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3.1 Landauer-Büttiker model . . . . . . . . . . . . . . . 24
3.2 Transmission function evaluation . . . . . . . . . . . 29
3.3 Implementation of the method: the FOXY code . . . 38

3.3.1 Implementation in the Gaussian package . . . 45

4 Application of the method to molecules of interest 51
4.1 Calibration of the method . . . . . . . . . . . . . . . 53
4.2 Molecular Rectifiers . . . . . . . . . . . . . . . . . . 57
4.3 Binuclear transition metal complexes . . . . . . . . . 69
4.4 Diarylethene-based molecular switch . . . . . . . . . 81

5 Conclusions 89
5.1 Future perspectives . . . . . . . . . . . . . . . . . . . 92

Appendices 97

ii



iii

A Green’s Function 99

B Lippman-Schwinger Equation 103

Acknowledgment i



Chapter 1

Introduction

It might be just a drop in the ocean,
but tomorrow it could flavour
someone’s salad.

Caterina Buscaglione

Gordon Moore, in 1965, predicted that the number of transis-
tors per square centimetre of Silicon should have doubled every 18
months. Such prediction has been proved accurate until now, and
it has become a sort of a “law” in integrated circuit miniaturiza-
tion (the famous Moore’s Law1), with academical and industrial
efforts directed in making the “law” valid as long as possible. This
requires that the size of transistors and the interconnecting wires
between them decrease at the same rate, which, until now, has been
possible with the introduction of more and more precise photolito-
graphic techniques (capable of defining smaller and smaller patterns
in which fabricate Silicon transistors, with dimensions in the or-
der of tens of nanometers each), and the use of innovative materials
both for the devices themselves and for the interconnections (such as
high-K dielectrics for the transistors or Copper for the interconnec-
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tions). However, in the near future, the fundamental limits rooted
in the technology currently used to build transistors (Complemen-
tary Metal-Oxide-Semiconductor technology, or CMOS technology)
will be reached, and new technological solution should be sought in
order to try to maintain the validity of the Moore’s Law as long
as possible. For 50 years, the idea of using fundamental nanoscale
component to build computers has been investigated. The first hint
in the future direction of nanoscale science for electronics was given
by Richard Feynman in his 1959 lecture entitled “There’s plenty of
room at the bottom”,2 which is considered by some people as one
of the “starting point” in the field of nanotechnology:

I dont know how to do this on a small scale in a
practical way, but I do know that computing machines
are very large, they fill rooms. Why can’t we make them
very small, make them of little wires, little elements and
by little I mean little. For instance, the wires should be
10 or 100 atoms in diameter, and the circuits should be
a few thousand angstroms across. [...] There is plenty
of room to make them smaller. There is nothing that
I can see in the laws of physics that says the computer
elements cannot be made enormously smaller than they
are now.

Molecules have been investigated as possible candidates to the build-
ing blocks of the post-CMOS era. The smaller dimensions and the
electronic properties that characterize these systems (in particular,
the possibility to withstand high current densities) have attracted
much interest in the scientific community.

The idea of molecules as electronic component is more than 35
years old, with the seminal work of Ari Aviram and Mark Rat-
ner3 that described the possibility of use a molecule as one of the
most fundamental electronic circuit device, the rectifier (or diode).
Over the years, the design and development of electronic devices
exploiting molecular functionalities (field known as Molecular Elec-
tronics) has been a difficult and appealing task for chemist, physicist
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and engineers. In particular, the realization of molecule-based de-
vices has faced the problem of the reliability and reproducibility,
which are not yet completely resolved. The introduction of Scan-
ning Tunneling Microscope (STM) and Mechanically Controllable
Break Junction (MCBJ) techniques have made enormous advances,
towards the realizations of devices with reproducible current/voltage
characteristics and room temperature operation. The first measure
of current/voltage characteristics of molecules sandwiched between
metal electrodes has been reported by Reed et al.,4 using benzene-
1,4-dithiolate connected between stable metallic Gold contacts and
the MCBJ technique for the realization of the metal/molecule junc-
tion. Current-voltage I(V) and conductance G(V) measurements
showed reproducible characteristic features of stepped conductance
and an I/V characteristics which had a ∼ 0.7 V gap before the cur-
rent started to flow in the molecular junction. An interpretation of
the observed gap is due to the mismatch between the contact Fermi
level and the benzene-benzene-1,4-dithiolate LUMO.

Parallel to the experimental advancing in measuring conduc-
tance and I/V characteristics of single molecules, great effort was
devoted in understanding the laws behind transport at the meso-
and nanoscale. This effort has lead to the formulation of theories
describing more and more accurately the fundamental processes at
the heart of nanoscale transport. These are investigated from first
principles by using numerical simulations, which are often quite ex-
pensive in terms of computational time and resources. Consequently,
such computational approaches depend on efficient numerical algo-
rithms in order to be successful. To calculate conduction prop-
erties of molecules (or, more in general, nanoscale junctions), one
approach is based on Density Functional Theory (DFT) (which is
used to calculate electronic properties of the system) coupled with
Non-Equilibrium Green’s Function Method (NEGF) and Landauer-
Büttiker theory. This particular approach is by far the most widely
used method, and, with some appropriate approximations and op-
timized algorithms, NEGF-DFT has become a cost-effective first-
principles method and has been used to reproduce particular molec-
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ular transport features and also to understand the physics behind
the transport process, even if sometimes discrepancies between com-
puted and experimental data arises. There is, then, still much work
to do in the field of computational molecular electronics, in the direc-
tion of a better description of the interaction between molecules and
electrodes, a better description of the physics behind electron trans-
port mechanism and therefore better experimental/computational
data agreement, and also in view of cutting the computational costs
relating to the evaluation of quantity involved in the current/voltage
characteristics of molecules and nanojunctions in general.

The main work done in this Thesis concerns electronic trans-
port through molecules, aiming at the definition of a simple, and
computationally low-cost procedure to calculate transmission func-
tions and current/voltage characteristics of systems at the molecu-
lar scale sandwiched between two semi-infinite electrodes, a setup
usually present in molecular electronics experiments. The action of
an external bias voltage is done without the need of the standard
self-consistent procedure employed in most of the commercial codes
dealing with quantum transport. Application of the procedure to the
calculation of electronic transport properties for molecular species
with a potential technological interest in integrated circuit design
will be discussed, beginning with those that show a diode-like be-
haviour, trying to explain the underlying mechanism of molecular
rectification.

The second Chapter will present a brief introduction of the sub-
ject, and how quantum transport is becoming more and more im-
portant since the main electronic devices found in integrated circuits
(for example, transistors) are becoming smaller and smaller, up to
the length scales where quantum phenomena are directly affecting
transport properties and the overall behaviour of the devices.

The third Chapter will outline one of the possible theoretical
frameworks used to tackle the problem, that is the Landauer-Büttiker
model coupled with Non-Equilibrium Green’s Function (NEGF) me-
thod. This method requires a complex self-consistent procedure,
which involves the calculation of the Green’s function and the elec-
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tric field in the central region. On top of that, the entire procedure
should be repeated for every voltage applied. We therefore developed
a new simplified method, implemented in the domestic code called
FOXY, whose aim is to reduce the computational cost of calcula-
tions, avoiding self-consistent schemes, and focusing on the response
of the contacted molecule to the voltage bias rather than to the de-
tails of the contact.

The fourth Chapter is about the calibration and application of
the FOXY code to molecular species of interest. After the calibra-
tion, we were able to study in detail molecular rectifiers and switches
proposed in the literature. The first example is a device which has
been experimentally measured by Weber et al.5 We have been able
to reproduce the experimental I/V curves and to explain the under-
lying rectification mechanism. We then studied binuclear transition
metal complexes of the VIII group, where the metallic moieties are
bridged by aromatic ligands, and we found that they do not present
particularly pronounced rectifying behaviour, with rectification ra-
tios in the order of ∼ 2 in the best cases. However, the introduc-
tion of electron-withdrawing substituents increased and stabilized
the rectification ratios over a broader range of voltages, still being
far from values which can be useful in real electronic applications.
The third class of devices consist in two molecular switches based
on a slightly modified diarylethene moiety, which changes from an
high conductive state to a low one by the means of an external opti-
cal stimulus. We were able to reproduce experimental ON and OFF
currents for both switches, and we were able to explain the switching
effect by means of transmission function and orbital analysis.

The fifth Chapter concludes this Thesis, summarizing the key
findings.

The entire work was done under the supervision of Prof. Vin-
cenzo Barone, Prof. Ivo Cacelli and Dr. Alessandr Ferretti, at the
Istituto di Chimica dei Composti Organo-Metallici (ICCOM), of the
Consiglio Nazionale delle Ricerche (CNR), in Pisa.





Chapter 2

Molecular Electronics

Historians tell us that in ancient
times musicians, actors and
painters went from court to court
following the most interesting jobs
by the powerful Lords. From here
the common and famous expression:
what is the state of the art now?

Matteo Piccardo

In present-day electronic circuits, data processing, storage and
transmission are obtained using a specific class of devices based
on MOSFET (Metal-Oxide -Semiconductor Field-Effect Transistor)
technology, exploiting the interplay of metal/oxide/semiconductor
interfaces. The most important device in modern integrated circuits
(IC), designed with this technology, is the transistor.

Between the different types of semiconductor devices proposed
in the past, only the MOSFET emerged as a viable solution to the
many requirements that a semiconductor device needs to have, and
they were the only class of devices capable of an increase of the per-
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formances with a constant dimension reduction, following a strict
scaling law.

Fig. 2.1 shows the basic structure of a MOSFET. There are two
P-N junctions that are called source and drain respectively. The
drain supplies the device with electrons, while the source drags them
away from the central channel region (an initially non-conducting re-
gion between the source and drain very close to the silicon surface).
The name Field-Effect Transistor (or FET) refers to the fact that
the gate (the third contact, above the central channel) turns the
transistor “on” and “off” with an electric field through the oxide:
when a positive voltage is applied to the gate, electrons from the
silicon bulk are attracted to the transistor channel. When the gate
voltage becomes sufficiently positively charged, enough electrons are
pulled into the channel from the bulk to establish a charged path be-
tween the source and the drain. Electrons flow across the transistor
channel, and the voltage-controlled switch is conducting. If a 0 or
a very small voltage is placed on the gate, no electrons (or at least
very few) are attracted to the channel. The source and drain are
disconnected, no current flows across the channel, and the switch is
not conducting.

A transistor is a device that presents a high input resistance to
the signal source, drawing little input power, and a low resistance to
the output circuit, capable of supplying a large current to drive the
circuit load. Fig. 2.1 also shows the MOSFET IV characteristics.
Depending on the gate voltage, the MOSFET can be “of” (con-
ducting only a very small off-state leakage current, Ioff ) or “on”
(conducting a large on-state current, Ion).

Transistors are traditionally been made from bulk materials.
This means that in order to increase performance gains and com-
plexity, as the famous Moore’s Law1 (the historical integrated circuit
scaling cadence and reduction of cost/function law) predicts, their
size should shrink following the rules of device scaling. As the struc-
ture of the device decreases, the transistor building process must
be controlled to a precision of a few atoms for the devices to work
properly. This “bulk approach” (also called “top-down” approach),
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Figure 2.1: (a): basic field-effect transistor (MOSFET) structure;
(b): ideal MOSFET I/V characteristics

in which devices are usually built from lithographic methods, is be-
coming more and more demanding and expensive, other than slowly
approaching the inherent limitations on the control level of the build-
ing process. In order to circumvent the problem, one can think of
new paradigms for systems architecture that are capable of meeting
the same requirements that the MOSFET device are capable now
(and will be capable up to the near future) still with a scaling of the
dimension of the device itself and a reduction of the power usage,
sticking with the “top-down” approach outlined above.

It is then possible to think of radically change the approach in
building nanodevices: instead of creating structures by removing or
applying material after a pattern scaffold, the device is ideally built
in a chemistry lab, atom by atom. In this way a large number of
copies are made simultaneously while the composition of the sys-
tems are controlled down to the last atom. This approach is called
“bottom-up”.

It is clear that molecules are well suited to become focal element
of a new class of devices built by employing “bottom-up approaches”.
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The smaller dimensions and the electronic properties that character-
ize these systems make molecules good candidates to become basic
blocks for future electronics. “Molecular Electronics” is, therefore,
the discipline that aims to reproduce conventional electronic circuit
elements with molecules, hoping to reach performances comparable
to the present-day Silicon-based devices. Molecular electronics is
conceptually different from conventional solid state semiconductor
electronics. It allows chemical engineering of organic molecules with
their physical and electronic properties tailored by synthetic meth-
ods, bringing a new dimension in design flexibility that does not
exist in typical inorganic electronic materials. In contrast with the
typical “top-dow” approach in the fabrication of solid-state devices,
molecules are synthesized from the bottom (bottom-up approach),
which means that small structures can be fabricated, starting from
the bottom, from the molecular or single device level. It in principle
allows a very precise positioning of collections of atoms or molecules
with specific functionalities. Also, chemical synthesis can, in prin-
ciple, make large quantities of molecular devices with relative low
cost (lesser than the one for modern micro- or nano-lithography
currently used for semiconductor devices fabrication) and prepare
molecules with structures possessing desired electronic configura-
tions and attach/interconnect them into an electronic circuit using
surface attachment techniques like self-assembly.6 Self-assembly is
a phenomenon in which atoms and molecules or group of molecules
arrange themselves in ordered patterns without external interven-
tion.

The design and development of electronic devices exploiting molec-
ular functionalities has been a challenging task for chemists, physi-
cists and engineers for the last few decades.7–10 Although several
conceptual and technological problems still make the realization of
working molecular-based devices a far off goal, the fascinating diver-
sity of molecules, and thus the possibility of designing and synthe-
sizing molecular species purposely tailored for specific functions, is
sufficient to justify the intense effort spent in the field. For example,
negative differential resistance devices4 and rectifiers11 have already
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been demonstrated at the molecular level, as well as fully functional
transistors12 , memories and logic gates.13,14

Transport through molecule presents peculiar features in general
different from the one seen in standard metals or semiconductors.
The main reason is that with molecules we don’t work with Fermi
surfaces but with a defined number of discrete energy levels. The na-
ture and lineup of the molecular levels with the Fermi energy of the
electrodes determine most of the transport properties. In absence of
any coupling between the molecule and the continuum of states pro-
vided by the electrodes, both the energy levels of the molecule and
the Fermi level of the electrodes will align with a common vacuum
level. In this case the system is characterised by the work func-
tion (WF ) of the electrodes and both the ionisation potential (IP )
and the electron affinity (EA) of the molecule. The only way the
molecule and the electrode can exchange electrons is to provide an
external energy comparable to either IP −WF or WF − EA.

In contrast, the interaction between the molecular levels and the
metallic contacts has the effect of broadening and shifting the molec-
ular levels. In the extreme limit of large coupling, extended states
spanning through the entire system (electrode plus molecule) can oc-
cur and the molecular device will behave as a good conductor. The
effect of an external bias is to shift the electrochemical potentials of
the electrodes relative to each other by eV , with V the external volt-
age and e the electron charge. Roughly speaking, a current starts
to flow if some broadened occupied or virtual levels are inside the
formed bias window.

There are several techniques available to date for manipulating
and contacting single molecules to macroscopic electrodes in order to
investigate their functionalities. However, the computational mod-
elling and theoretical understanding of the various processes still
suffers from several difficulties which often do not allow a compari-
son between experimental and computational data, due to discrep-
ancies of one or two orders of magnitude.15,16 Charge transport in
single molecules is indeed a very complex problem and results from
the interplay of several basic physical effects. Any simplification of
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the problem without loosing essential physical content is therefore a
very hard task.

2.1 Molecular requirements for
electronic conduction

The two basic requirements for electronic conduction in a generic
material are:

• a continuous system of a large number of strongly interacting
atomic orbitals leading to the formation of electronic band
structures;

• the presence of an insufficient number of electrons to fill these
bands.

In inorganic semiconductors and metals, the atomic orbitals of each
atom in the crystalline structure of the material overlap, creating a
number of continuous energy bands, and the electrons, initially per-
tained to each atom, are delocalized across the entire structure. The
strength of interaction between the overlapping orbitals determines
the extent of delocalization, giving rise to the bandwidth. Likewise,
in a molecule, a set of overlapping delocalized electronic states across
the entire molecule is necessary for electronic conduction.

Conjugation, in molecular electronics, is an important property
that is usually sought, in order to have molecules capable of pro-
viding a substantial current (at least in the order of nA) in output.
π-conjugated molecules contain systems of alternating single and
double bonds. sp2 or sp3 hybridisation of parallel p atomic orbitals
leads to the formation of diffuse bonding orbitals in the plane of the
sigma bond (a double bond). Multiple equivalent structures exist de-
pending on which permutation of alternating bonds are considered.
These contributing structures can mix together forming a hybrid
structure at a lower energy due to the increased delocalization of
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the electrons. Conjugation within aromatic structures leads to high
stability and planarity, the ring of connected p-orbitals from the sp2
hybrid carbons forming a shared volume of electron density above
and below the plane of the ring.

In conjugated molecular electronic materials, the charge carriers
occupy these extended molecular orbitals. The diffuse nature of the
conjugated π orbitals results in sufficient overlap for charge transfer.
Also, these extended orbitals easily overlap with electrodes’ states,
resulting in orbitals delocalized over all the extended structure (elec-
trodes plus molecule). Large regions of delocalized charge carrying
orbitals mean that electrons can cross a large region of space in
fewer hops. These hops are the rate limiting step that decide macro-
scopic electron mobilities. Larger regions of charge delocalisation,
and greater electronic wavefunction overlap between systems would
be expected to lead to larger mobilities.

The performance of molecular electronic materials is highly de-
pendent on the purity of the material produced. Defects and con-
tamination tends to form charge traps which severely degrades per-
formance. The performance is also highly dependent on processing
conditions used by the device fabricator. It can take many years
of effort working on improving a chemical synthesis, and simultane-
ously optimising devices to know whether a material is intrinsically
better than the state of the art.

Apart from consideration about conjugation, for a molecule to
be useful for electronic applications, it must be addressable. This
mean that it must remain in the physical location in space where it
is placed. There are two important concerns in this regard. First, it
is presently somewhat difficult to position molecules exactly where
they are desired. Certainly there are examples of both atomic and
single molecular positioning, however, these examples have not been
focused at limiting the long-term propensity of the molecule to dif-
fuse. Also, a primary consideration of any molecular electronic can-
didate must be that of chemical stability. It is important to under-
stand the long-term stability of any molecular electronics component
under a wide variety of conditions. If a molecule tends to decom-
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pose when exposed to elevated temperatures, then it is not a good
candidate for use in a molecular electronic device. Similarly, the
species must be inert with regards to other molecules of the same
type, a requirement that is particularly important in devices involv-
ing charge-storage or redox-active molecules. Species that show poor
insulation from each other would tend to exchange stored electrons,
scrambling any data represented by the storage of those electrons.
Conversely, a molecule which shows an irreversible electron transfer
would not be a good candidate for any sort of molecular electronic
device as the point of electronics is to utilize reversible charge trans-
fer from one element to the next. Finally, describing a molecule
doing some useful function does not automatically make it a molec-
ular electronic device. There must be a way to interact with the
component, both on a microscopic level and through input from the
macroscopic world. Thus it is important to consider how a molecular
electronic device can be “wired up”. It must be able to exchange in-
formation, or transfer states to other molecular electronic devices, or
it must be able to interface with the components in the system that
are not nanoscopic. These requirements present challenges which
are just beginning to be addressed.

2.2 Computational strategies for
molecular devices

From the molecular electronics point of view, the goal is to determine
the I/V characteristic of a device that mainly consists in a central
molecular region coupled with two semi-infinite metallic electrodes
which are under the influence of an external bias. This is made
with the aim of understanding and optimizing its characteristics
and features. Before describing in detail the quantum-mechanical
techniques used for this task, it is necessary to find a simple model
that describes the underlying physics of a metal/molecule junction.
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Electronic transport through molecular devices significantly dif-
fers from the one through macroscopic heterostructures. In the lat-
ter, the effective mass approximation is, in general, satisfactory, due
to the periodicity of the overall structure and the great mean free
path length (which is the average distance travelled by a moving elec-
trons without experiencing scattering events) for the electron that
travel across the system. On the contrary, in a molecular device the
electrons interact with a relatively small set of atoms, whose spatial
position is important. Therefore, the effective mass approach fails
to describe correctly the system, and the electronic structure of the
molecular device should be explicitly taken into account. Frequently,
Density Functional Theory (DFT) is used in order to calculate elec-
tronic properties for these kind of systems.17,18 DFT theory states
that the entire problem of finding the many-body wavefunction is re-
duced to that of calculating the equilibrium charge density ρ(r), via
the Hohenberg-Kohn theorems, that state that, given the solution of
the Schrödinger equation, and given the ground state (assumed non-
degenerate), the external potential, and hence the total energy, is a
unique functional of the electron density ρ, and the density that min-
imises the total energy is the exact ground state density. Also, the
Kohn-Sham method maps the entire problem onto a non-interacting
one, introducing a system of non-interacting electrons that gener-
ates the same electron density as the interacting one. So, thanks
to the Kohn-Sham method, the entire DFT problem can be formu-
lated as a ground-state, single-particle problem, and energies and
eigenvalues can be calculated. However, conventional DFT methods
are best suited for systems in which the total number of particles
is conserved. Also, DFT presents some well known problems that
could lead to discrepancies between computed and measured data.
For instance, one of the most used theories for electronic transport
through molecules (described in detail in the next chapter), after
reducing the overall open, infinite and out of equilibrium problem to
a closed and finite one, requires an accurate estimate of the energy
levels, both occupied and virtual. The choice of DFT for electronic
structure calculation might then introduce uncertainties or even lead
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to fake results.
Lang et al.19,20 proposed a method for which, using a jellium

model for the metallic electrodes in a electrode/molecule/electrode
system, it is possible to map the Kohn-Sham equation of the system
onto the Lippman-Schwinger scattering equation, and then solve the
equations in a self-consistent way for the scattering states. Then the
current will be calculated summing up each scattering state contri-
bution to electron flow, with an approach similar to the one used in
the Landauer-Büttiker theory (described in the next chapter). This
model is simple, but limited: for example, it cannot correctly anal-
yse strongly directional bonds as it occurs in semiconductors and in
transition metal compounds. This results in a lack of evaluation of
charge transfer between electrodes and the central molecule, which
is a very important quantity in transport problems.

Another possibility is to implement Landauer-Büttiker transport
theory directly.7,8, 21 In this model, electrons transmit from one
electrode to the other through the central scattering region by a
series of scattering events which limit the transmission probability
of each electron (described by the transmission function). The net
current is then obtained integrating over the energy range defined
by the Fermi level of the system and the applied bias, the trans-
mission function. This theory poses its foundations on a series of
approximations, one of which is that electron interactions have been
included only at the mean-field level. In fact, DFT is usually em-
ployed for the calculations of the electronic properties of the system.
This is quite a strong approximation, especially in nanojunctions,
where large current densities are common. In order to calculate the
transmission function, a Non-Equilibrium Green’s Function (NEGF)
specific formulation that regards steady-state transport is used. In
general, this technique allows the calculation of coherent transport
properties in a complete self-consistent way. In order to properly
treat charge transfer phenomena, electrodes and central region are
treated on the same footing, and some part of the electrodes (few
atoms to some layers of atoms) should be included in the central
scattering region, forming an “extended molecule”.
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It is also possible to implement a full Non Equilibrium Green’s
Function (NEGF) method, also known as the Keldysh formalism,22,23

which allows us, at least in principle, to solve the time-dependent
Schrödinger equation for an interacting many-body system exactly,
from which one can, in principle, calculate the time-dependent cur-
rent. This is done by solving equations of motion for specific time-
dependent Greens functions, from which the physical properties of
interest, such as the charge and current densities, can be obtained.
Even this methodology is based on some assumptions: it applies only
to closed systems (so it is necessary to find a way to effectively close
an open problem such as the transport one), and it needs that the
total Hamiltonian is described by an unperturbed Hamiltonian plus
a perturbation switched on adiabatically at a certain time (the per-
turbation can be, for instance, an external field). Other than that,
as in the Landauer-Büttiker method, in order to get the steady-state
total current, it is necessary to introduce other approximations: for
example we have to assume non-interacting electrons, but this time
only in the leads. So, in essence, the Non Equilibrium Green’s Func-
tion formalism for steady-state transport problems helps to deal with
many-body interaction in the central region, not treating such inter-
action at the mean-field level, in order to get more information on
the transport process. The method makes large use of the contour-
ordered Keldysh Green’s function:

G(r, t, r′, t′) = − i

ℏ
⟨Tc

[
ψH(r, t)ψ†

H(r′, t′)
]
⟩ (2.1)

where ψH(r, t) is the field operators written in Heisemberg repre-

sentation (with respect to the total perturbed Hamiltonian Ĥ) and
Tc is the time-ordering operator. The theory also makes use of the
lesser Green’s functions Ĝ< (that stem from the general Keldysh
Green’s function definition) and of the Keldysh equation, which is
just a way to express the equation of motion of the lesser Green’s
function in terms of self-energies (effective potential that represent
the interaction of a single electron with all the other particles in the
system). From that, it gives us a formula for calculating the total
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current by means of Ĝ< and broadening (quantities that are related
to self-energies, which in some way represent the broadening of the
discrete central region levels):

I =
ie

ℏ

∫
Tr

{
[ΓL(E)− ΓR(E)]G<(E)+

+ [fL(E)ΓL(E)− fR(E)ΓR(E)] [G+(E)−G−(E)]
}dE
2π
(2.2)

Attempts have also been made to work directly with many-body
wave-functions,24 and the Green’s function formalism, combined
with the GW approximation25,26 (where the self-energy is calculated
to lowest order in the screened interaction W ) is leaning towards
overcoming the known problems related to the use of a mean-field
theory for transport calculations.

As stated earlier, Landauer-NEGF method is based on the idea
that the description of the electronic ground state at the DFT level
is sufficient for describing the current flow through a channel, even
if the system is not at equilibrium. This could lead to discrepancies
between the computed data and the measured ones,27,28 because it
does not allow the inclusion of dynamical multi-state effects. Also,
the most important quantities that define the transport properties
of the system under study are computed with non-interacting Kohn-
Sham excitation energies, which in general do not coincide with the
true excitation energies. Standard NEGF-DFT theories also neglect
the role of vibrational degrees of freedom, whose coupling to the
electronic motion may indeed be relevant (e.g. molecular resistance)
and is now also under active study. Excitation energies of inter-
acting systems are accessible via time-dependent (TD) DFT.29,30

In this theory, the time-dependent density of an interacting system
moving in an external, time-dependent local potential can be cal-
culated via a fictitious system of non-interacting electrons moving
in a local, effective time-dependent potential. Therefore, this the-
ory is in principle well suited for the treatment of non-equilibrium
transport problems.31–34 Time-dependent simulations of current-
carrying molecular devices are required to describe the transient re-
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sponse to an external perturbation. There is an increasing interest
in time-dependent (TD) simulations of current-carrying molecular
devices, from a variety of points of view.32–42 In general, time-
dependent approaches can address the problems related to the use
of a ground-state steady-state theories (and, in particular, aim at
a better quantitatively agreement with experiment), as well as un-
derline the transient response of nanoscale junctions and better de-
scribe excited states (particularly useful if interested in the analysis
of optical switches, where an external light pulse can variate the
transmission properties of selected molecules). Usually, the whole
treatment starts from the Liouville equation for the system:

∂ρ̂

∂t
=

1

ıℏ

[
Ĥ [ρ̂] , ρ̂

]
(2.3)

where ρ̂ = ρ̂(t) is the reduced one-electron density matrix and Ĥ[ρ̂]
is a generic one-electron Hamiltonian (such as the one produced by
time-dependent density functional theory). In a TD-DFT picture,
we are sure that, if the system is partitioned, then the total parti-
cle current between the regions computed from one-electron density
matrix is formally exact.36,43 Without something that guarantees
a continual supply of electrons that have flown across the junction
back into the starting electrode, the system would rapidly return in
equilibrium. This is avoided by maintaining the charge imbalance,
and hence the current, in the system by a driving term operating at
the density matrix level:

∂ρ̂

∂t
=

1

ıℏ

[
Ĥ [ρ̂] , ρ̂

]
− Γ (ρ̂− ρ̂0) (2.4)

where Γ here just represents the driving term which maintains the
charge imbalance at the boundary of the transport region. Other
approaches are based on the direct time propagation of the wave-
function. This approaches can be interesting because one can exploit
the advanced computational methods that have been developed to
solve the time-dependent Kohn-Sham equations. Even here, one
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of the main challenges is the proper treatment of boundary condi-
tions: one way to address this problem is to employ specific bound-
ary potentials.32,44,45 These potentials are typically local in space,
purely imaginary, with negative imaginary part, they vanish inside
the transport region and grow rapidly away from that region. The
negative imaginary part will cause asymptotic damping of resonant
eigenfunctions, preventing them to extend to infinity. Because these
potential effectively absorb particles that would otherwise escape to
infinity, they are known as complex absorbing potentials (CAP). An-
other basic issue with time-dependent DFT approaches is that most
exchange-correlation functionals have been derived under equilib-
rium conditions and their application to non-equilibrium problems
should be analysed in more detail.



Chapter 3

Electron Transport in
Nanostructures

One single advice should be given to
those who want to leave their
footprints, in Science or in Arts: if
you are giving birth to a new theory
or movement, make sure its name
will sound good in German.

Nicola De Mitri

In order to address the transport problem at the nanoscale level,
a full quantum-mechanical approach is needed. At the atomic level,
classical description of physical systems gives way to quantum me-
chanics, and in some cases, special relativity, and when modelling
atomic scale circuits, one must introduce a treatment in terms of
wave functions and transmission probabilities, an aspect usually ig-
nored in conventional electronic engineering. In classical theory, the

21
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resistance of a material is defined by Ohm’s Law:

V = RI (3.1)

where V is the external voltage, R the resistance and I the current
flowing in the system. Leaving the geometrical details of the sample
in consideration apart, Eq.3.1 may also be written as:

E = ρj (3.2)

in which the resistivity ρ is defined as the proportionality constant
between the field E applied to our system and the current density
j. Inverting Eq.3.1, we get:

I = GV (3.3)

where G is the conductance. We can easily see that, in this classical
picture of the electrical properties of a system, there is a linear rela-
tion between the applied field and the generated current density: a
variation of the field produce a variation in the current density which
is proportional to the applied voltage by means of the resistivity.

Assuming an uniform conductor, with resistivity ρ, length l and
cross-section S, we can calculate the constant voltage drop across
the conductor as V = El, the total current then is I = Sj and we
can calculate the resistance of the system as:

R = ρ
l

S
(3.4)

This classical relation states that, for Ohmic conductors, the re-
sistance is proportional to the length of the conductor, and inversely
proportional to the cross-section. So, in the classical model, it seems
that, “playing” with the parameters, it is possible to indefinitely
lower the value of the resistance.

As the precision of measuring instrument rose in time, and new
techniques were exploited in order to fabricate smaller and smaller
conductors, new experiments on conductance of mesoscopic and
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nanoscopic conductors were performed. What emerged from the ex-
periment was a different picture with respect to what was foreseeable
from the classical description of conduction. The work of van Wees
et al.46 is the first example of experimental study on conductance
of mesoscopic systems (in this case, conductance of quantum point
contacts in the two-electron gas of high-mobility GaAs-AlGaAs het-
erostructures). The results showed clearly that the conductance was
quantized in multiples of the fundamental quantity e2/πℏ. There-
fore, the classical theory of conduction needed to be revisited in
order to explain this novel quantum effect.

The typical setup, when dealing with nanoscopic electron trans-
port problems, consists in a channel region (either a nanostructure,
a solid state device, a monolayer of molecules or a single molecule)
sandwiched between two metallic regions (electrodes, considered as
semi-infinite due to the fact that their dimension is much bigger than
the one of the channel). An external voltage is applied to the elec-
trodes, and a current starts to flow in the channel region. It is clear
that the system is intrinsically open (due to the external voltages),
semi-infinite (due to the presence of the electrodes), and out of equi-
librium (in order to ensure a current flow, the voltages applied to the
electrodes must be different). It is then clear that approximations
are needed in order to treat the problem from a computational point
of view. The main idea is, therefore, to calculate the transmission
probability that an electron can tunnel across the junction, from one
electrode to the other, under the influence of an external bias that
maintains the entire (open, semi-infinite) system out of equilibrium.

One of the possible way to address this problem is to start with a
good description of the central channel region (by a suitable Hamil-
tonian) and then use the Green’s function method, coupled with the
Landauer-Büttiker model for quantum transport in mesoscopic or
nanoscopic systems.47–50
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3.1 Landauer-Büttiker model

The Landauer formalism21 is a simple phenomenological one-electron
model which dose not take into account the inelastic processes or the
electron-electron interaction, but still it has been very powerful to
explain several mesoscopic phenomena, and it also helps to under-
stand the nature of conductance at atomic level.

The whole method poses its foundation on a number of approxi-
mations regarding the overall problem. The first assumption here is
that a unique steady-state solution for the current is reached. Here,
in fact, we do not work with time-dependent densities, but with
time-independent ρ(r), as if we have effectively reached a stationary
solution (if it exists, which is, in theory, not assured) after enough
time. Once the problem has been made ideally stationary, the role of
the electrodes (or reservoirs) is to continually prepare electrons that
move across the junction, without changing in time. They also have
to be “reflectionless”, that is, the electrons can enter them from the
conductor without suffering reflections. We then assume to switch
from an open problem to a closed one via a set of boundary con-
ditions that are usually called scattering boundary conditions, with
electrons that arrive without scattering from the electrodes, scatter
through the junction and then move away from the junction, with-
out further scattering. It is also required by the Landauer-Büttiker
method to treat the many-body problem with a ground-state mean-
field theory, even if the system is not in its ground state and there
are, usually, complicated many-body interactions. Other than that,
the theory assumes that every transmission channel is independent,
or better assumes that the system has somehow evolved in a totally
incoherent (independent) set of (single-particle) channels, populated
with a Fermi-Dirac statistics. All of these are rather strict approxi-
mation that we have to introduce in order to solve the problem, and
neither of them are guaranteed to be satisfied in a nanojunction. So
the whole theory, soon to be outlined, should be used with particular
care.
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As a first step, let us consider the left and right reservoirs, each
at a specific electrochemical potential µL and µR, respectively, and
defined by Hamiltonians HL and HR. They can be viewed as ideal
blocks of conducting material with a constant transversal confining
potential along its axis. The quantum mechanical solution for the
wavefunction of such systems gives electron states, which are plane
waves along the wire axis and standing waves in the transversal di-
rection. Let us also suppose that the current flows in the z direction.
The energy dispersion relation for the electrodes is (see for example
Fig. 3.1):

Eα(k) = ϵα +
ℏ2k2

2m
(3.5)

where k is the wave vector in the axis direction and ϵα is the energy
of the α-th transverse wave function. Also, given an energy E, the
number of transverse modes at that energy is:

NC(E) =
∑
α

Θ(E − ϵα) (3.6)

with Θ the Heaviside step function. Now that we have defined the
solution at the boundaries, we need to find the general solution for
the whole system, which is defined by single-particle Hamiltonian
HS . This Hamiltonian satisfies the asymptotic conditions:

lim
z→−∞

HS = HL (3.7)

lim
z→+∞

HS = HR (3.8)

So, the eigensolutions of HS should asymptotically merge with
the ones obtained for the electrodes (plane waves along the wire axis
and standing waves in the transversal direction). We can now, as an
example, take an electron coming from the left lead, with energy Ei

and eigenstate |ψi,ki⟩ (with ℏki its momentum). This electron then
experiences certain scattering events (whose nature is not important)
due to the contact. Starting from a single wave, after the scattering
process, in the right electrode this state will be a linear combination
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Figure 3.1: Energy dispersion and occupation of the states in the
system. In the leads the quasi-continuous transversal modes are
filled up to their chemical potential. Due to the small transversal
dimension in the ballistic conductor only a few modes are occupied,
and the +k/− k states have different fillings (dark grey dotted line)
depending on which electrode they arrive from.

of transmitted waves |ψf,kf
⟩ (NR

C represents the channels at energy
Ei in the right lead):

|Ψi,ki⟩ −→
NR

C∑
f=1

Tif |ψf,kf
⟩ (3.9)

In the same way, after the scattering event we expect the solution
in the left lead to be a combination of the incident wave and a sum
of the reflected waves at the same energy Ei of the incoming wave:

|Ψi,ki⟩ −→ |ψi,ki⟩+
NL

C∑
f=1

Rif |ψf,kf
⟩ (3.10)

Since we have assumed that we have reached a steady state, the
current carried by the state |Ψi,ki

⟩ cannot depend on the position,
on our system, of the surface at which we evaluate it. We can then
observe the current deep in the left lead or deep in the right lead.
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For the left and right lead we have, respectively:

IL(Ei) = Ii(Ei)

1−
NL

c∑
f=1

Rif (Ei)

 (3.11)

IR(Ei) = Ii(Ei)

NR
c∑

f=1

Tif (Ei) (3.12)

where IL(Ei) and IR(Ei) are calculated from the general quantum-
mechanical definition of the current density:

j =
ℏ

2mi

(
Ψ∗ dΨ

dz
− dΨ∗

dz
Ψ

)
(3.13)

using |Ψi,ki
⟩ as the current-carrying state. In the same way, we

defined Ii(Ei) and If (Ei) as the current densities from single eigen-
states |ψi,ki⟩ and |ψf,kf

⟩ in coordinate representation which, after
some algebraic steps, become:

Ii(Ei) =
ℏki
mLz

=
vi(ki)

Lz
(3.14)

If (Ei) =
ℏkf
mLz

=
vf (kf )

Lz
(3.15)

with Lz the length of the central region. Rif and Tif represent the
reflection and transmission probability for a wave (with momentum
ℏki) incident to the central region to be reflected back in the left lead
(with momentum ℏkf and same energy) and to be transmitted to
the right lead (again, with momentum ℏkf and same energy). They
are defined by:

Rif (Ei) ≡ |Rif |2
|If (Ei)|
|Ii(Ei)|

(3.16)

Tif (Ei) ≡ |Tif |2
|If (Ei)|
|Ii(Ei)|

(3.17)
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which, due to the fact that we are postulating the existence of a
steady state, have the property:

NR
c∑

f=1

Tif (Ei) +

NL
c∑

f=1

Rif (Ei) = 1 (3.18)

Note that the entire theory described up to now can be rewritten
starting from a wave coming from the right lead, and the results do
not change. Also, due to time-reversal symmetry, the indexes in Tif
and Rif are interchangeable.

To calculate the total current, we must sum over all the trans-
mitted and reflected waves. The density of states per spin for a
momentum ℏki is:

Di(Ei) ==
Lz

2πℏvi(ki)
(3.19)

the voltage V applied to the system causes, due to the assumptions
initially made, a shift in the Fermi levels of the electrode by the
relation eV = µL−µR, the electrons in the electrodes follow a Fermi-
Dirac distribution at the electrochemical potentials µL,R. The total
current is then:

I = 2e

∫ {
fL(E)

NL
c∑

i=1

NR
c∑

f=1

Di(Ei)Ii(Ei)Tif (Ei)

−fR(E)

NR
c∑

i=1

Di(Ei)Ii(Ei)

1− NR
c∑

f=1

Rif (Ei)

}
dE

(3.20)

Defining TLR and TRL as:

TLR =

NL
c∑

i=1

NR
c∑

f=1

Tif (Ei) (3.21)

TRL =

NR
c∑

i=1

NL
c∑

f=1

Tif (Ei) (3.22)
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and, considering that the particle flux must be conserved:

TRL(E) = TLR(E) = T (E) (3.23)

we finally get the expression for the total current in the Landauer
Büttiker picture:

I(V ) =
2e

h

∫ +∞

−∞
[fL(E)− fR(E)]T (E)dE (3.24)

3.2 Transmission function evaluation

According to the Landauer-Büttiker model, described in the pre-
vious Section, the net current flowing across a junction sandwiched
between two metallic, semi-infinite contacts with electrochemical po-
tentials µL(R) (L=left, R=right), as pictured in Fig. 3.2 can be
expressed as:

I(V ) =
2e

h

∫ +∞

−∞
T (E, V ) [fL(E)− fR(E)] dE (3.25)

where fL, fR are the Fermi distribution for the left and right elec-
trodes∗, V is the external bias and T (E, V ) is the transmission func-
tion.

Eq.3.25 is usually written in a simplified formula, in which the
Fermi statistic is taken just as a step function:

I(V ) =
2e

h

∫ µR

µL

T (E, V )dE (3.26)

where µL = εf − V/2, µR = εf + V/2, eV = (µL − µR) and εF is
the Fermi energy of the entire system.

∗Fermi-Dirac statistics for the left and right electrodes: fL(R) =
1

exp (E − µL(R)/kBt) + 1
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y

z

EF,R

Figure 3.2: Schematic representation of the transport problem: two
reservoirs at thermal equilibrium with a Fermi level εF are coupled
to a central (confined) region. Upon an external bias applied to the
electrodes, electrons start to flow.

To define a proper expression for the transmission function, it
is necessary to start from the whole open system and divide it into
three regions: L and R represent the two semi-infinite contacts, and
C represents the channel region, sandwiched between the contacts. If
we call ĤS the Hamiltonian of the whole system, we could partition
it in the three regions defined above, and assume that L and C are
coupled by some potential (V̂LC+ V̂ †

LC), while regions C and R, by a

potential (V̂CR + V̂ †
CR), with V̂LC and V̂CR interaction operators. It

is also assumed that L and R are decoupled†, which means V LR =
V RL = 0.

The isolated leads are described by the Hamiltonians ĤL and
ĤR, and it is possible to associate them with a Green’s function (ĜL

†This means that there is no direct tunnel between the electrodes
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and ĜR), according to

Ĝ(z) =
Î

(z − Ĥ)
(3.27)

where z is a complex variable, Î is the identity and Ĥ represents a
generic Hamiltonian.

With these partitions in mind, it is possible to rewrite the total
Hamiltonian as: ĤL V̂LC 0

V̂ †
LC ĤC V̂ †

CR

0 V̂CR ĤR


 |φL⟩

|φC⟩
|φR⟩

 = E

 |φL⟩
|φC⟩
|φR⟩

 (3.28)

where the φs are the single-particle wave functions associated to the
three regions. Solving Eq.3.28 gives:

ĤL|φL⟩+ V̂LC |φC⟩ = E|φL⟩ (3.29)

V̂ †
LC |φL⟩+ ĤC |φC⟩+ V̂ †

CR|φR⟩ = E|φC⟩ (3.30)

V̂CR|φC⟩+ ĤR|φR⟩ = E|φR⟩ (3.31)

Rearranging the equations, it is possible to define φL and φR in
terms of the Green’s function of the left and the right contact:

|φL⟩ = ĜL(z)V̂LC |φC⟩ (3.32)

|φR⟩ = ĜR(z)V̂CR|φC⟩ (3.33)

Now, simply substituting Eq.3.32 and Eq.3.33 in Eq.3.30, we can
express the new eigenstates of the channel region in the presence of
the contacts:[

E − ĤC − V̂ †
LCĜLV̂LC − V̂ †

CRĜRV̂CR

]
|φC⟩ = 0 (3.34)

We define the self-energy operators for the left and right elec-
trodes as:

Σ̂L(z) = V̂ †
LCĜLV̂LC (3.35)
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Figure 3.3: Regions in which the system is divided, as in 3.28. The
proper central region (Channel) is the nanojunction plus part of the
electrode. “Left” and “Right” are the parts which describe the true
semi-infinite electrodes.

Σ̂R(z) = V̂ †
CRĜRV̂CR (3.36)

These terms (that depend also on the external bias V through

the terms V̂LC and V̂CR) represent an “effective” potential added to
the Hamiltonian of the central region to take account of the interac-
tions between semi-infinite contacts and the channel, and to switch
between an open problem (due to the presence of the semi-infinite
leads) to a closed one. Note that these terms are not Hermitian,
so the eigenvalues |φC⟩ are not real any more: since the eigenvalue

spectrum of ĤL and ĤR is continuous, the discrete states εk of the
channel broaden into resonances peaked around their corresponding
eigenvalue, their starting energy is therefore shifted (or renormal-
ized) by the presence of the electrodes, and the electrons acquire a
finite lifetime to scatter from the channel into one of the electrodes,
due to the broadening effect mentioned before. We can, in fact,
consider an “effective” Hamiltonian Ĥeff = ĤC + Σ̂L + Σ̂R, whose
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eigenstates can be written as:[
ĤC + Σ̂L + Σ̂R

]
|Ψi⟩ = ϵi|Ψi⟩ (3.37)

whose eigenvalues are, as said before, complex:

ϵi = ϵi,0 −∆i − i
(γi
2

)
(3.38)

Here, ϵi,0 is the eigenenergy of the isolated conductor described by

ĤC . The time dependence of an eigenstate of Ĥeff has the form:

exp

[
−i ϵit

ℏ

]
−→ exp

[
−i (ϵi,0 −∆i) t

ℏ

]
exp

[
−γit

ℏ

]
(3.39)

∆i represents the shift in energy due to the modification of the
dynamics of an electron inside the conductor by the interaction with
the leads. On the other hand, the imaginary part of the energy, γi,
reflects the fact that an electron injected anywhere in the conductor
will eventually disappear through one of the leads stretching out
to infinity. Taking the squared magnitude of the wavefunction we
obtain the probability:

|Ψi|2exp
[
−2γit

ℏ

]
(3.40)

The quantity 2ℏ/γi this represents the lifetime, or the average
time an electron remains in the state i before it escapes out into the
leads. If the Hamiltonian would have been Hermitian, the lifetime
would have been infinite.

Both Eq.3.35 and Eq.3.36 depend on the complex variable z =
E ± iδ (with δ as a positive infinitesimal constant). These equa-
tions, in fact, define two self-energy operators. We are interested
only in the one depending on z = E+ iδ, or the retarded self-energy
operator since, roughly speaking, the retarded solution (and the re-
tarded Green’s function to it related) is associated to the idea of an
excitation which gives rise to “outgoing” travelling waves from the
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excitation itself (the excitation being the interaction potential and
the wave travelling in the positive z direction the “outgoing” wave
from this excitation):

Σ̂L(R)(z) = Σ̂L(R)(E + iε) (3.41)

Now it is possible to recast Eq.3.34 as:[
E − ĤC − Σ̂L(E)− Σ̂R(E)

]
|φC⟩ = 0 (3.42)

and it is also possible to associate a retarded Green’s function to
this differential matrix equation:

Ĝ(E) =
Î

E − ĤC − Σ̂L(E)− Σ̂R(E)
(3.43)

Given the self-energy operators, it is easy to define also the broad-
ening matrices as the imaginary part of the self-energy operators,
which are related to the broadening of the eigenstates:

Γ̂L(R)(E) = i
[
Σ̂L(R)(E)− Σ̂†

L(R)(E)
]

(3.44)

In order to calculate the current, the only thing missing is an
expression for the transmission function. This problem can be re-
solved relating all the theory explained above to scattering theory.
The straightforward relation is to express scattered wave functions
by means of the Lippman-Schwinger equation:

|Ψ+
i,ki

⟩ = |ψi,ki⟩+ Ĝ+
0 V̂ |Ψ+

i,ki
⟩ (3.45)

|Ψ−
i,ki

⟩ = |ψi,ki⟩+ Ĝ−
0 V̂ |Ψ−

i,ki
⟩ (3.46)

with |Ψ+
i,ki

⟩ representing a combination of an incident wave plus

a linear combination of outgoing waves, and |Ψ−
i,ki

⟩ representing a
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combination of an outgoing wave plus a linear combination of in-
coming waves. The scattering potential V̂ is simply (with V̂C the
potential of the central region):

V̂ = V̂C + V̂LC + V̂ †
LC + V̂CR + V̂ †

CR (3.47)

Given these equation, it is possible to rewrite the transmission
and reflection probabilities, and in general, rewrite outgoing and
incoming flux amplitudes. The relation between these flux amplitude
is defined by the so-called S (scattering) matrix:

S =

[
r t

′

t r
′

]
(3.48)

which connects the amplitudes of the outgoing and incoming waves
in the nanojunction by the transmission and reflection matrices t and
r. It is then possible to rewrite the total transmission coefficients in
terms of the element of the S matrix:

TLR(E) = TRL(E) = Tr{tt
′
} = Tr{t

′
t} (3.49)

Knowing the form of the Green’s function, it is then possible to
rewrite the transmission function (explicitly considering the depen-
dence on the external bias) with known quantities as:

T (E, V ) = Trace
[
Γ̂L(E, V )Ĝ(E, V )Γ̂R(E, V )Ĝ†(E, V )

]
(3.50)

Now, simply integrating Eq.3.50 as in Eq.3.26 we obtain the de-
sired current.

It is clear that the picture here described focuses on the idea
that the electrons, with a series of scattering events, cross the cen-
tral region with a probability T (E, V ), by the means of transmis-
sion channels provided by available energy level in the central region
that, due to the interaction with the electrodes continuum and the
presence of an external bias, that shifts the Fermi level of the afore-
mentioned electrodes, move and broaden, as long as they interact
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NEGF

Figure 3.4: Self-consistent scheme used for elec-
trode/channel/electrode calculations under external bias.48

with the leads. Energy levels that do not couple with lead states do
not broaden into resonances, and are not “available” channels for
the electrons to tunnel.

It is also important to remember that the whole method here
described poses its foundation on a series of pretty strict approx-
imations, which are not guaranteed to be satisfied for nanoscopic
systems. In particular, all these approximations lead to a descrip-
tion of a system in which a steady state for the current is guaranteed
to exist, condition which we don’t know a priori. Also, they can only
capture mean-field properties of electron dynamics, which is plausi-
ble in the case of non-interacting electrons, but not very accurate in
case of interacting electrons.

The usual computational procedure involves a self-consistent
scheme, implemented as follows:

1. Calculate the coupling terms V and the Surface Green’s func-
tion for the electrode in order to obtain self-energies and Fermi
levels, with a separate, periodic calculation on bulk material;

2. After calculating the self-energies for the electrodes, calculate
eigenvalues and eigenvectors for the “extended” Hamiltonian
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Ĥeff = ĤC − Σ̂L(E)− Σ̂R(E);

3. Using the eigenvalues and eigenvectors obtained at the previ-
ous step, calculate Green’s function using:

Ĝ(r, r′, E) =
∑
n

Φn(r)Φ
∗
n(r)

E − εn
(3.51)

with Φn given by ĤeffΦn = εnΦn

4. With the Green’s Function, it is possible to find the electron
density using:

D = − 1

π
ℑ
∫ +∞

−∞

[
Ĝ(E)f(E − µ)

]
dE (3.52)

5. Given the density matrix, it is possible to calculate the elec-
tric field ε(r) across the junction by the means of the Poisson
equation:

∇ · (ε(r)E(r)) = −4πρ(r) (3.53)

with the Fermi levels (shifted by the external bias) as the
boundary conditions for the differential equation;

6. Given the density matrix and the electric field across the junc-
tion, the starting Hamiltonian can be updated. The cycle
starts again from Point 1, until convergence is reached;

7. When convergence is reached, with the Green’s function and
the self-energy operators, the broadening matrices ΓL(R) and
the transmission function T (E, V ) are ready to be calculated.
After that, the transmission functions needs to be integrated
between the proper bias window in order to obtain the final
current.
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3.3 Implementation of the method: the
FOXY code

The previous chapter has described the Landauer-Büttiker theory,
and the usual computational route followed in many standard elec-
tron transport codes. The implementation of the Landauer theory
requires a self-consistent scheme in which, after a full periodic calcu-
lation on both electrodes to obtain self-energies, the effective Hamil-
tonian, with the inclusion of the field term, is diagonalised at each
step. The field is the result of a separate numerical solution of the
Poisson equation in which the charge density is known and provided
by a diagonalization of the Hamiltonian matrix obtained in the pre-
vious diagonalization step.

Since the Landauer-Büttiker theory is, essentially, a single-parti-
cle theory, it couples nicely with Density Functional Theory, which
is a single-particle, mean-field and ground-state theory. But there
is no clear answer to the question of how accurate is a ground state
DFT calculation for our purposes, even if we make the assumption
that all the approximation in the Landauer approach are satisfied
(and can, in principle, provide an acceptable description of the dy-
namics of the true many-body system in an ideal steady-state), and
even if we could have the exact ground state DFT functional for our
case. This is because we are effectively using a ground state theory
for a non-equilibrium problem (electron flow from reservoirs at dif-
ferent electrochemical potential).

There are many other subtle technical problems to which is best
to keep an eye on. One of the main issues is the geometrical de-
tails of the contact. While in mesoscopic systems a difference of
few atoms does not affect the total current in a significant way, in
nanoscopic system even a single-atom change in the configuration
of the junction can lead to very large differences in the current,51

mainly due to partial electronic screening, that can cause large vari-
ations in the electrostatic potential at the contact region. This is
why a good geometry optimization step is always required before
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a transport calculation. And, even in the case of a good geometry
optimization step available, there are not experimental informations
which can help in determining the exact local geometry between the
single molecule and the electrodes.

Moreover, there are problems related to the calculation of the
electrostatic potential in the central region. Solving the Poisson
equation requires boundary conditions: due to the partitioning of
the system, as defined in the previous Section, the potential at the
interface between electrodes and central region is the required condi-
tion. Since the Landauer approach assumes that the electrodes are,
in fact, reservoirs, they have well defined electrochemical potentials,
µL and µR, eventually shifted by an external bias. In order to use
µL and µR as boundary conditions for the Poisson equation, many
layers of electrode atoms are needed to be included in the calcu-
lation of the central region, so to move far away from the contact
region, “screen” the effects introduced by the contact itself, and, in
the outermost part of the central region (the one directly connected
to the reservoirs), reach a “bulk-like” behaviour.

It is then clear that modified self-consistent DFT calculations
on such complex structures (such as the one described in the pre-
vious Section), with hundreds of atoms, are cumbersome and time
consuming, both for the calculation of the optimal geometry of the
junction, and for the ground-state calculations. Most of the time,
these type of calculations give also overestimated results,52,53 due to
the geometrical reasons explained above, and also due to the funda-
mental problems related to the use of DFT (namely, self-interaction
problem54–56 and excited state evaluation). Notice that a full calcu-
lation is needed for every different voltage applied to the system.

One may then focus on the response of the contacted molecule
to an external bias rather than on the two metallic contacts and
the complex molecule-lead interface and consider an approximate
approach that simplifies the metal-molecule interaction. In this way
it is possible to put the attention on the behaviour of the molecule
itself and on the molecular reasons which lead to, for example, rec-
tification and switching phenomena. The goal, then, is to set up a
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low-cost computational approach which may be applied with confi-
dence to a large variety of devices, simplifying the metal-molecule
interaction while retaining all the essential physics of the charge
transport due to the molecular bridge.

The approach here used is to combine Density Functional The-
ory calculations for the molecular system, with the Non-Equilibrium
Green’s Function Method (NEGF) and the Landauer-Büttiker for-
malism for quantum transport in nanostructures, in a simplified way,
as implemented in the domestic FOXY code.57 This simplified tech-
nique has been created with the idea of developing a computationally
efficient method for the calculation of I/V characteristics, which can
be applied to a wider variety of molecular systems. This may allow
a rapid, but reliable, investigation of molecules of potential applica-
tion in electronic devices for their functionality.

The choice of Density Functional Theory as the main tool to
calculate electronic properties of the central region means that we
are going to use an effective ground state, single-particle Hamilto-
nian for the system even if the problem is intrinsically a many-body
one, and out of equilibrium. Also, it implies the choice of a suitable
exchange-correlation functional (which, however, are usually tailored
for ground-state calculations).

We have applied an approximate treatment of the molecule-lead
interaction whereas the voltage bias has been accounted for through
a constant electric field. Starting from the method by Gonzales et
al.,58 where the molecule-lead coupling is taken independent from
the energy and proportional to the projection of the molecular or-
bitals onto the terminal fragments of the molecule in between, we
have developed the method described below. This approach can also
be seen as a simplified derivation of the one based on the frontier
orbitals of Ref.59 and by virtue of its simplicity, its range of appli-
cation may be thought to cover quite large molecular species.

According to the Newns-Anderson model,60,61 adopted in the
paper of Gonzales et al.,58 we consider the interaction of a number
of discrete orbitals φ of the molecule under study with a continuum
of states ϕε (normalized: ⟨ϕε|ϕ

′

ε⟩ = δ(ε − ε
′
)) of an electrode. We
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make here the first assumption:

Approximation 1 The field generated in our system from an ex-
ternal bias is determined assuming the electrodes as two infinite par-
allel plates with an applied potential difference V , and the distance
between the plates is the distance between the electrodes. The field
which our molecule feels is therefore uniform, perpendicular to the
surface of the electrodes (longitudinal to the molecule), and directly
added into the Kohn-Sham equations.

We have then to solve the eigenvalue problem for both of the leads
and the molecule:

Ĥ = ĤC + ĤL + ĤR + V̂LC + V̂CR (3.54)

ĤC |φj⟩ = εj |φj⟩ (3.55)

ĤL(R)|ϕε,L(R)⟩ = ε|ϕε,L(R)⟩ (3.56)

where ĤC and ĤL(R) are suitable one-electron Hamiltonians de-
scribing the molecule and the left (right) electrode (assumed to be
identical) and the V terms represent the coupling between the leads
and the central molecule (neglecting direct lead-lead coupling, as
described in the previous section). In the framework of the so called
“extended molecule” model, the central molecule may also include
a small portion of the electrodes, in order to take into account at
least part of the electronic rearrangement due to bonding between
the molecule and the leads. Since the ϕs are the eigenstates of a
one-electron Hamiltonian, the corresponding unperturbed Green’s
function is diagonal in the ϕ basis and the self-energy is (for the
time being we consider only one electrode):

ΣL(R) = V †
LC(CR)GL(R)VLC(CR) (3.57)

here VLC(CR) are the coupling matrices and GL(R) is the Green’s
function for the electrodes. GL(R) can be written in an alternative
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form with respect to the general one (see Eq.3.43):

GL(R) =
∑
ε

|ϕε,L(R)⟩⟨ϕε,L(R)|
E − ε+ ıδ

=

∫ |ϕε,L(R)⟩⟨ϕε,L(R)|
E − ε+ ıδ

dε (3.58)

where δ is a positive infinitesimal constant. The self-energy therefore
is (dropping the L(R) suffixes for simplicity, whenever possible):

Σ =

∫
V †|ϕε⟩⟨ϕε|V
E − ε+ ıδ

dε (3.59)

which becomes, after projection onto the HC eigenstates:

Σjk(E) =

∫
VjεVεk

E + iδ − ε
dε (3.60)

where Vjε = ⟨φj |V |ϕε⟩. The integral can be recast as:

Σjk(E) =

∫
VjεVεk

E + iδ − ε
dε = P

∫
VjεVεk
E − ε

dε+ ıπVjEVEk (3.61)

where P denotes the Cauchy principal value. Here we need to make
another approximation:

Approximation 2 The coupling terms Vjε are independent from
the energy.

Given that, the first term of Eq.3.61 vanishes, leaving only the imag-
inary part, and therefore making the self-energies independent from
energy:

Σjk = ıπV ∗
j Vk (3.62)

where Vj is the value of Vjε. With the approximations employed, we
have purely imaginary self-energies: this means that the levels are
only broadened and not shifted.

Now, we introduce the approximation proposed by Gonzales et
al.:58
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Approximation 3 Vj is assumed to be proportional to the projec-
tion of φjs onto a a terminal fragment of the molecule close to the
considered electrode.

One can then rewrite the self-energy matrix as:

Σjk = −ı∆
2
⟨Pφj |Pφk⟩ = −ı∆

2
Qjk (3.63)

where P is the projection operator for the considered terminal frag-
ment and ∆ is an empirical constant that accounts for the molecule-
lead interaction. The broadening matrix then becomes:

Γ
L(R)
jk = ∆Q

L(R)
jk (3.64)

If we insert Eq.3.63 in Eq.3.43, we can calculate the transmission
function wit Eq.3.50. First, making the further assumption that
the Green’s function is diagonal, we can evaluate it without matrix
inversion as:

Gjj(E) =

[
E − εj − ı

∆

2

(
QR

jj +QL
jj

)]−1

(3.65)

and then the transmission function can be computed as:

T (E) = ∆2Trace
[
QLGQRG†]

= ∆2
∑

jkQ
R
jkQ

L
kj

(E − εj) (E − εk) + ΓjΓk[
(E − εj)

2
+ Γ2

j

] [
(E − εk)

2
+ Γ2

k

]
(3.66)

where:

Γj =
1

2

(
ΓL
jj + ΓR

jj

)
=

∆

2

(
QL

jj +QR
jj

)
(3.67)

The transport properties of the molecules of interest can then
be computed by choosing a suitable effective Hamiltonian for the
contacted molecule, projecting the molecular orbitals (MOs) on the

left (right) fragment in order to calculate Q
L(R)
jk and then use them
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to calculate the transmission spectrum according to Eq.3.66. The
dependence on the external bias is obtained performing DFT cal-
culations at each value of the corresponding electric field applied to
the contacted molecule.

In order to take explicitly into account the molecule-lead adsorp-
tion, we should consider an “extended” molecule where the molecule
under study is terminated with an end-group and then attached to a
small cluster of atoms belonging to the leads. All the “extra” atoms
are added directly to the central region, with no need for electrode
calculations.

It is then clear that the central quantities of our model are the
projections of the molecular orbitals onto the terminal fragments,
from which the self-energies Σ (as well as the broadening Γ and
the transmission function T (E, V )) strictly depend. The previously
introduced ∆ parameter only plays the role of an extended molecule-
infinite lead coupling parameter, and, once set by a calibration pro-
cedure, it should be kept frozen for every system which employs
electrodes of the same kind as the one used for the calibration, and
the same terminal atom for the central molecule. For example, we
can calibrate our method on experimental data for the well-known
benzene di-thiol molecule coupled with Gold leads. Once the cali-
bration for the ∆ is over, the value found should be used for every
species bonded with semi-infinite Gold electrodes. The issue of the
calibration of the method is described in detail in the next Chapter.

In order to correctly project the molecular orbitals onto the ter-
minal fragments, the atoms of the extended molecule are partitioned
into three classes: left (L, atoms closest to the left electrode), right
(R, atoms closest to the right electrode) and channel (C, atoms of
the proper central region). The idea is to use a strategy based on
Mulliken population analysis,62 where the atomic orbital basis set is
partitioned in functions centred on L, R or C atoms. The molecular
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orbitals (MOs) can be written as:

|φj⟩ = |χLχCχR⟩

 CLj

CCj

CRj

 (3.68)

and the overlap between two MOs can be written as:

⟨φj |φk⟩ = C∗
LjSLLCLk +

1

2

(
C∗

LjSLCCCk + C∗
CjSCLCLk

)
(3.69)

+ C∗
CjSCCCCk +

1

2

(
C∗

LjSLCCCk + C∗
CjSCLCLk

)
(3.70)

+
1

2

(
C∗

RjSRCCCk + C∗
CjSCRCRk

)
(3.71)

+ C∗
RjSRRCRk +

1

2

(
C∗

RjSRCCCk + C∗
CjSCRCRk

)
(3.72)

identifying the first row as the contribution to the overlap given by
the L fragment, the second and the third one as the contribution
by the C fragment and the fourth one as the contribution by the R
fragment. In order to get, for example, the right projected matrix
element, we only need to sum:

QR
jk = C∗

RjSRRCRk +
1

2

(
C∗

RjSRCCCk + C∗
CjSCRCRk

)
(3.73)

These elements also have the property:

QL
jk +QC

jk +QR
jk = δjk (3.74)

with δjk as the Mulliken atomic charges.

3.3.1 Implementation in the Gaussian package

With all the equations at hand, it is clear that the FOXY method
speeds up the calculations of transport properties of molecules be-
tween metallic leads. The price we have to pay is in a minor accuracy
in the calculations. The procedure here is to run DFT calculations
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for each separate value of the bias in which we are interested, and
calculate the corresponding transmission function and current. The
I/V characteristic is then the result of several DFT calculations on
the extended molecule, followed by a FOXY calculation. Consid-
ering that a full DFT-NEGF self-consistent procedure is computa-
tionally expensive (which, depending on the machine in which they
are running, could be even days long for a single bias point), the
entire process that we employ cuts down the computational time
for the complete I/V characteristic significantly (even in the worst
cases of big and long molecules), where most of the computational
time is dedicated to solve the DFT problem. In fact, FOXY cal-
culations, with respect to ground-state self-consistent DFT calcula-
tions, are much faster, even for molecules with more than a hundred
atoms, thanks to dedicated routines for multiple matrix multiplica-
tions of the A†BA type (multiple matrix multiplication is particu-
larly needed in the QL(R) calculation).

As he calculation of the current is performed by an numerical
integration of Eq. 3.25 on a finite grid, some inaccuracies due to
very small and narrow peaks can take place. The problem has been
tackled with a new procedure, where the Γj terms of Eq.3.67 are
not tested against a threshold value, but the whole transmission
function is convoluted with a Gaussian with FWHM provided by
the user. In order to properly employ the convolution operation,
a selective refinement of the energy grid (set for the integration of
the T (E, V ) over energy, as in Eq.3.26) was needed. The new grid
scheme starts from the one generated by the main program, with
a spacing between adjacent points provided by the user, and then
superimposes it a new grid, refined around the peaks of the transmis-
sion function. This new operation is controlled by two new external
keywords, which define the interval, in energy, around a peak of the
T (E, V ) where the grid should be refined, and the number of new
points to be added to the original energy grid.

Another parameter that is free and needs to be provided by the
user is the value of the Fermi energy εF . Standard self-consistent
codes employ separate calculations on leads in order to calculate
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self-energies and Fermi levels, which are used as boundary condi-
tions for calculations of the potential in the central region and to
the calculation of the overall Fermi level of the entire structure. The
fact that with the FOXY method calculation on the periodic leads
are completely avoided, means that there is not a strict procedure
to calculate Fermi levels of such leads, and consequently of the en-
tire structure. Fermi energy is a critical point in electron transport
calculations, because it defines the starting point for which the inte-
gration bias window is defined (see Eq.3.26): it could be misleading
to take the Fermi level of the entire system as the Fermi level of
the central molecule, because the energy of half the HOMO-LUMO
gap does not take into account the interaction of the molecule with
the (periodic, semi-infinite) electrodes. By the way, keeping the
Fermi level as half the HOMO-LUMO gap of the extended molecule
(molecule plus few atoms of the leads) can be a reasonable guess
when experimental information on the systems under study are not
available.63,64 Since with FOXY code it is not possible to calculate
the Fermi level of the metal/molecule/metal, a reasonable approx-
imation for εF is to take Fermi levels derived from experiments or
accurate calculations on bulk materials.65 Since the Fermi level of
the bulk electrodes material neither is the real Fermi level of the
entire metal/molecule/metal system, and since it can lay out of the
HOMO-LUMO gap, and since our method does not take into account
charging effects for the central molecule (which can induce a change,
other than the one caused by an external electric field, occupied and
virtual levels positioning), small variations on the Fermi level can be
applied in order to make it lay inside the molecular HOMO-LUMO
gap. We think that the fact that the Fermi level can be outside
the calculated HOMO-LUMO gap of the extended molecule can be
caused by an insufficient level-shifting, due to the fact that, in our
method, we consider only small Gold clusters instead of full semi-
infinite electrodes. Of course, this procedure should be employed
keeping in mind the fundamental problems of DFT, in particular
regarding the positioning of virtual levels and the evaluation of the
HOMO-LUMO gap: with these fundamental drawbacks, a complete
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agreement, it is really hard a possibility, even if self-interaction cor-
rected functionals54–56 are employed in the calculations. Noticing
that the transmission function is independent on the position of the
Fermi level, and can be considered as the reference quantity in an
absolute energy scale, we use, as Fermi level, the midpoint of the
HOMO and LUMO orbital energies.

In our case, Au electrodes are employed, so the starting value of
the Fermi level is -5.3 eV (value of the Fermi level of bulk gold, as
taken from literature), with possible variations that depends on the
nature of the molecular system (see Chapter 4 for more details). It
should be kept in mind that the calculation of the transmission func-
tion T (E, V ) is not affected by the choice of the Fermi energy of the
extended system. The position of the Fermi energy has even been
considered as an adjustable parameter of the model.66 Only the eval-
uation of the I/V curve depends directly by the Fermi level position.
We can then consider T (E, V ) as the main reference quantity in our
transport calculations. The effects due to these approximations for
the evaluation of the Fermi level are expected to have a minimal
impact on qualitative comparisons between different molecules, as
long as the same set of approximations is used throughout.

It is clear that calibration procedures are necessary in order to
define the proper ∆ value to use, and to determine which FWHM
and grid values provide the most stable results.

The entire code has been implemented also in a locally modified
development version of the Gaussian09 code,67 with a complete
rewriting of the main routine and the corresponding subroutines.
The only data that the FOXY program (in its stand-alone version)
needs are orbital energies (α and β, if an unrestricted calculation is
chosen), orbital coefficients (α and β for unrestricted calculations),
easily obtained from Hartree-Fock or DFT calculation. In theGaus-
sian implementation, it internally interfaces with the standard in-
ternal Gaussian array where these informations are stored during
the execution of the various routines. The overlap matrix is also
needed, in order to compute the projections onto the fragments (see
Eq.3.69).
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Chapter 4

Application of the
method to molecules of
interest

Results are like shooting stars: you
need a sharp look to search for
them, you have to be patient to wait
them out, and you need a little bit of
luck to admire their beauty.

Livia Vallini

One of the simplest electronic circuital element is the rectifier (or
diode), a passive device in which electrical current is allowed to flow
in only one direction. This is also the first type of device that has his-
torically been attempted to be made with single molecules. In 1974,
Aviram and Ratner3 were the first to suggest an organic molecular
system showing current rectification, composed by a “donor” and an
“acceptor” group attached by a carbon bridge with single bonds. By
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studying this organic analogue of a p-n semiconductor junction, they
envisioned the charge transport as a three-step process, consisting
of electron and hole injection into the acceptor and donor segments
of the molecule, and easy electron transfer will be in the acceptor
to donor direction, because of the lower oxidation potential of the
donor segment (its molecular levels are higher in energy).

We may think at molecular rectification as the initial step of
molecular electronics. Due to the difficulties of building efficient
molecular rectifiers,68 the research in the field is still very active.69–75

In this perspective, we want to investigate, with our simplified ap-
proach, the rectification properties of molecular species.

In this chapter, we will present testing and calibration of the
method presented in the previous chapter, done with calculations
on the prototypical system for molecular transport calculations and
experiments, benzene dithiol (BDT), which consists in a benzene
ring with the Hydrogen in 1- and 4- position substituted with a -SH
group. A cluster of three Gold atoms (Au-Au = 2.88 as in a typical
(111)-Au surface76) was added at each end of the molecule (Fig. 4.1,
top), with the Sulphur bonded in hollow position at each side of the
bare molecule. In this way some effects of the electronic rearrange-
ment due to the molecule-lead bonds are explicitly included in the
theoretical calculation. The calibration has been done with direct
comparison between the computed I/V characteristics and the one
measured by Reed et al.,77 in order to find the optimal value for the
parameter ∆.

Once the optimal value was found, the molecular diode synthe-
sized and probed by Weber et al.5 has been studied.78 Even for this
molecule the -SAu3 ending group was added to the relaxed struc-
ture of the isolated molecule. The experimental data reveal that
this species is characterized by a small conductivity but a signif-
icant rectification ratio in the range of ±1.5V of the applied bias
voltage. Despite the simplicity of our approach, we have been able
to reproduce the experimental results and to analyse the chemical
reasons of the observed rectification.

We also started to study which species can be made asymmetric
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by mixing different metals in the channel region, as well as sub-
stituent groups, in particular electron-acceptor groups (such as Flu-
orine). As a bridging ligand between these metals, we have chosen
pyrazine, well know from the mixed-valence chemistry,79 and as an-
cillary ligands we have considered porphirazine in order to have a
neutral molecule with the metals in oxidation state II. The contact
to the gold electrodes is obtained by two terminal thiol-pyridine lig-
ands. Depending on the type of the metals used, the I/V curves
show a symmetric or a asymmetric behaviour (with relevant bias-
dependent rectification ratio significant only in a limited bias win-
dow). This feature can be explained considering the relative posi-
tioning of the relevant occupied energy levels of the metallic frag-
ments, which interact in the formation of delocalized orbitals of the
supermolecule that acts as conduction channels.

4.1 Calibration of the method

Due to the presence of the empirical parameter ∆, as introduced
in Eq.3.63, the need of tuning grid values for the integration of the
T (E, V ) and the evaluation of the Fermi level of the system, the
practical implementation requires a preliminary calibration. For the
calibration of the ∆ parameter, this might be done in two ways:

• By comparing, for a benchmark molecule, the I/V curve com-
puted at various values of the parameter, with experimental
references (such as77);

• By comparing the aforementioned computed I/V curve with
NEGF-DFT results obtained by programs that calculate metal-
molecule self-energies including explicitly the metallic contact,
and in fact employing the self-consistent scheme described in
Chapter 3 (like, e.g. that available in the TranSIESTA code80

or in the ATK package81).

Due to the known problems of DFT (such as self-interaction and im-
age charges) which may affect the energy level positioning and there-
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Figure 4.1: (a) Benzene Di-thiol molecule, with the cluster of
Au atoms used for the calibrations, as explained in Section 4.1.
(Au=yellow, C=grey, H=white, S=olive); (b) Detail of the Au3DTB
transmission function, varying the energy interval where the grid
should be refined. Here, the Np parameter (previously calibrated)
has been taken fixed. Notice that, after a value of 12, further increase
of this parameter doesn’t affect the precision of the curve.
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fore the computed I/V curve, we decided to calibrate our method
with respect to experiments, being well aware that also experiments
may have issues. In fact, we don’t know yet the exact nature and
the geometry of the metal-molecule interface.

For calibration we have selected benzene 1,4-dithiol (DTB) and
modelled the metallic junctions by two clusters of three Gold atoms
(as described above) at each end (Au3DTB, from now on), and per-
formed calculations at different values of ∆. The results have been
compared with the experimental data by Reed et al.77 which, ac-
cording to the authors, are averaged on several different measure-
ments and well reproducible.

All calculations, including geometry optimization at zero bias,
have been performed using the B3LYP functional, LANL2DZ basis
set82 for Au and 6-311G* basis set for the remaining atoms. We
have taken εF = −5.3 eV as the starting value of the Fermi level of
the lead-molecule-lead system. In our work we define as positive a
current flowing from the left lead to the right lead, so that a posi-
tive voltage lowers the Fermi level of the left contact and increases
that of the right contact. All DFT calculations (geometry optimiza-
tion and single-point calculations) described in this work have been
performed with the development version of the Gaussian suite of
programs.67

The grid points for the integration of the T (E) were chosen
in the following way. For each peak of the T (E) a fixed number
of points Np was included in a energy interval equal to its FWHM
and this energy range was replicated for a number of FWHMs Nw

around the energy of the peak. The grid points of all peaks were
then merged in a unique grid after elimination of the points exces-
sively closed to each other. Test were performed in order to reach
convergence, that means a grid density such that a further increase
of the density does not yield significant changes in the T (E) (Fig.
4.1, bottom). The best values for the parameters are Np = 200 and
Nw = 12.

After the calibration of the grid parameters, we started to cal-
culate the transmission function of the DTB molecule for various
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Figure 4.2: I/V characteristics of the Au3DTB molecule obtained
with the FOXY code, with ∆ = 0.0015 (as the experimental I/V
curves for the Au3DTB77)

values of the ∆ parameter, aiming at reproducing the experimental
curves.77 The obtained I/V characteristic is reported in Fig. 4.2,
where the computed curve is in strong agreement with the experi-
mental one, in particular for the initial energy gap (of about 2V near
the Fermi level). The only difference is in the “smoothness” of the
curve: this could be related to the precision of the working appara-
tus employed in the experimental probing of the molecule or either
in the approximation we have made regarding the metallic contact
and the molecule-lead coupling. The FOXY method, however, can
highlight the current steps related to the broadened molecular levels
that enter the bias window. The ∆ parameter used is ∆ = 0.0015
and this value is therefore used also in the subsequent calculations
(the curve with the coupling ∆ = 0.75 differs quantitatively, and has
not a net gap around ϵf ).
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4.2 Molecular Rectifiers

With the aim of investigating the rectification mechanism in mole-
cules, we studied the molecular rectifier synthesized and probed by
Weber et al.578 Even in this case, all calculations, including geome-
try optimization at zero bias, have been performed using the B3LYP
functional, LANL2DZ basis set82 for Au and 6-311G* basis set for
the remaining atoms.

As explained before, in order to calculate the I(V) curve, it is
important to know the positioning of the Fermi level with respect to
the molecular orbitals of the system under study. Although one may
reasonably expect that the Fermi level in a molecular junction lies
somewhere in between the HOMO and LUMO energies66 so to min-
imize charging effects, the determination of its exact position is not
straightforward. This is especially true when the bulk Gold is repre-
sented with a small cluster of few atoms as presented here. However,
in many cases the experimental value of the Gold Fermi energy is
found in between the HOMO and LUMO energies of the extended
molecule (molecule plus Gold clusters). Usually, when possible (so,
when it lies into the HOMO-LUMO gap), in FOXY calculation we
try to pin the value of the Fermi level of the system to the one of the
bulk Gold (∼-5.3 eV), but it is usually used also ad a fitting param-
eter hen experimental data are accessible. In this case, we find out
that a value of -5 eV is right to correctly reproduce the experimental
I/V curves.

The optimized structure of the molecule (Fig. 4.3) shows that
the two central rings are nearly orthogonal due to the steric hin-
drance of the ortho methyl groups. In this conformation, the left
and right parts of the molecule have almost independent π orbital
systems and, as expected, only a negligible current is found (it is
well known that, in order to obtain small but not negligible current
flow across a molecule, delocalized orbitals capable of couple to both
ends of the junction are needed, so that the electrons can easily flow
from an electrode to the other). This is, however, different from the
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significant currents observed in the experiments. We may then sup-
pose that in the experimental setup the molecule is displaced from
the optimized angle. In order to find the actual value of the cen-
tral torsional angle, we repeated the calculations for different angle
values, with steps of 15 degrees each, and then computing the I/V
characteristics. We found that at 105 we can obtain currents in the
range of the experimental values (Fig. 4.3).

Although the distorted structure is less stable than the minimum
energy one by 0.022 eV (≈ 0.5 Kcal/mol), and it is thus not suffi-
ciently populated at the temperature (30 K) of the experiment,5 it
is evident from the physics of the system that the two central rings
must be displaced from the optimized perpendicular conformation
in order to get detectable current flow across the molecule.

From Fig. 4.3 it is apparent that the I/V curve for the 105-
species is highly asymmetric, revealing a diode-like behaviour (rec-
tification), where the carrier flow is inhibited for positive voltages.
For negative voltages, the computed current, after an initial gap,
shows a net increase at ≈ −0.8V , with a rapid grow for more nega-
tive biases (up to -7 nA). The calculated rectification ratio, defined
as I(−2V )/I(+2V ), is ≈ 6.5, in good agreement with the value of
4.5 reported in5 and referred to at 1.5V bias.

The rectifying behaviour can be explained by looking at the
transmission function T (E, V ) for +2V , 0V and −2V reported in
Fig. 4.4.78 According to Eq.3.66 , T (E) provides significant contri-
butions in the integration energy range of Eq.3.26, when the product
of the QL and QR matrix elements is significant in that region. This
occurs for MOs delocalized in both the two Au3 fragments, provided
that destructive interference between MOs does not occur (see also
Tab.?? for details about orbital projections onto the terminal frag-
ments). In Figs. 4.5, 4.5, 4.7 the orbitals and ϵf are shown for three
values of the bias: +2V, 0V and -2V).

For each voltage, the HOMO and LUMO are the only or-
bitals inside the voltage window (1V ) that slightly couple with both
fragments, and their shape changes with the external bias. Increas-
ing the bias, new orbitals come into play and start to couple with
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Figure 4.3: (a) Molecular diode of.5 In the figure we also show the
three Au atoms placed on both sides of the molecule. The S atom is
in hollow position with respect to the three Au atoms (Au=yellow,
C=grey, H=white, S=olive, F=light blue); (b) I/V curves of the
molecule under study for a torsional angle of 90 (continuous line)
and 105 (dashed line).
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Figure 4.4: Transmission functions for the molecular diode with a
torsional angle of 105, where it is clearly shown the asymmetry in
the T (E) for positive and negative biases (Vds).
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(a) LUMO+3 (b) LUMO+2

(c) LUMO+1 (d) LUMO

(e) HOMO

Figure 4.5: Weber diode orbitals at −2V (Au=yellow, C=grey,
H=white, S=olive, F=light blue).
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(a) LUMO+3 (b) LUMO+2

(c) LUMO+1 (d) LUMO

(e) HOMO (f) HOMO-1

Figure 4.6: Weber diode orbitals at 0V (Au=yellow, C=grey,
H=white, S=olive, F=light blue).



4.2 Molecular Rectifiers 63

(a) LUMO+3 (b) LUMO+2

(c) LUMO+1 (d) LUMO

(e) HOMO (f) HOMO-3

Figure 4.7: Weber diode orbitals at 2V (Au=yellow, C=grey,
H=white, S=olive, F=light blue).
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the fragment atoms. At 0V , the LUMO is localized on the right
Au atoms (those closer to the fluorine atoms), whereas the HOMO
is localized in the left part. For negative biases (up to −2V ) the
HOMO-LUMO gap decreases, the two orbitals undergo moderate
polarization and the product QLQR, for both HOMO and LUMO, is
small but sufficient (0.002 for the HOMO and 0.0012 for the LUMO)
to give rise to a measurable current. T (E) shows then a peak around
εF (Fig.4.4). Other levels enter into the εF ± V

2 window, but they
do not couple with the leads, because they are mainly molecular or
purely lead states, and so they are localized only in one part of the
system.

The exact opposite behaviour is observed for positive biases. The
HOMO-LUMO gap also decreases with respect to 0V : the reason
here is that HOMO and LUMO levels at 0V tend to be pushed far
away from the Fermi energy by the field generated from negative
biases, but virtual energy levels higher in energy at 0V than the
LUMO are lowered by the field, and occupied levels that were lower
in energy at 0V than the HOMO do the exact opposite. So, new
levels become the HOMO and LUMO at 2V and the gap, effectively,
decreases (Fig.4.7).

Also, for 2V , the orbital polarization is the opposite, with the
HOMO to the right and the LUMO to the left: the HOMO-1 at 0V
rises up and becomes the HOMO, while the LUMO+3 at 0V lowers
down and becomes the new LUMO. At the same time, the QLQR

product becomes very small in the range considered, because almost
all the orbitals in the bias window do not couple with the leads (see
Fig.4.7): this can also be seen from T (E), where there is only a small
peak (≈ −0.4eV ).

The rectifying behaviour can thus be ascribed to the combined
effect of the energy position of the relevant orbitals (HOMO and
LUMO) and of their spatial extent, which determines the molecule-
Gold coupling. In particular, the alignment of the HOMO and
LUMO at −2V , which favours their mixing, seems to be the main
element responsible for the computed rectification.

In order to deeply understand the rectification mechanism
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(a) A-species

(b) B-species

Figure 4.8: Modified molecular species analyzed in order to bet-
ter understand the role of the fluorine atoms (Au=yellow, C=grey,
H=white, S=olive, F=light blue). (a) two fluorine atoms at the left
of the rightmost benzene ring (A-species for now on), (b) two fluo-
rine atoms at the right of the rightmost benzene ring (B-species for
now on).
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Orbital Energy (eV) QL QR QL ∗QR

-2 Volts

LUMO+1 -4.8402 0.0005 0.8000 0.0004
LUMO -4.9135 0.0014 0.8200 0.0012
HOMO -5.1223 0.2603 0.0076 0.0020
HOMO-1 -5.6601 0.7628 0.0000 0.0000
HOMO-2 -5.7617 0.4537 0.0000 0.0000

0 Volt

LUMO+2 -3.0889 0.0000 0.8176 0.0000
LUMO+1 -4.6488 0.7501 0.0000 0.0000
LUMO -4.7373 0.8423 0.0000 0.0000
HOMO -5.3908 0.0006 0.2394 0.0002
HOMO-1 5.9478 0.0001 0.6533 0.0000
HOMO-2 -5.9680 0.0000 0.5820 0.0000
HOMO-3 -6.2898 0.0547 0.1051 0.0057

2 Volts

LUMO+2 -3.7934 0.8368 0.0000 0.0000
LUMO 4.0280 0.0001 0.8209 0.0001
HOMO -5.7716 0.2008 0.0036 0.0007
HOMO-1 -6.0653 0.0127 0.1689 0.0021

Table 4.1: Orbitals into the maximum integration window, with
their projection onto the left and right fragments.

for this molecule, we investigated the effect of fluorine atoms more
deeply, modifying the structure of the molecule: that is, removing
two fluorine atoms at a time and repeating the set of calculations
as above. The structures considered are shown in Fig.4.8, where the
central torsional angle has been again fixed at 105, for reasoning
explained before.

The I/V characteristics of the two species are reported in Fig.
4.9, where it is clear that the main transport features of the orig-
inal molecule with 4 Fluorine atoms are reproduced in the system
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Figure 4.9: Current/Voltage characteristics for the A-molecule (con-
tinuous line) and B-molecule (dashed line). The I/V characteristic
of the original molecule is also reported (dotted line).

with only two Fluorines placed in ortho positions with respect to
the Sulphur atom, i.e. in the molecule A. This feature may find a
qualitative explanation looking at the Mulliken charge distribution
onto the substituted benzene ring. The Fluorine atoms (electron ac-
ceptors) in ortho positions determine an additional negative charge
on the Carbon atom of the phenyl ring directly bonded to the acety-
lene linker and thus has driven electronic charge from the left part of
the molecule towards the terminal ring coupled with the right lead
(in Tab. ??, QL of the HOMO is seen to double on going from 0
to −2V ). This excess charge is easily transmitted through the re-
maining part of the molecule with a field capable of driving electrons
from the left to the right electrode, without the need to pass through
the central part of the molecule (where the π delocalization is bro-
ken). On the other hand, when the two Fluorine atoms are in meta
positions as in the B structure, this effect is missing, no additional
charge is ready to be easily transmitted, and the I/V curve is much
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Figure 4.11: The Ru-Ru molecular system. The Ruthenium atoms
are highlighted in turquoise blue. The other atoms are: N (blue), C
(gray), H (white), S (olive), Au (yellow). All the other species are
obtained substituting the Ru atom on the right with Os (Ru-Os) and
with Fe (Ru-Fe). The field is applied along the z axis which contains
both Sulphur atoms (left Sulphur at negative z, right Sulphur at
positive z).

more symmetric.78

4.3 Binuclear transition metal
complexes

Metal-ligand-metal species have been widely studied in the past,
especially for their electrical and intramolecular electron and en-
ergy transfer processes.83–87 What lacks is information about their
conduction properties when properly contacted between metal elec-
trodes, and their I/V characteristics and transmission properties.

We then decided to use the FOXY code to compute the trans-
mission function and the I/V characteristics of molecular systems
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of the kind outlined above, made by two binuclear transition metal
complexes of the VIII group bridged by an aromatic ligand.88 As
a bridging ligand we have chosen pyrazine, and we have consid-
ered porphyrazine as ancillary ligands, in order to have a neutral
molecule with the metals in the oxidation state II. The contact to
the Gold electrodes is obtained by two terminal thiol-pyridine lig-
ands, as shown in Fig. 4.11.

As far as we know, the systems discussed here have not yet been
investigated experimentally. The reasons for the choice of this par-
ticular class of molecules is that, mixing different metals of the
same group, we can assemble neutral symmetric and asymmetric
systems and thus study the effects on the charge transport of the
pure molecular asymmetry, without the complication of different
electronic configuration in the valence shell. Such asymmetry may
even be enhanced exploiting the use of terminal ligands with elec-
tron withdrawing substituents, as for instance in Ref.78

The three pairs of metals considered here are Ru-Ru, Ru-Os and
Ru-Fe (see Fig. 4.11), which allow a comparison of the symmetric
system (Ru-Ru) with the two non-symmetric species involving atoms
of the same group, above and below Ru. Notice that along the whole
paper, we will refer to the different species using for simplicity only
the corresponding couple of metals in the order they appear in the
molecule (e.g. Ru-Os means Ru on the left and Os on the right).

All DFT calculations (both geometry optimization and single
point calculations) described in this work have been performed with
the Gaussian package,67 whereas the transport properties have
been obtained by our own FOXY code. The geometries of the
systems have been optimized using the hybrid B3LYP functional,
LANL2DZ basis set for Os, Ru, Au and Fe and 6-311*G basis set
for the remaining atoms. The calculations at the several values of
the bias were carried out at the same level of theory.

As stated in previous chapters, the choice of the Fermi level is
critical, and, when experimental data are available, it can be treated
s a “fitting parameter” in order to reproduce I/V curves. Unfortu-
nately, the species here analysed don’t have an experimental coun-
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terpart. In absence of any possible comparison with experimental
data and having to make a choice, we opted to place the Fermi level
exactly in the middle of the HOMO-LUMO gap of the extended
molecule, keeping it fixed for each value of the voltage. Neverthe-
less, the choice of the Fermi levels only affects the computation of
the I/V curve without changing the transmission function, which
can be considered as our reference quantities with respect to an ab-
solute energy scale.

The standard trend in integrated circuits design tends to lower
the reference voltage throughout the circuit, mainly for power con-
sumption reasons. To date, 1.5V as reference voltage is quite com-
mon. We have then computed transmission spectra and current/vol-
tage characteristics only up to 2V, as already done in a previous
article.78

Fig. 4.12 (upper left) illustrates the I/V characteristics for the
Ru-Os, Ru-Fe and Ru-Ru species. As expected (due to the fact that
the Ru-Ru species is a symmetric molecule with respect to the z
axis), the Ru-Ru molecule (blue line) shows a current symmetric
with the sign of the bias. The Ru-Os and Ru-Fe molecules (green
line and red line, respectively) are characterized by a non-symmetric
I/V curves. For negative bias the current begin to flow at about the
same value of V (which can be considered as a negative threshold
voltage), whereas for positive biases the threshold of the onset of
the current is different for the three species and goes opposite to the
position of the right metal in the VIII group of the periodic table.
This may find an explanation in the ionization potential of the dif-
ferent metals as discussed below, which reflects in the energy of the
highest occupied orbital. In particular the HOMO corresponds to
the highest orbital on the right metal centre for positive biases and
to the highest orbital of the left metal centre for negative biases. As
the left metal is always Ru, it may be expected that the effect of
the different metals (right metal) on the current onset only occurs
at positive biases. A direct consequence of this evidence is that the
rectification ratio depends on the voltage, as shown in the upper
right part of Fig. 4.12. In particular, whereas at the largest bias
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considered, the effect of the different transition metals on the I/V
characteristics is rather small (∼1.2 for the best case, Ru-Os), at
smaller values of the voltage applied (around 1 Volt) we may notice
a larger effect (right part of Fig. 4.12) due the different onset. Rec-
tification of the same order but with larger currents has also been
recently reported in the literature for different metallic-based sys-
tems.89

In the case of Ru-Os higher currents are observed for positive
voltages, whereas in the case of Ru-Fe an opposite behaviour occurs.
For Ru-Os, the comparison with the symmetric Ru-Ru species shows
a net increase of the current for positive voltages and a less marked
one for negative voltages, whereas for Ru-Fe system the opposite
behaviour occurs.88

The I/V curves can be interpreted in terms of the correspond-
ing transmission functions T (E.V ), reported in the lower part of
Fig.4.12 for the three cases of Ru-Ru, Ru-Os and Ru-Fe, at the se-
lected values of the external bias of -2V, 0V and 2V, respectively.
In each figure the position of the Fermi level, as detailed in the pre-
vious section, is taken at halfway between the HOMO and LUMO
energies and is indicated by a red vertical line, while the integration
interval needed for the calculation of the current is delimited by the
blue dashed lines.

The conduction properties of these systems in the investigated
voltage range are determined by few molecular orbitals near the
Fermi energy. At small biases, there is no peak in the integration
range and thus a plateau with 0 current is observed in Fig.4.12. It
is worthwhile noticing that for V = 0 the LUMO and LUMO+1
give rise to very large resonance peaks for each of the species (see
Fig.4.12) that are completely destroyed by an even small bias and
therefore do not contribute to the current. This phenomenon is
mainly due to some interference (previously discussed in the ap-
pendix of Ref.57) and can occur for quasi-degenerate orbitals, whose
mixing is given almost by accidental degeneration rather than by a
true interaction between the terminal fragments.

As the voltage increases above a given threshold, the shape of the
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(a) I/V curves
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Figure 4.12: (a) Left: current/voltage characteristics of Ru-Os
(green continuous line), Ru-Fe (red dashed line) and Ru-Ru (blue
dash dotted line) molecules. Right: rectification ratio for the two
asymmetric species RuOs and RuFe (I+:current for positive bias,
I−:current for negative bias). (b) Transmission functions of Ru-Fe
(upper row), Ru-Os (lower row) and Ru-Ru (middle row) at +2V,
0V and -2V. The vertical red line show the position of the Fermi
energy while the blue dashed lines indicate the limits of integration
of Eq. 3.26.
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transmission function changes and broadened resonant peaks enter
the [ϵf − V/2, ϵf + V/2] bias window at energies below the ϵf value.
The transport mechanism may be interpreted as that of a transport
mediated by holes (p-type) rather than electrons, since it involves
only occupied orbitals. For the Ru-Ru system it is evident that
the transmission function is irrespective of the sign of the bias. On
the other hand, the T (E) profiles of the Ru-Os and Ru-Fe species,
are not much affected by the sign of the voltage and are consistent
with the different values of the current and the small rectification
observed in the I/V characteristics at V = 2 Volt. The band of the
transmission function around ϵf at V = −2V and V = 2V is larger
for Ru-Os than for Ru-Ru, and the contrary is seen for the Ru-Fe
species, according to the overall larger currents for the Ru-Os and
smaller currents for the Ru-Fe system, observed with respect to the
symmetric Ru-Ru compound. As far as the rectification effect is
concerned, we may notice in Fig. 4.12 that for the Ru-Os species
the band at positive bias is slightly larger than that for negative
V, while the opposite occurs for the Ru-Fe system. Therefore, it
appears that the current is favoured in the direction that goes from
the metal with lowest to that with highest atomic number (the re-
verse holds for the electron flow). This means that the rectification
observed goes as in D − σ − A90 and π − π stacked91 systems, but
opposite to the Aviram-Ratner model.3

In Fig. 4.13 we may see, for the symmetric Ru-Ru system at
V = 0V , few molecular orbitals around the Fermi energy Occu-
pied MOs near ϵf (HOMO and HOMO-1 in Fig. 4) are basically
of metallic-complex character while the empty MOs are essentially
made by Au orbitals. The p-type conductivity in the bias range
considered, related to the small component of Gold character of the
MOs, is shown to involve the HOMO and the HOMO-1. In the lower
part of Fig. 4.13, the energy of the orbitals localized on the two cen-
tral metallic fragments92 are reported to show how the rectification
indeed goes opposite to the Aviram-Ratner scheme. We note that
the HOMO energy for the three systems is driven by the metal with
the lowest ionization potential (IP) and it is thus seen to increase in
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Figure 4.13: Top: MOs around the Fermi energy for the Ru-Ru sys-
tem. Bottom: Energy level positions of the two metallic complexes
for the three systems Ru-Os, Ru-Ru and Ru-Fe.

the order Ru-Fe < Ru-Ru < Ru-Os. The electron flow results then
to be favoured in going from the metal with the lower IP (higher
HOMO energy) to that with the higher IP (lower HOMO energy)
while the opposite should be expected.

Looking at the previous results, it is clear that the asymmetric
molecules studied here present only a small and well-defined region
of the bias voltage around 1 Volt in which significant rectification
can be achieved. Outside this region, rectification ratios fail to reach
even the value of 2 (keeping in mind the limitation on the value of
the rectification ratio obtained for molecules between metal leads
discussed in the literature?, 93–96). This means that, in order to ex-
ploit the capabilities of this class currents involved are very small,
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of the order of nA, thus affecting practical applications.
With the aim to achieve a more stable behaviour, characterized

by significant rectification in a broader range of voltages, one possi-
bility is to introduce a suitable substituent groups at the ring of the
fragments bridging the molecule to the leads.

Electron withdrawing or donor substituent have already been
show to enhance the intramolecular donor/acceptor capabilities of
bound molecular fragments and correspondingly the I/V asymme-
try of the whole species.5,78,90 We have then decided to investigate
the I/V characteristics of possible analogues of the Ru-Ru, Ru-Fe
and Ru-Os species in which four Fluorine atoms, are substituted to
the corresponding Hydrogen atoms to the left or to the right out-
ermost pyridine ring. Fluorine is not expected to induce significant
perturbations on the molecular geometry, although its strong elec-
tronegativity could induce a relevant asymmetry in the molecule and
enhance the rectification effect .

Fluorine substitution is made in the Ru-Ru, Ru-Os and Ru-Fe
species, in order to probe the effect in a symmetric species but also
in species that show small rectification per se. These new molecules,
which will be named Ru-RuF Ru-OsF, FRu-Os, FRu-Fe, Ru-FeF in
the text, depending on the transition metals used and the position
of the F atom, are sketched in Fig. 4.14.

According to our previous considerations,78 we expect that the
effect of Fluorine is that of decreasing the electron flow from the
side where Fluorine atoms have been placed and increasing it in
the region where they are not present (the opposite holds for the
current). For instance substitution on the RuRuF should favour
negative currents. This effect was observed experimentally in a dif-
ferent fluorinated compound5 and finds an explanation in the effect
of the electron withdrawing substituent at the ring in favouring elec-
tron delocalization.78

The I/V characteristics of the RuRuF substituted species with
its voltage-dependent rectification ratio, is reported in Fig. 4.15,
where the results for the unsubstituted system are also reported, for
comparison purposes. We can see that the behaviour of the sub-
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Figure 4.14: substituted species. a) Ru-OsF (F atoms to the right);
b) FRu-Os (F atoms to the left); c) Ru-RuF. For the Ru-FeF
and FRu-Fe species, the structure is the same, with Fe replacing
Os (Au=yellow, C=grey, H=white, N=dark blue, S=olive, F=light
blue, Ru=turquoise blue, Os=dark turquoise blue, Fe=violet).
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stituted species is the one expected, with a clear reduction of the
current in the direction of Fluorine, e.g. for positive bias where it
also reaches a constant value, and an increase in the opposite case
(e.g. for negative bias). This is accompanied by a reduction of the
positive and negative threshold voltages for the onset of the current
with respect to the unsubstituted case.

The rectification ratio reported in the upper right part of Fig.
4.15 shows a sudden increase for small currents at low bias, then a
decrease and a further increase, with a maximum value of ∼4 at 2
V.

The consistency between the transmission function and the rec-
tification ratios can be appreciated by looking at Fig. 4.15, where
T (E) is shown at 0 and 2 V for the Ru-RuF species and, for compari-
son also for the unsubstituted Ru-Ru system. The levels responsible
for the conduction are the same in all cases, while the difference is in
the heights of their corresponding peaks. At V=0 the two bands cor-
responding to the HOMO and HOMO-1 exchange their intensity in
the species with Fluorine. However, it is more interesting to analyse
the differences in the transmission function when in presence of the
bias voltage. It is clear from the figure how at 2 V the T (E) bands
are much smaller for Ru-RuF then for Ru-Ru, while the opposite
occurs at -2 V.

The effect of the Fluorine substitution in the Ru-Os and Ru-
Fe systems is summarized in Fig 4.16, where the I/V characteristic
curves and rectification ratios are reported for the various combina-
tions.

As already observed for the Ru-Ru case, at small values of the
bias where the electron flow begins, we can see a sudden increase in
the rectification ratio followed by a decrease, with the only exception
of the Ru-FeF species. For these values of the voltage the current
is always very small (on the order of the nA) and the observed be-
haviour is due to the different rise of the current in proximity of
the threshold voltage for conduction. As for the Ru-Ru system and
according to our previous findings,78 the effects of Fluorine substi-
tution is that of decreasing the incoming current and increasing the
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Figure 4.15: (a) Current/voltage characteristics of substituted Ru-
Ru with F atoms on the right pyridine ring (blue dash dotted line).
The curve for the unsubstituted species is also reported (green con-
tinuous line). (b) Transmission function for the Fluorine substitute
Ru-Ru system (Ru-RuF. The values for the unsubstituded species
are also reported for comparison (red dashed lines). The vertical
red line show the position of the Fermi energy while the blue dashed
lines indicate the limits of integration.
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(a) TSC

(b) 4Py

Figure 4.16: Current/voltage characteristics of substituted Ru-Os
(top) and Ru-Fe (bottom) with F atoms on the left pyridine ring
(blue dash-dotted line) or on the right pyridine ring (red dashed
line). The curve for the unsubstituted species is also reported (green
continuous line).
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outgoing one.
The rectification ratio results to be significant only in a small

range of voltage values, just as for the case without substitution re-
ported in of Fig. ??. The effect of Fluorine seems then only that
of stabilizing the rectification for biases above 1 Volt at a value of
about 2, only slightly higher than the value observed without sub-
stitution.

From the comparison of Figs. Fig. 4.15 and 4.16, we may con-
clude that the Ru-RuF species is that with the largest rectification
at highest value of the bias, while more stable, although smaller,
values are obtained for the non-symmetric species. In all cases we
are however still far from values that would make these systems ap-
pealing for real application.

In synthesis, the symmetric species (Ru-Ru), with the addition
of four Fluorine atoms, gives the best overall performances at the
largest value of the bias considered (up to 2 Volts). On the other
hand, the non-symmetric species RuOs and RuFe upon Fluorine
substitution, are characterized by more stable but slightly smaller
rectification. The main reason for this behaviour lies in the increase
of the electronic charge stabilization introduced by the substituents
and already observed in purely organic molecular rectifiers.5

4.4 Diarylethene-based molecular
switch

Another electronic device which can be reproduced with molecules
is the switch, where the electron flow, which can be mono- or bi-
directional, can be activated (ON) or deactivated (OFF) through
an external action (gate). Usually, molecular switches are three-
terminal devices where the external stimulus can be electrical, given
by a voltage applied to the gate,97,98 or even optical, providing that
the molecule is photo-active. In this case the energy of the incident
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radiation can be used to change the conformation of the molecule,
from one conducting to another non-conducting, and vice-versa.
When the switching functionality is activated by an external opti-
cal radiation, we speak of molecular optical switches. These species
undergo a reversible transformation between two stable states char-
acterized by different absorption spectrum and the two isomers also
show different equilibrium geometry and/or physical properties.

This is the case of species based on azobenzene97,99–101 or di-
arylethene groups,97,100,102–106 where the easiness of controlling their
reversibility at the molecular level, and their fast response time ver-
sus the input optical signal can be a significant advantage in view of
possible technological use in real devices. Indeed, there are already
promising applications in molecular memories107 and studies which
point out the possibility of building transistor-like devices108 using
optically active molecules.

Here, we focus on diarylethenes, where a variation on the con-
ductance can be expected as a consequence of the photo-induced
rearrangement of single and double bonds inside the central ring
(Fig. 4.17). This class of molecules has, in fact, two isomers: one
with a C-C open bond and one with the same bond closed. By ir-
radiation with UV light the open form give rises to the closed form,
which in turn transforms back in the open form by visible light ir-
radiation.

Experimentally105,106 open and closed forms have been found to
exhibit different conductivity, in relation to the different setup of
π-bonds. We want then to investigate the switching mechanism in
these class of systems by using the FOXY method described previ-
ously. In particular, we are interested in the TSC and 4Py species
(see Fig. 4.17), as defined in the original work of Briechle et al.,
which are shown to have an “ON” state with a current of two orders
of magnitude higher than the “OFF” state.

The computed I/V curves for the TSC and 4Py species, both in
open and closed state, are reported in Fig. 4.18. For both systems
we find a much higher conduction for the closed form (Fig. 4.17).
The current is found larger, both in the ON and in the OFF state,
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Figure 4.17: a) TSC and b) 4Py molecules. c) open and closed form
of the diarylethene unit with oxygen instead of the usual sulphur.106

The diarylethene unit changes, reversibly, between open and closed
form via visible and UV radiation. R indicates a generic end-group.
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for the 4Py species and at small bias we can recognize an Ohmic
behavior which agrees with the experiments.105 The I/V curves also
show slightly asymmetric currents for positive and negative volt-
ages, as the asymmetry of the molecules found in the geometrical
optimization would suggest, especially in the open state.

As far as the 4Py species is concerned, this is in accordance with
the experiments,105 whereas for the TSC system, the literature data
available seems to give different and contrasting results. In fact,
while in Ref.105 the TSC system is shown to behave as the 4Py,
with the closed state conducting and the open one not, in Ref106

the reported data are the opposite, with the open state conducting
and the closed one not.

The I/V behavior of Fig. 4.18 can be explained by looking
at the transmission spectra of Fig. 4.19, where, as outlined before,
the Fermi level is taken in the middle of the HOMO-LUMO orbital
energies (red vertical line in the figures). The orbitals which have
significant projection onto the terminal Gold electrodes fragments
(QL and QR terms in Eq. 3.66) and thus give rise to peaks in the
transmission function inside the bias window are the HOMO, LUMO
and LUMO+1. The conduction is then of electron-hole type.

For the TSC species, LUMO and LUMO+1 provide the largest
contribution in the T(E) spectra, with a wide band generated by the
broadening of these two levels, whereas for the 4Py species the con-
tribution of the three orbitals appears more balanced. The HOMO
plays a slightly most important role in the conduction mechanism,
especially for positive bias: the 4Py transmission function shows
three peaks, with the ones assigned to HOMO and LUMO+1 at the
same intensity.

The difference in the T (E) between the open and the closed forms
of both TSC and 4Py species is rather evident: the peaks are at least
one order of magnitude smaller in the open case. This, according
to Eq. 3.26, results in the small or negligible current observed for
the open forms. In particular, for the open TSC system, the shift
of the bands of T(E) is such that only a small part of them fall in
the integration range (dashed vertical lines) and the current is then



4.4 Diarylethene-based molecular switch 85

-1 -0.5 0 0.5 1

Voltage (Volts)

-300

-200

-100

0

100

200

300

C
u
rr

e
n
t 
(n
Α
)

TSC, closed

-1 -0.5 0 0.5 1

Voltage (Volts)

-300

-200

-100

0

100

200

300

C
u
rr

e
n
t 
(n
Α
)

TSC, open

(a) TSC

-1 -0.5 0 0.5 1

Voltage (Volts)

-500

-400

-300

-200

-100

0

100

200

300

400

500

600

C
u
rr

e
n
t 
(n
Α
)

4Py, closed

-1 -0.5 0 0.5 1

Voltage (Volts)

-500

-400

-300

-200

-100

0

100

200

300

400

500

600

C
u
rr

e
n
t 
(n
Α
)

4Py, open

(b) 4Py

Figure 4.18: Current/Voltage characteristics of the TSC (left) and
4Py (right), both in the ON and OFF state.



4.4 Diarylethene-based molecular switch 86

even much lower in value. On the other hand, we should also notice
that the applied field has a negligible effect on the MOs of the closed
species: their energy position is almost the same at either -1V, 0V
and +1V (especially in the 4Py case). This means that there is
no significant polarization effect at the origin of the observed I/V
characteristics and the small rectification effect observed find an ex-
planation in the little changes of the peak intensities.

Further insights on the transport properties of the two species
can be obtained by a closer look at the shape of the molecular or-
bitals which are relevant for the conduction mechanism. In Fig 4.20,
HOMO, LUMO and LUMO+1 at 0V for the TSC and 4Py molecules,
either in the open and closed states, are reported. We can see that
in the ON state (closed form) the MOs, are essentially delocalized in
the whole molecule, with significant component on both the terminal
Au fragments: the HOMO has the largest molecule-type character,
whereas the virtual ones have mostly Gold character. When the ex-
ternal radiation, opening the central bond of the diarylethene moi-
ety, switches the system from the closed to the open (OFF) state,
the MOs near the Fermi level loose their delocalized character and
become localized separately in the left and right parts of the ex-
tended molecule. As a consequence of this lack of a communication
channel, electrons cannot flow between left and right electrodes and
the transmission function becomes very small.
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Figure 4.19: Transmission function of the TSC (top) and 4Py (bot-
tom) species, both in “open” (right column) and “closed” (left col-
umn) conformation, at +1V, 0V and −1V. Vertical red line: Fermi
level of the species. Vertical blue lines: integration range, as in Eq.
3.26
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(a) TSC

(b) 4Py

Figure 4.20: MOs of the TSC (top) and 4Py (bottom) molecule
relevant for the conduction in the range, at 0V (Au=yellow, C=grey,
H=white,N=bark blue, O=red, S=olive, F=light blue).



Chapter 5

Conclusions

In this Thesis, the work done in the three years of PhD activity
at Scuola Normale Superiore and ICCOM/CNR in Pisa has been
summarized. The subject of the Thesis was the study of electronic
transport properties of various types of molecules which can mimic
fundamental circuit elements, in particular rectifiers and switches,
by a computational approach based on the Non-Equilibrium Green’s
Function (NEGF) method and the Landauer-Büttiker theory, in or-
der to understand the physical mechanism under the rectifying/swit-
ching behaviour of the molecules under study.

We have been able to clearly define a computational route capa-
ble of a rapid evaluation of transport properties of various molecules
sandwiched between electrodes, by means of an approximated Lan-
dauer-NEGF-DFT method. The main idea is that transport prop-
erties are dependent on the projection of the molecular orbitals
onto a suitable terminal fragment of the molecule under study: the
metallic leads are not considered explicitly (which is mandatory in
standard NEGF-DFT-Landauer codes), except for the terminal frag-
ments made by a 3-atom Gold cluster, which realize an appropriate
chemical environment for the molecular bridge. The main draw-

89
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back here is some loss in the precision of the computed data, mostly
from the assumptions made in order to make the method rapid and
computationally feasible, but also due to the unavoidable problems
connected with DFT (mainly regarding self interaction and position-
ing of virtual orbitals, including the fact that DFT is a ground-state
theory). All the transport calculations are done without the need
of a complete self consistent transport calculation (such as the one
described in Chapter 3). All the equations obtained from the model
described in Section 3.3 have been implemented in our domestic
FOXY code, which is also, up to now, completely interfaced with
the Gaussian suite of programs.

With this method at hand, the first step was to calibrate the
whole method, finding a value for the ∆ parameter (the only “em-
pirical” parameter that enters the model), by reproducing the ben-
zene 1,4 dithiol experimental I/V characteristics. We found that
the best value for the parameter was ∆ = 0.0015. After the cal-
ibration, we reproduced the transport properties of the molecular
rectifier described by Weber et al.5 We were able to reproduce the
experimental I/V curves, defining the value of the central torsional
angle of the probed molecule, and to understand the rectification
mechanism: the rectification mainly comes from asymmetries due
to the presence of the fluorine atoms, which generate an excess of
charge in the rightmost benzene ring that is easily driven into the
right electrode when a negative bias is applied to the two-terminal
structure.78

We also analysed the properties of binuclear compounds of transi-
tion metals (to our knowledge, never synthesised), in order to under-
stand if only a variation of one of the two metal atoms used in these
complexes could asymmetrise the I/V characteristics of these species,
or if the presence of substituents is also required. Current/voltage
characteristics, obtained with a combination of Gaussian’s DFT
calculation together with transport properties with the FOXY code,
show that, in the ±2V regime, for unsubstituted species, the rectifi-
cation effect is very low, and usually very dependent on the operating
voltage (with the best value of 1.2 for the Ru-Os species). This is
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a direct consequence of the fact that current onset voltages for pos-
itive and negative biases are different, depending on the transition
metals in the species: whereas for negative voltages the onset of the
current is always almost the same (due to the fact that, in the left
part of the species there is always a Ru metal atom), for positive
voltages the onset of the current varies depending on the transition
metal present in the center of the porphyrazine moiety. We also
find that the rectification effect, mainly driven by occupied frontier
orbitals, is opposite to the Aviram-Ratner model. The introduction
of substituents, in the form of four Fluorine atoms on the rightmost
pyrazine ring, essentially stabilizes the rectifying behaviour over a
broader range of voltages, slightly increasing the rectification ratio
for every species (with Ru-Ru-F species as the best case, with a value
of 3 for almost all the entire voltage range). We also find that the
effect of the Fluorine atoms is the same that we previously found for
the Weber diode, that is charge stabilization on a localized region of
the entire molecule, which is easily dragged to the electrode by an
external longitudinal electric field.88

We have then investigated charge transport in the TSC and 4Py
photochromic species, based on a central sulfur-free diarylethene
core, as synthesized in Refs.105,106 The behavior observed experi-
mentally for these photochromic switches can be reproduced within
the framework of the FOXY code. All the main features of the
experimental I/V curves, and especially the switching effect, can
be found in the results of our computations. This has allowed us,
for the TSC and 4Py molecules in both open and closed state, to
give an explanation at the molecular level of the observed charac-
teristics, through an investigation of the transmission functions and
of the shape of the orbitals relevant in the charge transport. The
peaks in the transmission functions are assigned to HOMO, LUMO
and LUMO+1 orbitals, which are delocalized in the closed state and
strongly localized, either on the left or right part of the molecule, in
the open state. Localized orbitals cannot provide good transmission
channels for the electron to tunnel from one electrode to the other,
mainly because, as in our model, these orbitals, do not have signifi-
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cant components on both left and right Au fragments and therefore
do not provide QLQR products sufficiently large to contribute to the
transmission function (Eq. 3.66).

5.1 Future perspectives

Even if the FOXY code has proven to be useful and quite effective
in understanding and predicting transport properties of molecular
species of interest, a lot of work is still needed in order to improve the
effectiveness of the overall code. Several issues should be addressed:

• Although the FOXY code uses a simplified treatment for cal-
culating transmission functions and I/V characteristics, it still
needs a separate calculation for every voltage steps used in or-
der to build the full I/V characteristics. If the scope of the code
is to offer a tool for rapid calculations of transport properties
(to make the fast “screening” of different molecule possible),
at the price of a slight reduction in the overall precision of
the calculations, further approximations in order to treat the
external field are still necessary. One idea (described in57) is
to calculate the response to an external field in an effective
way. Given Approx. 1 of Chapter 2 as granted, the field gen-
erates an electronic polarization across the transport direction
(in our case, the long axis of the molecule), which in some way
reflects on the values of the projections of the MOs onto the
terminal fragments. Therefore, it can affect the transmission
properties.
The one-electron effective Hamiltonian of the molecule in the
presence of an uniform electric field can be written as:

ĤM = T̂ + V̂N + F̂ · r + Ĝ[ρ] (5.1)

where T̂ is the kinetic energy operator, V̂N is the nuclear at-
traction potential operator and Ĝ is an operator that includes
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electron repulsion, the exchange and correlation terms. We
define

∆ρ = ρ− ρ0 (5.2)

the variation on the electronic density due to the perturbation
F̂ ·r. Other than the usual three approximation we introduced
for the FOXY method (see Section 3.3), we can then employ
a new additional approximation:

Approximation 4 We can neglect ∆ρ in the nonlinear term
Ĝ and use the value Ĝ[ρ0] for every value of the field F̂ . This

can be viewed as an expansion of the Ĝ operator in a power
series of ∆ρ, retaining only the zero-th order term.

ĤM then becomes linear and does not require a self-consistent
procedure.The field dependent MOs φj can be computed with
a simple diagonalization in the basis of the unperturbed MOs.109

Since this approximation leads to a small “excess” in response,
because the ∆ρ effect is against the effect induced by the po-
tential connected to the electric field, a “reducing factor” for
the field is needed in order to overcome such problem.
We define ∆µ as the molecular dipole moment induced by the
field (via a self-consistent calculation). ∆µa is the same quan-

tity, but obtained using Ĝ[ρ0]. From that, we can compute
polarizabilities:

∆µ = αF (5.3)

∆µa = αaF (5.4)

We can rewrite the first relation as

∆µ = αa

(
α

αa

)
F (5.5)

In this way, it is possible to obtain the correct change in the
dipole moment by using the approximate polarizability αa and
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a “reduced” field. Then, one can use

ĤM = T̂ + V̂N +

(
α

αa

)
F̂ · −→r + Ĝ[ρ] (5.6)

where α and αa are obtained with a single calculation with the
field included, to obtain the molecular orbitals to be used in
the evaluation of the self-energies, the projections onto the ter-
minal fragment and the transmission function. Such procedure
needs to be tested for the newer version of the FOXY code. In
particular, it is crucial to define up to what voltage (or better,
fields) such an approximation can hold. It is not necessary to
reach high voltages during calculations (such as, for example,
±5V), mainly for two reasons: first, high electric field tends to
completely destroy the metal/molecule/metal junction and the
molecule itself (especially for long molecules), second, there is
a trend in integrated circuit design which tends to reduce the
reference voltage used in microcircuits, for power consumption
reasons.

• Regarding the problem of the position of the Fermi level of
the metallic contact, the inclusion of more atoms into the
fragments could provide a more accurate description of the
molecule-lead interaction. Straightforward addition of Au atoms
to the fragments has proven to be infeasible: first for the fact
that DFT calculation on such structures are cumbersome and
hard to converge, second, because the way in which the FOXY
code treats electric fields leads to wrong results if bigger leads
are used. In fact, Gaussian DFT applies an electric field act-
ing on every atom of the extended molecule, which is incorrect,
since we want a field acting only in the proper molecular re-
gion. The atoms in the leads represents only the electrodes,
seen in our method as plates of a capacitor, and not part of the
molecule to be probed. The problem of bigger leads is strongly
entwined with the field as treated in the FOXY code. Apply-
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ing a constant electric field to the molecule (with also the lead
fragments included) means that we are, in fact, applying a bias
also to the metal chunk which represents the electrode, leading
to fake results in the I/V curve. A more rigorous way would
be the solving of the Poisson equation for the junction, with
metal Fermi levels (shifted by an external bias) as boundary
conditions. Of course, this would require the definition of a 3D
energy grid for the solution of the Poisson equation, and an ef-
ficient Poisson solver, all of them linked with the main FOXY
routine. Another possibility could be to work directly in the
Gaussian code, introducing a new way in which an external
potential can be added directly to certain selected atoms. The
idea here is to insert in the total Hamiltonian of the system
a potential term acting only on the lead atoms, according to
µL = εf − V/2, µR = εf + V/2, eV = (µL − µR). After this
passage, a regular DFT calculation can start, obtaining, after
convergence of the calculation, a more precise response of the
molecule to the external bias.

• Even if Landauer-Büttiker theory has proven to be success-
ful in assessing transport properties of molecules and, more
in general, nanostructures, it has its foundations on some ap-
proximations that could lead to wrong results.52,53 This is
due to the fact that we “close” the problem in an effective
way (via self-energies), and that we treat an intrinsically dy-
namical problem with static scattering theory (we move the
electrons across the junction, one by one, without considering
many-body interactions at all). More than that, the molecule-
contact interfaces are not yet well understood.

These are the main issues in order to better generalize the whole
theory behind the FOXY code.





Appendices

97





Appendix A

Green’s Function

We define a single-particle Hamiltonian, which contains a kinetic
part Ĥ0 and a time-independent potential part V̂ which encapsulates
all the scattering due to the junction itself. we can then write it as:

ĤS = − ℏ2

2m
∇2 + V (r) (A.1)

with Ĥ0 = − ℏ2

2m
∇2 and V̂ = V (r). We can then solve two types of

Schrödinger equations: one for the full Hamiltonian ĤS

iℏ
d|Ψ(t)⟩
dt

= ĤS |Ψ(t)⟩ = (Ĥ0 + V̂ )|Ψ(t)⟩ (A.2)

and a similar one for the kinetic part of the total Hamiltonian

iℏ
d|Ψ(t0)⟩

dt
= Ĥ0|Ψ(t0)⟩ (A.3)

We can recognize that the equations A.2 and A.3 are of the type

L̂ψ(t) = f(t) (A.4)
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with L̂ of the form:

L̂ = iℏ
d

dt
− Ĥ (A.5)

with Ĥ either ĤS or Ĥ0. We can now define the Green’s function
or propagator Ĝ(t) for the linear, time-independent, Hermitian, dif-

ferential operator L̂ as the solution of the equation:

L̂Ĝ(t) = Îδ(t) (A.6)

To this equation there are two corresponding solutions, which
define two different types of Green’s functions:(

iℏ
∂

∂t
− ĤS

)
Ĝ±(t) = Îδ(t) (A.7)

with boundary conditions:

Ĝ+(t) = 0, t < 0

Ĝ−(t) = 0, t > 0
(A.8)

We call Ĝ+ retarded Green’s function and Ĝ− advanced Green’s
function. Now, we can observe an important relation: if we take, for
example, the solution for the retarded Green’s function

Ĝ+(t) =

− i

ℏ
exp{−i ĤSt

ℏ
} t > 0

0 t < 0
(A.9)

we can see that it is proportional to the common time-evolution
operator Û(t, t0) for time-independent Hamiltonians. It is possible,
then, to rewrite the usual equation for the evolution of the state
vector |Ψ(t)⟩ using the Green’s function:

|Ψ(t)⟩ = iℏĜ+(t− t0)|Ψ(t0)⟩ (A.10)

which is valid for times t > t0. It is clear now that the retarded
Green’s function propagates in time the state vector, for times later
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than the starting one. It is possible to get the advanced Green’s
function in a same fashion:

Ĝ+(t) =

0 t > 0

i

ℏ
exp{−i ĤSt

ℏ
} t < 0

(A.11)

and describe the state vector with:

|Ψ(t)⟩ = iℏĜ−(t− t0)|Ψ(t0)⟩ (A.12)

valid for times t < t0. In this formulation, we can describe the state
vector in past times t with respect to the “present” time t0. It is
also important to highlight an important relation:[

Ĝ+(t)
]†

= Ĝ−(−t) (A.13)

The time-independent versions of all these relation can be ob-
tained by Fourier transform of the time-dependent Green’s func-
tions (it is necessary to introduce some infinitesimal ϵ in order to
guarantee convergence for the integrals):

Ĝ+(E) = F
[
Ĝ+(t)

] ∫ +∞

0

eiEt/ℏe−ϵt/ℏĜ+(t)dt (A.14)

Ĝ−(E) = F
[
Ĝ−(t)

] ∫ +∞

0

eiEt/ℏe+ϵt/ℏĜ−(t)dt (A.15)

These equation can be recast using A.9 and A.11. Usually, at
this stage, a new complex number is introduced: z = E + iϵ for the
retarded Green’s function and z = E − iϵ for the advanced Green’s
function, so both the equations can be rewritten as;

Ĝ(z) =
Î

z − ĤS

(A.16)

It is possible to redo all the passages for the kinetic part of the
total Hamiltonian alone (Ĥ0): first, extracting the time-dependent
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Green’s functions for this term (in its retarded and advanced form),
then, doing a Fourier transform of the results. In the end, it is
possible to get (using again z = E+ iϵ for the retarded solution and
z = E − iϵ for the advanced one):

Ĝ0(z) =
Î

z − Ĥ0

(A.17)

It is possible now to underline some properties of the time-
independent formulation of the Green’s functions. Ĝ(z) is an an-
alytical function in the complex plane, except in points or portions
(branch cuts) of the real axis, in correspondence to the eigenvalues

of ĤS . For discrete eigenvalues, Ĝ(z) has simple poles in correspon-
dence to the bound spectrum eigenvalues. The inverse also holds:
the poles of Ĝ(z) give the bound spectrum of ĤS . The branch cuts

give the continuous spectrum of ĤS instead. Even in the time-
independent formulation, A.13 holds.

Given the eigenstates of the Hamiltonian ĤS , the Green’s func-
tion can be expressed as:

Ĝ(z) =
∑
Ei,α

|ΨEi,α⟩⟨ΨEi,α|
z − Ei

+
∑
α

∫ +∞

0

|ΨE,α⟩⟨ΨE,α|
z − E

(A.18)

which is called spectral representation of the Green’s function.



Appendix B

Lippman-Schwinger
Equation

In order to find the eigenfunctions of the operator ĤS = Ĥ0 + V̂ , it
is necessary to find the eigenfunctions of the “unperturbed” Hamil-
tonian Ĥ0, express the Green’s function Ĝ (associated to the total

Hamiltonian ĤS) in terms of Ĝ0 and V̂ , and extract information
about eigenvalues and eigenfunctions from the Green’s function. It
is usually easy to find Ĝ0, given good information about Ĥ0, and
from Ĝ information about eigenvalues and eigenfunctions are read-
able from the poles and the corresponding residues.

Equations A.16 and A.17 gives us an expression for the Green’s
functions associated to ĤS and Ĥ0 respectively. Since ĤS = Ĥ0+V̂ ,
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we can write:

Ĝ(z) = (z − Ĥ0 − V̂ )−1

=

{(
z − Ĥ0

)[
Î −

(
z − Ĥ0

)−1

V̂

]}−1

=

[
Î −

(
z − Ĥ0

)−1

V̂

]−1 (
z − Ĥ0

)−1

=
[
Î − Ĝ0(z)V̂

]−1

Ĝ0(z)

(B.1)

We can now expand in power series:

Î

Î − Ĝ0V̂
=

∑+∞
n=0

(
Ĝ0V̂

)n

= 1 + Ĝ0V̂ + Ĝ0V̂ Ĝ0V̂ + . . .

(B.2)

and rewrite:

Ĝ(z) = Ĝ0 + Ĝ0V̂ Ĝ0 + Ĝ0V̂ Ĝ0V̂ Ĝ0 + . . .

= Ĝ0 + Ĝ0V̂ Ĝ

= Ĝ0 + ĜV̂ Ĝ0

(B.3)

Equation B.3 is called Lippman-Schwinger equation, which re-
lates Ĝ to Ĝ0 and to V̂ . The eigenstates are then easily obtained:(

E − Ĥ0

)
|Ψ⟩ = V̂ |Ψ⟩ (B.4)

|Ψ±(E)⟩ = |Ψ±
0 (E)⟩+ Ĝ±

0 (E)V̂ |Ψ±(E)⟩
= |Ψ±

0 (E)⟩+ Ĝ±(E)V̂ |Ψ±
0 (E)⟩

(B.5)

which are also called Lippman-Schwinger equation. In this equation,
|Ψ±

0 (E)⟩ represents solution associated to the retarded and advanced
Green’s function (as a result of the scattering process introduced by

the scattering potential V̂ ), which are originated from a initial state
|Ψ±

0 (E)⟩ (non-interacting multi-particle state in the distant past,

eigensolution of the Hamiltonian Ĥ0).
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