we deduce that Inv•(Cg) ' A0

GL2
(P(E)). The isomorphism of cohomological

invariants then follows from the projective bundle formula for Chow groups with
coefficients (proposition 1.2.3.(7)).

This proves (1) and implies (2), because C∼g → H∼g will be the projectivization
of a vector bundle as well. The last assertion is clear. �

Remark 4.2.8. The hypothesis of g being even is essential in the proof above,
otherwise it is not true that Cg is the projectivization of a rank 2 vector bundle.

This is the main difference between the even and the odd case: if (C → S, ι)
is a family of hyperelliptic curves of genus g, the family of smooth rational curves
C/ι→ S will always have trivial class in the Brauer group when g is even. This is
not true in general for odd g.

The remainder of the section will be devoted to the construction of a cohomo-
logical invariant ηg+2 of C∼g that does not come from Bg.

The objects of Cg are quadruples (C → S,L,D, p) where (C → S,L,D) is an
object of Bg and p : S → C is a section of the family of smooth rational curves.
Similarly, the objects of C∼g are quadruples (C → S,L, s, p) where (C → S,L, s) is
an object of H∼g and p : S → C is a section of the family of smooth rational curves.

Let Ug be the open substack of Cg whose objects are those quadruples (C →
S,L,D, p) such that D and p do not intersect. Analogously, let U∼g be the open
substack of C∼g whose objects are those quadruples such that s never vanishes on
the section p.

Lemma 4.2.9.
(1) Let B be the Borel subgroup of GL2 of upper triangular matrices. Then

we have:
• Cg ' [(P(1, 2g + 2) \∆1,2g+2)/B]
• C∼g ' [(A(1, 2g + 2) \∆′1,2g+2)/B]

(2) Let U be the B-invariant open subscheme of (A(1, 2g+2)\∆′1,2g+2) whose
points are those binary forms that does not vanish on [1 : 0], and let V be
the image of the projection of U in (P(1, 2g + 2) \∆1,2g+2). Then:
• Ug ' [V/B]
• U∼g ' [U/B]
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Proof. Recall that if (π : C → S,L,D) is an object of Cg, then the line bundle
E := ω

⊗ g
2

π ⊗ L−1 has degree one, hence C ' P(π∗E) canonically, and the set of
sections p : S → C is then equivalent to the set of line bundles M ⊂ E.

Consider the B-torsor over Cg whose objects consist of the datum
(C → S,L,D, p, ϕ)

where (C → S,L,D, p) is an object of Cg and ϕ is an isomorphism between flags:
ϕ : (M ⊂ E) ' (OS ⊂ O⊕2

S )
The morphisms in this B-torsor consist of the datum of a morphism between objects
of Cg that commutes with the trivializations of the respective flags.

There is an equivalence between this B-torsor and P(1, 2g+ 2) \∆1,2g+2: given
a datum (C → S,L,D, p, ϕ) as before, the trivialization ϕ of the flag induces an
isomorphism of C with P1

S , of p with {∞} × S and of L with O(−g − 1).
This implies that there is a well defined morphism from the B-torsor to P(1, 2g+

2) \ ∆1,2g+2 that, after identifying C with P1, only remembers D, and that the
composition of this with the morphism that sends the datum of a divisor D ⊂ P1

S

étale over S of degree 2g+2 to the object (P1
S ,O(−g−1), D, {∞}×S, id) is equivalent

to the identity.
This proves that P(1, 2g + 2) \ ∆1,2g+2 is a B-torsor over Cg, hence the first

statement. The second one is proved exactly in the same way: the only difference is
that instead of a divisor D, the datum of an object of C∼g contains a global section
s of L−⊗2.

Finally, point (2) follows from the construction above. �

Remark 4.2.10. The lemma above in particular implies that (A(1, 2g + 2) \
∆′1,2g+2)→ C∼g is a smooth-Nisnevich cover, because the group B is special.

This fact will be relevant for the construction of the exceptional cohomological
invariant ηg+2 of C∼g (i.e. a cohomological invariant which does not come from Bg):
we will first construct the exceptional invariant on the cover A(1, 2g+ 2) \∆′1,2g+2,
and subsequently we will show that is B-invariant, hence descends to an invariant
of C∼g .

Lemma 4.2.11. Let U and V be as in lemma 4.2.9. Then we have:
Inv•(U) ' Inv•(V )[t]/(t2 − {−1} · t)

where t is a cohomological invariant of degree 1 that sends a binary form f(x, y)
with coefficients in a field K to f(1, 0), regarded as an element of K∗/(K∗)2 '
H1

ét(Spec(K), µ2).

Proof. Let t be the degree 1 cohomological invariant of Gm which sends an
element x of Gm(K) = K∗ to its equivalence class in K∗/(K∗)2. Then we claim
that for any scheme X we have:

Inv•(X ×Gm) ' Inv•(X)[t]/(t2 − {−1} · t)
Observe that U → V is a Gm-torsor that can be trivialized via the isomorphism

U ' V ×Gm that sends a section s of OP1
S
(2g+2) to the pair (D → S, s(∞)), where

by s(∞) we mean the composition S → {∞}×S → A1×S regarded as an element
of OS(S) (the trivialization O(2g+ 2)|{∞} ' A1 is induced by the restriction of the
section x2g+2).

To prove the claim, we argue as follows: by proposition 1.2.6, we know that
Inv•(X ×Gm) ' (Inv•(X)/c1(L))⊕ ker(c1(L))[1]

as F2-modules, where L is the line bundle associated to the trivial Gm-torsor:
observe that in our case we have c1(L) = 0.
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Actually, from the proof of proposition 1.2.6 we see that the left summand can
be canonically identified with the submodule of invariants pulled back from X, and
the right summand can be identified with the submodule of invariants such that
the boundary morphism Inv•(X × Gm) → Inv•(X) induced by the open inclusion
X ×Gm ⊂ X × A1 is not zero.

Let γ be a cohomological invariant pulled back from X: then ∂(t · γ) = ∂t ·
γ because the pullback morphism Inv•(X) → Inv•(X × Gm) factorizes through
Inv•(X × A1). Moreover ∂t = 1, otherwise t would be an invariant of the whole
X × A1, which is not the case.

Putting all together, we have proved that the morphism of graded-commutative
H•(k0)-algebras

Inv•(X)[t] −→ Inv•(X ×Gm)
is surjective. We only have to prove that t2 = {−1} · t.

From [GMS03, ex. 17.5.(1)] we know that, given a field K over k0, x and y in
K∗ such that x + y 6= 0, then we have {x} · {y} = {x + y} · {−xy} in H•(K) (we
are only considering cohomology groups with F2-coefficients).

From this we deduce
{t}2 = {2t} · {−1} = ({2}+ {t}) · {−1} = {2} · {−1}+ {t} · {−1}

and that 0 = {1} · {1} = {2} · {−1}, from which the relation above follows. �

Proposition 4.2.12. Let f : U → BS2g+2 be the morphism that sends a global
section s of O(2g + 2) to the étale morphism D → S, where D is the vanishing
locus of s. Let t be the degree 1 cohomological invariant of U introduced in lemma
4.2.11.

Then the degree g + 2 cohomological invariant t · f∗αg+1 of U is non-zero and
descends to a cohomological invariant of U∼g , which moreover extends to a cohomo-
logical invariant of C∼g .

Proof. The fact that t · f∗αg+1 is non-zero follows from the computation of
Inv•(U) of lemma 4.2.11.

By lemma 4.2.9.(1) and remark 4.2.10, we know that U is a smooth-Nisnevich
cover of U∼g and that a cohomological invariant of U descends if and only if it is
B-invariant, where B is the group of upper triangular matrices.

Therefore, the degree 1 cohomological invariant t of U descends to an invariant
of U∼g , because it is B-invariant: if f(x, y) is a binary form of degree 2g + 2 with
coefficients in a field K and b is an element of B

b =
(
b11 b12
0 b22

)
then t(b · f(x, y)) = [det(b)gb2g+2

11 f(1, 0)], which is equal to [f(1, 0)] in K∗/(K∗)2.
This implies that t · f∗αg+1 descends to C∼g .

Let Z be the complement of U in A(1, 2g + 2) \ ∆′1,2g+2: then proposition
1.2.3.(4) gives us the following long exact sequence of equivariant Chow groups
with coefficients:

0 −→ A0
B(A(1, 2g + 2) \∆′1,2g+2) −→ A0

B(U) −→ A0
B(Z)

To show that t · f∗αg+1 comes from a global cohomological invariant, we have to
show that ∂(t · f∗αg+1) = 0.

We already know that f∗αg+1 extends, because is the restriction to U of the
pullback of αg+1 along the morphism C∼g → Bg. We also know from the proof of
lemma 4.2.11 that ∂(t) = 1. This implies that ∂(t · f∗αg+1) = αg+1.

We have reduced ourselves to prove that αg+1 vanishes on the étale algebras
that are in the image of [Z/B]→ BS2g+2.
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Observe that these algebras will be of the form E′ × K: this is because by
construction the section p : Spec(K) → C of an object (C → Spec(K), L, s, p)
of C∼g contained in the closed substack [Z/B] will factorize through D ⊂ C, the
vanishing locus of the section s.

Therefore, if D = Spec(E), the section p will give us a section of E, thus
E ' E′ ×K. Applying the formulas of [GMS03, 25.2], we deduce:

αg+1(E) = αg+1(E′) = 0
because E′ has degree 2g + 1 and αi vanishes on étale algebras of degree < 2i (see
[GMS03, th. 25.6]). This concludes the proof of the proposition. �

Definition 4.2.13. We define the exceptional cohomological invariant ηg+2 of
Inv•(Hg) as the image via the isomorphism Inv•(C∼g ) ' Inv•(Hg) of the degree
g + 2 cohomological invariant of C∼g constructed in proposition 4.2.12.

We are ready to prove the main result of the chapter.
Theorem 4.2.14. Fix a base field k0 of characteristic 6= 2 and an even number

g ≥ 2.
Let βi for i = 1, . . . , 2g + 2 be the cohomological invariant of Hg introduced in

definition 4.2.5 and let ηg+2 be the exceptional cohomological invariant introduced
in definition 4.2.13. Then:

(1) The invariants 1, β1, . . . , βg+1, ηg+2 are F2-linearly independent, βi = 0
for i > g + 2 and βg+2 = {2} · βg+1.

(2) The multiplicative structure is given by the formulas:
βr · βs = {−1}m(r,s)βr+s−m

βi · ηg+2 = 0 for i 6= g + 1
βg+1 · ηg+2 = {−1}g+1ηg+2

ηg+2 · ηg+2 = {−1}g+2ηg+2

where m(r, s) is computed as follows: write r in dyadic form as
∑

2i for
i ∈ R ⊂ {0, 1, 2, . . . }, and write s as

∑
2i for i ∈ S ⊂ {0, 1, 2, . . . }. Then

m(r, s) =
∑

2i for i ∈ R ∩ S.

(3) If k0 is algebraically closed, then the invariants 1, β1, . . . , βg+1, ηg+2 gen-
erate Inv•(Hg).

Proof. We already know (1) from proposition 4.2.6: the only thing to observe
is that deg(ηg+2) = g + 2, hence it is independent of the βi for i < g + 2.

Proposition 4.2.6 also gives us the relations in (2) not involving ηg+2. To
compute βi · ηg+2, we can pull back this invariant along the composition:

U∼g ↪→ C∼g −→ H∼g ' Hg
The induced morphism at the level of cohomological invariants is injective, because
Ug ↪→ C∼g is an open embedding, and the pullback morphism Inv•(H∼g )→ Inv•(C∼g )
is an isomorphism (see proposition 4.2.7.(2)). Therefore, it is enough to prove the
formulas of (2) for the pullback of the invariants to U∼g .

The pullback of ηg+2 to U∼g is by construction (see definition 4.2.13) equal to
t · f∗αg+1, where t is the degree 1 invariant that sends an object

(C → Spec(K), L, s, p : Spec(K)→ C)
to the evaluation in K∗/(K∗)2 of s at the K-point p and f : Ug → BS2g+2 is the
morphism that only remembers the K-étale algebra {s = 0}. This has been proved
in proposition 4.2.12.
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Moreover, the pullback of βi is equal to f∗q∗wi, where q is the morphism
introduced in definition 4.1.3 and wi is the Stiefel-Whitney invariant of degree i.

Recall from theorem 4.1.5 that αg+1 is equal to q∗wg+1 + {2} · q∗w1 · q∗wg−1.
We know from 4.1.4 that w1 · wg−1 = {−1} · wg−1 and the formula [GMS03, ex.
17.5.(1)] tells us that 0 = {1}2 = {2} · {−1}, hence αg+1 = q∗wg+1.

Theorem 4.1.4 tells us that wi · wg+1 = {−1}mwg+1+i−m: using the fact that
q∗wj = 0 for j > g + 2, we deduce that f∗q∗(wi · wg+1) = 0 unless i−m = 0 or 1
(by construction m ≤ i).

Suppose that m = i: as we are supposing that i ≤ g + 1, this implies that
i = g + 1, in which case we have w2

g+1 = {−1}g+1 · wg+1. From this we deduce:
f∗q∗(wg+1) · t · f∗q∗(wg+1) = −t · f∗q∗(wg+1)

= −t · f∗q∗({−1}g+1 · wg+1

= {−1}g+1t · f∗q∗wg+1

which implies βg+1 · ηg+1 = {−1}g+1ηg+1. Suppose i−m = 1, then:
wi · wg+1 = {−1}m · wg+2

= {−1}i · {2} · wg+1

Recall that {−1} ·{2} = 0, hence the last line above is zero unless m = 0 and i = 1:
this can never happen, because both 1 and g + 1 are odd, thus m ≥ 1.

To conclude the proof of (2), observe that:
t · f∗q∗wg+1 · t · f∗q∗wg+1 = −t2 · f∗q∗w2

g+1

= −{−1} · t · {−1}g+1wg+1

= {−1}g+2t · wg+1

Finally, point (3) is a direct consequence of what we already proved and [Pir17,
thm. 1.1]. �

Remark 4.2.15. We may ask ourselves if the generators of Inv•(Hg) as H•(k0)-
algebra generate also when the base field is not algebraically closed.



Future directions

We outline here some future directions of research related to the themes dis-
cussed in the previous chapter.

4.2.3. Multiplicative structure of Hg, g odd. The techniques used to
investigate the multiplicative structure of Inv•(Hg) for an even g ≥ 2, and in par-
ticular the construction of the exceptional invariant ηg+2 (see proposition 4.2.12),
does not seem to apply in the odd genus case.

Let g ≥ 3 be an odd number. The universal rational curve C∼g → H∼g is not
a smooth-Nisnevich cover: this is a consequence of the fact that the quotient of a
hyperelliptic curve of odd genus by the involution is a curve of genus zero that does
not necessarily have a rational point.

What one might consider is the Hilbert stack Xg parametrising 0-dimensional
subschemes Z of degree 2 relative to the morphism P(π∗TC∼g /H∼g ) → H∼g : this
Hilbert stack is actually isomorphic to a projective bundle over H∼g , hence the
pullback morphism induces an isomorphism at the level of cohomological invariants.

Inside Xg we may take the open substack U∼g whose objects are those quadruples
(π : C → S,L, s, Z) such that the family of smooth rational curves π : C → S, once
embedded in P(π∗TC/S), does not intersect the 0-dimensional substack Z, and the
section s does not vanish on the intersection of C with the unique line in P(π∗TC/S)
that contains Z.

There is a representation of U∼g as a quotient stack [U/T ] where U is an open
subscheme of Vg+1,3 such that the projection U → V ⊂ P(Vg+1)3 makes U into a
trivial Gm-torsor over V .

Similarly to what is done in proposition 4.2.12, we can use this fact to construct
an exceptional cohomological invariant of degree g+2, but we are not able to prove
that it extends to a global invariant.

Moreover, when g is odd there is another cohomological invariant in Hg that
we must take into account to understand the multiplicative structure of Inv•(Hg),
namely the second Stiefel-Whitney invariant coming from the morphism Hg →
BPGL2. At the present moment, we do not have fully understood how to multiply
this invariant with the other ones.

Therefore, the following seems to be an interesting line of future research:

Question. What is the multiplicative structure of Hg for g ≥ 3 odd?

4.2.4. Cohomological invariants of some compactifications of Hg. The-
orem 4.2.14 is telling us that when the base field k0 is algebraically closed, the coho-
mological invariants of Hg for an even g ≥ 2 are all constructed using the cohomo-
logical invariants of BS2g+2, exploiting the fundamental fact that the Weierstrass
divisor of a family of hyperelliptic curves is an étale algebra over the base.

If we consider the Deligne-Mumford compactificationHg by stable curves, there
is no obvious way to extend the Weierstrass morphism 4.2.3 to the whole Hg, thus
we expect that the cohomological invariants of Hg do not come from Inv•(Hg). The
next proposition shows that this is actually the case.
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Proposition 4.2.16. Let k0 be a field of characteristic 6= 2, and let Hg be the
Deligne-Mumford compactification of Hg via stable curves, where g ≥ 2 is even.
Then Inv•(Hg) is trivial.

Sketch of proof. We have an injective morphism of H•(k0)-modules:
Inv•(Hg) ↪→ Inv•(Hog)

where Hog is the open substack of families of stable hyperelliptic curves such that
every geometric fibre is irreducible and has at most one singular point.

We want to prove that the right hand side is trivial.
For doing this, observe that we have an isomorphism:

Hog ' [A(1, 2g + 2) \∆′2,2g+2 ∪ Z)/GL2]
where ∆′2,2g+2 is the usual subscheme parametrising forms with at least two double
roots, and Z is the subscheme parametrising forms with at least one triple point.

Both Z and ∆′2,2g+2 have codimension > 1 in A(1, 2g + 2), from which we
deduce:

Inv•(Hog) ' A0
GL2

(A(1, 2g + 2)) ' H•(k0)
This concludes the proof. �

Let H̃g be the compactification of Hg by admissible covers. The Weierstrass
morphism can be extended to a morphism

W̃ : H̃g −→ BS2g+2

Therefore, we have a commutative diagram

Inv•(H̃g) // Inv•(Hg)

Inv•(BS2g+2)

W̃∗

OO

W∗
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We know from corollary 4.2.4 that W ∗ is injective, hence so it is W̃ ∗.

Question. Let g ≥ 2 be an even number, and fix a base field k0 of characteristic
6= 2. Does the exceptional invariant ηg+2 of Hg defined in 4.2.13 extend to a
cohomological invariant of the compactified stack H̃g ?

An answer to this question would allow us to describe Inv•(H̃g)
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