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Chapter 1

Introduction

Molecular flexibility is an intrinsic property of biomolecules[1]. It is crucial for such ba-

sic functions as enzyme catalysis, regulation of protein activity, transport of metabolites,

etc.. Higly flexible proteins have been either identified or implicated in various diseases.

Understanding the fundamental nature of biomolecular flexibility is important not only

for relating structural information to biological function, but also for the development of

novel therapeutics. However, studying biomolecular flexibility represents a very difficult

task both experimentally and theoretically. Up to now, all information we have about the

macroscopic structure of proteins come from X-ray, neutron scattering and NMR stud-

ies. However, these techniques provide only a static picture of biological molecules and

a comprehension of how proteins work requires an understanding of the connection be-

tween three-dimensional structure and dynamics, which is much more difficult to probe

experimentally. Although significant results have been obtained by NMR relaxation ex-

periments as well as by single-molecule fluorescence resonance energy transfer (FRET)

measurements, these experiments provide ensemble- or time-averaged data and translat-

ing them into an atomic detailed view is generally not trivial. In this scenario, atomistic

simulations can in principle bring an invaluable insights. Molecular Dynamics (MD) is a

precious instrument to understand the mechanism underlying complex processes, provid-

ing the linkage between experimental structure with dynamics[2]. Although classical MD
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2 Introduction

simulation is nowadays a standard tool because it provides a very detailed representation

of protein dynamics, it still faces significant limitations. The force field, able to represent

intra-molecular and inter-molecular interactions does not quite have the required accu-

racy, the atom motion is described by classical dynamics, the formation and breaking of

chemical bonds is not allowed, electrons are confined to remain in the ground state, and

size and time scale are severely restricted. There is an increasing amount of work aimed at

overcoming these limitations: more potent computers come together with the development

of scalable codes, more accurate force field are being developed, bigger system are being

simulated, transitions on longer time scales are being investigated. Within these limita-

tions the most severe one is the time scale problem. This problem arises from the fact that

the typical integration time of an atomistic simulation is in the fs range, because it must

be smaller than the fastest degree of freedom one wants to describe. This limits current

large-scale simulations where most phenomena of interest as the protein conformational

plasticity or protein folding generally take milliseconds or longer times. To overcome this

limitation, a huge variety of different methods have been proposed over the course of the

last few years. Within these methods our group has introduced a powerful method, called

metadynamics[3]. In metadynamics, a history dependent potential is added in the space

of the collective variables (CV). This forces the dynamics to explore conformations that

were not previously visited and discourages the system from previously explored regions.

Therefore, it allows the system to escape minima along low free energy paths and exploring

other minima in the free energy landscape. The free energy surface can be obtained as the

negative of the potential added during the simulation.

In this framework, the two main topics presented in this thesis, represent two interest-

ing case of large scale motion in biology, studied by means of metadynamics simulations.

The more advanced “state of the art” of metadynamics[4] has been applied in order to

better understand the problem of kinase conformational plasticity and the open issue of

folding/unfolding equilibrium of protein in water/urea mixed solvent. Before coming to

the outline of the thesis I will give a brief introduction about the two main topics of the

present dissertation.
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1.1 Conformational changes in protein kinase

Protein kinases represent one of the biggest superfamily in the human genome[5]. All

protein kinases catalyze the same reaction: the transfer of gamma phosphate from ATP to

a peptidic substrate. Since the phosphorilation cascade plays a central role in the regulation

of cell growth and differentiation, dysregulation of kinase activity can result in dramatic

changes in the control of these processes.

For their relevant role in human body, protein kinases are intriguing drug targets and

in the last decade much effort has been put by pharmaceutical industry in designing

new potent and selective inhibitors able to interfere with their activity[6]. Such inhibitors

have significant potential in the clinical treatment of major diseases including cancer,

heart disease, inflammatory disorders, diabetes and neurological disorders. These inhibitors

alter the function of kinase and in principle a good kinase inhibitor has to rapidly and

selectively interfere with the activation state of the targeted kinase. In fact the over 1200

solved structures of protein kinase domain allow depicting a general framework of kinase

activation profile[7]. Although what I’m going to describe is a general picture, based on

static “images” of the proteins, it provides invaluable insights into the molecular details of

kinase function and regulation, moreover it is fundamental for any kinase drug discovery

project[8]. We can think of protein kinases as molecular switches that can adopt at least two

conformations[9, 10]: an “active” state that is maximally active and an “inactive” state that

has minimal activity. Since protein kinases catalyze the same reaction, upon activation,

they adopt catalytically active conformations that are structurally very similar since they

have to perform similar tasks. The protein kinase fold, which is extremely conserved among

kinases, is composed by two subdomains or lobe connected by a semi-flexible hinge region

(see Fig. 1.1). The N-terminal lobe, or N-lobe, is mostly composed by β-sheets. However,

it includes one α-helix, called αC-helix. The C-terminal lobe, or C-lobe is mostly α-helical

and contains the activation segment. The first three residues of the activation segment form

a highly conserved Asp-Phe-Gly triad known as the “DFG” motif. The activation segment

contains hydroxyl-bearing amino acids residues that are phosphorilated to activate the
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enzyme for catalysis. Between the two lobes, there is the ATP-containing site where the

substrate binds. The ATP-binding site sits beneath a highly conserved loop connecting

strands two β-sheets. This loop, called G-loop, contains a conserved glycine-rich sequence

that allow the loop to approach the phosphates of ATP very closely and to coordinate

them via backbone interactions.

In the active state, the conserved Glu in the αC-helix forms a salt bridge with a lysine

residue of the N-lobe. This salt bridge is essential for catalysis and is highly conserved

among all protein kinases (see Fig.1.2A). Also the Asp, inside the DFG motif, points into

the ATP binding site and the activation segment is in a open and extended conformation.

Figure 1.1: Active state of Cyclin dependent kinase 2 with ATP as licorice and the

peptide substrate in orange. The classical bilobal structure of kinase can be seen: the

G-loop (cyan); the αC-helix (violet); the hinge region between the N- and C-lobes of the

protein (yellow); the C-loop (green); the activation segment (blue).

On the other hand, the inactive state can be different reflecting the fact that the
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catalytic activity can be blocked in different ways. For what concern the inactive states,

there is a large variety in the solved structures. They can be divided into two main groups

(see Fig. 1.2), corresponding to the different classes of inhibitors that they can bind:

• in the first type, that we can call αC-helix Glu-Out, the conserved salt bridge that

anchors the αC-helix in active structures is broken and the αC-helix moves away from

the ATP-binding site, creating an additional pocket such as in a tyrosine kinase, the

epidermal growth factor, and this pocket can be occupied by an inhibitor such as

Lapatinib[11];

• in the second type, the Asp sidechain in the conserved DFG motif is rotated out

of the ATP binding site, creating a new pocket. We can referee to this inactivation

type as DFG-Out. This pocket can be occupied by selective inhibitors, including the

marketed drugs Imatinib[12] and Sorafenib[13].

Figure 1.2: A: Active state of CDK2 kinase with DFG-in conformation and αC-helix

Glu-in, B: inactive state of CDK2 with DFG-in and αC-helix Glu-out conformation, C:

P38α Map kinase with DFG-out and αC-helix Glu-in conformation

In both groups, the highly flexible activation segment can be in a substantial different

position compared to its place in the active state. Up to now, only few kinases[14, 15] have
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been seen to adopt both the DFG-out and the αC-helix Glu-out inactive conformations.

This underlines the importance of considering the X-ray structures as snapshot which

depicts a kinase at a particular point of a conformational equilibrium rather than be

taken as a global image of the active or the inactive state. Moreover it clearly emerges the

limitation of a two-state representation of kinase activation, while it is more realistic a

view in which the protein can be in conformational equilibrium between several states. This

equilibrium can be shifted to one or another state in particular environment conditions.

In this thesis I will present our results about the possibility to simulate the process of

inactivation for both the inactive classes mentioned above. The transition from the active,

αC-helix Glu-in, to the inactive conformations of the first type, αC-helix Glu-out, has been

studied for Cyclin Dependent Kinase 5[16, 17] (CDK5). The second type of inactivation

process has been studied for Mitogen-activated protein kinase p38 α[18] (p38). In this case

we have simulated the transition from DFG-in to DFG-out state, we have also studied the

role of an inhibitor on the conformational transition between the two states. In both cases

we have also computed the free energy surface associated to this event. Moreover we have

found out several intermediate states going from active to inactive states that can be used

in further drug design project in order to design new selective inhibitors.

1.2 Urea-Induced Protein Denaturation

Herafter I introduce the second main topic of the present dissertation: the folding-unfolding

mechanism in pure water and in 8M urea solution.

A protein remains folded as a result of a delicate balance of forces between the protein’s in-

teractions with itself and its interactions with its environment. Under any given conditions,

protein molecules in aqueous buffer are in equilibrium between unfolded and folded states,

U(nfolded)⇀↽N(ative)[19]. This balance can be perturbed in different ways, by heat, cold,

pressure, acid, alkali, or organic molecules. Small uncharged molecules, called osmolytes,

are used by the cell to avoid an osmotic catastrophe. In fact the cell volume is maintained

in osmotic equilibrium via carefully controlled changes in the intracellular concentrations
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of these osmolytes. They may be classified as either denaturing or protecting. In the equi-

librium folding reaction, U⇀↽N the denaturing osmolyte, as for example, urea stabilizes U

relative to N; protecting osmolytes, as Trimethylamine N-oxide (TMAO), do the opposite,

stabilizing N relative to U.

Urea, a small hydrophilic molecule, present in all taxa, is a widely used protein denaturant

in vitro unfolding/refolding experiments. However, despite its everyday use in studying

protein folding and stability, the molecular mechanism by which urea acts as denaturant

is still not well understood. In particular, the question of which kind of interactions em-

body the main driving force inducing denaturation has been intensively studied. Two main

different mechanisms have been proposed:

1. an “indirect mechanism” in which urea is presumed to disrupt the structure of water,

thus making hydrophobic groups more readily solvated[20, 21, 22];

2. a “direct mechanism” in which urea can interact either directly with the protein

backbone, via hydrogen bonds and other electrostatic interactions, or directly with

the amino acids through more favorable van der Waals attractions, or with both,

thus causing the protein to open, and then denature[23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34].

Within this debate, MD simulation could be of great importance in order to eluci-

date the mechanism of urea denaturation. However, recent MD simulations have led to

qualitatively different conclusions. Many MD simulation have sought to understand the

mechanism by focusing on the pathway of denaturation rather than examining the effect

of urea on the folding/unfolding equilibrium. In addition, although urea shifts the U⇀↽N

equilibrium toward the unfolded state, the accessible computer time does not allow a sim-

ulation of the entire unfolding event. Thus only partial unfolding events, even at elevated

temperature, have been reported in many studies. Lately time scale of the simulations

has been increased to a few microseconds, and in lysozyme a two step process has been

found[35]. While highly illuminating, these calculations did not report any free energy cal-

culations. Efforts at improving sampling has also been recently made by Canchi et al.[36]
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who have used replica exchange to study the folding equilibrium of the Trp cage protein

in the presence of urea finding, in agreement with experiments, a linear dependence of

unfolding free energy on urea concentrations.

In this scenario, I will report in this thesis our computational study on folding/unfolding

equilibrium of the 16-residue C-terminal fragment of protein GB1 (β-hairpin) in 8M urea

compared to pure water solution. The use of advanced sampling techinques has allowed us

to analyze the mechanism of urea and to study the nature of the unfolded state in both

solutions.

1.3 Outline of the thesis

Beside this brief introduction, this dissertation is organized in four main chapters.

Chapter 2 is dedicated entirely to the basic theory of the simulation techniques used in

this thesis. Firstly I will briefly describe the MD technique applied to biological system.

Then I will focuse on the theory of metadynamics. The details of the most used form, the

so-called direct formalism, as well as its latest variant, well tempered metadynamics, are

explained. The pros and cons of metadynamics are described with a particular focus on

the collective variables. Then I introduce the theory of Path Collective Variables (PCV)

that are able to describe complex reactions with a limited set of CVs. Lastly I show how

is it possible to combine metadynamics with parallel tempering to mitigate the problem

of including all the slow modes of the system in the set of CVs.

Chapter 3 illustrates the application of metadynamics within the PCV to the problem of

large scale motion in kinases. This chapter presents the atomistic dynamics of the “open-

to-close” movement of the CDK5. I briefly introduce the open to closed problem in kinases,

then I will illustrate the mechanism of that transition for the protein under investigation.

I also show the estimated free-energy profile associated with the global motion and the

presence of an intermediate structure in between the ending ones, which could be exploited

for drug-design purposes.

Chapter 4 is concerned with the second type of kinase inactivation process, studied in
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p38 kinase. This mechanism involves the rotation of about 10 Å of the DFG motif. I will

show the mechanism of this transition for the protein alone and in the presence of an

inhibitor. I will describe how this inhibitor interferes with the inactivation mechanism.

Chapter 5 deals with the problem of protein unfolding in different environments such

as simple water and urea-water mixture. In this chapter I will present the mechanism by

which urea is able to interact with the β-hairpin protein and to stabilize the unfolded

state.
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Chapter 2

Theoretical Background

2.1 Molecular Dynamics

Since the first report of MD simulation of protein some 30 years ago[37], MD has become

an established tool in the study of biomolecules. It is used to understand the mechanism

underlying complex processes, both for interpreting experimental data and for making

novel predictions.

MD consists of observing the evolution of a system of N particles, under the action of some

forces arising from their interactions and under certain condition of temperature, pressure

and volume. Given the positions and the velocities at an initial instant t0, the position of

each particles Rj is updated after a small time step by integrating the Newton’s equation

of motion:

MjR̈j = −∇jU(R) ∀j = 1, ..., N (2.1)

where R = (R1, ...,RN ) is the configuration of the system, U(R) is the potential energy

function and Mj the mass of j particle.

If the simulation is prolongated for a sufficiently long time, the system visits several micro-

scopic configurations that can be used to measure different observables and also link the

simulation with experiment. Let us consider a simulation performed at constant number

of particles N , temperature T and volume V (canonical or NVT ensemble). An observ-

11
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able can be defined as the ensemble average of a function s = s(R) of the microscopic

coordinates:

〈s〉 =
∫
ds sP (s) (2.2)

where P (s) is the probability distribution of s in the canonical ensemble. This can be

written as:

P (s) = 〈δ(s− s(R))〉 =
∫
dR δ(s− s(R))e−βU(R)

Z
(2.3)

being β = 1/(kBT ), kB the Boltzmann constant and Z the partition function:

Z =
∫
dR−βU(R) (2.4)

The probability distribution P (s) is related to the Helmholtz free energy by the relation:

F (s) = − 1
β

lnP (s) + C (2.5)

where C is an irrelevant additive constant. Since the configurations produced in a MD

simulation in NVT conditions are distributed according to the Boltzmann weight e−βU(R),

one can accumulate in the histogram N(s) the variable s, during a long MD run in which

all the energetically relevant configurations have been sampled (ergodic hypothesis, see

section 2.2); one can also estimate the probability distribution P (s) using the normalized

histogram N(s); or calculate the ensemble average using Eq. 2.2. Alternatively, if one is

not interested in P (s), the ensemble average s can also be calculated directly from the

time average:

〈s〉 = 1
N

N∑
i=1

s(R(ti)) (2.6)

where N is the number of configurations collected during a long MD run, R(ti) the con-

figuration at time ti.

Defining the potential energy

Depending on the way how forces are computed, it is possible to classify the MD methods

as atomistic or ab-initio, where instead of describing the interaction potentials by analytical

functions the electronic structure is treated explicitly. A great advantage of ab-initio MD
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is that it allows bond building/breaking reactions and excited states to be described. In

force field based MD the interactions between atoms are described by suitable combinations

of analytical functions, which are fitted either on ab-initio calculations or parametrized

by experimental data. The use of analytical functions allows a fast evaluation of the

interatomic interactions, and therefore large systems can be sampled in the nanosecond

regime. However, the choice of the parameters is essential to set up a model which is able

to reproduce realistically the system of interest. In the following we shall focus on the

simulation of biophysical processes involving proteins, such as protein folding or protein-

protein interactions, at physiological conditions. For this purpose, a variety of possible

choices can be made for the force field. Here we limit our attention to force fields that

describe the protein and the solvent degrees of freedom at an atomistic detail.

The choice of the time step

In MD the integration of Newton’s equation of motion is based on the discretization

of a second order differential equation. Whatever algorithm one might use to integrate

the equations of motion, the maximum time step to be used safely is determined by

the frequency of the fastest motion in the system. For molecular systems these are the

stretching vibrations involving the hydrogen atoms, leading to time steps of the order of

femtoseconds. For proteins this time scale is orders of magnitude smaller compared to

the important motions, such as those involved in functionally important conformational

changes or in folding, which are in the range of microseconds to seconds or even longer. A

small time step ensures a good energy conservation and a good accuracy for the sampling

of the statistical ensemble, but on the other hand this leads to a huge number of steps

needed to sample the phase space.

The problem of rare events

The possibility to extract the probability distribution from a MD run is reliable only if

the MD run is long enough for the system to visit all the energetically relevant configu-

rations or, in other words, if the system is ergodic in the time scale of the simulation. In



14 Theoretical Background

practical situations this rarely happens. One reason is because the relevant configurations

are often separated by high free-energy barriers. In such cases one should wait for thermal

fluctuations to activate the reaction, i.e. to drive the system above the energy barrier. A

second possibility is that the system diffuses extremely slowly in the intermediate regions.

For all these reasons, such processes are often referred to as “rare events”.

To accumulate sufficient statistics on these events, a straightforward MD simulation is al-

most useless when carried out for a finite amount of time. Since in biophysical problems we

used a time step in the order of femtoseconds and relevant processes like folding/unfolding,

conformational movement are in the range of microseconds to seconds or even longer, it

emerges clearly that MD is afflicted by a problem of time scale. To deal with this problem,

a huge variety of different methods has been proposed over the course of the last few years.

Here we focus on a method, called metadynamics[3], that belongs to a more general group

of methods, in which the system experiences an additional potential acting on a selected

number of degrees of freedom, often referred as collective variables. S is a set of d functions

of the microscopic coordinate R of the system. The additional time-dependent potential

V (S(R), t), modifies Newton’s equation of motions as:

MR̈ = −∂U(R)
∂R

− ∂V (S(R), t)
∂R

(2.7)

In metadynamics a history-dependent bias potential that depends on the microscopic

variables through its dependence on S is used. The bias potential allows the system to

be pushed out of its initial metastable state and accelerates the exploration of other

metastable states. We focus here on metadynamics, in its standard form or in the re-

cently introduced well-tempered flavor[4]. In particular, we consider the direct version of

metadynamics, where the bias is acting directly on the microscopic coordinates.

2.2 Metadynamics

In standard metadynamics the bias potential is built during the simulation as a sum of

Gaussian functions centered on the previously visited configurations in the CVs space. Let
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Figure 2.1: Time evolution of the sum of a one-dimensional model potential V (x) and

the accumulating Gaussian terms of Eq. 2.9. The dynamic evolution (thin lines) is labeled

by the number of Gaussian added. The starting potential (thick line) has three minima

and the dynamics is initiated in the second minimum. The figure is taken from Ref.[3].

S be a set of d functions of the microscopic coordinate R of the systems:

S(R) = (S1(R), ...,Sd(R)). (2.8)

In so-called continuous and direct metadynamics an external history dependent bias po-

tential VG = VG(S, t) function of these CVs is added to the Hamiltonian of the system

and acts directly on the microscopic coordinates. This potential can be written as a sum

of Gaussian deposited along the trajectories of the CVs:

VG(S, t) =
∫ t

0
dt

′
ω exp

(
−

d∑
i=1

(Si(R)− Si(R(t′)))2

2σ2
i

)
(2.9)

where σi is the width of the Gaussian for the ith CV and ω is the rate at which the bias

grows. The energy rate is constant and is usually expressed in terms of a Gaussian height

W and a deposition stride τG:

W = ω

τG
(2.10)

To understand the effect of VG on the evolution of the system, let us consider the simple

case of the one-dimensional potential described in Fig. 2.1.
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In this example we shall measure the time t by counting the number of Gaussians

deposited. The system is initialized in one local minimum, say the second one. As time

goes by, Gaussians are deposited at present position. The underlying bias potential grows

until the system is pushed away to a new local minimum. This happens around t = 20.

The natural and more convenient escape route is passing above the lowest barrier to fall

into the left basin. Here the Gaussians accumulation starts again. The system is trapped

in this local minimum until the underlying free-energy basin is completely filled (t ' 120).

Starting from t = 160 the system can easily access also the third minimum region on the

right. Finally, when also this basin is compensated by the bias potential (t = 320), the

system can move in a random walk on the flat free energy surface (FES). Metadynamics

has been historically used in two different and complementary manners. It has been used to

escape free-energy minima, i.e. to find a reasonable saddle point out of a local minimum. In

this case, metadynamics should be stopped as soon as the system exits from the minimum

and starts exploring a new region of space. In other applications, it has been used to

exhaustively explore the CV space and reconstruct the FES. Here I focus more on this

latter application.

The example shows clearly the multiple benefits of metadynamics: it accelerates the

sampling of rare events by pushing the system away from local free-energy minima; it

allows the exploration of new reaction pathway as the system tends to escape these minima

passing through the lowest free-energy saddle point; no a priori knowledge of the landscape

is required. At variance with umbrella sampling, metadynamics inherently explores first

the low free-energy regions; the sum of all the Gaussians deposited in the long time provides

an estimate of the underlying FES. As a matter of fact, it has been shown analytically

that VG is an unbiased estimator of the free energy F (S):

lim
t→∞

VG(S, t) = −F (S) + C (2.11)

where C is an irrelevant additive constant.

Two main drawbacks, however, are connected to metadynamics:

1. VG does not converge to the free energy, but oscillates around it. This fact has
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two consequences: a) the bias potential overfills the underlying FES and pushes the

system to visit high-energy regions of the phase space; b) it is difficult to decide

when to stop a simulation. In this regard, if metadynamics is used to find the closest

saddle point to a given local minimum, it should be stopped as soon as the system

exits from that minimum. Otherwise, if one is interested in reconstructing a FES,

metadynamics should be stopped when the motion of the CVs becomes diffusive in

the region of interest;

2. the CVs must be chosen a priori and this choice is often far from trivial. In section

2.4 I describe the criteria that define a good set of CVs, the most important being

that all the slow modes of the system must be included. Unfortunately, while it is

quite easy to realize a posteriori that a set of CVs is bad, it is hard to identify the

proper set of CVs prior to the simulation.

Before discussing the choice of the CVs I describe how well-tempered metadynamics, can

help in solving the first drawback of metadynamics.

2.3 Well-tempered metadynamics

In well-tempered metadynamics[4] the initial deposition rate ω0 decreases with the bias

accumulated over time. This is achieved by rescaling the Gaussian height W according to:

W = ω0τGe
−VG(S,t)

kB∆T (2.12)

where τG is the Gaussian deposition stride, ∆T a temperature and VG(S, t) is the bias

potential accumulated in S over time t. At variance with standard metadynamics, the bias

potential does not fully compensate the FES, but it converges to:

VG(S, t→∞) = − ∆T
∆T + T

F (S) (2.13)

where T is the temperature of the system. In other words, at convergence the CVs are

sampled at a (fictitious) higher temperature T + ∆T :

P (S, t→∞) ∝ e−
F (S)

kB(T +∆T ) (2.14)
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Well-tempered metadynamics solves two of the major problems of standard metadynamics.

The first one is the lack of convergence. In standard metadynamics the bias is continuously

added to the system, also after compensating the underlying FES. This causes the metady-

namics estimate of the free energy to oscillate around the correct value. In well-tempered

metadynamics the amount of bias added decreases in time, its variation going to zero as

1/t while VG converges to a fraction of the FES (Eq. 2.13). The second problem, strictly

related to the first one, is overfilling. In well-tempered metadynamics, the exploration can

be restricted to low free-energy regions by properly tuning ∆T . In particular, standard

MD is recovered for ∆T → 0, traditional metadynamics for ∆T →∞. This possibility of

regulating the extent of exploration is particularly useful for saving computational time

in case a large number of CVs is used.

2.4 The collective variables

Metadynamics permits an efficient calculation of F (S) once an appropriate set of S has

been chosen. A crucial question is how to choose the S. A collective variable is a function

of the microscopic coordinates of the system on which the bias potential of metadynamics

acts[38]. Ideally the CVs should satisfy three properties:

• They should distinguish among the initial, the final states and all the relevant in-

termediates: in fact if they cannot discriminate between the configurations of the

reactants, of the transition state, of the products, and of the relevant intermediates,

they are not appropriate for studying a particular reaction.

• They should include all the slow events that are relevant to the process under in-

vestigation: this prerequisite is essential. We define as “slow” those variables that

present, at a given temperature, free-energy barriers so high that cannot be easily

overcome in the time scale of our simulation. We call fast” those variables that can

be satisfactorily sampled. If any of the slow variables is not added to the CVs list,

the bias potential may not converge to the FES in a reasonable simulation time. Let
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us consider an example and examine the two-dimensional Z-shaped potential of Fig.

2.2.

Figure 2.2: The effect of neglecting a relevant degree of freedom. Left side: 2D Z-shaped

potential. Right side: the trajectory of a metadynamics simulation generated using only

cv1 as collective variable. Transitions from A to B are not properly described by cv1,

causing strong hysteresis in the reconstructed free energy. The figure is taken from Ref.[38].

The transition between the two metastable states A and B presents high free-energy

barriers in both cv1 and cv2. We shall start from basin B and bias only cv1. When

metadynamics fills the basin, the system remains stuck there, as it faces a high barrier

also in the hidden variable cv2. As a result, basin B is overfilled and the barrier for

going to A is overestimated. Eventually, cv2 makes the transition and the system

reaches state A. At this point, a similar phenomenon occurs again. The overall result

is that the situation in which the free energy grows evenly and the system diffuses

from A to B is never reached. A similar behavior is often observed in real cases

and is a strong indication that an important CV is missing. The usual warning is

a characteristic hysteretic behavior in which, once the system has moved from one

basin to the other, it has difficulty in coming back to the initial metastable state. A

deeply observation of the system under investigation will show which are the slow

variables not included in the CVs. This will allow not only a proper reconstruction

of the F (S) but, more important, a fully understanding of the underlying physics

will be gained.
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• They should be limited in number, otherwise it will take a very long time to fill

the free energy surface. Of course, the number of CVs should be kept small. Al-

though with well-tempered metadynamics this problem should be alleviated, the use

of many CVs implies that a high-dimensional space has to be explored. This may

take a considerable amount of computational time, with the additional risk that the

resulting FES may not be as readily comprehensible as a low-dimensional one.

In order to alleviate these limitations of metadynamics, two methods that can help in a

multitude of situations, have been developed in the last recent years:

1. the Path Collective Variables (PCV) are a set of flexible descriptor that represent a

configuration in terms of a progress along a reference path connecting two state A

and B, and a distance from it. These collective variables are very useful in case of

multidimensional problem;

2. the combination of Parallel Tempering and Metadynamics (PTMETA) has been

developed for those case in which some slow modes of the system have not been

included in the set of CVs.

2.5 Path collective variables

Consider a transition between the stable or metastable state A and B. Assume that this

transition can be described by a set of collective variables S(R) which are in general a

multidimensional vectorial functions of the microscopic variables R. Contrary to meta-

dynamics, the dimension of the vector S is not restricted to a small number but can be

arbitrarily large. If the choice of S is appropriate, we would expect the reactive trajectories

to be bundled in a narrow tube around a path, which we can write in parametric form as

S for 0 ≤ t ≤ 1 with S(0) = S(A) and S(1) = S(B). We are interested in the minimum

free energy path connecting state A and B on the free-energy F (S) defined as in Eq.2.5:

F (S) = − 1
β

ln〈δ(S − S(R))〉 (2.15)
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where the average is taken over the Boltzmann distribution. In order to trace this path,

Branduardi et al.[39] have introduced two variables:

s(R) = lim
λ→∞

∫ 1
0 te

−λ‖S(R)−S(t)‖2dt∫ 1
0 e
−λ‖S(R)−S(t)‖2dt

(2.16)

z(R) = lim
λ→∞

1
λ

ln
∫ 1

0
e−λ‖S(R)−S(t)‖2dt (2.17)

where ‖ . . . ‖ is the metric that defines the distance between two configurations. For any

microscopic configuration R, s(R) and z(R) measure its intercept and distance from

the path S(t) respectively. In practical applications we describe the path with a discrete

number of frames S(l), l = 1, P with S(1) = SA and S(P ) = SB. The integrals in

equations 2.16 and 2.17 are approximated by the finite sums:

s(R) = 1
P − 1

∑P
i=1(l − 1)e−λ‖S(R)−S(t)‖2∑P

i=1 e
−λ‖S(R)−S(t)‖2

(2.18)

z(R) = − 1
λ

ln(
P∑
i=1

e−λ‖S(R)−S(t)‖2) (2.19)

As shown in Fig. 2.3, the coordinate s(R) measures progress along the reactive coor-

dinate, while z(R) is its distance from the path.

The set of these two coordinates can be used as a two-dimensional collective variable,

and using for instance well-tempered metadynamics or any other free energy method we

can reconstruct F (s, z), which is the free energy surface as a function of s and z. Care

must be taken that S(l) are equally spaced relative to the metric used and that there is

sufficient overlap between the clusters defined by the reference frames.

A distinguishing feature of this method is its non-local character. When used together

with metadynamics, PCV are able to find transition paths that are rather different from

the guessed one. This is achieved by exploring the free energy dependence on z(R), which

is the variable that measures the distance from the reference path. In Ref.[39] the authors

have shown that F (s, z), with a good guess of S(t), offers precious information on the
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Figure 2.3: Left side: Representation of s(R) and z(R) isolines in a simple case potential.

The s(R) variable traces the closest point on the path. Right Side: the z(R) variable

measures the distance from the reference path.

possible reaction paths. Furthermore, an efficient procedure was proposed to improve the

initially guessed path until it lies on a minimum free-energy line that connects A with B

on the FES. In the following we will call this procedure optimization of the path.

From the description of PCV emerges clearly the benefit of these type of CVs:

1. While F (s, z) is two-dimensional, the underlying space of the S can have very large

dimensionality, thus removing the curse of dimensionality.

2. The F (s, z) carries a large amount of relevant information: without any other analy-

sis, much can be learned about the low free energy paths that join A to B by simply

inspecting F (s, z). We can immediately judge whether or not the initial path is good

guess. In fact in the low z region, which is the closest to the path, F (s, z) must be

small because we expect the lowest free energy path F (s, z = 0) to be a line of local

minima.

3. Any other low energy path will reveal itself as a low energy valley in F (s, z) and can

be identified and analyzed.

4. Furthermore, by exploring the high z region of the (s, z) plane we can move away

from the initial guess and discover qualitatively new transition pathways, which can

be used as new guesses and similarly optimized.
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The metric

The distance square ‖...‖2 in equations 2.16 and 2.17 can be defined in different spaces. A

possible simple metric is the Root Mean Square Displacement (RMSD) between the two

structures after they are optimally aligned. Different choices are also possible, as e.g. the

contact map (CMAP) matrix[40]. In this case S(R) is given by the j > i elements of the

contact map matrix (C(R)) defined as:

C(Ri,j) =
1− ( ri,j

r0
)p

1− ( ri,j

r0
)q

(2.20)

where ri,j is the distance between the ith and jth couple of atoms within the protein.

Proper values of of p, q, r0 are to be set. This definition of contact map is different from

the one commonly used in literature[41], which is discrete and where r0 is intended as

a sharp cutoff. Here we need to define a contact in terms of a differentiable function

with continuous derivative as metadynamics requires smooth forces in the full range of

distances. The distance square ‖...‖2 between a generic state R and a point along the path

described by the CMAP SC(l) is measured as:

‖SC(R)− SC(l)‖2 =
∑
j>i

(Ci,j(R)−Ci,j(l))2 (2.21)

where the nearest neighbors are excluded from the sum.

The use of these different metrics will be seen in practical studies in Chapter 4 and 5

where the inactivation mechanism for two kinases will be described.

2.6 Parallel tempering metadynamics

In order to overcome metadynamics drawback about the difficult way of choosing the

proper CVs, in 2006 it has been introduced the combination of metadynamics with paral-

lel tempering[42]. The combined method, called PTMETA, is particularly helpful in those

cases in which some slow modes of the system have not been included in the set of CVs. In

parallel tempering (PT), multiple copies of the same system are simulated independently

and at different temperatures. At fixed intervals, an exchange of configurations between
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two adjacent replicas is attempted on the basis of a Metropolis acceptance criterion. By

exchanging with higher temperatures, colder replicas are prevented from being trapped in

local minima. Let us consider M independent replicas of the system at different tempera-

tures T1, ..., TM . The configurations R of the ith replica are distributed according to the

Boltzmann distribution at temperature Ti:

Pi(R) = 1
Zi
e−βiU(R) (2.22)

where βi = 1/(kBTi), U(R) is the potential energy function and Zi the partition function:

Zi =
∫
dRe−βiU(R) (2.23)

The probability distribution of the extended system of M non-interacting replicas is de-

fined as:

P (R1, β1; ...; RM , βM ) =
M∏
i

Pi(Ri). (2.24)

We indicate with p(j → k) the probability that a configuration Rj of the jth replica

is exchanged with a configuration Rk of the kth replica. Following this notation, the

probability of the inverse process is p(k ← j). In order for the extended system to be

at equilibrium, i.e. to sample the distribution of Eq. 2.24, the detailed balance condition

must be satisfied:

P (...; Rj , βj ; ...; Rk, βk; ...)p(j → k) =

P (...; Rk, βj ; ...; Rj , βk; ...)p(j ← k).
(2.25)

If we substitute Eq. 2.24 and 2.22 in Eq. 2.25, we find the following relation for the

acceptance probability:
p(j → k)
p(j ← k) = e∆j,k (2.26)

with:

∆j,k = (βj − βk)(U(Rj)− U(Rk)) (2.27)

The condition in Eq. 2.26 can be satisfied by accepting an exchange between two

configurations with a Metropolis criterion:

p(j → k) = min{1, e∆j,k} (2.28)
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If the move is accepted, the configurations are swapped and the velocities rescaled:

R
′
j = Rk, v

′
j =

√
Tj
Tk

vk,

R
′
k = Rj , v

′
k =

√
Tk
Tj

vj .

(2.29)

In PTMETA, metadynamics is performed by each replica, using the same set of CVs

at the different temperatures. We indicate with V
(i)
G the bias potential acting on the ith

replica. With this addition, the total potential felt by the ith replica becomes:

U(Ri) + V
(i)
G (S(Ri), t), (2.30)

and ∆j,k in the acceptance probability of Eq. 2.28 is modified accordingly:

∆j,k = (βj − βk)(U(Rj)− U(Rk))

+ βj [V (j)
G (S(Rj), t)− V (j)

G (S(Rk), t)]

+ βj [V (k)
G (S(Rk), t)− V (k)

G (S(Rj), t)].

(2.31)

The combination of PT with metadynamics is particularly effective since it compen-

sates the individual flaws of the two methods alone. In PTMETA, each system evolves

independently while filling its own free-energy profile with Gaussians, until an exchange

is attempted. If the move is accepted, the system starts to explore and fill with Gaussians

a new region of the CVs space. As a result of this tunneling, different basins can be filled

simultaneously and the free-energy difference between them can be evaluated in a shorter

time with respect to metadynamics dynamics alone. Metadynamics boosts significantly

the sampling efficiency of PT. PT leads the system to cross moderate free-energy barriers

on all degrees of freedom, while metadynamics allows to overcome higher barriers on a few

selected CVs. The final result is that with PTMETA the effect of neglecting a slow degree

of freedom in the choice of the CVs is less significant. The use of this combined method will

be seen in Chapter 5 where we have used it in order to understand the folding/unfolding

mechanism of β-hairpin.
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Chapter 3

The closure mechanism of Cyclin

dependent kinase 5

3.1 Summary

In this Chapter I report our simulations on the inactivation mechanism of cyclin dependent

kinase 5 by means of metadynamics with path collective variables. Firstly I recall the

general problem of kinase inactivation, then I present the technical details of the performed

simulations, finally the results are described. The atomistic dynamics of the “open-to-

closed” movement of CDK5 has a two-step mechanism: first, the αC-helix rotates by

∼45°, allowing the interaction between Glu51 and Arg149; then the CDK5 activation loop

refolds to assume the closed conformation. The free-energy profile associated with the

global motion has been studied and has led to the identification of a CDK5 intermediate,

which could be exploited for drug-design purposes.

3.2 Introduction

Kinases represent a vast protein family involved in vital cellular pathways and respon-

sible for several biochemical functions[5]. Understanding the conformational dynamics of

kinases[10] may represent a bridge between their structure and function[15]. Indeed, the

27
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activation of many cellular mechanisms requires kinases to undergo large-scale intrinsic

motions, as these proteins can adopt at least two extreme conformations, an “open” state

that is maximally active and a “closed” state that shows minimal activity[10]. Structural

insights into the open and closed states of kinases have been gained from a number of

case studies, where two or more crystal structures of the same protein in different con-

formations were determined by X-ray experiments[15, 43]. However, an understanding of

the energetic profile and the atomistic dynamics of the transition between the open and

closed states is still in its infancy. Moreover, knowledge of the structures of possible inter-

mediate conformations sampled during the transition is still very limited. Therefore, X-ray

data must be complemented with other approaches able to capture the dynamics of large-

scale conformational movements[1]. Recently, conformational transitions have been mea-

sured by NMR relaxation experiments with substrate analogues[44, 45, 46, 47] or during

catalysis[48, 49] as well as by single-molecule FRET measurements[50, 51, 52, 53, 54, 55].

In this scenario, atomistic simulations could greatly contribute to linking flexibility to

function[1, 56, 57, 58]. Although conventional MD studies in explicit water solution can

access only a limited time scale (100 ns), large-scale conformational rearrangements occur

on the microsecond-to-millisecond time scale. Thus several schemes have been developed

to overcome this drawback, most of them based on a coarse-grained representation of the

system[59, 60, 61, 62]. This approach can be very useful; however, obtaining a good coarse-

grained representation can be difficult, and transferability is a major concern. Here, the

use of metadynamics within PCV[39] allow us to investigate kinase plasticity by study-

ing the energetics and dynamics of the intrinsic conformational motions experienced by

CDK5 during the “open-to-closed” transition. Cyclin-dependent kinases (CDKs) are key

players in the machinery that drives the progression and timing of the eukaryotic cell

cycle[63], and malfunctioning of CDKs is the basis of several diseases[64, 65, 66, 67]. To be

fully active, CDKs require binding of homologous protein activators known as cyclins and

phosphorylation of a conserved threonine of the activation loop. Similarly to other kinases,

during the open-to-closed transition, CDKs undergo a large-scale intrinsic rearrangement

that results in the rotation of an α-helix by almost 90°and relocation of the activation
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loop in a movement of 25 Å[68, 69].

CDK5[70] is a member of the CDK protein family, and it does not seem to be involved

in cell-cycle regulation. Moreover, it is selectively activated by p35 or p39, whose expres-

sion is limited to neurons and a few other cell types[71]. As a consequence, CDK5 is

implicated in neuronal development and maintenance of adult neuronal architecture[72],

and its deregulation has been associated with a number of neurodegenerative diseases,

such as Alzheimer’s disease[73], Parkinson’s disease[74], amyotrophic lateral sclerosis[75],

Niemann-Pick type C disease[76], and ischemia[77]. Furthermore, CDK5 does not need the

phosphorylation of the activation loop to be fully active. Actually, in the X-ray structure

of the CDK5/p25 complex[78], the structural requirement for phosphorylation is bypassed

by an extended network of interactions between p25 and the CDK5 activation loop. The

absence of the phosphorylation step renders CDK5 particularly well-suited for investi-

gating kinase large-scale intrinsic motions, and moreover, it represents a very interesting

target for drug discovery.

3.3 Simulation details

3.3.1 Homology modeling

The structures of open CDK5 and the CDK5/p25 complex were obtained from the crystal

structure of CDK5 refined at 2.2 Å resolution in a complex with roscovitine (PDB entry

1UNL[79]) by removing the inhibitor and the activator p25 and replacing Asn144 with an

Asp, in order to have an active protein. The search for a reactive path starts from the

definition of an initial (open) state and a final (closed) state. Since the crystal structure of

CDK5 in the closed state is not available, we built a chimeric structure in which the αC-

helix and T-loop were obtained by homology modeling of CDK5 on the closed structure of

CDK2 (PDB entry 1FIN[80]). These regions show sequence identities (74 and 85% for the

αC-helix and the T-loop, respectively) that are even higher than that related to the entire

protein (60%). The remaining residues were taken from the original structure of CDK5 in

the open conformation (PDB entry 1UNL[79]). The homology model was generated with
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the program Modeller version 7.0[81]. The structures thus obtained were ranked on the

basis of the internal scoring function of Modeller and validated with PROCHECK[82].

According to the PROCHECK analysis, the homology-built CDK5 closed conformation

turned out to be a very high-quality model, with an overall G-factor of 0.04. The Ra-

machandran plot[83] related to this model showed that more than 90% of the residues

were located in the most favored regions.

3.3.2 Molecular dynamics

Preliminary MD simulations of the open state, the closed state as described above, and

the CDK5/p25 complex were carried out using the GROMACS 3.2.1 suite[84] and the

OPLS-AA force field[85]. Water solvation was described by immersion of the open and

closed structures in 13000 TIP3P waters, while for the complex, a larger number (23000)

was necessary. Neutrality was ensured by adding one Cl− to the two isolated proteins and

two Na+ ions to the complex. Periodic boundary conditions and the particle mesh Ewald

method to account for long-range electrostatic interactions were used throughout. Bonds

involving hydrogens were constrained using the SHAKE algorithm[86], and the time step

for all of the simulations was 2 fs. A steepest-descent minimization and thermalization

scheme was applied to all the initial structures. The systems were heated from 0 to 100 K

in 50 ps and to 300 K in 200 ps, keeping the Cα atoms fixed in their original positions. Next,

all constraints were lifted, and the equilibration was continued in the isobaric-isothermal

ensemble with Nose-Hoover thermostats[87] and the Parrinello-Rahman barostat[88] for

1 ns. For the open state and CDK5/p25 complex, after the thermalization scheme we

performed 10 ns of MD on the canonical ensemble. In these simulations, the root-mean-

square deviation (rmsd) of the protein and Cα showed good thermal stability, with a value

of 1.5-2 Å.

3.3.3 Building the guess path

After MD thermalization, the open and closed conformations of CDK5 were submitted to

the Molmov morphing server[89]. Starting from our initial and final structures, we obtained
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five interpolated intermediates. Since the bond lengths are kept fixed to their experimental

values and an energy minimization is employed, the resulting sequence of structures is only

a rough approximation to the reaction coordinate. In Fig. 3.1, the different conformations

of the αC-helix and the T-loop of the five CDK5 intermediate conformers (as output from

Molmov) are shown along with the open and closed states of the enzyme.

Figure 3.1: Different conformations of the αC-helix and the T-loop of five CDK5 in-

termediate conformers between open and closed state obtained by means of Molmov

interpolation

Each of the five morphing conformations was then hydrated and thermalized at 300

K (see above), and the last snapshots were used for generating the initial guess path.

Notably, some morphing conformations were quite stable during the thermalization, while

others showed a rapid increase of the rmsd of the Cα atoms. The seven conformations (the

open state, the closed state, and the five morphing conformers) were used to generate the

guess for subsequent path optimizations and metadynamics-based computations, which

were carried out using the path collective variables s(R) and z(R) described below.

3.3.4 Metadynamics with path collective variables

We used the PCV[39] described in Chapter 2. We defined two variables, s(R) and z(R),

that are able to describe the position of a point in configurational space (R) relative to a

preassigned path. In the present case, the preassigned path coincides with the morphing
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path. The variable s(R) provides the progress of the dynamics along the template path,

while z(R) provides the distance from the template path itself. In the present case, we

used the mean square displacement after optimal alignment for calculating the distance

square ‖...‖2 in Eq. 2.16 and 2.17 in Chapter 2. The choice of the coordinates of atoms

to be included in the description is far from trivial: a wrong choice can lead to a loss of

performance. An in-depth analysis of several trial trajectories in which we used only the Cα

and several N atoms that belong to the αC-helix (30 to 60) and T-loop (145 to 165) showed

that the side chains of Lys33, Arg50, Glu51, Asp144, and Arg149 also must be taken into

account to effectively simulate the overall movement. For the discrete representation to

be meaningful, we chose the nodal points l to be as equidistant as possible and the value

of λ to be comparable to the inverse of the mean square displacement between successive

frames. We then ran a metadynamics[3] simulation to reconstruct the FES as a function of

s and z. We used metadynamics in the direct version[90], as implemented in NAMD[91].

The height of the Gaussians was set to 0.3 kcal/mol and the addition frequency to 1 ps.

The width of the Gaussians was not fixed but was determined by the fluctuations in s

and z measured over a time interval of 2 ps. In order to avoid integration problems with

too-narrow Gaussians, a lower-bound limit of 0.03 in the appropriate unit was set for each

coordinate. We first optimized the path with P = 7 using the procedure described in

ref. [92]. It was clear, however, that this discretization was not sufficient to describe the

transition with the necessary resolution. We thus increased P to 18 by selecting additional

intermediate configurations from among the small-z configurations obtained during the

metadynamics. We chose these configurations such that they were equally spaced with a

distance of 1.31 Å. The 18 frames were used to define a reference path using λ = 1.33 Å−2

in Eq. 2.16 and 2.17. The path was not further improved, but it was sufficiently accurate

for the study of FES(s,z) and provided us with reliable information on the open-to-closed

transition and its associated free-energy profile.
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3.4 Results

The structural organization of CDK5 is reported in Fig. 3.2 and hereafter briefly sum-

marized. CDK5 exhibits the classical bilobal kinase fold, where the N-terminal domain

(N-lobe) is composed mainly of the β-sheet and one α-helix (the αC-helix) (Fig. 3.2a).

Figure 3.2: Three-dimensional structure of CDK5 in the open state. (a) Classical bilobal

structure of kinase: (cyan) the G-loop (aa 11-18); (violet) the αC-helix (44-57); (yellow)

the hinge region between the N- and C-lobes of the protein (81-84); (red) the C-loop

(122-131); (green) the activation segment (144-171). (b) Details of the activation segment:

(orange) the DFG-in conformation, in which the Asp144 is pointing inside the cleft; the

interaction between (yellow) β9 and (red) β6; (green) the T-loop; (cyan) the P+1 loop;

(blue) PPD, the C-terminal part of the activation segment.

The C-lobe is predominantly α-helical and is linked to the N-terminal by a flexible

hinge (81 to 84 aa). Between the lobes there is a deep cleft that natively binds ATP.

The ceiling of the ATP-binding site, named the G-loop (11 to 18 aa), is quite flexible,

being rich in glycines[93]. Two structural elements are involved in the interaction with

the activator[78] (p25) and in the catalytic function: the αC-helix, whose sequence is

well-conserved in the CDK family, and the activation loop (T-loop), which binds the two
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terminal lobes (145 to 165 aa). The latter belongs to the activation segment, which is

shown in detail in Fig. 3.2b. This is a structurally well-characterized portion of kinases

that begins with the conserved DFG tripeptide (144-146 following the CDK5 numbering)

and comprises the magnesium-binding loop (143-148), β9 (149-150), the activation loop

(T-loop in CDKs) (151-160), and the P+1 loop (161-169), ending with a second conserved

tripeptide motif (APE in general but PPD in CDK5 (170-172)). In the C-lobe there is also

another fundamental loop, called the catalytic loop (C-loop, Fig.3.2a), that is involved in

the reaction catalysis (122-131 aa).

3.4.1 Closure movement of CDK5: a two-step mechanism

In a preliminary calculation, we assessed the effect of p25 on the stability of the open

form of CDK5. In Fig. 3.3, the rmsd during a 10 ns MD simulation is reported for the

CDK5/p25 complex (Fig. 3.3 A) and for CDK5 alone (Fig. 3.3 B).

Figure 3.3: RMSD calculated on all the Cα of CDK5 (red plot line) and on the Cα of

the αC-helix and the T-loop (residues 35-55 and 145-165, blue plot line). A: CDK5/p25

complex. B: CDK5 alone.

It can be seen that CDK5 in the complex with its activator p25 (Fig. 3.3 A) is more

rigid than CDK5 alone (Fig. 3.3 B) and that most of the flexibility of uncomplexed CDK5

comes from the αC-helix and the T-loop (blue trace in Fig. 3.3 B). The stabilizing effect

of the activator suggests that its role is to favor the open structure. This conclusion is

strengthened by the observed dependence on activator concentration[94]. We simulated

the closure process in the absence of the activator, which is a necessary step toward a
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full understanding of the enzyme functioning. To determine the closing path (see Simula-

tion details), we used metadynamics together with the method of Branduardi et al.[39].

Although the initial guess path was constructed using a standard bioinformatics tool[89],

the final optimized path was very different from the initial guessed one.

Our simulations show that the process takes place in two steps: in the first step, the αC-

helix rotates by 45°(Fig. 3.4 A, B), and in the second step, the T-loop closes the catalytic

cleft and the αC-helix completes its rotation (Fig. 3.4 C, D). The first event leading to

the rotation of the αC-helix is the breaking of the salt bridge between Lys33 and Glu51,

which plays a key role in the kinase activation mechanism[95] (Fig. 3.4 A, B). The role of

this salt bridge is to anchor the αC-helix in its open position. Solvation and the formation

of a new salt bridge with Arg149, which is part of the activation segment, enable a partial

rotation of the αC-helix. In the open conformation, Lys33 and Glu51 interact strongly and

are assisted in stabilizing the αC-helix at its position by the close proximity of Asp144.

The breaking of this bond takes place in a concerted fashion. Arg149 approaches Glu51,

thus weakening the Lys33-Glu51 bond; this leads to a bond switch between Lys33-Glu51

and Lys33-Asp144. The end result is that the Lys33-Glu51 bond is disrupted and a new

salt bridge, Glu51-Arg149, is formed, allowing the partial rotation of the αC-helix. The

DFG motif did not experience any in-out conformational movement, as observed in the

crystal structures of CDK2 and CDK7 but at variance with CDK6, which can adopt a

DFG-out conformation when it is bound to the inhibitor Ink4[14]. In the second step,

the αC-helix completes its rotation while the T-loop refolds to assume the final closed

conformation. During the entire process, Arg149 and Glu51 remain bound (Fig. 3.4 C,D).

Also in this second stage, Arg149 plays a major role by helping the T-loop to rearrange and

maintain a connection between the C- and N-lobes. The mechanism that we have found

by optimizing the path is closely related to one of the possible mechanisms described in

ref [60] for the homologous Src kinase. In that paper, the authors used coarse-grained

molecular representations and found that the closed-to-open transition can occur in two

possible ways. The first pathway is similar to what we found in CDK5 and implies the

opening of the activation loop followed by rotation of the αC-helix. Also, the switching of
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Figure 3.4: Different conformations assumed by CDK5 in going from the open state

to the closed state: (upper panel) schematic illustration of the transition; (lower panel)

corresponding cartoons of CDK5. From A to D, the figures show the progressive disruption

of the Glu51-Lys33 interaction, the formation of the salt bridge between Arg149 and

Glu51, the rotation of the αC-helix (pink), and the movement of the T-loop (green).
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an electrostatic network, in particular between the highly conserved residues K295-E310

and E310-R409, plays a fundamental role in their case, as previously noted in ref [96] and

recently confirmed in ref [97]. On the contrary, we did not find evidence for the partial

unfolding mechanism described in ref [60]. An added bonus of our atomically detailed

pathway is that it shows the importance of hydration/dehydration of key residues during

the restructuring of T-loop (Fig. 3.5).

Figure 3.5: A: Water coordination of T-loop as a function of s and z. B: The water

coordination was calculated on the oxygen atom of the residues 10-20, 30-55, 120-125,

166-181 (shown in pink in B),145-165 (shown in green in B).

Initially, the loop is relatively dehydrated. Halfway through the transition, the T-loop

hydration reaches its maximum, being exposed to the solvent. At the end, water molecules

must be expelled from the cavity, and T-loop hydration is reduced. After closure, not only

have the αC-helix and T-loop moved, but also the G-loop is displaced, making ATP binding

impossible[95]. In the open structure, the initial segment of the T-loop forms a β-sheet

motif (β9), while in the final closed structure, it is disrupted and refolds into a coil. This

is at variance with the result of the homology modeling, which predicted the formation

of an α-helix, but consistent with several experiments on different members of the kinase

family, which failed to resolve this structural element[98, 99] in the closed state.
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3.5 Free-energy surface and metastable intermediate state

The use of metadynamics with the PCV also permits the reconstruction of the FES along

the optimized reaction coordinate. In Fig. 3.6, the bidimensional FES for the open-to-

closed switching movement of CDK5 is reported.

Figure 3.6: Free-energy surface reconstructed as a function of s and z. The energy

separation between contours is 2 kcal/mol. The numbers 1-4 correspond to the states

described in Fig. 3.4.

The FES, obtained from a 150 ns metadynamics simulation, was reconstructed as a

function of the progression along the path (s) and the distance from the path itself (z).

The projection of the FES on the s and z variables is an unusual one and probably requires

a more detailed description. The z variable describes the distance from the path in the MD

simulation. This has important consequences, as some energy basins that seem to be far

away from the pathway are not “distinct” structures/mechanisms but indicate substantial

entropic contributions to those basins. This is evident in the proximity of the closed state

and is due to the intrinsic fluctuations of the activation loop. This observation is also

in agreement with the findings of ref [60] that describe a very flexible activation loop

in the case of the Src kinase. Additional simulations in which the overall movement was
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split into two subpaths were performed, and they quantitatively confirmed the FES and

mechanism obtained. As expected, the open and closed states (A and D, respectively, in

Fig. 3.4) correspond to two deep free-energy basins. The closed state was 4-6 kcal/mol

lower in free energy than the open one, so in the absence of an activator, the protein

remains closed. The activation barrier is predicted to be 16-20 kcal/mol. This high value

was confirmed by repeated metadynamics simulations both with path-like variables and

with a different set of CVs. In order to check these results and also to confirm the FES

obtained and the mechanism, we studied the two steps of the closure movement, into two

separate simulations splitting the overall movement into two sub-paths. The first sub-path

corresponds to the transition from the open state to the intermediate B of Fig. 3.4, the

second sub-path is related to the movement from intermediate B of Fig. 3.4 to the closed

state. The first sub-path, in which the main event is the disruption of the Lys33 and

Glu51 salt bridge and the formation of the Glu51 and Arg149 interaction, was studied

by means of two independent metadynamics runs: in the first one, we used two distances

(Lys33-Glu51 and Glu51-Arg149) as CV, in the second the path collective variable (only

s and z restrained to a value around zero) and the water coordination number for two

residues (Arg50 and Glu51). The water coordination number was calculated by means of

the “coordination number” of all oxygen of the water and oxygen of Arg50 and Glu51:

C =
∑
i∈W

∑
j∈P

1−
( rij

r0
)8

1−
( rij

r0
)14 . (3.1)

where W is the index of water molecules, P represents the aminoacids Glu51 and Arg50,

rij is the distance between oxygen atoms i of the water and j of the protein, r0 = 5.5 Å is a

parameter that takes into account their typical distance. The two independent simulations

agree on a difference of about 5 kcal/mol between the open and the metastable state B.

The second sub-path describes the final part of the transition: in order to simulate it

we first extracted a path from previous trajectories, optimized it by means of the PCV

method, and used it as a path for the metadynamics simulations. The extracted frames

were 28; after optimization, we used them for metadynamics simulation with λ = 5.86

Å−2.
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Figure 3.7: A: free energy profile as a function of Lys33-Glu51 and Glu51-Arg149

distances (the isoline separation is 1.0 kcal/mol). b: free-energy profile as a function of s

and water’s coordination of Arg50 and Glu51 (the isoline separation is 1.0 kcal/mol). c:

free energy profile as a function of s and z of the subpath (the isoline separation is 1.0

kcal/mol).
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The free energy landscape for the latter sub-path is reported in Fig. 3.7. As in the

previous FES, also this free energy is largely in agreement with that of Fig. 3.6.

Although we cannot rule out an error due to the force field or the existence of different

pathways, the similarity of the path found here to that previously described for the homol-

ogous Src kinase, in addition to biological considerations, makes us believe that the high

barrier is indeed physical. This result is consistent with a mechanism in which p25, p35,

and p39 have a fundamental catalytic role in the activation process, in agreement with

previous suggestions[94, 100, 101]. We report in 3.4 the conformations corresponding to

the minima observed in the FES that are most relevant in the transition from the open to

the closed state (labeled as points 1, 2, 3, and 4 in Fig. 3.6). The main geometric features

of these conformations are reported in Table 3.1.

Table 3.1: Distances (Å) between the main residues involved in the transition from the

open state to the closed state

open state intermediate state closed state

Phe145–Leu54 5.34 9.40 13.59

Phe151–Asn121 1.95 9.39 11.73

Arg149–Leu123(CO-HN) 2.10 6.69 8.36

Arg149–Leu123(NH-OC) 2.34 5.53 6.61

Lys33–Asp144 3.39 3.46 5.28

Lys33–Glu51 3.21 14.80 16.11

Glu51–Arg149 15.32 3.86 3.95

Glu51–Arg50 11.34 9.05 6.05

Thr164–Asp126(HRD) 3.76 4.52 1.82

The deepest intermediate minimum (point 3 in Fig. 3.6) is a metastable state whose

dynamical relevance was checked in an unconstrained MD run of 10 ns. During this time,

the intermediate state did not exhibit any significant rearrangement. This intermediate

shows structural features that differ from those of the open and closed states. The αC-

helix is rotated by 90°, and while the Lys33-Arg149 salt bridge is formed as in the closed
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state, the T-loop is in an open conformation with the β9 sheet already refolded in a coil

structure. In the Src and Hck kinases[102, 103], an intermediate has been crystallized in

which the αC-helix is also rotated by 90°, but the structure otherwise differs from ours.

In particular, in the Src and Hck intermediates, Glu310 in the αC-helix interacts with

Arg385 and not Arg409, which corresponds to Arg149 in CDK5. If the existence of such

an intermediate were to be confirmed, it appears that enough elements of diversity exist

between the intermediate and the open state of CDK5 for new drugs that target the

intermediate to be designed. The existence of an intermediate state proved to be crucial

in the case of Bcr-Abl tyrosine kinase[15, 104], for which it has been shown that the

anticancer drug imatinib selectively binds to the intermediate.

3.6 Conclusions

The intrinsic motions of CDK5 have been investigated here by means of atomistic simula-

tions. In 150 ns of metadynamics, we have sampled the CDK5 conformational rearrange-

ment underlying the transition between its open and closed states. This process turned

out to be rather complex, and it takes place into two steps. First, the salt bridge between

Lys33 and Glu51 is broken, leading to 45° rotation of the αC-helix and the formation of a

salt bridge between Glu51 and Arg149. Second, a highly concerted motion of the αC-helix

and the T-loop leads to the closed conformation, with the αC-helix rotated by 90° and

Arg149 and Glu51 form a salt bridge and are exposed to the solvent. During this step, we

could detect a complete refold of the T-loop leading to the CDK5 closed conformation.

In addition, we discovered the key role of Arg149 during the transition, as it works as a

linker between the N- and C-lobes, allowing a concerted movement of the two domains.

The free energy of the process was accurately estimated, pointing to the closed state

being more stable than the open one by 4-6 kcal/mol. Furthermore, a previously undis-

closed CDK5 low-energy intermediate conformation was identified and its stability as-

sessed. A similar intermediate conformation was previously crystallized in two related

protein kinases, Src and Hck[102, 103], giving support to our finding. This result, together
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with the similarity of the pathway found here to that described in the homologous Src

kinase[60, 96, 97], gives us confidence that even if what we propose is a model, its relevance

might be verified by experiments such as those reported in ref [105]. While understanding

how the dynamics of kinases influences their function is a great challenge for basic science,

the determination of the open-to-closed atomistic path and the associated free-energy pro-

file may provide undisclosed kinase intermediate conformations suitable for addressing the

structure-based design of potent and selective kinase inhibitors.
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Chapter 4

P38 dynamics in free and

ligand-bound form

4.1 Summary

In this chapter I present the study of the inactivation mechanism of p38α MAP kinase. In

this protein a typical conformational change, called “DFG” flip characterizes the movement

of three well conserved aminoacids at the beginning of the activation loop. During this

movement the Aspartate moves away from the ATP binding site, and its position is taken

by the neighboring Phenilalanine. This transition allows the creation of an additional

binding site that can be targeted by some selective inhibitors.

In this Chapter the DFG-in/out transition for the apo and a ligated forms of the enzyme

has been studied by means of metadynamics simulations. The data coming from X-ray,

NMR and kinetic binding assays are complemented revealing the main molecular features

of the DFG-in/out motion.

4.2 Introduction

P38 kinase plays a fundamental role in regulating the production of pro-inflammatory

cytokines. Thus, blocking this kinase may offer an effective therapy for treating many in-

45
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flammatory diseases[106, 107]. However, despite recent successes in kinase inhibitor drug

discovery, several important challenges are still open. In particular the search for potent

and selective inhibitors and the understanding of kinase drug resistance represent key

issues[7]. Most kinase inhibitors are ATP-competitive molecules, which interacts with the

kinase in a typical conformation called DFG-in, defined as type I inhibitors (see Fig. 4.1).

In this state the regulatory activation loop is open and extended, which allows ATP and

substrates to bind. The DFG motif, at the beginning of the activation loop presents the

Asp side chain oriented towards the ATP binding site. Given the highly conserved nature

of ATP binding site, type I inhibitors present severe selectivity limitations. Thus a modern

strategy to find new kinase inhibitors is trying to identify new chemical entities that bind

to and stabilize the catalitically incompetent “DFG-out” state. This conformation results

from structural changes of the activation loop induced by the flip of the highly conserved

DFG motif. Such movement allows the formation of a less-conserved allosteric binding site

adjacent to ATP binding site. This site can be occupied by different inhibitors, called type

II. These inhibitors also bind through an hydrogen bond to the backbone at the hinge

region occupying in this way the ATP-binding site. Type II inhibitors have been reported

to be more potent and to increase the drug-target residence time, thus improving the ther-

apeutic effect. The pyrazolourea BIRB-796[108], a selective inhibitor of p38, developed by

Boehringer-Ingelheim, and imatinib (Gleevec)[104, 109], an Abl/cKit/PDGFR inhibitor,

are well-known examples of type II inhibitors[110, 111, 112].

Additionally, a number of high affinity inhibitors that bind exclusively to the allosteric

site of p38α are referred to as type III inhibitors. Such compounds also stabilize the DFG-

out conformation, without interacting with the ATP binding site. They are usually studied

as starting leads for the design and synthesis of type II inhibitors. Because these molecules

that bind to this less-conserved site of the protein have good selectivity profiles and im-

proved pharmacological properties, a growing attention is being put in methods that could

describe the movement from DFG-in to DFG-out state or that can discriminate which is

the preferred state a ligand is bound to. To this purpose, p38 kinase has been extensively

studied both experimentally and theoretically. Several structures of various inhibitors in
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Figure 4.1: Type inhibitor I and II inside p38 kinase. In panel A the typical binding

mode for SB-203580, a type I inhibitor, is represented. Panel B shows the interactions

between BIRB-796, a type II inhibitor bound with the protein that assumes a DFG-out

conformation. The hinge region of the protein is in yellow, the green sphere represents

Met109, that interacts with both ligands through an hydrogen bonds, the orange one

shows the position of Thr106 that makes hydrophobic contacts with both the inhibitors.

In red the position of αC-helix with Glu71 is represented. It can be noted that the type

II inhibitors interacts both with the nucleotide binding site and extends into the adjacent

allosteric site.

complex with this protein have been resolved providing useful information on binding

modes and inhibition mechanisms, helping also to rationalize the structure-activity rela-

tionships of many ligands. P38 kinase has been crystallized in both DFG-in and DFG-out

state. However, while up to now the apo form state has been resolved only in the DFG-in

state, the ligated form has been found in the DFG-in and DFG-out states. In the majority

of the deposited structures, the whole loop has never been solved, indicating that this

region is very flexible. Because of the lack of molecular information about the dynamical

activation process of p38 the mechanism of the DFG flip can only be drawn schematically.

Important information in this direction can be obtained by NMR[113] and inhibitor ki-
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Figure 4.2: Chemical structures of a type I, SB-203580, and a type II, BIRB-796

inhibitors. Data for compounds are taken from ref. [113].

netic studies[108]. NMR spectroscopy studies have shown that there is a conformational

equilibrium between DFG-in and DFG-out in p38 which varies in response to the dif-

ferent inhibitor bound. The apo form of the protein has a conformational DFG-in/out

equilibrium that happens at intermediate timescale which can only marginally be resolved

by NMR. However a number of information have been gathered. The binding of type II

inhibitors, like BIRB-796[108], freezes the protein in the DFG-out conformation, while

the addition of the type I inhibitor, like SB-203580[114], does not prevent a DFG-in/out

equilibrium. In line with this NMR experiments, both conformations of the DFG-motif

have been found ligated by this inhibitor which however assumes two different binding

modes in the DFG-in and DFG-out conformation. Like SB-203580 other type I inhibitors

seem to bind the protein either in DFG-in or DFG-out conformation[113, 115]. Indirect

evidences of the DFG-in/out equilibrium come from the analysis of the binding rates of

different ligands. In fact, this kinetic experiments shows that BIRB-796 binds 200-fold

slower than a comparable type I inhibitor[108, 116]. Similar results have been obtained

also by means of other experimental techniques such as fluorescence kinetics assays[115].

Given these data one can hypothesize that the DFG motif in apo p38 is in a slow con-

formational equilibrium between the two states, the presence of type II inhibitors renders

this conformational equilibrium extremely slow, while type I inhibitors interfere with such

equilibrium to a smaller extent.
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From a theoretically point of view, given the long time scale associated with this movement,

simulations of hundreds of ns of standard molecular dynamics do not allow a simulation of

the entire DFG-in/out transition. Different strategies to overcome this hurdle have been

proposed for p38: in ref. [117] the authors uses high temperature molecular dynamics in

order to accelerate the sampling of the transition, in ref. [118] the use of accelerated molec-

ular dynamics has been applied. Another study of the DFG transition has been carried out

on a kinase different from p38 by means of targeted molecular dynamics[15], while, Shan

et al.[119] have sampled the transition in a very long (micro-seconds) molecular dynamics

runs. However they could only observe the transition by induce a key mutation. Although

such studies are really important and provide insights in the DFG-in/out mechanism, they

cannot describe exhaustively the whole dynamical character of the DFG transition and the

free energy profile associated with this movement. Moreover the role of different inhibitors

on such motion has not up to now been reported.

Here we use well-tempered metadynamics simulations to enhance the sampling of the

DFG-in/out transition at atomistic level and to obtain the free energy associated to the

movement. As collective variables we used the path collective variables. In the apo form

the free energy profile associated with this transition confirms the existence of an equilib-

rium between the two states. Moreover an intermediate state in between the ending points

has been found and it will be used for future drug design study. Once a type I inhibitor,

like SB-203580 is bound to the protein it does not interfere too much with the DFG-

in/out equilibrium. From these results the dynamical aspects of DFG-in/out movement

are disclosed and the data obtained here will be of precious help for future experiments

and structure-based drug design.

4.3 Simulation details

4.3.1 Molecular dynamics

The X-ray structure of p38α in the DFG-in state was taken from 1A9U.pdb[114]. The

starting configuration for the apo state was obtained by removing the inhibitor SB-203580,
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while it was retained in the simulation of ligand bound to the protein. In this structure the

protein is completely solved and does not present any mutations, moreover its structural

characteristics are very close to the apo structure of mouse p38α protein (1P38.pdb). For

the DFG-out state, since there is not an apo structure of the protein in the DFG-out state,

we used the coordinates of 1W82.pdb in which the protein is crystallized together with

a type III inhibitor. The three structures, APO-in, APO-out, SB-203580 with DFG-in

conformation were equilibrated with a 5-ns molecular dynamics simulation under NPT

conditions at 1 atm and 300 K, after proper minimization. We used AMBER99SB[120]

force field and NAMD2.7[91] molecular dynamics simulation code. For what concerns the

parametrization of the ligand, its charges were computed using the restrained electrostatic

potential (RESP) fitting procedure[121]. First the ESPs were calculated by means of the

Gaussian package[122] using a 6-31G* basis set at Hartree-Fock level of theory and then the

RESP charges were obtained by a two-stage fitting procedure[123]. All the simulations were

carried out in explicit solvent, using TIP3P water model. Periodic boundary conditions

and the particle mesh Ewald method to account for long-range electrostatic interactions

were used throughout. Bonds involving hydrogens were constrained and the time step for

all of the simulations was 2 fs.

4.3.2 Metadynamics and path collective variables

Building on our previous experience on the closure movement of CDK5 (see Chapter 3), we

used path collective variables in order to describe the DFG-in to DFG-out transition. As

state A we chose the X-ray conformation of the protein in the DFG-in state (1A9U.pdb),

while, for state B, we used the protein in the DFG-out conformation. The transition from

A to B, in this case, involves the rotation of about 180° of the phenylalanine in the DFG

motif and the movement of the aspartate that moves out of the ATP binding site. The

flip of these two amino acids is coupled with the movement of the activation loop. Several

X-ray structures show in fact that also this part of the protein is associated with the

transition from the in to the out DFG state. We described the transition between the

DFG-in to DFG-out state using five frames, S(1)...S(5), with S(1) and S(5) being the
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DFG-in (state A) and the DFG-out (state B), respectively. The three intermediate frames

have been obtained from a linear interpolation between the two ending structures by means

of g morph tool of GROMACS4.0[124]. At variance with CDK5 closure mechanism, here

we used CMAP as a reduced representation of S(R). We have measured the square distance

‖...‖2 of a generic state from a point belonging to the reference path using this formula:

‖SC(R)− SC(l)‖2 =
∑
j>i

(Ci,j(R)−Ci,j(l))2 (4.1)

where the nearest neighbors are excluded from the sum. In this case S(R) is given by the

j > i elements of the contact map matrix (C(R)) defined as:

C(Ri,j) =
1− ( ri,j

r0
)p

1− ( ri,j

r0
)q

(4.2)

where ri,j is the distance between the ith and jth couple of atoms within the protein.

Proper values of of p, q, r0 are to be set. The choice of the contacts to include in the

representation of the transition is crucial because they have to be representative of the

movement under investigation. After several trials, the used contacts are those listed in the

following table (4.1): since the DFG flip involves conformational changes of the activation

loop beyond the DFG motif itself, several contacts within the activation loop have been

introduced in the contact list.

We used the same reference path for both the transitions studied. The λ value was

set to 1.22. We then ran well-tempered metadynamics[4] simulation to reconstruct the

FES as a function of s and z. We ran two independent simulations each of about 200 ns:

one for the apo protein, one for the protein with SB-203580. Well-tempered metadynamics

parameters were the following: the bias factor was set at 25, a Gaussian function was added

every 1 ps with 0.04 and 0.2 width for s and z variables. The initial Gaussian height was

set to 0.3 ∗ T/T0 kcal/mol, where T0 = 300K.
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Table 4.1: Contacts included in the definition of S(R) and Z(R) variables

Contact number Atom i Atom j R0 p q

1 Phe169Cβ Ile84Cα 10.3 40 80

2 Phe169Cβ Leu75Cα 10.5 30 50

3 Phe169Cβ Met78Cα 13.0 20 40

4 Phe169Cβ Ile141Cα 13.0 14 28

5 Phe169Cβ Ile146Cα 13.0 12 26

6 Phe169Cβ Ile147Cα 11.6 8 20

7 Phe169Cβ Met109Cα 15.5 50 90

8 Phe169Cβ Ala157Cα 12.8 30 60

9 Phe169Cβ Ser154Cα 10.6 16 32

10 Phe169Cβ Asp112Cα 14.0 30 44

11 Asp169Cβ Asn155Cα 6.7 30 60

12 Asp169Cβ Ala144Cα 16.0 40 80

13 His148Hε Asp168O 4.8 12 24

14 Asp176O Met179H 3.8 6 12

15 Asp177O Thr180H 2.9 16 40

16 Glu178Cα His174Cα 7.0 26 50

17 Leu168Cβ Ile147Cβ 12.6 6 14

18 Leu168Cβ Ile147Cβ 12.6 6 14

19 Leu168Cα Leu74Cα 12.0 18 40

20 Leu168Cα Ile146Cα 14.0 10 24

21 His174Nε Asp150Cγ 8.9 6 16

22 His174Nε Arg189Cθ 9.1 12 26

23 Arg149Cα Glu170Cα 9.0 8 20

24 Ala172Cα Ile147Cα 14.0 22 50

25 Arg173Cθ Ile146Cα 19.0 26 44

26 Thr175Cα Ile146Cα 18.5 80 99

27 His174Cα Asp150Cα 10.0 40 90
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4.4 Results

4.4.1 DFG-in/out transition in the apo form of p38

The DFG-in/out flip mechanism in p38

P38 kinase shows the classical bilobal tridimensional structure of the kinases. In the DFG-

in conformation the Asp168 points into the ATP-binding site and is bound with a salt

bridge to Lys53. This residue is also in contact with Glu71, being the αC-helix in the

Glu-in position conformation. Phe169 is localized into a hydrophobic cleft making con-

tacts with the hydrophobic side chains of Ile84, Leu74, Val83, Ile146, Ile141. On the other

hand, in the DFG-out state, the DFG motif adopts a completely different conformation

in which the Asp and Phe side chains exchange their positions, the first leaving and the

latter occupying the ATP-binding site. This conformational change can be described by

a rotation of about 180° of these key residues. A careful visual inspection of the atoms

positions of the activation loop in both the DFG states, indicates that the flip might also

involve conformational changes in the rest of the loop. In order to use PCV, after having

defined the initial and the final states, one has to find an initial guess path. To do that

we used g morph, a tool of Gromacs software package[124], that creates, using linear in-

terpolation, intermediate conformations given an initial and a final state. Using this tool,

three interpolated intermediate frames were generated. The obtained frames represent the

reference path for PCV used in the metadynamics simulations. As discussed in the Sim-

ulation details (4.3), the choice of the contacts to be included in the contact map matrix

is far from trivial. After a number of attempts, we found the final setting of the contact

map list which include several contacts that describe the movement of Asparate and Phe-

nilalanine side chain. Moreover, given the high flexibility of the activation loop, we added

other contacts to the list that take into account its movement (see Table 4.1).

In the apo form, starting from the DFG-in conformation we found a “clockwise” rotation

(see Fig. 4.3) mechanism of Asp and Phe around the loop axis of about 180°. The motion

of the two residues is concerted: the Asp side chain passes over the backbone of the DFG

motif, while the Phe moves underneath. The Asp progressively rotates of about 90°, while
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Figure 4.3: DFG-in to out transition in apo form of p38 kinase: snapshots are colored

on a rainbow scale with red and blue indicating the DFG-in and DFG-out conformations

respectively. It can be seen the clockwise rotation of Asp168 respect to the Phe169

Phe stacks under the activation loop being involved in close contacts with Leu171 and

Arg149. Finally, in the DFG-out state also the Phe side chain reaches its final location

interacting with Leu167. The rotation of Asp and Phe induces also a global movement of

the activation loop of about 7Å passing from the DFG-in to DFG-out state. Along the

transition the αC-helix does not experience any important conformational movement such

those observed in other kinases, like Abl or Src[15].

Finally the G-loop, in the N-lobe of the protein, shows a great flexibility along the tran-

sition forming close contacts with the Phe side chain.

The Free Energy Surface and the presence of an Intermediate State

In Fig. 4.4 the free energy surface for the DFG-in/out movement of p38 kinase as a function

of s and z is reported.

This profile has been obtained from 200 ns of metadynamics simulation. The two

collective variables describe the progression along the used path (s) and the distance from

the path itself (z). The presence of several recrossing events during the metadynamics
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Figure 4.4: Upper panel: free energy surface as a function of s and s variables of apo

p38 kinase. Contour lines are plotted every 1 kcal/mol, color legend is in kcal/mol. Lower

panel: conformations of the protein corresponding to minima A, B, C respectively.

simulation and the use of the well-tempered formalism reassure us on the convergence of the

free energy profile. In Fig. 4.4 the three relevant minima (A, B, C) and the corresponding

protein conformations found along the transition have been depicted. The minimum A

corresponds to the DFG-in state, in which the protein assumes a conformation where the

Asp168 points towards the ATP binding site and the Phe169 is localized in an hydrophobic

region. This minimum has a low value of z, indicating that here the protein assumes

a conformation very similar to the crystallized one. On the contrary, the minimum C

corresponds to a DFG-out state and it is at higher value of z. Here in order to better

understand our results a comment is necessary. In fact, while the DFG-in state has been

solved in p38 apo form, there is no structural evidence for the p38 apo DFG-out state.
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Consequently we have used as final state of our path the X-ray structure of p38 in the DFG-

out state complexed with an inhibitor. This can be tolerated since thanks to metadynamics

and the use of PCV the system is able to explore conformations even far from the reference

path by going at high values of z. This is what happened in our case with the minimum

C that represents the most stable conformation of the p38 apo form in the DFG-out

state. Minimum B represents the protein in an intermediate conformational state between

the initial and final state. Here the DFG motif assumes the out state, while the rest of

the activation loop is more similar to the conformation found in the DFG-in state. This

conformation is typically found along the path when the system passes from the DFG-

out to the DFG-in state. The stability of this pose has been assessed by means of tens

ns of standard molecular dynamic simulation in which DFG motif does not exhibits any

significant rearrangement. Interestingly, at this basin the activation loop and above all

the binding site usually targeted by the ligands, have several elements of conformational

diversity if compared to the initial and final states, thus representing a new potential

target for future drug design. A particular comment has to be done for the broad minimum

corresponding to z = 8. This large minimum is far away from the reference path and it

does not correspond to one defined conformation of the protein. Here the activation loop

assumes a large number of conformations which cannot be distinguished. This is due to

its intrinsic fluctuations, confirmed by the numeous X-Ray structures in which this part

of the protein is not resolved. Moreover also the NMR spectra rarely define this part of

the protein[113]. The free energy profile as function of path collective variables shows the

complexity of the process under investigation. A clearer representation of the DFG flip

can be seen in Fig. 4.5 where the free energy profile has been reconstructed by means of

the newly reweighting algorithm[125] as a function of the dihedral angles (φ and ψ) of the

Asp residue. One can easily see that the DFG-in state corresponds to positive value of φ

value, while the DFG-out state is localized at negative value of φ. The difference between

the DFG-in/out states in free energy ∆Fin−out is approximately of -4 kcal/mol in favor of

the DFG-in state. The similar difference in free energy of these two states is in line with

the hypothesize of a conformational equilibrium between the DFG-in and DFG-out, as
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Figure 4.5: Free energy surface as a function of φ and ψ value of Asp for the Apo

form of p38 kinase: the position of DFG-in and DFG-out is highlighted. Contour lines are

plotted every 0.5 kcal/mol, color legend is in kcal/mol.

also suggested by the experiments.

4.4.2 DFG-in/out transition in ligand-bound form

The case of SB-203580

The DFG-flip has been studied also in the case of the protein in complex with SB-203580,

a very well known p38 type I inhibitor. This ligand, as type I inhibitor, binds to the ATP

binding site. It has three rings attached to a central imidazole: the pyridine ring N atom

accepts a hydrogen bond from Met109 backbone in the hinge portion of the protein. The

imidazole ring interacts with Lys53. The fluorophenyl ring occupies a hydrophobic pocket

formed by a β-sheet of the N-terminal domain and αC-helix, it also interacts with the

sidechains of Thr106 and Leu104, Leu75 and Leu86.

The 4-methylsulfinylphenyl moiety forms a stacking interaction with Tyr35. The

methylsulfinyl group is near the activation loop, but makes no direct contacts with the

protein.

The recent data about this ligand has made it an interesting case of ligand able to interact

with both DFG-in and DFG-out states. The X-ray structure (2EWA) of the protein has
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been resolved in both states. However, the whole activation loop beside the DFG motif is

not solved, indicating once again a high flexibility of this part of the protein.

We used the thermalized structure of this complex in the DFG-in state as starting point

for our metadynamics simulations. As reference path we used the same path adopted in the

case of the apo protein. Along the transition mechanism, going from DFG-in to DFG-out

state, the pyridine ring maintains its interaction with the Met109 and the fluorophenyl

ring remains in its position, while the rest of the ligand fluctuates up and down as the pro-

tein goes from DFG-in to out state. The movement of the ligand follows the DFG-in/out

transition, in fact as the Phe inserts into the ATP binding site, the ligand moves closer to

the G-loop, interacting with Tyr35.

In fig. 4.6 the FES as function of s and z variables is shown. The DFG-in conformation

Figure 4.6: Free energy surface for P38 in complex with SB-203580 as a function of s

and z variables. Contour lines are plotted every 1 kcal/mol, color legend is in kcal/mol.

corresponds to the first minimum, highlighted by number 1, while the DFG-out corre-

sponds to minimum number 2. Given the high complexity of the FES as function of s and

z variables, we report here the reconstructed FES as function of φ and ψ Asp168 dihedral

angles. The reduction of the dimensionality of the FES representation is necessary because

of the high intrinsic flexibility of the activation segment and it helps in highlighting the

DFG transition in FES profile. Looking at Fig.4.7 we can easily see the existence of an
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equilibrium between the two ending structures. In Fig. 4.8 the structure of the protein in

the two main minima is reported.

Figure 4.7: Free energy surface as a function of φ and ψ value of Asp in the case of

protein complexed with SB-203580. Contour lines are plotted every 0.5 kcal/mol, color

legend is in kcal/mol.

Figure 4.8: Representative structures of DFG-in and DFG-out conformations of the

protein bound to the ligand found in the two main minima

Metadynamics has allowed the sampling of the whole process, and the found DFG-out

state resembles that reported in the X-Ray structure. It is worthy nothing that the DFG-

out state is stabilized by a π interaction between the phenyl ring of the ligand and aromatic

residues such as Phe169 and Tyr35. Although experimental data shows the presence of an
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equilibrium between DFG-in and DFG-out state, from our metadynamics calculation the

existence of such equilibrium is confirmed, however it emerges that the DFG-in state is

energetically more stable than the DFG-out conformation.

4.5 Conclusions

The use of enhanced sampling method has allowed us to describe at atomistic level the

DFG-in to DFG-out transition in p38 kinase. This transition is important from a phar-

maceutical point of view because this motion allows the creation of an additional binding

pocket that can be targeted by many kinase inhibitors. In case of apo protein we have

found an equilibrium between the two states. Experimental data have shown the presence

of a similar equilibrium between DFG-in and DFG-out state also in the case of the protein

bound to SB-203580, our metadynamics calculations confirm the existence of such equi-

librium although it emerges that the DFG-in state is energetically more stable then the

DFG-out conformation. The results obtained for this ligand make us optimistic about the

possibility to study the transition also in the case of protein bound to BIRB-796. It will

be interesting to understand the role of such ligand in this transition and to clarify the

atomistic features of type II inhibitors along the DFG-in/out flip.



Chapter 5

Urea induced protein denaturation

5.1 Summary

In this chapter I present the study of folding/unfolding equilibrium for β-hairpin GB1

protein in both pure water and 8M urea solution. The chapter is organized as follows:

firstly a brief introduction of the problem under investigation is given, then the technical

details of the simulations are explained, finally the results are discussed. The use of par-

allel tempering together with metadynamics allowed us to characterize the nature of the

unfolded state in the two solutions and to study the mechanism of action of urea.

5.2 Introduction

Among protein denaturants, urea is one of the most commonly used. In the last years a

considerable progress has been made in understanding the molecular mechanism of urea

induced protein denaturation through molecular dynamics simulations and experiments.

Two mechanisms (see also the Introduction chapter) have been proposed based on a large

number of experimental and theoretical studies. The indirect mechanism presumes that

urea promotes ready solvation of hydrophobic groups by altering the water structure. The

direct mechanism hypothesis suggests that urea unfolds protein through direct hydrogen

bonding with the protein backbone, through electrostatic interactions with polar residues,

61
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or through van der Waals attraction with the residues that sits at the protein surface.

Different molecular dynamics studies have led to different views. The main reason for

these different views arises from the fact that only partial unfolding events, starting from

the native structures, have been reported even at elevated temperature. These limitations

suggest that a more accurate sampling is needed to obtain a clear picture of the unfolding

process and a deeper understanding of urea mechanism of action. Only recently, Canchi et

al.[36] have used enhanced sampling technique in order to study the the folding/unfolding

equilibrium of Trp-cage protein in the presence of urea. These authors used all-atom replica

exchange molecular dynamics simulation and they captured the experimentally observed

linear dependence of unfolding free energy on urea concentration.

Here we used the combination of metadynamics with parallel tempering in order to study

at equilibrium the mechanism of action of urea in the folding/unfolding process of β-hairpin

protein. Bussi and al.[42] have introduced for the first time the use of metadynamics to-

gether with parallel tempering technique. The use of these two methods allow to improve

the capability of both methods: metadynamics improves the capability of parallel temper-

ing to explore low probability regions, leading to a more reliable estimate of the height of

the relevant free-energy barriers. On the other hand PT allows sampling of the degrees of

freedom not explicitly included in the CVs, thus improving metadynamics accuracy. To

understand in depth the nature of urea-protein interactions a newly developed reweighting

algorithm that allows to recover the unbiased probability distribution of any variable from

a well-tempered metadynamics simulation have been used[125].

We computed the free energy difference between the native and the unfolded states, both

for the 8M solution and the pure water one. As expected, in urea solution the U⇀↽N

equilibrium is shifted toward the unfolded state and it has more elongated conformations

compared to what seen in pure water. For what concern the urea denaturation mechanism

a preferential direct interaction between urea molecules and protein backbone has been

observed. In particular, we have seen that at intermediate values of the radius of gyration

there is a significant interaction through hydrogen bonds between backbone and urea as

compared to water. While at higher value of radius of gyration the protein, urea and water
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solvate all the other part of the protein.

5.3 Simulations details

5.3.1 Systems setup

Following the work of Bussi et al.[42], we used PTMETA to study the folding/unfolding

equilibrium of β-hairpin protein in water and 8M urea. From now on we shall name water

solution as WS and 8M urea one as US. The protein coordinates were obtained from the

C-terminus (residues 41-56) of protein G (1G1B.pdb), the amino termini were capped: the

N-terminal residue with acetil group (ACE) while the C-terminal residue with N-methyl

amide capping group (NME). The protein was put in a rhombic dodecahedron box of ∼ 84

nm3 volume in both the systems: in the WS 1834 water molecules were added while in US

urea system we used 266 urea molecules and 1196 water molecules. Three Na+ were also

added to ensure charge neutrality in both systems. All simulations were performed using

the GROMACS4 MD code[124] and the PLUMED[126] plugin with the Amber99SB force

field[120] for the protein, the flexible version of OPLS-AA urea model for urea[127, 128]

and TIP3P model for water. A preliminary minimization and NPT simulation for 2 ns

at 300 K and 1 atm was performed on both systems. A time step of 2 fs was used. All

covalent bonds were constrained to their equilibrium value using the Lincs algorithm[129].

The electrostatic interactions were calculated by the particle mesh Ewalds algorithm and

the Lennard-Jones interactions with a cut-off of 0.9 nm was used.

5.3.2 PTMETA and the reweighting procedure

In the PTMETA technique multiple metadynamics simulations of the same system are

performed in parallel. Each replica is simulated at different temperature and metadynam-

ics bias is constructed on the same CVs. At fixed intervals, an exchange of configurations

between two adjacent replicas is attempted on the basis of a Metropolis acceptance cri-

terion. The exchange probability satisfies the detailed balance condition. By exchanging

with higher temperatures, colder replicas are prevented from being trapped in local min-
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ima. In this way the free-energy profile is filled in parallel at all temperatures.

Here we used 64 replicas of both systems in the temperature range 270-695 K. All repli-

cas were simulated in NVT ensemble using a stochastic thermostat[130] with a coupling

time of 0.1 ps. Exchanges were attempted every 0.1 ps. The resulting average acceptance

probability was about 0.3 for all the replicas. Given the good results of Bussi et al.[42],

we used the same CVs of their work. The first CV is the radius of gyration calculated on

the hydrophobic core (Rcore). This is composed by four aminoacids : Trp 43, Tyr 45, Phe

52 and Val 54. This collective variable is calculated using this formula:

Rcore =
(∑n

i |ri − rcom|2∑n
i mi

)1/2

(5.1)

where the sums are over the n atoms and the center of mass is defined by:

rcom =
∑n
i rimi∑n
i mi

(5.2)

Gyration radius is a common descriptor in protein folding studies because is able to

discriminate between a completely unfolded protein and a molten globule state, where

the protein is compact but disordered. In order to distinguish between molten globule

and folded state we used as second CV the number of intra-molecular hydrogen bonds in

the backbone. The number of backbone hydrogen bonds is evaluated using the switching

function:

Hback =
∑
ij

1−
(
dij

r0

)n
1−

(
dij

r0

)m . (5.3)

Where r0 is set to 2.5 Å, n and m to 6 and 12 respectively. i and j are the hydrogens and

oxygens backbone atoms used to calculate the number of hydrogen bonds. We included

in the CVs only the hydrogen bonds with a separation larger than 4 in the amino-acidic

sequence in order to study the parallel β-sheet formations.

Well-tempered metadynamics parameters were set as follows: the bias factor was set at 10

for each replica, a Gaussian function was added every 1 ps with 0.05 and 0.025 width for

the Hback and Rcore. The initial Gaussian height was set to 1.0 ∗ T/T0 kjoule/mol. Each

replica has been simulated for 70 ns in case of WS and 100 ns of US.
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In order to study the mechanism of urea denaturation, we have used the reweighting

algorithm[125] that allows to recover the unbiased probability distribution of any variable

from a well-tempered metadynamics simulation. In fact the introduction of a bias poten-

tial, if properly done, leads to the correct distribution for the chosen CVs, but distorts

that of the other degrees of freedom. The method is able at reconstructing the Boltzmann

distribution of a fast variable directly from the configurations produced in a well-tempered

metadynamics run where a time-dependent bias potential is added on the slow degrees of

freedom of the system. From this relation all quantities of interest can be evaluated. In

particular quantitative comparison with experimental data is thus possible. In a previous

work[131] the potential of this approach was shown by characterizing the conformational

ensemble explored by a 13-residue helix-forming peptide by means of a well-tempered meta-

dynamics/parallel tempering approach and comparing the reconstructed nuclear magnetic

resonance scalar couplings with experimental data. The advantage of this reweighting pro-

cedure is not only to quantitative compare simulation with experimental data but also to

save computer time because with this procedure any degrees of freedom different from CVs

can be analyzed without performing additional metadynamics runs. In our case the use

of reweighting algorithm has allowed us to estimate, by a post processing procedure, the

FES for important variables related to the mechanism by which urea performs its action.

For both WS and US we have studied the FES as a function of the following variables:

1. radius of gyration calculated on all the Cα (Rca) and the distance from the crystal-

lographic state in contact map space (Dmap). For the Rca we used the same formula

as in Eq. 5.1 utilized to compute the radius of gyration for the hydrophobic core.

The distance from the crystallographic state in contact map space was calculated as

Dmap =

√√√√Ncont∑
i

(Ci(r)− Ci(Xray))2 (5.4)

where Ci(r) is the ith contact for the configuration r and Ncont is the total number of

contacts considered, and Ci(Xray) is the ith contact for the crystallographic state.

We considered all the contacts between the Cα atoms present in the crystallographic
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structure and calculated as

C(Ri,j) =
1− ( ri,j

r0
)p

1− ( ri,j

r0
)q

(5.5)

where dij is the distance between the ith and jth Cα atoms of the protein backbone,

r0 is taken to be 8.5 Å, n and m are set to 6 and 10 respectively.

2. the total number of hydrogen bonds between backbone and solvent (HBbb−solv) and

Rca. The HBbb−solv has been calculated as the sum of contacts between backbone

and water (HBbb−wat) plus those between backbone and urea (HBbb−ure) :

HBbb−solv = HBbb−wat +HBbb−ure (5.6)

In detail

HBbb−wat =
∑

Ob Hw

1− (dOb Hw/2.5)80

1− (dOb Hw/2.5)110 +
∑

Hb Ow

1− (dHb Ow/2.5)80

1− (dHb Ow/2.5)110 (5.7)

and

HBbb−ure =
∑

Ob Hu

1− (dOb Hu/2.5)80

1− (dOb Hu/2.5)110 +
∑

Hb Ou

1− (dHb Ou/2.5)80

1− (dHb Ou/2.5)110 (5.8)

where Ob and Hb are oxygens and hydrogens of the backbone, Ow and Hw oxygens

and hydrogens of water and Ou and Hu oxygens and hydrogens of urea.

3. the number of all hydrogen bonds within the backbone (HBtot) and Rca. For HBtot
the same formula as in Eq. 5.3 has been used, but here all the possible donor-acceptor

hydrogen bonds have been taken into account. The parameters were 2.5 Å for r0, 20

and 80 for n and m.

4. the non native hydrogen bonds (HBnonnat) calculated as the difference between

HBtot and the number of the native hydrogen bonds and Rca. For the native hydro-

gen bonds we used the same formula as in Eq. 5.3 with r0 = 2.5 Å, 20 and 80 for

n and m. Only the six hydrogen bonds of the native structure have been considered

in the sum.
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5. the solvent accessible surface (SAS), calculated by means of g sas tool of

Gromacs[124] on the hydrophobic side chains of Trp, Tyr, Val and Phe.

6. in order to understand the urea mechanism of action we also reweighted in two

separated FES the contribution of hydrogen bonds between backbone and water

(HBbb−wat) and those between backbone and urea (HBbb−ure) as a function of Rca.

5.4 Results and discussion

5.4.1 Free energy landscape

In Fig. 5.1 is reported the FES as a function of the radius of gyration calculated on the

hydrophobic core (Rcore) and the number of backbone hydrogen bonds (Hback) at room

temperature, obtained by means of PTMETA for the two solutions under investigation.

The FES was reconstructed from 100 ns of PTMETA simulation in the case of urea solution

(US) and from 70 ns in the case of water solution (WS).

The shape of the FES in both cases is quite similar, and exhibits a L-shape. This indicates

a zipping mechanism in which native contacts must first be broken before protein loses

its hydrophobic core and goes into a stretched conformations. Going from the folded state

(a) to the unfolded one (c), the protein breaks the hydrogen bonds of the backbone before

loosing its hydrophobic core. A comparison of these FES and that reported by Bussi et

al.[42] shows that the overall mechanism is quite similar, in fact also in that case there is a

L-shape FES. However in our case, in both solutions, there is a minimum (b) that was not

present in ref. [42]. We attribute this to the different force field used, Amber99SB [120]

here and OPLS-AA[132] in ref.[42].

This minimum corresponds to structures intermediate between the native and the

unfolded state: the protein has still some elements of secondary structures, in particular,

the β-sheet hydrogen bonds close to the turn region are still formed. At values of Hback,

smaller than 1, we can see in both cases the presence of a broad minimum that represents

the unfolded state.
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Figure 5.1: FES as a function of Hback of parallel β-sheet and Rcore calculated on

hydrophobic core of the protein: upper panel corresponds to WS, while lower panel to

US. Contour lines are plotted every 5 kjoule/mol, color legend is in kjoule/mol.
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The differences between the two solutions are to be seen in the depth of the minima. In fact,

while the localization of the minima is almost similar in both cases, their depth is different.

As expected, WS stabilizes the folded state, while US the unfolded one. From these FESs

it is not trivial to understand the in the folding-unfolding equilibrium. In fact the CVs,

while extremely useful at accelerating sampling, have a low resolution at small Hback values

which is the region of the unfolded state. For these reasons we reconstructed[125] the FES

as a function of different collective variables which are able to explore this region in greater

details, namely the radius of gyration calculated on the Cα-atoms of the protein (Rca) and

the distance from the crystallographic state in contact map space (Dmap) (see Simulations

details). The resulting FESs are shown in Fig. 5.2 and in Fig. 5.3.

Figure 5.2: FES for WS as a function of distance from the crystallographic state in

contact map space (Dmap) and Rca calculated on Cα atoms of the protein. Contour lines

are plotted every 2 kjoule/mol, colour legend is in kjoule/mol. The subfigures 1 to 3 in

WS show the typical structures encountered in such minima.
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Figure 5.3: FES for US as a function of distance from crystallographic state in contact

map space (Dmap) and Rca calculated on Cα atoms of the protein. Contour lines are

plotted every 2 kjoule/mol, colour legend is in kjoule/mol. The subfigures 1 to 4 in US

show the typical structures encountered in such minima.

It is to be seen in Fig. 5.2 that the basin a and b of Fig. 5.1 are preserved and are now

mapped into minima 1 and 2. Basin c, as wished for, is now resolved in different local min-

ima especially in US. As expected, the equilibrium between folded and unfolded states is

shifted in US towards the disordered state. According to this FESs, the folding free energy

∆FFU is ∼0 in WS and ∼1 kcal/mol in US. These results are in remarkable agreement with

NMR experiments which suggest that the population of β-hairpin structure is 42 % in wa-

ter [133] and 32 % in 6 M urea[134]. The ensemble of unfolded state is different in the two

cases and it is seen that the gyration radius is larger in urea and several likely structures

can be found with radius of gyrations that range from 8 to 12 Å. Several experiments have

shown that unfolded state in urea solution is considerably more extended than when de-
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naturation is induced by other agents such as pH or temperature[135, 136, 137]. Moreover

recent single-molecule FRET experiments showed an increase of the radius of gyration of

unfolded state for different proteins with increasing denaturant concentration[138]. This

qualitative agreement between theory and experiment reassures us on the validity of our

model. Thus with some confidence we can proceed further in the analysis in order to get

a deeper insight in the role of urea.

5.4.2 The role of the solvent

An important insight into the nature of the unfolding mechanism comes from the study of

the interaction between solvent and protein. Firstly we examine the interactions between

protein backbone and solvent in terms of number of hydrogen bonds, then we report the

effect of the solvent on the packing of the hydrophobic side chain. In Fig. 5.4-A and B we

report the FES as a function of the number of hydrogen bonds between the backbone and

the solvent (HBbb−solv), the distance from the crystallographic structure in contact map

space (Dmap) and Cα gyration radius (Rca). We consider all the possible hydrogen bonds

between backbone and solvent in both solutions (see Simulation details). The relevance

of these FES is due to the number of contacts between the protein backbone and the

solvent in the two solutions studied. From the panel A and B it is clear that there is a

different pattern of solvation and that the backbone polar group in the unfolded state are

more solvated in US. We further analyzed the solution as a function of the gyration radius

(Fig. 5.4-C). In US even the compact states are more solvated and this trend is further

enhanced at intermediate values of Rca where the protein is partially open. When the

protein is totally stretched this difference tends to be much reduced. It is also instructive

to analyze the total number of intramolecular hydrogen bonds and that of non native

contacts (Fig.5.4-D). In particular in water the number of internal hydrogen bonds decays

more slowly than in US and in the intermediate Rca regime a larger number of nonnative

contacts is found. This indicates a greater resilience of the water system to solvation and

suggests the existence of different intermediate structures along the folding pathways in

the two systems. We also studied the effect of the solvent on the hydrophobic core in
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Figure 5.4: The role of the solvent: comparison of the FES as a function of the number

of hydrogen bonds between backbone and solvent, Rca and Dmap in WS (A) and US

(B). Contour lines are plotted every 2 kjoule/mol, color legend is in kjoule/mol. The

histogram in C represents the averaged number of hydrogen bonds in the two solutions,

blue corresponds to WS and red to US. In D is reported the averaged number of hydrogen

bonds within the backbone: blue states for WS and red for US. In solid lines the total

number of hydrogen bonds are reported, while in dashed line the non native hydrogen

bonds within the backbone can be seen.
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the two solutions. The original FES as function of the solvent accessible surfaces of the

hydrophobic core (SAS), the distance from the crystallographic state in contact map space

(Dmap) and the Rca have been reweighted. The SAS of hydrophobic core describes how

the hydrophobic residues are coordinated in the space. Low values of SAS correspond to

highly packed hydrophobic core, while high values mean the loss of the core.

Figure 5.5: A and B depict the FES as a function of the solvent accessible surface of

the hydrophobic core, Rca and Dmap for WS and US. Contour lines are plotted every 2

kjoule/mol, colour legend is in kjoule/mol. Panel C shows the averaged coordination of

hydrophobic core along the progress of Rca. In D the native state of β-hairpin protein is

reported, in licorice the four aminoacids that form the hydrophobic core are highlighted.

When the protein backbone is close to its crystallographic structure (low value of

Dmap) the average conformation of the hydrophobic core is different in the two solutions.

In particular, it can be seen that in WS the core is preferentially in a closed conformation.

Whereas in US the presence of urea prevents the collapse of the core and stabilizes an un-

paired conformation of the hydrophobic side chains. In other region of the conformational

space the behavior of the hydrophobic core is rather similar in the two solutions. This trend
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is confirmed by the average value of SAS as a function of Rca (see Fig.5.5-C). This is not

surprising because of the nature of the hydrophobic core and the small size of the protein.

In this respect the behavior of the two systems appear in first approximation to be similar.

As already mentioned in the Introduction, in literature there is an open issue about which

is the main driving force in urea denaturation. While many computational studies provide

increasing evidence for direct interactions as the primary driving force for denaturation,

it is discussed whether either polar or apolar interactions between urea and protein domi-

nate. In particular the relative importance of protein-solvent H-bonds and Van der Waals

interactions in the unfolding process has been discussed [29, 27, 30, 31, 32, 33, 34]. Our

data clearly indicate that the denaturation of β-hairpin by urea mainly involves the di-

rect interaction between the solvent and the backbone polar groups. While the formation

of hydrogen bonds between the protein and the solvent seems to be the driving force of

unfolding mechanism in urea, a smaller role can be assigned to hydrophobic effect.

5.4.3 Urea’s mechanism of action

In order to evaluate which is the main force that enables and stabilizes the formation of

such unfolded state in US, we have studied the role of the solvent within US: we report

in Fig. 5.6 the total number of hydrogen bond per species. In analyzing these data one

must keep in mind that while urea can form a larger number of hydrogen bonds, its

concentration is much smaller. Thus a comparable number of hydrogen bonds indicates a

stronger propensity of urea molecules to bind to the protein backbone. In many studies

it has been demonstrated experimentally that urea participates in hydrogen bonds with

peptide group [28].

Going from the folded to the unfolded state the whole range of Rca can be split into

three main regions. The first one, A, corresponds to very compact conformations. Within

this region lies also the folded state. The interactions between urea and water molecules

are comparable. This indicates a similar propensity of the backbone to form hydrogen

bonds with both urea and water molecules. Going into the second region, where Rca goes

from 8 to 9 Å there is small preponderance of the hydrogen bonds with urea. While in
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Figure 5.6: Averaged number of hydrogen bonds formed between backbone and urea is

reported in green, in blue those between backbone and water. Three typical structures

encountered at value of 7, 9 and 12 of Rca are reported in figure A, B, and C

the third region, C, the interactions of water and urea with backbone are again similar.

Representative snapshots of the environment behavior around the protein at value of 7,

9, 12 Å of Rca can be seen in the upper panel of 5.6. This behavior, along the unfolding

pathway, means that when the protein starts to unfold and reaches a more elongated

conformation, there is a paucity of water molecules around it, while urea can easily interact.

At higher value of Rca there is no more this pronounced preferential solvation of the

protein by urea. The existence of such preferential interaction with urea along the unfolding

pathway has been already seen in other studies[35, 139]. In particular a very long molecular

dynamics simulation of lysozyme in 8M urea has shown the formation of a dry globule state

in which there is a paucity of water around the protein. Here, equilibrium simulation of the
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folding/unfolding pathway of β-hairpin suggests the presence of a state at intermediate

value of Rca in between the folded and completely stretched state in which the protein

preferentially interacts with urea through backbone hydrogen bonds.

5.5 Conclusions

Here, the use of advanced sampling techniques allowed us a deeper understanding of the

main differences in the reversible folding-unfolding free-energy landscape of β-hairpin GB1

in 8 M urea solution and pure water. The folding free energy ∆FFU for the two solutions

has been calculated, confirming NMR experiments: as expected, the equilibrium between

folded and unfolded states is shifted in US towards the disordered one. The nature of

the unfolded states has been extensively analyzed: our data show that urea stabilizes

the protein in a completely unfolded conformation, with high value of gyration radius.

This behavior confirms that the addition of denaturants allows the protein to unfold in a

stretched conformation. In the absence of denaturant the unfolded state is in equilibrium

with native state and it is noticeably more compact. For what concern the mechanism by

which urea acts as denaturant, a preferential direct interaction between urea molecules

and protein backbone has been found. At intermediate value of Rca along the unfolded

pathway we have found a preferential interaction of protein backbone with urea molecules

in agreement with previous MD simulations. At higher value of gyration urea and water

solvate all the other part of the protein, allowing it to unfold in a completely stretched

conformation.



Chapter 6

Conclusion

Studying rare events such as protein folding or protein conformational plasticity with MD

poses several challenges which are related to the difference between the time scale acces-

sible by MD simulation and that in which interesting events take place.

During my PhD I have applied metadynamics to study different rare events related to

biomolecular flexibility. Metadynamics is able both to accelerate the sampling and to re-

construct free-energy profiles along selected degrees of freedom at the same time.

In particular the use of metadynamics has highlighted some of the dynamical features

of kinase conformational plasticity. In these proteins, conformational motion, which al-

lows reversible switching between distinct states, is a central feature of their regulatory

mechanisms. While our current understanding of kinase regulation owes much to experi-

mental informations coming from X-ray crystallography, static pictures must be combined

with information from other approaches that more effectively capture the dynamics of the

switching process.

In Chapters 3 and 4 the atomistic details associated with the inactive mechanism of CDK5

and p38α kinase have been presented. These proteins are representative of two distinct

kinase inactivation mechanisms: CDK5 can access inactive conformations through a tran-

sition between αC-helix Glu-in and αC-helix Glu-out conformations, while the flip of the

well conserved DFG motif allows p38α kinase to access alternative conformations.
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Metadynamics combined with the path collective variable method has provided details of

the open-to-closed CDK5 conformational switch that involves large scale motions of the

αC-helix and the T-loop. A two step mechanism along the transition has been shown: first,

the αC-helix rotates by ∼45°, allowing the interaction between Glu51 and Arg149; then

the CDK5 activation loop refolds to assume the closed conformation. Along the open-to-

closed path, one meta-stable conformation that shows unique structural features has been

identified.

In the case of p38α kinase metadynamics has revealed the main features of the motion

from DFG-in to DFG-out state. The equilibrium between the two states has been studied

also in the case of protein bound to an inhibitor, SB-203580. The presence of SB-203580,

a type I kinase inhibitor, does not interfere too much with the DFG-in/out flip of this

protein as expected from experimental data. From these results the dynamical aspects of

the inactivation mechanism of these two kinases have been disclosed. The data obtained

here will be of precious help for the design of potent and selective kinase inhibitors.

Finally, in Chapter 5 the use of the combined technique such as metadynamics together

with parallel tempering has allowed us to study the equilibrium properties of the folding-

unfolding mechanism of β-hairpin in pure water and 8M urea solution. While standard

MD simulation could in principle be used to characterize the early events of protein fold-

ing, the use of methods such as PTMETA to speed-up the dynamics of the system under

investigation is very useful to obtain more informations about the mechanism of folding

and the role of denaturants such as urea. The nature of the unfolded state in different en-

vironments has been extensively analyzed: in particular, our data show that urea stabilizes

the protein in a completely unfolded conformation, with high value of gyration radius. In

the pure water solution the unfolded state is in equilibrium with native state and it is

noticeably more compact than the urea-unfolded one. We found that denaturation occurs

predominantly by direct interaction of urea with the protein backbone through hydrogen

bonds. At intermediate value of radius of gyration the protein preferentially interacts with

urea as compared to water. While at higher value of radius of gyration, urea and water

solvate all the other part of the protein, allowing it to unfold in a completely stretched
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