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Introduction

An fundamental impulse in the theory of hyperplane arrangements, since
its very beginning, has been given by the study of reflection arrangements.
The works of Fadell, Fox, and Neuwirth [FN62a, FN62b], and later of Arnold
[Arn69], started the topological study of the braid arrangement, the most im-
portant example of a reflection arrangement. Among other things, they proved
that the complement of the complexified braid arrangement is a classifying
space — or K(π, 1) — for the corresponding braid group. The subsequent
contributions of Tits, Brieskorn, and Saito [Tit66, Tit69, BS72, Bri73] widened
the field to more general reflection arrangements, and led to the introduction
of Artin groups (the braid group generalizes to Artin groups in the same way
as the symmetric groups generalizes to Coxeter groups). The K(π, 1) property
was proved by Deligne for any finite simplicial arrangement, thus including
the case of finite reflection arrangements [Del72]. Artin groups however, and
especially those corresponding to infinite reflection arrangements, still remain
quite misterious and evasive.

A particular instance of infinite reflection arrangements is given by affine
(or Euclidean) reflection arrangements. The corresponding Coxeter and Artin
groups are said to be of affine type, or simply affine. Some light on the nature
of affine Artin groups was shed by recent works of McCammond and others
[McC15, MS17].

A fundamental tool in the combinatorial study of real hyperplane arrange-
ments is a cell complex introduced by Salvetti [Sal87, Sal94]. This complex has
the homotopy type of the complement of the complexified arrangement, and
is known as the Salvetti complex. It allowed, among other things, explicit proofs
of the minimality of the complement of a finite complexified arrangement,
and a systematic computation of (local) homology and cohomology of hy-
perplane arrangements and Artin groups [DCS96, DCPSS99, DCPS01, CS04,
Cal05, Cal06, SS07, Del08, CMS08a, CMS08b, CMS10, GS09, SV13].

A recent branch in the theory of hyperplane arrangements is given by
toric arrangements [DCP10, DCPV10], and by the more general abelian arrange-
ments [Bib16]. Toric arrangements are intimately related to affine hyperplane
arrangements, since a toric arrangement can be viewed as a quotient of a
periodic hyperplane arrangement. A great deal of efforts is dedicated to un-
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INTRODUCTION

derstanding which properties of hyperplane arrangements can be translated
into properties of toric and abelian arrangements, and how.

This thesis focuses on affine hyperplane arrangements, and in particular on
affine reflection arrangements. Such arrangements are studied from different
points of view, all sharing a deep interplay between topology and combi-
natorics. For this reason, a central role is played by tools of combinatorial
topology, such as cell complexes [Hat02], discrete Morse theory [For98, For02],
and shellability [Bjö80, BW83]. These methods are recalled in Part I, together
with basic notions about hyperplane arrangements, Coxeter groups, and
Artin groups.

Part II is based on joint work with Davide Lofano [LP18]. For a general
locally finite affine arrangement, we describe a method to construct a minimal
model for the complement of the complexification. This model is obtained
from the Salvetti complex by applying discrete Morse theory. Our construction
gives interesting insights also in the well-studied case of finite arrangements,
for example providing a new geometric way to compute the Betti numbers
of the complement. The motivation for this work was to generalize ideas of
Delucchi [Del08] to non-central, and possibly infinite, arrangements.

Part III is based on two works [PS18, Pao17b], the first one being in col-
laboration with Mario Salvetti. Here we develop a a combinatorial method
to study the local homology of Artin groups, which turns out to be partic-
ularly effective for groups of spherical and affine type. We systematically
apply this method to all spherical and affine families. In particular, we ex-
tend to affine groups a result about torsion-freeness which was previously
known for groups of spherical type (thanks to geometric considerations). We
also explicitly compute the local homology for some of these families, find-
ing new results (for groups of type C̃n) and correcting minor errors in the
literature.

Part IV is based on two works [DGP17, Pao18b], the first one being in
collaboration with Emanuele Delucchi and Noriane Girard. Here we initiate
the study of shellability properties of the poset of layers of abelian arrange-
ments. For hyperplane arrangements, the poset of layers (also known as
the poset of flats) is a geometric semilattice and is known to be shellable
[WW85, Zie92]. This strong combinatorial condition does not transfer easily
to toric arrangements (or abelian arrangements in general). We focus on the
case of arrangements defined by root systems, which can be regarded as a
toric/abelian analog of reflection arrangements. Our class of shellings actu-
ally applies to a larger family of posets, called generalized Dowling posets,
which were recently introduced by Bibby and Gadish in the context of orbit
configuration spaces [BG18].
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In Part V we construct finite classifying spaces for all affine Artin groups.
This improves a recent result of McCammond and Sulway [MS17], who
proved that every affine Artin group admits a finite-dimensional classify-
ing space. The classifying spaces we construct are very explicit, and we are
able to relate them to the complement of the associated reflection arrange-
ments. In particular, we prove the K(π, 1) conjecture for the affine Artin group
of type D̃4.
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CHAPTER 1
Combinatorial tools

1.1 POSETS

We begin this introductory chapter by recalling some basic definitions and
facts about partially ordered sets (posets). We refer to [Sta86, Wac06] for a more
detailed introduction to the subject.

Let (P,≤) be a poset. If p < q in P and there is no element r ∈ P with
p < r < q, then we say that q covers p, and write p l q. Given an element
q ∈ P, define P≤q = {p ∈ P | p ≤ q}.

We say that P is bounded from below (resp. from above) if it contains a unique
minimal (resp. maximal) element, which is usually denoted by 0̂ (resp. 1̂). The
unique minimal element is also called the bottom element, and the unique
maximal element is also called the top element. We say that P is bounded if it is
bounded both from below and from above. We define the bounded extension P̂
as P t {0̂, 1̂}, where new elements 0̂ and 1̂ are added (even if P already has
a bottom or top element). If P is bounded from below, then every element q
such that 0̂l q is called an atom.

A (finite) chain in P is a totally ordered sequence p0 < p1 < · · · < pn of
elements of P. A chain of n+ 1 elements is conventionally said to have length n.

If p ≤ q, the interval [p, q] in P is the set of all elements r ∈ P such that
p ≤ r ≤ q. We say that P is ranked if, for every p ≤ q, all the maximal chains in
[p, q] have the same (finite) length. Then there exists a rank function rk : P→N

such that rk(q)− rk(p) is the length of any maximal chain in [p, q]. The rank
of the poset is defined as the maximal length of a chain (and can be infinite).
In the following chapters, we will usually deal with ranked posets having a
finite rank.

A poset P is said to be a meet semilattice if every pair of elements p, q ∈ P
has a unique maximal common lower bound p ∧ q (which is called meet).
Similarly, P is a join semilattice if every pair of elements p, q ∈ P has a unique
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1. COMBINATORIAL TOOLS

minimal common upper bound p ∨ q (called join). If P is both a meet and a
join semilattice, then it is said to be a lattice.

In the theory of hyperplane arrangements, an important class of posets
is given by geometric lattices and semilattices. A geometric lattice is a finite
lattice P that is semimodular (for all p, q ∈ P, the join p ∨ q covers q whenever
p covers the meet p ∧ q) and atomic (every element of P is a join of atoms).
Every geometric lattice is ranked. A ranked meet semilattice P is a geometric
semilattice if

(i) every interval is a geometric lattice;

(ii) for every element p ∈ P and for every subset A of atoms whose join
exists, if rk(p) < rk(

∨
A), then there exists an atom a ∈ A such that

a 6≤ p and a ∨ p exists.

Given a poset P, its Hasse diagram is the graph with vertex set P and
having an edge (p, q) whenever p l q. An edge (p, q) is sometimes indicated
as q → p.

The order complex ∆(P) is the simplicial complex with vertex set P and
with faces given by chains of P. One often says that P has some topological
property (e.g. it is contractible) if its order complex has that property. Notice
that, if P is bounded from below or from above, then ∆(P) is a cone and hence
it is contractible.

If P is a poset such that every interval is finite, we can define its Möbius
function as follows. Denote by I(P) the set of all intervals of P, which can
be also described as the set of pairs (p, q) ∈ P× P such that p ≤ q. Then the
Möbius function µP : I(P)→ Z is recursively defined by these relations:

µP(p, p) = 1 for all p
µP(p, q) = − ∑

p≤r<q
µP(p, r) for all p < q.

If P is also ranked and bounded from below, then we can define its characteristic
polynomial

χP(t) = ∑
p∈P

µP(0̂, p) trk p.

The following theorem relates the Möbius function with the reduced Euler
characteristic of the order complex.

Theorem 1.1.1 (Hall [Sta86, Theorem 3.8.6]). Let P be a finite poset, and let
P̂ = P t {0̂, 1̂} be its bounded extension. Then

µP̂(0̂, 1̂) = χ̃(∆(P)).
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1.2. Discrete Morse theory

1.2 DISCRETE MORSE THEORY

In this section we recall the main concepts of Forman’s discrete Morse theory
[For98, For02]. We follow the point of view of Chari [Cha00], using acyclic
matchings instead of discrete Morse functions, and we make use of the gener-
ality of [BW02a, Section 3] for the case of infinite CW complexes.

Let (P,≤) be a ranked poset. Denote by G the Hasse diagram of P, and by
E = E(P) = {(p, q) ∈ P× P | ql p} the set of edges of G.

Given a subsetM of E , we can orient all edges of G in the following way:
an edge (p, q) ∈ E is oriented from p to q if the pair does not belong toM,
otherwise in the opposite direction. Denote this oriented graph by GM.

Definition 1.2.1 (Acyclic matching [Cha00]). A matching on P is a subset
M ⊆ E such that every element of P appears in at most one edge ofM. A
matchingM is acyclic if the graph GM has no directed cycle.

Given a matchingM on P, an alternating path is a directed path in GM
such that two consecutive edges of the path do not belong both toM or both
to E \M. The elements of P that do not appear in any edge ofM are called
critical (with respect to the matchingM).

Definition 1.2.2 (Grading [BW02a]). Let Q be a poset. An order-preserving
map ϕ : P → Q is called a Q-grading of P. The Q-grading ϕ is compact if
ϕ−1(Q≤q) ⊆ P is finite for all q ∈ Q. A matchingM on P is homogeneous with
respect to the Q-grading ϕ if ϕ(p) = ϕ(p′) for all (p, p′) ∈ M. An acyclic
matching M is proper if it is homogeneous with respect to some compact
grading.

The following is a direct consequence of the definition of a proper matching
(cf. [BW02a, Definition 3.2.5 and Remark 3.2.17]).

Lemma 1.2.3 ([BW02a]). LetM be a proper acyclic matching on a poset P,
and let p ∈ P. Then there is a finite number of alternating paths starting from
p, and each of them has a finite length.

We are ready to state the main theorem of discrete Morse theory. This par-
ticular formulation follows from [BW02a, Theorem 3.2.14 and Remark 3.2.17]

Theorem 1.2.4 ([For98, Cha00, BW02a]). Let X be a regular CW complex, and
let P be its poset of cells. IfM is a proper acyclic matching on P, then X is
homotopy equivalent to a CW complex XM (called the Morse complex ofM)
with cells in dimension-preserving bijection with the critical cells of X.

The construction of the Morse complex is explicit in terms of the CW
complex X and the matchingM (see for example [BW02a]). This allows to
obtain relations between the incidence numbers with Z coefficients in the
Morse complex and incidence numbers [σ : τ] of the starting complex.

17



1. COMBINATORIAL TOOLS

Theorem 1.2.5 ([BW02a, Theorem 3.4.2]). Let X be a regular CW complex, P
its poset of cells andM a proper acyclic matching on P. Let XM be the Morse
complex of M. Given two critical cells σ, τ ∈ X with dim σ = dim τ + 1,
denote by σM and τM the corresponding cells in XM. Then the incidence
number between σM and τM in XM is given by

[σM : τM]M = ∑
γ∈Γ(σ,τ)

m(γ),

where Γ(σ, τ) is the set of all alternating paths between σ and τ. If γ ∈ Γ(σ, τ)
is of the form

σ = σ0 m τ1 l σ1 m · · ·l σk m τ,

then m(γ) is given by

m(γ) = (−1)k[σk : τ]
k

∏
i=1

[σi−1 : τi][σi : τi].

The following is a standard tool to construct acyclic matchings.

Theorem 1.2.6 (Patchwork theorem [Koz07, Theorem 11.10]). Let ϕ : P→ Q
be a Q-grading of P. For all q ∈ Q, assume to have an acyclic matching
Mq ⊆ E that involves only elements of the subposet ϕ−1(q) ⊆ P. Then the
union of these matchings is itself an acyclic matching on P.

Remark 1.2.7. The problem of computing optimal acyclic matchings is well-
studied, and known to be algorithmically hard [EG96, JP06, MF08, BL14,
BLPS16, Tan16, Pao18a]. However, there are algorithms which work suffi-
ciently well in practical instances [JP06, BL14]. Computational aspects played
a role in our work, especially in the computation of the local homology of
exceptional Artin groups (in Chapter 6), and in the proof of the K(π, 1) conjec-
ture for the Artin group of type D̃4 (in Chapter 9).

1.3 ALGEBRAIC DISCRETE MORSE THEORY

A purely algebraic version of discrete Morse theory allows to simplify free
chain complexes which do not necessarily arise as cellular chain complexes
[JW05, Koz05, Skö06].

Let R be a commutative ring with unity. Consider a chain complex of free
R-modules

C∗ = · · · ∂n+2−−→ Cn+1
∂n+1−−→ Cn

∂n−→ Cn−1
∂n−1−−→ · · · ,

with a fixed R-basis Pn of each module Cn. Given σ ∈ Pn and τ ∈ Pn−1, denote
by [σ : τ] ∈ R the coefficient of τ in the expansion of ∂n(σ) in terms of the
basis Pn−1. In analogy with the topological version, we call this the incidence

18



1.4. Shellability

number between σ and τ. Set [σ : τ] = 0 if the dimensions do not match, i.e. if
dim σ 6= dim τ + 1. The union P =

⋃
n∈Z Pn of the bases can be regarded as a

ranked poset, with cover relations given by σm τ if [σ : τ] 6= 0.

Theorem 1.3.1 ([JW05, Koz05, Skö06]). Let (C∗, P) be a free chain complex
with a basis, and letM be a proper acyclic matching on P such that [σ : τ] is
invertible in R whenever (τ, σ) ∈ M. Then C∗ is chain-homotopy equivalent
to a free chain complex CM∗ , called the algebraic Morse complex, which is defined
as follows:

• the R-module CMn is freely generated by a basis PMn , having one element
σM for every critical element σ of Pn;

• the boundary of a generator σM ∈ PMn is given by

∂Mn (σM) = ∑
τM∈PMn−1

[σM : τM]MτM,

where the incidence number is a sum [σM : τM]M = ∑γ∈Γ(σ,τ) m(γ) of
contributions of the form

m(γ) = (−1)k[σk : τ]
k

∏
i=1

[σi−1 : τi]
−1[σi : τi].

Notice that the boundary formula of Theorem 1.3.1 is the same as that
of Theorem 1.2.5, except for an inverse. However, an invertible incidence
number [σi−1 : τi] in the hypotheses of Theorem 1.2.5 must be equal to ±1,
and therefore [σi−1 : τi]

−1 = [σi−1 : τi].
A version of discrete Morse theory for non-free chain complexes was

introduced in [SV13], and is further developed in Part III, in order to study
the local homology of Artin groups.

1.4 SHELLABILITY

In the last part of this chapter, we are going to recall the concept of shellabil-
ity. For a more detailed exposition on the subject, see [BW83, BW96, BW97,
Wac06, Zie12].

Recall that a regular CW complex is pure of dimension d if all its maximal
cells have dimension d.

Definition 1.4.1 ([BW97, Definition 13.1]). Let X be a finite regular CW com-
plex. For each σ ∈ X, denote by ∂σ the subcomplex consisting of all proper
faces of σ. A linear ordering σ1, σ2, . . . , σt of the maximal cells of X is called
a shelling if either dim X = 0, or dim X ≥ 1 and the following conditions are
satisfied:

19
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(i) ∂σ1 admits a shelling;

(ii) ∂σj ∩
( j−1⋃

i=1

∂σi

)
is pure of dimension (dim σj − 1), for 2 ≤ j ≤ t;

(iii) ∂σj admits a shelling in which the (dim σj − 1)-cells of ∂σj ∩
( j−1⋃

i=1

∂σi

)
come first, for 2 ≤ j ≤ t.

A complex that admits a shelling is said to be shellable.

Shellability has many important consequences. One of the most notable is
the following.

Theorem 1.4.2 ([BW97, Corollary 13.3]). If X is a shellable complex, then it
has the homotopy type of a wedge of spheres. If X is a shellable complex
which is pure of dimension d, then it has the homotopy type of a wedge of
d-dimensional spheres.

Following [Zie12], a polyhedron is a finite intersection of closed halfspaces
in Rn, and a polytope is a bounded polyhedron. A facet of a polytope is a
face of codimension 1. The first important instance of shellable complexes
was given by the boundary complex of a polytope. In fact, the boundary
complex of a polytope admits many shellings, as described by the following
two results.

Theorem 1.4.3 ([BM72], [Zie12, Theorem 8.12]). Let P ⊆ Rn be a n-dimen-
sional polytope, and let x ∈ Rn be a point outside P. If x lies in general
position (that is, not in the affine hull of a facet of P), then the boundary
complex ∂P has a shelling in which the facets of P that are visible from x come
first.

Lemma 1.4.4 ([Zie12, Lemma 8.10]). If F1, F2, . . . , Fs is a shelling order for the
boundary of a polytope P, then so is the reverse order Fs, Fs−1, . . . , F1.

When the given complex is the order complex of a poset, the following
theorem gives an interpretation of the number of spheres in terms of the
characteristic polynomial of the poset. It is a direct consequence of Hall’s
theorem (Theorem 1.1.1) and of the definition of the characteristic polynomial.

Theorem 1.4.5 (cf. [DGP17, Theorem 2]). Let P be a ranked poset, and sup-
pose that ∆(P) is shellable. Then ∆(P) is a wedge of (−1)dχP̂(0) spheres of
dimension rk(P).

Notice that χP̂(0) = µP̂(0̂, 1̂) = −χP′(1), where P′ = P∪{0̂}.

20



1.5. Lexicographic shellability

1.5 LEXICOGRAPHIC SHELLABILITY

There are many techniques to construct shellings of order complexes of posets.
One of these is lexicographic shellability [BW83, BW96], which we recall in
this section.

Let P be a bounded poset. As in Section 1.2, denote by E(P) the set of
edges of the Hasse diagram of P. An edge labeling of P is a map λ : E(P)→ Λ,
where Λ is some poset. Given an edge labeling λ, each maximal chain c =
(xl z1 l · · ·l zt l y) between any two elements x ≤ y has an associated word

λ(c) = λ(x, z1) λ(z1, z2) · · · λ(zt, y).

We say that the chain c is increasing if the associated word λ(c) is strictly in-
creasing, and decreasing if the associated word is weakly decreasing. Maximal
chains in a fixed interval [x, y] ⊆ P can be compared lexicographically (i.e. by
using the lexicographic order on the corresponding words).

Definition 1.5.1. Let P be a bounded poset. An edge-lexicographical labeling
(or simply EL-labeling) of P is an edge labeling such that in each closed in-
terval [x, y] ⊆ P there is a unique increasing maximal chain, and this chain
lexicographically precedes all other maximal chains of [x, y].

The main motivation for introducing EL-labelings of posets is given by the
following theorem.

Theorem 1.5.2 ([BW96, Theorem 5.8]). Let P be a bounded poset with an
EL-labeling. Then the lexicographic order of the maximal chains of P is a
shelling of the order complex ∆(P). In addition, the corresponding order of
the maximal chains of P̄ = P \ {0̂, 1̂} is a shelling of ∆(P̄).

The shelling induced by an EL-labeling is called an EL-shelling. A bounded
poset that admits an EL-labeling is said to be EL-shellable. If P is an EL-shellable
poset, then ∆(P̄) is homotopy equivalent to a wedge of spheres indexed by the
decreasing maximal chains of P. More precisely, if DP is the set of decreasing
maximal chains of P, then

∆(P̄) '
∨

c∈DP

S|c|−2.

Important examples of EL-shellable posets are given by geometric lattices
[Sta74, Bjö80], and more generally by geometric semilattices [WW85, Zie92].

Let P1 and P2 be bounded posets that admit EL-labelings λ1 : E(P1)→ Λ1
and λ2 : E(P2) → Λ2, respectively. Assume that Λ1 and Λ2 are disjoint and
totally ordered. Let λ : E(P1 × P2)→ Λ1 ∪Λ2 be the edge labeling of P1 × P2
defined as follows:

λ((a, b), (c, b)) = λ1(a, c)
λ((a, b), (a, d)) = λ2(b, d).
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Theorem 1.5.3 ([BW97, Proposition 10.15]). Fix any shuffle of the total orders
on Λ1 and Λ2, to get a total order on Λ1 ∪Λ2. Then the product edge labeling
λ defined above is an EL-labeling.

When P is a shellable bounded poset, certain subposets Q ⊆ P are also
shellable via an induced labeling. A general criterion is given by [BW97,
Theorem 10.2]. The following is a particular case.

Lemma 1.5.4 ([DGP17, Lemma 1]). Let P be a bounded and ranked poset, with
an EL-labeling λ. Let Q ⊆ P be a ranked subposet of P containing 0̂ and 1̂,
with rank function given by the restriction of the rank function of P. Suppose
that, for all x ≤ y in Q, the unique increasing maximal chain in [x, y] ⊆ P is
also contained in Q. Then the edge labeling λ|E(Q) is an EL-labeling of Q.
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CHAPTER 2
Hyperplane arrangements,

Coxeter groups, Artin groups

2.1 HYPERPLANE ARRANGEMENTS

We begin this chapter by reviewing basic notions and results about hyperplane
arrangements. See [OT13] for a general reference.

A hyperplane arrangement is a set of affine hyperplanes in some finite-
dimensional vector space Kn. We will be interested in the cases K = R and
K = C, so that the vector space Kn is endowed with the usual Euclidean
topology. Hyperplane arrangements we assumed to be locally finite (every
compact subset of Kn intersects only a finite number of hyperplanes), unless
explicitly stated.

Given a hyperplane arrangement A in Rn, we define its complexification
AC to be the hyperplane arrangement in Cn consisting of the complexified
hyperplanes HC = H⊗R C for H ∈ A.

An arrangement is central if all its hyperplanes pass through a common
point. This point is usually taken to be the origin, so that the hyperplanes
have linear equations. Notice that a locally finite central arrangement is
necessarily finite.

An arrangement in Kn is essential if the K-vector space spanned by the
normals to its hyperplanes has dimension n.

Example 2.1.1 (Braid arrangement). Consider the central arrangement A in
Rn consisting of the hyperplanes Hij = {xi = xj} for 1 ≤ i < j ≤ n. This
arrangement is called the braid arrangement, or the reflection arrangement of
type An−1 (see Section 2.4). Since it is not essential, one usually restricts it to
Rn−1 = {x1 + · · ·+ xn = 0} ⊆ Rn, as in Figure 2.1.
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x1 = x2

x2 = x3
x1 = x3

Figure 2.1: The braid arrangement of type A2 in the plane
{x1 + x2 + x3 = 0} ⊆ R3.

2.2 POSETS ASSOCIATED TO REAL ARRANGEMENTS

Let A be a hyperplane arrangement in Rn. In this section we are going to
introduce some combinatorial objects associated toA.

The arrangementA gives rise to a stratification of Rn into subspaces called
faces (see [Bou68, Chapter 5]). It is more convenient for us to work with the
closure of these subspaces, so we assume from now on that the faces are closed.
By relative interior of a face F we mean the topological interior of F inside the
affine span of F. The faces of codimension 0 are called chambers. Denote the set
of faces by F = F (A), and the set of the chambers by C = C(A). The set F
has a natural partial order: F � G if and only if F ⊇ G. The poset F is called
the face poset ofA, and it is ranked by codimension.

Given two chambers C, C′ ∈ C, let s(C, C′) ⊆ A be the set of hyperplanes
which separate C and C′. Also, denote by WC ⊆ A the set of hyperplanes
that intersect C in a face of codimension 1. These hyperplanes are called the
walls of C.

There is a second important poset associated to a hyperplane arrangement
A, namely the poset of flats (or poset of intersections), denoted by L = L(A). It
consists of all possible intersections of hyperplanes in A. An element X ∈ L
is called a flat. Like the face poset, the poset of flats is also ordered by reverse
inclusion, and it is ranked by codimension. Notice that the entire space Rn

is an element of L (being the intersection of zero hyperplanes), and it is in
fact the unique minimal element of L. Denote by Lk(A) ⊆ L(A) the set of
flats of codimension k. The poset of flats is a geometric semilattice, and it is a
geometric lattice ifA is central. See Figure 2.2 for an example.

For a subset U ⊆ Rn (usually a face or a flat), let supp(U) ⊆ A be the
subarrangement of A consisting of the hyperplanes that contain U. This is
called the support of U. Also, denote by |U| ⊆ Rn the affine span of U. Notice
that, for a face F ∈ F , we have |F| ∈ L.
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Figure 2.2: Hasse diagrams of the poset of faces (on the left)
and of the poset of flats (on the right) of the braid arrangement
of type A2.

Given a flat X ∈ L, denote also by AX the support of X. Passing from A
toAX is an operation called restriction. Let πX : C(A)→ C(AX) be the natural
projection, which maps a chamber C ∈ C(A) to the unique chamber ofAX that
contains C. Denote by AX the arrangement in X given by {H ∩ X | H 6∈ AX}.
The operation of passing fromA toAX is called contraction.

2.3 TOPOLOGY OF THE COMPLEMENT

Let A be a hyperplane arrangement in Rn. The complement in Cn of the
complexified arrangement AC is an important topological space, and we
denote it by M(A).

In 1987, Salvetti constructed a regular CW complex with the homotopy
type of M(A) [Sal87]. This complex is now known as the Salvetti complex of A.
In this section we are going to recall the poset of cells of the Salvetti complex.
See also [GR89, BZ92, Sal94, OT13].

For a chamber C ∈ C and a face F ∈ F , denote by C.F the unique chamber
C′ � F such that π|F|(C) = π|F|(C′). In other words, this is the unique
chamber containing F and lying in the same chamber as C inA|F|. The Salvetti
complex has a k-cell 〈C, F〉 for each pair (C, F), where C ∈ C is a chamber
and F ∈ F is a face of C of codimension k. A cell 〈C, F〉 is in the boundary of
〈D, G〉 if and only if F ≺ G and D.F = C.

Theorem 2.3.1 (Salvetti [Sal87]). The poset Sal(A) defined above is the poset
of cells of a regular CW complex S(A) with the homotopy type of M(A).

In particular, the Salvetti complex has one 0-dimensional cell for every
chamber C ∈ C, and two 1-dimensional cells for every face F ∈ F of codimen-
sion 1. In general, the closure of a cell 〈C, F〉 forms a polytope which is dual to
the arrangementA|F|. See Figure 2.3 for an example.

An arrangementA is called a K(π, 1) arrangement if the complement M(A)
is a K(π, 1) space (i.e. if its universal cover is contractible). Braid arrangements
are one of the first non-trivial families of arrangements which were proved
to be K(π, 1) [FN62a]. Brieskorn conjectured that this property holds for all

25



2. HYPERPLANE ARRANGEMENTS, COXETER GROUPS, ARTIN GROUPS

C

Figure 2.3: On the left, the 1-skeleton of the Salvetti complex
of the braid arrangement of type A2. On the right, one of the
six 2-cells with its boundary.

finite reflection arrangements [Bri73] (see Section 2.4). Shortly after, Deligne
proved the following stronger result.

Theorem 2.3.2 (Deligne [Del72]). Let A be a finite central arrangement. If all
the chambers of A are simplicial cones, then A is K(π, 1).

2.4 COXETER GROUPS

We are now going to introduce Coxeter groups. In our brief exposition, we
follow [Bou68, Hum92, Dav08].

Let S be a finite set, and let M = (ms,t)s,t∈S be a square matrix indexed by
S and satisfying the following properties:

• ms,t ∈ {2, 3, . . . } ∪ {∞} for all s 6= t, and ms,s = 1;

• ms,t = mt,s.

Such a matrix is called a Coxeter matrix. From a Coxeter matrix M we can
construct an edge-labelled graph Γ, called the Coxeter graph of M, as follows:

• take S as the set of vertices;

• an edge connects vertices s and t if and only if ms,t ≥ 3, and this edge is
labelled by ms,t.

When ms,t = 3, the label on the corresponding edge is usually omitted. Some-
times we also say that the pair (Γ, S) is a Coxeter graph, to underline that S is
the set of vertices of Γ.

Definition 2.4.1. Let (Γ, S) be a Coxeter graph. The Coxeter system of (Γ, S) is
the pair (W, S), where W is the group defined by

W = 〈 S | (st)ms,t = 1 ∀ s, t ∈ S such that ms,t 6= ∞ 〉.
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1 2 3 4 n− 1 n
. . .

Figure 2.4: Coxeter graph of type An.

A group W as above is called a Coxeter group.

An important example is given by the family of Coxeter graphs of type An,
shown in Figure 2.4. The corresponding Coxeter groups are the symmetric
groups Sn+1.

Definition 2.4.2. Let (W, S) be a Coxeter system. For any T ⊆ S, let WT be
the subgroup of W generated by T. A subgroup constructed in this way is
called a standard parabolic subgroup of W. The pair (WT, T) is also a Coxeter
system, with Γ|T as its associated Coxeter graph [Hum92, Theorem 5.5].

A Coxeter system (W, S) is irreducible if the corresponding Coxeter graph
Γ is connected. Two generators s, t ∈ S commute if they belong to different
connected components of the Coxeter graph Γ. For this reason, the study
of a Coxeter group can be essentially reduced to the study of its maximal
irreducible parabolic subgroups.

Coxeter groups admit a faithful representation as groups generated by
(not necessarily orthogonal) linear reflections in some real vector space Rn.
By reflection, we mean an endomorphism of Rn of order 2 that pointwise fixes
some hyperplane.

Theorem 2.4.3 ([Hum92, Chapter 5]). Let (W, S) be a Coxeter system, with
n = |S|. There exist a central hyperplane arrangementA in Rn, not necessarily
locally finite, and a faithful representation ρ : W → GL(Rn), satisfying the
following properties.

(i) The elements of S (and their conjugates) act as linear reflections with
respect to some hyperplane of A.

(ii) W acts freely on the complement of A.

(iii) Fix a (closed) chamber C ∈ C(A). The union U =
⋃

w∈W w(C) is a
W-invariant convex cone (called the Tits cone).

(iv) C is a fundamental domain for the action of W on U (the W-orbit of each
point of U meets C in exactly one point).

An arrangement A as in Theorem 2.4.3 is said to be a reflection arrangement
associated to the Coxeter system (W, S). If W is finite, then the Tits cone is the
whole space Rn, and the reflections are orthogonal.

Infinite Coxeter groups which can be realized as discrete groups of affine
isometries of Rm, and are generated by affine orthogonal reflections, are called
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affine Coxeter groups. The Tits cone of an irreducible affine Coxeter group W is
an open half-space with the origin added:

U ∼= Rn−1 ×R+ ∪ {0}.

Then the hyperplane Rn−1 × {1} is W-invariant, and the restriction of the
representation of Theorem 2.4.3 to this hyperplane yields an affine faithful
representation such that W acts cocompactly and is generated by affine or-
thogonal reflections.

Irreducible spherical and affine Coxeter groups are completely classified
[Hum92, Chapters 2 and 4]. The corresponding Coxeter graphs are shown in
Figures 2.6, 2.7, and 2.8, at the end of this chapter.

2.5 ROOT SYSTEMS

Finite Coxeter groups are closely related to root systems. We introduce root
systems following the exposition of Humphreys [Hum92].

Definition 2.5.1 ([Hum92, Sections 1.2 and 2.9]). A finite set Φ of nonzero
vectors in Rn is a root system if:

(i) Φ ∩Rα ∈ {α,−α} for all α ∈ Φ;

(ii) sαΦ = Φ for all α ∈ Φ, where sα denotes the orthogonal reflection with
respect to the hyperplane orthogonal to α.

A root system Φ is crystallographic if it satisfies the following additional re-
quirement:

(iii)
2〈α, β〉
〈β, β〉 ∈ Z for all α, β ∈ Φ.

Every root system has an associated finite Coxeter group, generated by the
reflections with respect to the roots. Coxeter groups associated to crystallo-
graphic root systems have the additional property of stabilizing a lattice in Rn.
A subgroup of GL(Rn) that stabilizes a lattice is called a crystallographic group.
A Coxeter group (W, S) is crystallographic if and only if ms,t ∈ {2, 3, 4, 6}
for all s 6= t in S [Hum92, Section 2.8]. Therefore most of the irreducible
Coxeter groups are crystallographic, namely: An, Bn, Dn, E6, E7, E8, F4, I2(6)
(cf. Figure 2.6).

It turns out that for each irreducible crystallographic Coxeter group there
is exactly one associated crystallographic root system, with one exception:
a Coxeter group of type Bn is associated to two crystallographic root sys-
tems, which are denoted by Bn and Cn [Hum92, Section 2.9]. All other irre-
ducible crystallographic root systems are named as the corresponding Coxeter
group, except that the root system associated to the group I2(6) is usually
denoted by G2.
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The four infinite families of irreducible crystallographic root systems can
be constructed as follows (see [Hum92, Section 2.10]).

Type An. In Rn+1, or in Rn = {x1 + · · · + xn} ⊆ Rn+1, take the n(n + 1)
vectors of the form ei − ej for i 6= j (where e1, . . . , en+1 is the standard
basis of Rn+1).

Type Bn. In Rn, take the 2n “short” vectors ±ei (for 1 ≤ i ≤ n) and the
2n(n− 1) “long” vectors ±ei ± ej (for 1 ≤ i < j ≤ n).

Type Cn. In Rn, take the 2n “long” vectors ±2ei (for 1 ≤ i ≤ n) and the
2n(n− 1) “short” vectors ±ei ± ej (for 1 ≤ i < j ≤ n).

Type Dn. In Rn, take the 2n(n− 1) vectors ±ei ± ej (for 1 ≤ i < j ≤ n).

All irreducible affine Coxeter groups (Figures 2.7 and 2.8) can be con-
structed from the irreducible crystallographic root systems, as follows (see
[Hum92, Chapter 4]). For each α in a crystallographic root system Φ ⊆ Rn,
and for each integer k ∈ Z, consider the affine hyperplane Hα,k = {x ∈ Rn |
〈x, α〉 = k}. Then take the group generated by the affine orthogonal reflections
with respect to the hyperplanes Hα,k.

2.6 ARTIN GROUPS

Every Coxeter group (W, S) has an associated Artin group defined as follows:

GW = 〈gs, s ∈ S | gsgtgs · · ·︸ ︷︷ ︸
ms,t factors

= gtgsgt · · ·︸ ︷︷ ︸
ms,t factors

〉.

Historically, the first family of Artin groups to be introduced was that
of braid groups [FN62a, FN62b, Arn69]. The braid group on n strands can be
defined as the Artin group of type An−1. It arises as the fundamental group of
the configuration space of n indistinguishable points in the plane:

GSn = π1

Cn \
⋃
i 6=j

{xi = xj}

 /Sn

 .

This construction was generalized to every Artin group GW as follows [Bou68,
Vin71, VdL83, GP12, Par14]. LetA be the reflection arrangement associated to
W, and let U ⊆ Rn be its Tits cone (cf. Theorem 2.4.3). Define a configuration
space associated to W as follows:

Y = (int(U) + iRn) \
⋃

H∈A
HC.

Then GW is the fundamental group of the orbit configuration space YW =
Y/W [VdL83].
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Artin groups corresponding to finite Coxeter groups are called of spherical
type (or simply spherical). Artin groups corresponding to affine Coxeter groups
are called of affine type (or simply affine).

In Section 2.3 we mentioned Deligne’s theorem, which implies that the or-
bit configuration space YW is a K(GW , 1) if W is finite. This allows to compute
homology and cohomology of Artin groups of spherical type by looking at
the space YW . A famous conjecture by Arnol’d, Pham, and Thom (cf. [VdL83])
states that the same property holds for all Artin groups.

Conjecture 2.6.1 (K(π, 1) conjecture for Artin groups). The orbit configuration
space YW is a K(GW , 1), for every Coxeter group W.

Much effort was put in proving this conjecture. Apart from the case of
spherical Artin groups, which was settled in the work of Deligne [Del72], the
K(π, 1) conjecture was proved in the following cases.

• Artin groups of dimension ≤ 2, and of FC type [Hen85, CD95]; these
include the so called right angled Artin groups, which are defined by
Coxeter matrices satisfying ms,t ∈ {2, ∞} for all s, t ∈ S.

• Affine artin groups of type Ãn and C̃n [Oko79] (see also [CP03]), of type
B̃n [CMS10], and of type G̃2 and Ĩ1 (because they have dimension ≤ 2).

In particular, the conjecture is open for one infinite family of affine Artin
groups, namely D̃n, and for most of the exceptional affine Artin groups. In a
series of recent works [BM15, McC15, MS17], McCammond and others have
made significant steps towards a unified treatment of affine Artin groups. In
particular, they proved that affine Artin groups admit a finite-dimensional
classifying space. In Chapter 9 we relate their construction with the orbit space
YW , and we show that every affine Artin group admits a finite classifying
space. In addition, we prove the K(π, 1) conjecture in the case D̃4.

The orbit space YW was shown to be homotopy equivalent to the classifying
space of another important object associated to GW , namely its Artin monoid
[Dob06, Ozo17, Pao17a]. As a consequence, the K(π, 1) conjecture carries
information about how an Artin group is related to its Artin monoid.

A finite Coxeter group W has an associated finite reflection arrangement
A. Then the configuration space Y has the homotopy type of the Salvetti
complex S(A) (introduced in Section 2.3). The action of W on S(A) is cellular,
and therefore the orbit configuration space YW also has the homotopy type of
a finite CW complex XW = S(A)/W. This construction was generalized by
Salvetti to all Coxeter groups.

Theorem 2.6.2 ([Sal94, Theorem 1.4]). The orbit configuration space YW de-
formation retracts onto a finite CW complex XW , given by a union of convex
polytopes with explicit identification of their faces.
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The cells of the complex XW are indexed (in a dimension-preserving way)
by the faces of the simplicial complex

KW = {σ ⊆ S | the parabolic subgroup Wσ is finite}.

We shall refer to XW as the Salvetti complex of W.

2.7 ABELIAN ARRANGEMENTS

In the last decade there has been a growing interest in other kinds of ar-
rangements, for example arrangements of hypersurfaces in complex tori or
in products of elliptic curves. A general definition, which includes the previ-
ous ones as well as some of the “classical” hyperplane arrangements, is the
following.

Definition 2.7.1 (Abelian arrangement). Consider a (topological) abelian
group G, a list of integer vectors a1, . . . , am ∈ Zn, and a list of elements
b1, . . . , bm ∈ G. The abelian arrangement associated to these data is the set
{K1, . . . , Km} of subsets of Gn defined by

Ki =
{
(x1, . . . , xn) ∈ Gn |

n

∑
j=1

aijxj = bi

}
.

If G = K is a field, we obtain classical hyperplane arrangements (with
integer equations). For G = S1 or G = C∗, we obtain the so-called toric arrange-
ments (on a compact torus (S1)n or on a complex torus (C∗)n, respectively). If
G is an elliptic curve, we obtain the so-called elliptic arrangements.

Apart from hyperplane arrangements, the first class of abelian ar-
rangements to be introduced and studied was that of toric arrangements
[Loo93, DCP05, DCP10, DCPV10]. As pointed out by De Concini and Procesi
[DCP10], there are great similarities between the theory of toric arrangements
and the theory of arrangements of affine hyperplanes. Indeed, a (finite) toric
arrangement in (S1)n or (C∗)n can be lifted to an infinite periodic arrange-
ment of affine hyperplanes in Rn or Cn. The theory of toric arrangements
experienced a great developement in both topology and combinatorics. From
a topological point of view, important contributions came from the works of
Looijenga [Loo93], d’Antonio and Delucchi [dD12, dD15], De Concini and
Procesi [DCP05], Callegaro, D’Adderio, Delucchi, Migliorini, and Pagaria
[CDD+18]. In particular, the work of d’Antonio and Delucchi on minimal-
ity of toric arrangements [dD15] is related to the topics of Part II. From a
combinatorial point of view, the works of Moci, D’Adderio, and Brändén
[Moc12, DM13, BM14] initiated the study of arithmetic Tutte polynomials and
arithmetic matroids (a toric analogue of matroids). Delucchi, Riedel, and
D’Alı̀ [DR18, DD18] extended this theory by viewing arithmetic matroids as
quotients of semimatroids by group actions. Also, a work of Moci on toric
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A1 B2 C2 D2

Figure 2.5: Toric arrangements defined by root systems in
S1 × S1.

arrangements defined by root systems [Moc08] led the way to a more system-
atic study of the poset of layer of toric arrangements, and to its relations with
cohomology [ERS09, Law11, Ber16, Bib18].

In Part IV we are going to contribute to the combinatorial study of the
poset of layer of abelian arrangements, focusing on the case of arrangements
defined by root systems.

Definition 2.7.2 (Poset of layers). The poset of layers L(A) of an abelian ar-
rangementA is the set of connected components of all possible intersections of
elements of A. It is ordered by reverse inclusion, and ranked by codimension.

In the case of hyperplane arrangements, intersections of hyperplanes are
connected, and therefore the poset of layers coincides with the poset of flats
(see Section 2.2). For general abelian arrangements, however, intersections
need not be connected.

The poset of flats of a hyperplane arrangement is a geometric lattice, and
therefore it is EL-shellable (see Section 1.5). Already for toric arrangements, it
is not known in general if the poset of layers is shellable. D’Alı̀ and Delucchi
recently showed that this poset is Cohen-Macaulay [DD18], thus providing
strong evidence towards the shellability conjecture. In Chapter 7 we are going
to show that the posets of layers of toric and elliptic arrangements defined by
root systems are EL-shellable. In fact, these posets come from a more general
family of posets introduced by Bibby and Gadish [BG18], which we show to
be EL-shellable in Chapter 8.

We now explain how root systems give rise to abelian arrangements (see
[Bib18, Section 2.2]). Given a crystallographic root system of type A, B, C,
or D (see Section 2.5), we can consider the associated abelian arrangement
defined by the integer vectors a1, . . . , am ∈ Zn equal to the roots. We take
bi = 0 for all i. Notice that the arrangements defined by the root systems of
types An−1, Bn, and Dn are subarrangements of the arrangement defined by
the root system of type Cn.

Toric arrangements defined by root systems in S1× S1 are shown in Figure
2.5. Notice that S1 has two 2-torsion points (namely 1 and −1). Therefore the
subset K ⊆ S1 × S1 corresponding to the root 2ei is a union of two subtori:
{xi = 1} and {xi = −1}. Similarly, an elliptic curve has four 2-torsion points.
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Then, in an elliptic arrangement, the root 2ei gives rise to a subspace with four
connected components.

If A is a toric or elliptic arrangement, then A can be seen as the quotient of
an infinite arrangement of hyperplanes A� in Cn by a group Γ of translations.
We have Γ ∼= Zn for toric arrangements, and Γ ∼= Z2n for elliptic arrangements.
In any case there is an action of Γ on the semimatroid defined by A�, to which
in [DR18] is associated a Tutte polynomial TA(x, y). In addition, by [DR18,
Theorem F], the characteristic polynomial of L(A) can be computed as an
evaluation of the Tutte polynomial:

χL(A)(t) = (−1)dTA(1− t, 0).
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An (n ≥ 1) . . .

Bn (n ≥ 2) 4 . . .

Dn (n ≥ 4) . . .

E6

E7

E8

F4
4

H3
5

H4
5

I2(m) (m ≥ 5) m

Figure 2.6: Coxeter graphs corresponding to finite Coxeter
groups. The subscript equals the number of nodes.
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Ãn (n ≥ 2)

. . .

B̃n (n ≥ 3) . . . 4

C̃n (n ≥ 2) 4 . . . 4

D̃n (n ≥ 4) . . .

Figure 2.7: Coxeter graphs corresponding to the four infinite
families of affine Coxeter groups. The subscript is one less
than the number of nodes.
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Ẽ6

Ẽ7

Ẽ8

F̃4
4

G̃2
6

Ã1 / Ĩ1
∞

Figure 2.8: Coxeter graphs corresponding to exceptional affine
Coxeter groups.
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CHAPTER 3
Acyclic matchings

on the Salvetti complex

3.1 INTRODUCTION

The material of the next two chapters is based on a joint work with Davide
Lofano [LP18].

LetA be a locally finite arrangement of affine hyperplanes in Rn. The com-
plement M(A) ⊆ Cn of the complexified arrangement AC has the homotopy
type of the Salvetti complex ofA (see Section 2.3).

For a finite arrangement A, in [Ran02, DP03, Yos07] it was proved that
the complement M(A) has the homotopy type of a minimal CW complex, i.e.
with a number of k-cells equal to the k-th Betti number. This minimality result
was later made more explicit with discrete Morse theory, in [SS07] (for finite
affine arrangements), [Del08] (for finite central arrangements and oriented
matroids in general), [GS09] (for finite line arrangements), [dD15] (for affine
arrangements with a finite number of directions).

Here we consider a (possibly infinite) affine arrangement A, and con-
struct a minimal CW model for the complement M(A). This is obtained
applying discrete Morse theory to the Salvetti complex of A. For a (possibly
infinite) CW complex, by “minimal” we mean that all the incidence numbers
vanish. As in the well known case of finite arrangements, we obtain a geo-
metrically meaningful bijection between cells in the minimal CW model and
chambers of A.

Our starting point is the work of Delucchi on the minimality of oriented
matroids [Del08]. Specifically, we build on the idea of decomposing the
Salvetti complex according to some “good” total order of the chambers. For a
general affine arrangement, however, the combinatorial order used in [Del08]
does not yield a decomposition with the desired properties. In Section 3.2
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we introduce a class of total orders of the chambers for which we are able to
extend the construction of Delucchi, and we call them valid orders. We remark
that in [Del08, Question 4.18] it was explicitly asked for one such extension
to affine arrangements. For a finite affine arrangement, the polar order of
Salvetti and Settepanella [SS07] is valid (Remark 3.2.7). Therefore our work
contributes to linking the constructions of [SS07] and [Del08] (see also [Del08,
Remark 3.8]).

In Section 3.3 we show how to construct an acyclic matching on the Salvetti
complex, for any given valid order.

Theorem 3.3.10. Let A be a locally finite hyperplane arrangement, with a
given valid order on the set of chambers. Then there exists a proper acyclic
matching on Sal(A) with critical cells in bijection with the chambers.

We also prove the following two results. The first one can be regarded as a
generalization of [Del08, Theorem 3.6], and the second one is the analogue of
[Del08, Theorem 3.6], where (finite) oriented matroids are replaced by locally
finite hyperplane arrangements.

Theorem 3.3.9. Let X be a k-dimensional polytope in Rk, and let y ∈ Rk be
a point outside X that does not lie in the affine hull of any facet of X. Then
there exists an acyclic matching on the poset of faces of X visible from y, such
that no face is critical.

Theorem 3.4.1. Let A be a locally finite hyperplane arrangement. For every
chamber C ∈ C(A), there is a proper acyclic matching on the poset of faces
F (A) such that C is the only critical face.

In Chapter 4 we are going to construct a large class of valid orders, for any
locally finite hyperplane arrangement. We are then going to show that the
resulting Morse complexes are minimal.

3.2 DECOMPOSITION OF THE SALVETTI COMPLEX

Our aim is to construct an acyclic matching on the Salvetti complex of a locally
finite arrangement A, with critical cells in explicit bijection with the chambers
of A. Following the ideas of Delucchi [Del08], we want to decompose the
Salvetti complex into “pieces” (one piece for every chamber) and construct
an acyclic matching on each of these pieces with exactly one critical cell.
More formally, we are going to decompose the poset of cells Sal(A) as a
disjoint union

Sal(A) =
⊔

C∈C
N(C),

where C = C(A), so that every subposet N(C) ⊆ Sal(A) admits an acyclic
matching with one critical cell.
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Definition 3.2.1. Given a chamber C ∈ C, let S(C) ⊆ Sal(A) be the set of all
the cells 〈C′, F〉 ∈ Sal(A) such that C′ = C.F. In other words, a cell is in S(C)
if all the hyperplanes in supp(F) do not separate C and C′.

The cells in S(C) form a subcomplex of the Salvetti complex. This subcom-
plex is dual to the stratification of Rn induced by A. Also, the natural map
S(C)→ F which sends 〈C′, F〉 to F is a poset isomorphism.

Now fix a total order a of the chambers:

C = {C0 a C1 a C2 a · · · }

(when C is infinite, the order type is that of natural numbers).

Definition 3.2.2. For every chamber C ∈ C, let N(C) ⊆ S(C) be the subset
consisting of all the cells not included in any S(C′) with C′ a C.

The union of the subcomplexes S(C), for C ∈ C, is the entire complex
Sal(A). Then the subsets N(C), for C ∈ C, form a partition of Sal(A). All
the 0-cells are contained in N(C0) = S(C0). Therefore, for C 6= C0, the cells
of N(C) do not form a subcomplex of the Salvetti complex. If A is a (finite)
central arrangement, this definition of N(C) coincides with the one given in
[Del08, Section 4].

We want now to choose the total order a of the chambers so that each
N(C) admits an acyclic matching with exactly one critical cell. In [Del08], this
is done by taking any linear extension of the partial order ≤C0 , defined as
follows: D′ ≤C0 D if and only if s(C0, D′) ⊆ s(C0, D) (here C0 is any fixed
chamber). In the language of oriented matroids, (C,≤C0) is called the tope
poset based at C0 [BLVS+99, Definition 4.2.9]. A linear extension of ≤C0 works
well for central arrangements but not for general affine arrangements, as we
see in the following two examples.

Example 3.2.3. Consider a non-central arrangement of three lines in the plane,
as in Figure 3.1 on the left. Choose C0 as one of the three simplicial un-
bounded chambers. In any linear extension of ≤C0 , the last chamber C6
must be the non-simplicial unbounded chamber opposite to C0. However,
S(C6) ⊆

⋃
C 6=C6

S(C), so N(C6) is empty, and therefore it does not admit an
acyclic matching with one critical cell. Figure 3.2 shows the decomposition of
the Salvetti complex for one of the possible linear extensions of ≤C0 .

Example 3.2.4. Consider the arrangement of five lines depicted in Figure 3.1
on the right. For every choice of a base chamber C0 and for every linear
extension of ≤C0 , there is some chamber C such that N(C) is empty.

We are now going to state a condition on the total order a on C that
produces a decomposition of the Salvetti complex with the desired properties.
First recall the following definition from [Del08].
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C0 C6

Figure 3.1: Two line arrangements.

Definition 3.2.5. Given a chamber C and a total order a on C, let

J (C) = {X ∈ L | supp(X) ∩ s(C, C′) 6= ∅ ∀C′ a C}.

Notice that J (C) is an upper ideal of L = L(A), and it coincides with L
for C = C0. In [Del08, Theorem 4.15] it is proved that, if A is a (finite) central
arrangement and a is a linear extension of≤C0 (for any choice of C0 ∈ C), then
J (C) is a principal upper ideal for every chamber C ∈ C. This is the condition
we need.

Definition 3.2.6 (Valid order). A total order a on C is valid if, for every chamber
C ∈ C, J (C) is a principal upper ideal generated by some flat XC = |FC| ∈ L,
where FC is a face of C.

The total orders of Example 3.2.3 are not valid, because J (C6) is empty.
A valid order that begins with the chamber C0 of Example 3.2.3 is shown in
Figure 3.3.

The previous definition is the starting point of our answer to [Del08, Ques-
tion 4.18], where it was asked for an extension to affine arrangements. Sections
3.3 and 4.2 will motivate this definition.

Remark 3.2.7. If A is a finite affine arrangement, the polar order of the cham-
bers defined by Salvetti and Settepanella [SS07, Definition 4.5] is valid. Indeed,
J (C) is a principal upper ideal generated by XC = |FC|, where FC is the small-
est face of C with respect to the polar order of the faces. Therefore Definition
3.2.6 highlights the link between the constructions of [SS07] and [Del08] (see
also [Del08, Remark 3.8]). The results of Section 3.3, if applied to polar orders,
give rise to acyclic matchings that are related to the polar matchings of [SS07].
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C0

C1

C2

C3

C4

C5

C6

(a) Total order of the chambers

C0

(b) N(C0)

C1

(c) N(C1)

C2

(d) N(C2)

C3

(e) N(C3)

C4

(f) N(C4)

C5

(g) N(C5)

C6

(h) N(C6) is empty

Figure 3.2: A non-central arrangement of three lines in the
plane, with a linear extension of ≤C0 . Here N(C5) and N(C6)
do not admit acyclic matchings with one critical cell.
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C0

C1

C2

C3

C5

C6

C4

(a) Total order of the chambers

C0

(b) N(C0)

XC1 C1

(c) N(C1)

XC2

C2

(d) N(C2)

XC3
C3

(e) N(C3)

XC4

C4

(f) N(C4)

XC5

C5

(g) N(C5)

XC6

C6

(h) N(C6)

Figure 3.3: A non-central arrangement of three lines in the
plane, with a valid order of the chambers. For every chamber
C except C0, the generator XC of J (C) is highlighted.
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3.3 ACYCLIC MATCHINGS FROM VALID ORDERS

Throughout this section we assume to have an arrangementA together with a
valid order a of C (as in Definition 3.2.6). Using the decomposition

Sal(A) =
⊔

C∈C
N(C)

of Section 3.2 (induced by the valid order a), we are going to construct a
proper acyclic matching on Sal(A) with critical cells in bijection with the
chambers. More precisely, we are going to construct an acyclic matching on
every N(C) with exactly one critical cell, and then attach these matchings
together using the Patchwork Theorem (Theorem 1.2.6). This strategy is the
same as the one employed in [Del08], but our proofs are different since we
deal with affine and possibly infinite arrangements.

Lemma 3.3.1. Suppose that a is a valid order on C. Then

N(C) = {〈D, F〉 ∈ S(C) | F ⊆ XC}.

Proof. To prove the inclusion ⊆, assume by contradiction that there exists
some cell 〈D, F〉 ∈ N(C) with F * XC. By minimality of XC in J (C), we have
that |F| /∈ J (C). This means that there exists a chamber C′ a C such that
supp(F) ∩ s(C, C′) = ∅. Then C and C′ are contained in the same chamber of
A|F|, which implies C′.F = C.F. By definition of S(C), we have that C.F = D.
Then C′.F = D, so 〈D, F〉 ∈ S(C′). This is a contradiction, since 〈D, F〉 ∈ N(C)
and C′ a C.

For the opposite inclusion, consider a cell 〈D, F〉 ∈ S(C) with F ⊆ XC.
Then |F| ∈ J (C), so for every chamber C′ a C there exists an hyperplane
in supp(F) ∩ s(C, C′). By the same argument as before, we can deduce that
D = C.F 6= C′.F for all C′ a C, which means that 〈D, F〉 /∈ S(C′) for all C′ a C.
Therefore 〈D, F〉 ∈ N(C).

For a chamber D ∈ C and a face F � D, denote by DF the chamber opposite
to D with respect to F. For every chamber C ∈ C, consider the map

η̃C : S(C)→ C

that sends a cell 〈D, F〉 to DF.

Lemma 3.3.2. The map η̃C : S(C)→ (C,≤C) is order-preserving.

Proof. Let 〈D, F〉, 〈D′, F′〉 ∈ S(C), and suppose that 〈D′, F′〉 ≤ 〈D, F〉 (see
Figure 3.4). Then F′ � F and therefore supp(F′) ⊆ supp(F). Call E = DF

and E′ = D′F
′
. By definition of S(C), we have that s(C, E) = s(C, D) ∪

supp(F) and s(C, E′) = s(C, D′) ∪ supp(F′). In addition, F′ � F implies
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FC D
E

D′
F′

E′

Figure 3.4: Proof of Lemma 3.3.2.

that s(D, D′) ⊆ supp(F) \ supp(F′). Since s(C, D′) ⊆ s(C, D) ∪ s(D, D′), we
conclude that

s(C, E′) = s(C, D′) ∪ supp(F′) ⊆ s(C, D) ∪ s(D, D′) ∪ supp(F′)
⊆ s(C, D) ∪ supp(F) = s(C, E).

Therefore E′ ≤C E.

Consider the restriction ηC = η̃C|N(C) : N(C)→ C. The matching on N(C)
will be obtained as a union of acyclic matchings on each fiber η−1

C (E) of ηC.
Lemma 3.3.2, together with the Patchwork Theorem, will ensure that the
matching on N(C) is acyclic. We now fix two chambers C and E, and study
the fiber η−1

C (E).

Lemma 3.3.3. Let a be a valid order on C, and let C, E be two chambers. A
cell 〈D, F〉 ∈ Sal(A) is in the fiber η−1

C (E) if and only if D = EF, F ⊆ XC, and
supp(F) ⊆ s(C, E).

Proof. Suppose that 〈D, F〉 ∈ η−1
C (E). In particular, 〈D, F〉 ∈ N(C), thus by

Lemma 3.3.1 we have that F ⊆ XC. By definition of ηC, DF = E and so EF =
D. Finally, we have supp(F) ⊆ s(D, E) by definition of ηC, and supp(F) ∩
s(C, D) = ∅ by definition of S(C), so supp(F) ⊆ s(D, E) \ s(C, D) ⊆ s(C, E).

We want now to prove that a cell 〈D, F〉 that satisfies the given conditions is
in the fiber η−1

C (E). Since D is opposite to E with respect to F, we deduce that
supp(F) ⊆ s(D, E). Then, using the hypothesis supp(F) ⊆ s(C, E), we obtain
supp(F) ∩ s(C, D) = ∅. This means that C.F = D, i.e. 〈D, F〉 ∈ S(C). By
Lemma 3.3.1, we conclude that 〈D, F〉 ∈ N(C). The fact that ηC(〈D, F〉) = E
follows directly from the definition of ηC.

A cell 〈D, F〉 in the fiber η−1
C (E) is determined by F, because D = EF. Then

we immediately have the following corollary.
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Corollary 3.3.4. The fiber η−1
C (E) is in order-preserving (and rank-preserving)

bijection with the set of faces F � E such that F ⊆ XC and supp(F) ⊆ s(C, E).
In particular, if η−1

C (E) is non-empty, then supp(XC) ⊆ s(C, E).

Assume from now on that the fiber η−1
C (E) is non-empty. The above

corollary can be restated as follows, restricting to the flat XC.

Corollary 3.3.5. Suppose that the fiber η−1
C (E) is non-empty. Then C′ =

C ∩ XC and E′ = E ∩ XC are chambers of the arrangement AXC , and η−1
C (E) is

in order-preserving bijection with the set of faces F � E′ such that supp(F) ⊆
s(C′, E′) in AXC .

Proof. By Definition 3.2.6, XC = |FC| for some face FC of C. Then C′ =
C ∩ XC = FC is a chamber of AXC .

Consider now any cell 〈D, F〉 ∈ η−1
C (E), and let D′ = D ∩ XC. If we

prove that D′ is a chamber of AXC , then the same is true for E′, since they are
opposite with respect to F and F ⊆ XC (by Lemma 3.3.1). Let F′C = FC.F in
the arrangement AXC (so F′C is a chamber of AXC ), and consider the chamber
D̃ = C.F′C in A. Then D̃ = C.F = D, where the first equality holds because
F′C � F, and the second equality because D ∈ S(C). Therefore D′ = D ∩XC =
D̃ ∩ XC = F′C is a chamber of AXC .

The second part is mostly a rewriting of Corollary 3.3.4, but some care
should be taken since we are passing from the arrangement A to the arrange-
mentAXC . To avoid confusion, inAXC write supp′ and s′ in place of supp and
s. Given a face F ⊆ XC, we need to prove that supp(F) ⊆ s(C, E) in A if and
only if supp′(F) ⊆ s′(C′, E′) in AXC . This is true because

supp′(F) = {H ∩ XC | H ∈ supp(F) and H + XC}
s′(C′, E′) = {H ∩ XC | H ∈ s(C, E) and H + XC}.

Constructing an acyclic matching on η−1
C (E) is then the same as construct-

ing an acyclic matching on the set of faces of E′ given by Corollary 3.3.5. We
start by considering the special case E′ = C′.

Lemma 3.3.6. Suppose that the fiber η−1
C (E) is non-empty. Then E′ = C′ if

and only if E is the chamber opposite to C with respect to XC. In this case,
η−1

C (E) contains the single cell 〈C, FC〉.

Proof. If E is opposite to C with respect to XC, then clearly E′ = C′. Conversely,
suppose that E′ = C′ = FC. Let 〈D, F〉 be any cell in η−1

C (E). As in the proof
of Corollary 3.3.5, we have that D ∩ XC = F′C, where F′C = FC.F in AXC .
Notice that F ⊆ E ∩ XC = E′ = FC, so F′C = FC.F = FC. In other words,
the chambers C, D and E all contain the face FC. Since F ⊆ FC ⊆ C ∩ D,
we have that s(C, D) ⊆ supp(F). But D ∈ S(C) implies that D = C.F, i.e.
s(C, D) ∩ supp(F) = ∅. Therefore s(C, D) = ∅, so C = D. Now, E is the
opposite of D with respect to F, and E ∩ XC = D ∩ XC = FC, so F = FC. This
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E′ C′yC′

Figure 3.5: The faces of E′ that are visible from a point yC′ in
the interior of C′.

means that E is the opposite of C with respect to XC. The previous argument
also shows that η−1

C (E) contains the single cell 〈C, FC〉.

In particular, for every chamber C there is exactly one fiber η−1
C (E) for

which E′ = C′. This fiber contains exactly one cell, which is going to be critical
with respect to our matching.

Consider now the case E′ 6= C′. In view of Corollary 3.3.5, we work with
the restricted arrangement AXC in XC. Until Lemma 3.3.8, our notation (for
example, supp(F) and s(C′, E′)) is intended with respect to the arrangement
AXC . In what follows, we make use of the definitions and facts of Section 1.4.

Lemma 3.3.7. Let yC′ be a point in the interior of C′. The faces F � E′ such
that supp(F) ⊆ s(C′, E′) are exactly the faces of E′ that are visible from yC′ .

Proof. Suppose that supp(F) ⊆ s(C′, E′). In particular, for every facet G ⊇ F
of E′, the hyperplane |G| ∈ AXC separates C′ and E′ and so G is visible from
yC′ . Then F is visible from yC′ .

Conversely, suppose that F is visible from yC′ . Denote by B ⊆ supp(F) the
set of hyperplanes |G| where G ⊇ F is a facet of E′. All the facets G ⊇ F of E′

are visible from yC′ , so the hyperplanes |G| separate C′ and E′. In other words,
B ⊆ s(C′, E′). In the central arrangement AXC

|F| = supp(F), the chambers
π|F|(C′) and π|F|(E′) are therefore opposite to each other, and B is the set of
their walls. Then every hyperplane in supp(F) separates C′ and E′.

Fix an arbitrary point yC′ in the interior of C′. By the previous lemma, the
faces F given by Corollary 3.3.5 are exactly the faces of E′ that are visible from
yC′ . See Figure 3.5 for an example.
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The idea now is that, if E′ is bounded, then the boundary of E′ is shellable,
and we can use a shelling to construct an acyclic matching on the set of
visible faces. We first need to reduce to the case of a bounded chamber (i.e. a
polytope).

Lemma 3.3.8. There exists a finite setA′ of hyperplanes in XC, and a bounded
chamber Ẽ ⊆ E′ of the hyperplane arrangement A′ ∪AXC , such that the poset
of faces of Ẽ that are visible from yC′ is isomorphic to the poset of faces of E′

that are visible from yC′ .

Proof. Let XC
∼= Rk. Let Q be a finite set of points which contains yC′ and a

point in the relative interior of each visible face of E′. For i = 1, . . . , k, define
qi ∈ R as the minimum of all the i-th coordinates of the points in Q, and qi as
the maximum.

Choose A′ as the set of the 2k hyperplanes of the form {xi = qi − 1} and
{xi = qi + 1}, for i = 1, . . . , k. Let Ẽ be the chamber of AXC ∪A′ that contains
Q \ {yC′}. By construction, Ẽ is bounded and is contained in E′. See Figure
3.6 for an example.

The walls of E′ and of Ẽ are related as follows: WẼ = WE′ ∪ A′′ for
some A′′ ⊆ A′. The hyperplanes in WE′ separate yC′ and Ẽ, whereas the
hyperplanes in A′′ do not. This means that a facet G̃ of Ẽ is visible if and only
if |G̃| ∈ WE′ .

There is a natural order-preserving (and rank-preserving) injection ϕ from
the set V of the visible faces F of E′ to the set of faces of Ẽ, which maps a face
F to the unique face F̃ of Ẽ such that F ∩ Q ⊆ F̃ ⊆ F. We want to show that
the image of ϕ coincides with the set of visible faces of Ẽ.

Consider a facet G̃ of Ẽ. Then G̃ is in the image of ϕ if and only if |G̃| 6∈ A′′,
which happens if and only if G̃ is visible.

Consider now a generic face F̃ of Ẽ. If F̃ = ϕ(F) for some F ∈ V , then
Q ∩ F ⊆ F̃ and so F̃ is not contained in any hyperplane of A′′. Then all the
facets G̃ ⊇ F̃ of Ẽ are visible, and so F̃ is visible. Conversely, if F̃ is not in the
image of ϕ, then F̃ is contained in some hyperplane of A′′ and therefore also
in some non-visible facet G̃. Then F̃ is not visible.

We now show that the poset of visible faces of a polytope admits an acyclic
matching such that no face is critical. We will use this result on the polytope Ẽ,
in order to obtain a matching on the fiber η−1

C (E).

Theorem 3.3.9. Let X be a k-dimensional polytope in Rk, and let y ∈ Rk be
a point outside X that does not lie in the affine hull of any facet of X. Then
there exists an acyclic matching on the poset of faces of X visible from y such
that no face is critical.

Proof. By Theorem 1.4.3 and Lemma 1.4.4, there is a shelling G1, . . . , Gs of ∂X
such that the facets visible from y are the last ones, say Gt, Gt+1, . . . , Gs. Notice
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E′ C′yC′

Figure 3.6: Construction of the bounded chamber Ẽ ⊆ E′ in
the proof of Lemma 3.3.8. The points of Q are highlighted, and
the hyperplanes of A′ are dashed.

that there is at least one visible facet and at least one non-visible facet. In
particular, the first facet G1 is not visible and the last facet Gs is visible. In
other words, we have 2 ≤ t ≤ s.

In [Del08, Proposition 1] it is proved that a shelling of a regular CW com-
plex Y induces an acyclic matching on the poset of cells (P,<) of Y (augmented
with the empty face ∅), with critical cells corresponding to the spanning facets
of the shelling. In our case, Y = ∂X is a regular CW decomposition of a sphere,
so the only spanning facet of a shelling is the last one (see for example [Del08,
Lemma 2.13]).

LetM be an acyclic matching on ∂X induced by the shelling G1, . . . , Gs, as
in [Del08, Proposition 1]. We claim that the construction of [Del08] produces
a matching which is homogeneous with respect to the grading ϕ : (P,<)→
{1, . . . , s} given by

ϕ(F) = min{i ∈ {1, . . . , s} | F ≤ Gi}.

To prove this, we need to briefly go through the construction ofM. The first
step [Del08, Lemma 2.10] is to construct a total order @i on each Pi (the set of
faces of codimension i). The order@0 is simply the shelling order of the facets.
It follows from the recursive construction of @i that each ϕ|Pi : (Pi,@i) →
{1, . . . , s} is order-preserving. Then the linear extension C of P constructed
in [Del08, Definition 2.11] is such that ϕ : (P,C) → {1, . . . , s} is also order-
preserving. By construction of the matching [Del08, Lemma 2.12], if (p, q) ∈
M (with p ≥ q) then p C q. From this we obtain ϕ(p) ≥ ϕ(q) and ϕ(p) ≤
ϕ(q), so ϕ(p) = ϕ(q). Therefore the matching is homogeneous with respect
to ϕ.
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The set of visible faces of X is ϕ−1({t, . . . , s})∪ {X}. Notice that the empty
face ∅ belongs to ϕ−1(1), so it does not appear in ϕ−1({t, . . . , s}) because
t ≥ 2.

Let M′ be the restriction of M to ϕ−1({t, . . . , s}). This is an acyclic
matching on ϕ−1({t, . . . , s}) with exactly one critical face, the facet Gs. Then
M′ ∪ {(X, Gs)} is an acyclic matching on the poset of visible faces of X such
that no face is critical.

We are finally able to attach the matchings on the fibers η−1
C (E), using the

previous results of this section.

Theorem 3.3.10 (Acyclic matching on Sal(A)). Let A be a locally finite hyper-
plane arrangement, and let a be a valid order on the set of chambers C(A).
For every chamber C ∈ C(A), there exists a proper acyclic matching on N(C)
such that the only critical cell is 〈C, FC〉. The union of these matchings forms
a proper acyclic matching on Sal(A) with critical cells in bijection with the
chambers.

Proof. Consider the map η : Sal(A)→ C × C defined as

η(〈D, F〉) = (C, DF),

where C ∈ C is the chamber such that 〈D, F〉 ∈ N(C).
Corollary 3.3.5 provides a description of the non-empty fibers η−1(C, E),

since by definition we have η−1(C, E) = η−1
C (E). By Lemma 3.3.6, we know

that for every C ∈ C there is exactly one non-empty fiber such that E ∩ XC =
C ∩ XC, and this fiber contains the single cell 〈C, FC〉. By Lemma 3.3.7 and
Lemma 3.3.8, every other non-empty fiber η−1(C, E) is isomorphic to the poset
of visible faces of some polytope in XC (with respect to some external point
not lying on the affine hull of the facets). Finally, by Theorem 3.3.9, this poset
admits an acyclic matching with no critical faces.

We want to use the Patchwork Theorem (Theorem 1.2.6) to attach these
matchings together. To do so, we first need to define a partial order on C × C
that makes η a poset map. The order ≤ on C × C is the transitive closure of:

(C′, E′) ≤ (C, E) if and only if C′ �C and E′ ≤C E

(we denote by �the “less than or equal to” with respect to the total order a).
To prove that η is a poset map, suppose to have 〈D′, F′〉 ≤ 〈D, F〉 in Sal(A).

Let η(〈D′, F′〉) = (C′, E′) and η(〈D, F〉) = (C, E). Since S(C) is a lower ideal
of Sal(A), we immediately obtain that 〈D′, F′〉 ∈ S(C) and thus C′ �C. Then,
Lemma 3.3.2 implies that E′ ≤C E. Therefore (C′, E′) ≤ (C, E).

By the Patchwork Theorem, the union of the matchings on the fibers of η
forms an acyclic matching on Sal(A), with critical cells in bijection with the
chambers.
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We now need to prove that this matching is proper. To do so, we prove
that the (C × C)-grading η is compact. Since every fiber η−1(C, E) is finite by
Lemma 3.3.3, we only need to show that the poset (C × C)≤(C,E) is finite for
every pair of chambers (C, E).

We prove this by double induction, first on the chamber C (with respect to
the order a) and then on m = |s(C, E)|. The base case, C = C0 and m = 0, is
trivial since E = C0.

We want now to prove the induction step. Given a pair (C, m) ∈ C ×N,
suppose that the claim is true for every pair (C′, m′) such that either C′ a C,
or C′ = C and m′ < m. For every chamber E with |s(C, E)| = m we have that

(C × C)≤(C,E) =
⋃

C′ �C
E′≤CE

(C′,E′) 6=(C,E)

(C × C)≤(C′,E′) ∪ {(C, E)}.

This is a union of a finite number of sets, and by induction hypothesis every
set (C × C)≤(C′,E′) is finite. Therefore the set (C × C)≤(C,E) is finite.

By the Patchwork Theorem, the matchings on the fibers η−1(C, E) can be
attached together to form a proper acyclic matching on Sal(A). By construc-
tion, this matching is a union of proper acyclic matchings on the subposets
N(C) for C ∈ C, each of them having 〈C, FC〉 as the only critical cell.

3.4 REMARKS ON THE POSET OF FACES

We end this chapter with a few remarks. We are not going to use them
in Chapter 4, but they are interesting by themselves (especially in relation
with [Del08]).

The first remark is that, without the need of a valid order, the results
of Section 3.3 allow to obtain a proper acyclic matching on S(C0) (for any
chamber C0 ∈ C) with the single critical cell 〈C0, C0〉. This is because N(C0) =
S(C0), and in the construction of the matching on N(C0) we do not use the
existence of a valid order that begins with C0. As noted in Section 3.2, there
is a natural poset isomorphism S(C0) ∼= F for every chamber C0 ∈ C. Then
the existence of an acyclic matching on S(C0) can be stated purely in terms of
F , without speaking of the Salvetti complex. This result appeared in [Del08,
Theorem 3.6] in the case of the face poset of an oriented matroid.

Theorem 3.4.1. Let A be a locally finite hyperplane arrangement. For every
chamber C ∈ C(A), there is a proper acyclic matching on the poset of faces
F (A) such that C is the only critical face.

The second remark is that, given a valid order a of C and a chamber C ∈ C,
the poset N(C) is isomorphic to F (AXC). This is the analogue of [Del08,
Lemma 4.20].
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Lemma 3.4.2. Suppose that a is a valid order on C. For every chamber C ∈ C
there is a poset isomorphism

N(C) ∼= F
(
AXC

)
.

Proof. The isomorphism in the left-to-right direction sends a cell 〈D, F〉 ∈
N(C) to the face F, which is in F (AXC) by Lemma 3.3.1. The inverse map
sends a face F ∈ F (AXC) to the cell 〈C.F, F〉, which is in N(C) by definition
of S(C) and by Lemma 3.3.1. These maps are order-preserving.

Together, Lemma 3.4.2 and Theorem 3.4.1 give an alternative (but equiva-
lent) construction of our matching on Sal(A), closer to the approach of [Del08].
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CHAPTER 4
Euclidean matchings

and minimality

4.1 INTRODUCTION

Let A be a locally finite arrangement of hyperplanes in Rn. For a given valid
order of the chambers, in Chapter 3 we showed how to construct an acyclic
matching on the Salvetti complex.

In this chapter we continue to follow [LP18]. In Section 4.2 we construct
valid orders for any locally finite arrangement A, considering the Euclidean
distance of the chambers from a fixed generic point x0 ∈ Rn. In this way, we
obtain a family of matchings on Sal(A) that we call Euclidean matchings. The
idea of constructing a minimal complex that depends on a “generic point”
appears to be new, as opposed to the more classical approach of using a
“generic flag” [Yos07, SS07, GS09]. The critical cells are in bijection with the
chambers, and can be described explicitly.

Theorem 4.2.8. Let A be a locally finite arrangement in Rn. For every generic
point x0 ∈ Rn, there exists a Euclidean matching on Sal(A) with base point
x0. Such a matching has exactly one critical cell 〈C, FC〉 for every chamber
C ∈ C(A), where FC is the smallest face of C that contains the projection of
x0 onto C.

In Section 4.3 we prove that, also for infinite arrangements, the Morse
complex of a Euclidean matching is minimal.

Theorem 4.3.3. Let A be a locally finite hyperplane arrangement in Rn, and
let M be a Euclidean matching on Sal(A) with base point x0. Then the
associated Morse complex Sal(A)M is minimal (i.e. all the incidence numbers
vanish).
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In particular, we obtain a new geometric way to read the Betti numbers
and the Poincaré polynomial of M(A) from the arrangementA.

Corollary 4.3.4. Let A be a (locally) finite hyperplane arrangement in Rn,
and let x0 ∈ Rn be a generic point. The k-th Betti number of the complement
M(A) is equal to the number of chambers C such that the projection of x0
onto C lies in the relative interior of a face FC of codimension k. Equivalently,
the Poincaré polynomial ofA is given by

π(A, t) = ∑
C∈ C(A)

t codim FC .

In Section 4.4 we use Euclidean matchings to obtain a proof of Brieskorn’s
Lemma (for locally finite complexified arrangements) which makes no use
of algebraic geometry. In addition, we show that for every flat X there exist
Euclidean matchings on Sal(A) for which the Morse complex of the subar-
rangementAX is naturally included into the Morse complex ofA.

Finally, in Section 4.5 we give an explicit description of the algebraic Morse
complex that computes the homology of M(A) with coefficients in an abelian
local system, for any locally finite line arrangement A in R2. We compare our
result with the one of Gaiffi and Salvetti [GS09], where similar formulas are
obtained in the case of finite line arrangements (using the polar matchings of
Salvetti and Settepanella [SS07]).

4.2 EUCLIDEAN MATCHINGS

In this section we are going to construct a valid order aeu on the set of
chambers C, for any locally finite arrangement A, using the Euclidean dis-
tance d in Rn.

If K is a closed convex subset of Rn, denote by ρK(x) the projection of a
point x ∈ Rn onto K. The point ρK(x) is the unique point y ∈ K such that
d(x, y) = d(x, K).

The first step is to prove that there exist a lot of generic points with respect
to the arrangement A. For this, we need the following technical lemma. By
measure we always mean the Lebesgue measure in Rn.

Lemma 4.2.1. Let K1 and K2 be two closed convex subsets of Rn. Let

S = {x ∈ Rn | d(x, K1) = d(x, K2) and ρK1(x) 6= ρK2(x)}.

Then S has measure zero.

Proof. This proof was suggested by Federico Glaudo. Let di(x) = d(x, Ki) for
i = 1, 2. Each function di : Rn → R is differentiable on Rn \ Ki by [GM12,
Lemma 2.19], and its gradient in a point x 6∈ Ki is the versor with direction
x− ρKi(x).
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Let f (x) = d1(x)− d2(x). Denote by A the open set of points x ∈ Rn \
(K1∪K2) such that ρK1(x) 6= ρK2(x). On this set, the function f is differentiable
and its gradient does not vanish. It is known that the gradient of f must vanish
almost everywhere on A ∩ f−1(0) [EG92, Corollary 1 of Section 3.1], hence
A ∩ f−1(0) has measure zero.

It is easy to check that the points in K1 ∪ K2 cannot belong to S . Then
S = A ∩ f−1(0) has measure zero.

Lemma 4.2.2 (Generic points). Given a locally finite hyperplane arrangement
A in Rn, let G ⊆ Rn be the set of points x ∈ Rn such that:

(i) for every C, C′ ∈ C with d(x, C) = d(x, C′), we have ρC(x) = ρC′(x) ∈
C ∩ C′;

(ii) for every L, L′ ∈ L with L′ ( L, we have d(x, L′) > d(x, L).

Then the complement of G has measure zero. In particular, G is dense in Rn.

Proof. Given C, C′ ∈ C, denote by SC,C′ the set of points x ∈ Rn such that
d(x, C1) = d(x, C2) and ρC1(x) 6= ρC2(x). By Lemma 4.2.1, every SC,C′ has
measure zero.

Similarly, for every L, L′ ∈ L with L′ ( L, denote by TL,L′ the set of points
x ∈ Rn such that d(x, L′) = d(x, L). We have that TL,L′ is an affine subspace of
Rn of codimension at least 1, and in particular it has measure zero.

The complement of G is the union of all the sets SC,C′ for C, C′ ∈ C and
TL,L′ for L, L′ ∈ L with L′ ( L. This is a finite or countable union of sets of
measure zero, hence it has measure zero.

We call generic points the elements of G, as defined in Lemma 4.2.2. Notice
that, by condition (ii) with L = Rn, a generic point must lie in the comple-
ment of A.

Remark 4.2.3. An equivalent definition of a generic point is the following:
x0 ∈ Rn is generic with respect toA if and only if every flat ofA has a different
distance from x0. Indeed, this definition immediately implies condition (ii)
of Lemma 4.2.2. It also implies condition (i), because for any chamber C we
have d(x0, C) = d(x0, L), where L is the smallest flat that contains ρC(x0).
Conversely, suppose that x0 satisfies both conditions (i) and (ii). Given two
flats L, L′ ∈ L with d(x0, L) = d(x0, L′), by condition (ii) the projections ρL(x0)
and ρL′(x0) must lie in the relative interior of faces F, F′ ∈ F with |F| = L
and |F′| = L′. Defining C as the chamber containing F and with the greatest
distance from x0, we immediately obtain that ρL(x0) = ρC(x0). If C′ in defined
in the same way (using F′ and L′), the chambers C and C′ violate condition (ii)
unless L = L′. With this equivalent definition, it is possible to prove Lemma
4.2.2 in an alternative way without using Lemma 4.2.1 (cf. Lemma 4.3.2).

We are now able to define Euclidean orders.
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Definition 4.2.4 (Euclidean orders). A total order aeu on the set of chambers
C is Euclidean if there exists a generic point x0 such that C aeu C′ implies
d(x0, C) ≤ d(x0, C′). The point x0 is called a base point of the Euclidean order
aeu.

In other words, a Euclidean order is a linear extension of the partial order
on C given by C < C′ if d(x0, C) < d(x0, C′), for some fixed generic point
x0 ∈ Rn. In particular, for every generic point x0 there exists at least one
Euclidean order with x0 as a base point. Since the set of generic points is dense,
we immediately get the following corollary.

Corollary 4.2.5. For every chamber C0 ∈ C, there exists a Euclidean order aeu
that starts with C0.

Proof. Take the base point x0 in the interior of the chamber C0.

See Figure 4.1 for an example of a Euclidean order. We now prove that
every Euclidean order is valid, in the sense of Definition 3.2.6.

Theorem 4.2.6. Let aeu be a Euclidean order with base point x0. For every
chamber C, let xC = ρC(x0), and let FC be the smallest face of C that contains
xC. Then J (C) is the principal upper ideal generated by XC = |FC|. Therefore
aeu is a valid order.

Proof. First we want to prove that XC ∈ J (C). This is equivalent to proving
that for every chamber C′ aeu C there exists a hyperplane H ∈ supp(XC) ∩
s(C, C′). We have that ρXC(x0) = xC because FC is the smallest face that
contains xC. Then it is also true that ρπXC (C)

(x0) = xC. Given a chamber
C′ aeu C, we have two possibilities.

• d(x0, C′) < d(x0, C). Then C′ * πXC(C), because all the points of πXC(C)
have distance at least d(x0, C) from x0. This means that there exists a
hyperplane H ∈ supp(XC) = AXC which separates C and C′.

• d(x0, C′) = d(x0, C). Since x0 is a generic point, we have that xC = xC′ ∈
C ∩ C′. Then FC is a common face of C and C′, and every hyperplane in
s(C, C′) contains FC.

Now we want to prove that X ⊆ XC for every X ∈ J (C). Suppose
by contradiction that X * XC for some X ∈ J (C). In particular, we have
XC 6= Rn and thus x0 6= xC. We first prove that supp(XC ∪ X) is non-empty.

Let C′ be the chamber of A such that x0 ∈ πXC(C
′) and C′ ≺ FC. Since

xC ∈ XC ⊆ πXC(C
′), the entire line segment ` from x0 to xC is contained in

πXC(C
′). Then there is a neighbourhood of xC in ` which is contained in C′,

hence d(x0, C′) < d(x0, xC) and therefore C′ aeu C. Since X ∈ J (C), there
exists a hyperplane H ∈ supp(X) ∩ s(C, C′). We also have that FC ⊆ C ∩ C′,
and thus XC ⊆ H.
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Consider now the flat X′ =
⋂{Z ∈ L | XC ∪ X ⊆ Z}, i.e. the meet of

XC and X in L. The flat X′ is contained in the hyperplane H constructed
above, so in particular X′ 6= Rn. In addition, since X * XC, X′ is different
from XC. Then the point y0 = ρX′(x0) is different from xC, and we have
d(x0, y0) < d(x0, xC), because x0 is generic (see condition (ii) of Lemma 4.2.2).
Let F be the smallest face that contains the line segment [xC, xC + ε(y0 − xC)]
for some ε > 0. By construction, for every chamber C′′ such that C′′ � F
we have that C′′ aeu C. This holds in particular for C′′ = C.F. Then we have
supp(F) ∩ s(C, C′′) = ∅.

Since X ∈ J (C) and C′′ aeu C, there exists a hyperplane H ∈ supp(X) ∩
s(C, C′′). By construction, xC ∈ C ∩ C′′ and then XC is contained in every
hyperplane of s(C, C′′). In particular, XC ⊆ H. Therefore XC ∪ X ⊆ H, which
means that H ∈ supp(XC ∪ X) ⊆ supp(X′). Both xC and y0 belong to X′,
hence F ⊆ X′. Putting everything together, we get H ∈ supp(X′)∩ s(C, C′′) ⊆
supp(F) ∩ s(C, C′′) = ∅. This is a contradiction.

Since Euclidean orders are valid, we are able to construct acyclic matchings
on the Salvetti complex of any arrangement.

Definition 4.2.7 (Euclidean matching). Let A be a locally finite hyperplane ar-
rangement in Rn. We say that an acyclic matchingM on Sal(A) is a Euclidean
matching with base point x0 ∈ Rn if:

(i) the point x0 is generic with respect to A;

(ii) M is homogeneous with respect to the poset map η : Sal(A) → C × C
induced by a Euclidean order aeu with base point x0 (defined as in the
proof of Theorem 3.3.10);

(iii) there is exactly one critical cell 〈C, FC〉 for every chamber C ∈ C, where
FC is the smallest face of C that contains ρC(x0).

Notice that, by condition (ii), a Euclidean matching is also proper.

Theorem 4.2.8. Let A be a locally finite arrangement in Rn. For every generic
point x0 ∈ Rn, there exists a Euclidean matching on Sal(A) with base point
x0.

Proof. It follows from Theorems 3.3.10 and 4.2.6.

Remark 4.2.9. For a given generic point x0, there might be more than one
Euclidean order aeu with base point x0. Nonetheless, all Euclidean orders
with a given base point produce the same faces FC (by Theorem 4.2.6) and the
same critical cells (by Theorem 3.3.10). The decomposition

Sal(A) =
⊔

C∈C
N(C)
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also depends only on x0 (by Lemma 3.3.1), and therefore the definition of a
Euclidean matching is not influenced by the choice of aeu (once the base point
x0 is fixed).

4.3 MINIMALITY

In this section we prove that a Euclidean matching yields a minimal Morse
complex. In order to do so, we first prove two lemmas about generic points.

Lemma 4.3.1. Let x0 ∈ Rn. If x0 is generic with respect to an arrangement A,
then it is also generic with respect to any subarrangement A′ ⊆ A.

Proof. Condition (i) for A′ holds because a chamber of A′ is a union of cham-
bers of A. Condition (ii) follows from the fact that L(A′) ⊆ L(A).

Lemma 4.3.2. Let A be a locally finite arrangement in Rn, and let x0 ∈ Rn be
a generic point with respect to A. Let H ⊆ (Rn \ {0})×R ⊆ Rn+1 be the
set of elements (a1, . . . , an, b) such that x0 is generic also with respect to the
arrangement A ∪ {H}, where H is the hyperplane defined by the equation
a1x1 + · · ·+ anxn = b. Then the complement ofH in Rn+1 has measure zero.
In particular,H is dense in Rn+1.

Proof. In this proof we use the equivalent definition of a generic point given
in Remark 4.2.3. Assume that H intersects generically every flat X ∈ L(A), i.e.
codim(X ∩ H) = codim(X) + 1. This condition excludes a subset of measure
zero in Rn+1.

Since x0 is generic with respect toA, the distances between x0 and the flats
of A are all distinct. Consider now a flat of A∪ {H} of the form X ∩ H, for
some flat X ∈ L(A) of dimension ≥ 1. The squared distance d2(x0, X ∩ H) is
a rational function of the coefficients (a1, . . . , an, b) that define H.

Given two flats X, Y ∈ L(A) with dim(X) ≥ 1, the condition d2(x0, X ∩
H) = d2(x0, Y) can be written as a polynomial equation p(a1, . . . , an, b) = 0.
This equation is not satisfied if d(x0, H) > d(x0, Y), therefore the polynomial
p is not identically zero. Then the zero locus of p has measure zero.

Similarly, given two flats X, Y ∈ L(A) with dim(X) ≥ 1 and dim(Y) ≥ 1,
the condition d2(x0, X ∩ H) = d2(x0, Y ∩ H) can be written as a polynomial
equation q(a1, . . . , an, b) = 0. Up to exchanging X and Y, we can assume
that ρX(x0) 6∈ Y, because d(x0, X) 6= d(x0, Y). If H is the hyperplane or-
thogonal to the vector ρX(x0) − x0 that passes through ρX(x0), we have
d(x0, X ∩ H) = d(x0, X) and d(x0, Y ∩ H) > d(x0, H) = d(x0, X) (the in-
equality is strict because Y does not contain ρH(x0) = ρX(x0)). Therefore the
polynomial q is not identically zero, and the zero locus of q has measure zero.

Then the complement ofH is contained in a finite or countable union of
sets of measure zero, thus it has measure zero.
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Theorem 4.3.3 (Minimality). LetA be a locally finite hyperplane arrangement
in Rn, and let M be a Euclidean matching on Sal(A) with base point x0.
Then the associated Morse complex Sal(A)M is minimal (i.e. all the incidence
numbers vanish).

Proof. If the arrangement A is finite, it is well know that the sum of the Betti
numbers of Sal(A) is equal to the number of chambers [OS80, Zas97]. By
Theorem 3.3.10, the critical cells ofM are in bijection with the chambers. Then
the Morse complex is minimal.

Suppose from now on that A is infinite. Fix a chamber C ∈ C, and
consider the associated critical cell 〈C, FC〉 ∈ N(C). Recall from the proof of
Theorem 3.3.10 the definition of the poset map η : Sal(A) → C × C, and let
(C, E) = η(〈C, FC〉). Since the matching is proper, the set η−1((C × C)≤(C,E))
is finite.

Consider now the finite set of faces

U = {F ∈ F | 〈D, F〉 ∈ η−1((C × C)≤(C,E)) for some chamber D ∈ C}.

Let B ⊆ Rn be an open Euclidean ball centered in x0 that contains the projec-
tion ρF(x0) for every face F ∈ U . Let Ā be a set of n + 1 hyperplanes that do
not intersect B, such that: x0 is still generic with respect toA∪ Ā; the chamber
K of the arrangement Ā containing B is bounded. Such an arrangement Ā
exists thanks to Lemma 4.3.2. Consider the finite arrangement

A′ = {H ∈ A | H ∩ K 6= ∅} ∪ Ā,

and let FK ⊆ F (A) be the set of faces of A that intersect the interior of K.
Notice that, by construction, we have U ⊆ FK. In addition, there is a natural
order-preserving and rank-preserving injection ϕ : FK → F (A′) given by
ϕ(F) = F ∩ K. The image of ϕ consists of the faces of A′ that intersect the
interior of K.

By Lemma 4.3.1, x0 is still generic with respect to A′, and all the chambers
D ∈ C(A) with d(x0, D) ≤ d(x0, C) intersect the interior of K. Then, given a
Euclidean order aeu on C(A) with base point x0, there exists a Euclidean order
a′eu on C(A′) with base point x0 such that ϕ is an order-preserving bijection
between the initial segment of (C(A),aeu) up to C and the initial segment of
(C(A′),a′eu) up to ϕ(C).

Consider the subcomplex S = η−1((C ×C)≤(C,E)) of Sal(A). Since U ⊆ FK,
the map ϕ induces an order-preserving and orientation-preserving injection
ψ : S→ Sal(A′) that maps a cell 〈D, G〉 ∈ S to the cell 〈ϕ(D), ϕ(G)〉 ∈ Sal(A′).
Let S′ = ψ(S) be the copy of S inside Sal(A′). By definition of S, a fiber of η is
either disjoint from S or entirely contained in S. Therefore, a non-critical cell
of S is matched with another cell of S.

We now use the order a′eu to construct a Euclidean matching M′ on
Sal(A′). Denote by η′ : Sal(A′) → C(A′)× C(A′) the analogue of η for the
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arrangementA′ (see the proof of Theorem 3.3.10). Consider a fiber η′−1(C′, E′)
that intersects S′. Then there is some cell 〈D′, G′〉 ∈ η′−1(C′, E′) ∩ S′, with
〈D′, G′〉 = ψ(〈D, G〉) for some 〈D, G〉 ∈ S. If we define (C̄, Ē) = η(〈D, G〉),
we have that ϕ(C̄) = C′ and ϕ(Ē) = E′, because by construction the cell
〈ϕ(D), ϕ(G)〉 is in the fiber η−1(ϕ(C̄), ϕ(Ē)). By Corollary 3.3.5 and Lemma
3.3.7, the fiber η′−1(C′, E′) is isomorphic to the poset of faces of E′ ∩XC′ visible
from some point yC′ in the relative interior of C ′ ∩ XC′ . By construction of A′,
the map ϕ induces a bijection between the faces of E′ ∩ XC′ visible from yC′

and the faces of Ē ∩ XC̄ = Ē ∩ XC′ visible from yC′ : if F is a visible face of
Ē ∩ XC′ , then F ∈ U and so ϕ(F) is still visible; conversely, a visible face F′ of
E′ ∩ XC̄ cannot be contained in any hyperplane of Ā, and by construction of
A′ it must be also a face of Ē. Therefore the fiber η′−1(C′, E′) is the isomorphic
image of the fiber η−1(C̄, Ē) under the map ψ.

We have proved that a fiber of η′ is either disjoint from S′ or entirely
contained in S′. Then we can choose the Euclidean matchingM′ so that its
restriction to S′ coincides with the image of the restriction ofM to S under
the isomorphism ψ : S → S′. In particular, a cell 〈D, G〉 ∈ S isM-critical if
and only if ψ(〈D, G〉) ∈ S′ isM′-critical.

Consider now aM-critical cell 〈D, G〉 ∈ Sal(A) such that there is at least
one alternating path from 〈C, FC〉 to 〈D, G〉. SinceM is homogeneous with
respect to η, every alternating path starting from 〈C, F〉 is entirely contained
in S. In particular, 〈D, G〉 ∈ S. Then the map ψ : S → S′ induces a bijection
between the alternating paths from 〈C, F〉 to 〈D, G〉 in Sal(A) (with respect
to the matchingM) and the alternating paths from ψ(〈C, F〉) to ψ(〈D, G〉) in
Sal(A′) (with respect to the matchingM′). In particular, the incidence number
between 〈C, F〉 and 〈D, G〉 in the Morse complex Sal(A)M is the same as the
incidence number between ψ(〈C, F〉) and ψ(〈D, G〉) in the Morse complex
Sal(A′)M′ . Since A′ is finite, the Morse complex Sal(A′)M′ is minimal and all
its incidence numbers vanish. Therefore the incidence number between 〈C, F〉
and 〈D, G〉 in Sal(A)M also vanishes.

The following result is a direct consequence of Theorems 4.2.8 and 4.3.3. It
gives a simple geometric way to compute the Betti numbers of the complement
of an arrangement.

Corollary 4.3.4 (Betti numbers). LetA be a (locally) finite hyperplane arrange-
ment in Rn, and let x0 ∈ Rn be a generic point. The k-th Betti number of
the complement M(A) is equal to the number of chambers C such that the
projection ρC(x0) lies in the relative interior of a face FC of codimension k.
Equivalently, the Poincaré polynomial of A is given by

π(A, t) = ∑
C∈ C(A)

t codim FC .

Example 4.3.5. Consider the line arrangement A of Figure 4.1. For the given
generic point x0 in the interior of C0, the computation of the Betti numbers bi
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x0

C0 = F0

C1

C2

C3

C4

C5

C6

C7

C8

C9

F1

F2 F3

F4

F5

F6

F7

F8 = F9

Figure 4.1: Euclidean order with respect to x0. The faces Fi =
FCi defined in Theorem 4.2.6 are highlighted.

according to Corollary 4.3.4 goes as follows: there is one chamber (namely
C0) such that the projection of x0 lies in its interior, so b0 = 1; there are four
chambers (namely C1, C2, C3 and C5) such that the projection of x0 lies in the
interior of a 1-dimensional face, so b1 = 4; finally, for the remaining chambers
(C4, C6, C7, C8 and C9) the projection of x0 is a 0-dimensional face, so b2 = 5.

Remark 4.3.6. For any choice of the generic point x0, the only chamber that
contributes to the 0-th Betti number is the one containing x0. In addition, for
every hyperplane H ∈ A there is exactly one chamber C such that ρC(x0) ∈ H
and ρC(x0) 6∈ H′ for every H′ ∈ A \ {H}. Therefore Corollary 4.3.4 immedi-
ately implies the well-known facts that b0(A) = 1 and b1(A) = |A|.

4.4 BRIESKORN’S LEMMA AND NATURALITY

In this section we are going to relate the Morse complex of A, constructed
using a Euclidean matching, to the Morse complexes of subarrangementsAX.

Given a flat X ∈ L(A), for every face F̄ ∈ F (A) such that |F̄| = X there
is a natural inclusion of Sal(AX) into Sal(A). It maps a cell 〈D, G〉 ∈ Sal(AX)
to the unique cell 〈C, F〉 ∈ Sal(A) such that F̄ ⊆ F ⊆ G, dim F = dim G, and
C ⊆ D. We call this the inclusion of Sal(AX) into Sal(A) around F̄. Geometri-
cally, this corresponds to including the complement of AC

X, intersected with a
neighbourhood of some point in the interior of F̄, into M(A). The inclusions
Sal(AX) ↪→ Sal(A) that we are going to consider in this section are always of
this type, for some face F̄ ∈ F (A) with |F̄| = X.

Recall from Definition 4.2.7 that a Euclidean matching has a critical cell
〈C, FC〉 ∈ Sal(A) for every chamber C, where FC is the smallest face of C
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containing ρC(x0). Every critical cell 〈C, FC〉 is thus associated to a flat XC =
|FC|. Conversely, given a flat X ∈ L(A), the critical cells 〈C, FC〉 associated to
X are exactly those for which ρC(x0) = ρX(x0).

This simple observation yields a proof of Brieskorn’s Lemma, a classical
result in the theory of hyperplane arrangements due to Brieskorn [Bri73]. See
also [OT13, Lemma 5.91] and [CD17, Proposition 3.3.3].

Lemma 4.4.1 (Brieskorn’s Lemma [Bri73]). Let A be a locally finite arrange-
ment in Rn. For every k ≥ 0, there is an isomorphism

θk :
⊕

X∈Lk

Hk(M(AX); Z)→ Hk(M(A); Z)

induced by suitable inclusions jX : Sal(AX) ↪→ Sal(A) of CW complexes.
The inverse isomorphism θ−1

k is induced by the natural inclusion maps
iX : M(A) ↪→ M(AX).

Proof. Let x0 ∈ Rn be a generic point with respect to A, and let M be a
Euclidean matching on Sal(A) with base point x0. Let X ∈ Lk be a flat of
codimension k. By Lemma 4.3.1, the point x0 is generic also with respect to the
subarrangement AX. Consider the inclusion jX : Sal(AX) ↪→ Sal(A) around
the unique face of A containing the projection ρX(x0). LetMX be a Euclidean
matching on Sal(AX) with base point x0.

All homology groups in this proof are with integer coefficients. By The-
orem 4.3.3, we have that Hk(Sal(A)) is a free abelian group generated by
elements of the form

[〈C, FC〉+ a finite sum of non-critical k-cells]

for each critical k-cell 〈C, FC〉 of Sal(A). Similarly, for every flat X ∈ Lk, we
have that Hk(Sal(AX)) is a free abelian group generated by elements of the
same form as above, one for every critical k-cell of Sal(AX). The critical k-cells
of Sal(AX) are in bijection (through the map jX) with the critical k-cells 〈C, F〉
of Sal(A) such that |F| = X. Then the inclusions jX induce an isomorphism

θ̄k :
⊕

X∈Lk

Hk(Sal(AX))→ Hk(Sal(A)).

Let ϕ : Sal(A) '
↪−→ M(A) and ϕX : Sal(AX)

'
↪−→ M(AX) be the homotopy

equivalences constructed in [Sal87]. Then the composition

⊕
X∈Lk

Hk(M(AX))
⊕
(ϕX)

−1
∗−−−−−→

⊕
X∈Lk

Hk(Sal(AX))
θ̄k−→ Hk(Sal(A)) ϕ∗−→ Hk(M(A))

is the isomorphism θk of the statement.
By naturality of Salvetti’s construction, the following diagram is commu-

tative up to homotopy.
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Sal(AX) Sal(A)

M(AX) M(A)

jX

ϕX ϕ

iX

Looking at the induced commutative diagram in homology, we obtain that
the inverse isomorphism θ−1

k is induced by the inclusion maps iX.

Remark 4.4.2. With an idea similar to the one employed in the previous proof,
it might be possible to derive a version of Brieskorn’s Lemma for abstract
oriented matroids. We leave this as a potential direction for future work.

If we fix a flat X ∈ L(A), it is possible to choose the base point x0 so that
the Morse complex of Sal(AX) injects into the Morse complex of Sal(A). We
prove this naturality property in the following lemma.

Lemma 4.4.3. Let X ∈ L(A) be a flat, and fix an inclusion j : Sal(AX) ↪→
Sal(A) around some face F̄ with |F̄| = X. There exist Euclidean matchings
MX andM, on Sal(AX) and Sal(A) respectively, such that:

(i) they share the same base point x0;

(ii) j(MX) ⊆M;

(iii) the inclusion j induces an inclusion of the Morse complex of Sal(AX)
into the Morse complex of Sal(A).

Proof. Let x0 ∈ Rn be a generic point such that d(x0, F̄) < d(x0, H) for every
hyperplane H ∈ A \AX (the existence of x0 follows from Lemma 4.2.2). For
example, we can choose a point y in the relative interior of F̄, and then take x0
in a small neighbourhood of y.

Let aeu and a′eu be Euclidean orders with base point x0 on C(A) and
C(AX), respectively. Notice that, by construction of x0, the total order aeu
starts with the chambers containing F̄.

Let η : Sal(A) → C(A)× C(A) be the poset map defined in the proof of
Theorem 3.3.10, induced by the total order aeu. Let η′ : Sal(AX)→ C(AX)×
C(AX) be the analogous poset map for the arrangement AX, induced by the
total order a′eu. Then, for every pair of chambers C, E ∈ C(A) containing F̄,
we have

η−1(C, E) = j(η′−1
(πX(C), πX(E))).

In other words, the inclusion j maps fibers of η′ to fibers of η. Notice that, by
Remark 4.2.9, these fibers only depend on x0 and not on the particular choices
of the Euclidean orders aeu and a′eu.

LetMX be a Euclidean matching on Sal(AX) with base point x0. Recall
that such a matching is constructed on the fibers of η (see Definition 4.2.7).
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Then there exists a Euclidean matchingM on Sal(A) with base point x0 that
contains j(MX).

The alternating paths in Sal(A) starting from cells in the subcomplex
j(Sal(AX)) remain in this subcomplex. Therefore j induces an inclusion of the
Morse complex of Sal(AX) (with respect to the matchingMX) into the Morse
complex of Sal(A) (with respect to the matchingM).

4.5 LOCAL HOMOLOGY OF LINE ARRANGEMENTS

Let A be a locally finite line arrangement in R2. In this section we are going
to describe the algebraic Morse complex (associated to a Euclidean matching)
that computes the homology of the complement M(A) with coefficients in
an abelian local system. Then we are going to compare the obtained complex
with the algebraic complex of Gaiffi and Salvetti [GS09], which is based on the
polar matching of Salvetti and Settepanella [SS07].

An abelian local system L on M(A) is determined by the elements t` ∈
Aut(L) associated to elementary positive loops around every line ` ∈ A [GS09,
Section 2.4]. The boundaries ∂i of the algebraic Morse complex are determined
by the incidence numbers [〈D, G〉, 〈C, F〉]M ∈ Z[t±1

` ]`∈A, between critical i-
cells 〈D, G〉 and critical (i− 1)-cells 〈C, F〉, in the Morse complex.

We refer to [SS07, Section 5] for a detailed explanation of how to compute
these incidence numbers, given an acyclic matching on the Salvetti complex
Sal(A). We only make the following substantial change of convention with
respect to [SS07, GS09]: given a cell 〈C, F〉, we choose as its representative
point the 0-cell 〈CF, CF〉, where CF is the chamber opposite to C with respect
to F (the role of the representative point is thoroughly described in [Ste43,
Section 9]). It is more convenient to choose 〈CF, CF〉 instead of 〈C, C〉, because
in this way two matched cells have the same representative point.

We recall some useful definitions and facts from [SS07, Chapter 5], adapt-
ing them to our different convention on the representative point. Given two
chambers D and C, denote by u(D, C) a combinatorial positive path of min-
imal length from 〈D, D〉 to 〈C, C〉, in the 1-skeleton of Sal(A). In particular,
let Γ(C) = u(C, C0) be a minimal positive path from the chamber C to a base
chamber C0. Every path u(D, C) crosses each hyperplane at most once by
[SS07, Lemma 5.1]. Consider the closed path Γ(D)−1 u(D, C) Γ(C), which
starts from C0, passes through D and C, and then goes back to C0. This path
determines an element ū(D, C) ∈ H1(M(A)) which is equal to the product
of the positive loops around the hyperplanes in s(C0, C) ∩ s(D, C). Then the
incidence number [〈D, G〉, 〈C, F〉] ∈ Z[t±1

` ]`∈A between an i-cell 〈D, G〉 and
an (i− 1)-cell 〈C, F〉 in Sal(A) is given by

[〈D, G〉 : 〈C, F〉] = [〈D, G〉 : 〈C, F〉]Z ū(DG, CF),

where [〈D, G〉 : 〈C, F〉]Z = ±1 denotes the incidence number with integer
coefficients.
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Let x0 ∈ R2 be a generic point with respect to the line arrangement A, and
fix a Euclidean matchingM on the Salvetti complex Sal(A) with base point x0.
Let C0 be the chamber containing x0 (this is the first chamber in any Euclidean
order with base point x0). Recall that the matchingM is constructed on the
fibers of the map η : Sal(A)→ C ×C.

To compute the algebraic Morse complex (see Section 1.3), we first need to
describe the alternating paths between critical cells. The alternating paths be-
tween a critical 1-cell 〈C, F〉 and the only critical 0-cell 〈C0, C0〉 are particularly
simple, since all the 0-cells are in N(C0).

Lemma 4.5.1. Let 〈C, F〉 be a critical 1-cell. Denote by C′ the unique chamber
containing F other than C. There are exactly two alternating paths from 〈C, F〉
to the only critical 0-cell 〈C0, C0〉:

• 〈C, F〉m 〈C, C〉l 〈C′, F〉m 〈C′, C′〉l · · ·m 〈C0, C0〉
• 〈C, F〉m 〈C′, C′〉l · · ·m 〈C0, C0〉

(after 〈C′, C′〉, they continue in the same way).

Proof. Since 〈C, F〉 is critical, the line |F| separates C and C0. In the boundary
of the 1-cell 〈C, F〉 there are the two 0-cells 〈C, C〉 and 〈C′, C′〉. The 0-cell
〈C, C〉 is matched with the 1-cell 〈C′, F〉, because these are the unique cells in
the fiber η−1(C0, C). Then an alternating path starting with 〈C, F〉m 〈C, C〉 is
forced to continue with l〈C′, F〉m 〈C′, C′〉. After 〈C′, C′〉 there is exactly one
way to continue the path, because every non-critical 0-cell is matched with
some 1-cell, and this 1-cell has exactly one other 0-cell in its boundary. Since
the matching is proper, one such path must eventually reach the critical 0-cell
〈C0, C0〉.

We can use the previous lemma to compute the boundary ∂1. The resulting
formula coincides with the one of [GS09, Proposition 4.1].

Proposition 4.5.2. The incidence number between a critical 1-cell 〈C, F〉 and
the only critical 0-cell 〈C0, C0〉 in the Morse complex is given by

[〈C, F〉 : 〈C0, C0〉]M = (1− t |F|).

Proof. The orientation of a 1-cell 〈C̃, F̃〉 is defined so that [〈C̃, F̃〉, 〈C̃F̃, C̃F̃〉]Z =

1. Now, if 〈C̃, F̃〉 ∈ N(C0), then C̃ is closer to C0 with respect to C̃F̃ and so we
have that:

[〈C̃, F̃〉, 〈C̃, C̃〉] = −1; [〈C̃, F̃〉 : 〈C̃F̃, C̃F̃〉] = 1.

By Lemma 4.5.1 we see that there are exactly two alternating paths between
〈C, F〉 and 〈C0, C0〉, and by Theorem 1.3.1 the incidence number in the Morse
complex is given by

[〈C, F〉 : 〈C0, C0〉]M = [〈C, F〉 : 〈C, C〉] + [〈C, F〉 : 〈C′, C′〉].
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Since |F| ∈ s(C0, C) ∩ s(CF, C), the first term is

[〈C, F〉 : 〈C, C〉] = [〈C, F〉 : 〈C, C〉]Z ū(CF, C) = −t|F|,

The second term is given by

[〈C, F〉 : 〈C′, C′〉] = [〈C, F〉 : 〈C′, C′〉]Z ū(CF, C′) = ū(C′, C′) = 1.

Now we want to compute the boundary ∂2. To simplify the notation,
denote a 2-cell 〈D, {p}〉 also by 〈D, p〉, where p ∈ R2 is the intersection point
of two or more lines ofA.

It is convenient to assign the orientation of the 2-cells so that they behave
well with respect to the matching. Given a 2-cell 〈D, p〉 6∈ N(C0), we choose
the orientation in the following way. Let `, `′ be the two walls of D that pass
through p. Let ` be the one that does not separate D from C0 if it exists, or
otherwise the closest one to x0. Then the orientation of 〈D, p〉 is the one for
which [〈D, p〉, 〈D, `〉]Z = 1. The orientation of the 2-cells in N(C0) is assigned
arbitrarily. The reason of this choice is that the incidence number between two
matched cells is always +1. Indeed, if C′ is the chamber such that XC′ = `′,
then 〈D, p〉 ∈ N(C′) by construction.

We are going to show that there is a correspondence between alternating
paths from critical 2-cells to critical 1-cells and certain sequences of elements
of L1(A). Consider an alternating path of the form

〈D, p〉m 〈C1, F1〉l 〈D1, p1〉m 〈C2, F2〉l · · ·m 〈Cn, Fn〉, (4.1)

where 〈D, p〉 is a critical 2-cell and 〈Cn, Fn〉 is a critical 1-cell. By construction
of the matching, none of the cells in (4.1) belongs to N(C0). We have that
the starting cell 〈D, p〉 and the sequence (F1, . . . , Fn) uniquely determine the
alternating path. This is because for each i there are only two cells of the
form 〈C′, Fi〉 for some C′ ∈ C, and one of these cells is in N(C0). Then Ci
is uniquely determined by Fi for every i, and 〈Di, pi〉 is the cell matched
with 〈Ci, Fi〉.

We are now going to describe which sequences in L1(A) give rise to an
alternating path. Given a face F ∈ L1(A), let ` = |F|. If ρ`(x0) /∈ F, we denote
by p(F) the endpoint of F which is closer to ρ`(x0). In addition, let C(F) be the
unique chamber containing F such that 〈C(F), F〉 /∈ N(C0).

Definition 4.5.3. Given two different faces F, G ∈ L1(A), we write F → G if

• F ∩ G = {p(F)};
• |F| = |G|, or F and C0 lie in the same half-plane with respect to |G|.

Lemma 4.5.4. Let 〈D, p〉 be a critical 2-cell and 〈C, F〉 a critical 1-cell. The
alternating paths between 〈D, p〉 and 〈C, F〉 are in one to one correspondence
with the sequences in L1(A) of the form (F1 → F2 → · · · → Fn = F) such that
〈C(F1), F1〉l 〈D, p〉.
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Proof. Consider an alternating path as in (4.1). We have already seen that such
a path is completely determined by the starting cell 〈D, p〉 and by the sequence
(F1, . . . , Fn). Clearly the condition 〈C(F1), F1〉l 〈D, p〉 must be satisfied. We
want to show that Fi → Fi+1 for each i = 1, . . . , n− 1.

Let Ei be the chamber opposite to C(Fi) with respect to Fi. By construction
of the matching, it is immediate to see that the cell 〈C(Fi), Fi〉 is matched with
〈D(Fi), p(Fi)〉, where D(Fi) is the chamber opposite to Ei with respect to p(Fi).
By hypothesis we have that 〈C(Fi+1), Fi+1〉l 〈D(Fi), p(Fi)〉which implies that
Fi ∩ Fi+1 = {p(Fi)} and that D(Fi).Fi+1 = C(Fi+1). Since 〈C(Fi+1), Fi+1〉 /∈
N(C0), we have that C0 and C(Fi+1) are in opposite half-planes with respect
to |Fi+1|. The same is true for Fi and C(Fi+1), because D(Fi) and Fi are in
opposite half-planes with respect to |Fi+1|, unless Fi ⊂ |Fi+1|. Then we have
that Fi → Fi+1.

Conversely, we now prove that every sequence (F1 → F2 → · · · → Fn = F)
satisfying 〈C(F1), F1〉l 〈D, p〉 has an associated alternating path. We do this
by induction on the length n of the sequence.

The case n = 1 is trivial, since we already know that 〈C(F1), F1〉l 〈D, p〉.
In the induction step, we need only to prove that F → G implies 〈C(G), G〉l
〈D(F), p(F)〉. From the first condition of Definition 4.5.3, we have that G ≺
{p(F)}. We need to check that D(F).G = C(G). By definition of C(G), this
is equivalent to proving that D(F) and C0 lie in opposite half-planes with
respect to |G|. This is true because F and C0 lie in the same half-plane with
respect to |G|.

Now that we have a description of the alternating paths, we can use it to
compute the boundary of the Morse complex.

Definition 4.5.5. Given two different faces F, G ∈ L1(A), let

[F → G] =
[〈D(F), p(F)〉 : 〈C(G), G〉]
[〈D(F), p(F)〉 : 〈C(F), F〉] ,

where the incidence numbers on the right are taken in the Salvetti complex
Sal(A), and D(F) is defined as in the proof of Lemma 4.5.4.

Lemma 4.5.6. Given two different faces F, G ∈ F1(A) such that F → G, we
have

[F → G] = ±∏ t`,

where the product is on the set of lines ` 6= |G| passing through p(F), such
that G and C0 lie in opposite half-planes, whereas F and C0 lie in the same
closed half-plane (with respect to `). The sign is +1 if p(F) = p(G), and −1
otherwise.

Proof. Denote by E(F) and E(G) the chambers C(F)F and C(G)G, respectively.
Notice that E(F) = D(F)p(F), and therefore [〈D(F), p(F)〉 : 〈C(F), F〉] = 1.
See Figure 4.2 for an example.
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x0

C0

C(F)E(F)

C(G)

E(G)

F

G

p(F)

Figure 4.2: Faces F, G ∈ F1(A) such that F → G, as in Lemma
4.5.6.

Now we need to determine ū(E(F), E(G)), which is the product of the
positive loops around the hyperplanes in s(C0, E(G)) ∩ s(E(F), E(G)). By def-
inition of E(G), we have that s(C0, E(G)) is the set of lines different from |G|
for which G and C0 in opposite half-planes. Since every line in s(E(F), E(G))
goes through p(F), it is now easy to see that s(C0, E(G)) ∩ s(E(F), E(G)) is
the set described in the statement.

We now need to determine the sign. If p(G) = p(F), then we immediately
see that G is in the half-plane delimited by |F| that contains D(F). The opposite
is true if p(G) 6= p(F). By our choice of the orientation, we obtain the stated
result.

Theorem 4.5.7. Let A be a locally finite line arrangement in R2. Let 〈D, p〉 be
a critical 2-cell and 〈C, F〉 a critical 1-cell. Then their incidence number in the
Morse complex is given by

[〈D, p〉 : 〈C, F〉]M = ∑
s∈Seq

ω(s),

where Seq is the set of sequences of Lemma 4.5.4, and for each sequence
s = (F1 → F2 → · · · → Fn = F) ∈ Seq we define

ω(s) = (−1)n [〈D, p〉 : 〈C(F1), F1〉]
n−1

∏
i=1

[Fi → Fi+1].

Proof. It follows directly from the definition of the algebraic Morse complex,
and from Lemma 4.5.4.
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x0

C0
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C4

C5

C6
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C8

C9
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l1

l2

l3

l4

l5

Figure 4.3: Deconing A3.

〈C4, p4〉 〈C5, p5〉 〈C7, p7〉 〈C9, p9〉 〈C10, p10〉 〈C11, p11〉
〈C1, F1〉 1− t4 t4(t2 − 1) 0 0 t1 − 1 t1(1− t5)
〈C2, F2〉 t2t3 − 1 t2 − 1 1− t1 0 0 0
〈C3, F3〉 t3(1− t4) 1− t3t4 0 t5 − 1 0 0
〈C6, F6〉 0 0 t4 − 1 0 1− t3t5 1− t5
〈C8, F8〉 0 0 0 1− t2 t3(t1 − 1) t1t3 − 1

Table 4.1: The boundary ∂2 of the deconing of A3

Example 4.5.8 (Deconing A3). Consider the line arrangement A of Figure 4.3,
obtained by deconing the reflection arrangement of type A3. Given a chamber
Ci, denote by 〈Ci, Fi〉 the associated critical cell if it has dimension 1, and by
〈Ci, pi〉 if it has dimension 2. Applying Theorem 4.5.7 and Lemma 4.5.6, we
obtain the boundary matrix ∂2 of Table 4.1. This matrix is slightly simpler
than the one computed in [GS09, Section 7], but there are many similarities.
Specializing to the case t1 = · · · = t5 = t, we obtain that

H1(M(A); Q[t±1]) ∼=
(

Q[t±1]

t− 1

)3

⊕ Q[t±1]

t3 − 1
,

as already computed for example in [GS09].
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LOCAL HOMOLOGY





CHAPTER 5
Precise matchings

on weighted sheaves

5.1 INTRODUCTION

The next two chapters are devoted to the computation of the homology of
Artin groups with local coefficients. The material of this chapter is based
on a joint work with Mario Salvetti [PS18], and Chapter 6 is also based on
[Pao17b].

Assuming that the K(π, 1) conjecture holds, the Salvetti complex [Sal87,
Sal94] can be used to derive a combinatorial free resolution for Artin
groups [DCS96] (equivalent resolutions also appeared in [Squ94] and [Ozo17,
Pao17a]). Several (co)homology computations were carried out using this res-
olution [DCPSS99, DCPS01, CS04, Cal05, Cal06, CMS08a, CMS08b, CMS10].
The computational methods used in the previous papers are essentially based
on filtering the algebraic complex and using the associated spectral sequence.

In [SV13] a more combinatorial method of calculation was introduced,
based on the application of discrete Morse theory to a particular class of
sheaves over posets (called weighted sheaves). Similar ideas were considered
later in [CGN16], even if there the authors were mainly interested in compu-
tational aspects.

In the first part of this chapter (Sections 5.2, 5.3, and 5.4) we follow [SV13]
and recall discrete Morse theory for weighted sheaves. Then, in Section 5.5,
we expand this theory by introducing precise matchings. The motivation comes
from the study of the local homology of spherical and affine Artin groups, as
we will show in Chapter 6. The homology of the Morse complex associated
to a precise matching is simpler to compute than in general (Theorems 5.5.2
and 5.5.4). In addition, the existence of precise matchings can be interpreted
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in terms of second-page collapsing of a spectral sequence which is naturally
associated to the weighted sheaf (Proposition 5.5.3).

5.2 WEIGHTED SHEAVES OVER POSETS

Let (P,�) be a finite poset.

Definition 5.2.1. Define a sheaf of rings over P (or a diagram of rings over P) as
a collection

{Ax | x ∈ P}

of commutative rings, together with a collection of ring homomorphisms

{ρx,y : Ay → Ax | x � y}

satisfying ρx,x = idAx and

x � y � z ⇒ ρx,z = ρx,y ◦ ρy,z.

In other words, a sheaf of rings over P is a functor from Pop to the category
of commutative rings.

Fix a PID R. We usually take R = Q[q±1]. The divisibility relation gives R
the structure of a small category, and R/R∗ the structure of a poset (where R∗
is the group of units in R) with bottom element the class of the units and top
element 0. Any functor w : (P,�)→ (R, |), which maps every x ∈ P to some
w(x) ∈ R \ {0}, defines a sheaf over P by considering the collection of rings

{R/(w(x)) | x ∈ P},

with maps

{ix,y : R/(w(y))→ R/(w(x)) | x � y},

where ix,y is induced by the identity of R.

Definition 5.2.2 (Weighted sheaf). Given a poset P, a PID R, and a morphism
w : (P,�)→ (R, |) as above, we call the triple (P, R, w) a weighted sheaf over
P and the coefficients w(x) the weights of the sheaf.

Remark 5.2.3. Consider the poset topology over P, where a basis for the open
sets is given by the upper ideals B = {P>p, p ∈ P}. Let (P, R, w) be a
weighted sheaf. Then one can see w as a functor from (B,⊇) to (R, |) and thus
a weighted sheaf defines a sheaf in the usual sense.

From now on our poset will be a simplicial complex K defined over a finite
set S, with the partial order given by inclusion: σ � τ if and only if σ ⊆ τ.
We adopt the convention that K contains the empty simplex ∅. A weighted
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sheaf over K is given by assigning to each simplex σ ∈ K a weight w(σ) ∈ R,
in such a way that w(σ) | w(τ) whenever σ � τ. Let C0

∗(K; R) be the 1-shifted
standard algebraic complex computing the simplicial homology of K:

C0
k (K; R) =

⊕
σ∈K
|σ|=k

R e0
σ,

where e0
σ is the generator associated to a given orientation of σ. In particular,

C0
0(K; R) = R e0

∅. The boundary is given by

∂0(e0
σ) = ∑

|τ|=k−1
[σ : τ] e0

τ,

where [σ : τ] is the incidence number (which is equal to ±1 if τ ≺ σ, and
vanishes otherwise).

Definition 5.2.4. The weighted complex associated to the weighted sheaf
(K, R, w) is the algebraic complex L∗ = L∗(K) defined by

Lk =
⊕
|σ|=k

R
(w(σ))

ēσ,

with boundary ∂ : Lk → Lk−1 induced by ∂0:

∂(aσ ēσ) = ∑
τ≺σ

[σ : τ] iτ,σ(aσ) ēτ.

There is a natural projection π : C0
∗(K; R)→ L∗ which maps a generator eσ

in C0
∗ to the generator ēσ in L∗.

Remark 5.2.5. The diagram {R/(w(σ)) | σ ∈ K} also defines a sheaf over the
poset K in the sense of Remark 5.2.3. The sheaf cohomology associated to the
open covering given by the upper ideals coincides with the homology of the
weighted sheaf.

5.3 DECOMPOSITION AND FILTRATION

Let S = (K, R, w) be a weighted sheaf. For any irreducible ϕ ∈ R, we define
the ϕ-primary component Sϕ = (K, R, wϕ) of the weighted sheaf S by setting

wϕ(σ) = ϕvϕ(σ),

where vϕ(σ) is the maximal r such that ϕr divides w(σ). Since R is a PID and
w(σ) 6= 0, such a maximal value exists. Notice that Sϕ is also a weighted
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sheaf. The weighted complex (L∗)ϕ associated to Sϕ is called the ϕ-primary
component of the weighted complex L∗. In degree k we have:

(Lk)ϕ =
⊕
|σ|=k

R
(ϕvϕ(σ))

ēσ.

The complex (L∗)ϕ has a natural increasing filtration by the subcomplexes

Fs(L∗)ϕ =
⊕

vϕ(σ)≤s

R
(ϕvϕ(σ))

ēσ.

This filtration is associated to an increasing filtration of the simplicial
complex K:

Kϕ,s = {σ ∈ K | vϕ(σ) ≤ s}.

Then Fs(L∗)ϕ is the weighted complex associated to the weighted sheaf

(Kϕ,s, R, wϕ|Kϕ,s).

Theorem 5.3.1 ([SV13]). Let (K, R, w) be a weighted sheaf, with associated
weighted complex L∗. For any irreducible ϕ ∈ R, there exists a spectral
sequence

Er
p,q ⇒ H∗((L∗)ϕ)

that abuts to the homology of the ϕ-primary component of the associated
algebraic complex L∗. Moreover the E1-term

E1
p,q = Hp+q(Fp/Fp−1) ∼= Hp+q(Kϕ,p, Kϕ,p−1; R/(ϕp))

is isomorphic to the relative homology with trivial coefficients of the simplicial
pair (Kϕ,p, Kϕ,p−1).

5.4 DISCRETE MORSE THEORY FOR WEIGHTED COMPLEXES

We are now going to describe a variant of discrete Morse theory (see Sections
1.2 and 1.3) which applies to weighted sheaves.

Definition 5.4.1. A weighted acyclic matching on a weighted sheaf (P, R, w)
over P is an acyclic matchingM on P such that

(x, y) ∈ M ⇒ (w(x)) = (w(y)).

Standard discrete Morse theory generalizes as follows. Let S = (K, R, w)
be a weighted sheaf over a finite simplicial complex K, and letM an acyclic
weighted matching. A critical simplex of K is a simplex σ which does not
belong to any pair of M. The following definition is equivalent to [SV13,
Definition 3.3].
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Definition 5.4.2. The Morse complex of S with respect toM is defined as the
torsion complex

LM∗ =
⊕

σ critical

R
(w(σ))

ēσ

with boundary
∂M(ēσ) = ∑

τ critical
|τ|= |σ|−1

[σ : τ]M ēτ,

where [σ : τ]M ∈ Z is given by the sum over all alternating paths

σ = σ0 m τ1 l σ1 m · · ·m τk l σk m τ,

from σ to τ of the quantity

(−1)k[σk : τ]
k

∏
i=1

[σi−1 : τi][σi : τi]

(see Theorem 1.2.5). The boundary map ∂M is extended by R-linearity, where
some care should be taken since each ēτ lives in a component with a possibly
different torsion.

Theorem 5.4.3 ([SV13]). Let S = (K, R, w) be a weighted sheaf over a sim-
plicial complex K. Let M be an acyclic matching on S . Then there is an
isomorphism

H∗(L∗, ∂) ∼= H∗(LM∗ , ∂M)

between the homology of the weighted complex L∗ associated to S and the
homology of the Morse complex LM∗ of S .

Remark 5.4.4. If we forget about the weights, the matchingM is in particular
an acyclic matching on the simplicial complex K. Therefore the algebraic com-
plex C0

∗(K; A), which computes the (shifted and reduced) simplicial homology
of K with coefficients in some ring A, admits a “classical” algebraic Morse
complex

C0
∗(K; A)M =

⊕
σ critical

A ēσ

with boundary map
δM(ēσ) = ∑

τ critical
|τ|= |σ|−1

[σ : τ]M ēτ.

Remark 5.4.5. Set C0
∗ = C0

∗(K; R), and let π : C0
∗ → L∗ be the natural projection.

The composition with the projection L∗ → (L∗)ϕ, for some fixed irreducible
element ϕ ∈ R, yields a natural projection πϕ : C0

∗ → (L∗)ϕ. Similarly, at the
level of the Morse complexes, we have a projection π̄ϕ : (C0

∗)
M → (L∗)Mϕ

which sends a generator ēσ in (C0
∗)
M to the generator ēσ in (L∗)Mϕ . Then, by

construction, the maps induced in homology by the projections πϕ and π̄ϕ

commute with the Morse isomorphisms of [Koz07] and [SV13]:
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H∗(C0
∗) H∗((L∗)ϕ)

H∗((C0
∗)
M) H∗((L∗)Mϕ ).

(πϕ)∗

∼= ∼=

(π̄ϕ)∗

Let ϕ ∈ R be an irreducible element, and let M be a weighted acyclic
matching on Sϕ. The filtration on the weighted complex induces a filtration
on the Morse complex:

Fp(L∗)Mϕ =
⊕

σ critical
vϕ(σ)≤p

R
(ϕvϕ(σ))

ēσ.

Consider also the quotient complex

F p(L∗)Mϕ = Fp(L∗)Mϕ / Fp−1(L∗)Mϕ ∼=
⊕

σ critical
vϕ(σ)=p

R
(ϕp)

ēσ.

Theorem 5.4.6 ([SV13]). Let S and ϕ be as above, and let M be an acyclic
matching on Sϕ. Then the E1-page of the spectral sequence of Theorem 5.3.1
is identified with

E1
p,q
∼= Hp+q

(
F p(L∗)Mϕ

)
,

where (L∗)Mϕ is the Morse complex of Sϕ. The differential

d1
p,q : E1

p,q → E1
p−1,q

is induced by the boundary of the Morse complex, and thus it can be also
computed by using alternating paths.

5.5 PRECISE MATCHINGS

In this section we are going to introduce precise matchings on weighted sheaves.
The motivation comes from the study of the local homology of spherical and
affine Artin groups, as we will show in Chapter 6.

Assume from now on that the PID R contains some field K. Our main case
of interest is K = Q and R = Q[q±1]. Let S = (K, R, w) be a weighted sheaf
over the finite simplicial complex K, with associated weighted complex L∗.
Given a fixed irreducible element ϕ of R, let Sϕ be the ϕ-primary component
of S and let (L∗)ϕ be its associated weighted complex. LetM be a weighted
acyclic matching on Sϕ.
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Let GM be the Hasse diagram of the corresponding Morse complex: the
vertices of GM are the critical simplices of K, and there is an (oriented) edge
σ → τ whenever [σ : τ]M is not 0 in R (or equivalently in K), where [σ :
τ]M ∈ Z is the incidence number between σ and τ in the Morse complex
of K. In other words, there is an edge σ → τ if [σ : τ]M is not a multiple of
char K = char R. When K = Q, this simply means that [σ : τ]M 6= 0.

Let I be the set of connected components of GM (computed ignoring the
orientation of the edges). Recall that vϕ(σ) is the maximal k ∈N such that ϕk

divides w(σ).

Definition 5.5.1. The matchingM is ϕ-precise (or simply precise) if, for any
edge σ→ τ of GM, we have that vϕ(σ) = vϕ(τ) + 1.

In other wordsM is precise if, for any two simplices σ and τ lying in the
same connected component i ∈ I , the following relation holds:

vϕ(σ)− vϕ(τ) = |σ| − |τ|.

Equivalently the quantity |σ| − vϕ(σ), as a function of σ, is constant within
a fixed connected component of GM. This definition is motivated by the
fact that precise matchings exist in many cases of interest, as we will see in
Chapter 6, and that the homology of the Morse complex is much simpler to
compute (and takes a particularly nice form) when the matching is precise.
The name “precise” has been chosen because for a generic matching one only
has vϕ(σ) ≥ vϕ(τ) (when σ→ τ is an edge of GM), and we require vϕ(σ) to
be precisely vϕ(τ) + 1.

Assume from now on that M is a ϕ-precise matching. To simplify the
notation, set (A∗, ∂) = ((L∗)Mϕ , ∂M) and (V∗, δ) = (C0

∗(K, K)M, δM). Our aim
is to derive a formula for the homology of the Morse complex A∗. Since the
differential δ vanishes between simplices in different connected components
of GM, the complex (V∗, δ) splits as

(V∗, δ) =
⊕
i∈I

(Vi
∗, δi),

where
Vi
∗ =

⊕
σ critical

σ∈i

K ēσ

and the boundary map δi : Vi
∗ → Vi

∗ is the restriction of δ to Vi
∗. The differential

∂ of A∗ is induced by δ, and thus it also vanishes between simplices in different
connected components. Therefore we have an analogous splitting for (A∗, ∂):

(A∗, ∂) =
⊕
i∈I

(Ai
∗, ∂i),
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where
Ai
∗ =

⊕
σ critical

σ∈i

R
(wϕ(σ))

ēσ

and the boundary map ∂i : Ai
∗ → Ai

∗ is simply the restriction of ∂ to Ai
∗.

Fix now a connected component i ∈ I . SinceM is precise, there exists
some k ∈ Z (which depends on i) such that vϕ(σ) = |σ| + k for all σ ∈ i.
Therefore in degree m we have

Ai
m =

⊕
σ∈Cri

m

R
(ϕm+k)

ēσ =

 ⊕
σ∈Cri

m

K ēσ

⊗K

R
(ϕm+k)

= Vi
m ⊗K

R
(ϕm+k)

,

where Cri
m is the set of critical simplices σ such that σ ∈ i and |σ| = m. By

construction the boundary ∂i
m : Ai

m → Ai
m−1 factors accordingly:

∂i
m = δi

m ⊗K πm,

where
πm :

R
(ϕm+k)

→ R
(ϕm+k−1)

is the projection induced by the identity R→ R. Since im δi
m+1 ⊆ ker δi

m, each
Vi

m splits (as a vector space over K) as a direct sum of linear subspaces:

Vi
m = W i

m,1 ⊕W i
m,2 ⊕W i

m,3,

where W i
m,1 = im δi

m+1 and W i
m,1⊕W i

m,2 = ker δi
m. Then

ker(∂i
m) = ker(δi

m ⊗K πm)

=

((
W i

m,1 ⊕W i
m,2

)
⊗K

R
(ϕm+k)

)
⊕
(

W i
m,3 ⊗K

(ϕm+k−1)

(ϕm+k)

)
im (∂i

m+1) = im (δi
m+1 ⊗K πm+1)

= W i
m,1 ⊗K

R
(ϕm+k)

.

Therefore the homology of (Ai
∗, δi) is given, as an R-module, by

Hm(Ai
∗) =

ker(∂i
m)

im (∂i
m+1)

=

(
W i

m,2 ⊗K

R
(ϕm+k)

)
⊕
(

W i
m,3 ⊗K

(ϕm+k−1)

(ϕm+k)

)
∼=
(

Hm(Vi
∗, δi)⊗K

R
(ϕm+k)

)
⊕
(

Krk δi
m ⊗K

R
(ϕ)

)
.
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In the last isomorphism we used the fact that dim W i
m,3 = dim Vi

m −
dim ker δi

m = rk δi
m.

Recall that the previous formula holds for a fixed connected component
i ∈ I , and k depends on i. Since we now need to take the direct sum over the
connected components, let ki be the value of k for the component i.

Theorem 5.5.2. The homology of (L∗)ϕ is given, as an R-module, by

Hm((L∗)ϕ, ∂) ∼=
(⊕

i∈I
Hm(Vi

∗)⊗K

R
(ϕm+ki)

)
⊕
(

Krk δm ⊗K

R
(ϕ)

)
.

Proof. By Theorem 5.4.3, Hm((L∗)ϕ, ∂) ∼= Hm((L∗)Mϕ , ∂M). Using what we
have done in this section, we have that

Hm((L∗)Mϕ , ∂M) = Hm(A∗, ∂) =
⊕
i∈I

Hm(Ai
∗, ∂)

∼=
(⊕

i∈I
Hm(Vi

∗)⊗K

R
(ϕm+ki)

)
⊕
((⊕

i∈I
Krk δi

m

)
⊗K

R
(ϕ)

)

∼=
(⊕

i∈I
Hm(Vi

∗)⊗K

R
(ϕm+ki)

)
⊕
(

Krk δm ⊗K

R
(ϕ)

)
.

We now show how the existence of a precise matching can be interpreted
in terms of the spectral sequence associated to the weighted sheaf (see Theo-
rem 5.3.1).

Proposition 5.5.3. If a ϕ-precise matchingM exists, then the spectral sequence
Er

p,q associated to the weighted sheaf Sϕ collapses at the E2-page.

Proof. By Theorem 5.4.6, the E1-page can be computed through the Morse
complex of our matchingM:

E1
p,q
∼= Hp+q(F p(L∗)Mϕ ),

and the differential d1
p,q is induced by the boundary of the Morse complex. The

spectral sequence then splits as a direct sum over the connected components
of GM:

Er
p,q =

⊕
i∈I

Er,i
p,q,

where E1,i
p,q
∼= Hp+q(F p Ai

∗). Since the matching is precise, for m 6= p− ki we
have

F p Ai
m = Fp Ai

m / Fp−1Ai
m = 0.

This means that the page E0,i
p,q
∼= E1,i

p,q is non-trivial only in the row q = −ki,
and the entire spectral sequence Er

p,q collapses at the E2-page.
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What we have done so far in this section assumed ϕ to be some fixed
irreducible element of the PID R. In order to recover the full homology of L∗,
we need to let ϕ vary among all equivalence classes of irreducible elements
of R modulo the units. Suppose from now on that we have a ϕ-precise
matchingMϕ on Sϕ, for each ϕ. The following result follows immediately
from Theorem 5.5.2, provided that we add a “ϕ” subscript (or superscript) to
all the quantities that depend on the matchingMϕ.

Theorem 5.5.4. The homology of L∗ is given, as an R-module, by

Hm(L∗, ∂) ∼=
⊕

ϕ

⊕
i∈Iϕ

Hm(V
ϕ,i
∗ )⊗K

R
(ϕm+kϕ,i)

⊕(Krk δ
ϕ
m ⊗K

R
(ϕ)

)
.

For later applications, we finally need to study how the isomorphism of
Theorem 5.5.4 behaves with respect to the projection π : C0

∗ → L∗ of Remark
5.4.5. This projection is the direct sum over ϕ of the projections

πϕ : C0
∗ → (L∗)ϕ.

Instead of studying the induced map (πϕ)∗ : Hm(C0
∗) → Hm((L∗)ϕ), we

study the map

(π̄ϕ)∗ : Hm((C0
∗)
M)→ Hm((L∗)Mϕ )

between the Morse complexes — hereM =Mϕ is a precise matching which
depends on ϕ. For i ∈ Iϕ, let πi : (C0

∗)
M → Vϕ,i

∗ ⊗K R ⊆ (C0
∗)
M be the

projection onto the subcomplex corresponding to the connected component
i, and let (πi)∗ be the map induced in homology. Let [c] ∈ Hm((C0

∗)
M), for

some cycle c ∈ ker δM ⊆ (C0
m)
M. Applying the map (π̄ϕ)∗ : Hm((C0

∗)
M) →

Hm((L∗)Mϕ ), we obtain

(π̄ϕ)∗([c]) = (π̄ϕ)∗

∑
i∈Iϕ

(πi)∗([c])


= ∑

i∈Iϕ

(π̄ϕ)∗
(
(πi)∗([c])

)
.

Applying the isomorphism of Theorem 5.5.2, this element is sent to

∑
i∈Iϕ

(
(πi)∗([c])

)
⊗K [1] ∈

⊕
i∈Iϕ

Hm(V
ϕ,i
∗ )⊗K

R
(ϕm+kϕ,i)

.

We are going to use these formulas to prove the following result, which
describes the kernel and the cokernel of π∗.
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Proposition 5.5.5. The cokernel of π∗ : Hm(C0
∗)→ Hm(L∗) is given by

coker π∗ ∼=
⊕

ϕ

(
R
(ϕ)

)⊕ rk δ
ϕ
m

.

In addition, the kernel of π∗ is a free R-module isomorphic to Hm(C0
∗).

Proof. Throughout the proof, consider the following R-modules identified one
with each other, without explicitly mentioning the isomorphisms between
them:

Hm(L∗) ∼=
⊕

ϕ

Hm((L∗)ϕ)

∼=
⊕

ϕ

Hm((L∗)Mϕ )

∼=
⊕

ϕ

⊕
i∈Iϕ

Hm(V
ϕ,i
∗ )⊗K

R
(ϕm+kϕ,i)

⊕(Krk δ
ϕ
m ⊗K

R
(ϕ)

)
.

Recall that the matching M depends on ϕ, although we write M instead
of Mϕ in order to make the notation more readable. Also recall that the
isomorphisms Hm((L∗)ϕ) ∼= Hm((L∗)Mϕ ) occur in the commutative diagram
of Remark 5.4.5.

We want to show that the image of π∗ : Hm(C0
∗)→ Hm(L∗) is given by

im π∗ =
⊕

ϕ

⊕
i∈Iϕ

Hm(V
ϕ,i
∗ )⊗K

R
(ϕm+kϕ,i)

 ⊆ Hm(L∗).

Let ψϕ : H∗(C0
∗)→ H∗((L∗)Mϕ ) be the map defined as the composition

H∗(C0
∗)

∼=−−→ H∗((C0
∗)
M)

(π̄ϕ)∗−−−→ H∗((L∗)Mϕ ).

By commutativity of the diagram of Remark 5.4.5, the image of π∗ =
⊕

ϕ(πϕ)∗
is the same as the image of⊕

ϕ

ψϕ : H∗(C0
∗)→

⊕
ϕ

H∗((L∗)Mϕ ).

We have already proved that, for any [c] ∈ Hm((C0
∗)
M),

(π̄ϕ)∗([c]) = ∑
i∈Iϕ

(
(πi)∗([c])

)
⊗R [1] ∈

⊕
i∈Iϕ

Hm(V
ϕ,i
∗ )⊗K

R
(ϕm+kϕ,i)

,

which means in particular that

im (π̄ϕ)∗ ⊆
⊕
i∈Iϕ

Hm(V
ϕ,i
∗ )⊗K

R
(ϕm+kϕ,i)

.
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Therefore we immediately have the inclusion

im (π∗) ⊆∑
ϕ

im ψϕ = ∑
ϕ

im (π̄ϕ)∗ ⊆
⊕

ϕ

⊕
i∈Iϕ

Hm(V
ϕ,i
∗ )⊗K

R
(ϕm+kϕ,i)

 .

To prove the opposite inclusion, we show that any element of the form

[c]⊗K [1] ∈ Hm(V
ϕ,i
∗ )⊗K

R
(ϕm+kϕ,i)

is in the image of π∗ (for any fixed ϕ and i). To do so, choose α ∈ R such that
α ≡ 1 (mod ϕm+kϕ,i) and α ≡ 0 (mod ηm+kη,j) for any irreducible element
η 6= ϕ which divides some weight w(σ), and for any connected component
j ∈ Iη — there is only a finite number of such η’s up to multiplication by
units, because K is finite. The element c ⊗K α is a cycle in Vϕ,i

m ⊗K R ⊆
C0

m(K, K)M ⊗K R ∼= (C0
m)
M. Then, if [c̃] is the preimage of [c⊗K α] under the

isomorphism H∗(C0
∗)

∼=−−→ H∗((C0
∗)
M), we have that:

ψϕ([c̃]) = (π̄ϕ)∗([c⊗K α]) = [c]⊗K [1] ∈ Hm(V
ϕ,i
∗ )⊗K

R
(ϕm+kϕ,i)

ψη([c̃]) = (π̄η)∗([c′ ⊗K α]) = 0 for any η 6= ϕ,

where [c′] is the image of [c] under the isomorphism

H∗((C0
∗)
Mϕ)

∼=−−→ H∗(C0
∗)

∼=−−→ H∗((C0
∗)
Mη ).

Therefore [c]⊗K [1] is in the image of π∗. We have thus proved that

im π∗ =
⊕

ϕ

⊕
i∈Iϕ

Hm(V
ϕ,i
∗ )⊗K

R
(ϕm+kϕ,i)

 .

Then the cokernel of π∗ can be easily computed:

coker π∗ =
Hm(L∗)
im π∗

=
⊕

ϕ

(
Krk δ

ϕ
m ⊗K

R
(ϕ)

)
=
⊕

ϕ

(
R
(ϕ)

)⊕ rk δ
ϕ
m

.

The R-module Hm(C0
∗)
∼= Hm(C0

∗(K; K)) ⊗K R is free and finitely gen-
erated, because Hm(C0

∗(K; K)) is a finite-dimensional vector space over K

(recall that K is a finite simplicial complex). The kernel of π∗ is a submod-
ule of Hm(C0

∗), so it is itself a free R-module with lower or equal rank. Let
[c1], . . . , [ck] be an R-base of Hm(C0

∗). Consider the non-zero ideal

I =
⋂
ϕ

⋂
i∈Iϕ

(ϕm+ki) ⊆ R,
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where ϕ varies among the (finitely many) irreducible elements which divide
some weight w(σ) (for σ ∈ K). Fix any non-zero element α ∈ I. Then the
elements α[c1], . . . , α[ck] generate a free submodule of ker π∗ of rank k =
rk Hm(C0

∗). Therefore ker π∗ and Hm(C0
∗) have the same rank, so they are

isomorphic as R-modules.
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CHAPTER 6
Local homology of Artin groups

6.1 INTRODUCTION

In this chapter we use weighted sheaves to study the local homology of Artin
groups. The material is based on [PS18, Pao17b], the first paper being a joint
work with Mario Salvetti.

In Section 6.2 we recall how to naturally associate a weighted sheaf to
every Artin group, as explained in [SV13]. Then the homology of the sheaf is
equal to (the torsion part of) the homology of the Artin group with coefficients
in a certain local system.

In Section 6.3 we point out a surprising relationship between the local
homology of braid groups (Artin groups of type An) and the homology of cer-
tain independence complexes, which in their simplest form have already been
studied in a combinatorial context (see for example [BK07, Koz07, Eng09]).
The exact formula we are going to prove is the following.

Theorem 6.3.4. We have

H∗(Brn+1; R)ϕd
∼= H̃∗−d+1

(
Indd−2(An−d);

R
(ϕd)

)
,

where on the left there is the homology with local coefficients of the classical
braid group (and R = Q[t±1]), and on the right there is the homology with
trivial coefficients of a certain independence complex. We denote by ϕd the
d-th cyclotomic polynomial.

In Section 6.4 we show that the existence of precise matchings for a certain
Artin group has strong implications for its homology. In particular we prove
the following result.

Theorem 6.4.2. Let GW be an Artin group that admits a ϕ-precise matching
for all cyclotomic polynomials ϕ = ϕd (with d ≥ 2). Then the local homology
H∗(XW ; R) does not have ϕk-torsion for k ≥ 2.
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6. LOCAL HOMOLOGY OF ARTIN GROUPS

Here XW is the Salvetti complex, introduced in Section 2.6. Recall that it
is a finite CW complex which is a deformation retract of the orbit space YW
associated to W, and is conjectured to be a K(GW , 1). Theorem 6.4.2 can be
seen as a result about the homology of an infinite cyclic covering of XW and
its monodromy. The conclusion of this theorem was already known for all
Artin groups of spherical type, thanks to a geometric argument (see Remark
6.4.3). Our construction provides a new combinatorial condition that applies
to a wider class of Artin groups.

In the rest of this chapter we show that precise matchings exist for all Artin
groups of spherical and affine type. The main results, stated in Section 6.4, are
the following.

Theorem 6.4.4. Every Artin group of spherical or affine type admits a ϕ-
precise matching for each cyclotomic polynomial ϕ.

Corollary 6.4.5. Let GW be an Artin group of spherical or affine type. Then
the local homology H∗(XW ; R) has no ϕk-torsion for k ≥ 2.

We use precise matchings to carry out explicit homology computations for
some of the infinite families (An, Bn, Ãn, C̃n) and for all exceptional cases. In
particular, the computation of the local homology of affine Artin groups of
type C̃n is new.

Theorem 6.12.5. Let GW be an Artin group of type C̃n. Then the ϕd-primary
component of H∗(XW ; R) is trivial for d odd, and for d even is as follows:

Hm(XW ; R)ϕd
∼=
{
(R/(ϕd))

⊕m+k−n+1 if n− k ≤ m ≤ n− 1
0 otherwise,

where n = k d
2 + r.

We recover the results of [DCPSS99, SV13] on the local homology of excep-
tional groups, with small corrections (see Section 6.14).

We also provide a software library which can be used to generate match-
ings for any spherical or affine Artin group, check preciseness, and compute
the local homology [Pao17c].

6.2 WEIGHTED SHEAVES FOR ARTIN GROUPS

Let (W, S) be a Coxeter system, with associated Coxeter graph Γ and Artin
group GW . Recall from Section 2.6 the definition of the configuration spaces Y
and YW = Y/W, and of the Salvetti complex XW , whose cells are indexed by
the simplicial complex

KW = {σ ⊆ S | the parabolic subgroup Wσ is finite}.
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Consider the action of the Artin group GW on the ring R = Q[q±1] given by

gs 7→ [multiplication by − q] for all s ∈ S.

Then the homology H∗(XW ; R) with local coefficients is computed by the
algebraic complex

Ck =
⊕

σ∈KW
|σ|=k

R eσ

with boundary

∂(eσ) = ∑
τlσ

[σ : τ]
Wσ(q)
Wτ(q)

eτ,

where Wσ(q) = ∑
w∈Wσ

ql(w) is the Poincaré polynomial of Wσ (see [Sal94]).

Remark 6.2.1. The R-module structure on H∗(XW ; R) is given by the trans-
formation µq induced by q-multiplication. If the order of µq is N, then the
homology groups decompose into cyclic factors which are either free, of the
form Rk, or torsion, of the form R/(ϕd), where ϕd is the d-th cyclotomic poly-
nomial and d | N. Therefore we are interested in localizing to cyclotomic
polynomials.

Theorem 6.2.2 ([SV13]). To a Coxeter system (W, S) we can associate a
weighted sheaf (K, R, w) over the simplicial complex K = KW , by setting
w(σ) = Wσ(q). Also, for any cyclotomic polynomial ϕ = ϕd, the map wϕ(σ) —
which gives the maximal power of ϕ that divides Wσ(q) — defines a weighted
sheaf (K, R, wϕ) over K = KW .

The homology of the associated weighted complex is strictly related to
the homology of XW . Specifically, set C0

∗ = C0
∗(K; R) and consider the diag-

onal map

∆ : C∗ → C0
∗, eσ 7→Wσ(q) e0

σ.

By the formula for the boundary map it follows that ∆ is an injective chain-
complex homomorphism, so there is an exact sequence of complexes:

0 −→ C∗
∆−−→ C0

∗
π−−→ L∗ −→ 0,

where
Lk =

⊕
σ∈KW
|σ|=k

R
(Wσ(q))

ēσ
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is the quotient complex. Passing to the associated long exact sequence we get:

· · · π∗−→ Hk+1(L∗)→ Hk(C∗)
∆∗−→ Hk(C0

∗)
π∗−→ Hk(L∗)→ · · · (6.1)

Then the homology of L∗ can be used to compute the homology of C∗.
The orbit space YW (and thus the CW-complex XW ' YW) is conjectured to

be a classifying space for the Artin group GW (Conjecture 2.6.1). Whenever the
conjecture holds, the homology H∗(XW ; R) coincides with the local homology
H∗(GW ; R) of the Artin group GW .

6.3 BRAID GROUPS AND INDEPENDENCE COMPLEXES

In this section we are going to show how the local homology of braid groups
(i.e. Artin groups of type An) is related to the homology of suitable indepen-
dence complexes. Recall that the Coxeter graph of type An is a linear graph
with n vertices, usually labeled 1, 2, . . . , n (see Figure 2.4), and that the corre-
sponding Artin group is the braid group on n + 1 strands, which we denote
by Brn+1. With a slight abuse of notation, by An we will sometimes indicate
the graph itself.

The homology of Brn+1, with coefficients in the representation R = Q[q±1]
described in the previous section, was computed in [Fre88, DCPS01]. See also
[Cal06] for coefficients in Z[q±1] (but we will not address this case).

Theorem 6.3.1 ([Fre88, DCPS01]). The ϕd-primary component of the local
homology of a braid group is given by

H∗(Brn+1; R)ϕd =

{
R/(ϕd) if n ≡ 0 or −1 (mod d)
0 otherwise,

where the non vanishing term is in degree (d− 2)k if n = dk or n = dk− 1.

Recall that, if G is a graph with vertex set VG, an independent set of G
is a subset of VG consisting of pairwise non-adjacent vertices. Also, the
independence complex Ind(G) of G is the abstract simplicial complex with VG
as its set of vertices and simplices given by all the non-empty independent
sets of G. Thus Ind(G) is the clique complex of the complement graph of G.
Conventionally, the simplicial complex Ind(G) does not contain the empty
simplex, and the dimension of a simplex σ ∈ Ind(G) is given by |σ| − 1. The
homotopy type of Ind(An) was computed in [Koz07] by means of discrete
Morse theory, and the result is the following.

Proposition 6.3.2 ([Koz07, Proposition 11.16]). We have

Ind(An) '
{

Sk−1 if n = 3k or n = 3k− 1
{pt} if n = 3k + 1.
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6.3. Braid groups and independence complexes

By comparing this with Theorem 6.3.1 we obtain the following relation
between the homology of the independence complex of An and the ϕ3-primary
component of the local homology of Brn+1.

Corollary 6.3.3. We have

H∗(Brn+1; R)ϕ3
∼= H̃∗−2

(
Ind(An−3);

R
(ϕ3)

)
,

where the homology on the left is with local coefficients, and on the right it is
with trivial coefficients.

In general, following [Sal15], we can define the r-independence complex of a
graph G as

Indr(G) = {full subgraphs G′ ⊆ G such that each connected component
of G′ has at most r vertices} .

So Indr(G) is an abstract simplicial complex on the set of vertices VG of the
graph G, and it coincides with Ind(G) for r = 1. The case r = 0 also makes
sense: Ind0(G) = ∅ for any graph G. We are going to prove the following
generalization of Corollary 6.3.3.

Theorem 6.3.4. We have

H∗(Brn+1; R)ϕd
∼= H̃∗−d+1

(
Indd−2(An−d);

R
(ϕd)

)
,

where the homology on the left is with local coefficients, and on the right it is
with trivial coefficients.

From the expression of the ϕd-primary component of the local homology
of the braid group (Theorem 6.3.1) we obtain the following consequence.

Corollary 6.3.5. We have

H̃∗(Indd−2(An)) ∼=
{

H̃∗(Sdk−2k−1) for n = dk or n = dk− 1
0 otherwise.

The Poincaré polynomial of a Coxeter group of type Ak is given by

WAk(q) = [k + 1]q! where [k]q =
qk − 1
q− 1

= ∏
d|k

d≥2

ϕd

(see for example [BB06]). Consider now a simplex σ ⊆ S ∼= {1, . . . , n}. Denote
by Γ(σ) the subgraph of An induced by σ. Denote by Γ1(σ), Γ2(σ), . . . , Γm(σ)
the connected components of Γ(σ), and by n1, n2, . . . , nm their cardinalities
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1 2 3 4 5 6

Γ2(σ)

7 8 9

Γ3(σ)Γ1(σ)

Figure 6.1: An example with n = 9 and σ = {2, 3, 5, 6, 7, 9} ∈
Ind3(A9). In this case we have |Γ1(σ)| = 2, |Γ2(σ)| = 3, and
|Γ3(σ)| = 1.

(see Figure 6.1). The i-th connected component is a Coxeter graph of type Ani ,
so the entire Coxeter graph induced by σ has Poincaré polynomial

Wσ(q) = [n1 + 1]q! · [n2 + 1]q! · · · [nm + 1]q!

=
m

∏
i=1

∏
d≥2

ϕ
b ni+1

d c
d

= ∏
d≥2

ϕ
∑m

i=1b
ni+1

d c
d .

Then we are interested in the homology of the weighted complex (L∗)ϕ as-
sociated to the weighted sheaf (K, R, wϕ), where ϕ = ϕd is a cyclotomic
polynomial (with d ≥ 2) and

wϕ(σ) = ϕvϕ(σ), vϕ(σ) =
m

∑
i=1

⌊
ni+1

d

⌋
.

Notice that only the connected components with at least d− 1 vertices con-
tribute to the ϕ-weight. Therefore, the weighted complex (L∗)ϕ is generated
by the subgraphs having at least one component with at least d− 1 vertices.

Theorem 6.3.6. There is a weighted acyclic matchingM on K such that the
set of critical simplices is given by

Cr(M) = {σ | Γ(σ) = Γ1 t · · · t Γm−1 t Ad−1, |Γi| ≤ d− 2} ∪ Indd−2(An)

= {τ t Ad−1 | τ ∈ Indd−2(An−d)} ∪ Indd−2(An),

where Ad−1 is the linear graph on the vertices n− d + 2, . . . , n.

Proof. First notice that removing the d-th vertex from an Ak component leaves
the ϕ-weight unchanged:

vϕ(Ak) =
⌊

k+1
d

⌋
= 1 +

⌊
k+1−d

d

⌋
= vϕ(Ad−1 t Ak−d)

(see Figure 6.2).
Let K0 = Indd−2(An) ⊆ K. This is the set of the simplices σ ∈ K such that

all the connected components of the induced subgraph Γ(σ) have cardinality
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. . .
k vertices

. . .

d− 1 vertices
. . . . . .

k− d vertices

Figure 6.2: The ϕ-weight of an Ak component remains the
same if we remove the d-th vertex, splitting Ak into Ad−1 t
Ak−d.

at most d− 2. Let us define on K′ = K \ K0 the following matchingM. For
σ ∈ K′, with Γ(σ) = Γ1 t · · · t Γm, set

i(σ) = min{i : |Γi| ≥ d− 1}.

Then match σ with the simplex τ obtained by adding or removing from σ
the d-th vertex of the component Γi(σ). By the remark at the beginning of the
proof,M is a weighted matching. We prove that it is acyclic. In fact, suppose
that an alternating path contains some subpath

τ l σ m τ′ l σ′

with τ 6= τ′. Then either i(τ) < i(τ′), or i(τ) = i(τ′) = j and

Γj(τ) = {a, a + 1, . . . , a + d− 2}, Γj(τ
′) = {a + 1, . . . , a + d− 1}

for some a ≤ n− d + 1. In this case the first vertex of Γj(τ
′) is greater than the

first vertex of Γj(τ). Therefore an alternating path in K′ cannot be closed.
The set of critical elements ofM in K′ is given by

Cr(M) = {σ | Γ(σ) = Γ1 t · · · t Γm−1 t Ad−1, |Γi| ≤ d− 2},

where Ad−1 is as in the statement of the theorem.

Proof of Theorem 6.3.4. Consider the matching M of Theorem 6.3.6. Since
K0 = Indd−2(An) does not contribute to the weighted complex (L∗)ϕ, we
concentrate on the poset K′ = K \ K0. Notice that there are no non-trivial
alternating paths between critical elements of K′. Therefore the boundaries
between simplices in

Cr′(M) = {τ t Ad−1 | τ ∈ Indd−2(An−d)}

are the same as the boundaries of Indd−2(An−d). In the long exact sequence
(6.1), the algebraic complex C0

∗ has vanishing homology in all degrees (because
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K is the full simplicial complex on n vertices), so we have an isomorphism
H∗+1(L∗) ∼= H∗(C∗). Therefore

H∗(Brn+1; R)ϕd
∼= H∗(C∗)ϕd

∼= H∗+1(L∗)ϕd

∼= H̃∗−d+1

(
Indd−2(An−d);

R
(ϕd)

)
.

In the last isomorphism there is a (d− 1)-shift in degree due to the loss of d− 1
vertices when passing from Cr′(M) to Indd−2(An−d); there is then a further 1-
shift in degree since in L∗ a simplex σ has dimension |σ|, and in Indd−2(An−d)
it has dimension |σ| − 1; finally, it is necessary to pass to reduced homology
because the empty simplex is missing in Indd−2(An−d).

For the sake of completeness, we also determine the homotopy type of
the r-independence complex Indd−2(An), obtaining again Corollary 6.3.5 as a
consequence. This is a straightforward generalization of the case d = 3 proved
in [Koz07, Proposition 11.16].

Proposition 6.3.7. We have

Indd−2(An) '
{

Sdk−2k−1 if n = dk or n = dk− 1
{pt} otherwise.

Proof. Let K0 = Indd−2(An), and let n = qd + r be the euclidean division of n
by d.

Let P = {cd > c2d > c3d > · · · > cqd > c∗} be a linearly ordered set,
where c∗ is the minimum element. Define a map f : K0 → P as follows. If
σ ∈ K0 does not contain any multiples of d, then set f (σ) = c∗. Otherwise,
set f (σ) = cjd if jd ∈ σ but j′d 6∈ σ for j′ < j. Clearly f is a poset map: if we
remove a vertex from σ, then j increases or remains the same.

In f−1(cd) consider the matchingM1 = {(σ \ {1}, σ∪{1}) | σ ∈ f−1(cd)},
which is justified by:

σ ∈ f−1(cd) ⇒ {2, . . . , d− 1} 6⊆ σ.

Similarly, in f−1(cjd) for j ≤ q, consider the matching

Mj =
{(

σ \ {(j− 1)d + 1}, σ ∪ {(j− 1)d + 1}
) ∣∣ σ ∈ f−1(cjd)

}
,

justified by:

σ ∈ f−1(cjd) ⇒ {(j− 1)d + 2, . . . , jd− 1} 6⊆ σ.

EachMj is acyclic in f−1(cjd), thus

M =
q⋃

j=1

Mj

96



6.4. Precise matchings for Artin groups

is an acyclic matching on K0 by the Patchwork Theorem (Theorem 1.2.6). Since
eachMj is a perfect matching on f−1(cjd) for j = 1, . . . , q, and K1 = f−1(c∗)
is a subcomplex of K0, it follows that K0 deformation retracts onto K1.

Notice now that K1 is the join of q copies of Indd−2(Ad−1) ∼= Sd−3 and one
copy of Indd−2(Ar). For r = 0 we get

K0 ∼= (Sd−3)∗q ∼= Sq(d−3)+q−1 = Sqd−2q−1

and for r = d− 1 we get

K0 ∼= (Sd−3)∗(q+1) ∼= S(q+1)(d−3)+q = S(q+1)d−2(q+1)−1,

which give the first case in the corollary. If r is not 0 or d− 1, then Indd−2(Ar)
is a full simplex on r vertices, and therefore K0 is contractible.

6.4 PRECISE MATCHINGS FOR ARTIN GROUPS

For a general Coxeter system (W, S), in Section 6.2 we constructed a weighted
sheaf S = (KW , R, w). The associated weighted complex L∗ fits into the short
exact sequence

0→ C∗
∆−→ C0

∗
π−→ L∗ → 0,

which gives rise to the long exact sequence (6.1):

· · · π∗−→ Hk+1(L∗)→ Hk(C∗)
∆∗−→ Hk(C0

∗)
π∗−→ Hk(L∗)→ · · ·

In order to compute H∗(C∗) = H∗(XW ; R), we split this long exact sequence
into the short exact sequences

0→ coker π∗ → Hm(C∗)
∆∗−→ ker π∗ → 0,

where on the left we have the cokernel of π∗ : Hm+1(C0
∗)→ Hm+1(L∗) and on

the right we have the kernel of π∗ : Hm(C0
∗)→ Hm(L∗). Since ker π∗ is a free

R-module, these short exact sequences split:

Hm(C∗) ∼= coker π∗ ⊕ ker π∗.

Recall that the only irreducible elements of R that occur in the factorization
of the weights are the cyclotomic polynomials ϕd for d ≥ 2. As in Section 5.5,
suppose from now on that we have constructed a ϕ-precise matchingMϕ for
each cyclotomic polynomial ϕ = ϕd (with d ≥ 2). Then we have an explicit
description of coker π∗ and ker π∗ thanks to Proposition 5.5.5, and we obtain
the following result.
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Theorem 6.4.1 (Local homology). Under the above hypothesis, the homology
of XW with coefficients in the representation R = Q[q±1] is given by

Hm(XW ; R) ∼=
(⊕

ϕ

(
R
(ϕ)

)⊕ rk δ
ϕ
m+1
)
⊕ Hm(C0

∗).

In particular the term Hm(C0
∗) gives the free part of the homology, and the

other direct summands give the torsion part. The torsion part actually takes a
very particular form, as we state in the following result.

Theorem 6.4.2. Let GW be an Artin group that admits a ϕ-precise matching
for all cyclotomic polynomials ϕ = ϕd (with d ≥ 2). Then the homology
H∗(XW ; R) does not have ϕk-torsion for k ≥ 2.

We are particularly interested in spherical and affine Artin groups. When
GW is a spherical Artin group with n generators, KW is the full simplicial
complex on S ∼= {1, . . . , n}, and therefore C0

∗ has a trivial homology in every
dimension. Thus the formula of Theorem 6.4.1 reduces to

Hm(XW ; R) ∼=
⊕

ϕ

(
R
(ϕ)

)⊕ rk δ
ϕ
m+1

.

When GW is an affine Artin group with n + 1 generators, KW is obtained
from the full simplicial complex on S ∼= {0, 1, . . . , n} by removing the top-
dimensional simplex. Then we have

Hm(XW ; R) ∼=

R for m = n⊕
ϕ

(
R
(ϕ)

)⊕ rk δ
ϕ
m+1

for m < n.

Remark 6.4.3 (Milnor fiber). When GW is a spherical Artin group, the cor-
responding reflection arrangement of hyperplanes A is finite. In this case
it is well known that there is an R-module isomorphism between the local
homology H∗(XW ; R) and the homology with trivial coefficients H∗(F; Q) of
the Milnor fiber F of A [Cal05]. The q-multiplication on the homology of XW
corresponds to the action of the monodromy operator on the homology of
F. If N = |A|, the square of the defining polynomial of the arrangement is
W-invariant, thus the order of the monodromy of the Milnor fibration divides
2N. It follows that the polynomial q2N − 1 must annihilate the homology.
Since q2N − 1 is square-free in characteristic 0, the homology cannot have
ϕk-torsion for k ≥ 2. So the conclusion of Theorem 6.4.2 is not surprising in
the case of spherical Artin groups.

The rest of this chapter is dedicated to the construction of precise match-
ings for all spherical and affine Artin groups. Then we obtain the follow-
ing result.
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Theorem 6.4.4. Every Artin group of spherical or affine type admits a ϕ-
precise matching for each cyclotomic polynomial ϕ.

By Theorem 6.4.2, this has the following immediate consequence.

Corollary 6.4.5. Let GW be an Artin group of spherical or affine type. Then
the local homology H∗(XW ; R) has no ϕk-torsion for k ≥ 2.

The proof of Theorem 6.4.4 is split throughout the rest of this chapter. In
Section 6.5 we show that it is enough to construct precise matchings in the
irreducible spherical and affine cases. In the following sections we discuss all
irreducible cases. For some of the infinite families (An, Bn, Ãn, C̃n) we also
carry out complete homology computations.

We provide a software library to construct precise matchings for any given
spherical or affine Artin group. The source code is available online [Pao17c].
This library can be used to check preciseness and compute the homology.

Remark 6.4.6. Not all Artin groups admit precise matchings for every cyclo-
tomic polynomial. For example, consider the Coxeter system (W, S) defined
by the following Coxeter matrix:

1 3 3 2 ∞ 4
3 1 3 4 2 ∞
3 3 1 ∞ 4 2
2 4 ∞ 1 ∞ ∞
∞ 2 4 ∞ 1 ∞
4 ∞ 2 ∞ ∞ 1

 .

The simplicial complex KW consists of: three 2-simplices ({1, 2, 4}, {2, 3, 5},
{1, 3, 6}), all having ϕ2-weight equal to 3; six 1-simplices with ϕ2-
weight equal to 2 ({1, 4}, {2, 4}, {2, 5}, {3, 5}, {1, 6}, {3, 6}), and three 1-
simplices with ϕ2-weight equal to 1 ({1, 2}, {2, 3}, {1, 3}); six 0-simplices
({1}, {2}, {3}, {4}, {5}, {6}), all having ϕ2-weight equal to 1; one empty sim-
plex, with ϕ2-weight equal to 0. A ϕ2-weighted matching can only contain
edges between simplices of weight 1. Since the three 1-simplices of weight
1 form a cycle, at least one of them is critical, say {1, 2}. Then the incidence
number between {1, 2, 4} and {1, 2} is non-zero, and their ϕ2-weights differ
by 2. Therefore the matching cannot be ϕ2-precise.

We introduce here a few notations that will be used in the next sections.
Given a simplex σ ∈ KW , denote by Γ(σ) the subgraph of Γ induced by σ, as
in Section 6.3. The connected components of Γ(σ) will be denoted by Γi(σ)
for some index i. A simplex σ ⊆ S will be also represented as a string of bits
εi ∈ {0, 1} (for i ∈ S), where εi = 1 if i ∈ S and εi = 0 if i 6∈ S. For example, if
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6. LOCAL HOMOLOGY OF ARTIN GROUPS

S = {1, 2, 3, 4}, the string representation of σ = {1, 2, 4} is 1101. Finally, given
a vertex v ∈ S, define

σ Y v =

{
σ ∪ {v} if v 6∈ σ

σ \ {v} if v ∈ σ.

6.5 REDUCTION TO THE IRREDUCIBLE CASES

Let (W1, S1) and (W2, S2) be two Coxeter systems, and consider the product
Coxeter system (W1 ×W2, S1 t S2). Suppose that the Artin groups GW1 and
GW2 admit ϕ-precise matchingsM1 andM2, respectively. In the following
lemma we construct a ϕ-precise matching for GW1 ×GW2 = GW1×W2 .

Lemma 6.5.1. Fix a cyclotomic polynomial ϕ. LetM1 andM2 be ϕ-precise
matchings on GW1 and GW2 , respectively. Then GW1×W2 also admits a ϕ-precise
matching.

Proof. First notice that the simplicial complexKW1×W2 is equal to the simplicial
join KW1 ∗ KW2 of the two simplicial complexes KW1 and KW2 :

KW1×W2 = KW1 ∗ KW2 = {σ1 t σ2 | σ1 ∈ KW1 , σ2 ∈ KW2}.

The weights behave well with respect to this decomposition:

vϕ(σ1 t σ2) = vϕ(σ1) + vϕ(σ2).

Consider on KW1×W2 the matching

M =
{

σ1 t σ2 → σ1 t τ2

∣∣∣ (σ2 → τ2) ∈ M2

}
∪{

σ1 t σ2 → τ1 t σ2

∣∣∣ (σ1 → τ1) ∈ M2 and σ2 is critical in KW2

}
.

The critical simplices σ1 t σ2 of KW1×W2 are those for which σ1 is critical in
KW1 and σ2 is critical in KW2 .

Any alternating path in KW1×W2 projects onto an alternating path in KW2

via the map σ1 t σ2 7→ σ2 (provided that multiple consecutive occurrences of
the same simplex are replaced by a single occurrence). This is because an edge
of the form σ1 t σ2 → σ1 t τ2 is inM if and only if σ2 → τ2 is inM2. The
same statement is not true for KW1 , but we still have a weaker property which
will be useful later: the projection of an alternating path to KW1 cannot have
two consecutive edges both traversed “upwards” (i.e. increasing dimension).
This is because if an edge of the form σ1 t σ2 → τ1 t σ2 is inM, then σ1 → τ1
is inM1.
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Let us prove thatM is acyclic. Consider an alternating cycle c in KW1×W2 .
Its projection onto KW2 gives an alternating cycle, which must be trivial be-
cause M2 is acyclic. Therefore c takes the following form, for some fixed
simplex σ2 ∈ KW2 :

σ1,0 t σ2 m τ1,1 t σ2 l σ1,1 t σ2 m · · · m τ1,m t σ2 l σ1,0 t σ2.

If σ2 is critical in KW2 , then also the projection of c onto KW1 is an alternating
cycle. By acyclicity ofM1 such a projection must be the trivial cycle, so also
c is trivial. On the other hand, if σ2 is not critical, then none of the edges
σ1,i t σ2 → τ1,i t σ2 is inM, thus c must be trivial as well.

By construction, and by additivity of the weight function vϕ, the matching
M is ϕ-weighted.

Finally, suppose that [σ1 t σ2 : τ1 t τ2]M 6= 0, where σ1 t σ2 and τ1 t τ2 are
critical simplices of KW1×W2 with dim(σ1 t σ2) = dim(τ1 t τ2) + 1. Let P 6= ∅
be the set of alternating paths from σ1 t σ2 to τ1 t τ2. Given any path p ∈ P ,
its projection onto KW2 is an alternating path from σ2 to τ2.

1. Suppose σ2 = τ2. Then the projected paths are trivial in KW2 , so P is in
bijection with the set of alternating paths from σ1 to τ1 in KW1 . Therefore
[σ1 : τ1]

M1 = ±[σ1t σ2 : τ1t τ2]M 6= 0. SinceM1 is ϕ-precise, we conclude
that vϕ(σ1) = vϕ(τ1) + 1 and so that vϕ(σ1 t σ2) = vϕ(τ1 t σ2) + 1.

2. Suppose σ2 6= τ2. The projection of any p ∈ P onto KW2 is a non-trivial
alternating path, and P is non-empty, so dim(σ2) = dim(τ2) + 1. Then
dim(σ1) = dim(τ1). For any alternating path p ∈ P , consider now its
projection q onto KW1 . We want to prove that q is a trivial path (thus
in particular σ1 = τ1). Suppose by contradiction that q is non-trivial.
Then, since σ1 and τ1 have the same dimension, one of the following three
possibilities must occur.

• The path q begins with an upward edge σ1 l ρ. Then (ρ→ σ1) ∈ M1,
which is not possible because σ1 is critical.

• The path q ends with an upward edge ρ l τ1. Then (τ1 → ρ) ∈ M1,
which is not possible because τ1 is critical.

• The path q begins and ends with a downward edge, so it must have
two consecutive upward edges somewhere in the middle. This is also
not possible by previous considerations.

We proved that the projection on KW1 of any alternating path p ∈ P is
trivial, and thus in particular σ1 = τ1 (because P is non-empty). Then P
is in bijection with the set of alternating paths from σ2 to τ2 in KW2 . We
conclude as in case 1.

In view of this lemma, from now on we only consider irreducible Cox-
eter systems.
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. . .

4 . . .

. . .

Figure 6.3: Coxeter graphs of type An, Bn and Dn. All these
graphs have n vertices.

6.6 WEIGHT OF IRREDUCIBLE COMPONENTS

In order to compute the weight vϕ(σ) of a simplex σ ∈ KW , we need to
know the Poincaré polynomial of the parabolic subgroup Wσ of W. Let
Γ1(σ), . . . , Γm(σ) be the connected components of the subgraph Γ(σ) ⊆ Γ
induced by σ. Then the Poincaré polynomial of Wσ splits as a product of the
Poincaré polynomials of irreducible components of spherical type:

Wσ(q) =
m

∏
i=1

WΓi(σ)(q), and therefore vϕ(σ) =
m

∑
i=1

vϕ(Γi(σ)).

In this section we derive formulas for the ϕ-weight of an irreducible compo-
nent of type An, Bn and Dn (see Figure 6.3). This was already done in Section
6.3 for type An, but we summarize the argument again here.

Components of type An

The exponents of a Coxeter group WAn of type An are 1, 2, . . . , n. Then its
Poincaré polynomial is WAn(q) = [n + 1]q! If ϕd is the d-th cyclotomic polyno-
mial (for d ≥ 2), the ϕd-weight is

ωϕd(An) =
⌊ n+1

d

⌋
.

Components of type Bn

In this case the exponents are 1, 3, . . . , 2n− 3, 2n− 1, and the Poincaré polyno-
mial is WBn(q) = [2n]q!! The ϕd-weight (for d ≥ 2) is given by

ωϕd(Bn) =


⌊ n

d

⌋
if d is odd⌊

n
d/2

⌋
if d is even.
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Components of type Dn

Here the exponents are 1, 3, . . . , 2n− 3, n− 1, and the Poincaré polynomial is
WDn(q) = [2n− 2]q!! · [n]q. The ϕd-weight (for d ≥ 2) is given by

ωϕd(Dn) =


⌊ n

d

⌋
if d is odd⌊

n−1
d/2

⌋
if d is even and d - n

n
d/2 if d is even and d | n.

6.7 CASE An

Many properties of the homology H∗(XW ; R) in case An have been thoroughly
discussed in Section 6.3. Using precise matchings we are going to obtain a new
proof of the formula for the homology of braid groups (Theorem 6.3.1).

Throughout this section, let (W, S) be a Coxeter system of type An with
generating set S = {1, 2, . . . , n}, and let KA

n = KW . See Figure 2.4 for a drawing
of the corresponding Coxeter graph.

For integers f , g ≥ 0, define KA
n, f ,g ⊆ KA

n as follows:

KA
n, f ,g = {σ ∈ Kn | {1, 2, . . . , f } ⊆ σ and {n− g + 1, n− g + 2, . . . , n} ⊆ σ}.

In other words, KA
n, f ,g is the subset of KA

n consisting of the simplices which
contain the first f vertices and the last g vertices. In general, KA

n, f ,g is not a
subcomplex of KA

n . For any d ≥ 2, we are going to recursively construct a
ϕd-weighted acyclic matching on KA

n, f ,g. The precise matchings on KA
n, f ,g will

become useful also when treating other cases (Bn, Dn, and so on). See Table
6.1 for an example.

In what follows, the notation “n ≡ a, . . . , b (mod d)” means that n is
congruent modulo d to some integer in the closed interval [a, b].

Matching 6.7.1 (ϕd-matching on KA
n, f ,g).

(a) If f + g ≥ n, then KA
n, f ,g has size at most 1, and the matching is empty. In

the subsequent cases, assume f + g < n.

(b) If f ≥ d, then KA
n, f ,g
∼= KA

n−d, f−d, g via removal of the first d vertices. Define
the matching recursively, as in KA

n−d, f−d, g. In the subsequent cases, assume
f ≤ d− 1.

(c) Case n ≥ d + g.

(c1) If {1, . . . , d− 1} ⊆ σ, then match σ with σ Y d (here the vertex d exists
and can be removed, because n ≥ d + g). Notice that for f = d− 1
this is always the case, thus in the subsequent cases we can assume
f ≤ d− 2.
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Simplices vϕ(σ)

−→ 2

−→ 2

−→ 1

(critical) 2

(critical) 1

Table 6.1: Matching 6.7.1 on KA
7,1,3 for d = 3.

(c2) Otherwise, if f + 1 ∈ σ then match σ with σ \ { f + 1}.
(c3) Otherwise, if { f + 2, . . . , d− 1} * σ then match σ with σ ∪ { f + 1}.
(c4) We are left with the simplices σ such that {1, . . . , f , f + 2, . . . , d− 1} ⊆ σ

and f + 1 6∈ σ. If we ignore the vertices 1, . . . , f + 1 we are left with the
simplices on the vertex set { f + 2, . . . , n}which contain f + 2, . . . , d− 1;
relabeling the vertices, these are the same as the simplices on the vertex
set {1, . . . , n− f − 1} which contain 1, . . . , d− 2− f . Then construct
the matching recursively as in KA

n− f−1, d−2− f , g.

(d) Case n < d + g (in particular, f ≤ d− 2).

(d1) If n ≡ −1, 0, 1, . . . , f (mod d) and σ is either

{1, . . . , n} or {1, . . . , f , f + 2, . . . , n},

then σ is critical.
(d2) Otherwise, match σ with σ Y f + 1.

Lemma 6.7.2. Matching 6.7.1 is acyclic.

Proof. The proof is by induction on n, the case n = 0 being trivial. In case
(a) the matching is empty and so it is acyclic. In case (b), the matching on
KA

n−d, f−d, g is acyclic by induction, and therefore also the matching on KA
n, f ,g is

acyclic.
Consider now case (c). Let η : KA

n, f ,g → {p1 > p4 > p2,3} be the poset map
that sends σ to: p1, if subcase (c1) applies; p2,3, if subcase (c2) or (c3) applies;
p4, if subcase (c4) applies. We have that η(σ) = η(τ) whenever σ is matched
with τ. In addition, on each fiber η−1(p) the matching is acyclic (for p = p4,
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this follows by induction). Therefore by the Patchwork Theorem (Theorem
1.2.6) the entire matching is acyclic.

In case (d) the matching is of the form {σ→ σ Y ( f + 1)} (possibly leaving
out a pair), so it is acyclic.

Lemma 6.7.3. Matching 6.7.1 is ϕd-weighted.

Proof. This proof is also by induction on n. In case (b), removing the first
d vertices decreases all ϕd-weights by 1, so the matching is ϕd-weighted by
induction.

Consider now case (c). In (c1) we have to check that ωϕd(Ad−1 t Ak) =
ωϕd(Ad+k) for all k ≥ 0. This follows immediately from the formula for ϕd-
weights (Section 6.6). In (c2)-(c3) we match simplices by adding or removing
f + 1, which alters the size of the leftmost connected component. However,
this component has always size at most d− 2, so it does not contribute to the
ϕd-weight. Finally, in (c4) the matching is ϕd-weighted by induction.

In case (d) most of the vertices belong to the rightmost connected com-
ponent, which has size at least g. If we add the vertex f + 1 to a simplex
σ ∈ KA

n, f ,g not containing f + 1, we either create a leftmost connected compo-
nent of size at most d− 2, or we join the leftmost component with the right-
most component creating the full simplex {1, 2, . . . , n}. In the former case,
the leftmost component is small enough not to contribute to the ϕd-weight.
In the latter case we have σ = {1, . . . , f , f + 2, . . . , n}; it is easy to check that
ωϕd(σ) = ωϕd(σ ∪ { f + 1}) if and only if n ≡ f + 1, . . . , d− 2 (mod d).

Theorem 6.7.4 (Critical simplices in case An). The critical simplices of Match-
ing 6.7.1 are given by Table 6.2. In particular, the matching is ϕd-precise for
f = g = 0.

Remark 6.7.5. Here are a few observations about Table 6.2 and Matching 6.7.1.

• The conditions in Table 6.2 are symmetric in f and g, even if the defini-
tion of Matching 6.7.1 is not.

• The two intervals of Table 6.2 in the case f + g < n are always disjoint.

• For g = 0, Table 6.2 simplifies a lot, as both intervals contain only one
element (d− 1 and f0, respectively).

• If f ≡ −1 (mod d) or g ≡ −1 (mod d), then the two intervals of Table
6.2 are empty, thus there is at most 1 critical simplex.

• If σ → τ is in the matching, then σ = τ ∪ {v} with v ≡ 0 or v ≡
f + 1 (mod d). This can be easily checked by induction.

Proof of Theorem 6.7.4. As a preliminary step, rewrite the two intervals of Table
6.2 as follows.
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Case # Critical |σ| − vϕd(σ)

f > n or g > n 0 -

f , g ≤ n and f + g ≥ n 1 n− b n+1
d c

f
+

g
<

n

n ≡ max(d− 1, f0 + g0 + 1), . . . ,
min( f0, g0) + d− 1 (mod d)

2

n− b n− f
d c − b

n−g
d c − 1

n ≡ max( f0, g0), . . . ,
min( f0 + g0, d− 2) (mod d) n− b n− f

d c − b
n−g

d c

else 0 -

Table 6.2: Critical simplices of Matching 6.7.1. Here f0, g0 ∈
{0, . . . , d − 1} are defined as f mod d, and g mod d, respec-
tively.

• The condition n ≡ max(d − 1, f0 + g0 + 1), . . . , min( f0, g0) + d − 1
(mod d) is equivalent to:{

n ≡ −1, 0, . . . , f0 − 1 (mod d)
n− g ≡ f0 + 1, . . . , d− 1 (mod d).

(6.2)

• The condition n ≡ max( f0, g0), . . . , min( f0 + g0, d− 2) (mod d) is equiv-
alent to: {

n ≡ f0, . . . , d− 2 (mod d)
n− g ≡ 0, . . . , f0 (mod d).

(6.3)

Throughout the proof, we will refer to these two conditions as “Condition
(6.2), resp. (6.3), for KA

n, f ,g”.
We prove the lemma by induction on n, the case n = 0 being trivial. If

f + g ≥ n there is nothing to prove, thus we can assume f + g < n.
Suppose to be in case (b) of Matching 6.7.1, i.e. f ≥ d. Conditions (6.2) and

(6.3) for KA
n, f ,g are equivalent to those for KA

n−d, f−d, g. The critical simplices of
KA

n, f ,g are in one-to-one correspondence with the critical simplices of KA
n−d, f−d, g

via removal of the first d vertices. This correspondence decreases the size of a
simplex by d, and decreases the ϕd-weight by 1. Adding d− 1 to the values
of the last column of Table 6.2 for KA

n−d, f−d, g, we exactly recover Table 6.2 for
KA

n, f ,g.
Suppose to be in case (c), i.e. f ≤ d− 1 and n ≥ d + g. Critical simplices

only arise from subcase (c4). Notice that (d− 2− f ) + g < (n− f − 1), so
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by induction the critical simplices of KA
n− f−1, d−2− f , g are described by the last

three rows of Table 6.2. Condition (6.2) (resp. (6.3)) for KA
n− f−1, d−2− f , g coin-

cides with Condition (6.3) (resp. (6.2)) for KA
n, f ,g. The critical simplices of KA

n, f ,g

are in one-to-one correspondence with the critical simplices of KA
n− f−1, d−2− f , g

via removal of the first f vertices. This correspondence decreases the size by
f , and leaves the ϕd-weight unchanged. Adding f to the values of the last
column of Table 6.2 for KA

n− f−1, d−2− f , g, we recover Table 6.2 for KA
n, f ,g.

Suppose to be in case (d), i.e., f ≤ d− 2 and n < d + g. Since f + g < n,
we must have n− g ∈ { f + 1, . . . , d− 1}. In particular Condition (6.3) cannot
hold, and the first part of Condition (6.2) holds. Case (d1) happens if and only
if n ≡ −1, 0, . . . , f (mod d), i.e., if and only if the second part of Condition (6.2)
holds. If this happens then there are two critical simplices, namely {1, . . . , n}
and {1, . . . , f , f + 2, . . . , n}. The difference |σ| − vϕd(σ) is the same for these
two simplices, and is given by n− b n+1

d c = (n− 1)− b n− f
d c. Since b n−g

d c = 0,
we can rewrite it also as n− b n− f

d c − b
n−g

d c − 1.

If we set f = g = 0, we obtain a precise matching on KA
n . Then we can

compute the homology H∗(XW ; R) for GW of type An. This gives a proof of
Theorem 6.3.1.

Proof of Theorem 6.3.1 (Homology in case An). We simply need to apply the for-
mula given by Theorem 6.4.1 using our precise matching on K = Kn,0,0. Since
f = g = 0, there are critical simplices for n = kd or n = kd− 1. The boundary
δ

ϕd
m+1 is non-trivial only for{

m = n− 2k = k(d− 2) if n = kd
m = n− 2k + 1 = k(d− 2) if n = kd− 1.

In both cases for m = k(d− 2) we have rk δ
ϕd
m+1 = 1, and all the other bound-

aries are trivial. Theorem 6.3.1 follows.

6.8 CASE Bn

Consider a Coxeter system (W, S) of type Bn, as in Figure 6.4. In this case
KB

n = KW is again the full simplex on vertices {1, 2, . . . , n}.
The situation is quite different depending on the parity of d. If d is odd, the

ϕd-weight of a Bk+1 component is equal to the ϕd-weight of an Ak component:

ωϕd(Bk+1) =

⌊
k + 1

d

⌋
= ωϕd(Ak) (d odd).

For this reason it is possible to construct a very simple matching on KB
n .
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1 2 3 4 n− 1 n4 . . .

Figure 6.4: Coxeter graph of type Bn.

Matching 6.8.1 (ϕd-matching on KB
n for d odd). Match any simplex σ ∈ KB

n
with σ Y 1.

Lemma 6.8.2. Matching 6.8.1 for d odd is an acyclic weighted matching on
KB

n , with no critical simplices.

Proof. Clearly the matching is acyclic and there are no critical simplices. Let
us prove that the matching is weighted. Let σ ∈ KB

n . The only difference
between Γ(σ) and Γ(σ Y 1) is the leftmost connected component, which in one
case is of type Bk+1 and in the other case is of type Ak. Therefore vϕd(σ) =
vϕd(σ Y 1).

Suppose from now on that d is even. The simplicial complex KB
n is parti-

tioned as

KB
n =

⊔
q≥0

Kq, where Kq =

{
σ ∈ K

∣∣∣∣ ⌊ |Γ1(σ)|
d/2

⌋
= q

}
.

Here Γ1(σ) is the (possibly empty) connected component of Γ(σ) which con-
tains the vertex 1. Notice that each Kq is a subposet of KB

n , but not a subcomplex
in general.

Matching 6.8.3 (ϕd-matching on KB
n for d even). For a given simplex σ ∈ Kq,

let |Γ1(σ)| = q d
2 + r with 0 ≤ r < d

2 . The matching on Kq is as follows.

(a) If r ≥ 1 (i.e. q d
2 + 1 ∈ σ), then match σ with σ \

{
q d

2 + 1
}

.

(b) If r = 0 (i.e. q d
2 + 1 6∈ σ) and

{
q d

2 + 2, . . . , (q + 1) d
2

}
* σ, then match σ

with σ ∪
{

q d
2 + 1

}
(unless n = q d

2 , in which case σ is critical).

(c) We are left with the simplices σ for which neither (a) nor (b) apply, i.e.
with r = 0 and

{
q d

2 + 2, . . . , (q + 1) d
2

}
⊆ σ. Ignore the first q d

2 + 1 vertices
and relabel the remaining ones from 1 to n− q d

2 − 1, so that we are left
exactly with the simplices of KA

n−q d
2−1, d

2−1, 0
. Then use Matching 6.7.1.

Putting together the matchings on each Kq, we obtain a matching on the full
simplicial complex KB

n .

Example 6.8.4. For n = 4 and d = 4, the simplicial complex KB
n contains

24 = 16 simplices of which 12 are matched and 4 are critical. For instance,
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Simplices vϕ(σ) q

4
(critical) 2 2

4
−→

4
1 1

4
(critical) 1 1

4 −→ 4
0 0

4
(critical) 1 0

4 −→ 4
0 0

4 −→ 4
0 0

4 −→ 4
0 0

4
(critical) 0 0

4 −→ 4
0 0

Table 6.3: Matching in case Bn with n = 4 and d = 4.

consider σ = {1, 2} ∈ KB
4 . Then q = 1 and r = 0. Since 4 6∈ σ, case (b) occurs.

Therefore σ is matched with σ ∪ {3} = {1, 2, 3}. See Table 6.3 for an explicit
description of the matching in this case.

Lemma 6.8.5. Matching 6.8.3 for d even is acyclic and weighted.

Proof. Part 1: the matching is acyclic. The map KB
n → (N,≤) which sends σ

to q =
⌊
|Γ1(σ)|

d/2

⌋
is a poset map compatible with the matching, and its fibers

are exactly the subsets Kq for q ∈N. Therefore we only need to prove that the
matching on each fiber Kq is acyclic.

Let P = {pc, pa,b} be a two-element totally ordered poset with pc > pa,b.
For a fixed q ∈ N, consider the map η : Kq → P which sends σ to the px
such that σ occurs in case (x) (here cases (a) and (b) are united). Clearly η is
compatible with the matching. We want to prove that it is a poset map, and
for this we only need to show that if η(τ) = pc and τ ≤ σ then η(σ) = pc

also. We have that
{

1, . . . , q d
2 , q d

2 + 2, . . . , (q + 1) d
2

}
⊆ τ ⊆ σ. The simplex σ

cannot contain the vertex q d
2 + 1, because otherwise we would have σ ∈ Kq+1.

Therefore η(σ) = pc.
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On the fiber η−1(pa,b) the matching is acyclic because the same vertex
q d

2 + 1 is always added or removed. On the fiber η−1(pc) the matching is
acyclic by Lemma 6.7.2. Therefore the entire matching on Kq is acyclic.

Part 2: the matching is weighted. Let σ ∈ Kq be a simplex which occurs ei-

ther in case (a) or case (b). We want to show that vϕd(σ) = vϕd

(
σ Y

(
q d

2 + 1
))

.
Suppose without loss of generality that σ occurs in case (a), i.e. r ≥ 1 and
q d

2 + 1 ∈ σ. Let τ = σ \
{

q d
2 + 1

}
. The only difference between Γ(σ) and Γ(τ)

is that Γ(σ) has a Bq d
2+r component, whereas Γ(τ) has a Bq d

2
component and

an Ar−1 component instead. Since 1 ≤ r < d
2 , we have that

ωϕd(Bq d
2+r) = ωϕd(Bq d

2
) = q and ωϕd(Ar−1) = 0

(the second equality holds because r− 1 ≤ d
2 − 1 ≤ d− 2). Therefore vϕd(σ) =

vϕd(τ).
For simplices occurring in case (c), the matching only involves changes

in the connected components not containing the first vertex (i.e. connected
components of type Ak). Therefore Lemma 6.7.3 applies.

Now we are going to describe the critical simplices. The matching has
no critical simplices when n is not a multiple of d

2 . On the other hand, if
n = k d

2 , we have two families of critical simplices: σq (for 0 ≤ q ≤ k − 2)
and σ′q (for 0 ≤ q ≤ k). See Table 6.4 and Figure 6.5 for the definition of
these simplices. For instance, in Example 6.8.4, the critical simplices are:
σ0 = {2, 3, 4}, σ′2 = {1, 2, 3, 4}, σ′1 = {1, 2, 4} and σ′0 = {1, 3}. See also Table
6.5, where the critical simplices are listed by dimension.

Theorem 6.8.6 (Critical simplices in case Bn). The critical simplices for the
matching on KB

n are those defined in Table 6.4. In particular the matching is
always precise, and has no critical simplices if d is odd or if d is even and
n 6≡ 0 (mod d

2 ). In addition, if d is even and n ≡ 0 (mod d
2 ), the incidence

numbers between the critical simplices in the Morse complex are as follows:

[σq : σq−1]
M = (−1)(q−1) d

2

[σq : σ′q]
M = (−1)(k−1)( d

2−1)+q

[σ′q : σq−2]
M = (−1)k( d

2−1)+q

[σ′q : σ′q−1]
M = (−1)(q−1) d

2 .

Proof. Part 1: critical simplices. For d odd there is nothing to prove. Suppose
from now on that d is even. For a given simplex σ ∈ KB

n , let us consider each
of the three cases that can occur in the construction of the matching.
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Simplices |σ| vϕd(σ)

σq = 1q d
2 (01

d
2−1)k−q−201d−1 n− k + q + 1 q + 1 0 ≤ q ≤ k− 2

σ′q = 1q d
2 (01

d
2−1)k−q n− k + q q 0 ≤ q ≤ k

Table 6.4: Description of the critical simplices for Bn, where d
is even and n = k d

2 .

q d
2 vertices d

2 − 1 vertices
. . . . . .4 . . . . . .

d− 1 vertices
. . .

k− q− 2 times

q d
2 vertices d

2 − 1 vertices
. . .4 . . . . . .

k− q times

Figure 6.5: Critical simplices for Bn, where d is even and n =
k d

2 . Above is the simplex σq (0 ≤ q ≤ k− 2) and below is the
simplex σ′q (0 ≤ q ≤ k).

|σ| vϕd(σ) Simplices

n k σ′k

n− 1 k− 1 σk−2, σ′k−1

n− 2 k− 2 σk−3, σ′k−2
...

...
...

n− k + 1 1 σ0, σ′1

n− k 0 σ′0

Table 6.5: Critical simplices for Bn by dimension, where d is
even and n = k d

2 .
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6. LOCAL HOMOLOGY OF ARTIN GROUPS

(a) We have q d
2 + 1 ∈ σ, and σ is not critical. Indeed, none of the simplices of

Table 6.4 contains the vertex q d
2 + 1.

(b) We have q d
2 + 1 6∈ σ and

{
q d

2 + 2, . . . , (q + 1) d
2

}
* σ. In this case σ is

critical if and only if n = q d
2 . Indeed, the only simplex of this type in Table

6.4 is σ′k (which occurs for q = k i.e. n = q d
2 ).

(c) In the remaining case, we end up with the matching on KA
n−q d

2−1, d
2−1, 0

. By

Theorem 6.7.4, this matching admits critical simplices if and only if

n− q d
2 − 1 ≡ d

2 − 1 (mod d) or n− q d
2 − 1 ≡ −1 (mod d),

i.e. for n ≡ 0
(
mod d

2

)
. Notice that if f = d

2 − 1 then d− 2− f = d
2 − 1

also. Therefore, again by Theorem 6.7.4, for n ≡ 0
(
mod d

2

)
the critical

simplices are exactly the ones listed in Table 6.4.

For a fixed n = k d
2 , the quantity |σ| − vϕd(σ) is constant among the critical

simplices and is equal to n− k. Thus the matching is precise.
Part 2: incidence numbers. We are going to show that there is exactly

one alternating path for each of the four pairs. Notice that, if σ → τ is in
the matching of Kq, then σ = τ ∪ {v} with v ≡ 1

(
mod d

2

)
and v ≥ q d

2 + 1. In
particular, if at a certain point of an alternating path one removes a vertex v
with v 6≡ 1

(
mod d

2

)
, then that vertex is never added again. But all the critical

simplices contain every vertex v with v 6≡ 1
(
mod d

2

)
, so any alternating path

between critical simplices cannot ever drop a vertex v with v 6≡ 1
(
mod d

2

)
.

Let us now consider each of the four pairs.

• (σq, σq−1). We have that σq = σq−1 ∪ {v} where v = (q − 1) d
2 + 1, so

there is the trivial alternating path σq → σq−1 which contributes to the
incidence number [σq : σq−1]

M by

[σq : σq−1] = (−1)|{w∈σq|w<v}| = (−1)(q−1) d
2 .

Suppose by contradiction that there exists some other (non-trivial) alter-
nating path

σq m τ1 l ρ1 m τ2 l ρ2 m · · ·m τm l ρm m σq−1, m ≥ 1.

Let σq = τ1 ∪ {u}. By the previous considerations, we must have u ≡
1
(
mod d

2

)
. If u = (k− 1) d

2 + 1 then τ1 = σ′q, but this is not possible since
alternating paths stop at critical simplices. Similarly, if u = (q− 1) d

2 + 1
then we would stop at τ1 = σq−1. Therefore we must have u ≤ (q−
2) d

2 + 1. But then τ1 ∈ Kq′ with q′ ≤ q − 2, and by induction all the
subsequent simplices in the alternating path must lie in⋃

q′′≤q−2

Kq′′ .
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In particular σq−1 ∈ Kq′′ for some q′′ ≤ q− 2, but this is a contradiction
since σq−1 ∈ Kq−1.

• (σq, σ′q). This case is similar to the previous one, except for the fact that
σq = σ′q ∪ {v} for v = (k− 1) d

2 + 1. So the only alternating path is the
trivial one, which contributes to the incidence number by

[σq : σ′q] = (−1)|{w∈σq|w<v}|

= (−1)q d
2+(k−q−1)( d

2−1)

= (−1)(k−1)( d
2−1)+q.

• (σ′q, σ′q−1). This case is also similar to the previous ones. Here we have
σ′q = σ′q−1 ∪ {v} with v = (q− 1) d

2 + 1, so the contribution to the inci-
dence number due to the trivial alternating path is

[σ′q : σ′q−1] = (−1)|{w∈σ′q|w<v}| = (−1)(q−1) d
2 .

• (σ′q, σq−2). This case is more complicated because the only alternating
path is non-trivial. Suppose we have an alternating path

σ′q m τ1 l ρ1 m τ2 l ρ2 m · · ·m τm l ρm m σq−2, m ≥ 1

(m must be at least 1 because σq−2 is not a face of σ′q in K). Let σ′q =

τ1 ∪ {v}, with v ≡ 1
(
mod d

2

)
. If v = (q− 1) d

2 + 1 then τ1 = σ′q−1 and
we must stop because σ′q−1 is already critical. If v ≤ (q− 3) d

2 + 1 we fall
into some Kq′ with q′ ≤ q− 3 and it is not possible to reach σq−2 ∈ Kq−2.
Therefore necessarily v = (q− 2) d

2 + 1. Then τ1 is matched with

ρ1 = τ1 ∪
{

q d
2 + 1

}
.

Then again, τ2 = ρ1 \ {v2} and the only possibility for v2 (in order to
have τ2 6= τ1 and not to fall into some Kq′ with q′ ≤ q − 3) is v2 =

(q− 1) d
2 + 1. Proceeding by induction we obtain that

τi = ρi−1 \
{
(q− 3 + i) d

2 + 1
}

ρi = τi ∪
{
(q− 1 + i) d

2 + 1
}

.

The path stops at τk−q+1 = σq−2, and its length is m = k− q. See Table
6.6 for an example. The contribution of this path to the incidence number
is

(−1)k−q[σ′q : τ1][ρ1 : τ1] · · · [ρk−q : τk−q][ρk−q : σq−2]
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6. LOCAL HOMOLOGY OF ARTIN GROUPS

where

[ρi−1 : τi] = (−1)(q−2) d
2+(i−1)( d

2−1)

[ρi : τi] = (−1)(q−2) d
2+(i−1)( d

2−1)+d−1

= (−1)(q−2) d
2+(i−1)( d

2−1)+1

(these formulas also hold for ρ0 = σ′q and τk−q+1 = σq−2). Then

[σ′q : σq−2]
M = (−1)k−q

(
k−q

∏
i=1

[ρi−1 : τi][ρi : τi]

)
[ρk−q : σq−2]

= (−1)k−q(−1)k−q(−1)(q−2) d
2+(k−q)( d

2−1)

= (−1)k( d
2−1)+q.

Having a complete description of a precise matching on KB
n , we can now

compute the homology H∗(XW ; R) for GW of type Bn. We recover the result of
[DCPSS99].

Theorem 6.8.7 (Homology in case Bn [DCPSS99]). For an Artin group GW of
type Bn, we have

Hm(XW ; R)ϕd
∼=
{

R/(ϕd) if d is even, n = k d
2 , and n− k ≤ m ≤ n− 1

0 otherwise.

Simplices vϕ(σ)

σ′2 =
4

2

τ1 =
4

1

ρ1 =
4

1

τ2 =
4

1

ρ2 =
4

1

τ3 =
4

1

ρ3 =
4

1

σ0 =
4

1

Table 6.6: The only alternating path from σ′q to σq−2 for n = 10,
d = 4, k = 5 and q = 2.
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Proof. For a fixed ϕ = ϕd, we need to compute the boundary δ
ϕ
m+1. Assume

that n = k d
2 , otherwise there are no critical simplices. In top dimension

(m + 1 = n) we have rk δ
ϕ
n = 1, because [σ′k : σ′k−1] 6= 0. For m ≤ n− k− 1 the

boundary δ
ϕ
m+1 vanishes, because there are no critical simplices in dimension

≤ n− k− 1. For m = n− k we have rk δ
ϕ
m+1 = 1, because [σ′1 : σ′0] 6= 0. Finally,

for n− k + 1 ≤ m ≤ n− 2, we have (set q = m− n + k):

rk δ
ϕ
m+1 = rk

(
[σq : σq−1] [σ′q+1 : σq−1]

[σq : σ′q] [σ′q+1 : σ′q]

)

= rk

(
(−1)(q−1) d

2 (−1)k( d
2−1)+q+1

(−1)(k−1)( d
2−1)+q (−1)q d

2

)
= 1,

because

det

(
(−1)(q−1) d

2 (−1)k( d
2−1)+q+1

(−1)(k−1)( d
2−1)+q (−1)q d

2

)
= (−1)

d
2 − (−1)

d
2 = 0.

To summarize, we have: rk δ
ϕ
m+1 = 1 for n− k ≤ m ≤ n− 1, and rk δ

ϕ
m+1 = 0

otherwise. We conclude by applying Theorem 6.4.1.

6.9 CASE Dn

For n ≥ 4 let (W, S) be a Coxeter system of type Dn, with generating set
S = {1, 2, . . . , n}, and let KD

n = KW (see Figure 6.6).
We are going to construct a ϕd-precise matching on KD

n . We split the
definition according to the parity of d, and for d even we construct a match-
ing on each

KD
n,g = {σ ∈ KD

n | {n− g + 1, n− g + 2, . . . , n} ⊆ σ},

for 0 ≤ g ≤ n− 1. We will need this construction to treat the cases B̃n and D̃n.

Matching 6.9.1 (ϕd-matching on KD
n for d odd).

(a) If 1 ∈ σ then match σ with σ Y 2.

(b) Otherwise, relabel the vertices {2, . . . , n} as {1, . . . , n− 1} and construct
the matching as in KA

n−1.

Matching 6.9.2 (ϕd-matching on KD
n,g for d even).

(a) If 2 6∈ σ, relabel the vertices {1, 3, 4, . . . , n} as {1, . . . , n− 1} and construct
the matching as in KA

n−1, 0, g.
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1

2

3 4 5 n− 1 n
. . .

Figure 6.6: Coxeter graph of type Dn.

(b) Otherwise, if d = 2 and {1, 2, 3, 4} * σ, proceed as follows.

(b1) If {1, 2, 4} ⊆ σ: match σ with σ Y 5 if possible (i.e. if n− g ≥ 5); else σ
is critical.

(b2) Otherwise: match σ with σ Y 3 if possible (i.e. if n− g ≥ 3); else σ is
critical.

(c) Otherwise, if d ≥ 4 and 3 6∈ σ, match σ with σ Y 1.

(d) Otherwise, if d = 4 and 4 6∈ σ (recall that at this point {2, 3} ⊆ σ), ignore
the vertex 1, relabel the vertices {5, . . . , n} as {1, . . . , n− 4}, and construct
the matching as in KA

n−4, 0, g.

(e) Otherwise, if d ≥ 6 and 4 6∈ σ, match σ with σ Y 1.

(f) Otherwise, if d ≥ 4 and 1 6∈ σ, proceed as follows. Recall that at this point
{2, 3, 4} ⊆ σ.

(f1) If {2, . . . , d
2 + 1} ⊆ σ, relabel the vertices {2, . . . , n} as {1, . . . , n− 1}

and construct the matching as in KA
n−1, max( d

2 , 3), g
.

(f2) Otherwise, match σ with σ ∪ {1}.

(g) Otherwise, proceed as follows. Recall that at this point {1, 2, 3, 4} ⊆ σ. Let
k ≥ 4 be the size of the connected component Γ1(σ) of the vertex 1, in the
subgraph Γ(σ) ⊆ Γ induced by σ. Write k = q d

2 + r where:{
0 < r < d

2 if k 6≡ 0 (mod d
2 )

r ∈ {0, d
2} and q even if k ≡ 0 (mod d

2 ).

Define a vertex v as follows:

v =

{
q d

2 + 1 if q is even
q d

2 + 2 if q is odd.

It can be checked that v = 1 or v ≥ 5. The idea now is that most of the
times σ Y v has the same ϕd-weight as σ. Unfortunately there are some
exceptions, so we still have to examine a few subcases.
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Case # Critical |σ| − vϕd(σ)

n ≡ 0 (mod d)
2

n− 2 n
d

n ≡ 1 (mod d) n− 2 n−1
d − 1

else 0 -

Table 6.7: Critical simplices of Matching 6.9.1 (case Dn, d odd).

Case Origin |σ| − vϕd(σ)

n ≡ 0 (mod d)

(a), (b) for n = 4 and d =
2, (d) for d = 4, (f) for d ≥
6 or n = d = 4, (g2.1),
(g2.2), (g2.3)

n− 2 n
d

n ≡ 1 (mod d) (a) n− 2 n−1
d − 1

n ≡ d
2 + 1 (mod d) for d ≥ 4

(d) for d = 4, (f) for d ≥ 6,
(g2.1), (g2.2), (g2.3) n− 2 n−1

d

else - -

Table 6.8: Critical simplices of Matching 6.9.2 (case Dn, d even)
for g = 0. In the second column we indicate in which parts of
Matching 6.9.2 the critical simplices arise.

(g1) Suppose v ∈ σ. If v ≤ n − g, match σ with σ \ {v}. Otherwise σ is
critical.

(g2) Suppose v 6∈ σ. Match σ with σ ∪ {v}, unless one of the following
occurs.

(g2.1) v > n (i.e. the vertex v does not exist in S). Then σ is critical.
(g2.2) q is even, and {q d

2 + 2, . . . , (q + 1) d
2 + 1} ⊆ σ. In this case the

connected components Γ1(σ) and Γ1(σ ∪ {v}) have a different ϕd-
weight. Then ignore the vertices up to q d

2 + 1, relabel the vertices
{q d

2 + 2, . . . , n} as {1, . . . , n− q d
2 − 1} and construct the matching as

in KA
n−q d

2−1, d
2 , g

.

(g2.3) q is odd, and {q d
2 + 3, . . . , (q + 1) d

2} ⊆ σ. Similarly to case (g2.2),
relabel the vertices and construct the matching as in KA

n−q d
2−2, d

2−2, g
.
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Lemma 6.9.3. Matchings 6.9.1 and 6.9.2 are acyclic and ϕd-weighted. Critical
simplices for these matchings on KD

n are given by Tables 6.7 and 6.8. In
particular, both matchings on KD

n are ϕd-precise.

Sketch of proof. The proof is similar to those of Lemmas 6.7.2 and 6.7.3. For
every d ≥ 2, the quantity |σ| − vϕd(σ) is constant among the critical simplices.
Therefore the matchings are ϕd-precise.

6.10 CASE Ãn

Consider now an affine Coxeter system (W, S) of type Ãn (see Figure 6.7). The
simplicial complex K = KW consists of all the simplices σ ⊆ S = {0, . . . , n}
except for the full simplex σ = {0, . . . , n}. For any σ ∈ K, the induced
subgraph Γ(σ) consists only of connected components of type Ak.

If σ is a simplex of K, then σ misses at least one vertex of {0, 1, . . . , n}.
Define h to be the first vertex missing from σ, reading counterclockwise from
0. Then σ belongs to a unique

Kh = {σ ∈ K | h 6∈ σ and {0, . . . , h− 1} ⊆ σ}.

In other words, the subsets Kh form a partition of K:

K =
n⊔

h=0

Kh.

Matching 6.10.1. Construct a matching on a fixed Kh as follows. Let h = qd+ r
with 0 ≤ r ≤ d− 1, and let m = n− qd. Consider the following clockwise
relabeling of the vertices: r − 1 becomes 1, r − 2 becomes 2, . . . , 0 becomes
r, n becomes r + 1, . . . , h + 2 becomes m− 1, h + 1 becomes m (the vertices
r, r + 1, . . . , h are forgotten). This relabeling induces a poset isomorphism

Kh
∼=−→ KA

m,r,0.

Then equip Kh with the pull-back of Matching 6.7.1 on KA
m,r,0 (for h = n, the

only simplex of Kh is critical). Put together the matchings on each Kh to form
a matching on the entire complex K.

Lemma 6.10.2. Matching 6.10.1 is acyclic and weighted.

Proof. Consider the map η : K → (N,≤) which sends σ ∈ K to min{h ∈N |
h 6∈ σ}. Then η is a poset map with fibers η−1(h) = Kh. The matching on each
Kh
∼= KA

m,r,0 is acyclic by Lemma 6.7.2, therefore the whole matching on K is
acyclic.

Fix h ∈ {0, . . . , n}. The bijection Kh
∼=−→ KA

m,r,0 is such that, if σ 7→ σ̂, then
vϕd(σ) = vϕd(σ̂) + q. Indeed, Γ(σ) is obtained from Γ(σ̂) by adding qd vertices
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0

1
2

3

4

5
6

n. . .

Figure 6.7: Coxeter graph of type Ãn.

to one (possibly empty) connected component, and this increases the weight
by q. The matching on KA

m,r,0 is weighted by Lemma 6.7.3, and therefore its
pull-back also is.

Theorem 6.10.3 (Critical simplices in case Ãn). The critical simplices of Match-
ing 6.10.1 are those listed in Table 6.9. The only non-trivial incidence numbers
between critical cells are:

[τq : τ′q]
M = ±1 (for n = kd + r with 0 ≤ r ≤ d− 2)

[σq,r : σ′q,r]
M = ±1

[σ̄ : σ′k−1,r]
M = ±1 (for n = kd− 1).

In particular, the matching is precise.

Proof. Part 1: critical simplices. For n 6≡ −1 (mod d), the matching on
Kh has critical simplices only for h ≡ n (mod d). If we write n = kd + r
with 0 ≤ r ≤ d − 2, then Kqd+r

∼= KA
n−qd, r, 0 has two critical simplices for

0 ≤ q ≤ k− 1 and one critical simplex for q = k. These are the simplices τq
and τ′q listed in Table 6.9.

Suppose now that n = kd− 1. For any h = qd + r, with 0 ≤ r ≤ d− 2,
we have that Kqd+r

∼= KA
n−qd, r, 0 has two critical simplices because n− qd ≡

−1 (mod d). In addition, for h = n, we have that Kn ∼= KA
d−1, d−1, 0 has one

critical simplex. In the remaining cases the matching on Kh has no critical
simplices. The critical simplices are therefore those named σq,r, σ′q,r, and σ̄ in
Table 6.9.

Part 2: incidence numbers for n = kd + r. We want to find the incidence
numbers between critical simplices of consecutive dimensions. We start with
the case n = kd + r, with 0 ≤ r ≤ d− 2. First, let us look for alternating paths
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Case Simplices |σ| vϕd(σ)

n = kd + r τq n− 2(k− q) + 1 q + 1 0 ≤ q ≤ k− 1

6≡ −1 (mod d) τ′q n− 2(k− q) q 0 ≤ q ≤ k

n = kd− 1

σq,r n− 2(k− q) + 2 q + 1
0 ≤ q ≤ k− 2

0 ≤ r ≤ d− 2

σ′q,r n− 2(k− q) + 1 q
0 ≤ q ≤ k− 1

0 ≤ r ≤ d− 2

σ̄ = 1n0 n k

Simplices

τq = 1qd+r01d−10(1r01d−2−r0)k−q−1

τ′q = 1qd+r0(1r01d−2−r0)k−q

σq,r = 1qd+r01d−10(1d−2−r01r0)k−q−21d−2−r0

σ′q,r = 1qd+r0(1d−2−r01r0)k−q−11d−2−r0

Table 6.9: Description of the critical simplices for Ãn. Below,
the binary string notation is used.

from τq to τ′q (for 0 ≤ q ≤ k− 1). Set h = qd + r. Suppose we have one such
path:

τq m ζ1 l ρ1 m ζ2 l ρ2 m · · ·m ζm l ρm m τ′q.

If at some point a vertex v ∈ {0, . . . , h− 1} is removed, then the path falls into
some Kh′ with h′ < h and can never return in Kh. Therefore the path must be
entirely contained in Kh

∼= KA
n−qd, r, and by Theorem 6.7.4 it must be the trivial

path τq m τ′q. Thus [τq : τ′q] = ±1.
The other pairs of critical simplices in consecutive dimensions are (τ′q+1, τq)

for 0 ≤ q ≤ k− 1. There is a trivial path τ′q+1 m τq which consists in removing
the vertex h = qd + r, and contributes to the incidence number by

[τ′q+1 : τq] = (−1)h.

Suppose we have some other (non-trivial) alternating path:

τ′q+1 m ζ1 l ρ1 m ζ2 l ρ2 m · · ·m ζm l ρm m τq, m ≥ 1. (6.4)

Let ρm = τq ∪ {v}. If v = h then ρm = τ′q+1, which is excluded. Then v
must be one of the other vertices that do not belong to τq. They are of the
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form v = n − sd (for 0 ≤ s ≤ k − q − 1) or v = n − (d − 1− r) − sd (for
0 ≤ s ≤ k − q − 2). If v = n − (d − 1− r) − sd, then ρm is matched with
ρm ∪ {n − (s + 1)d}. This is impossible because ρm must be matched with
some ζm l ρm. Similarly, if v = n − sd with 0 ≤ s ≤ k − q − 2, then ρm is
matched with ρm ∪ {n− (d− 1− r)− sd} and not with some ζm l ρm. The
only remaining possibility is v = n− sd with s = k− q− 1, i.e. v = n− (k−
q− 1)d = (q+ 1)d+ r. In this case ρm is matched with ζm = ρm \ {qd+ 2r+ 1}.
Going on with the same argument, we have exactly one way to continue the
alternating path (from right to left in (6.4)), and we eventually end up with
τ′q+1. From left to right, the obtained alternating path is the following:

ζ1 = τ′q+1 \ {qd + 2r + 1}
ρ1 = ζ1 ∪ {n}
ζ2 = ρ1 \ {qd + r}
ρ2 = ζ2 ∪ {n− (d− 1− r)}
ζ3 = ρ2 \ {n}
ρ3 = ζ3 ∪ {n− d}
ζ4 = ρ3 \ {n− (d− 1− r)}

...
ζm = ρm−1 \ {(q + 1)d + 2r + 1}
ρm = ζm ∪ {qd + 2r + 1}
τq = ρm \ {(q + 1)d + r}.

The length of the path is m = 2(k− q). Apart from qd + r, which is the vertex
in τ′q+1 \ τq, the other vertices are added and removed exactly once during the
path. If a certain v is added in some ρi and removed in some ζ j (the removal
might possibly come before the addition), then

[ρi : ζi][ρj−1 : ζ j] =

{
1 if v = n
−1 otherwise.

This is true because, except for v = n, between the addition and the removal of
v exactly one vertex u with u < v has been added/removed. Namely, between
the addition and the removal of a vertex v = jd + 2r + 1 (for q ≤ j ≤ k− 1) the
vertex u = jd + r is added/removed, and between the addition of the removal
of a vertex v = jd + r (for q + 1 ≤ j ≤ k− 1) the vertex u = (j− 1)d + 2r + 1
is added. Therefore the alternating path (6.4) contributes to the incidence
number by

(−1)m · (−1)m−1 · [ζ2 : ρ1] = (−1)qd+r+1 = (−1)h+1.

Finally, the incidence number is given by

[τ′q+1 : τq]
M = (−1)h + (−1)h+1 = 0.
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Part 3: incidence numbers for n = kd− 1. Consider a generic alternating
path starting from σ̄ = {0, . . . , n− 1}:

σ̄ m ζ1 l ρ1 m ζ2 l ρ2 m · · ·m ζm l ρm m ζm+1.

Let σ̄ = ζ1 ∪ {v}. If n− d + 1 ≤ v ≤ n− 1 then ζ1 = σ′k−1,r for r = n− 1− v.
Therefore we have trivial alternating paths from σ̄ to any of the σ′k−1,r. If
v ≤ n− d then ζ1 ∈ Kh with h ≤ n− d = (k− 1)d− 1. None of these Kh’s
contains critical simplices ζm+1 with |ζm+1| = n− 1, and the alternating path
cannot return in any Kh′ with h′ ≥ (k− 1)d. Thus there are no other alternating
paths from σ̄ to critical simplices of K. Then the non-trivial incidence numbers
involving σ̄ are:

[σ̄ : σ′k−1,r]
M = ±1.

Consider now a generic alternating path from σq,r1 to σ′q,r2
:

σq,r1 m ζ1 l ρ1 m ζ2 l ρ2 m · · ·m ζm l ρm m σ′q,r2
.

Let ρm = σ′q,r2
∪ {v}. Adding v to σ′q,r2

causes the creation of a connected
component Γi with |Γi| ≡ −1 (mod d). This means that ρm is matched
with a simplex of higher dimension, or is not matched at all (this happens
for v = (q + 1)d− 1). Therefore the alternating path must be trivial, and it
occurs only for r1 = r2. Then the non-trivial incidence numbers of the form
[σq,r1 : σ′q,r2

]M are:
[σq,r : σ′q,r]

M = ±1.

Finally consider a generic alternating path from σ′q+1,r1
to σq,r2 :

σ′q+1,r1
m ζ1 l ρ1 m ζ2 l ρ2 m · · ·m ζm l ρm m σq,r2 . (6.5)

As before, we work backwards. Let ρm = σq,r2 ∪ {v}. Apart from the choices
v = qd + r and v = (q + 1)d + r, in all other cases ρm has a connected com-
ponent of size ≡ −1 (mod d) and this prevents the continuation of the
alternating path. For v = qd + r we obtain ρm = σ′q+1,r2

, so we have a trivial
alternating path from σ′q+1,r2

to σq,r2 . For v = (q + 1)d + r, iterating the same
argument, we have exactly one way to continue the alternating path (from
right to left in (6.5)) and we end up with σ′q+1,r2

. From left to right, the path is
as follows (set r = r2):

ζ1 = σ′q+1,r \ {(q + 1)d− 1}
ρ1 = ζ1 ∪ {n}
ζ2 = ρ1 \ {qd + r}
ρ2 = ζ2 ∪ {n− (d− 1− r)}
ζ3 = ρ2 \ {n}
ρ3 = ζ3 ∪ {n− d}
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ζ4 = ρ3 \ {n− (d− 1− r)}
...

ζm = ρm−1 \ {(q + 2)d− 1}
ρm = ζm ∪ {(q + 1)d− 1}
σq,r = ρm \ {(q + 1)d + r}.

The length of the path is m = 2(k− q)− 1. As happened in the case n = kd+ r,
the contribution of this alternating path to the incidence number is given by

(−1)m · (−1)m−1 · [ζ2 : ρ1] = (−1)qd+r+1.

The contribution of the trivial path σ′q+1,r m σq,r is given by (−1)qd+r. Therefore

[σ′q+1,r : σq,r]
M = (−1)qd+r + (−1)qd+r+1 = 0.

We are now able to recover the result of [CMS08b] about the homology
H∗(XW ; R) when GW is an Artin group of type Ãn.

Theorem 6.10.4 (Homology in case Ãn [CMS08b]). For an Artin group GW of
type Ãn, we have

Hm(XW ; R)ϕd
∼=


(R/(ϕd))

⊕d−1 if n = kd− 1 and m = n− 2i + 1 (1 ≤ i ≤ k)
R/(ϕd) if n = kd + r and m = n− 2i (1 ≤ i ≤ k)
0 otherwise,

where 0 ≤ r ≤ d− 2 in the second case.

Proof. We apply Theorems 6.4.1 and 6.10.3. For n = kd + r (0 ≤ r ≤ d− 2),
the boundary map δ

ϕd
m+1 has rank 1 when m + 1 = n − 2(k − q) + 1 (for

0 ≤ q ≤ k− 1, due to τq); it has rank 0 otherwise. For n = kd− 1, the boundary
map δ

ϕd
m+1 has rank d− 1 if m + 1 = n− 2(k− q) + 2 (for 0 ≤ q ≤ k− 2, due

to the simplices σq,r) or if m + 1 = n (due to σ̄); it has rank 0 otherwise.

6.11 CASE B̃n

Consider now, for n ≥ 3, an affine Coxeter system (W, S) of type B̃n (see
Figure 6.8). Throughout this section, let K = KW . The matching is very simple
for d odd, and has exactly one critical simplex. For d even, the situation is
more complicated.

Matching 6.11.1 (ϕd-matching for d odd). For σ 6= {1, 2, . . . , n}, match σ with
σ Y 0. Then {1, 2, . . . , n} is the only critical simplex.

Matching 6.11.2 (ϕd-matching for d even). For σ ∈ K, let k be the size of
the connected component Γn(σ) of the vertex n, in the subgraph Γ(σ) ⊆ Γ
induced by σ. Let k = q d

2 + r, with 0 ≤ r < d
2 .
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0

1

2 3 4 n− 2 n− 1 n
. . . 4

Figure 6.8: Coxeter graph of type B̃n.

(a) If r ≥ 1, match σ with σ Y
(
n− q d

2

)
, unless σ = {0, 2, 3, . . . , n} and r = 1

(in this case σ is critical).

(b) If r = 0 and
{

n − (q + 1) d
2 + 1, . . . , n − q d

2 − 1
}
⊆ σ, ignore vertices

≥ n− q d
2 , relabel vertices {0, 1, . . . , n− q d

2 − 1} as {1, 2, . . . , n− q d
2}, and

construct the matching as in KD
n−q d

2 , d
2−1

.

(c) If r = 0 and
{

n− (q + 1) d
2 + 1, . . . , n− q d

2 − 1
}
* σ, proceed as follows.

(c1) If |σ| = n (i.e. σ is either {0, 2, 3, . . . , n} or {1, 2, 3, . . . , n}), then σ is
critical.

(c2) If n = (q + 1) d
2 and σ = {0, 2, 3, . . . , n− q d

2 − 1, n− q d
2 + 1, . . . , n}, then

σ is critical.
(c3) Otherwise, match σ with σ Y

(
n− q d

2

)
.

Lemma 6.11.3. Matchings 6.11.1 and 6.11.2 are acyclic and ϕd-weighted. For
d odd, Matching 6.11.1 has exactly one critical simplex σ which satisfies
|σ| − vϕd(σ) = n−

⌊ n
d

⌋
. For d even, all critical simplices σ of Matching 6.11.2

satisfy |σ| − vϕd(σ) = n−
⌊ n

d/2

⌋
. In particular, both matchings are ϕd-precise.

Sketch of proof. The first part can be proved along the lines of Lemmas 6.7.2
and 6.7.3. The formulas for |σ| − vϕd(σ) can be checked by examining all
critical simplices. Finally, since the quantity |σ| − vϕd(σ) is constant among
the critical simplices, both matchings are ϕd-precise.

6.12 CASE C̃n

Let (W, S) be a Coxeter system of type C̃n, with generating set S =
{0, 1, . . . , n}, and let K = KW . The corresponding Coxeter graph Γ is shown
in Figure 6.9. For any σ ∈ K, the subgraph Γ(σ) of Γ splits as a union of
connected components of type Bk (those containing the first or the last vertex)
and of type Ak (the remaining ones).

Recall that KB
m is the full simplicial complex on {1, . . . , m}, endowed with

the weight function of Bm (see Section 6.8). We are going to construct a precise
matching for the case C̃n using the precise matching on KB

m for 1 ≤ m ≤ n.
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0 1 2 3 n− 1 n4 . . . 4

Figure 6.9: Coxeter graph of type C̃n.

For h ∈ {0, . . . , n} set

Kh = {σ ∈ K | h 6∈ σ and {0, . . . , h− 1} ⊆ σ}.

As in the Ãn case, since every simplex σ ∈ K misses at least one vertex, the
subsets Kh form a partition of K:

K =
n⊔

h=0

Kh.

Matching 6.12.1. Construct a matching on a fixed Kh as follows. Ignore the
vertices 0, . . . , h and relabel the remaining ones from right to left: n becomes 1,
n− 1 becomes 2, . . . , h + 1 becomes n− h. This induces a poset isomorphism

Kh
∼=−→ KB

n−h.

Then equip Kh with the pull-back of the matching on KB
n−h constructed in

Section 6.8 (for h = n, the only simplex of Kh is critical). The matching on the
entire complex K is obtained as the union of the matchings on each Kh.

Remark 6.12.2. For d odd we are simply matching σ with σY n for all σ except
σ = {0, . . . , n− 1}.

Lemma 6.12.3. Matching 6.12.1 is acyclic and weighted.

Proof. As in the proof of Lemma 6.10.2, the subsets Kh are the fibers of a poset
map, and the matching is acyclic on each Kh

∼= KB
n−h by Lemmas 6.8.2 and

6.8.5.
If a simplex σ ∈ Kh is sent to σ̂ by the isomorphism Kh

∼=−→ KB
n−h, then

vϕd(σ) = vϕd(σ̂) + ωϕd(Bh). The matching on KB
n−h is weighted, and therefore

the matching on Kh also is.
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Case Simplices |σ| vϕd(σ)

d odd σ̄ = 1n0 n 1 or 0

d even
σq1,q2 n− k + q1 + q2 + 1 q1 + q2 + 1 0 ≤ q1 + q2 ≤ k− 2

σ′q1,q2
n− k + q1 + q2 q1 + q2 0 ≤ q1 + q2 ≤ k

Simplices

σq1,q2 = 1q1
d
2+r01d−10(1

d
2−10)k−q1−q2−21q2

d
2

σ′q1,q2
= 1q1

d
2+r0(1

d
2−10)k−q1−q21q2

d
2

Table 6.10: Description of the critical simplices for C̃n. When d
is even, set n = k d

2 + r.

d− 1 vertices d
2 − 1 vertices q2

d
2 vertices

. . . . . . . . .4

q1
d
2 + r vertices

. . . . . . . . . . . . 4
k− q1 − q2 − 2 times

d
2 − 1 vertices

. . . . . .4

q1
d
2 + r vertices

. . . . . . . . .
q2

d
2 vertices

4
k− q1 − q2 times

Figure 6.10: Critical simplices for C̃n, with d even and n =
k d

2 + r. The diagram for the simplex σq1,q2 is on top and the
diagram for the simplex σ′q1,q2

is below it.

Simplices

σl−1,0 σ′l,0

σl−2,1 σ′l−1,1
...

...

σ1,l−2 σ′2,l−2

σ0,l−1 σ′1,l−1

σ′0,l

Table 6.11: Critical simplices for C̃n in dimension m = n− k+ l
(0 ≤ l ≤ k), where d is even and n = k d

2 + r. For l = k only the
second column occurs.
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Theorem 6.12.4 (Critical simplices in case C̃n). The critical simplices for the
matching on K are those listed in Table 6.10. In particular, the matching is
precise. In addition, the only non-trivial incidence numbers between critical
simplices in the Morse complex are as follows (for d even and n = k d

2 + r):

[σq1,q2 : σq1, q2−1]
M = (−1)α

[σq1,q2 : σq1−1, q2 ]
M = (−1)β+1

[σq1,q2 : σ′q1,q2
]M = (−1)β+ d

2+1

[σ′q1,q2
: σq1, q2−2]

M = (−1)β+1

[σ′q1,q2
: σq1−2, q2 ]

M = (−1)β

[σ′q1,q2
: σ′q1, q2−1]

M = (−1)α+1

[σ′q1,q2
: σ′q1−1, q2

]M = (−1)β+ d
2 ,

where α = (k− q2)
( d

2 − 1
)
+ q1 + r + d

2 and β = q1
d
2 + r.

Proof. As we have already said, for d odd there is exactly one critical simplex.
Suppose from now on that d is even. Let n = k d

2 + r, with 0 ≤ r ≤ d
2 − 1.

Part 1: the critical simplices. In Kh there are critical simplices if and only
if n− h ≡ 0

(
mod d

2

)
, i.e. when h = q1

d
2 + r for some q1 (with 0 ≤ q1 ≤ k).

By Theorem 6.8.6 there are two families of critical simplices: σq1,q2 (for 0 ≤
q1 + q2 ≤ k− 2) and σ′q1,q2

(for 0 ≤ q1 + q2 ≤ k), as shown in Table 6.10 and
Figure 6.10. In a fixed dimension m = n− k + l (0 ≤ l ≤ k) there are 2l + 1
critical simplices if l ≤ k− 1 and l critical simplices if l = k. See Table 6.11.

Part 2: paths ending in σq1,q2 . Consider a generic alternating path starting
from any critical cell ρ0 and ending in a critical cell of the form σq1,q2 :

ρ0 m τ1 l ρ1 m τ2 l ρ2 m · · ·m τm l ρm m σq1,q2 .

Let ρm = σq1,q2 ∪ {v}. If v = q1
d
2 + r then ρm = σ′q1+2, q2

and the alternating
path stops. If v = n− q2

d
2 then the alternating path stops at ρm = σq1, q2+1.

Suppose q1 + q2 ≤ k− 3, otherwise there are no more cases. If q1
d
2 + r + d <

v < n− q2
d
2 , then Γ(ρm) has at least one connected component of size d− 1

and therefore ρm is matched with a simplex of higher dimension; thus the
path stops without having reached a critical simplex. If v = q1

d
2 + r + d then

ρm is matched with

τm = ρm \
{

q1
d
2 + r + d

2

}
= 1q1

d
2+r01

d
2−101d−10(1

d
2−10)k−q1−q2−301q2

d
2

in the binary string notation. From here the path can continue in many ways.
Let ρm−1 = τm ∪ {w}.

• If w = q1
d
2 + r, we end up with ρm−1 = σq1+1, q2 .
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• If w = q1
d
2 + r + d

2 we go back to ρm.

• If w > q1
d
2 + r + 3

2 d, then Γ(ρm−1) has at least one connected component
of size d− 1 and therefore ρm−1 is matched with a simplex of a higher
dimension.

• If w = q1
d
2 + r + 3

2 d, then ρm−1 is matched with

τm−1 = ρm−1 \
{

q1
d
2 + r + d

}
= 1q1

d
2+r01

d
2−101

d
2−101d−10(1

d
2−10)k−q1−q2−401q2

d
2 .

By induction, repeating the same argument as above, this path can be
continued in exactly one way and it eventually arrives at the critical
simplex σ′q1, q2+2. The path has length m = k − q1 − q2 − 2 and is as
follows.

τ1 = σ′q1, q2+2 \
{

n− q2
d
2

}
ρ1 = τ1 ∪

{
n− q2

d
2 − d

}
τ2 = ρ1 \

{
n− q2

d
2 −

d
2

}
ρ2 = τ2 ∪

{
n− q2

d
2 −

3
2 d
}

τ3 = ρ2 \
{

n− q2
d
2 − d

}
...

ρm−1 = τm−1 ∪
{

q1
d
2 + r + d

}
τm = ρm−1 \

{
q1

d
2 + r + 3

2 d
}

ρm = τm ∪
{

q1
d
2 + r + d

2

}
σq1,q2 = ρm \

{
q1

d
2 + r + d

}
.

Part 3: paths ending in σ′q1,q2
. Consider now a generic alternating path

starting from any critical cell ρ0 and ending in a critical cell of the form σ′q1,q2
:

ρ0 m τ1 l ρ1 m τ2 l ρ2 m · · ·m τm l ρm m σ′q1,q2
. (6.6)

As usual, let ρm = σ′q1,q2
∪ {v}. For the same reasons as above, there are only

three possibilities: v = q1
d
2 + r, v = q1

d
2 + r + d

2 , v = n− q2
d
2 ; in all the other

cases, ρm is matched with a simplex of a higher dimension. If v = q1
d
2 + r then

the path ends (to the left in (6.6)) at ρm = σ′q1+1, q2
. If v = q1

d
2 + r + d

2 then the
path ends at σq1,q2 . Finally, if v = n− q2

d
2 then the path ends at σ′q1, q2+1.

Part 4: incidence numbers. We have seven families of incidence numbers
to compute, each coming from one of the alternating paths we have found.
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• From σ′q1+2, q2
to σq1,q2 . The alternating path is trivial and consists in

removing the vertex v = q1
d
2 + r, so

[σ′q1+2, q2
: σq1,q2 ]

M = (−1)|{w∈σq1,q2 |w<v}| = (−1)q1
d
2+r

which implies

[σ′q1,q2
: σq1−2, q2 ]

M = (−1)q1
d
2+r = (−1)β.

• From σq1, q2+1 to σq1,q2 . Again the path is trivial, and it consists in remov-
ing v = n− q2

d
2 . Therefore

[σq1, q2+1 : σq1,q2 ]
M = (−1)|{w∈σq1,q2 |w<v}|

= (−1)n−q2
d
2−(k−q1−q2−1)

= (−1)k d
2+r−q2

d
2−k+q1+q2+1

= (−1)(k−q2)
(

d
2−1
)
+r+q1+1

which implies

[σq1,q2 : σq1, q2−1]
M = (−1)(k−q2+1)

(
d
2−1
)
+r+q1+1

= (−1)α.

• From σq1+1, q2 to σq1,q2 . The path consists in removing q1
d
2 + r, adding

q1
d
2 + r + d

2 , and removing q1
d
2 + r + d. Therefore

[σq1+1, q2 : σq1,q2 ]
M = (−1)(−1)q1

d
2+r(−1)q1

d
2+r+ d

2−1(−1)q1
d
2+r+d−1

= (−1)q1
d
2+r+ d

2+1

which implies

[σq1,q2 : σq1−1, q2 ]
M = (−1)(q1−1) d

2+r+ d
2+1

= (−1)β+1.

• From σ′q1, q2+2 to σq1,q2 . The path is the one we explicitly wrote at the end
of Part 2. Notice that from ρi−1 to τi one removes the vertex vi = n−
(q2− i + 1) d

2 , and from τi to ρi one adds the vertex v′i = n− (q2− i− 1) d
2 .

Therefore

[ρi−1 : τi][ρi : τi] = (−1)|{w∈τi |v′i<w<vi}| = (−1)d−1 = −1.

Then we can compute the incidence number in the Morse complex:

[σ′q1, q2+2 : σq1,q2 ]
M = (−1)m

(
m

∏
i=1

[ρi−1 : τi][ρi : τi]

)
[σq1,q2 : ρm]
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= (−1)m(−1)m(−1)q1
d
2+r+(d−1)

= (−1)q1
d
2+r+1

which implies

[σ′q1,q2
: σq1, q2−2]

M = (−1)q1
d
2+r+1

= (−1)β+1.

• From σ′q1+1, q2
to σ′q1,q2

. The path is trivial and consists of removing
v = q1

d
2 + r. Then

[σ′q1+1, q2
: σ′q1,q2

]M = (−1)q1
d
2+r

which implies

[σ′q1,q2
: σ′q1−1, q2

]M = (−1)(q1−1) d
2+r = (−1)β+ d

2 .

• From σq1,q2 to σ′q1,q2
. The path is trivial and consists in removing v =

q1
d
2 + r + d

2 . Then

[σq1, q2 : σ′q1,q2
]M = (−1)q1

d
2+r+ d

2−1 = (−1)β+ d
2+1.

• From σ′q1, q2+1 to σ′q1,q2
. The path is trivial and consists in removing

v = n− q2
d
2 . Then

[σ′q1, q2+1 : σ′q1,q2
]M = (−1)n−q2

d
2−(k−q1−q2)

= (−1)k d
2+r−q2

d
2−k+q1+q2

= (−1)(k−q2)
(

d
2−1
)
+r+q1

which implies

[σ′q1,q2
: σ′q1, q2−1]

M = (−1)(k−q2+1)
(

d
2−1
)
+r+q1

= (−1)α+1.

We can finally compute the local homology H∗(XW ; R) for Artin groups of
type C̃n. This result is new. The homology for n ≤ 6 is also shown in Table
6.18 at the end of this chapter.

Theorem 6.12.5 (Homology in case C̃n). Let GW be an Artin group of type C̃n.
Then the ϕd-primary component of H∗(XW ; R) is trivial for d odd, and for d
even is as follows:

Hm(XW ; R)ϕd
∼=
{
(R/(ϕd))

⊕m+k−n+1 if n− k ≤ m ≤ n− 1
0 otherwise,

where n = k d
2 + r.
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Proof. In order to apply Theorem 6.4.1 we need to find the rank of the bound-
ary maps δ

ϕd
m+1 of the Morse complex. For d odd there is only one critical cell,

thus all the boundaries vanish. Suppose from now on that d is even, and let
n = k d

2 + r. In order to have a non-trivial boundary δ
ϕd
m+1, we must have at

least one critical simplex both in dimension m and in dimension m + 1, thus
m = n− k + l with 0 ≤ l ≤ k− 1 (see Table 6.11).

Case 1: l ≤ k− 2. We are going to prove that, for l ≤ k− 2, a basis for the
image of δ = δ

ϕd
m+1 is given by

B =
{

δσq1,q2 | q1 + q2 = l
}

.

By Theorem 6.12.4, we obtain the following formula for δσq1,q2 :

δσq1,q2 = (−1)α σq1, q2−1 + (−1)β+1 σq1−1, q2 + (−1)β+ d
2+1 σ′q1,q2

,

where α = (k − q2)
( d

2 − 1
)
+ q1 + r + d

2 and β = q1
d
2 + r. In this formula

the σq1, q2−1 (resp. σq1−1, q2) term vanishes if q2 = 0 (resp. q1 = 0). The term
σ′q1,q2

appears in δσq1,q2 but not in any other element of B, thus B is a linearly
independent set. In addition, if q1 + q2 = l + 1, we have that

δσ′q1,q2
= (−1)β+1σq1, q2−2 + (−1)βσq1−2, q2 + (−1)α+1σ′q1, q2−1 + (−1)β+ d

2 σ′q1−1, q2

= (−1)α+β+ d
2

(
(−1)α+ d

2+1 σq1, q2−2 + (−1)β+1 σq1−1, q2−1 + (−1)β+ d
2+1 σ′q1, q2−1

)
+ (−1)

d
2+1
(
(−1)α+1 σq1−1, q2−1 + (−1)β+ d

2+1 σq1−2, q2 + (−1)β+1 σ′q1−1, q2

)
= (−1)α+β+ d

2 δσq1, q2−1 + (−1)
d
2+1 δσq1−1, q2 .

Therefore B generates the image of δ
ϕd
m+1. Thus rk δ

ϕd
m+1 = |B| = l + 1 for

l ≤ k− 2.
Case 2: l = k− 1. For l = k− 1, i.e. m = n− 1, the situation is a bit different

because there are no critical simplices of the form σq1,q2 with q1 + q2 = l.
However we can still define

εq1,q2 = (−1)α σq1, q2−1 + (−1)β+1 σq1−1, q2 + (−1)β+ d
2+1 σ′q1,q2

for q1 + q2 = l, and
B′ =

{
εq1,q2 | q1 + q2 = l

}
.

The term σ′q1,q2
appears in εq1,q2 but not in any other element of B′, thus B′ is a

linearly independent set. As above we have that, for q1 + q2 = l + 1,

δσ′q1,q2
= (−1)α+β+ d

2 εq1, q2−1 + (−1)
d
2+1 εq1−1, q2 .

Then B′ generates (and so it is a basis of) the image of δ
ϕd
n .

We have proved that, for 0 ≤ l ≤ k − 1, the rank of δ
ϕd
m+1 is equal to

l + 1 = m + k− n + 1. Then we conclude by applying Theorem 6.4.1.
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0

1

2 3 4 n− 2

n− 1

n

. . .

Figure 6.11: Coxeter graph of type D̃n.

6.13 CASE D̃n

In this section we consider a Coxeter system (W, S) of type D̃n, for n ≥ 4
(see Figure 6.11). We are going to describe a ϕd-precise matching on K = KW .
Again, this will be easy for d odd and quite involved for d even.

Matching 6.13.1 (ϕd-matching for d odd).

(a) If σ = {1, 2, . . . , n}, then σ is critical.

(b) If 1 6∈ σ, relabel vertices {n, n− 1, . . . , 3, 2, 0} as {1, 2, . . . , n} and generate
the matching as in KD

n (see Matching 6.9.1).

(c) In all remaining cases, match σ with σ Y 0.

Matching 6.13.2 (ϕd-matching for d even). For n = 4 and d ≤ 6, we construct
the matching by hand, as follows.

• Case n = 4, d = 2. If |σ| = 1 and 2 6∈ σ, or |σ| = 2, or |σ| = 3 and 2 ∈ σ,
then match σ with σ Y 2. Otherwise, σ is critical.

• Case n = 4, d = 4. If 2 6∈ σ or σ ∩ {1, 3, 4} = ∅, then match σ with σ Y 0.
Otherwise, σ is critical.

• Case n = 4, d = 6. Match σ with σ Y 0, except in the following two cases:
2 ∈ σ, 0 6∈ σ and |σ| ≥ 3; or, {0, 2} ⊆ σ and |σ| = 4.

In the remaining cases (n ≥ 5 or d ≥ 8), the matching is defined as follows.

(a) If 1 6∈ σ, relabel vertices {n, n− 1, . . . , 3, 2, 0} as {1, 2, . . . , n} and construct
the matching as in KD

n (see Matching 6.9.2).

(b) Otherwise, if d = 2 and {0, 1, 2, 3} * σ, proceed as follows.

(b1) If {0, 1, 3} ⊆ σ, match σ with σ Y 4 if {5, 6, . . . , n} * σ, else σ is critical.
(b2) Otherwise, if {1, 3, 4, . . . , n} * σ then match σ with σ Y 2, else σ is

critical.

(c) Otherwise, if d ≥ 4 and 0 6∈ σ, proceed as follows.
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6.13. Case D̃n

(c1) If {1, 2, . . . , d
2} ⊆ σ, relabel vertices {n, n− 1, . . . , 2, 1} as {1, 2, . . . , n}

and construct the matching as in KD
n, d

2
(see Matching 6.9.2).

(c2) Otherwise, if n = d
2 + 1 and σ = {1, 2, . . . , n− 2, n}, then σ is critical.

(c3) Otherwise, if σ = {1, 2, . . . , n}, then σ is critical.
(c4) Otherwise, match σ with σ ∪ {0}.

(d) Otherwise, if d ≥ 4 and 2 6∈ σ, match σ with σ Y 0.

(e) Otherwise, if d = 4 and 3 6∈ σ, ignore vertices 0, 1, 2, relabel vertices {n,
n − 1, . . . , 4} as {1, 2, . . . , n − 3} and construct the matching as in KD

n−3
(see Matching 6.9.2).

(f) Otherwise, if d ≥ 6 and 3 6∈ σ, match σ with σ Y 0.

(g) Otherwise, proceed as follows. Recall that at this point {0, 1, 2, 3} ⊆ σ.
Let k ≥ 4 be the size of the leftmost connected component Γ0(σ) of the
subgraph Γ(σ) ⊆ Γ induced by σ. Notice that {0, 1, . . . , k− 1} ⊆ σ, unless
k = n and σ = {0, 1, . . . , n − 2, n}. Similarly to Matching 6.9.2, write
k = q d

2 + r where:{
0 < r < d

2 if k 6≡ 0 (mod d
2 )

r ∈ {0, d
2} and q even if k ≡ 0 (mod d

2 ).

Define a vertex v as follows:

v =

{
q d

2 if q is even
q d

2 + 1 if q is odd.

(g1) If d = 4, q odd and r = 1, proceed as follows.

(g1.1) If k ≤ n− 2, ignore vertices 0, . . . , k, relabel vertices {n, n− 1, . . . ,
k + 1} as {1, 2, . . . , n− k}, and construct the matching as in KD

n−k
(see Matching 6.9.2).

(g1.2) Otherwise, σ is critical.

(g2) Otherwise, if σ = {0, 1, . . . , n− 2, n} and v ≥ n− 1, then σ is critical.
(g3) Otherwise, if v ∈ σ, match σ with σ Y v.
(g4) Otherwise, if v > n, then σ is critical.
(g5) Otherwise, proceed as follows. Let c be the size of the (possibly empty)

connected component C = Γv+1(σ) of the vertex v + 1, in the subgraph
Γ(σ) ⊆ Γ induced by σ. Let

` =

{
d
2 if q even
d
2 − 2 if q odd.

(g5.1) If {n− 1, n} ⊆ C, then σ is critical.
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(g5.2) Otherwise, if c < `, match σ with σ ∪ {v}.
(g5.3) Otherwise, if c = `, n− 1 6∈ C and n ∈ C, then σ is critical.
(g5.4) Otherwise, ignore vertices 0, 1, . . . , v − 1, relabel vertices {n, n −

1, . . . , v + 1} as {1, 2, . . . , n − v} and construct the matching as in
KD

n−v, ` (see Matching 6.9.2).

Lemma 6.13.3. Matchings 6.13.1 and 6.13.2 are ϕd-precise. In addition, the
critical simplices of Matching 6.13.1 are those listed in Table 6.12.

Sketch of proof. We only discuss the critical simplices of Matching 6.13.1 (the
case d odd), and see why this matching is precise. The check for Matching
6.13.2 is much more involved and is omitted.

Following the definition of Matching 6.13.1, one critical simplex is always
given by σ̄ = {1, 2, . . . , n}. It has size |σ̄| = n and weight vϕd(σ̄) =

⌊ n
d

⌋
. The

other critical simplices arise from the matching on KD
n , and therefore from

the matching on KA
n−1. There are two of them (which we denote by τ̄1 and τ̄2)

when n ≡ 0, 1 (mod d), and zero otherwise.
If n ≡ 0 (mod d), the sizes of τ̄1 and τ̄2 are n− 2 n

d + 1 and n− 2 n
d , and their

weights are 1 and 0, respectively. For n
d ≥ 2 we have that |τ̄1| ≤ |σ| − 2, so the

incidence number between σ̄ and any of τ̄1 and τ̄2 is zero. This is enough to
conclude that the matching is ϕd-precise, since |τ1| − vϕd(τ1) = |τ2| − vϕd(τ2).
The remaining case is n

d = 1, i.e. n = d. Here we have τ̄1 = {0, 2, 3 . . . , n−
2, n− 1} and τ̄2 = {0, 2, 3, . . . , n− 2}. There are exactly two alternating paths
from σ̄ to τ̄1:

• {1, 2, . . . , n}m {1, 2, . . . , n− 1}l {0, 1, . . . , n− 1}m {0, 2, 3, . . . , n− 1};
• {1, 2, . . . , n}m {1, 2, . . . , n− 2, n}l {0, 1, . . . , n− 2, n}

m {0, 2, 3, . . . , n− 2, n}l {0, 2, 3, . . . , n}m {0, 2, 3, . . . , n− 1}.

These two paths give opposite contributions to the incidence number [σ̄ : τ̄1]
M,

so [σ̄ : τ̄1]
M = 0. Therefore the matching is ϕd-precise.

If n ≡ 1 (mod d), the sizes of τ̄1 and τ̄2 are n− 2 n−1
d and n− 2 n−1

d − 1, and
their weights are 1 and 0, respectively. Then |τ̄1| ≤ |σ̄| − 2, so the incidence
number between σ and any of τ̄1 and τ̄2 is always zero.

6.14 EXCEPTIONAL CASES

Consider first the case I2(m) for m ≥ 5 (see Figure 6.12). The Poincaré polyno-
mial is given by WI2(m) = [2]q[m]q. Then the ϕd-weight is

ωϕd(I2(m)) =


2 if d = 2 and m even
1 if d = 2 and m odd
1 if d ≥ 3 and d | m
0 if d ≥ 3 and d - m.
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6.14. Exceptional cases

Case # Critical |σ| − vϕd(σ)

n ≡ 0 (mod d)
3

n− n
d (once), n− 2 n

d (twice)

n ≡ 1 (mod d) n− n−1
d (once), n− 2 n−1

d − 1 (twice)

else 1 n− b n
d c

Table 6.12: Critical simplices of Matching 6.13.1 (case D̃n, d
odd).

1 2m

Figure 6.12: Coxeter graph of type I2(m).

In this case ϕd-precise matchings are easy to construct by hand. As a straight-
forward consequence we also obtain the homology groups H∗(XW ; R).

Matching 6.14.1 (ϕd-matching on KWI2(m)
).

• If d = 2 and m is even, every simplex is critical. Critical simplices are
then: {1, 2} (size 2, weight 2), {1}, {2} (size 1, weight 1), and ∅ (size 0,
weight 0). By Theorem 6.4.1, the homology groups are: H0(XW ; R)ϕ2

∼=
R

(ϕ2)
, and H1(XW ; R)ϕ2

∼= R
(ϕ2)

.

• If d = 2 and m is odd, match {1, 2} with {1} (both simplices have
weight 1). The critical simplices are: {2} (size 1, weight 1), and ∅
(size 0, weight 0). The homology groups are: H0(XW ; R)ϕ2

∼= R
(ϕ2)

, and
H1(XW ; R)ϕ2

∼= 0.

• If d ≥ 3 and d | m, match {2}with ∅ (both simplices have weight 0). The
critical simplices are: {1, 2} (size 2, weight 1), and {1} (size 1, weight 0).
The homology groups are: H0(XW ; R)ϕd

∼= 0, and H1(XW ; R)ϕd
∼= R

(ϕd)
.

• If d ≥ 3 and d - m, match {1, 2} with {1} and {2} with ∅ (all simplices
have weight 0). There are no critical simplices, and all homology groups
are trivial.

Theorem 6.14.2 (Homology in case I2(m)). Let GW be an Artin group of type
I2(m). Then its local homology is given by

H0(XW ; R) ∼=
R

(ϕ2)
, H1(XW ; R) ∼=

⊕
d|m
d≥2

R
(ϕd)

.
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6. LOCAL HOMOLOGY OF ARTIN GROUPS

This result corrects the one given in [DCPSS99], where proper divisors of
m were not taken into account.

We constructed precise matchings by means of a computer program for
all other exceptional spherical and affine cases (see Figures 2.6 and 2.8). The
explicit description of these matchings, together with proofs of preciseness
and homology computations, can be obtained through the software library
[Pao17c].

The homology groups can be computed using Theorem 6.4.1, and are
described in Tables 6.20 and 6.21. We recover the results of [DCPSS99] (for the
spherical cases) and [SV13] (for the affine cases), except for minor corrections
in the cases E8 and Ẽ8.

6.15 LOCAL HOMOLOGY OF LOW-DIMENSIONAL GROUPS

In the last part of this chapter, we provide tables with the local homology of
Artin groups of low dimension. This includes the homology of all exceptional
spherical and affine groups. Computations were carried out with the software
library [Pao17c].

Our results mostly agree with previous computations [Fre88, DCPSS99,
DCPS01, CMS08a, CMS08b, CMS10], as discussed throughout this chapter. In
the tables we employ the notation {d} = R/(ϕd), as in [DCPSS99, DCPS01].
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6.15. Local homology of low-dimensional groups

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

H0 {2} {2} {2} {2} {2} {2} {2} {2} {2} {2}
H1 {3} {3} 0 0 0 0 0 0 0

H2 {4} {4} {3} {3} 0 0 0 0

H3 {5} {5} 0 0 {3} {3} 0

H4 {6} {6} {4} {4} 0 0

H5 {7} {7} 0 0 0

H6 {8} {8} {5} {5}
H7 {9} {9} 0

H8 {10} {10}
H9 {11}

Table 6.13: Homology in case An for n ≤ 10.

B2 B3 B4 B5 B6 B7 B8

H0 {2} {2} {2} {2} {2} {2} {2}
H1 ∆B2 {2} {2} {2} {2} {2} {2}
H2 ∆B3 {2} ⊕ {4} {2} {2} {2} {2}
H3 ∆B4 {2} {2} ⊕ {4} {2} {2}
H4 ∆B5 {2} ⊕ {4} ⊕ {6} {2} {2} ⊕ {4}
H5 ∆B6 {2} {2} ⊕ {4}
H6 ∆B7 {2} ⊕ {4} ⊕ {8}
H7 ∆B8

∆B2 = {2} ⊕ {4}
∆B3 = {2} ⊕ {6}
∆B4 = {2} ⊕ {4} ⊕ {8}
∆B5 = {2} ⊕ {10}
∆B6 = {2} ⊕ {4} ⊕ {6} ⊕ {12}
∆B7 = {2} ⊕ {14}
∆B8 = {2} ⊕ {4} ⊕ {8} ⊕ {16}

Table 6.14: Homology in case Bn for n ≤ 8.
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D4 D5 D6 D7 D8 D9 D10

H0 {2} {2} {2} {2} {2} {2} {2}
H1 {3} 0 0 0 0 0 0

H2 {4}2 {4} {3} {3} 0 0 0

H3 ∆D4 {5} {5} 0 0 {3} {3}
H4 ∆D5 {6}2 {4} ⊕ {6} {4}2 {4} 0

H5 ∆D6 {4} ⊕ {7} {4} ⊕ {7} 0 0

H6 ∆D7 {4} ⊕ {8}2 {8} {5}
H7 ∆D8 {9} {6} ⊕ {9}
H8 ∆D9 {6} ⊕ {10}2

H9 ∆D10

∆D4 = {2} ⊕ {4} ⊕ {6}
∆D5 = {8}
∆D6 = {2} ⊕ {6} ⊕ {10}
∆D7 = {4} ⊕ {12}
∆D8 = {2} ⊕ {4} ⊕ {8} ⊕ {14}
∆D9 = {16}

∆D10 = {2} ⊕ {6} ⊕ {10} ⊕ {18}

Table 6.15: Homology in case Dn for n ≤ 10.

Ã2 Ã3 Ã4 Ã5 Ã6

H0 {2} {2} {2} {2} {2}
H1 {3}2 {3} 0 0 0

H2 R {2} ⊕ {4}3 {2} ⊕ {3} ⊕ {4} {2} ⊕ {3}2 {2} ⊕ {3}
H3 R {5}4 {4} ⊕ {5} 0

H4 R {2} ⊕ {3}2 ⊕ {6}5 ∆Ã6

H5 R {7}6

H6 R

∆Ã6
= {2} ⊕ {3} ⊕ {4} ⊕ {5} ⊕ {6}

Table 6.16: Homology in case Ãn for n ≤ 6.
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B̃3 B̃4 B̃5 B̃6 B̃7

H0 {2} {2} {2} {2} {2}
H1 {2} {2} {2} {2} {2}
H2 ∆B̃3

{2} ⊕ {4} {2} {2} {2}
H3 R ∆B̃4

{2} ⊕ {4} {2} ⊕ {4} {2}
H4 R ∆B̃5

{2} ⊕ {4} ⊕ {6} {2} ⊕ {4}
H5 R ∆B̃6

{2} ⊕ {4}2 ⊕ {6}
H6 R ∆B̃7

H7 R

∆B̃3
= {2}2 ⊕ {4} ⊕ {6}

∆B̃4
= {2}3 ⊕ {4}2 ⊕ {6} ⊕ {8}

∆B̃5
= {2}3 ⊕ {4}2 ⊕ {6} ⊕ {8} ⊕ {10}

∆B̃6
= {2}4 ⊕ {4}2 ⊕ {6}2 ⊕ {8} ⊕ {10} ⊕ {12}

∆B̃7
= {2}4 ⊕ {4}3 ⊕ {6}2 ⊕ {8} ⊕ {10} ⊕ {12} ⊕ {14}

Table 6.17: Homology in case B̃n for n ≤ 7.

C̃2 C̃3 C̃4 C̃5 C̃6

H0 {2} {2} {2} {2} {2}
H1 ∆C̃2

{2}2 {2}2 {2}2 {2}2

H2 R ∆C̃3
{2}3 ⊕ {4} {2}3 {2}3

H3 R ∆C̃4
{2}4 ⊕ {4} {2}4 ⊕ {4}

H4 R ∆C̃5
{2}5 ⊕ {4}2 ⊕ {6}

H5 R ∆C̃6

H6 R

∆C̃2
= {2}2 ⊕ {4}

∆C̃3
= {2}3 ⊕ {4} ⊕ {6}

∆C̃4
= {2}4 ⊕ {4}2 ⊕ {6} ⊕ {8}

∆C̃5
= {2}5 ⊕ {4}2 ⊕ {6} ⊕ {8} ⊕ {10}

∆C̃6
= {2}6 ⊕ {4}3 ⊕ {6}2 ⊕ {8} ⊕ {10} ⊕ {12}

Table 6.18: Homology in case C̃n for n ≤ 6.
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D̃4 D̃5 D̃6 D̃7 D̃8 D̃9

H0 {2} {2} {2} {2} {2} {2}
H1 {3} 0 0 0 0 0

H2 {4}3 {4} {3} {3} 0 0

H3 ∆D̃4
{5} {5} 0 0 {3}

H4 R ∆D̃5
{4} ⊕ {6}3 {4}3 ⊕ {6} {4}3 {4}

H5 R ∆D̃6
{4}4 ⊕ {7} {4}2 ⊕ {7} 0

H6 R ∆D̃7
{4}2 ⊕ {6} ⊕ {8}3 {8}

H7 R ∆D̃8
{6} ⊕ {9}

H8 R ∆D̃9

H9 R

∆D̃4
= {2}4 ⊕ {4}3 ⊕ {6}3

∆D̃5
= {2}2 ⊕ {4} ⊕ {6} ⊕ {8}3

∆D̃6
= {2}5 ⊕ {4}2 ⊕ {6}3 ⊕ {8} ⊕ {10}3

∆D̃7
= {2}3 ⊕ {4}5 ⊕ {6} ⊕ {8} ⊕ {10} ⊕ {12}3

∆D̃8
= {2}6 ⊕ {4}4 ⊕ {6}2 ⊕ {8}3 ⊕ {10} ⊕ {12} ⊕ {14}3

∆D̃9
= {2}4 ⊕ {4}2 ⊕ {6}2 ⊕ {8} ⊕ {10} ⊕ {12} ⊕ {14} ⊕ {16}3

Table 6.19: Homology in case D̃n for n ≤ 9.
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I2(m) H3 H4 F4 E6 E7 E8

H0 {2} {2} {2} {2} {2} {2} {2}
H1 ∆I2(m) 0 0 {2} 0 0 0

H2 ∆H3 0 {2} ⊕ {3} ⊕ {6} 0 0 0

H3 ∆H4 ∆F4 0 0 0

H4 {6} ⊕ {8} {6} {4}
H5 ∆E6 {6} 0

H6 ∆E7 {8} ⊕ {12}
H7 ∆E8

∆I2(m) =
⊕
d|m
d≥2

{d}

∆H3 = {2} ⊕ {6} ⊕ {10}
∆H4 = {2} ⊕ {3} ⊕ {4} ⊕ {5} ⊕ {6} ⊕ {10} ⊕ {12} ⊕ {15} ⊕ {20} ⊕ {30}
∆F4 = {2} ⊕ {3} ⊕ {4} ⊕ {6} ⊕ {8} ⊕ {12}
∆E6 = {3} ⊕ {6} ⊕ {9} ⊕ {12}
∆E7 = {2} ⊕ {6} ⊕ {14} ⊕ {18}
∆E8 = {2} ⊕ {3} ⊕ {4} ⊕ {5} ⊕ {6} ⊕ {8} ⊕ {10} ⊕ {12} ⊕ {15} ⊕ {20}

⊕ {24} ⊕ {30}

Table 6.20: Homology in the exceptional spherical cases.
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Ĩ1 G̃2 F̃4 Ẽ6 Ẽ7 Ẽ8

H0 {2} {2} {2} {2} {2} {2}
H1 R {2} ⊕ {3} {2} 0 0 0

H2 R {2} ⊕ {3} 0 0 0

H3 ∆F̃4
{3} {3} 0

H4 R {5} ⊕ {8} 0 {4}
H5 ∆Ẽ6

0 0

H6 R ∆Ẽ7
{5} ⊕ {8}

H7 R ∆Ẽ8

H8 R

∆F̃4
= {2}2 ⊕ {3} ⊕ {4} ⊕ {8}

∆Ẽ6
= {2} ⊕ {3}3 ⊕ {6}2 ⊕ {9}2 ⊕ {12}2

∆Ẽ7
= {2}3 ⊕ {3} ⊕ {4} ⊕ {6} ⊕ {8} ⊕ {10} ⊕ {14} ⊕ {18}

∆Ẽ8
= {2}2 ⊕ {3} ⊕ {4} ⊕ {5} ⊕ {8} ⊕ {9} ⊕ {14}

Table 6.21: Homology in the exceptional affine cases.
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PART IV

SHELLABILITY





CHAPTER 7
Shellability of arrangements

defined by root systems

7.1 INTRODUCTION

The material of this chapter is based on a joint work with Emanuele Delucchi
and Noriane Girard [DGP17].

Posets of flats of linear hyperplane arrangements (and, more generally, ge-
ometric lattices) are shellable. Indeed, geometric lattices can be characterized
by their particularly nice shellability properties [DH14], and the number of
spheres in the homotopy type of their order complex is an evaluation of the
characteristic polynomial of the associated matroid. It is therefore natural to
ask whether posets of layers of toric and elliptic arrangements are shellable
(see Section 2.7).

A general approach to this question is made difficult by the fact that, in
contrast with the case of hyperplane arrangements and geometric lattices, little
is known about the abstract properties of posets of layers of toric and elliptic
arrangements. In [DR18], these posets are studied as quotients of geometric
semilattices by translative group actions. Then one could ask if such quotients
of geometric semilattices are shellable in general. Unfortunately this is not the
case, since they can have torsion in homology: this happens e.g. in the case of
the antipodal action of Z2 on the six hyperplanes bounding a cube.

In this chapter we focus on the case of arrangements associated to root
systems, where we can take advantage of Bibby’s description of the posets of
layers as certain posets of labeled partitions [Bib18]. This leads us to introduce
a two-parameter class of posets of labeled partitions which we prove to be
EL-shellable. The posets of layers of linear, toric or elliptic arrangements of
type A, B, C, and D are subposets of elements of our two-parameter class,
and the induced labelings are EL-labelings. In particular, they are homotopy
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equivalent to a wedge of spheres. We summarize the results of this chapter in
the following theorem.

Theorem. Let A be a (linear, toric or elliptic) arrangement defined by a root
system. Then the poset of layers L(A) is EL-shellable. In particular, the order
complex of the poset L̄(A) (obtained by removing the minimum 0̂ and the
maximum 1̂ if necessary) is homotopy equivalent to a wedge of spheres of
dimension equal to the rank of the root system. Closed formulas for the
number of spheres are given in Table 7.1.

Type Linear Toric Elliptic
An−1 n! n! n!

Bn (2n− 1)!!
(2n− 3)!!(n− 1) [. . . ]

Cn (2n− 1)!! (2n + 1)!!
Dn (2n− 3)!!(n− 1) (2n− 5)!!(n2 − 3n + 3) [. . . ]

Table 7.1: Closed formulas for the number of spheres. In the
two missing cases, the number of spheres can be obtained by
setting m = 4 in the formulas of Theorem 7.6.2.

This chapter is structured as follows. In Section 7.2 we introduce the
poset Πn,Σ of Σ-labeled partitions of the set {1, 1̄, . . . , n, n̄}, where Σ is any
finite set. In Section 7.3 we describe the four classes of subposets of Πn,Σ
which, following Bibby [Bib18], are isomorphic to the posets of layers of linear
(|Σ| = 1), toric (|Σ| = 2), or elliptic (|Σ| = 4) arrangements defined by the four
infinite families of root systems. In Section 7.4 we prove that the poset Πn,Σ
is shellable, by constructing an EL-labeling. Then, in Section 7.5 we prove
that this labeling induces EL-labelings on all the above-mentioned subposets,
corresponding to posets of layers of arrangements defined by root systems.
In particular, the (reduced) order complexes are homotopy equivalent of a
wedge of spheres. The homotopy type is hence determined by the number
of these spheres. In Section 7.6 we tackle this enumeration problem: we give
general formulas (for any Σ) and deduce closed expressions for most of the
cases (see Table 7.1).

7.2 LABELED PARTITIONS

A partition of a finite set S is a collection π = {B1, . . . , Bl} of disjoint sets, called
“blocks”, such that

⋃
i Bi = S. We employ the notation

π = B1 | · · · | Bl .

Let Σ be a finite set (of “signs”). A partition of S labeled by Σ is a partition π of S
together with a subset T ⊆ π and an injection f : T → Σ. The blocks in T are
called signed blocks of π and those of π \T are called unsigned blocks of π.
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For any given integer n ∈N, let

[n] = {1, . . . , n}, [[n]] = {1, 1̄, 2, 2̄, . . . , n, n̄}.

Notice that the set [[n]] carries a natural involution ·̄ : [[n]]→ [[n]] defined as:
i 7→ ī, and ī 7→ i, for all i = 1, . . . , n. In general, given a subset A ⊆ [[n]], let

Ā = {ā | a ∈ A}.

The finest partition of [[n]] is the one in which every block is a singleton.
We denote it by

0̂ = 1 | 1̄ | 2 | 2̄ | · · · | n | n̄.

Definition 7.2.1. Let Σ be a set (of “signs”). We say that π is a Σ-labeled
partition of [[n]] if π is a partition of [[n]] labeled by Σ such that:

• for every R ∈ π, we also have R̄ ∈ π;

• S = S̄ if and only if S ∈ π is signed.

We will write this as follows:

π = Sσ1 | · · · | Sσl | R1 | R̄1| · · · | Rk | R̄k. (7.1)

Here the signed blocks are denoted by S, and carry the sign σi ∈ Σ as an index.
The unsigned blocks are denoted by Ri. We call Σ(π) = {σ1, . . . , σl} the sign
of π.

Given a Σ-labeled partition as in Equation (7.1) and a sign σ ∈ Σ(π), we
write πσ = Sσ.

Definition 7.2.2. Let π be a Σ-labeled partition of [[n]] written as in Equation
(7.1), and let

ψ = S′τ1
| · · · | S′τm

| R′1 | R̄′1 | · · · | R′q | R̄′q.

We say that π is a refinement of ψ if:

• for every σ ∈ Σ(π), there exists some τ ∈ Σ(ψ) such that πσ ⊆ ψτ;

• for every i ∈ [k], there exist two blocks of ψ, say T and T̄, such that
Ri ⊆ T and R̄i ⊆ T̄ (notice that T and T̄ can be equal if T = T̄ = ψτj for
some j ∈ [m]).

We write π � ψ if π is a refinement of ψ. This defines a partial order relation
on the set of all Σ-labeled partitions of [[n]].

Definition 7.2.3. Let Πn,Σ be the poset of all Σ-labeled partitions of [[n]], with
a new element 1̂ added to the top, partially ordered by �. Therefore, the
element 1̂ covers all the maximal Σ-labeled partitions.

Remark 7.2.4. The poset Πn,Σ is ranked, with rank function given by: rk(π) =
n− k for π 6= 1̂ (where k is as in Equation (7.1)), and rk(1̂) = n + 1.
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7.3 POSETS OF LAYERS

The following is an explicit description of the posets of layers of (linear, toric,
or elliptic) arrangements defined by root systems of type An−1, Bn, Cn, and Dn.

Theorem 7.3.1 (Barcelo-Ihrig [BI99, Theorem 4.1], Bibby [Bib18, Theorem
3.3]). The posets of layers of arrangements defined by root systems have the
following form, where |Σ| = 1 in the linear case, |Σ| = 2 in the toric case, and
|Σ| = 4 in the elliptic case.

Type An−1. L(A) is isomorphic to the subposet of Πn,Σ \ {1̂} consisting of
all elements of the form R1 | R̄1 | · · · | Rk | R̄k, where R1 | · · · | Rk is
a partition of [n]. Thus, in all cases L(A) is isomorphic to the classical
lattice of all partitions of [n] ordered by refinement.

Type Bn. Fix some distinguished element σ̄ ∈ Σ. Then L(A) is isomorphic
to the subposet of Πn,Σ \ {1̂} consisting of all elements x ∈ Πn,Σ \ {1̂}
such that |xσ| 6= 2 whenever σ 6= σ̄.

Type Cn. L(A) is isomorphic to Πn,Σ \ {1̂}.
Type Dn. L(A) is isomorphic to the subposet of Πn,Σ \ {1̂} consisting of all

elements x ∈ Πn,Σ \ {1̂} such that |xσ| 6= 2 for all σ ∈ Σ.

Our results will apply to the following more general families of posets.

Definition 7.3.2. For any n ∈ N and any finite set of signs Σ with a distin-
guished element σ̄ ∈ Σ, the poset of Σ-signed partitions of type An−1, Bn,
Cn or Dn is the subposet of Πn,Σ satisfying the corresponding condition in
Theorem 7.3.1.

Remark 7.3.3. All the subposets in Theorem 7.3.1 and Definition 7.3.2 are
ranked, with rank function induced by Πn,Σ.

Remark 7.3.4. When A is an arrangement of hyperplanes, the characteristic
polynomial of L(A) is known [OT13, Definition 2.52, Theorem 4.137, and
Corollary 6.62]). In the toric case, Ardila, Castillo, and Henley [ACH14] gave
formulas for the arithmetic Tutte polynomials of the associated arrangements,
from which in principle the characteristic polynomial can be computed. In
the elliptic case no explicit formula is known to us.

7.4 EL-SHELLABILITY OF POSETS OF LABELED PARTITIONS

For a block R of some Σ-labeled partition, define the representative of R as
the minimum element i ∈ [n] such that i ∈ R or ī ∈ R. Denote by r(R) the
representative of R. Notice that R and R̄ share the same representative, and
that the representative of R does not necessarily belong to R.
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7.4. EL-shellability of posets of labeled partitions

We call a block R ⊆ [[n]] normalized if the representative of R belongs to R.
For instance, {2, 4̄, 5} is normalized and {2̄, 4, 5} is not. Notice that exactly one
of R and R̄ is normalized, whenever R is an unsigned block.

An edge (x, y) of the Hasse diagram of Πn,Σ with y 6= 1̂ is called:

• of sign σ if xσ ( yσ for a σ ∈ Σ;

• coherent if R ∪ R′ ∈ y for some normalized unsigned blocks R, R′ ∈ x;

• non-coherent if R ∪ R̄′ ∈ y for some normalized unsigned blocks R, R′ ∈
x.

If y 6= 1̂, the edge (x, y) is of exactly one of these three types. We also say that
(x, y) is unsigned if it is either coherent or non-coherent, and that it is signed
otherwise.

Definition 7.4.1 (Edge labeling of Πn,Σ). Given a total order < of Σ, define
the following edge labeling λ of Πn,Σ.

• Let (x, y) be an unsigned edge. Let R, R′ ∈ x such that R ∪ R′ ∈ y, as
above, and let i and j be the representatives of R and R′. Then

λ(x, y) =

{
(0, max(i, j)) if (x, y) is coherent
(2, min(i, j)) if (x, y) is non-coherent.

• Let (x, y) be an edge of sign σ. Then

λ(x, y) =

{
(1, |Σ(x)≤σ|) if σ ∈ Σ(x)
(1, |Σ≤σ ∪ Σ(x)|) otherwise.

• For x≺· 1̂, let
λ(x, 1̂) = (1, 2).

Labels are ordered lexicographically.

Theorem 7.4.2 (EL-shellability of Πn,Σ). The labeling λ of Definition 7.4.1 is
an EL-labeling of Πn,Σ.

Proof. The proof is divided into five parts.
Part 1: intervals [x, z] that contain only coherent edges. Here x and z

must have the same signed part. Thus, every such interval is isomorphic to an
interval of the lattice of standard partitions of [n] \⋃σ∈Σ xσ. The isomorphism
maps an element xσ1 | · · · | xσl | R1 | R̄1 | · · · | Rk | R̄k ∈ [x, z] to R̃1 | · · · | R̃k
where, for all i, we define R̃i = (Ri ∪ R̄i) ∩ [n]. This isomorphism maps the
labeling λ to one of the standard EL-labelings of the partition lattice [Bjö80,
Example 2.9]. In particular there is an unique increasing maximal chain from
x to z.
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Part 2: intervals of the form [x, 1̂]. Recursively define a maximal chain
cx1̂ in [x, 1̂] as follows. For x ≺· 1̂, define cx1̂ = (x ≺· 1̂). Here notice that
λ(x, 1̂) = (1, 2). Suppose now that x ≺ 1̂ is not covered by 1̂.

• Case 1: there exist unsigned normalized blocks R 6= R′ in x. Among
all such pairs (R, R′), choose the (only) one for which (r(R), r(R′)) is
lexicographically minimal. Let z be the Σ-labeled partition obtained
from x by replacing R | R̄ | R′ | R̄′ with R ∪ R′ | R̄ ∪ R̄′. Then set
cx1̂ = (x≺· cz1̂). Notice that (x, z) is coherent, and λ(x, z) = (0, r(R′)).

• Case 2: no such pair (R, R′) exists. Since x is not covered by 1̂, there
exists a unique normalized unsigned block R in x. Let z be the Σ-labeled
partition obtained from x by labeling R ∪ R̄ by σ, where

σ =

{
min< Σ(x) if Σ(x) 6= ∅
min< Σ if Σ(x) = ∅.

Then set cx1̂ = x≺· cz1̂. Notice that (x, z) is of sign σ, and λ(x, z) = (1, 1).
In addition, notice that z≺· 1̂, so cx1̂ = (x≺· z≺· 1̂).

We are going to prove that cx1̂ is the unique increasing maximal chain in
[x, 1̂], and that it is lexicographically minimal among all the maximal chains
in [x, 1̂].

• By construction, cx1̂ is increasing.

• Let c be any increasing maximal chain in [x, 1̂]. We want to show that
c = cx1̂. Assume that x is not covered by 1̂, otherwise the chain is
trivial. Since the last label of c is (1, 2), c does not contain any non-
coherent edges, and it contains exactly one signed edge. So c contains:
first, a sequence of coherent edges, with labels of the form (0, ∗); then,
one signed edge labeled (1, 1); finally, one edge ending in 1̂, labeled
(1, 2). Therefore there exists some z ∈ c such that c ∩ [x, z] only consists
of coherent edges, and c ∩ [z, 1̂] consists in one signed edge and one
edge ending in 1̂. Here z is uniquely determined by x, and c ∩ [z, 1̂]
is uniquely determined by the increasing property of c. The interval
[x, z] contains only coherent edges, thus by Part 1 it contains a unique
increasing maximal chain which must coincide with c ∩ [x, z]. Therefore
there is an unique increasing maximal chain in [x, 1̂] and c = cx1̂.

• In both Case 1 and Case 2 above, λ(x, z) < λ(x, z′) for every z′ 6= z
that covers x in [x, 1̂]. Then cx1̂ is lexicographically minimal among the
maximal chains in [x, 1̂].

Part 3: intervals [x, y] where y is of the form y = R | R̄. Recursively
define a maximal chain cxy in [x, y] as follows. For x = y, set cyy = (y).
Assume now x ≺ y.
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• Case 1: there exist unsigned normalized blocks T 6= T′ in x such that
T ∪ T′ is contained in a block of y. Then choose the unique pair (T, T′)
of blocks of x such that (r(T), r(T′)) is lexicographically minimal. Let
z be the partition obtained from x by replacing T | T̄ | T′ | T̄′ with
T ∪ T′ | T̄ ∪ T̄′, and set cxy = (x ≺· czy). Notice that (x, z) is coherent,
and λ(x, z) = (0, r(T′)).

• Case 2: no such pair (T, T′) exists. Then x≺· y, and there exist unsigned
normalized blocks Q 6= Q′ in x such that Q ∪ Q̄′ coincides with R or R̄.
Set cxy = (x≺· y). Notice that (x, y) is non-coherent, and λ(x, y) = (2, r),
where r = min(r(Q), r(Q′)).

We are going to prove that cxy is the unique increasing maximal chain in
[x, y], and that it is lexicographically minimal among all the maximal chains
in [x, y].

• By construction, cxy is increasing.

• Let c be any increasing maximal chain in [x, y]. We want to show that
c = cxy. The chains in [x, y] have no signed edges. Since the labels
of coherent edges are smaller than the labels of non-coherent edges,
coherent edges precede non-coherent edges along c. So there exists an
element z ∈ c such that c ∩ [x, z] only consists of coherent edges, and
c ∩ [z, y] only consists of non-coherent edges.

If the last edge of c is non-coherent, then its label must be (2, r(R)).
This is also the minimum possible label for a non-coherent edge in the
interval [x, y]. Therefore, since c is increasing, it contains at most one
non-coherent edge.

Thus z is uniquely determined by x and y: if R is the union of the
normalized blocks of x, then c cannot end with a non-coherent edge, so
z = y; otherwise, z = Q | Q̄ | Q′ | Q̄′, where Q ∪ Q̄′ = R and both Q
and Q′ are unions of normalized blocks of x. Also c ∩ [z, y] is uniquely
determined.

Consider now the interval [x, z]. This interval contains only coherent
edges, thus by Part 1 it contains a unique increasing maximal chain
which must coincide with c ∩ [x, z]. Therefore there is an unique increas-
ing maximal chain in [x, 1̂], and c = cx1̂.

• In both Case 1 and Case 2 above, λ(x, z) < λ(x, z′) for any z′ 6= z that
covers x in the interval [x, y]. Then cxy is lexicographically minimal
among the maximal chains in [x, y].

Part 4: intervals [x, y] where y has only signed blocks or (unsigned) sin-
gleton blocks. Recursively define a maximal chain cxy in [x, y] as follows. For
x = y, set cyy = (y). Assume now x ≺ y.
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• Case 1: there exist unsigned normalized blocks R 6= R′ of x such that R∪
R′ is contained in some block of y. Among all such pairs (R, R′), choose
the (only) one for which (r(R), r(R′)) is lexicographically minimal. Let
z be the Σ-labeled partition obtained from x by replacing R | R̄ | R′ | R̄′

with R ∪ R′ | R̄ ∪ R̄′. Set cxy = (x≺· czy). Notice that (x, z) is coherent,
and λ(x, z) = (0, r(R′)).

• Case 2: no such pair (R, R′) exists. Then there are at most |Σ(y)| ele-
ments z ∈ [x, y] that cover x, since for every sign σ ∈ Σ(y) there is at
most one element z such that (x, z) is of sign σ. If possible, choose z
such that the sign of (x, z) equals min {σ ∈ Σ(x) | xσ ( yσ}. Otherwise,
choose z such that the sign of (x, z) equals min {σ ∈ Σ(y) | xσ ( yσ}.
Set cxy = (x≺· czy). Notice that (x, z) is a signed edge, and λ(x, z) is of
the form (1, ∗).

We are going to prove that cxy is the unique increasing maximal chain in
[x, y], and that it is lexicographically minimal among all the maximal chains
in [x, y].

• By construction, cxy is increasing.

• Let c be any increasing maximal chain in [x, y]. We want to show that c =
cxy. Since y contains no unsigned block, the last edge of c must be signed.
In particular, it must have a label of the form (1, ∗). Then an increasing
chain in [x, y] can only contain coherent edges and signed edges. In
addition, coherent edges precede signed edges along c. Therefore there
exists an element z ∈ c such that c∩ [x, z] only consists of coherent edges,
and c ∩ [z, y] only consists of signed edges.

It is clear that every maximal chain in [x, y] contains at least

t = |{σ ∈ Σ(y) | xσ ( yσ}|

signed edges. Suppose now that a maximal chain d of [x, y] contains
more than t signed edges. So d contains at least two edges of the same
sign τ, and one of the following cases occurs — if d has more than two
edges of sign τ, consider the first two such edges.

– τ ∈ Σ(x) and the two edges of sign τ are separated only by edges
of sign in Σ(x). Then d has two edges with the same label, and
therefore it is not increasing.

– τ ∈ Σ(x) and the two edges of sign τ are separated only by edges
of sign σ ∈ Σ(y) \ Σ(x) such that τ < σ. Then the two edges of
sign τ have the same label, and d is not increasing.

– τ ∈ Σ(x) and the two edges of sign τ are separated by some edge
of sign σ ∈ Σ(y) \ Σ(x) such that σ < τ. Then the last such edge
has a label greater than or equal to the label of the second edge of
sign τ, and d is not increasing.
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– τ ∈ Σ(y) \ Σ(x). Then the second edge of sign τ has a label which
is smaller than or equal to the label of the first edge of sign τ, and d
is not increasing.

In any case, d is not increasing. So every increasing maximal chain in
[x, y] contains exactly t signed edges, and all these edges have a different
sign.

Therefore z is uniquely determined by x and y. The only way for c∩ [z, y]
to be increasing is to contain first all the edges of sign σ ∈ Σ(x) in
increasing order, and then all the edges of sign σ ∈ Σ(y) \ Σ(x) in
increasing order. Then c ∩ [z, y] is also uniquely determined.

Consider now the interval [x, z], which contains only coherent edges.
By Part 1, this interval has a unique increasing maximal chain which
must coincide with c ∩ [x, z]. In particular, there is an unique increasing
maximal chain in [x, y], and c = cxy.

• In both Case 1 and Case 2 above, λ(x, z) < λ(x, z′) for any z′ 6= z that
covers x in the interval [x, y]. Then cxy is lexicographically minimal
among the maximal chains in [x, y].

Part 5: general intervals [x, z] with z 6= 1̂. Given any set of disjoint
(signed or unsigned) blocks X1, . . . , Xt, denote by {{X1, . . . , Xt}} the Σ-labeled
partition whose blocks are X1, . . . , Xt and a singleton block for every element
of [[n]] \ (X1 ∪ · · · ∪ Xt). Let

z = zσ1 | · · · | zσl | R1 | R̄1 | · · · | Rk | R̄k.

Consider the Σ-labeled partition x0 = {{B ∈ x | B ⊆ zσ for some σ ∈ Σ(z)}},
and define the following intervals:

J(0) = [x0, {{zσ1 , . . . , zσl}}]
J(i) = [{{B ∈ x : B ⊆ Ri ∪ R̄i}}, {{Ri, R̄i}}] for i = 1, . . . , k.

There is a poset isomorphism

J(0)× · · · × J(k)→ [x, z]

mapping every (k + 1)-tuple of partitions on the left-hand side to their com-
mon refinement.

In Parts 3 and 4 we proved that the labeling λ on each J(i) is an EL-labeling.
If we denote by Λi the set of labels used in J(i), we see that Λi ∩ Λj = ∅
whenever i 6= j. Thus, the lexicographic order on Λ0 ∪ · · · ∪Λk is a shuffle
of the lexicographic orders of the Λi’s. The edge labeling induced on [x, z] is
equal to λ. By Theorem 1.5.3, this is then an EL-labeling of [x, z].
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7.5 EL-SHELLABILITY OF POSETS OF LAYERS

Using Theorem 7.4.2, we are now able to prove that the posets of layers of
arrangements defined by root systems are EL-shellable.

Theorem 7.5.1 (EL-shellability of subposets). For any set of signs Σ with a
distinguished element σ̄ ∈ Σ, the posets of Σ-labeled partitions of type An−1,
Bn, Cn, and Dn are EL-shellable.

Proof. For type Cn, it is a direct consequence of Theorem 7.4.2. For type
An−1, the poset of layers is isomorphic to a classical partition lattice, which is
EL-shellable because it is a geometric lattice.

Denote by P a poset of Σ-labeled partitions of type Bn or Dn, with a top
element 1̂ added. Then, P is a ranked subposet of Πn,Σ with rank function
induced by the rank function of the ambient poset. With the idea of applying
Lemma 1.5.4, consider two elements x � z in P , and denote by

x≺· x1 ≺· · · · ≺· xi−1 ≺· xi︸ ︷︷ ︸
ei

≺· · · · ≺· z

the unique increasing chain in [x, z] ⊆ Πn,Σ. We have to show that this chain
is contained in P . Suppose by contradiction that this is not the case, and let i
be the minimal index such that xi 6∈ P . Then there is a sign σ ∈ Σ(z) \ Σ(xi−1)
such that |(xi)σ| = 2. In particular, ei is a signed edge. This implies that
zσ 6= ∅, but since z ∈ P we have zσ ) (xi)σ. Then there must be another edge
ej of sign σ with j > i. Therefore λ(ej) ≤ λ(ei), which is a contradiction.

Corollary 7.5.2 (EL-shellability of posets of layers). Posets of layers of linear,
toric, and elliptic arrangements defined by root systems are EL-shellable. In
particular, in all these cases ∆(L̄(A)) is homotopy equivalent to a wedge of
|TA(1, 0)| spheres.

Proof. The first part follows immediately from Theorems 7.3.1 and 7.5.1. The
second part follows from Theorem 1.4.5 and from the final remark on Tutte
polynomials in Section 2.7.

Remark 7.5.3. Corollary 7.5.2 describes the homotopy type of posets of layers
in terms of the Tutte polynomial of the arrangement. This already allows
to fill in the leftmost column of Table 7.1 and, in principle, also the middle
column (see Remark 7.3.4). In the elliptic case, no explicit form for the Tutte
polynomials is known to us. In the following section we address the problem
of determining the homotopy type of these posets from another (unified)
perspective.
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Figure 7.1: All different increasing ordered trees on 3 nodes.
The second and the third tree differ in the total order of the
children of the root.

7.6 HOMOTOPY TYPE

In order to determine the homotopy type of posets of labeled partitions,
we need to count maximal decreasing chains in our EL-labeled posets (see
Section 1.5). To this end, we first introduce increasing ordered trees. Such
trees appeared in the literature under various names (e.g. heap-ordered trees
[CN94], ordered trees with no inversions [GSY95], simple drawings of rooted
plane trees [Kla97]).

Definition 7.6.1. An increasing ordered tree is a rooted tree, with nodes labeled
by a finite subset L ⊂N, such that:

• each path from the root to any leaf has increasing labels (in particular,
the root is labeled by the minimal element of L);

• for each node, a total order of its children is specified.

If L is not given, it is assumed to be {0, 1, . . . , n} for some integer n ≥ 0.

See Figure 7.1 for a few examples. The number of increasing ordered trees
on n + 1 nodes is (2n− 1)!! This is a classical result which appeared several
times in the literature [CN94, GSY95, Kla97]. A simple proof by induction is
as follows: given an increasing ordered tree on n nodes (labeled 0, . . . , n− 1),
there are 2n − 1 ways to append an additional node labeled n, to form an
increasing ordered tree on n + 1 nodes.

We are now ready to state and prove the general result about the number
of decreasing maximal chains.

Theorem 7.6.2 (Decreasing chains). The number of decreasing maximal chains
from 0̂ to 1̂ in the subposet of Πn,Σ of type Bn, Cn, or Dn, is

∑
π =π1|···|πk ∈Πn

f (π) · (2|π1| − 3)!! · · · (2|πk| − 3)!! (7.2)
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7. SHELLABILITY OF ARRANGEMENTS DEFINED BY ROOT SYSTEMS

Here Πn is the poset of standard partitions of [n], and f : Πn → N depends
on the type (Bn, Cn, or Dn) and on m = |Σ|. In order to define f (π), denote by
k the number of blocks of π, and by s the number of nonsingleton blocks of π.

Type Cn: f (π) = (k+m−2)!
(m−2)! . For m = 1, set f (π) = 0.

Type Dn: f (π) =

{
∑min(m,s)

r=2 (m
r )

(k−2)!
(r−2)!

s!
(s−r)! if π 6= [n]

m− 1 if π = [n].

Type Bn: f (π) =


∑min(m, s+1)

r=2 (m−1
r−1 )

(k−2)!
(r−2)! (k− r + 1) s!

(s−r+1)!

+∑min(m−1, s)
r=2 (m−1

r ) (k−2)!
(r−2)!

s!
(s−r)!

if π 6= [n]

m− 1 if π = [n].

Proof. Let D be the set of decreasing maximal chains from 0̂ to 1̂. When read
bottom-to-top, chains c ∈ D consist of:

• a sequence of non-coherent edges, labeled (2, ∗);
• then, a sequence of signed edges, labeled (1, ∗);
• finally, one last edge labeled (1, 2).

Define a projection η : D → Πn,∅ ⊆ Πn,Σ, mapping a chain c ∈ D to the
(unique) element z ∈ c which comes after all the non-coherent edges and
before all the signed edges. In addition, let ρ : Πn,∅ → Πn be the natural order-
preserving projection that maps a partition z = R1 | R̄1 | · · · | Rk | R̄k ∈ Πn,∅
to the partition π = π1 | · · · | πk ∈ Πn with blocks πi = (Ri ∪ R̄i) ∩ [n].

Label the edges of Πn following the “non-coherent” rule: if α ≺· β in
Πn, and β is obtained from α by merging the two blocks αi and αj, then
label (α, β) by min(αi ∪ αj). This is not an EL-labeling of Πn, but it is the
(second component of the) image of our EL-labeling of Πn,Σ through the map
ρ, restricted to non-coherent edges of Πn,∅ ⊆ Πn,Σ.

Both maps η and ρ are clearly surjective. We claim that, for each partition
π = π1 | · · · | πk ∈ Πn, we have∣∣(ρ ◦ η)−1(π)

∣∣ = f (π) · (2|π1| − 3)!! · · · (2|πk| − 3)!!

We prove this through the following steps.

1. The number of decreasing maximal chains of [0̂, π] ⊆ Πn is

(2|π1| − 3)!! · · · (2|πk| − 3)!!

2. In the preimage under ρ of every decreasing maximal chain of [0̂, π] ⊆ Πn,
there is exactly one decreasing chain of Πn,∅ with all non-coherent edges.
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3. For every z ∈ ρ−1(π), the number of decreasing maximal chains of [z, 1̂]
without unsigned edges is f (π). Notice that the interval [z, 1̂] is different in
each subposet of Πn,Σ, depending on the type (Bn, Cn, or Dn); the definition
of f changes accordingly.

These three steps prove the above claim, which completes the proof of this
theorem. We now prove each of the three steps.

1. The interval [0̂, π] is a product of intervals [0̂, π1], . . . , [0̂, πk], and the label-
ing splits accordingly. Without loss of generality, we can then assume that
π consists of a single block π1

∼= {1, . . . , `}. Decreasing maximal chains
c of [0̂, π] are in one-to-one correspondence with increasing ordered trees
T on nodes {1, . . . , `}: a node j is a direct child of a node i < j in T if and
only if the chain c features a merge of blocks R and R′ with min(R) = i and
min(R′) = j; the set of direct children of a node is ordered according to the
sequence of the corresponding merges in c. The number of such trees is
(2`− 3)!!, as discussed at the beginning of this section.

2. Given a decreasing maximal chain c of [0̂, π] ⊆ Πn, a lift to Πn,∅ can be
constructed explicitly by induction, starting from 0̂ and parsing the chain
in increasing order. In fact, for every edge α≺· β in Πn and for every choice
of x ∈ ρ−1(α), there are two ways to lift β to some y ·� x, and in exactly
one of these two cases the resulting edge (x, y) is non-coherent.

3. Such a chain is uniquely determined by an ordering of the blocks π1, . . . , πk
of π (which determines the order of the merges), and by a decreasing
sequence of k labels

(1, m) ≥ (1, a1) ≥ · · · ≥ (1, ak) ≥ (1, 2) (7.3)

to be assigned to the edges (the sequence of labels uniquely determines the
sequence of signs). Any ordering of the blocks of π and any decreasing
sequence of labels gives rise to a valid chain, provided that (in types Bn
and Dn) no unadmissible block iīσ is created. Given a decreasing sequence
of labels, we call such an ordering of the blocks of π a valid ordering. In
type Cn, any ordering of the blocks of π is always valid, regardless of the
sequence of labels. Notice that for m = 1 there are no decreasing sequences
of labels: in this case f (π) = 0.

• Consider type Cn, so that all signed blocks are admissible. Then
there are k! possible orderings of the blocks, and (k+m−2

k ) decreasing
sequences of k labels. So we get

f (π) = k! ·
(

k + m− 2
k

)
=

(k + m− 2)!
(m− 2)!

.
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• Consider now type Dn. The sequence of signs associated to a decreas-
ing sequence of labels as in (7.3) contains exactly r different signs if
and only if ar ≥ r and ar+1 ≤ r. Therefore, for a fixed r ∈ {1, . . . , m},
the sequences of labels which give rise to exactly r different signs are
those of the form

(1, m) ≥ (1, a1) ≥ · · · ≥ (1, ar) ≥ (1, r)
≥ (1, ar+1) ≥ · · · ≥ (1, ak) ≥ (1, 2).

The number of such sequences is (m
r )(

k−2
r−2) for r ≥ 2. For r = 1, there

are m− 1 sequences if k = 1, and 0 otherwise.
If k = 1 (i.e. π = [n]), exactly one sign is used and we get f ([n]) =
m− 1. Suppose from now on k ≥ 2, i.e. π 6= [n]. We have to compute
the number of valid orderings of the k blocks of π. Recall that s is the
number of nonsingleton blocks of π. Each time a sign appears for the
first time in the chain, a nonsingleton block must be signed. Then,
for a fixed number r ∈ {2, . . . , m} of signs appearing in the chain, the
number of valid orderings of the k blocks is s (s− 1) · · · (s− r + 1)
· (k− r)! Therefore

f (π) =
min(m,s)

∑
r=2

(
m
r

)(
k− 2
r− 2

)
s!

(s− r)!
(k− r)!

=
min(m,s)

∑
r=2

(
m
r

)
(k− 2)!
(r− 2)!

s!
(s− r)!

.

• Finally consider type Bn, where we have a distinguished sign σ̄ that
can admit singleton blocks. It is convenient to assume that σ1 is the
maximal element of Σ with respect to the total order of Definition 7.4.1.
Then a sequence of labels (1, m) ≥ (1, a1) ≥ · · · ≥ (1, ak) ≥ (1, 2)
gives rise to a sequence of signs containing σ1 if and only if a1 = m.
Both cases a1 = m and a1 ≤ m− 1 can be treated as in type Dn.

Linear arrangements

In the case of linear arrangements (m = 1), the number of maximal decreasing
chains is 0. This happens because Πn,{σ} \ {1̂} still has a unique maximal
element [n]σ. Therefore one is interested in counting the decreasing chains
from 0̂ to [n]σ.

Theorem 7.6.3. The number of maximal decreasing chains from 0̂ to [n]σ,
in the subposet of Πn,{σ} of type Bn, Cn, or Dn, is given by (7.2), with the
following definition of f : Πn →N.

Type Bn = Cn: f (π) = k!
Type Dn: f (π) = s · (k− 1)!
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Figure 7.2: These trees are 1-flourishing but not 2-flourishing.

Proof. It is completely analogous to the proof of Theorem 7.6.2.

We want to give a graph-theoretic interpretation of Formula (7.2) for these
two definitions of f : Πn → N, in order to derive the well-known closed
formulas of Table 7.1 for the linear types Bn = Cn and Dn.

Proposition 7.6.4. Formula (7.2) with f (π) = k! counts the increasing ordered
trees on n + 1 nodes. Therefore the number of decreasing chains from 0̂ to
[n]σ in the linear type Bn = Cn is (2n− 1)!!

Proof. Consider an increasing ordered tree on n + 1 nodes, labeled 0, 1, . . . , n.
The set of subtrees corresponding to the children of the root is a partition of
{1, . . . , n}. For a fixed partition π ∈ Πn, the possible trees that induce this
partition can be recovered as follows: order the blocks of π in k! ways; for each
block πi, construct an increasing ordered tree with nodes labeled by elements
of πi, in (2|πi| − 3)!! ways. Summing over the partitions π ∈ Πn, we obtain
Formula (7.2).

An analogous interpretation can be given for the linear type Dn, provided
that we introduce the following class of increasing ordered trees.

Definition 7.6.5. Let r ≥ 0 be an integer. An increasing ordered tree is r-
flourishing if the root has at least r children, and none of the first r children of
the root is a leaf. See Figure 7.2 for some examples.

Lemma 7.6.6. The number of r-flourishing trees on n + 1 nodes is given by

(2n− 2r− 1)!! · (n− r)(n− r− 1) · · · (n− 2r + 1)

for n ≥ 2r, and 0 otherwise.

Proof. Let ν(n, r) be the number of r-flourishing trees on n + 1 nodes. We are
going to prove the following recursive relation:

ν(n, r) = ν(n− 1, r) · (2n− r− 1) + ν(n− 2, r− 1) · (n− 1)r.
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• The first summand counts the r-flourishing trees obtained by appending
an additional node n to some r-flourishing tree on n nodes. The node n
cannot be appended as one of the first r children of the root, so 2n− r− 1
possible positions remain.

• The second summand counts the r-flourishing trees that would not be
r-flourishing after removing the node n. Node n must be the only child
of some other node i, which must be one of the first r children of the
root. There are n− 1 choices for i, and r choices for its position. Once
the nodes n and i are removed, a (r − 1)-flourishing tree on n nodes
remains.

The formula given in the statement holds for r = 0 or n = 0, and a
straightforward computation shows that it satisfies the recursive relation.

Similarly to Proposition 7.6.4, the number of decreasing chains for the
linear type Dn has the following graph-theoretic interpretation.

Proposition 7.6.7. Formula (7.2) with f (π) = s · (k− 1)! counts the increasing
ordered 1-flourishing trees on n + 1 nodes. Therefore the number of maximal
decreasing chains from 0̂ to [n]σ in the linear type Dn is (2n− 3)!! · (n− 1).

Proof. The first part is analogous to the proof of Proposition 7.6.4. The second
part then follows from Lemma 7.6.6 for r = 1.

Toric arrangements

In the toric case (m = 2), the formulas of Theorem 7.6.2 are as follows.

Type Cn: f (π) = k!
Type Bn: f (π) = s · (k− 1)!

Type Dn: f (π) =

{
s(s− 1) · (k− 2)! if π 6= [n]
1 if π = [n].

In particular, the number of decreasing chains in the toric type Cn is the
same as in the linear type Cn (or Bn), and the number of decreasing chains in
the toric type Bn is the same as in the linear type Dn.

A closed formula for the toric type Dn can also be found, similarly to the
linear type Dn. One only has to separately take care of the partition π = [n],
which contributes by (2n− 3)!! to the total sum.

Proposition 7.6.8. Formula (7.2) with f (π) = s(s − 1) · (k − 2)! counts the
increasing ordered 2-flourishing trees on n + 1 nodes. Therefore the number
of maximal decreasing chains from 0̂ to 1̂ in the toric type Dn is

(2n− 5)!! · (n− 2)(n− 3) + (2n− 3)!! = (2n− 5)!! · (n2 − 3n + 3).

Proof. The first part is analogous to the proof of Proposition 7.6.4. Then the
second part follows from Lemma 7.6.6 for r = 2.
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Figure 7.3: All different 2-blooming trees constructed from the
leftmost increasing ordered tree of Figure 7.1. These are 3 of
the 15 different 2-blooming trees on 3 (labeled) nodes. Blooms
are shown as smaller black (unlabeled) nodes.

Elliptic arrangements

In the elliptic case (m = 4), we are going to derive a closed formula only for
type Cn. In order to do so, we introduce a variant of increasing ordered trees.

Definition 7.6.9. Let q ≥ 0 be an integer. A q-blooming tree on n + 1 nodes
is an increasing ordered tree on n + 1 nodes, with q extra indistinguishable
unlabeled nodes (called blooms) appended to the root. The only thing that
matters about blooms is their position in the total order of the children of the
root. See Figure 7.3 for some examples.

Lemma 7.6.10. The number of q-blooming trees on n + 1 nodes is

(2n + q− 1)!!
(q− 1)!!

.

Proof. The proof is by induction on n. For n = 0 there is only one q-blooming
tree, consisting of the root with q blooms attached to it. Given a q-blooming
tree on n ≥ 1 nodes (labeled 0, . . . , n− 1), there are exactly 2n+ q− 1 positions
where an additional node n can be attached in order to obtain a q-blooming
tree on n + 1 nodes. Every q-blooming tree on n + 1 nodes is obtained exactly
once from some q-blooming tree on n nodes.

Proposition 7.6.11. Formula (7.2) with f (π) = (k+m−2)!
(m−2)! counts the increasing

ordered (m− 2)-blooming trees on n + 1 nodes. Therefore the number of
decreasing chains from 0̂ to 1̂ in the elliptic type Cn is (2n + 1)!!

Proof. The first part is analogous to the proof of Proposition 7.6.4. Then the
second part follows from Lemma 7.6.10 for q = 2.

Remark 7.6.12. A closed formula for r-flourishing q-blooming trees on n + 1
nodes (if such a formula exists at all) would yield a closed formula for the
number of decreasing chains also for the elliptic types Bn and Dn.
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CHAPTER 8
Shellability of generalized

Dowling posets

8.1 INTRODUCTION

In this chapter we see how the construction of Chapter 7 fits into a more
general picture. The material is based on [Pao18b].

In a recent contribution to the study of orbit configuration spaces [BG18],
Bibby and Gadish introduced a class of posets Dn(G, S) which they called
S-Dowling posets. Here n is a positive integer, S is a finite set, and G is a finite
group acting on S. These posets arise as posets of layers of arrangements
An(G, X) of “singular subspaces” in Xn, where X is a space with a G-action.
They generalize both Dowling lattices [Dow73] (which are obtained for |S| =
1) and posets of layers of linear, toric, and elliptic arrangements defined by
root systems of type Cn [Bib18] (obtained if G = Z2 acts trivially on S, and
|S| ∈ {1, 2, 4}).

Dowling lattices have long been known to be shellable [Got98], and in
Chapter 7 we established shellability of posets of layers of arrangements
defined by root systems (this was a joint work with Emanuele Delucchi and
Noriane Girard [DGP17]). A natural question posed in [BG18] is to prove
shellability for the S-Dowling posets Dn(G, S). We solve this conjecture in a
positive way.

Theorem 8.3.5. The posetDn(G, S)∪{1̂} is EL-shellable.

The order complex of a shellable poset is homotopy equivalent to a wedge
of spheres. Once shellability is proved, the number of spheres in the order
complex of Dn(G, S) \ {0̂} can be retrieved from the characteristic polyno-
mial, which is computed in [BG18, Theorem 2.5.2]. In Section 8.4 we give an
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independent combinatorial computation of this number, based on counting
rooted trees.

Theorem 8.4.3. The order complex of the poset Dn(G, S) \ {0̂} is homotopy
equivalent to a wedge of

(−1)ε
n−1

∏
i=0

(|S| − 1 + |G|i)

(n− 1− ε)-dimensional spheres, except for the empty poset D̄1({e}, ∅). Here
ε = 0 for S 6= ∅, and ε = 1 for S = ∅.

In the study of the posets of layers of invariant arrangements, Bibby and
Gadish also introduced subposets Pn(G, S, T) ⊆ Dn(G, S) corresponding to
any G-invariant subset T ⊆ S. When G = Z2 acts trivially on S, suitable
choices of T yield posets of layers of arrangements defined by root systems
of type Bn and Dn [Bib18], which were proved to be shellable in Chapter
7. Therefore it is natural to ask if the subposets Pn(G, S, T) are shellable in
general. In Section 8.5 we exhibit a family of counterexamples, obtained
when all the elements of S have a trivial G-stabilizer. However, we prove that
Pn(G, S, T) is shellable if the G-action on S \ T is trivial.

Theorem 8.5.8. If the G-action on S \ T is trivial, the poset Pn(G, S, T) ∪ {1̂}
is EL-shellable.

Finally, we determine the homotopy type of a larger class of subposets.

Theorem 8.5.11. Let n ≥ 2 and |S| ≥ 1. Suppose that all the G-orbits
in S \ T either have cardinality 1, or have a trivial stabilizer. Then the
poset Pn(G, S, T) \ {0̂} is homotopy equivalent to a wedge of d-dimensional
spheres with

d =

{
n− 1 if T 6= ∅ or at least one G-orbit is trivial
n− 2 otherwise.

8.2 GENERALIZED DOWLING POSETS

The definition of the poset (Dn(G, S),�) is as follows [BG18, Section 2]. Let
[n] = {1, 2, . . . , n}. A partial G-partition is a partition β = {B1, . . . , B`} of
the subset ∪Bi ⊆ [n] together with functions bi : Bi → G defined up to the
following equivalence relation: bi ∼ b′i if bi = b′i g for some g ∈ G. The
functions bi can be regarded as projectivized G-colorings. Define the zero block
of β as Z = [n] \ ∪Bi. Then Dn(G, S) is the set of partial G-partitions β of [n]
together with an S-coloring of its zero block, i.e. a function z : Z → S.

Following the conventions of [BG18], we use an uppercase letter B for a
subset of [n], the corresponding lowercase letter for the function b : B → G,
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and B̃ for the data (B, b̄) where b̄ is the equivalence class of b : B→ G. Then
elements of Dn(G, S) take the form (β̃, z), where β̃ = {B̃1, . . . , B̃`} and z : Z →
S is the S-coloring of the zero block.

The set Dn(G, S) is partially ordered by covering relations (for which we
use the symbol≺·), given by either merging two blocks or coloring one by S:

(merge) (β̃ ∪ {Ã, B̃}, z)≺· (β̃ ∪ {C̃}, z) where C = A ∪ B and c = a ∪ bg for
some g ∈ G;

(color) (β̃ ∪ {B̃}, z)≺· (β̃, z′) where z′ is an extension of z to Z′ = B ∪ Z such
that z′|B is a composition

B b−→ G
f−→ S

for some G-equivariant function f . Since f is uniquely determined by
s = f (e) ∈ S (where e is the identity element of G), we can equivalently
say that z′(i) = b(i) · s for all i ∈ B.

The poset Dn(G, S) is ranked by the rank function rk((β̃, z)) = n− |β̃|. For
S = ∅, the zero blocks are always empty. Therefore the rank of Dn(G, S) is
n− ε, where

ε =

{
0 if S 6= ∅
1 if S = ∅.

An element (β̃, z) ∈ Dn(G, S) will be written also as in the follow-
ing example:

[1g13g3 | 2g24g46g6 ‖ 5s57s7 ]

denotes the partial set partition [13 | 246] with projectivized G-colorings
[g1 : g3] and [g2 : g4 : g6], and zero block {5, 7} colored by 5 7→ s5 and 7 7→ s7.

Following [BG18, Section 3.4], we also introduce a subposet Pn(G, S, T) ⊆
Dn(G, S) for any G-invariant subset T ⊆ S:

Pn(G, S, T) = {(β̃, z) ∈ Dn(G, S) : |z−1(O)| 6= 1 for all G-orbits O ⊆ S \ T}.

This subposet arises as the poset of layers of a certain invariant subarrange-
ment An(G, X; T) ⊆ An(G, X). It is ranked, with rank function induced by
Dn(G, S), and rkPn(G, S, T) = rkDn(G, S) = n− ε.

8.3 EL-SHELLABILITY OF GENERALIZED DOWLING POSETS

The poset Dn(G, S) contains a bottom element 0̂ but it is usually not bounded
from above. We therefore introduce the bounded poset D̂n(G, S) = Dn(G, S)t
{1̂} with x ≺ 1̂ for all x ∈ Dn(G, S). In this section we are going to prove
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that D̂n(G, S) is EL-shellable for every positive integer n, finite set S and finite
group G acting on S. This solves [BG18, Conjecture 2.7.1]. The construc-
tion of the EL-labeling takes ideas from (and generalizes) the EL-labeling of
Section 7.4.

Definition 8.3.1. Consider an edge (x, y) ∈ E = E(D̂n(G, S)), with y 6= 1̂.

• Suppose that (x, y) is of type “merge”, i.e. x = (β̃ ∪ {Ã, B̃}, z) and
y = (β̃ ∪ {C̃}, z), where C = A ∪ B and c = a ∪ bg. We say that (x, y) is
coherent if c(min A) = c(min B), and non-coherent otherwise. If (x, y) is
non-coherent, define α(x, y) ∈ G \ {e} as

α(x, y) =

{
c(min B) · c(min A)−1 if min A < min B
c(min A) · c(min B)−1 otherwise.

Notice that this definition only depends on the ∼-equivalence class of c.
The definition of α is motivated as follows: if c is normalized by setting
c(min C) = e, then {c(min A), c(min B)} = {e, α(x, y)}.

• Suppose that (x, y) is of type “color”, i.e. x = (β̃∪{B̃}, z) and y = (β̃, z′).
Then we say that (x, y) is colored, and its color is z′(min B).

Remark 8.3.2. The previous definition is a generalization of the one given in
Section 7.4, with “signed” replaced by “colored”.

Definition 8.3.3 (Edge labeling of D̂n(G, S)). Fix any total order s1 < s2 <
· · · < sm on S and any total order on G \ {e} (no compatibility with the
group structure, nor with the action, is needed). Let λ be the edge labeling of
D̂n(G, S) defined as follows (A, B and C are as in Definition 8.3.1).

λ(x, y) =


(0, max(min A, min B)) if (x, y) is coherent
(2, min C, α(x, y)) if (x, y) is non-coherent
(1, k) if (x, y) is colored of color sk

(1, 2) if y = 1̂.

The values of λ are compared lexicographically.

Lemma 8.3.4 (Non-coherent increasing chains). Let p1 ≺· p2 ≺· · · · ≺· pk be an
increasing chain in Dn(G, S) such that (pi, pi+1) is non-coherent for all i. Let
Ã, B̃ be non-zero blocks of p1 such that A ∪ B ⊆ C for some non-zero block C̃
of pk. Then c(min A) 6= c(min B).

Proof. Suppose that γ = (p1 ≺· p2 ≺· · · · ≺· pk) is a chain of minimal length for
which the lemma is false. By minimality, pk is the first element of γ where
A and B are contained in the same block. In other words, the edge (pk−1, pk)
merges two blocks A′ ⊇ A and B′ ⊇ B of pk−1 into the single block C = A′ ∪ B′
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of pk. Also by minimality, p1 is the last element of γ where both A and B
are not contained in a larger block. Then assume without loss of generality
that the edge (p1, p2) merges A and some other block of p1 into a single block
A′′ ) A of p2. Therefore we have the inclusions A ( A′′ ⊆ A′ ( C.

Let λ(pi, pi+1) = (2, ji, gi). We have the following increasing sequence of
labels:

(2, j1, g1) < (2, j2, g2) < · · · < (2, jk−1, gk−1).

Then j1 = min A′′ ≥ min C = jk−1, so j1 = j2 = · · · = jk−1 = min C. This
means that each edge of γ consists of a merge which involves the element
min C. Also, g1 < g2 < · · · < gk−1. If we normalize c so that c(min C) = e, by
definition of λ we have that:

• c(min A) =

{
e if min A = min C
g1 otherwise;

• c(min B) =

{
e if min B = min C (this can only happen if k = 2)
gk−1 otherwise.

If k = 2, then A′′ = A ∪ B and exactly one of c(min A) and c(min B) is equal
to e. If k > 2, we have c(min B) = gk−1, which is different from both e and g1.
In any case, c(min A) 6= c(min B).

Theorem 8.3.5 (EL-shellability). The edge labeling λ of Definition 8.3.3 is an
EL-labeling of D̂n(G, S).

Proof. In order to check Definition 1.5.1, consider an interval [x, y] of D̂n(G, S).
For x = y or x ≺· y there is nothing to prove, so assume rk(y)− rk(x) ≥ 2.
Let x = (β̃, z), with underlying partition β̃ = {B̃1, . . . , B̃`} and zero block Z.
Order the blocks of x so that min B1 < · · · < min B`.

Case 1: y = 1̂. Suppose that γ = (x = p0 ≺· p1 ≺· · · · ≺· pk ≺· 1̂) is an
increasing maximal chain in the interval [x, 1̂], with k ≥ 1. Colored edges
exist along γ if and only if S 6= ∅ and β̃ 6= ∅. Since γ is increasing, we can
deduce the following: the last edge (pk, 1̂) is labeled (1, 2); at most one edge,
namely (pk−1, pk), is labeled (1, 1) and is colored; all other edges are coherent
and their labels are forced to be (0, min B2), (0, min B3), . . . , (0, min B`). Notice
that k = ` if (pk−1, pk) is colored (which happens if and only if S 6= ∅ and
β̃ 6= ∅), otherwise k = `− 1. In any case, p`−1 has a single non-zero block
B = B1 ∪ · · · ∪ B`, with G-coloring b uniquely determined by b(min B1) =
· · · = b(min B`) since all edges from x to ph are coherent. Therefore p`−1 is
uniquely determined by x. If k = ` the edge (pk−1, pk) is colored with color s1,
and thus pk = (∅, zk) is uniquely determined by the condition zk(min B) = s1.
Finally, there is exactly one coherent increasing chain from x to p`−1, in which
(pi, pi+1) is the coherent edge which merges the blocks B1 ∪ · · · ∪ Bi+1 and
Bi+2.
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The previous argument also shows how to construct an increasing maximal
chain γ = (x = p0 ≺· p1 ≺· · · · ≺· pk ≺· 1̂) in [x, 1̂], so there is exactly one such
chain. For all i ∈ {0, . . . , k− 1}, the label λ(pi, q) is minimized (only) when
q = pi+1. Therefore γ is lexicographically minimal.

Case 2: y = (β̃, ∅), and β̃ has only one non-singleton block B̃. Let b be
the G-coloring of B̃ in y, normalized so that b(min B) = e. Let gi = b(min Bi)
for i = 1, . . . , `. Notice that g1 = e, since min B1 = min B.

Suppose that γ = (x = p0 ≺· p1 ≺· · · · ≺· pk = y) is an increasing maximal
chain in [x, y]. Since the zero block of y is empty, along γ there are no colored
edges. Then the edges are coherent from x to pm for some m ∈ {0, . . . , k},
and non-coherent from pm to y. Let pm = ({Ã1, . . . , Ãs}, ∅). Since there is a
coherent chain from x to pm, any block Aj of pm is a union Bi1 ∪ · · · ∪ Bir with
gi1 = · · · = gir , and b(min Aj) = gi1 = · · · = gir . Lemma 8.3.4 implies that
b(min Ai) 6= b(min Aj) for all i 6= j. Therefore pm is uniquely determined by
x and y.

The part of γ from x to pm consists only of coherent edges, and it is
uniquely determined by x and pm as in Case 1. Consider now the part of γ
from pm to y. If ph = y there is nothing to prove, so suppose pm 6= y. The
labels from pm to y take the form

(2, jm, hm) < (2, jm+1, hm+1) < · · · < (2, jk−1, hk−1).

By definition of λ, we have jk−1 = min B and jm = min(Ai ∪ Aj) for some
i 6= j. Since Ai ∪ Aj ⊆ B, we can deduce that jm ≥ jk−1. This implies
jm = jm+1 = · · · = jk−1 = min B. Therefore every non-coherent edge
consists of a merge which involves the element min B. Also, we have that
hm < hm+1 < · · · < hk−1. The elements e, hm, hm+1, . . . , hk−1 of G are all
distinct, and by definition of λ they coincide (up to a permutation) with
b(min A1), b(min A2), . . . , b(min As). Then the chain from pm to y is forced
by the order hm < hm+1 < · · · < hk−1: first merge the block corresponding
to e with the block corresponding to hm; then merge the resulting block with
the block corresponding to hm+1; and so on. At each step, the G-coloring is
determined by b.

We proved that an increasing chain γ in [x, y] is uniquely determined by
x and y, and our argument shows how to construct such a chain. We still
need to prove that γ is lexicographically minimal in [x, y]. Suppose that a
lexicographically minimal chain γ′ first differs from γ at some edge (pr, p′r+1),
i.e. λ(pr, p′r+1) < λ(pr, pr+1).

• If r < m, the edge (pr, pr+1) is coherent, so the edge (pr, p′r+1) must also
be coherent. In order to remain in the interval [x, y], a coherent merge
between two blocks C1 and C2 of pi is possible only if b(min C1) =
b(min C2). Then λ(pr, p′r+1) is minimized for p′r+1 = pr+1.

• If r ≥ m, the chain γ′ coincides with γ at least up to pm =
({Ã1, . . . , Ãs}, ∅). The edge (pr, p′r+1) cannot be coherent, because
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b(min Ai) 6= b(min Aj) for all i 6= j. Then (pr, p′r+1) is non-coherent.
The second entry of λ(pr, p′r+1) is at least min B, so it must be equal
to min B by minimality of γ′. This means that (pr, p′r+1) consists of a
non-coherent merge which involves min B. Then the possible values for
the third entry of λ(pr, p′r+1) are {hr, hr+1, . . . , hk−1}. The smallest one is
hr, which is attained for p′r+1 = pr+1.

Case 3: y = (β̃, z′), and all blocks of β̃ are singletons. Suppose that
γ = (x = p0 ≺· p1 ≺· · · · ≺· pk = y) is an increasing maximal chain in [x, y]. By
the structure of y, the last edge (pk−1, y) of γ must be colored. Then the edges
along γ are coherent from x to pm for some m ∈ {0, . . . , k}, and colored from
pm to y. Let pm = ({Ã1, . . . , Ãs}, z′′). Since all the merges of γ are coherent,
if two blocks Bi and Bj of x are contained in the same block A of pm, then
we have a(min Bi) = a(min Bj) and therefore z′(min Bi) = z′(min Bj). In
addition, z′(min Ai) 6= z′(min Aj) for all distinct blocks Ai, Aj of pm, because
the colored edges have strictly increasing (and thus distinct) colors. Putting
everything together, two blocks Bi and Bj of x are contained in the same block
of pm if and only if z′(min Bi) = z′(min Bj). This determines pm uniquely.

The part of γ from x to pm is uniquely determined as in Case 1. Then
there must be a colored edge for each (non-zero) block of pm. Their colors are
determined, so their order is also determined, because the sequence of colors
must be increasing.

Therefore the whole chain γ is uniquely determined by x and y, and once
again the previous argument explicitly yields one such chain. Suppose that a
lexicographically minimal chain γ′ in [x, y] first differs from γ at some edge
(pr, p′r+1), i.e. λ(pr, p′r+1) < λ(pr, pr+1).

• If r < m, the edge (pr, pr+1) is coherent, so the edge (pr, p′r+1) must also
be coherent. In order to remain in the interval [x, y], a coherent merge
between two blocks C1 and C2 of pi is possible only if z′(min C1) =
z′(min C2). Then λ(pr, p′r+1) is minimized for p′r+1 = pr+1.

• If r ≥ m, then the chain γ′ coincides with γ at least up to pm =
({Ã1, . . . , Ãs}, z′′). The edge (pr, p′r+1) cannot be coherent, because
z′(min Ai) 6= z′(min Aj) for all i 6= j. Then (pr, p′r+1) is colored. The
possible colors are given by the values of z′ on min A1, . . . , min As. The
smallest color still available is attained for p′r+1 = pr+1.

Case 4: y 6= 1̂. Let y = (β̃′, z′) with underlying partition β̃′ = {B̃′1, . . . , B̃′r}
and zero block Z′. The interval [x, y] is isomorphic to a product of intervals
[xi, yi] ⊆ Dn(G, S) for 0 ≤ i ≤ r, where:

• y0 has the same zero block as y (with the same S-coloring), and all other
blocks are singletons;

• for 1 ≤ i ≤ r, yi has exactly one non-singleton block which is equal to
B̃i, and an empty zero block.
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For each i 6= j, the sets of labels used in the intervals [xi, yi] and [xj, yj] are
disjoint. By Case 2 and Case 3, λ|[xi ,yi ] is an EL-labeling for all i. Then also
λ|[x,y] is an EL-labeling by Theorem 1.5.3.

Remark 8.3.6. The group structure of G and the G-action on S play a very
little role in our EL-labeling. A similar unexpected separation between combi-
natorics and algebra was already observed in the characteristic polynomial of
Dn(G, S) [BG18, Remark 2.5.3].

8.4 HOMOTOPY TYPE

As in the introduction, let

ε =

{
0 if S 6= ∅
1 if S = ∅.

In this section we assume not to be in the degenerate case S = ∅, G = {e},
and n = 1, becauseD1({e}, ∅) \ {0̂} is empty.

Since the poset D̂n(G, S) is (EL-)shellable and has rank n + 1− ε, the order
complex of D̄n(G, S) = Dn(G, S) \ {0̂} is homotopy equivalent to a wedge of
(n− 1− ε)-dimensional spheres. The homotopy type is therefore determined
by the number of these spheres. As described in Sections 1.4 and 1.5, we
have (at least) two ways to determine this number: as an evaluation of the
characteristic polynomial, and as the number of decreasing maximal chains in
an EL-labeling.

The characteristic polynomial χ(t) of Dn(G, S) was computed in [BG18,
Theorem 2.5.2]:

χ(t) =


n−1

∏
i=0

(t− |S| − |G|i) if S 6= ∅

n−1

∏
i=1

(t− |G|i) if S = ∅.

Therefore the number of spheres is given by

(−1)rkDn(G,S)χ(1) = (−1)n−ε
n−1

∏
i=0

(1− |S| − |G|i)

= (−1)ε
n−1

∏
i=0

(|S| − 1 + |G|i).

Notice that the product vanishes for |S| = 1. This is correct, because in this
case the poset D̄n(G, S) is bounded from above, and thus its order complex is
contractible.
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Figure 8.1: All different (2, 1)-blooming trees constructed from
the leftmost increasing ordered tree of Figure 7.1. These are 6
of the 18 different (2, 1)-blooming trees on 3 (labeled) nodes.
Blooms are shown as smaller black (unlabeled) nodes.

In the rest of this section we are going to prove the previous formula for
the number of spheres by counting the decreasing maximal chains in D̂n(G, S),
with respect to the EL-labeling of Definition 8.3.3. Some of the arguments
below are similar to those of Chapter 7.

Recall from Section 7.6 the definition of increasing ordered trees. It is
useful to introduce the following variant of increasing ordered trees, which
generalizes the q-blooming trees of Definition 7.6.9.

Definition 8.4.1. Let q, r ≥ 0 be integers. A (q, r)-blooming tree is an increasing
ordered tree with q extra indistinguishable unlabeled nodes appended to the
root, and r extra indistinguishable unlabeled nodes appended to each labeled
node other than the root. The extra unlabeled nodes are called blooms. The
only thing that matters about blooms is their position in the total order of the
children of a node.

Blooms can be regarded as separators placed in the list of the children of a
node. See Figure 8.1 for a few examples.

Lemma 8.4.2. The number of (q, r)-blooming trees on n + 1 (labeled) nodes is

n−1

∏
i=0

(q + 1 + (r + 2)i).
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Proof. The proof is by induction on n. For n = 0, there is only one (q, r)-
blooming tree, which consists of the root with q blooms attached to it. Let T
be any (q, r)-blooming tree on n nodes with n ≥ 1. The tree T has q + (n− 1)r
blooms, so there are exactly 2n− 1+ q+(n− 1)r positions where an additional
node with label n can be attached (together with its r new blooms) in order
to obtain a (q, r)-blooming tree on n + 1 nodes. Every (q, r)-blooming tree on
n + 1 nodes is obtained exactly once in this way.

Theorem 8.4.3 (Homotopy type of D̄n(G, S)). The order complex of the poset
D̄n(G, S) is homotopy equivalent to a wedge of

(−1)ε
n−1

∏
i=0

(|S| − 1 + |G|i)

(n− 1− ε)-dimensional spheres, except for the empty poset D̄1({e}, ∅).

Proof. We want to compute the cardinality of the set D of the decreasing
maximal chains from 0̂ to 1̂ in D̂n(G, S). A chain γ ∈ D consists of:

• a sequence of non-coherent edges, labeled (2, ∗, ∗);
• then, a sequence of colored edges, labeled (1, ∗) with ∗ ≥ 2;

• finally, one edge labeled (1, 2).

Case 1: |G| = 1. In this case, non-coherent edges do not exist. Then a
decreasing chain γ ∈ D is determined by a permutation of [n] (which encodes
the order in which the elements of [n] are colored) and a decreasing sequence
of n labels

(1, |S|) ≥ (1, h1) ≥ (1, h2) ≥ · · · ≥ (1, hn) ≥ (1, 2)

(which are to be assigned to the colored edges of γ). The number of decreasing
chains in Dn({e}, S) is therefore

n! ·
(

n + |S| − 2
n

)
=

(n + |S| − 2)!
(|S| − 2)!

if |S| ≥ 2, and 0 if |S| ≤ 1. From now on, assume |G| ≥ 2.
Case 2: |S| = 1. Every chain contains at least one colored edge which is

labeled (1, 1). Thus there are no decreasing chains.
Case 3: |S| ≥ 2. We are going to construct a bijection ψ between D and

the set T of (|S| − 2, |G| − 2)-blooming trees on n + 1 nodes. Let S = {s1 <
s2 < · · · < sm} and G \ {e} = {g1 < g2 < · · · < gk}. The idea is: for every
non-coherent merge of blocks A and B, there is an edge between min A and
min B; for every S-coloring of a block B, there is an edge between 0 and min B;
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1̂

[∅ ‖ 1s22g2·s23s34g1·s2 ]

[1e2g24g1 ‖ 3s3 ]

[1e2g24g1 | 3e ‖ ∅]

[1e2g2 | 3e | 4e ‖ ∅]

[1e | 2e | 3e | 4e ‖ ∅]

0

3 1

2 4

Figure 8.2: A decreasing chain (for n = 4, |G| = 3, and |S| = 5),
and the corresponding (3, 1)-blooming tree.

the blooms indicate when to stop using a certain si (or gi) and start using si−1
(or gi−1).

The bijection ψ : D → T is defined as follows. Let γ ∈ D be a decreasing
chain. In order to construct the tree ψ(γ) ∈ T , start with a disconnected graph
on n + 1 vertices labeled 0, 1, . . . , n. Every time we say “attach the node u to
the node v” we mean “create an edge between v and u, so that u becomes the
last child of v in the total order of the children of v.”

First examine the colored edges along γ, in order. For each colored edge
(x, y), which colors a block B and has label λ(x, y) = (1, i), do the following.

(1) If the root (i.e. the node 0) has less than m− i blooms, attach a new bloom
to it; repeat this step until the root has exactly m− i blooms.

(2) Attach the node min B to the root.

Notice that, by monotonicity of the labels along γ, the number of blooms
required in step (1) is weakly increasing and it varies between 0 and m− 2.

Then examine the non-coherent edges along γ, in order. For each non-
coherent edge (x, y), which merges blocks A and B with min A < min B and
has label λ(x, y) = (2, min A, gi), do the following.

(1) If the node min A has less than k − i blooms, attach a new bloom to it;
repeat this step until the node min A has exactly k− i blooms.

(2) Attach the node min B to the node min A.

Again, by monotonicity of the labels along γ, the number of blooms required
in step (1) is weakly increasing and it varies between 0 and k− 2.

Attach new blooms to the tree, so that the root has m− 2 blooms and every
other labeled node has k− 2 blooms. Define ψ(γ) as the tree resulting from
this construction. See Figure 8.2 for an example.
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To prove that ψ is a bijection, we explicitly define its inverse ψ−1 : T → D.
Let T ∈ T be a tree. Start with γ = (0̂) (a chain with one element). Consider
the set of couples

{(u, v) | u, v are labeled nodes of T, and v is a child of u},

totally ordered by: (u1, v1) < (u2, v2) if u1 > u2, or u1 = u2 and v1 comes
before v2 in the total order of the children of u1 = u2. Each of the nodes
1, . . . , n appears exactly once as the second entry of a couple (u, v). With (u, v)
running through this ordered set of couples, do the following.

• Let i be the number of blooms attached to u which come before v in the
total order of the children of u.

• If x ∈ Dn(G, S) is the last element of γ, construct y ·� x as follows.

– Case u > 0. Merge the block containing u and the block containing
v so that λ(x, y) = (2, u, gk−i).

– Case u = 0. Color the block containing v so that λ(x, y) = (1, m− i).

In both cases, the element y ·� x is uniquely determined by the given
conditions.

• Extend γ by adding y after x.

Extend γ once more, by adding 1̂ as the last element. Then ψ−1(T) = γ.
By Lemma 8.4.2, the number of (|S| − 2, |G| − 2)-blooming trees on n + 1

nodes is
n−1

∏
i=0

(|S| − 1 + |G|i).

This is also the cardinality of D.
Case 4: S = ∅. Differently from before, in this case there are no colored

edges, and the zero blocks are always empty. Then D is in bijection with the
set of (|G| − 2, |G| − 2)-blooming trees on n vertices labeled 1, 2, . . . , n. The
bijection is constructed as in the case |S| ≥ 2, except that there is no special
“node 0” anymore. By Lemma 8.4.2, the number of such trees is

n−2

∏
i=0

(|G| − 1 + |G|i) =
n−1

∏
i=1

(−1 + |G|i) = −
n−1

∏
i=0

(−1 + |G|i).

This is also the cardinality of D.

In the case of Dowling latticesDn(G), obtained by setting |S| = 1, Theorem
8.4.3 is trivial because Dn(G) contains a top element (∅, ẑ). The subposet
D̃n(G) = Dn(G) \ {0̂, (∅, ẑ)} is shellable, and its order complex is homotopy
equivalent to a wedge of spheres in bijection with the decreasing chains from
0̂ to (∅, ẑ). By an argument similar to that of Theorem 8.4.3, these decreasing
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chains are counted by (0, |G| − 2)-blooming trees on n+ 1 vertices. By Lemma
8.4.2, their number is

n−1

∏
i=0

(1 + |G|i).

A similar description of the generators of the homology of Dowling lattices
was given in [GW00, Section 4], in terms of labeled forests. The formula for
the number of generators was first found in [Dow73].

8.5 SHELLABILITY OF SUBPOSETS

We now turn our attention to the subposet Pn(G, S, T) of Dn(G, S), where T is
a G-invariant subset of S. Throughout this section, assume n ≥ 2 — because
P1(G, S, T) = D1(G, T) — and |S| ≥ 1. Then rkPn(G, S, T) = n. Also, let
P̄n(G, S, T) = Pn(G, S, T) \ {0̂}.

We are going to prove that Pn(G, S, T) is shellable if G acts trivially on
S \ T. In general, however, Pn(G, S, T) is not shellable. In the first part of this
section we construct a wide family of non-shellable examples (Proposition
8.5.6), whereas in the second part we prove shellability if the G-action on S \ T
is trivial (Theorem 8.5.8). Let us start with two simple examples.

Example 8.5.1. Let G = Z2 = {e, g} act non-trivially on S = {+,−}, as in
[BG18, Example 2.2.3]. The Hasse diagram of P2(G, S, ∅) is shown in Figure
8.3. The order complex of P̄2(G, S, ∅) is 1-dimensional and disconnected,
therefore it is not shellable. This example is a special case of Proposition 8.5.6
below. In view of Theorem 8.5.8, this is the smallest non-shellable example.

Example 8.5.2. Let G = Z4 = {e, g, g2, g3} act non-trivially on S = {+,−}.
The Hasse diagram of P2(G, S, ∅) is shown in Figure 8.4. As in Example
8.5.1, the order complex ∆ of P̄2(G, S, ∅) is 1-dimensional and disconnected,
therefore it is not shellable. In this example, ∆ ' S1 t S1 is not even a wedge
of spheres.

We are going to prove a “reduction lemma” that allows to construct a
wide family of non-shellable examples. At the same time, it gives interesting
homotopy equivalences between subposets of different S-Dowling posets.

Lemma 8.5.3 (Orbit reduction). Suppose that O ⊆ S \ T is a G-orbit with
a trivial stabilizer, i.e. |O| = |G|. Then there is a homotopy equivalence
P̄n(G, S, T) ' P̄n(G, S \O, T).

Proof. Fix an element s̄ ∈ O. Since O has a trivial stabilizer, this choice induces
a bijection ϕ : G

∼=−→ O given by g 7→ g · s̄. We are going to construct a (descend-
ing) closure operator f : Pn(G, S, T)→ Pn(G, S \O, T) ⊆ Pn(G, S, T), i.e. an
order-preserving map satisfying f (x) ≤ x for all x ∈ Pn(G, S, T).
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[1e | 2e ‖ ∅]

[1e2e ‖ ∅] [1e2g ‖ ∅]

[∅ ‖ 1−2−][∅ ‖ 1+2+] [∅ ‖ 1+2−] [∅ ‖ 1−2+]

Figure 8.3: The Hasse diagram of P2(Z2, {+,−}, ∅) where Z2
acts non-trivially on {+,−} (see Example 8.5.1).

[1e | 2e ‖ ∅]

[1e2g ‖ ∅][1e2g2 ‖ ∅][1e2e ‖ ∅] [1e2g3 ‖ ∅]

[∅ ‖ 1−2−][∅ ‖ 1+2+] [∅ ‖ 1+2−] [∅ ‖ 1−2+]

Figure 8.4: The Hasse diagram of P2(Z4, {+,−}, ∅) where Z4
acts non-trivially on {+,−} (see Example 8.5.2).

Let x = (β̃, z) ∈ Pn(G, S, T), and let Z be the zero block of x. Consider the
subset ZO = {i ∈ Z | z(i) ∈ O} of Z consisting of the elements colored by the
orbit O. To define f (x), remove ZO from the zero block and add B = ZO as a
non-zero block with G-coloring b = ϕ−1 ◦ z|ZO :

f (x) = (β̃ ∪ {B̃}, z|Z\ZO
).

Notice that f does not depend on the initial choice of s̄ ∈ O. Indeed, different
choices of s̄ yield ∼ -equivalent G-colorings of B.

Clearly f (x) ≤ x, because either f (x) = x (if ZO = ∅) or x can be obtained
from f (x) by coloring the block B. Also, f is order-preserving:

• if (x, y) ∈ E(Pn(G, S, T)) is an edge of type “merge”, or is an edge of
type “color” which uses colors in S \O, then ( f (x), f (y)) is an edge of
the same type;

• if (x, y) ∈ E(Pn(G, S, T)) is an edge of type “color” which uses colors
in O, then either x = f (x) = f (y) (if ZO = ∅ in x) or ( f (x), f (y)) is an
edge of type “merge”.

In addition, f is the identity on Pn(G, S \O, T), and so f is surjective.
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In the definition of f (x), either f (x) = x (if ZO = ∅) or f (x) contains the
block B which has at least 2 elements (because O ⊆ S \ T; see the definition
of the subposet Pn(G, S, T)). Therefore f−1(0̂) = {0̂}. Then f restricts to
a surjective closure operator f̄ : P̄n(G, S, T) → P̄n(G, S \ O, T). By [Bjö95,
Corollary 10.12], f̄ induces a homotopy equivalence between the associated
order complexes.

Remark 8.5.4. The closure operator f of the previous proof also satisfies
f 2 = f . Then, by [Koz06, Theorem 2.1], we actually have that the order
complex of P̄n(G, S, T) collapses onto the order complex of P̄n(G, S \O, T).

Remark 8.5.5. The combinatorics of P̄n(G, S, T) is related to the topology of
the complement of an arrangement An(G, X) of singular subspaces in Xn. In
this sense an orbit O as in the statement of Lemma 8.5.3 is “redundant”, as it
consists of non-singular points. This provides a topological interpretation of
Lemma 8.5.3.

Proposition 8.5.6. Let n ≥ 2 and |S| ≥ 1. Suppose that all the G-orbits in
S \ T have a trivial stabilizer. Then P̄n(G, S, T) is homotopy equivalent to a
wedge of d-dimensional spheres with

d =

{
n− 1 if T 6= ∅
n− 2 if T = ∅.

In particular, if |G| ≥ 2 and all the G-orbits in S have a trivial stabilizer, the
poset Pn(G, S, ∅) is not shellable.

Proof. For the first part, a repeated application of Lemma 8.5.3 yields
P̄n(G, S, T) ' P̄n(G, T, T) = D̄n(G, T). Then the homotopy type of D̄n(G, T)
is given by Theorem 8.4.3. In particular, the dimension d of the spheres equals
rk Dn(G, T)− 1, which is n− 1 for T 6= ∅ and n− 2 for T = ∅.

For the second part, P̄n(G, S, ∅) ' D̄n(G, ∅). Since |S| ≥ 1, the poset
Pn(G, S, ∅) has rank n. For Pn(G, S, ∅) to be shellable, the order complex of
P̄n(G, S, ∅) must be homotopy equivalent to a wedge of (n− 1)-dimensional
spheres. The hypothesis |G| ≥ 2 ensures that P̄n(G, S, ∅) ' D̄n(G, ∅) is a
wedge of a positive number of (n − 2)-dimensional spheres (by Theorem
8.4.3). Then Pn(G, S, ∅) is not shellable.

The second part of this proposition yields a large family of examples of
non-shellable subposets of S-Dowling posets, generalizing Example 8.5.1. At
the same time it shows that this family is still well-behaved, as P̄n(G, S, ∅) is
homotopy equivalent to a wedge of spheres.

We now prove that Pn(G, S, T) is shellable if the G-action on S \ T is
trivial. This generalizes Theorem 7.5.1 (EL-shellability of arrangements de-
fined by root systems). Let P̂n(G, S, T) = Pn(G, S, T) ∪ {1̂} ⊆ D̂n(G, S). For
an element x = (β̃, z) ∈ Pn(G, S, T), define S(x) ⊆ S as the image of the
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coloring map z : Z → S. Consider the following edge labeling, which is a
slightly modified version of the edge labeling of Definition 8.3.3 (see also
Definition 7.4.1).

Definition 8.5.7 (Edge labeling of P̂n(G, S, T)). Fix arbitrary total orders on S
and on G \ {e}. For a subset R ⊆ S, let R≤s = {r ∈ R | r ≤ s}. Let µ be the
edge labeling of P̂n(G, S, T) defined as follows (A, B and C are as in Definition
8.3.1).

µ(x, y) =



(0, max(min A, min B)) if (x, y) is coherent
(2, min C, α(x, y)) if (x, y) is non-coherent
(1, |S(x)≤s|) if (x, y) is colored of a color s ∈ S(x)
(1, |S≤s ∪ S(x)|) if (x, y) is colored of a color s 6∈ S(x)
(1, 2) if y = 1̂.

The difference with the edge labeling λ of Definition 8.3.3 is in the labels of
colored edges: λ only depends on the color s, whereas µ favors colors which
already belong to S(x).

Theorem 8.5.8 (EL-shellability of subposets). Let n ≥ 2, and suppose that the
G-action on S \ T is trivial. Then the edge labeling µ of Definition 8.5.7 is an
EL-labeling of P̂n(G, S, T).

Proof. Since the edge labelings λ and µ almost coincide, most of the proof of
Theorem 8.3.5 also applies here. We refer to that proof (with its notation), and
we only highlight the differences. Let [x, y] be an interval in P̂n(G, S, T).

Case 1: y = 1̂. The only difference is that, if k = ` and Z 6= ∅, the
edge (pk−1, pk) is colored with color min S(x) (and not with color s1). This
modification assures that pk belongs to the subposet Pn(G, S, T): if |Z| 6= ∅,
the color of the edge (pk−1, pk) was already used in x; if |Z| = ∅, the edge
(pk−1, pk) colors n ≥ 2 elements at the same time.

Case 2: y = (β̃, ∅), and β̃ has only one non-singleton block B̃. In this
case the edge labelings λ and µ coincide, and [x, y] is also an interval of
Dn(G, S). Therefore the proof works without changes.

Case 3: y = (β̃, z′), and all blocks of β̃ are singletons. Here we only
have to show that the increasing chain γ = (x = p0 ≺· p1 ≺· · · · ≺· pk = y) is
contained in the subposet Pn(G, S, T). Until the element pr ∈ γ, only coherent
edges are used, so pi ∈ Pn(G, S, T) for i ≤ r. Suppose that pi ∈ Pn(G, S, T)
for some i ∈ {r, r + 1, . . . , k− 1}. We want to prove that pi+1 = (β̃′′, z′′) also
belongs to Pn(G, S, T). The edge (pi, pi+1) is colored of some color s. If s ∈ T
then pi+1 ∈ Pn(G, S, T) because no color of S \ T is added. If s 6∈ T, the
G-action is trivial on s. Also, (pi, pi+1) is the only edge of γ with color s. Then
z′ −1(s) = z′′ −1(s), and so |z′′ −1(s)| = |z′ −1(s)| 6= 1 because y ∈ Pn(G, S, T).
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Therefore pi+1 ∈ Pn(G, S, T). By induction, the entire chain γ is contained in
Pn(G, S, T).

Case 4: y 6= 1̂. The proof works without changes in this case.

Remark 8.5.9. For T = S, Theorem 8.5.8 says that µ is an EL-labeling of
D̂n(G, S).

Remark 8.5.10. If G = Z2 acts on S = {+,−, 0} by exchanging + and−, then
the poset P̂3(G, S, ∅) is shellable. However, the edge labeling of Definition
8.5.7 is not an EL-labeling of P̂3(G, S, ∅).

It seems difficult in general to derive an explicit formula for the number of
decreasing maximal chains in P̂n(G, S, T), with respect to the edge labeling of
Definition 8.5.7. This was done in Section 7.6 for posets of layers of arrange-
ments defined by root systems (i.e. with G = Z2 acting trivially on S, and
|T| = 0, 1).

Lemma 8.5.3 and Theorem 8.5.8 yield the following strengthening of Propo-
sition 8.5.6.

Theorem 8.5.11. Let n ≥ 2 and |S| ≥ 1. Suppose that all the G-orbits in
S \ T either have cardinality 1, or have a trivial stabilizer. Then P̄n(G, S, T) is
homotopy equivalent to a wedge of d-dimensional spheres with

d =

{
n− 1 if T 6= ∅ or at least one G-orbit is trivial
n− 2 otherwise.

Proof. Remove all orbits of S \ T with a trivial stabilizer, by a repeated appli-
cation of Lemma 8.5.3. The remaining poset is shellable by Theorem 8.5.8, and
thus it is homotopy equivalent to a wedge of spheres.
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CLASSIFYING SPACES





CHAPTER 9
Finite classifying spaces for

affine Artin groups

9.1 INTRODUCTION

The K(π, 1) conjecture is one of the most important open problems in the
theory of Artin groups. It states that a certain orbit configuration space YW ,
obtained from the complement of the reflection arrangement associated to a
Coxeter group W, is a classifying space for the Artin group GW (see Section
2.6). It implies that all Artin groups admit a finite classifying space. So far,
the K(π, 1) conjecture has been proved for all the spherical groups, for some
affine groups (Ãn, B̃n, C̃n, and G̃2), and for a few other families of Artin
groups. In particular, it is still unsolved for the affine groups of type D̃n, and
for the exceptional affine groups of dimension greater than 2 (see Figures
2.7 and 2.8).

In a recent work [MS17], McCammond and Sulway described how to
realize affine Artin groups as subgroups of certain braided crystallographic
groups, which admit a Garside structure. A group with a Garside structure
has many interesting properties. In particular, it has a solvable word problem
and it admits a finite-dimensional classifying space (see [BKL98, DP99, Bra01,
BW02b, Deh02a, Deh02b, Bes03, CMW04, McC05, DDM13]). Using Garside
theory, in [MS17] it was proved that affine Artin groups are torsion-free
centerless groups, and have a solvable word problem and a finite-dimensional
classifying space. However, this classifying space is obtained as an infinite
cover and does not have an explicit description. In [MS17, Conjecture 11.10],
the authors asked if their classifying space is homotopy equivalent to the
orbit configuration space YW (see Section 2.6), thus establishing the K(π, 1)
conjecture.
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In this chapter we show how to construct finite classifying spaces for
all affine Artin groups. Our construction is based on the work of McCam-
mond and Sulway [MS17], as well as on some related papers [BM15, McC15].
Therefore we establish the following result.

Theorem 9.7.7. Every affine Artin group admits a finite classifying space.

We also prove the same property for almost all of the braided crystallo-
graphic groups introduced in [MS17].

Theorem 9.5.12. If W is an affine Coxeter group not of type Ãn, the braided
crystallographic group associated to W admits a finite classifying space.

In order to relate the classifying space of Theorem 9.7.7 (which will be
denoted by K′W) to the orbit configuration space YW , we introduce the dual
Salvetti complex X′W . This complex naturally sits inside K′W , and it is homotopy
equivalent to YW thanks to the following result.

Theorem 9.4.3. The dual Salvetti complex X′W is homotopy equivalent to the
Salvetti complex XW .

As a consequence, in order to prove the K(π, 1) conjecture, it is enough to
show that K′W collapses onto X′W . We show this in the case D̃4.

Theorem 9.8.1. The K(π, 1) conjecture holds for the Artin group of type D̃4.

This method to prove the K(π, 1) conjecture seems to be promising, and
we hope to extend it to all affine Artin groups.

The rest of this chapter is structured as follows. Sections 9.2 and 9.3
contain background definitions and constructions, especially from [MS17]. In
Section 9.4 we introduce the dual Salvetti complex, and we prove that it is
homotopy equivalent to the usual Salvetti complex. In Section 9.5 we show
how to construct finite classifying spaces for braided crystallographic groups.
In Section 9.6 we recall from [MS17] the definition and some properties of
horizontal and diagonal groups, and we prove a few propositions that are
needed later. In Section 9.7 we construct finite classifying spaces for all affine
Artin groups. Finally, in Section 9.8 we specialize our constructions to D̃4, and
we prove the K(π, 1) conjecture in this case.

9.2 INTERVAL GROUPS

In this section we recall the construction of interval groups and how they give
rise to Garside structures. We summarize the exposition of [MS17, Section
2], and refer to [Bes03, Dig06, Dig12, DDM13, DDG+15, McC15, MS17] for a
complete reference.

Let G be a group, with a (possibly infinite) generating set R ⊆ G such
that R = R−1. Suppose that the elements of R are assigned positive weights
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bounded away from 0 that form a discrete subset of the positive real numbers.
Assume that r and r−1 have the same weight, for every r ∈ R.

Given an element g ∈ G, define the interval [1, g]G ⊆ G as follows:

[1, g]G = {x ∈ G | d(1, x) + d(x, g) = d(1, g)},

where d is the distance in the weighted right Cayley graph of G (with respect
to the weighted generating set R). This interval becomes a poset if we set
x ≤ y when d(1, x) + d(x, y) + d(y, g) = d(1, g). The Hasse diagram of [1, g]G

embeds into the Cayley graph of G. Every edge of the Hasse diagram is of the
form (x, xr) for some r ∈ R, and we label it by r.

Definition 9.2.1 (Interval group [MS17, Definition 2.6]). The interval group
Gg is the group presented as follows. Let R0 be the subset of R consisting of
the labels of edges in [1, g]G. The group Gg has R0 as its generating set, and
relations given by all the closed loops inside the Hasse diagram of [1, g]G.

Theorem 9.2.2 ([Bes03, Theorem 0.5.2], [MS17, Proposition 2.11]). If R is
closed under conjugation, and the interval [1, g]G is a lattice, then the group
Gg is a Garside group.

The main reason we are interested in Garside groups is because their
classifying spaces can be constructed explicitly.

Definition 9.2.3 (Interval complex). Realize the standard d-simplex ∆d as the
set of points (a1, a2, . . . , ad) ∈ Rd such that 1 ≥ a1 ≥ a2 ≥ · · · ≥ ad ≥ 0. The
interval complex associated to the interval [1, g]G is a ∆-complex (in the sense
of [Hat02]) having a d-simplex [x1|x2| · · · |xd] for every x1, x2, . . . , xd ∈ [1, g]G

such that:

(i) xi 6= 1 for all i;

(ii) x1x2 · · · xd ∈ [1, g]G;

(iii) d(1, x1x2 · · · xd) = d(1, x1) + d(1, x2) + · · ·+ d(1, xd).

The faces of a simplex [x1| . . . |xd] are as follows.

• The face {1 = a1 ≥ a2 ≥ · · · ≥ ad ≥ 0} of [x1| · · · |xd] is glued to the
(d − 1)-simplex [x2| · · · |xd] by sending (1, a2, . . . , ad) to (a2, . . . , ad) ∈
∆d−1.

• For 1 ≤ i ≤ k− 1, the face {1 ≥ a1 ≥ · · · ≥ ai = ai+1 ≥ · · · ≥ ad ≥ 0}
of [x1| · · · |xd] is glued to the (d− 1)-simplex [x1| · · · |xixi+1| · · · |xd] by
sending (a1, . . . , ai, ai, ai+2, . . . , ad) to (a1, . . . , ai, ai+2, . . . , ad) ∈ ∆d−1.

• Finally, the face {1 ≥ a1 ≥ · · · ≥ ad = 0} of [x1| · · · |xd] is glued
to the (d − 1)-simplex [x1| · · · |xd−1] by sending (a1, . . . , ad−1, 0) to
(a1, . . . , ad−1) ∈ ∆d−1.
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[x1]

[x2][x1x2]

[x1|x2]

Figure 9.1: Realization in R2 of a 2-simplex [x1|x2].

Notice that there is a unique vertex, which is indicated by [ ]. See Figure 9.1
for an example.

The fundamental group of the interval complex associated to [1, g]G is Gg.
This can be easily checked by looking at the 2-skeleton. If [1, g]G is a lattice,
then Gg is a Garside group, and the interval complex of [1, g]G is a K(Gg, 1)
(see for example [McC05, Definition 1.6]). However, interval complexes will
be important also in non-Garside cases.

9.3 DUAL ARTIN GROUPS AND BRAIDED CRYSTALLOGRAPHIC
GROUPS

In this section we recall some constructions and results from [McC15, MS17].
Let (W, S) be a Coxeter system, and let R be the set of all reflections of W.
Assign weight 1 to every reflection r ∈ R. For any fixed total order of the
elements of S, the product of these generators in this order is a Coxeter element.
For every Coxeter element w there is a dual Artin group.

Definition 9.3.1 ([BW02b, Bes03]). The dual Artin group with respect to w is the
interval group Ww constructed using R as the generating set of W.

The generating set R0 ⊆ R of a dual Artin group contains S. Then there is
a natural group homomorphism from the usual Artin group GW to the dual
Artin group Ww.

Theorem 9.3.2 ([BW02b, Bes03, MS17]). For all finite and affine Coxeter
groups W, the natural homomorphism GW →Ww is an isomorphism.

It is not known in general if a dual Artin group is isomorphic to the
corresponding Artin group.

The main reason to introduce dual Artin groups is to apply Theorem 9.2.2
and obtain a Garside structure. Everything works smoothly if W is finite.
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Theorem 9.3.3 ([BW08]). If W is a finite Coxeter group, the interval [1, w]W is
a lattice for every Coxeter element w. Therefore the dual Artin group Ww is a
Garside group.

Things get more complicated for affine Coxeter groups. Notice that, in this
case, [1, w]W is infinite. For Coxeter groups of type Ãn, C̃n, and G̃2, the interval
[1, w]W was proved to be a lattice (in case Ãn, this is true only for suitable
choices of the Coxeter element) [Dig06, Dig12, McC15]. In the remaining
irreducible cases, McCammond showed that the interval [1, w]W is not a lattice
[McC15]. This led the way to a remarkable construction by McCammond and
Sulway [MS17], which we summarize in the rest of this section.

Suppose from now on that W is an irreducible affine Coxeter group, acting
as a reflection group on Rn. Fix a Coxeter element w of W. Following [BM15],
we say that an isometry of Rn is elliptic if it fixes at least one point, and
hyperbolic otherwise. The Coxeter element w is a hyperbolic isometry, and
the points p of Rn that minimize the Euclidean distance d(p, w(p)) form a
line `, called the Coxeter axis [McC15, Proposition 7.2]. There is a power of
w which acts as a pure translation in the direction of `. This direction is
declared to be vertical, and the orthogonal directions are horizontal. An elliptic
isometry is horizontal if it moves every point in a horizontal direction, and it is
vertical otherwise [MS17, Definition 5.3]. Given x ∈ [1, w], the right complement
of x is the unique y ∈ [1, w] such that xy = w; define the left complement
similarly.

The coarse structure of the interval [1, w]W was described in [MS17, Defini-
tions 5.4 and 5.5], using previous results on intervals in the group of Euclidean
isometries [BM15]. The elements of u ∈ [1, w]W are split into 3 rows according
to the following cases (let v be the right complement of u):

• (bottom row) u is horizontal elliptic and v is hyperbolic;

• (middle row) both u and v are vertical elliptic;

• (top row) u is hyperbolic and v is horizontal elliptic.

The bottom and the top rows contain a finite number of elements, whereas the
middle row contains infinitely many elements.

The reflection arrangement in Rn associated with W splits Rn into bounded
simplicial chambers. Every point of the Coxeter axis is contained in the
interior of some top-dimensional chamber, except for an infinite discrete set
of equally spaced points. The chambers through which ` passes are called
the axial chambers, and the vertices of these simplices are the axial vertices
[MS17, Definition 5.5]. The reflections which occur as edge labels in the
interval [1, w]W are those that contain an axial vertex in their fixed hyperlane
[McC15, Theorem 9.6]. This set includes the set RV of all vertical reflections,
but only a finite set RH of horizontal reflections. Denote by T the (finite) set of
translations in [1, w]W (they belong to the top row).
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Since the interval [1, w]W is not a lattice in general, in [MS17, Section 6]
new Euclidean isometries are introduced. They give rise to three more groups
of isometries.

• The diagonal group D, generated by RH and T. Translations are assigned
a weight of 2.

• The factorable group F, generated by RH and by a set TF of factored trans-
lations. Factored translations are assigned a weight of 2

k , where k is the
number of irreducible components of the horizontal root system of W.

• The crystallographic group C, generated by RH, RV , and TF.

The diagonal group D is included in both W and F, and all of them are
included in the crystallographic group C. The associated intervals are related
as follows [MS17, Lemma 7.2]:

[1, w]C = [1, w]W ∪ [1, w]F

[1, w]D = [1, w]W ∩ [1, w]F.

The intervals [1, w]D and [1, w]F are finite, whereas [1, w]W and [1, w]C

are infinite.
From these intervals, we can construct the interval groups Dw, Fw, and Cw.

The group Cw is called the braided crystallographic group.

Theorem 9.3.4 ([MS17, Theorems 7.6 and 8.10]). The intervals [1, w]F and
[1, w]C are lattices. Therefore, the interval groups Fw and Cw are Garside
groups.

Theorem 9.3.5 ([MS17, Theorem 9.6]). The inclusions between the four in-
tervals induce inclusions on the corresponding interval groups: Dw ↪→ Ww,
Dw ↪→ Fw, Ww ↪→ Cw, and Fw ↪→ Cw. In addition, the braided crystallo-
graphic group Cw can be written as an amalgamated free product of Ww and
Fw, amalgamated over Dw.

As a consequence, a finite-dimensional classifying space KC for Cw can
be constructed (e.g. via Definition 9.2.3). The cover of KC corresponding to
the subgroup Ww is a classifying space for the (dual) Artin group Ww [MS17,
Proposition 11.1]. Therefore affine Artin groups admit a finite-dimensional
classifying space. In [MS17, Section 11] it is asked to relate this space to the
orbit configuration space YW (see Section 2.6), in order to establish the K(π, 1)
conjecture.

9.4 DUAL SALVETTI COMPLEX

Our aim is to compare the classifying spaces constructed in [MS17] and the
orbit configuration space YW . Recall that YW is homotopy equivalent to the
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Salvetti complex XW (Theorem 2.6.2). The first step is to define a complex
X′W ' XW , with a structure which is closer to the dual Garside structures of
[MS17]. For this reason, we call it the dual Salvetti complex.

Let W be an irreducible affine Coxeter group, and fix a Coxeter element
w = s0s1 · · · sn. The elements s0, s1, . . . , sn are the reflections with respect
to the walls of a fixed base chamber. The Coxeter axis passes through the
base chamber, and so the base chamber is one of the (infinitely many) axial
chambers. Denote by KW the interval complex associated to [1, w]W .

Definition 9.4.1 (Dual Salvetti complex). The Dual Salvetti complex X′W is the
(finite) subcomplex of KW consisting of the simplices [x1|x2| · · · |xd] such that
x1x2 · · · xd is an elliptic isometry that fixes a vertex of the base chamber.

For every proper subset Q ( S, denote by wQ the product of the elements
of Q in the same relative order as in the list s0, s1, . . . , sn. Then wQ is a Coxeter
element of the parabolic subgroup WQ, and wQ ∈ [1, w]W (the Hurwitz action
[MS17, Definition 5.9] allows to construct a minimal length factorization
of w that starts with wQ). Denote by Fix(u) the set of points fixed by the
isometry u.

Lemma 9.4.2. We have [1, w]W ∩WQ = [1, wQ]
WQ , where the interval [1, wQ]

WQ

is constructed using all the reflections of WQ as the generating set of WQ.

Proof. The inclusion ⊇ follows directly from the fact that wQ ∈ [1, w]W . For
the opposite inclusion, consider an element u ∈ [1, w]W ∩WQ. Since u ∈WQ,
we have Fix(wQ) ⊆ Fix(u). By [BM15, Theorem 8.7], this implies that u ≤ wQ
in [1, w]W . Then there is a minimum length factorization of wQ (as a product
of |Q| reflections) that starts with a factorization of u. The reflections involved
must belong to WQ, and therefore u ∈ [1, wQ]

WQ .

For every Q ( S, the dual Salvetti complex has a subcomplex X′WQ
con-

sisting of the simplices [x1|x2| · · · |xd] such that x1x2 · · · xd ∈WQ. By Lemma
9.4.2, the subcomplex X′WQ

is the interval complex associated to [1, wQ]
WQ .

Then, by Theorems 9.3.3 and 9.2.2, it is a K(GWQ , 1). Notice that, by definition,
X′W is the union of all subcomplexes X′WQ

for Q ( S. Similarly, the Salvetti
complex XW is the union of the Salvetti complexes XWQ for Q ( S. Each
XWQ is a K(GWQ , 1), because the K(π, 1) conjecture holds for spherical Artin
groups [Del72].

Theorem 9.4.3. The dual Salvetti complex X′W is homotopy equivalent to the
Salvetti complex XW .

Proof. Recall that the cells of the Salvetti complex XW are indexed by the
simplicial complex KW = {Q ( S}. Since XWQ ' X′WQ

' K(GWQ , 1) for
all Q ( S, it is possible to inductively construct homotopy equivalences
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ϕQ : XWQ → X′WQ
satisfying the following naturality property: for all P ⊆

Q ⊂ S, there is a commutative diagram

XWP X′WP

XWQ X′WQ
.

ϕP

ϕQ

Gluing together all these maps, we obtain a map ϕ : XW → X′W . This is a
homotopy equivalence by a repeated application of the gluing theorem for
adjunction spaces [Bro06, Theorem 7.5.7].

Remark 9.4.4. The dual Salvetti complex can be defined for a general Artin
group GW , by gluing together the interval complexes of [1, wQ]

WQ for Q in

KW = {Q ⊆ S | the parabolic subgroup WQ is finite}.

9.5 FINITE CLASSIFYING SPACES FOR BRAIDED CRYSTALLOGRA-
PHIC GROUPS

In this section we show how to construct a finite classifying space for the
braided crystallographic group Cw.

Let KC be the interval complex associated to [1, w]C. This is a classifying
space for Cw, by Theorems 9.3.4 and 9.2.2. Denote by KW ⊆ KC the interval
complex associated to [1, w]W . Since the intervals [1, w]W and [1, w]C are
infinite, the interval complexes KW and KC are also infinite.

Lemma 9.5.1. Let σ = [x1|x2| · · · |xd] ∈ KC be a d-simplex, with d ≥ 1. Then
exactly one of the following occurs:

(i) every xi is elliptic, and at least one is vertical;

(ii) every xi is horizontal elliptic or hyperbolic.

Proof. Let y ∈ [1, w]C be the right complement of x1x2 · · · xd.

• If at least one xi is not in [1, w]W , then by [MS17, Lemma 7.2] no fac-
torization of any xi includes vertical reflections. In particular, no xi is
vertical elliptic, so (ii) holds and (i) does not. In the remaining cases,
assume that xi ∈ [1, w]W for all i.

• If every xi is horizontal elliptic, then (ii) holds and (i) does not.

• Suppose that xj is hyperbolic for some index j. Then x1 · · · xj is also
hyperbolic, because a divisor of an elliptic isometry is elliptic. Therefore,
by the coarse structure of [1, w]W , the right complement xj+1 · · · xdy is
horizontal elliptic. Thus every xi for i > j is horizontal elliptic. Similarly,
every xi for i < j is horizontal elliptic. Then (ii) holds and (i) does not.
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• If there is at least one vertical elliptic element and there are no hyperbolic
elements, (i) holds and (ii) does not.

Consider the poset map η : KC →N defined by

η([x1|x2| · · · |xd]) =

{
d if x1x2 · · · xd = w
d + 1 otherwise.

We want to describe the connected components of a fiber η−1(d), viewed in the
Hasse diagram of KC. Let σ, τ be two simplices in the same fiber η−1(d). We
have that τ is a face of σ if and only if σ = [x1|x2| · · · |xd] with x1x2 · · · xd = w
and either τ = [x2|x3| · · · |xd] or τ = [x1|x2| · · · |xd−1]. Therefore, a connected
component of η−1(d) has the following form:

[x1| · · · |xd]

[x2| · · · |xd]

[x2| · · · |xd+1]

[x3| · · · |xd+1][x1| · · · |xd−1]

[x0| · · · |xd−1]

[x0| · · · |xd−2]

where xixi+1 · · · xi+d−1 = w for all i. From now on, by d-fiber component (or
simply fiber component) we mean a connected component of the fiber η−1(d).
As described above, a d-fiber component has an associated sequence (xi)i∈Z

of elements of [1, w]C such that the product of any d consecutive elements is w.
This sequence is well-defined up to a translation of the indices.

Let ϕ : [1, w]C → [1, w]C be the conjugation by the Coxeter element w:
ϕ(u) = w−1uw. Notice that, in the sequence (xi)i∈Z associated to a d-fiber
component, we have ϕ(xi) = xi+d for all i ∈ Z.

Lemma 9.5.2. Let u ∈ [1, w]C. The set {ϕj(u) | j ∈ Z} is infinite if and only if
u is vertical elliptic.

Proof. Recall from [MS17, Remark 7.3] the coarse structure of the interval
[1, w]C: an element u ∈ [1, w]C can be of type bottom, middle, top, or factored.
The elements ϕj(u) are all of the same type as u, and there is only a finite
number of bottom, top and factored elements. Therefore, if {ϕj(u) | j ∈ Z} is
infinite, u belongs to the middle row and therefore is vertical elliptic.

Let u be a vertical elliptic element, and suppose by contradiction that
ϕj(u) = u for some j ∈ Z \ {0}. Let wp be the smallest power of w which acts
as a pure translation in the direction of the Coxeter axis. Then also ϕpj(u) = u,
so u commutes with the (non-trivial) translation wpj. By [MS17, Lemma 11.3],
Fix(u) is invariant under wpj. If u = r1 · · · rh is a minimal length factorization
of u as a product of reflections, then Fix(u) = Fix(r1) ∩ · · · ∩ Fix(rh) [BM15,
Lemma 6.4]. Thus every hyperplane Fix(ri) must be invariant under the
translation wpj. Then every reflection ri is horizontal, so u is horizontal, and
this is a contradiction.
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Lemma 9.5.3. Let σ = [x1|x2| · · · |xd] ∈ η−1(d). The d-fiber component con-
taining σ is finite if and only if σ is of type (ii) in Lemma 9.5.1.

Proof. If σ is of type (i), at least one xi is vertical elliptic. Then the set {xi+jd =

ϕj(xi) | j ∈ Z} is infinite by Lemma 9.5.2, so the component is infinite.
If σ is of type (ii), then every xi is horizontal elliptic or hyperbolic. In either

case, for all i = 1, . . . , d, the set {xi+jd = ϕj(xi) | j ∈ Z} is finite by Lemma
9.5.2. In other words, for all i = 1, . . . , d the sequence (xi+jd)j∈Z is periodic.
Then the entire sequence (xi)i∈Z is periodic, and the component is finite.

Lemma 9.5.3 yields a classification of the finite d-fiber components. In this
section we are interested in collapsing the infinite components. In particular,
we want to prove that there is only a finite number of them.

Lemma 9.5.4. Let C be an infinite d-fiber component. Then there exists a
simplex [x1|x2| · · · |xd−1] ∈ C such that x1x2 · · · xd−1 is vertical elliptic.

Proof. Consider any d-simplex [x1|x2| · · · |xd] ∈ C, with x1x2 · · · xd = w. Since
C is infinite, at least one xi is vertical elliptic by Lemma 9.5.3. Suppose
without loss of generality that xd is vertical elliptic. Then its left comple-
ment x1x2 · · · xd−1 is also vertical elliptic. This completes the proof, because
[x1|x2| · · · |xd−1] ∈ C.

From now on, we are going to use some results of [McC15] which require
W not to be of type Ãn.

Lemma 9.5.5. Suppose that W is not of type Ãn, and let u ∈ [1, w]W be an
elliptic element. Then there is an axial vertex p such that u ∈ [1, wp]Wp , where
Wp is the finite Coxeter subgroup of W that stabilizes p, and wp is a Coxeter
element of Wp. In particular, Fix(u) contains at least one axial vertex p.

Proof. This proof is similar to the proof of [McC15, Proposition 9.5]. Let v be
the right complement of u, so that uv = w. Let v = r1 · · · rm be a minimal
factorization of v. Since u is elliptic, v is vertical and therefore at least one ri is
a vertical reflection. Using the Hurwitz action [McC15, Lemma 3.7], we can
move this reflection to the end and thus assume that rm is vertical. Then, by
[McC15, Lemma 9.3], wrm = ur1 · · · rm−1 is a vertical elliptic isometry which
is a Coxeter element for the finite Coxeter subgroup of W that stabilizes an
axial vertex y. Then we conclude because Fix(ur1 · · · rm−1) ⊆ Fix(u) [BM15,
Lemma 6.4].

Lemma 9.5.6. Suppose that W is not of type Ãn, and let C be an infinite d-fiber
component. There exists a simplex [x1|x2| · · · |xd−1] ∈ C such that x1x2 · · · xd−1
is vertical elliptic and Fix(x1x2 · · · xd−1) contains a vertex of the base chamber.
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Proof. By Lemmas 9.5.4 and 9.5.5, there exists a simplex [x1|x2| · · · |xd−1] ∈ C
such that x1x2 · · · xd−1 is vertical elliptic and fixes an axial vertex. Recall from
[McC15, Section 8] that every axial vertex can be written uniquely as wj(p) for
some vertex p of the base chamber. Then, up to a conjugation by a power of w
(i.e. up to a translation of the indices in the sequence (xi)i∈Z), we can assume
that x1x2 · · · xd−1 fixes a vertex of the base chamber.

Remark 9.5.7. If Fix(x1x2 · · · xd−1) contains a vertex of the base chamber, then
x1x2 · · · xd−1 is contained in a finite Coxeter group WQ ⊆ W generated by
some Q ( S. Since Fix(x1x2 · · · xd−1) ⊆ Fix(xi) by [BM15, Lemma 6.4], we
also have xi ∈WQ for all i = 1, . . . , d− 1.

Corollary 9.5.8. If W is not of type Ãn, then there is only a finite number of
infinite fiber components.

Proof. Every infinite d-fiber component contains a simplex [x1|x2| · · · |xd−1]
such that x1x2 · · · xd−1 is vertical elliptic and xi ∈ WQ for some (common)
subset Q ( S, by Lemma 9.5.6 and Remark 9.5.7. There is only a finite number
of such simplices because WQ is finite. Therefore there is only a finite number
of infinite d-fiber components.

Our aim is to show that KC and KW collapse onto finite subcomplexes
K′C ⊆ KC and K′W ⊆ KW , respectively. Notice that a fiber component C ⊆ KC is
either disjoint from KW or entirely contained in KW .

Definition 9.5.9. Let K be either KC or KW . A nice subcomplex of K is a subcom-
plex K′ ⊆ K such that

1. every finite fiber component C ⊆ K is also contained in K′;

2. for every infinite fiber component C ⊆ K, the intersection C ∩ K′ is non-
empty and its Hasse diagram is connected.

Lemma 9.5.10. Let K be either KC or KW . The union of all finite fiber compo-
nents of K forms a subcomplex of K.

Proof. By Lemma 9.5.3, it is equivalent to show that the simplices σ ∈ K of type
(ii) (see Lemma 9.5.1), together with the 0-simplex [ ], form a subcomplex of
K. Let [x1|x2| · · · |xd] ∈ K be a simplex of type (ii). Then every xi is horizontal
elliptic or hyperbolic. We have to check that all the simplices in the boundary
of [x1|x2| · · · |xd] are of type (ii) or equal to [ ]. We only have to prove that
no xixi+1 is vertical elliptic (for i = 1, . . . , d− 1). If xixi+1 is vertical elliptic,
then at least one of xi and xi+1 is vertical and therefore hyperbolic. But a
factorization of an elliptic element cannot include hyperbolic elements.

Theorem 9.5.11. Let K be either KC or KW .
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(a) K collapses onto every nice subcomplex K′.

(b) If W is not of type Ãn, finite nice subcomplexes of K exist.

Proof. For part (a), on every infinite fiber component C consider the only
acyclic matchingMC with critical simplices given by C ∩ K′. Existence and
uniqueness ofMC follow from the fact that C ∩K′ is non-empty and connected.
The union of the matchingsMC is a proper acyclic matching with the desired
set of critical simplices.

For part (b), notice that there is only a finite number of (finite or infinite)
fiber components. Then it is enough to inductively choose a finite non-empty
interval in the Hasse diagram of every infinite d-fiber component C, starting
from d = n + 1 (the highest possible value of d) and going down to d = 1, so
that every simplex in the boundary of a chosen simplex is also chosen.

Since KC is a classifying space for Cw, we immediately obtain the following.

Theorem 9.5.12. If W is not of type Ãn, the braided crystallographic group
Cw admits a finite classifying space.

Recall from Section 9.4.1 that the dual Salvetti complex X′W is the subcom-
plex of KW consisting of the simplices [x1|x2| · · · |xd] such that x1x2 · · · xd fixes
a vertex of the base chamber. We end this section by noticing that there is a
canonical choice of a nice subcomplex K′ of K (where K is either KW or KC):
for every infinite fiber component, K′ contains all the simplices between the
first and the last simplex belonging to X′W ; in addition, K′ contains all the
finite fiber components of K.

Lemma 9.5.13. Let K be either KC or KW , and assume that W is not of type Ãn.
Then K′ is a nice subcomplex of K.

Proof. First we check that K′ is a subcomplex. Let σ be a simplex of K′. If σ
belongs to a finite fiber component, then all the faces of σ belong to finite fiber
components, and therefore also belong to K′ (see Lemma 9.5.10). Suppose
instead that σ belongs to an infinite fiber component C. Then, in C, the simplex
σ is between two simplices σ1, σ2 ∈ X′W . It is easy to check that a face τ of σ is
between two faces of σ1 and σ2, in the fiber component of τ.

Condition 1 of Definition 9.5.9 is satisfied by construction. By Lemma
9.5.6, every infinite fiber component contains at least one simplex of X′W , so
condition 2 is also satisfied.

Remark 9.5.14. This canonical nice subcomplex contains the dual Salvetti
complex X′ as a subcomplex.
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9.6. Horizontal and diagonal groups

9.6 HORIZONTAL AND DIAGONAL GROUPS

In addition to the four groups of isometries defined in Section 9.3, the horizontal
group H was also introduced in [MS17, Definition 6.8]. It is the subgroup of W
generated by RH . Notice that H is also a subgroup of the diagonal group D.

Recall that Dw is the interval group associated with the interval [1, w]D.
Following [MS17, Definition 7.5], let Hw be the group generated by RH and
subject only to the relations visible in [1, w]W . This is not an interval group,
because w 6∈ H. The group Hw is a subgroup of Dw by [MS17, Lemma 9.3].

The horizontal root system associated to W decomposes as ΦAn1
∪ΦAn2

∪
· · · ∪ ΦAnk

, as in [MS17, Table 1]. The number k of horizontal components
varies from 1 to 3. In the case k = 1, the factorable group F coincides with
the diagonal group D, and the crystallographic group C coincides with the
Coxeter group W. This happens in the cases Ãn (but only for a suitable choice
of the Coxeter element w), C̃n, and G̃2.

Recall that the noncrossing partitions of type Bm are the noncrossing parti-
tions of a regular 2m-gon that are symmetric with respect to the center. Also,
the zero block of a noncrossing partition is the block containing the center of the
2m-gon. See [Arm09] for a general reference on this subject.

The following result explicitly describes a factorization of the groups H
and Hw, and relates this factorization to the interval [1, w]F.

Proposition 9.6.1 ([MS17, Proposition 7.6]). The interval [1, w]F is a direct
product of k noncrossing partition lattices of types Bn1+1, . . . , Bnk+1. In addi-
tion, the groups H and Hw are explicitly determined as follows.

• H is a direct product of k Coxeter groups of types Ãn1 , . . . , Ãnk ;

• Hw is a direct product of k Artin groups of types Ãn1 , . . . , Ãnk .

A consequence of Proposition 9.6.1 is that the horizontal part H∩ [1, w]W =
H ∩ [1, w]F of the interval [1, w]W also splits as a product

H ∩ [1, w]W =
(

H1 ∩ [1, w]W
)
× · · · ×

(
Hk ∩ [1, w]W

)
, (9.1)

where H1, . . . , Hk are the irreducible components of H. The factors are explic-
itly determined as follows.

Proposition 9.6.2. The poset Hi ∩ [1, w]W is isomorphic to the subposet of the
noncrossing partition lattice of type Bni+1 consisting of the partitions without
a zero block.

Proof. Let m = ni + 1. As discussed in the proof of [MS17, Proposition 4.7], the
boundary edges of the 2m-gon form a generating set for Hi. These elements
generate exactly the noncrossing partitions without a zero block.
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We now show how the group Dw is related to Hw. Together with Proposi-
tion 9.6.1, this allows to determine Dw explicitly.

Proposition 9.6.3. We have Dw ∼= Z n Hw, where Z is the cyclic subgroup of
Dw generated by w.

Proof. By [MS17, Remark 7.3], one possible generating set for Dw is given by
RH ∪ {w}. The relations in Dw imply that w−1rw ∈ RH for every r ∈ RH.
Therefore every element u ∈ Dw can be written in the form wsh for some
s ∈ Z and h ∈ Hw. Also, Hw is a normal subgroup of Dw.

As explained in the proof of [MS17, Lemma 9.4], the exponent s is uniquely
determined by the image of u under the composition Dw → D → Z. Here
the first map is the natural projection, and the second map is the vertical
displacement map, which sends all the horizontal reflections to 0 and the
Coxeter element w to a non-zero integer. Therefore the decomposition u = wsh
is unique.

9.7 FINITE CLASSIFYING SPACES FOR AFFINE ARTIN GROUPS

Let W be an irreducible affine Coxeter group. In this section we prove that
the interval complexes KD and KW are classifying spaces. This is somewhat
surprising, since the associated intervals [1, w]D and [1, w]W are not lattices in
general. Then, using Theorem 9.5.11, we deduce that every affine Artin group
admits a finite classifying space.

Let KH be the subcomplex of KD consisting of the simplices [x1|x2| · · · |xd]
such that the product x1x2 · · · xd is horizontal elliptic. Notice that the funda-
mental group of KH is naturally isomorphic to Hw. Let H ∼= H1 × · · · × Hk be
the factorization introduced in Section 9.6. Denote by KHi the subcomplex of
KH consisting of the simplices [x1|x2| · · · |xd] such that the product x1x2 · · · xd
belongs to the irreducible component Hi.

Lemma 9.7.1. KH is homeomorphic to KH1 × · · · × KHk .

Proof. We claim that KH is a triangulation of the natural cellular structure
of KH1 × · · · × KHk . To show this, we explicitly construct a homeomorphism
ψ : KH1 × · · · × KHk → KH. Consider a cell of KH1 × · · · × KHk , which is a
product of simplices

[x11|x12| · · · |x1d1 ]× · · · × [xk1|xk2| · · · |xkdk ].

This is realized as ∆d1 × · · · × ∆dk ⊆ Rd1+···+dk . Consider a point p ∈ ∆d1 ×
· · · × ∆dk , with coordinates given by

(a11, . . . , a1d1 , . . . , ak1, . . . , akdk) ∈ Rd1+···+dk .

Assume for now that the coordinates of p are all distinct. Then there is a
unique enumeration γ : {1, . . . , d1 + · · ·+ dk} → {11, . . . , 1d1, . . . , k1, . . . , kdk}
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of the indices such that aγ(1) ≥ aγ(2) ≥ · · · ≥ aγ(d1+···+dk). Notice that, in this
enumeration, the relative order of indices in the same horizontal component
is preserved. Define ψ(p) as the point of [xγ(1)|xγ(2)| · · · |xγ(d1+···+dk)] with
coordinates

(aγ(1), aγ(2), . . . , aγ(d1+···+dk)) ∈ ∆d1+···+dk .

If not all the coordinates of p are distinct, then there are multiple choices
for the enumeration γ, and any choice gives the same definition of ψ(p). It
is easy to check that ψ is well-defined and continuous. The fact that ψ is a
homeomorphism follows from the decomposition (9.1).

As in Section 9.5, denote by ϕ : [1, w]W → [1, w]W the conjugation by w:
ϕ(u) = w−1uw.

Lemma 9.7.2. KD is homeomorphic to KH × [0, 1] /∼, where the relation ∼
identifies [x1|x2| · · · |xd]× {1} and [ϕ(x1)|ϕ(x2)| · · · |ϕ(xd)]× {0} for all sim-
plices [x1|x2| · · · |xd] ∈ KH.

Proof. Let Z = KH × [0, 1] /∼. Similarly to the proof of Lemma 9.7.1, we
show that KD is a triangulation of the natural cell structure of Z, by explicitly
constructing a homeomorphism ψ : Z → KD. Notice that KH × {0} ⊆ Z is nat-
urally included into KD, so we define ψ|KH×{0} as the natural homeomorphism
with KH ⊆ KD. Consider now a cell of KH × [0, 1] of the form

[x1|x2| · · · |xd]× [0, 1].

This is realized as ∆d × [0, 1] ⊆ Rd+1. Then a point p in this cell has coor-
dinates (a1, a2, . . . , ad, t), with 1 ≥ a1 ≥ · · · ≥ ad ≥ 0 and t ∈ [0, 1]. Let
y be the right complement of x1x2 · · · xd, so that x1x2 · · · xdy = w. Assume
for now that the coordinates of p are all distinct. Then there is a unique
index i ∈ {0, . . . , d} such that a1 ≥ · · · ≥ ai ≥ t ≥ ai+1 ≥ · · · ≥ ad. Let
σ = [x1| · · · |xi|y|ϕ(xi+1)| · · · |ϕ(xd)]. Define ψ(p) as the point of σ with co-
ordinates (a1, . . . , ai, t, ai+1, . . . , ad) ∈ ∆d+1. If not all the coordinates of p are
distinct, choose any index i as above. Different choices of i give the same map
ψ : Z → KD.

It is easy to check that the definition of ψ on different cells is coherent,
and that ψ is a homeomorphism. We only explicitly check that the definition
on [x1|x2| · · · |xd]× [0, 1] agrees with the definition on [x1|x2| · · · |xd]× {1},
since this is where the non-trivial gluing occurs. Consider a point p ∈
[x1|x2| · · · |xd]× {1}, with coordinates (a1, . . . , ad, 1) ∈ ∆d × [0, 1].

• Since [x1| · · · |xd]× {1} is identified with [ϕ(x1)| · · · |ϕ(xd)]× {0}, we
have that ψ(p) is the point of [ϕ(x1)| · · · |ϕ(xd)] with coordinates
(a1, . . . , ad).

• As an element of [x1| · · · |xd]× [0, 1], the same point p is sent to the point
of [y|ϕ(x1)| · · · |ϕ(xd)] with coordinates (1, a1, . . . , ad). By definition of
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the faces in an interval complex (Definition 9.2.3), this point is the same
as the point of [ϕ(x1)| · · · |ϕ(xd)] with coordinates (a1, . . . , ad).

Therefore the two definitions of ψ agree in this case.

Notice that Lemma 9.7.2 immediately implies Proposition 9.6.3. However,
we found it more natural to prove Proposition 9.6.3 first.

Lemma 9.7.3. KHi is a classifying space for the affine Artin group of type Ãni .

Proof. The isomorphism types of Hi ∩ [1, w]W and KHi only depend on the
rank ni of the irreducible horizontal component Hi (see Proposition 9.6.2).
Then we can assume, until the end of this proof, that W is of type C̃n with
n = ni + 1. In this case H = Hi is the unique irreducible horizontal component
(see [MS17, Table 1]). Therefore [1, w]D = [1, w]F is a lattice, Dw is a Garside
group, and KD is a classifying space for Dw.

By Lemma 9.7.2, there is a covering map

ρ : KH ×R→ KD

which corresponds to the subgroup KH of KD. Then KH ×R is a classifying
space. Since KH × R ' KH = KHi , we have that KHi is also a classifying
space.

Remark 9.7.4. The complex KHi is closely related to the dual Salvetti complex
of type Ãni , introduced in Section 9.4. Indeed, KHi is obtained by gluing
dual Salvetti complexes corresponding to the maximal parabolic subgroups.
However, the Coxeter elements for these dual Salvetti subcomplexes are not
divisors of a common Coxeter element of Ãni .

Theorem 9.7.5. KD is a classifying space for Dw.

Proof. By Lemma 9.7.1, we have that KH ∼= KH1 × · · · × KHk . Each factor is a
classifying space by Lemma 9.7.3, therefore KH is a classifying space for Hw.
As discussed in the proof of Lemma 9.7.3, by Lemma 9.7.2 there is a covering
map ρ : KH ×R→ KD. Therefore KD is a classifying space.

Theorem 9.7.6. KW is a classifying space for the affine Artin group GW
∼= Ww.

Proof. Recall from Section 9.3 the four intervals [1, w]D, [1, w]W , [1, w]F, [1, w]C,
to which we can associated the interval complexes KD, KW , KF, KC. Since
[1, w]F and [1, w]C are lattices, the corresponding complexes KF and KC are
classifying spaces. Consider the universal cover of KC:

ρ : K̃C → KC.
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By [MS17, Lemma 7.2], we have that KD = KW ∩ KF and KC = KW ∪ KF.
Therefore ρ−1(KD) = ρ−1(KW) ∩ ρ−1(KF) and K̃C = ρ−1(KC) = ρ−1(KW) ∪
ρ−1(KF). Then there is a Mayer-Vietoris long exact sequence

· · · → Hi(ρ
−1(KD))→ Hi(ρ

−1(KW))⊕ Hi(ρ
−1(KF))→ Hi(K̃C)→ · · ·

where all homology groups are with integer coefficients. Since Dw = π1(KD)
is a subgroup of Cw = π1(KC), we have that ρ−1(KD) is a union of (infinitely
many) disjoint copies of the universal cover K̃D of KD. Similarly, ρ−1(KW) is
a union of disjoint copies of the universal cover K̃W of KW , and ρ−1(KF) is
a union of disjoint copies of the universal cover K̃F of KF. Since KF and KC
are classifying spaces, both K̃F and K̃C are contractible. By Theorem 9.7.5,
K̃D is also contractible. Then, for i ≥ 1, the homology groups Hi(ρ

−1(KD)),
Hi(ρ

−1(KF)), and Hi(K̃C) vanish. By the Mayer-Vietoris long exact sequence,
Hi(ρ

−1(KW)) also vanishes for i ≥ 1. This means that K̃W has a trivial reduced
homology, so it is contractible by [Hat02, Corollary 4.33].

Theorem 9.7.7. Every affine Artin group admits a finite classifying space.

Proof. Let GW be an affine Artin group. If it is of type Ãn, then the K(π, 1)
conjecture holds [Oko79, CP03], and the Salvetti complex XW is a finite clas-
sifying space for GW . If GW is not of type Ãn, then by Theorem 9.5.11 the
complex KW can be collapsed onto a finite subcomplex K′W . We know that KW
is a classifying space for GW by Theorem 9.7.6, so the same is true for K′W .

Remark 9.7.8. In order to prove the K(π, 1) conjecture for an affine Artin
group GW , it is enough to show that KW (or K′W) collapses onto the dual
Salvetti complex X′W . In Section 9.8 we prove this in the case D̃4. We believe
that this can be done in general.

9.8 THE K(π, 1) CONJECTURE FOR THE ARTIN GROUP OF TYPE D̃4

In this section we prove the K(π, 1) conjecture for the Artin group of type
D̃4. Notice that this is one of the two 4-dimensional affine cases for which the
K(π, 1) conjecture was still not proved, together with F̃4 (see Section 2.6). We
also describe how the most important constructions of this chapter specialize
to the case D̃4.

Let W be the Coxeter group of type D̃4, with generators labeled as in Figure
9.2. It can be realized as a reflection group in R4 by associating the generators
a, b, c, d, e with the reflections with respect to the hyperplanes

Ha = {x1 + x2 + x3 + x4 = 1}
Hb = {x1 = 0}
Hc = {x2 = 0}
Hd = {x3 = 0}
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b

c

a

d

e

Figure 9.2: Coxeter graph of type D̃4.

He = {x4 = 0}.

The base chamber is the 4-simplex with vertices (0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), and (0, 0, 0, 1). Notice that the last four vertices form a regular 3-
dimensional tetrahedron.

Take w = abcde as the Coxeter element. It acts on R4 as the composition
of a translation by ( 1

2 , 1
2 , 1

2 , 1
2 ) and an axial symmetry with respect to the line

` = 〈1, 1, 1, 1〉. In particular, this line is the Coxeter axis. By definition, its
direction is the vertical direction, and the directions perpendicular to it are
horizontal.

The convex hull of the axial vertices is an infinite prism with a cubical base.
More precisely, its intersection with the hyperplane Ha is a 3-dimensional
cube C with vertices

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),
(− 1

2 , 1
2 , 1

2 , 1
2 ), (

1
2 ,− 1

2 , 1
2 , 1

2 ), (
1
2 , 1

2 ,− 1
2 , 1

2 ), (
1
2 , 1

2 , 1
2 ,− 1

2 ).

The convex hull of the axial vertices is then obtained by translating this cube
in the vertical direction.

The horizontal elliptic isometries of [1, w]W (which form the bottom row of
the coarse structure) are easily described in terms of the cube C:

• the identity;

• 6 horizontal reflections with respect to the 6 faces of C (each fixes a
hyperplane in R4);

• 12 horizontal symmetries with respect to the 12 edges of C (each fixes a
2-dimensional subspace of R4);

• 8 horizontal symmetries with respect to the 8 vertices of C (each fixes a
1-dimensional subspace of R4, parallel to the Coxeter axis).

Denote by h±i the 6 horizontal reflections, for i ∈ {1, 2, 3}, so that h+i and h−i
are reflections with respect to parallel hyperplanes.

The horizontal root system has three irreducible components of type A1,
which correspond to the three pairs of opposite faces of C. Then the group
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9.8. The K(π, 1) conjecture for the Artin group of type D̃4

Hw is a direct product of three copies of the Artin group of type Ã1 (see
Proposition 9.6.1):

Hw ∼= (Z ∗Z)3.

The free generators of the i-th direct factor Z ∗Z are h+i and h−i . The complex
KH is a triangulation of (S1 ∨ S1)3, which is a classifying space for Hw (see
Lemma 9.7.1).

The diagonal interval group Dw is a semidirect product Z n (Z ∗Z)3,
where the leftmost Z factor is generated by w (see Proposition 9.6.3). The
conjugation by w exchanges h+i and h−i for i ∈ {1, 2, 3}. Then w acts diagonally
on each factor Z ∗Z by exchanging the two free generators h±i . By Lemma
9.7.2, the complex KD is a triangulation of

(S1 ∨ S1)3 × [0, 1] /∼,

where the relation ∼ glues (S1 ∨ S1)3× {0} with (S1 ∨ S1)3× {1} by exchang-
ing the two S1’s in each of the three factors.

The dual Salvetti complex X′W can be explicitly constructed with a com-
puter. It has dimension 4, and its f -vector is (1, 134, 806, 1344, 672). Notice
that it is much bigger than the usual Salvetti complex XW , which has f -vector
(1, 5, 10, 10, 5). The canonical nice subcomplex K′W ⊆ KW , defined at the end of
Section 9.5, can be constructed from X′W by extending the fiber components. It
has dimension 5, and its f -vector is (1, 173, 1389, 3388, 3252, 1080). As shown
in Section 9.7, K′W is a classifying space for the Artin group GW . In order to
prove the K(π, 1) conjecture, it is enough to check that K′W collapses onto X′W .
In the case D̃4 we checked it by computer, using the algorithm described in
[BL14]. This proves the following theorem, which is dedicated to my wife
Aleksandra.

Theorem 9.8.1. The K(π, 1) conjecture holds for the Artin group of type D̃4.
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Bourbaki vol. 1971/72 Exposés 400–417, Springer, 1973, pp. 21–
44.

[Bro06] R. Brown, Topology and groupoids, www.groupoids.org.uk, 2006.

[BS72] E. Brieskorn and K. Saito, Artin-gruppen und Coxeter-gruppen, In-
ventiones mathematicae 17 (1972), no. 4, 245–271.

[BW83] A. Björner and M. L. Wachs, On lexicographically shellable posets,
Transactions of the American Mathematical Society 277 (1983),
no. 1, 323–341.

[BW96] , Shellable nonpure complexes and posets. I, Transactions of the
American mathematical society 348 (1996), no. 4, 1299–1327.

204

www.groupoids.org.uk


[BW97] , Shellable nonpure complexes and posets. II, Transactions of
the American Mathematical Society 349 (1997), no. 10, 3945–
3975.

[BW02a] E. Batzies and V. Welker, Discrete Morse theory for cellular resolutions,
Journal fur die Reine und Angewandte Mathematik (2002),
147–168.

[BW02b] T. Brady and C. Watt, K(π1)’s for Artin Groups of finite type, Ge-
ometriae Dedicata 94 (2002), no. 1, 225–250.

[BW08] , Non-crossing partition lattices in finite real reflection groups,
Transactions of the American Mathematical Society 360 (2008),
no. 4, 1983–2005.

[BZ92] A. Björner and G. M. Ziegler, Combinatorial stratification of complex
arrangements, Journal of the American Mathematical Society 5
(1992), no. 1, 105–149.

[Cal05] F. Callegaro, On the cohomology of Artin groups in local systems and
the associated Milnor fiber, Journal of Pure and Applied Algebra
197 (2005), no. 1, 323–332.

[Cal06] , The homology of the Milnor fiber for classical braid groups,
Algebraic & Geometric Topology 6 (2006), no. 4, 1903–1923.

[CD95] R. Charney and M. W. Davis, The K (π, 1)-problem for hyperplane
complements associated to infinite reflection groups, Journal of the
American Mathematical Society (1995), 597–627.

[CD17] F. Callegaro and E. Delucchi, The integer cohomology algebra of toric
arrangements, Advances in Mathematics 313 (2017), 746–802.

[CDD+18] F. Callegaro, M. D’Adderio, E. Delucchi, L. Migliorini, and R. Pa-
garia, Orlik-Solomon-type presentations for the cohomology algebra
of toric arrangements, arXiv preprint arXiv:1806.02195 (2018).

[CGN16] J. Curry, R. Ghrist, and V. Nanda, Discrete Morse theory for com-
puting cellular sheaf cohomology, Foundations of Computational
Mathematics 16 (2016), no. 4, 875–897.

[Cha00] M. K. Chari, On discrete Morse functions and combinatorial decompo-
sitions, Discrete Mathematics 217 (2000), no. 1, 101–113.

[CMS08a] F. Callegaro, D. Moroni, and M. Salvetti, Cohomology of affine Artin
groups and applications, Transactions of the American Mathe-
matical Society 360 (2008), no. 8, 4169–4188.

[CMS08b] , Cohomology of Artin groups of type Ãn, Bn and applications,
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che fa, e che farà per me. Non esistono parole in italiano, russo, elfico, o in
alcuna altra lingua, per descrivere la gratitudine che merita. Ci sono tre cose
che ho scoperto durante il dottorato e che desidero condividere con voi; la
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