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Abstract

Aim of this paper is to provide new characterizations of the curvature dimen-
sion condition in the context of metric measure spaces (X,d,m). On the geomet-
ric side, our new approach takes into account suitable weighted action functionals
which provide the natural modulus of K-convexity when one investigates the con-
vexity properties of N-dimensional entropies. On the side of diffusion semigroups
and evolution variational inequalities, our new approach uses the nonlinear diffusion
semigroup induced by the N-dimensional entropy, in place of the heat flow. Under
suitable assumptions (most notably the quadraticity of Cheeger’s energy relative to
the metric measure structure) both approaches are shown to be equivalent to the
strong CD* (K, N) condition of Bacher-Sturm.
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1 Introduction

Spaces with Ricci curvature bounded from below play an important role in many proba-
bilistic and analytic investigations, that reveal various deep connections between different
fields.

Starting from the celebrated paper by BAKRY-EMERY [13], the curvature-dimension
condition based on I'-calculus and the I's-criterium in Dirichlet spaces provides crucial tools
for proving refined estimates on Markov semigroups and many functional inequalities, of
Poincaré, Log-Sobolev, Talagrand, and concentration type (see, e.g. [36], 37, [38] 12, O, [14]).

In the framework of optimal transport, the importance of curvature bounds has been
deeply analyzed in [44], 26, [63]. These and other important results led STURM [51], 52]
and LOTT-VILLANI [42] to introduce a new synthetic notion of the curvature-dimension
condition, in the general framework of a metric-measure space (X,d, m).

In recent years more than one paper has been devoted to the investigation of the rela-
tion between the differential and metric structures, particularly in connection with Dirichlet
forms, see for instance [35], [34], [50], [6] and [7]. In particular, under a suitable infinites-
imally Hilbertian assumption on the metric measure structure (and very mild regularity
assumptions), thanks to the results of the last two papers we know that the optimal trans-
portation point of view provided by the LOTT-STURM-VILLANI theory coincides with the
point of view provided by BAKRY-EMERY when the inequalities do not involve any upper
bound on the dimension: both the approaches can thus be equivalently used to characterize
the class of RCD(K, 00) spaces with Riemannian Ricci curvature bounded from below by
K € R. More precisely, the logarithmic entropy functional

Uoso (1) ::/ ologodm if = om < m, (1.1)
X

satisfies the K-convexity inequality along geodesics (fis)scjo,1) induced by the transport
distance W (i.e. with cost equal to the square of the distance)

Uoo(ps) < (1= 5)Uoo(pt0) + Uoo (1) = %8(1 — $)W5 (o, 1) (1.2)

if and only if I'y(f) > K T'(f).

A natural and relevant question is then to establish a similar equivalence when upper
bounds on the dimension are imposed; more precisely one is interested in the equivalence
between the condition

Da(f) > KT(f) + 1 (LF) (13)



(where L is the infinitesimal generator of the semigroup associated to the Dirichlet form)
and the curvature-dimension conditions based on optimal transport. In the dimensional
case, the logarithmic entropy functional (1.1)) is replaced by the “N-dimensional” Rény
entropy

Un(p) == / Un(o)dm =N — N/ o Ndm  ifp=om—+pt, b Lm. (1.4)
be be

Except for the case K = 0, which can be formulated by means of a geodesic convexity
condition analogous to , the case K # 0 involves a much more complicated property
[52], 10], that gives raise to difficult technical questions.

Aim of this paper is precisely to provide new characterizations of the curvature dimen-
sion condition in the context of metric measure spaces (X,d,m). On the geometric side,
our new approach takes into account suitable weighted action functionals of the form

AD (;m) = /0 /X g(s,t)0" "N (z, 5)v*(x, s) dmds, (1.5)

where p, = osm, s € [0,1], is a Wasserstein geodesic, g is a weight function and v is the
minimal velocity density of u, a new concept that extends to general metric spaces the
notion of Wasserstein velocity vector field developed for Euclidean spaces [3, Chap. 8].
Functionals like provide the natural modulus of K-convexity when one investigates
the convexity properties of the N-dimensional Rény entropy . On the side of diffusion
semigroups and evolution variational inequalities, our new approach uses the nonlinear
diffusion semigroup induced by the N-dimensional entropy, in place of the heat flow. Un-
der suitable assumptions (most notably the quadraticity of Cheeger’s energy relative to
the metric measure structure) both approaches are shown to be equivalent to the strong
CD*(K, N) condition of BACHER-STURM [10].

Apart from the stated equivalence between the LOTT-STURM-VILLANI and the BAKRY-
EMERY approaches, our results and techniques can hardly be compared with the recent
work [29] of ERBAR-KUWADA-STURM, motivated by the same questions. Instead of the
Rény entropies , in their approach an N-dependent modification of the logarithmic
entropy is considered, namely the logarithmic entropy power

()= exp (Ul (1.6)

and convexity inequalities as well as evolution variational inequalities are stated in terms
of 8y, proving equivalence with the strong CD*(K, N) condition. A conceptual and tech-
nical advantage of their approach is the use of essentially the same objects (logarithmic
entropy, heat flow) of the adimensional theory. On the other hand, since power-like non-
linearities appear in a natural way “inside the integral” in the optimal transport approach
to the curvature dimension theory, we believe it is interesting to pursue a different line of
thought, using the Wasserstein gradient flow induced by the Rény entropies (in the same
spirit of the seminal OTTO’s paper [43] on convergence to equilibrium for porous medium
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equations). The only point in common of the two papers is that both provide the equiva-
lence between the differential curvature-dimension condition ((1.3)) and the so-called strong
CD*(K, N) condition; however, this equivalence is estabilished passing through convexity
and differential properties which are quite different in the two approaches (for instance
some of them do not involve at all the distorsion coefficients) and have, we believe, an
independent interest.

Our paper starts with Section [2) where we illustrate in the simple framework of a d-
dimensional Euclidean space the basic heuristic arguments providing the links between
contractivity and convexity. It builds upon the fundamental papers [45] and [27]. The
main new ingredient here is that the links are provided in terms of monotonicity of the
Hamiltonian, instead of monotonicity of the Lagrangian (see [39] for a related discussion of
the role of dual Hamiltonian estimates in terms of the so-called Onsager operator). More
precisely, if S, : RY — RY is the flow generated by a smooth vector field § : R? — R
and if C(z,y) is the cost functional relative to a Lagrangian £, then we know that the
contractivity property

C(Six,Sy) < C(z,y) for all t > 0,

is equivalent to the action monotonicity

d
g~ ), w(t)) <0 (1.7)

whenever z(t) solves the ODE

and w solves the linearized ODE

d
w(t) = Df(a(t)w(t)

(in the applications w arises as the derivative w.r.t. s of a smooth curve of initial data for
the ODE). In Section 2| we use duality arguments to prove the same equivalence when the
action monotonicity (|1.7)) is replaced by the Hamiltonian monotonicity

d

SHa®.0(0) 20 (1)

where now ¢ solves the backward transposed equation

Co(t) = ~DHw()Te(0), (1.9

see Proposition 2.1 Lemma provides, in the case when f = —VU and £, H are
quadratic forms, the link between the Hamiltonian monotonicity and another contractivity
property involving both € and U, see ; this is known to be equivalent to the convexity
of U along the geodesics induced by C.



In the context of optimal transportation (say on a smooth, compact Riemannian man-
ifold (M, g)), the role of the Hamiltonian is played by H(e, ) := § [y [Dyp|20dm, thanks
to BENAMOU-BRENIER formula and the OTTO formalism:

1 .
L(o,w) := 5 /X IDel2odm, —divy(oVyp) = w. (1.10)

In other words, the cotangent bundle is associated to the velocity gradient Vyp and the
duality between tangent and cotangent bundle is provided by the possibly degenerate
elliptic PDE —div,(0Vyp) = w. With a very short computation we show in Example
how the BAKRY-EMERY BE(0, ) condition corresponds precisely to the Hamiltonian
monotonicity, when the vector field is (up to the sign) the gradient vector of the logarithmic
entropy functional. If the entropy U(om) = [ U(p) dx satisfies the (stronger) MCCANN’s
DC(N) condition, then the same correspondence holds with BE(0, N), see Example
In both cases the flow corresponds to the diffusion equation

LI )

with P(p) := oU'(0) — U(p), which is linear only in the case of the logarithmic entropy
1.

The computations made in Examples and Example involve regularity in time
and space of the potentials ¢ in , whose proof is not straightforward already in the
smooth Riemannian context. Another difficulty arises from the degeneracy of the PDE
—divg(oVyp) = w, which forces us to consider weak solutions ¢ in “weighted Sobolev
spaces”. Keeping in mind these technical difficulties, our goal is then to provide tools to
extend the calculations of these examples to a nonsmooth context, following on the one
hand the I'-calculus formalism, on the other hand the calculus in metric measure spaces
(X,d, m) developed in [5], [6], [30] and in the subsequent papers.

Now we pass to a more detailed description of the three main parts of the paper.

Part I

This first part, which consists of Section 3 and Section 4, is written in the context of a
Dirichlet form & on L?*(X, m), for some measurable space (X, B) endowed with a o-finite
measure m. We adopt the notation H for L?(X, m), V for the domain of the Dirichlet form,
—L for the linear monotone map from V to V' induced by &, P; for the semigroup whose
infinitesimal generator is L.

We already mentioned the difficulties related to the degeneracy of our PDE; in addition,
since we don’t want to assume a spectral gap, we need also to take into account the
possibility that the kernel {f : E(f, f) = 0} of the Dirichlet form is not trivial. We then
consider the abstract completion V¢ of the quotient space of V and the realization V% of
the dual of V¢ as the finiteness domain of the quadratic form £* : V' — [0, o] defined by

%8*(6, 0) :==sup(l, f) — %8(1”, f)-
fev



Section is indeed devoted to basic functional analytic properties relative to the com-
pletion of quotient spaces w.r.t. a seminorm (duality, realization of the dual, extensions
of the action of L). The spaces V, V¢ and their duals are the basic ingredients for the
analysis, in Section |3.3| of the nonlinear diffusion equation

%Q—LP(Q) =0 (1.12)
(which corresponds to (1.11])) in the abstract context, for regular monotone nonlinearities
P; the basic existence and uniqueness result is given in Theorem [3.4] which provides also
the natural apriori estimates and contractivity properties.

Chapter 4 is devoted to the linearizations of the diffusion equation . We first
consider in Theorem [4.1| the (backward) PDE

%90 + P'(o)Lp =¥

which is the adjoint to the linearized equation and corresponds, when ¥ = 0, to the
backward transposed ODE (|1.9) of the heuristic Section . Existence, uniqueness and
stability for this equation is provided in the class W2(0, T; D, H) of L?*(0, T; D) maps with
derivative in L?(0,T;H), where D is the space of all f € V such that Lf € H, endowed
with the natural norm.

In Theorem [4.5 we consider the linearized PDE

L = L(P (o) (1.13)
dt

since is in “divergence form” we can use the regularity of P’(p) to provide existence
and uniqueness (as well as stability) in the large class W'2(0,T;H, D) of L*(0,7;H)
maps with derivative in L?(0,T;D}). Here D is the space of all £ € D' such that, for some
constant C, |(¢, f)| < C||Lf||u for all f € D (endowed with the natural norm provided by
the minimal constant C'). In Theorem [4.6|we prove that the PDE is indeed the linearization
of by considering suitable families of initial conditions and their derivative.

Part 11

This part is devoted to the metric side of the theory and builds upon the papers [5],
[41], [6], [27] with some new developments that we now illustrate.

Chapter 5 is mostly devoted to the introduction of preliminary and by now well es-
tabilished concepts in metric spaces (X,d), as absolutely continuous curves 7y, metric
derivative ||, p-action A,(y) = [ |§[P d¢, slope |Df| and its one-sided counterparts |[D*f].
In Section we recall the metric/differential properties of the map

Quf () == ylg)f( fly) + %d%x,y) x € X,

given by the Hopf-Lax formula (which provides a semigroup if (X,d) is a length space).
Section [5.3| and Section |5.4] cover basic material on couplings, p-th Wasserstein distance
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W,, absolutely continuous curves w.r.t. W, and dynamic plans. Particularly important
for us is the 1-1 correspondence between absolutely continuous curves ju; in (Z(X), W,)
and time marginals probability measures 7 in C([0, 1]; X) with finite p-action 7,(mw) =
[ Ap(y) dm (), provided in [41]. In general only the inequality | [P < [ || d#(v) holds,
and [41] provides existence of a distinguished plan 7r for which equality holds, that we call
p-tightened to pi;.

Section [5.5] introduces a key ingredient of the metric theory, the Cheeger energy that we
shall denote by Ch and the relaxed slope |D f|,,, so that Ch(f) = % [, [Df|2 dm. The energy
Ch is by construction lower semicontinuous in L*( X, m); furthermore, under an additional
quadraticity assumption it has been shown in [6, B0] that Ch provides a strongly local
Dirichlet form, whose Carré du Champ is given by

ID(f +eg)la, — IDSI3,
2¢ ’

I(f,g) = 1;&;

Motivated by the necessity to solve the PDE —div,(0V,p) = ¢, whose abstract counterpart
is

/Xgmo,f)dm:w,f) Vf eV, (1.14)

in Section we consider natural weighted spaces V, arising from the completion of the

seminorm 4/ [ « 0I'(f) dm, and the extensions of I' to these spaces, denoted by I',. In con-

nection with these spaces we investigate several stability properties which play a technical
role in our proofs.

Section [6] provides a characterization of p-absolutely continuous curves p : [0,1] —
Z(X) in terms of the following control on the increments (where |D*g| is the usc relaxation
of the slope |Dy|):

/wdus—/wdut
X X

Any function v in LP(X x (0, 1), m®-#*) will be called p-velocity density. In Theorem|6.6/we
show that for all p € (1, 00) a p-velocity density exists if and only if u, € ACP(]0, 1]; (X))
(see also [32] for closely related results). In addition we identify a crucial relation between
the unique p-velocity density ¥ with minimal L” norm and any plan 7r p-tightened to pu,
namely

t
< [ [Deldmar peLip(x), 0<s i<
s X

o(y,t) = || for m-a.e. 7, for L-ae. t € (0,1). (1.15)

Heuristically, this means that even though branching cannot be ruled out, the metric
velocity of the curve v in the support of 7w depends only on time and position of the curve,
and it is independent of 7.

In Section [7] we use the minimal velocity density © to define, under the additional
assumption ps = osm, the weighted energy functionals

1
Aq(p; m) ::/0 /)(Q(S7Qs)7_}p@sdmdsa (1.16)
8



where Q(s,7) : [0,1] x [0,00) — [0,00] is a suitable weight function (the typical choice
will be Q(s,r) = w(s)Q(r) with Q(r) = rP'(r) — P(r)). Notice that when Q = 1 we have
the usual action fol J 7 dpsds = Ay(p), which makes sense even for curves not made of
absolutely continuous measures. If 7 is a dynamic plan p-tightened to p (recall that this
means @,(mw) = A,(¢)), we can use to obtain an equivalent expression in terms of
7

Aa(p;m / /D 8, 0s(7s))|Fs[P d7w () ds.

In Theorem we provide, by Young measures techniques, continuity and lower semiconti-
nuity properties of p — Agq(p; m) under the assumption that the p-actions are convergent.

In Section [§| we restrict ourselves to the case when p = 2 and Ch is quadratic. For
curves [i; = psm having uniformly bounded densities w.r.t. m we show in Theorem
that (115)seo1) belongs to AC?([0, 1]; (2(X), Wa)) if and only if there exists ¢ € L*(0, 1; V')
satisfying, for all f € V,

%/ngsdmzﬁs(f) in 2'(0,1).

In addition £, € V|, for & La.e. s € (0,1) and they are linked to the minimal velocity v
by €*(€s,€s) = [y |Us|?0s ds. Thanks to this result, we can obtain by duality the potentials
¢, associated to the curve, linked to £, by (1.14).

In Section [9] we enter into the core of the matter, by providing on the one hand a char-
acterization of strong CD*(K, N) spaces whose Cheeger energy is quadratic in terms of
convexity inequalities involving weighted action functionals and on the other hand a char-
acterization involving evolution variational inequalities. These characterizations extend
, known [0, 2] in the case N = oo: the logarithmic entropy and the Wasserstein dis-
tance are now replaced by a nonlinear entropy and weighted action functionals. Section
provides basic results on weighted convexity inequalities and the distorsion multiplicative
coefficients 09(5) (see (9.15))), which appear in the formulation of the CD*(K, N) condi-
tion. Section introduces the basic entropies and their regularizations. In Section
we recall the basic definitions of CD(K, 00) space, of strong CD(K, 00) space (involving
the K-convexity of the logarithmic entropy along all geodesics) and Proposition
states their main properties, following [48]. We then pass to the part of the theory involv-
ing dimensional bounds, by recalling the Baker-Sturm CD*(K, V) condition which involves
a convexity inequality along Ws-geodesics for the Rény entropies U,, defined in and
the distortion coefficients ag)/M@), see (9.44), for all M > N.

Theorem is our first main result, providing a characterization of strong CD*(K, N)
spaces in terms of the convexity inequality

Un () < (1 =) Un(po) +tUn (1) — Kflgf,)(,u;m) for every ¢ € [0, 1]. (1.17)

Here Ag\t,)(,u; m) is the (¢, N)-dependent weighted action functional as in ((1.16|) given by the
choice QU (s, 7) := g(s,t)r~/N where g is the Green function defined in (9.1]), so that

A(t (u;m / / (s,t)o" YN (z, 5)0%(x, 5)0s dm ds.
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Comparing with the CD*(K, N) definition (9.44), we can say that the distortion due to
the lower bound K on the Ricci tensor appears just as a multiplicative factor, and that the
distortion coeflicients 0?/]\4(5) are now replaced by the (¢, N)-dependent weighted action
functional. Hence, K and N have more distinct roles, compared to the original definition.
Let us mention that a convexity inequality in the same spirit of was also obtained
in [29, Remark 4.18], the main difference being that in the present paper Uy is the Reny
entropy functional while in [29] a similar notation is used to denote the logarithmic
entropy power .

Our second main result is given in Theorem and Theorem [0.22] More precisely,
in Theorem we prove that in strong CD*(K, N) spaces whose Cheeger energy is a
quadratic form, for any regular entropy U in McCann’s class DC(V) the induced functional
U as in satisfies the evolution variational inequality

I
LS om. ) + WSiem) < U) — KAugliim). (1.18)
where S is the nonlinear diffusion semigroup studied in Part I, w(s) = (1 — s), Q(r) =
P(r)/r =U'(r) = U(r)/r and {jis¢}scp,] is the unique geodesic connecting iy = S;om to
v. The proof of this result follows the lines of [6] (N = oo, m(X) < oo) and [2] (where the
assumption on the finiteness of m was removed) and uses the calculus tools developed in
[5], in particular in the proof of (9.82). In Theorem independently of the quadraticity
assumption, we adapt the ideas of [27] to prove that the evolution variational inequality
above (for all regular entropies U € DC(N)) implies the strong CD*(K, N) condition.
Moreover we can use Lemma to get the CD(K,00) condition and then apply the
characterization of RCD(K, o0) spaces provided in [6] to obtain that Ch is quadratic.
Hence, under the quadraticity assumption on Ch, the strong CD*(K, N) condition and
the evolution variational inequality are equivalent; without this assumption, as in the case
N = oo, the evolution variational inequality is stronger.

Part II1

This last part is really the core of the work, where all the tools developed in Parts
I and II are combined to prove the main results. The natural setting is provided by a
Polish topological space (X, 7) endowed with a o-finite reference Borel measure m and a
strongly local symmetric Dirichlet form & in L?(X,m) enjoying a Carré du Champ T :
D(&) x D(&) — LY(X,m) and a I-calculus. All the estimates about the BAKRY-EMERY
condition discussed in Section [10[and the action estimates for nonlinear diffusion equations
provided in Section[II]do not really need an underlying compatible metric structure. In any
case, in Section , they will be applied to the case of the Cheeger energy (thus assumed
to be quadratic) of the metric measure space (X,d, m) in order to prove the main results
of the paper. Let us now discuss in more detail the content of Part III.

In Section [10| we recall the basic assumptions related to the BAKRY-EMERY condition
and we prove some important properties related to them; in particular, in the case of
a locally compact space, we establish useful local and nonlinear criteria to check this

10



condition. More precisely, we introduce the multilinear form I's given by

Lo(f,g;¢) = %/X (F(f, 9) Lo —T(f,Lg)e —T(g, Lf)w) dm,

with (f,g,¢) € Dy(L) x Dy(L) X Dp=(L), where we set Vo, := VN L¥(X,m), Dy, :=
DN L*(X,m),

Dp(L):={feDnLP(X,m): Lf € LP(X,m)}  pe[l,00],
Dy(L)y={feD: LfeV}.

When f = g we also set

1
Lalfip) = Ta(f. fi0) = [ (ST Lo~ (£ L1)g) dm
X
The I'; form provides a weak version (see Definition inspired by [12, 15]) of the
Bakry-Emery BE(K, N) condition [13, [11]

Talfie) 2 K [ T(f) pdm+ 5 [ (LP*edm, V(fp) € Du(L) x Dum(L). o 2 0.

(1.19)
We say that a metric measure space (X, d, m) (see §[5.5) satisfies the metric BE(K, N) con-
dition if the Cheeger energy is quadratic, the associated Dirichlet form € satisfies BE(K, N),
and any f € V,, with F( f) € L*(X,m) has a 1-Lipschitz representative.

In Section [10.I} by an approximation lemma, on the one hand we show that in order
to get the full BE(K, N) it is enough to check the validity of just for every f €
Dy(L) N D (L) and every nonnegative ¢ € Dy (L). On the other hand, thanks to the
improved integrability of I" given by Theorem [10.6] in Corollary we extend the domain
of T'y to the whole (Dy,)? and we give an equivalent reformulation of the BE(K, N') condition
for functions in this larger space. Local and nonlinear characterizations of the BE(K, N)
condition for locally compact spaces are investigated in Section [10.2; in Theorem we
show that in order to get the full BE(K, N) it is enough to check the validity of @ just
for every f € Dy(L)NDy(L) and ¢ € Dy (L) with compact support, and in Theorem [10.11]
we give a new nonlinear characterization of the BE(K, N) condition in terms of regular
entropies, namely

nmmw+/

X

R(o) (Lf)2dm > K /X P(f) P() dm. (1.20)

This last formulation will be very convenient later in the work in order to make a bridge
between the curvature of the space and the contraction properties of non linear diffusion
semigroups.

Chapter [11] is devoted to action estimates along a nonlinear diffusion semigroup. The
aim is to give a rigorous proof of the crucial estimate briefly discussed in the formal
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calculations of Example [2.4, To this purpose, in Theorem we prove that if g, (resp.
@) is a sufficiently regular solution to the nonlinear diffusion equation 9,0, — LP(p;) = 0
(resp. to the backward linearized equation Owp; + P'(01)Lyp: = 0) then the map ¢ —
Eo.(pt) = [ pL' () dm is absolutely continuous and we have

d1

dt2/ pil (o) dm = I‘Q(got7P(pt))+/XR(pt)(Lg0t)2dm Lrae in (0,T). (1.21)

Notice that this formula is exactly the derivative of the hamiltonian % f X F(gpt) dm along
the nonlinear diffusion semigroup. It is clear from (| and (| ) that the metric

BE(K, N) condition implies a lower bound on the derlvatlve of the hamiltonian, more
precisely in Theorem we show that the metric BE(K, N) condition implies

d1

ETo) / pil () dm > K/ (0)T (¢¢) dm Llae. in (0,7), (1.22)

and its natural counterparts in terms of the potentials ¢, (introduced in Part IT) associated
to the curve g;m. The inequality should be considered as the appropriate nonlinear
version of the Bakry-Emery inequality [13] (see also [7] for the non-smooth formulation,
and [I5] for dimensional improvements) for solutions g, pr_; to the linear Heat flow

d1
TS / ptF(gpt) dm > K/ oI gpt) dm Z'ae. in (0,7), (1.23)

which characterizes the BE(K, 00) condition. In this case, due to the linearity of the Heat
flow and to the self-adjointness of the Laplace operator, the backward evolution ¢, can be
easily constructed by using the time reversed Heat flow and it is independent of p.

In the last Chapter we combine all the estimates and tools in order to prove the

equivalence between metric BE(K, N) and RCD*(K, N). To this aim, in Section we
show some technical lemmas about approximation of Ws-geodesics via regular curves and
about regularization of entropies. Section is devoted to the proof of Theorem [12.8
stating that BE(K, N) implies CD*(K, N). This is achieved by showing that the nonlin-
ear diffusion semigroup associated to a regular entropy provides the unique solution of
the Evolution Variational Inequality which characterizes RCD*(K, N). In the same
section we prove the facts of independent interest that BE(K, N) implies contractivity in
W3 of the nonlinear diffusion semigroup induced by a regular entropy (see Theorem ,
and that BE(K, N) implies monotonicity of the action Ay computed on a curve which is
moved by a nonlinear diffusion semigroup (see Theorem .
The last Section [12.3] is devoted to the proof of the converse implication, namely that if
(X,d, m) is an RCD*(K, N) space then the Cheeger energy satisfies BE(K, N). The rough
idea here is to differentiate the 2-action of an arbitrary Ws-curve along the nonlinear diffu-
sion semigroup and use the arbitrariness of the curve to show that this yields the nonlinear
characterization of BE(K, N) obtained in Theorem . The perturbation tech-
nique used to generate a sufficiently large class of curves is s&mﬂar to the one independently
proposed by [16].
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Main notation
Symmetric Dirichlet form € and its Carré du Champ, Sect.

HI, L*(X,m) and the domain of &

Veo VN Le(X,m)

P Markov semigroup induced by &

L Infinitesimal generator of P

D Domain of L,

Do DN L>®(X,m)

Ve Homogeneous space associated to €, Sect.
Q*(¢,0) Dual of a quadratic form Q,

Eo(f, 1) Tolf,9) Weighted quadratic form and Carré du Champ
V, Abstract completion of the domain of €,

—A4; Riesz isomorphism between V|, and V,,
7] metric velocity, or speed, Sect.

ACP([a, b]; (X, d)) p-absolutely continuous paths

A, () p-action of a path ~, (5.4])

Lip(X), Lip,(X) Lipschitz and bounded Lipschitz functions f : X — R
Lip(f) Lipschitz constant of f € Lip(X)

IDfI, [ID=£], [D*f]
Qt

Slopes of £, (53), (51
Hopf-Lax semigroup, (5.9))

B(X), 2(X) Borel sets and Borel probability measures in X

Z,(X) Probability measures with finite p-moment

P X, m) Absolutely continuous probability measures

Wy (e, v) p-Wasserstein extended distance in Z(X)

€s Evaluation maps v — 7, at time s

A, () p-action of w € Z(C([0,1]; X)), (5.17)

GeoOpt(X) Optimal geodesic plans, ((5.21))

Ch(f) Cheeger relaxed energy, (5.25

IDflw Minimal weak gradient, ([5.26

Aq(p;m) Weighted energy functional induced by £, (7.4)

Aq(po; pr;m) Weighted energy functional along a geodesic from pg to 1
g Green function on [0, 1], (9.1))

a,(f)(é) Distorted convexity coefficients,

U,Uu Entropy function and the induced entropy functional, (9.27),
P Pressure function induced by U,

S Nonlinear diffusion semigroup associated to an entropy U

DC(N) Entropies satisfying the N-dimensional McCann condition, Def.
CD(K,0),CD*(K,N)  Curvature dimension conditions, Sect.

RCD(K, 00) Riemannian curvature dimension condition, Def.
'y, BE(K, N) I'; tensor and Bakry-Emery curvature dimension condition, Sect. m
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2 Contraction and convexity via Hamiltonian esti-
mates: an heuristic argument
Let us consider a smooth Lagrangian £ : R? x RY — [0, 00), convex and 2-homogeneous

w.r.t. the second variable, which is the Legendre transform of a smooth and convex Hamil-
tonian H : R? x (R%)* — [0, c0), i.e.

L(z,w) = sup (w,p) =H(z,p),  H(z,¢)= sup(p,w) — L(z,w); (2.1)

pe(RI)* weRd

We consider the cost functional
1
C(zg, x1) := inf {/ L(x(s),2(s))ds : x € CH[0,1];RY), (i) = a3, i =0, 1} (2.2)
0

and the flow S; : R? — R? given by a smooth vector field § : R — R? i.e. x(t) = S;(7) is

the solution of q

FrO =f®), 20 =z (2.3)

We are interested in necessary and sufficient conditions for the contractivity of the cost €
under the action of the flow S;.

As a direct approach, for every solution z of the ODE one can consider the
linearized equation

d
301 = Di(a(D)uwl(?). (2.4)

It is well known that if s — Z(s) is a smooth curve of initial data for (2.3) and x(t,s) :=
S:Z(s) are the corresponding solutions, then dsz(t, s) solves (22.4)) for all s, i.e.

w(t, s) = %x(t, s) satisfies %w(t,s) = Df(x(t, s))w(t,s), w(0,s)=z(s). (2.5)

It is one of the basic tools of [45] to notice that S satisfies the contraction property
G(ST(Z'(), ST[i'l) < e(fo,fl) for every g, r1 € Rd, T>0 (26)
if and only if for every solution x of (2.3)) and every solution w of ({2.4)) one has

d

EL(m(t),w(t)) <0. (2.7)
As we will see in the next sections, in some situations it is easier to deal with the

Hamiltonian H instead of the Lagrangian £. In order to get a useful condition, we thus

introduce the backward transposed equation

(1) = ~DH(1) (). (28)
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It is easy to check that w'(t) = A(t)w(t) and ¢'(t) = —A( )T(t) imply that the duality
pairing (w(t), ¢(t)) is constant. Hence, choosing A(t) = Df(x(t)) gives

t — (w(t), p(t)) is constant, whenever w solves (2.4)), ¢ solves (2.8]). (2.9)

In the next proposition we assume a mild coercitivity property on £, namely

L w) > Az wf with hm/ V)

for some continuous function 7 : [0, 00) — (0, 00). Under this assumption, by differentiating
the function ¢ — f‘f(g))” V() dr, it is easily seen that

1
sup |2, (0)] +/ L(xn(8),2n(s))ds < o0 = supr[%a? |z,| < . (2.10)
n 0 )1

n

Proposition 2.1 (Contractivity is equivalent to Hamiltonian monotonicity) The
flow (St)i>0 satisfies the contraction property (2.6) if and only if

jtﬂ-f( (t),p(t)) >0 whenever x solves (2.3)) and ¢ solves ([2.8)). (2.11)

Notice that the monotonicity condition (2.11]) can be equivalently stated in differential
form as

(Fa (@, ), () — (Ho(2, 9), Df(a(t))Tp) 2 0 for every z € R, p € (RY)".  (2.12)

Proof. Let us first prove that (2.11)) yields (2.6). Let z € C([0,1];R?) be a curve con-
necting 7o to 71, let z(t, s) := S;Z(s) and w(t, s) := 0sz(t,s). The thesis follows if we show
that

L(z(T,s),w(T,s)) < L(z(s),z(s)) forevery s € [0,1], T >0, (2.13)

since then

G(az(T,O),:B(T,l))g/O L(x(T,s),w(T,s))dsﬁ/() L(z(s),z(s)) ds

and it is sufficient to take the infimum of the right hand side w.r.t. all the curves connecting
) to x;.
For a fixed s € [0,1] and T > 0 we consider a sequence @, (s) such that
L(o(T,5), w(T,5)) = Tim (w(T, ), @u(s)) — H((T, ), Gu(5)), (2.14)

n—o0

and we consider the solution ¢, (t, s) of the backward differential equation with terminal
condition

o n(t,9) = ~DIE(t, Nealtss), 0SEST, pu(Ts) = auls).

16



By (2.5) and (2.9) we get (w(T,s), pn(s)) = (w(0,s),(0,s)). In addition we can use the
monotonicity assumption (2.11]) to get

H(z(T, 5), pn(s)) = H(Z(s), pu(0, 5)).
It follows that

(W(T, 5), pn(s)) = H(z(T, 5), on(5)) < (w(0,5),n(0,5)) = H(Z(s), 0n(0, 5))
< L(z(s), w(0, )

and passing to the limit as n — oo, by (2.14) we get ([2.13)) since w(0, s) = z(s).

In order to prove the converse implication, let us first prove the asymptotic formula

lim w = £(2(0), (0)) (2.15)

for any curve s — z(s) right differentiable at 0. Indeed, notice first that the inequality

N ORI0)

1sp ST < L (2(0),6(0))

immediately follows considering an affine function connecting x(0) and z(d). In order to
get the liminf inequality, notice that for any curve s — y(s) and any vector ¢ one has

/OlL(y(s),y(s))ds > /01 ((y(s),@ - %(y(3)7@)> ds
= (o) =000 [ Hlals)) s

so that choosing an almost (up to the additive constant §%) minimizing curve y = x5 :
[0, 1] — R? connecting x(0) to () and replacing o by dp with § € (0, 1), the 2-homogeneity

of I yields
5o e(x(ogéx(é)) > <1‘<5) - $<0)7¢> _/0 H(zs(s), p) ds.

Since (2.10) provides the relative compactness of x5 in C([0, 1]; R¢) and since v > 0, it is
easily seen that x5 uniformly converge to the constant x(0) as § J 0. Therefore, passing to
the limit as 0 | 0 we get

lim inf —G(:U(O), (%))

510 52 > (2(0), p) — H(z(0), p)

and eventually we can take the supremum w.r.t. ¢ to obtain ([2.15)).
If (2.6) holds and x(t) and ¢(t) are solutions to (2.3) and (2.8) respectively, we fix
to > 0 and w € R such that

H(x(to), p(to)) = (w, ¢(to)) — £(x(to), w)- (2.16)
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We then consider the curve s — z(tg) + sw and we set x(t,s) = S;_y, (z(to) + sw), so that

w(t) = dsz(t, s)|,_, is a solution of ([2.4) with Cauchy condition w(ty) = w. For t > t, we
can use twice (2.15) and (2.9)) once more to obtain

C(z(t,0),x(t,9))

Hz(t), o) = (p(t),w(t)) —lim 5
C(x(to, 0), z(ty, 8))

510 02
(plte), w) — £(w(to), w) B F(x(to), p(to)).

0

We can refine the previous argument to gain further insights when H, £ are quadratic
forms and f is the gradient of a potential U. More precisely, we will suppose that

8o w) = (G w), H(rp) = Lo H)e), H@) =6, (217

and G(z) are symmetric and positive definite linear maps from R¢ to (RY)*, smoothly
depending on z € R%. The vector field f is the (opposite) gradient of U : R? — R with
respect to the metric induced by G if

(G(2)f(z),w) = (~DU(x),w) for every w € R? ie. f(z) = —H(z)DU(z). (2.18)

In [27] it is shown that U is geodesically convex along the distance induced by the cost @
if and only if

G(J_,’(], Sti'l) + t(U(St(fl)) - U(fo)) S e(fo,ffl) for every 1_307 T € ]Rd, t Z 0. (219)
Here is a simple argument to deduce (2.19) from (2.11]).
Lemma 2.2 Let £, H, § be given by (2.17) and (2.18). Then (2.11)) yields (2.19)).

Proof. Let us consider a curve Z(s) connecting Zo to Z; and let us set

y(t,s) :=5Si(z(s)), =x(t,s):=y(st,s), =z(t,s):= %y(t,s), w(t, s) = %az(t,s),
so that gives
w(t,s) = z(st, s) + tf(x(t, s)) = z(st, s) — tH(z(t, s))DU (z(t, 5)). (2.20)
Clearly for every ¢t > 0 the curve s — z(t, s) connects Zy to S;z; and therefore

e@:«o,st:zl)g/o L(a(t, s), wit, s)) ds, U(Stsz-l)—U(:Eo):/o (DU (a(t, 5)), w(t, s)) ds.
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It follows that

(20, Sit) + £ (U(Si(n) — Ulao) ) < /O (LGt s),w(t,5)) + DU (L, 5), w(t, 5)) ) ds.
For a fixed s € [0, 1] the integrand satisfies

L(x(t, s), w(t, s)) + ¢DU(x(t, 5)), w(t, s)) (2.21)

= sup (¢ +tDU(x(t, s)), w(t,s)) — H(z(t, s), ¥)
PYe(R)*

= sup (p,w(t,s)) — H(x(t,s),p —tDU(z(t,s))).

pE(R)*
Substituting the expression (2.20) and recalling (2.17]) we get

(o, w(t, s)) = H(x(t, s), 0 — DU (x(t, 5)))
= (p, 2(st, 8)) = t{p, H(x(t, 5)) DU (2(t, 5))) = H(x(t, ), o — IDU(2(, 5)))
= (¢, 2(st, 5)) — H(a(t, 5), ) — *H(x(t, 5), DU(x(t, 5))) < (i, 2(st, 5)) — H(z(t, 5), ).

Choosing now an arbitrary curve ¢(s) and solutions (7, s) of

& o(r5) = ~Dily(r, )p(r. ), 0<7<st, plst,s) = pls)

we can use the monotonicity assumption and ([2.9)) to obtain

(p(s), 2(st,8)) = H(x(t, s),0(s)) < ((0,5),2(0,5)) = H(x(0, 5), (0, ))
= (¢(0,5), w(0,s)) — H(x(0,5), £(0,5))
< L(7(s), w(0,5)).

Since ¢(s) is arbitrary and w(0,s) = Z(s), considering a maximizing sequence (¢,(s)) in
(2.21]) we eventually get

C(Z0, Si1) + t(U(St(;Y:l)) - U(:Eo)) < /0 1 £(#(s),#(s)) ds

and taking the infimum w.r.t. the initial curve z we conclude. O

In order to understand how to apply the previous arguments for studying contraction
and convexity in Wasserstein space, let us consider two basic examples. For simplicity
we will consider the case of a compact Riemannian manifold (M?,d, m) endowed with the
distance and measure associated to the Riemannian metric tensor g.

Example 2.3 (The Bakry-Emery condition for the linear heat equation) In the sub-
space of smooth probability densities (identified with the corresponding measures) the
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Wasserstein distance cost C(og, 01) = 5 W2(0om, o1m) is naturally associated to the Hamil-

tonian

1
2

1
H(o, ¢) = 5/ IDepls0dm : (2.22)
D'
in fact the Otto-Benamou-Brenier interpretation yields
1
C(00, 01) = inf {/ L(os, 0s)ds : s — o5 connects gy to gl}, (2.23)
0
where )
tlow)i= [ IDefiodm,  —divy(o%e) = w. (2.24)
X
ie. )
L(o,w) = sup / pwdm — —/ IDel2odm. (2.25)
e Jx 2 Jx

In other words, the cotangent bundle is associated to the velocity gradient Vyp and the
duality between tangent and cotangent bundle is provided by the possibly degenerate
elliptic PDE

— divy(oVyp) = w. (2.26)

If we consider the logarithmic entropy functional Us (o) := [ 0log o dm, then its Wasser-
stein gradient flow corresponds to the linear differential equation

d

—o0=A 2.27
d tQ Y ( )
and thus the backward equation (2.8)) for ¢ corresponds to
4 A (2.28)
dt e '

Evaluating the derivative of the Hamiltonian one gets

d

1d 1
—H(ot, 1) = ——/ Qt‘DSOt@ dm = —/ Ag@t’DSOt@ dm—l—/ 01(Dpr, D(—Agpr))g dm

1
= /); Ot (§AQ|D§0t‘§ — <D§0t7 DAg@t)g) dm.
Since ¢ > 0 and ¢ are arbitrary, (2.11)) corresponds to the Bakry-Emery BE(0, c0) condition
1
Ta(p) := §Ag|Dcpt|§ — (D, DAgpr)g > 0 for every .

It is remarkable that the above calculations correspond to the Bakry-Ledoux [15] deriva-
tion of the I's tensor: if P; denotes the heat flow associated to (2.27)), it is well known that

d
R20 <= —(PIDPf) 20
ds
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or, in the integrated form,

1d

d
§d_ _}C(Psga Pt—s@) >0 for every ¢, 0> 0.
S

PsQ ’DPtfsgp‘g dm = dS

Thus the combination of the forward flow P,os and the backward flow P, ;¢ in the deriva-
tion of 'y tensor corresponds to the Hamiltonian monotonicity ([2.11)).

Example 2.4 (The Bakry—Emery condition for nonlinear diffusion) If we apply the

previous argument to the entropy functional U(p) = [, U « U(o)dm, we are led to study the
nonlinear diffusion equation

d ) /

3¢ = AcPle)  with  P(o):= oU'(e) — Ule). (2.29)

The corresponding linearized backward transposed flow is

d
Frid —P'(0)Agyp (2.30)

and, setting R(p) := oP’(0) — P(p), we get

d

E%(@t,wt)

C1d

S 2dt
1

- 5/ AgP(0:)|Dgy|? dm — / 0t{Dgr, D(P'(01) Agipr) )g dm

/ Qt FQ SOt dm+/ P(Qt)<D90t7DAgSOt>g—/Qt<D80t>D(P/(Qt)AgSOt)>g dm
X X

/ (00)T2(er dm+/X(—P(@t)+@tP’(0t))(Ags0t)2dm—/XAQMD%DP(&M dm

Qt‘DSOtE dm

/ Ay (D, Do) dm
_/XP<Qt)F2(§0t)dm+/XR(Qt>(A990t)2dm-

If U satisfies McCann’s condition DC(N), so that R(o) > —+P(0), and the Bakry-Emery
condition BE(0, N) holds, so that I's(p) > +(Agp)?, we still get L3 (o, ¢) > 0.

Example 2.5 (Nonlinear mobilities) As a last example, consider [28] the case of an
Hamiltonian associated to a nonlinear positive mobility A

3(.) =5 [ Mo)lDildm (2.31)
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under the action of the linear heat flows (2.27) and (2.28)): with computations similar to
those of the previous examples we get

d 1d )
&%(Qt,sot) = 53/)(h(9t)\D90tlgdm
1

— 5 [ H@saDealdn — [ b(a)(Deu DAy dm
X X

1

1 "
:§/XAg(h(gt))leot|§dm—/Xh(gt)<Dgot,DAgsot)>gdm—Q/Xh (00)|Dot|? Dy |2 dm

1
:/ h(Qt)F2(90t)dm——/ h”(gt)!DQtlﬁlDwtlﬁdm-
X 2 Jx

If h is concave and the Bakry-Emery condition BE(0, 0o) holds, we still have LH(0, ) > 0.
According to Proposition [2.1] this property formally corresponds to the contractivity of
the h-weighted Wasserstein distance W) associated to the Hamiltonian along the
Heat flow, a property that has been proved in [24] Theorem 4.11] by a different method.

Part I
Nonlinear diffusion equations and
their linearization in Dirichlet spaces

3 Dirichlet forms, homogeneous spaces and nonlinear
diffusion

3.1 Dirichlet forms

In all this first part we will deal with a measurable space (X, B), which is complete with
respect to a o-finite measure m : B — [0, oo]. We denote by H the Hilbert space L*(X,m)
and we are given a symmetric Dirichlet form & : H = L?(X, m) — [0, 00| (see e.g. [I7] as a
general reference) with proper domain

V=D(E&):={feLl*X,m):&(f) <oo}, with Vi :=VNL®X, m). (3.1)
V is a Hilbert space endowed with the norm

AR = 112 ey + ECF): (3.2)

the inclusion of V in H is always continuous and we will assume that it is also dense
(we will write V & H); we will still denote by £(-,-) : V — R the symmetric bilinear
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form associated to €. Identifying H with its dual H', H is also continuously and densely
imbedded in the dual space V', so that

VEH=H SV s a standard Hilbert triple (3.3)
and we have
(f,q9) :/ fgdm whenever f e H, g €V (3.4)
X

where (-,-) = (-, )y denotes the duality pairing between V' and V, when there will be no
risk of confusion.

The locality of € and the I'-calculus are not needed at this level: they will play a crucial
role in the next parts. On the other hand, we will repeatedly use the following properties
of Dirichlet form:

Voo is an algebra,  €'2(fg) <|[|fll€"%(9) + l9ll€*(f) f. 9 € Vs, (DF1)
if P:R — R is L-Lipschitz with P(0) = 0 then the map f — Po f (DF2)
is well defined and continuous from V to V with &(Po f) < L*&(f),
if P;: R — R are Lipschitz and nondecreasing with P;(0) =0, i = 1,2, then (DF3)
E(Piof,Pyof)>0 forevery feV.

We will denote by —L the linear monotone operator induced by &,

L:V—=V, (—=Lfg =¢&(f,g) forevery f,geV, (3.6)
satisfying
2

[(Lf.g)|" < E&(f.f)E(g,g) forevery f, g€V, (3.7)

and by D the Hilbert space
D:={feV:Lfe€H} endowed with the Hilbert norm || f||3 := ||f[|5 + ||ILf[% (3-8)
Thanks to the interpolation estimate
lellv < Cllell” lells™  for every o € D, (3.9)

which easily follows by the identity (o, 0) = — [, oLodm, the norm of ) is equivalent to
the norm || f|[% + [[Lf[f-
We also introduce the dual quadratic form &* on V', defined by

%8*(6, 0) == sup ((, f) — %S(ﬁ f)- (3.10)
fev

It is elementary to check that the right hand side in (3.10)) satisfies the parallelogram rule,
so our notation £*(¢, /) is justified (and actually we will prove that €*, when restricted
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to its finiteness domain, is canonically associated to the dual Hilbert norm of a suitable
quotient space; see the following Section for the details).

The operator L generates a Markov semigroup (P¢);>o in each LP(X,m), 1 < p < oc:
for every f € H the curve f; := P;f belongs to C((0,00); H) N C°((0,00); D) and it is the
unique solution in this class of the Cauchy problem

d
Eft =Lf, t>0, ltijgl fe = f strongly in H. (3.11)

The curve (f;)¢>0 belongs to C([0, 00); H) if and only if f € D and in this case
fe=f
t

lim

i =Lf strongly in H. (3.12)
t

(P¢)i>0 is in fact an analytic semigroup of linear contractions in H and in each LP(X, m)
space, p € (1, 00), satisfying the regularization estimate

1 1
SIPUIR + t(Puf) + RILPSIE < SIFIE  for every ¢ > 0. (313)

The semigroup (P;);>¢ is said to be mass preserving if
/ Ptfdm:/ fdm Vt>0 for every f € L' N L*(X,m). (3.14)
b b

Since (P;);>o is a strongly continuous semigroup of contractions in L'(X, m), the mass
preserving property is equivalent to

/ Lfdm =0 forevery f € DN LY (X, m) with Lf € L*(X,m). (3.15)
X

When m(X) < oo then (3.14)) is equivalent to the property 1 € D(€) with £(1) = 0.

3.2 Completion of quotient spaces w.r.t. a seminorm

Here we recall a simple construction that we will often use in the following.
Let N be the kernel of €& and L, namely

N::{feV:S(f,f):o}:{feV:Lf:O}. (3.16)
It is obvious that N is a closed subspace of V and that it induces the equivalence relation
f~9g < [f—g€eN. (3.17)

We will denote by V= V/~ the quotient space and by f the equivalence class of f (still
denoted by f when there is no risk of confusion); it is well known that we can identify the
dual of V with the closed subspace N+ of V', i.e.

?’:NL:HEV’: (¢, f) =0 forevery f € N}. (3.18)
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Since € is nonnegative, we have E(f1, g1) = E(fo, go) whenever fy ~ f; and gy ~ g1, so that
€ can also be considered a symmetric bilinear form on g", for which we retain the same
notation. The bilinear form & is in fact a scalar product on V, so that it can be extended
to a scalar product on the abstract completion Ve of V, with respect to the norm induced
by €. The dual of Vg will be denoted by (Ve)'.

In the next proposition we relate (Ve)' to V' and to the dual quadratic form €* in (3.10)).

Proposition 3.1 (Basic duality properties) Let V, &, V be as above and let Ve be the
abstract completion of V w.r.t. the scalar product €. Then the following properties hold:

(a) (V&) can be canonically and isometrically realized as the finiteness domain of E* in
V', endowed with the norm induced by E*, that we will denote as V.

(b) Ift € Vg and (f,) is a mazimizing sequence in (3.10), then the corresponding elements
in Ve strongly converge in Ve to f € Ve satisfying

SECO= ()~ 38D, EWO=Ef f) (3.19)

(¢) The operator L in (3.6) maps V into Vi; it can be extended to a continuous and linear
operator Le from Ve to Vi and —Lg : Ve — V¢ is the Riesz isomorphism associated
to the scalar product & on V.

(d) € (t,—Lf) = (L, f) for all L€V}, f€V.

Proof. (a) The inequality 2|(¢, f)| < E(f, f) + £*(¢, ), by homogeneity, gives [({, f)| <
(ECF, F)V2(Ex(¢,£))/2. Hence, any element £ in the finiteness domain of €* induces a
continuous linear functional on V and therefore an element in (Vg ), with (dual) norm less
than (€*(¢,¢))Y/2. Conversely, any ¢ € (V¢)' induces a continuous linear functional in @,
and then a continuous linear functional ¢ in V, satisfying [¢(f)| < ||€]|cwy (E(f, f))¥/% By
the continuity of €, ¢ € V'; in addition, the Young inequality gives £*(¢,¢) < ||¢ ||%Ve)"

(b) The uniform concavity of g — (¢, g) — %E(Q, g) shows that E(f, — fim, fo — fm) = 0
as n, m — oo. By definition of Ve this means that (f,,) is convergent in Ve. Eventually
we use the continuity of (¢,-) in V¢ to conclude that the first identity in holds. The
second identity follows immediately from 2(E(f, f))Y2(E*(L, 0))/2 > E(f, f) + €% (£, 1).

(¢) By (3.7)), L can also be seen as an operator from V to Ve, with [[Lf|lv; < (E(f, Y2
forall f € V. Tt extends therefore to the completion Vg of V. Denoting by Lg the extension,
let us prove that —L¢ is the Riesz isomorphism.

We first prove that —L¢ is onto; this follows easily proving that, for given ¢ € V¢, the
maximizer f € Ve given by (b) satisfies { = —L¢ f. Since V is dense in Ve, we obtain that

{€ eVi: £=—Lf for some f € iv/} is dense in V. (3.20)

Computing E*(—Lf, —Lf) for f € V and using the definition of & immediately gives
E*(=Lf,=Lf) = E(f, f). By density, this proves that —Lg is the Riesz isomorphism.
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(d) When ¢ = —Lg for some g € V it follows by polarization of the identity &*(—Lh, —Lh) =

E(h, h), already mentioned in the proof of (¢). The general case follows by (3.20)). O

We can summarize the realization in (a) by writing

Ve=DE)={teV': [{(,/)] <CVE(S f) forevery f eV}, (3.21)

According to this representation and the identification H = H', f € H belongs to V¢ if and
only if there exists a constant C' such that

/X fgdm‘ < C’((’i(g,g))l/2 Vg eV.

If this is the case, we shall write f € HNV;.

Remark 3.2 (Identification of Hilbert spaces) In the usual framework of the varia-
tional formulation of parabolic problems, one usually considers a Hilbert triple as in (3.3))
V C H=H'CV’ so that the duality pairing (¢, f) between V' and V' coincides with the
scalar product in H whenever ¢ € H. In this way the definition of the domain D of L as
in (3.19) makes sense. In the case of Vg, Vi one has to be careful that Ve is not generally
imbedded in H and therefore H is not imbedded in Vg, unless € is coercive with respect to
the H-norm; it is then possibile to consider the intersection H NV (which can be better
understood as H' N'V{). Similarly, V is imbedded in V¢ if and only if V¢ is dense in V', and
this happens if and only if N = {0}, i.e. £ is a norm on V.

The following lemma will be useful.
Lemma 3.3 The following properties of the spaces H, V and Vg hold.
(a) A function f € H belongs to V if and only if

/X ngdm' < C(E(g,g))1/2 Vg € D. (3.22)

(b) {Lf: feD} isdense in Vi and, in particular, HNV{ is dense in V.

Proof. (a) If f € V we can integrate by parts and conclude via Cauchy-Schwartz inequality
by choosing C' = &(f, f)'/2. To show the converse implication first of all note that the
property is stable under the action of the semigroup (P;);>o. Thus we can argue by
approximation by observing that if f € D one can choose g = f; then integrate by parts
on the left hand side to obtain &(f, f) < C?.

(b) Let us consider an element ¢ € Vi such that

E*(U,Lf) =0 forevery feD.
Applying Proposition [3.1{(d) we get
(¢, fy =0 forevery f e D.
Since ¢ € V" and D is dense in V we conclude that ¢ = 0. 4
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3.3 Nonlinear diffusion

The aim of this section is to study evolution equations of the form

d
—o—LP(p) = 2
dtQ (Q) 0, (3 3)

where P : R — R is a regular monotone nonlinearity satisfying
PecCYR), P(0)=0, 0<a<P/(r)<a! foreveryr>0. (3.24)

The results are more or less standard application of the abstract theory of monotone
operators and variational evolution equations in Hilbert spaces [I8, 19, 20 21], with the
only caution described in Remark |3.2| and the use of a general Markov operator instead of
a particular realization given by a second order elliptic differential operator.

If Hy, H, are Hilbert spaces continuously imbedded in a common Banach space B and
T > 0 is a given final time, we introduce the spaces of time-dependent functions

W2(0,T; Hy, Hy) == {u € W'2(0,T; B) : ue LX0,T; H,), u € L*(0,T; Ho)}, (3.25)
endowed with the norm

HUHI%VL?(O,T;HI,HO) = HUH%?(O,T;Hl) + ||u||%2(O,T;H0)' (3.26)

Denoting by (Hy, H1)g 2, ¥ € (0,1), the family of (complex or real, [40, 2.1 and Thm. 15.1],
[54, 1.3.2]) Hilbert interpolation spaces, the equivalence with the so-called trace Interpola-
tion method [40, Thm. 3.1}, [54, 1.8.2], shows that

if Hy < Hy then WW"(0,T;Hy, Hy) — C([0,T); (Ho, H1)1/22), (3.27)

with continuous inclusion.
As a possible example, we will consider W2(0,7;V,V{) (in this case V and V{ are
continuously imbedded in V') and W'2(0, T; D, H). Since [40, Prop. 2.1]

VECV, (V,V)ipo=H, and (D,H)ip,=V,
we easily get
Wh0,T;V, V) — C([0,T];H), ~ W"*0,T;D,H) — C([0,T]; V), (3.28)
Let us fix a regular function P according to (3.24)): we introduce the set
ND(0,T) := {g e W20, T, H) N CH([0,T]; V) : P(o) € L*(0, T; D)}. (3.29)

Notice that
ND(0,T) C C([0,T]; V). (3.30)

Indeed, if o € ND(0,7T) then by the chain rule P(9) € W'2(0,T;D,H), so that P(p) €
C([0,T); V) thanks to (3.28)). Composing with the Lipschitz map P~! provides the conti-
nuity of ¢ in V thanks to (DF2)).
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Theorem 3.4 (Nonlinear diffusion) Let P be a reqular function according to (3.24]).
For every T > 0 and every g € H there exists a unique curve o = Sg € W'2(0,T;V, V)
satisfying

d
T LP(o) =0 ZL'-a.c.in (0,T), with gy = 0. (3.31)

Moreover:

(ND1) For everyt > 0 the map 0+ S0 is a contraction with respect to the norm V¢, with
t
ISe2" — S2*15; + 2a / / S,;0" =S, 0% dmdr < [[' — &% (3.32)
0o Jx
(ND2) If W € CH(R) is a nonnegative convex function with W (0) = 0, then

‘AmmmwAhHMMmmw:LW@®1WZQ (3.33)

Moreover, for every convex and lower semicontinuous function W : R — [0, o0

memgLW@m. (3.34)

In particular, S; is positivity preserving and if 0 < ¢ < R m-a.e. in X, then
0 <o <Rm-a.e. in X for everyt > 0.

(ND3) If g € V then o € ND(0,T) C C([0,T]; V) N CY ([0, T); V) and

1
lim — (04 — 01) = LP(0:)  strongly in Vg, for all t > 0. (3.35)
h—0 h

(ND4) The maps Sy, t > 0, are contractions in L' N L*(X, m) w.r.t. the L*(X, m) norm
and they can be uniquely extended to a C°-semigroup of contractions in L'(X,m)
(still denoted by (S¢)i>0). For every g; € L' (X, m), i = 1,2,

/ (St02 — St01)+ dm < / (02 — 01)+dm  for every t > 0. (3.36)
X b

In particular S is order preserving, i.e.
01 <02 = S/01 <S50 foreveryt>0. (3.37)

Moreover, if o € L>°(X,m) with bounded support, then S;o0 — Finally, if P; is mass
preserving then

/ S;odm = / odm for every g € LY(X,m), t>0. (3.38)
X X
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We split the proof of the above theorem in various steps. First of all, we introduce the
primitive function of P,

Vir) = / P(2)dz, (3.39)
0
which, thanks to (3.24]), satisfies

a9 1,
—re < < — > 0. A4
27" V(r) 237“ Vr >0 (3.40)

We adapt to our setting the approach of [I9], showing that the nonlinear equation (3.31])
can be viewed as a gradient flow in the dual space V{ driven by the integral functional
V: V' — [0, 00] defined by
/ V(o)dm if o € H,

X
+00 if o € V'\ H,

V(o) := (3.41)

associated to V.

Since H is not included in V¢ in general, if o is a solution of with an arbitrary
0 € H only the difference o, := g, — o, will belong to V¢; therefore it is useful to introduce
the family of shifted functionals V,, : V' — [0, 00|, n € H], defined by

V(o) :=V(n+o), for every o € V'. (3.42)

Notice that, thanks to , V,, is finite on H. Dealing with subdifferentials and evolutions
in Vi, we consider the restriction of 'V, to Vi, with D(V,)) := Vi N H and we shall denote
by 9V, (:) the £*-subdifferential of V,, defined at any ¢ € D(V,) as the collection of all
¢ € V{ satisfying

E(l,¢—0) <V, (C)—V,(0) V¢ e D(V,).

In the next lemma we characterize the subdifferentiability and the subdifferential of V,).
Lemma 3.5 (Subdifferential of V,)) For every n € H the functional V, : Vi — [0, o]
defined by (3.42) is convex and lower semicontinuous. Moreover, for every o € D(V,) we

have
tedVy(oc) <= Plo+n eV, (=-LP(c+n). (3.43)

In particular OV, is single-valued in its domain and D(OV,) ={c € H: P(oc+n) € V}.

Proof. 'The convexity of V, is clear. The lower semicontinuity is also easy to prove, since
V,(0,) < C < 0o and 0,, = 0 weakly in Vi imply that ¢ € H and o,, weakly converge to
o in H, by the weak compactness of (g,,) in the weak topology of H.
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The left implication < in (3.43) is immediate, since by Proposition [3.1(d) and the fact
that ( —oc e HN'V;

8*(—LP<o+n>,<—o—>=/XP<a+n><<—a>dm=/XP<a+n> (C+n)— (o + 7)) dm
< [ (Vic+m =Vie+n)dm =) = V(o).

where we used the pointwise property P(x)(y — z) < V(y) — V(x) for every z, y € R.
In order to prove the converse implication =, let us suppose that ¢ € 9V, (o); choosing
(=o0+cp, with o € HHN'V;, we get

E (b, p) <e! (\7,7(0 +ep) — \777(0)> < /XP(J + 1+ cp)pdm.

Passing to the limit as € | 0 and changing ¢ into —¢ we get
8*(5,90):/ P(oc+n)edm  for every p € HN V.
b's
Choosing now ¢ = —Lf with f € D we get

— [ Plo+ s am < ey (20.0) "
X

so that Lemma[3.3(a) yields P(o +n) € V. Therefore (using Proposition [3.1(d) once more
in the last equality), we get

E(t-L) = - [ PlotnLidn=&(P(r+n).0
b
= —(LP(e+n), f) = &(=LP(o +n), -Lf)
for all f € D, and this proves that ¢ coincides with —LP(c + 7). d

Proof of Theorem[3.4, Let g € H and let n € H be any element such that 5 := g—n € V/
(in particular we can choose n = g, so that ¢ = 0; as a matter of fact, n plays only an
auxiliary role in the proof and the solution g will be independent of n). Setting o, := 0, — 17,
the equation (3.31]) is equivalent to

d d

Frid LP(c+n) =0, ie. prid oV,(0) >0, with oy=a, (3.44)
where 0V, is the subdifferential of V,, characterized in (3.43).

Proof of existence of solutions and (ND1). Since Lemmal[3.3|b) provides the density of the
domain of V, in V}, existence of a solution o € C([0,T]; V{) satisfying LP(0 + 1), S0 €
L*(0,7T;V{) (and thus P(o+n) € L*(0,T;V)) follows by the general theory of equations in

Hilbert spaces governed by the subdifferential of convex and lower semicontinuous functions
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[19], so that o := o + 1 satisfies (3.31]). Since P(p) € L?(0,T;V) and P satisfies the reg-
ularity property (3.24), We also get o € L?(0,T;V); since %g e L*0,T;V¢) C L*0,T;V")
we deduce p € C([0,7]; H) by (3.28).

The abstract theory also provides the regularization estimates

ILP@ + Iy = tEPle) Ple)) < [ Vidn  forevry t>0. (309
X
%lW = LP(g) in V. for every t > 0, (3.46)

and the fact that the semigroup S; : p — g; is nonexpansive in Vi. If g € V (so that
o € D(0V,)) the limit in (3.46|) holds also at ¢ = 0. Since 9V, is single-valued, this proves
[B-33). -

In order to prove (3.32]) we simply consider two solutions o] = o + 1, 7 =1, 2 (we can
choose the same 7 since p' — p? € V), and we evaluate the time derivative of $€*(of — 07),
obtaining

dl1
dt 2

~— [ (e = P(el) = P(gh) dm (3.47)

< —allo; = &2 (xm):

d1,, x
&58 (of — 0}) = ==& (0, — 0}) = &*(0y — 07, LP(0}) — LP(0}))

where a is the constant in ((3.24]).

Proof of (ND2). We consider the perturbed function We(r) := W(r)+eV(r),r € R, e > 0,
and we can apply Lemma to the integral functional W} defined similarly to V, with
We instead of V; by denoting by G the derivative of W and by G¢(r) := G(r) +P(r) the
derivative of W¢, the Vi-subdifferential OW; can then be represented as —LG*(o +n) as
in (3.43) and its domaln is contained in D(@V ). If o is a solution of (3.44)), the chain rule

for convex and lower semicontinuous functionals in Hilbert spaces yields

d d
/ We (o) dm = P —W, (o) = —8*(Eat,LGE(at +n)) ==& (LP(o; +n), LG*(0y + 1))

—&(P(ar), G"(ar))-

We can eventually integrate with respect to time and pass to the limit as € | 0 to obtain
(13.33)).

The inequality follows now by and by a standard approximation procedure,
e.g. by considering the Moreau-Yosida regularization of W. Choosing now W (r) := (r —
R)2 with R > 0 or W(r) := (R —r)3 with R < 0, we prove the comparison estimates
w.r.t. constants.

Proof of (ND3). We already proved 3.35 let us now show that 4o € L2(0,T;H) if
0 € V. This property follows easily by 2|) applied to the couple of solutions of := o
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and 0? := g, since it yields

2a [Th ) 4 < L 2 _ (1 "oy
i | e ol dt < gllon — el < (5 [l

= (3 [ Iereol

where we used the fact that the map ¢ — [|[LP(g;)] v
A

4o € L*0,T;H) yields P(o) € L*(0,T; D) and therefore P(o) € W"2(0,T; D, H), so that

the map t — P(g;) belongs to C([0,77; V) by (3.28)). The differential equation (4.19)) then

yvields o € CY([0, T); V¥).

Proof of (ND4). For every 7 > 0 and o € H let us consider the resolvent equation

2
o )

= &(P(p), P(p)) forevery h € (0,T),

2
v

L) < LP()]

is nonincreasing. The regularity

find ¢’ € H with P(¢') € D such that ¢’ — 7LP(¢") = 0. (3.48)

By introducing the resolvent operators J,, : Vo — D(dV,), 7 > 0 and n € H, defined by
Jry = (I +79V,)"!, Lemma [3.5| shows that whenever p —n € V¢ a solution ¢ € H with
o' —n € Vi can be obtained by setting

o = Jryle—n)+n. (3.49)

In particular, the choice 7 := p ensures the existence of a solution to (3.48)). We will show
that the solution ¢ of (3.48)) is in fact unique and independent of the choice of 7 in (3.49).
More precisely, we will show that if a couple ¢, € H, ¢ = 1, 2, solves (3.49) with data o; € H
one has

/ (o) — Ql2)+ dm < / (01 — Q2)+ dm for every o, 0, € H. (3.50)
X X

The monotonicity inequality (3.50) can be proved by introducing an increasing sequence
of smooth maps approximating the Heaviside function:

fn€ CHR;[0,1]), fo=0 in(—00,0), 0< fi(r)<mn, fu(r)1T1 foreveryr > 0.

Since P(¢;) € D and f,, is Lipschitz with f,(0) = 0, f,(P(0})—P(gy)) € L*NL>®(X, m)NV.
We thus get by (3.49) and the positivity of f,

[ (6= (P = P(&3)) dmo+ 7 (£ (Plel) = PUeb). PLeh) ~ P(e))
= /X(g1 — 02) fu(P(0}) — P(03)) dm < /X (01 — 02)  dm.

By neglecting the positive contribution of the Dirichlet form € thanks to (DF3|), we can
pass to the limit as n — oo by the monotone convergence theorem observing that (o] —
0b) [ (P(0}) — P(05)) 1 (0} — 0h)+ as n — co; when (01 — 02)+ € L'(X,m) we thus obtain
(13.50)).
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Recalling (3.49)) and the exponential formula S¢(0) = n+1limy, o0 (Ji/ny)" (0—n) strongly
in V! and weakly in H for some n € H with g—n € V{, we obtain (3.36)), the L'-contraction

of and the order preserving property (3.37)).
Let us now consider the operator

A:p+ —LP(p) defined in D(A) :={p€ L' N L*(X,m) : LP(p) € L' N L*(X, m)}
(3.51)
and its multivalued extension obtained by taking the closure of its graph in L'(X,m):

Ao = {5 e L'(X,m): 3o, € D(A): 0, — 0, Aoy — € in LY(X, m)}. (3.52)

If o € D(A) it is easy to check by that Ag = {Ap} and the resolvent J, := (I+7A)7!
of A coincides with the map J, : 0 — ¢ induced by on L' N L*(X,m). Since
L' N L?(X,m) is dense in L'(X,m), it follows by that A is an m-accretive operator
in L'(X,m). By Crandall-Liggett Theorem the limit S,(o) := limnﬁoo(]t/n)”g exists in
the strong topology of L'(X,m) uniformly on [0,7] and provides the unique extension
of (St)i>0 to continuous semigroup of contractions in L'(X, m). In particular, for every
o € L' N L*(X, m) the sequence (J;/,)"0 converges strongly to S;(o) in L' (X, m).

In order to check the mass preserving property in the case when P is mass
preserving, it is therefore sufficient to prove that J, is mass preserving on L' N L?(X, m),
ie.

/ o dm = / odm whenever (3.49)) holds. (3.53)
X X
Eventually, (3.53]) follows by integrating (3.49)) and recalling (3.15)). O

For later use, we fix some of the results obtained in the last part of the above proof in the
next Theorem.

Theorem 3.6 Let P be a reqular nonlinearity according to ; the operator A defined
by and is m-accretve in L' (X, m) with dense domain, its resolvent J, :=
(I+7A)~Y is a contraction satisfying for every o = J.0;. For every o € L'NL*(X, m)
J,0 provides the unique solution o' of and the solution o, = S0 of (3.31) can be

obtained by the exponential formula oy = lim,, J?/n,g as strong limit in L'(X, m).

We only considered nonlinear diffusion problems associated to regular monotone functions
P as in (3.24)), since they provide a sufficiently general class of equations for our aims.
Nevertheless, starting from Theorem and adapting its arguments, it would not be
difficult to prove existence and uniqueness results under more general assumptions. The
next result is a possible example in this direction: a proof can be obtained by the same
strategy (we omit the details, since we need only Theorem [3.4]in the sequel); notice that the
fact that S; preserves L> bounds allows to modify the behaviour of P for large densities,
so that its primitive function V' has a quadratic growth and its domain coincides with
L*(X,m) when m(X) < oco.
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Theorem 3.7 (Nonlinear diffusion for general nonlinearities) Let P € CO(R) be a
nondecreasing function and let us suppose that m(X) < oo. For every o € L*°(X, m) there
exists a unique curve 9 = Sp € W12(0,T; V{)NL>(X x (0,T)) with P(g) € L*(0,T;V) sat-
isfying (3.31). (St)i0 is a semigroup of contractions in Vi and in L'(X,m) and properties
(ND2), (ND4) still hold.

4 Backward and forward linearizations of nonlinear
diffusion

In this section we collect a few results concerning linearization of the nonlinear diffusion
equations of the form studied by Theorem

The linearized PDE discussed in the next proposition corresponds to ([2.8)) of the heuris-
tic Section [2] while the evolution semigroup is provided by the nonlinear diffusion equation
of Theorem [3.4] Recall the notation W2(0, T; D, H) = L*(0,T; D) N W12(0, T; H), (3.29)
for ND(0,T'), and that, according to and ([3.30)),

ND(0,T) c C([0,T]; V), W20, T; D, H) < C([0,T]; V). (4.1)

Theorem 4.1 (Backward adjoint linearized equation) Let P be a regular monotone
nonlinearity as in and let o € L*(0,T;H).

For every ¢ € V, T > 0 and ¢ € L*(0,T;H) there erists a unique strong solution
p e Wh2(0,T;D,H) of

d _
gty =v,  pr=0 (4.2)

(BA1) For allr € [0,T], the solution ¢ satisfies

4 1 .o 1 " 1 1o,
/T/XP/(Q)M dmdt+§8(sor,sor)—/T /XP,@)dedHQe(go,go). (4.3)

(BA2) If o € L*(X,m) and ¢ =0, then ¢, € L®(X, m) with |¢] < [|@]|poo(x,m) M-a.e. in
X for every t € [0,T].

(BA3) If 0" — 0>, ¢™ — > in L?(0,T;H), " — = in'V and ¢", n € NU {oo}, are
the corresponding solutions of (4.2)), then ¢ — o> strongly in W2(0, T; D, H).

Remark 4.2 (Forward adjoint linearized equation) By time reversal, the previous
Theorem is equivalent to the analogous result for the forward linearized equation

d _
that admits a unique solution ¢ € W2(0, T; D, H).
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The following lower semicontinuity result will often be useful.

Lemma 4.3 Let Y be a Polish space endowed with a nonnegative o-finite Borel measure
n, let w, € L*(Y,n) and Z, € L>*(Y,n), Z, > 0. If w, — w in L*(X,n) and Z,, — Z
pointwise n-a.e. in Y, then

n—o0

liminf/Zn]wnIanz/Z]den. (4.5)
Y Y

Proof.  Let us first assume that n(Y’) < oo; by Egorov’s Theorem, for every § > 0 we can
find a n-measurable set B; C Y such that n(Y \ B;) < § and Z, — Z uniformly on Bj.
Since ||wy||L2(v.ny < C independent of n we obtain

liminf/ Zn|wn\2dn2hminf/ Zn|wy|* dn
Y n Bs

n—oo — 00

n—oo

> —C?limsup | Zn — Zll(ssm) +liminf/ Z|wn|? dn 2/ Zlw|? dn.

By letting 6 | 0 we obtain (4.5). When n(Y’) = oo, since n is o-finite, we can find an
increasing sequence Yy 1Y of Borel sets with n(Y;) < oo. By the previous claim, we get

liminf/Zn]wn\anzliminf/ Zn|wn]2dn2/ Z|w|?*dn
% n—00 Y Y

n—oo
for every k € N. As k — oo we recover (4.5)). O

Proof of Theorem[{.1 Let us fix the final time 7" and set a; := P'(0r—4), g1 := . We
can thus consider the forward equation

d
aft_atht:gt in (OaT)7 fOZf:@a (46)

where « is a Borel map satisfying (with a the positive constant in (3.24]))

—_

0<a<a<>- m®L%ae inX x(0,T). (4.7)

o]

In order to solve (4.6 we use a piecewise constant (in time) discretization of the coefficients
ay: we introduce a uniform partition of the time interval (0,7] of step 7 := T'/N given by
the intervals IV := ((k — )7, k7], k =1,..., N and we set

1

N ._ ~N ._ N N

o = — o, dr, o =aop iftel,
T Iliv

so that a < &V < a~!. Applying standard result for evolution equation in Hilbert spaces (in
particular we write the PDE as the gradient flow of € w.r.t. the L?*(X,1/af’m) norm when
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g = 0 and in the inhomogeneous case we use Duhamel’s principle) we can find recursively
strong solutions f¥ € W2(I}N; D, H) of

1 d 1 .

e L = e B k= Dr) = BG-G9
k

with the convention fJ¥(0) = f. Defining the function fV(t) := fN(¢) if t € I, we easily

check that f~ € Wb2(0,T;D,H), that f~ is a strong solution of the differential equation

SPY—aLY =g in (0.7), (49)

and that it satisfies the apriori energy dissipation identity

// ‘dth’ dm d + 8 2o ) = // 9 demdt+ E(f, F). (4.10)

Since 1/a" > a and f € V, this shows in particular that f~ is uniformly bounded in
Wh2(0,T;D,H). Since a¥ — « in L*(0,T;H) we can then easily pass to the limit as
N — o (see also the more detailed argument below), obtaining (4.6). Since holds in
the strong form, we can also write it as

gt .
—— Lfi==— in (0,7),
~oh-Lh= 2 )

and then the energy identity corresponding to follows by multiplying both sides by
df;/dt. This proves (BA1).

When ¢ = 0 and f € L®(X,m) satisfies |f| < F m-a.e. in X, a standard truncation
argument based on yields the recursive estimate

LA B xtamy < LA (Ol ey < W fela (B = D7) oo ey for ¢ in I

and therefore |fV(t)] < F m-a.e. in X for every ¢ € [0, T); this estimate passes to the limit
as N — oo providing the statement (BA2).

Let us now prove the last statement (BA3); we thus consider a sequence a™ satisfying
the uniform bounds a < o™ < a~! and the limit o — a® m ® £'-a.e. in X x (0,T), and
corresponding solutions f™ of

d n n n__.n n _rn

with f* — f> strongly in V and ¢" — ¢ strongly in L?(0,7;H). Using the energy
identity it is easily seen that (f™) is bounded in W2(0,T;H) and in C([0,T]; V); we
can also use the PDE to show that (f,) is bounded in L?(0,T;D). Hence, possibly
extracting a suitable subsequence (still denoted by f"), we can assume that f" — f* in
Wt2(0,T;D,H), so that $f™ — &> and Lf" — Lf* in L?(0,7;H). Since for every
s € [0,T] the linear operator f > f(s) is continuous from W2(0, T; D, H) to V thanks to
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(4.1), we also obtain the weak continuity property f"(s) — f*°(s) in V for every s € [0, T.

In particular f*° satisfies (4.11]) with n = oo.
Taking also Lemma [4.3] into account, it follows that

liminf E(f"(s), f(s)) > E(f>(s), f=(s)),

> oo
" dmdr //aw’dtf ’dmdr

lim inf / /
n—00 am
and

lim E(F", ") = £/, ), hm/ /——f”dmdr—/ / 97 4 o dmar,

n—oo e % dt o> dt

dtf

so that by (4.3)) we obtain

lim / /
n—00 am

G amesger e men) = [ ] S amar s Se(r )

_/0 /Xo?o‘&foo‘ dmdr+§8(f°°(8),f°°(5))-

We conclude (see Remark [4.4{ below) that /-4 fm — /L4 £ strongly in L2(0, T; H),
so that we can use the strong convergence and the uniform boundedness from below of a”

to conclude that f* — f* strongly in W12(0,7T; D, H). O

Remark 4.4 We will repeatedly use the following simple property, valid for sequences
(ay), (by) of nonnegative real numbers: if

liminfa, >a, liminfb, >b, limsup (a,+0b,) < (a+b),

n—00 n—00 N—s00
then
lim a, = a and lim b, = b.
n—o0 n—oo

The next proposition provides existence and regularity for the linearization of the nonlinear
diffusion equation of Theorem [3.4]
In the statement we will make use of the space I/, the dual of DD, and

D. = {e el : [0, f)] < C|Lfllu for every f € D}. (4.12)

Since D —% V we have H <9 V' <9 ) with continuous and dense inclusions; the
duality pairing between I’ and D is an extension of the one between V' and V and of
the scalar product in H, and we will still denote it as (-,-) whenever no misunderstanding
are possible. Denoting by |[|€[|p; the least constant C' in (1.12), D} is also a Hilbert space,
precisely it can be identified with the dual of the pre-Hilbert space one obtains endowing
D with the norm ||Lf||g, smaller than the canonical norm of ID. Arguing as in Section
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we can and will identify D; with the finiteness domain in D" of the lower semicontinuous
functional

1 1
SN, = s (t.0) = 5 [ LrPam. (4.13)
feb X

By duality, any element h € H induces an element Lh € Dy, via the relation

,(Lh, = h Lfdm.
o b /X Jfdm

We shall also make use of the space W2(0,T;H, D}), fitting in our framework because
both H and D; embed into the space D'. Since Dy — D’ and the duality formula for
complex interpolation yields (H,ID'),/, = V', (3.27) yields

W2(0,T; H,D;) — W20, T; H,D') — C([0, T]; V'). (4.14)

Theorem 4.5 (Forward linearized equation) Let P be a regular monotone nonlinear-
ity as in (3.24) and let p € L*(0,T;H).

(L1) For every w € Vi, T > 0 there exists a unique solution w € W'2(0,T;H,D}) of

d , -
Frike L(P'(o)w), Wy = W (4.15)

in the weak formulation (recall and (4.14))
\V <UJ37 193>V - / / (8151925 + P/<Qt)L19t> Wt dmdt = % <U_), 190>V Vs € [O, T], (416)
0 Jx

for every ¥ € W12(0,T;D,H). In addition, the function w satisfies

! 1 1
| [ Pleowamars Sl = 5ol wenn) @
0 Jx
and, for every solution ¢ of (4.2)) with ¢ =0 one has
A\ <wt7 ¢t>V = v <U_J7 SO())V‘ (418)

(L2) Ifw = L( for some ( € V, then w, = L{; for everyt € [0, T], where { € W42(0, T; D, H)
is the solution of (4.4)) with ¢ = 0.

(L3) If 0" — 0™ in L*(0,T;H), @™ — w™ in Vi and w", n € NU {oo}, are the corre-
sponding solutions of ([£.15)), then w™ — w™ strongly in W12(0, T; H, Dy ).
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Proof of Theorem[[.5, Let us first show the second claim: if w, = L¢, € W2(0,T; H; D})
for the solution ¢ € WhH2(0,T;D;H) of (4.4) and if ¥ is any function in W2(0,T; D, H)

we have

A (wy, 19t>v = (L, ”l9t>V = —&(¢, V),

so that t — y, (wy, )y is absolutely continuous in [0,7] and for L'-ae. ¢t € (0,T) its
derivative is given by

—%%,m): /X (L dy+ 10, ) dm = /X we(d, + P'(0) Lo, ) dm.

A further integration in time yields (4.16). In this case (4.17)) is a consequence of (4.3)
with ¢ = 0, by noticing that

E(Cr, Cb) = € (wr, wy) = ||wt|\§ga ¢ = P'(o)wr.

The uniqueness of the solution to (4.16]) is clear thanks to (4.18)).

The general result stated in the first claim for arbitrary w € V¢ follows by the linearity
of the problem, the estimate , and the density of the set {L{ : ( € V} in Ve, see
Lemma [3.3)(b).

The proof of (L3) is completely analogous to the proof of (BA3) in Theorem
the weak convergence of w" to w™ in W2(0,T;H,D}) follows by the a priori estimate
, the linearity of the problem w.r.t. w for given ¢ and the uniqueness of its solution.
Strong convergence can then be obtained by standard lower semicontinuity arguments and
Remark [4.4] by passing to the limit in (4.17). O

Theorem 4.6 (Perturbation properties) Let us suppose that P is a regular monotone
nonlinearity as in (3.24). Let . := o + ew. with p, p. € L* N L>®(X,m), 0. uniformly
bounded in L* N L>(X,m), and w. — @ strongly in V{ ase | 0. Let o.; (resp. o) be the
solutions provided by Theorem with initial datum g, (resp. o) and set

Qs,t — O¢
- .

We g =

Then for every t > 0 there exists the limit lim, o w., = w; strongly in Ve, the limit function
w belongs to WH2(0,T;H,D}) and satisfies (4.15)).

Proof. By the Lipschitz estimate of S: V{ — L*(0,T;H) N L>=(0,T;V{) we know
that (w.) is bounded in L?*(0,T;H) and in L*>(0,T;V{), in particular this gives o. — o
in L?(0,T;H). We can then find a subsequence ¢, | 0 such that w., — w weakly in
L?(0,T;H) and weakly* in L>(0,T;V¢).

Since P € C}(R) and there exists a constant R > 0 such that |o.| < R, |o| < R, we
can use the inequalities (depending on the parameter 6 > 0 and on the fixed constant R)

|P(0:) — P(0) — P'(0)(0: — 0)| < 6lo- — ol + Cslo: — ol (4.19)

39



and the uniform bound of e™(g. — ¢) in L?*(0,T;H) to obtain
e (P(0-,) — P(0)) = P'(o)w weakly in L*(0,T; H). (4.20)

In fact, since P is Lipschitz, e7'(P(g.) — P(0)) is also uniformly bounded in L?*(0,T’; H)
thus we can use a bounded test function ¢ € L*(0,T;H) to characterize the weak limit in
(4.20). For such a test function, denoting by E an upper bound of e~ !{|o- — 0| 12(0.7m), We
have

(/ [ (F=HD  p =) camar] < 5 B Gl + 2 Cs B sup

3

thus showing (4.20) as 6 > 0 is arbitrary.
Let us now consider for every t > 0 and ¢ € V the solution ¢ of (4.2) with final

condition ¢; = @ and arbitrary ¢ € L*(0,T;H), thus satisfying (by the Leibniz rule)

/ ws tQO dm =€ / / er - ( r))LSOT + (Qs,r - Qr)%br> dm dT‘ +/ weSOO dm
X

Since ¢, Ly € L*(0,T;H) we obtain that for every ¢ > 0 the sequence (wy, ;) converges
weakly in V' (and thus in V{, since it is uniformly bounded in V{) and the limit @, will

satisfy
(W, @ //wrwrdmdr+/ wpo dm. (4.21)

Choosing in particular ¢ = 0, the previous formula identifies the limit, so that w, = w, for
Llae. t € (0,T) and moreover the limit does not depend on the particular subsequence
(en). Since ® is arbitrary, we also get that w satisfies in the weak sense of .

In order to prove strong convergence of w. to w in V¢ for every ¢ € [0,7] and in
L?(0,T;H), we start from written for o' := p and ¢? := p.. Since

fim inf 5—125 (o(t) = 0:(1), e(t) — ec(#)) = limyinf " (we(t), we(1)) > € (w(t), w(t)),

and the limit w satisfies (4.17]), by the argument of Remark it is sufficient to prove that

hminfg%/ot/X(g—gE)(P(g)—P(gg))dmdsz /Ot/XP’(g)\w\2dmds. (4.22)

el0
Setting
P(o) — P(o:) .
7 . Plo) - Ple.) if 0 # 0.
e 0 — O¢
P'(p) if 0 = o.,

we obtain a family of nonnegative and uniformly bounded functions that satisfies Z., —
P'(o) m® L'ae. in X x (0,T) whenever 9., — o m ® Z1-ae. in X x (0,7). On the

other hand .

_(Q - QE)(P(9> - P(Qs)) = Za’wap'

c2
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We conclude by applying Lemma to a subsequence (g,) on which the liminf in (4.22)
is attained and convergence m @ Z'-a.e. in X x (0,7) holds.
O

Let o € ND(0,T) be the solution provided by Theorem with initial datum g € V.
By applying Theorem to the difference quotients
1
€
and using the strong differentiability of ¢ — o, with respect to V¢ (see (3.35)) we obtain
the following corollary.

Corollary 4.7 Let o € ND(0,T) be the solution provided by Theorem with wnitial
datum o € VN L>®(X,m). Then w := %g is a solution to (4.16), with initial datum
w = LP(p).

(QtJrs - Qt)

Part II
Continuity equation and curvature
conditions in metric measure spaces

5 Preliminaries

5.1 Absolutely continuous curves, Lipschitz functions and slopes

Let (X, d) be a complete metric space, possibly extended (i.e. the distance d can take the
value +00). A curve v : [a,b] — X belongs to ACP([a, b]; (X,d)), 1 < p < oo, if there exists
v € LP(a,b) such that

d(v(s),v(t)) < / v(r)dr for every a < s <t <b. (5.1)

We will often use the shorter notation ACP([a, b]; X') whenever the choice of the distance
d will be clear from the context. The metric velocity of v, defined by

[41(r) = lim d(z(r Tf‘)w”’

(5.2)

exists for #!-a.e. r € (a,b), belongs to LP(a,b), and provides the minimal function v, up
to #!-negligible sets, such that (5.1)) holds. We set

A(r) = /a [9|P(r)dr if v € ACP([a, b]; X), (5.3)

+00 otherwise.
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Notice that d?(y(a), (b)) < (b — a)P A, (7).

A continuous function 7 : [0,1] — X is a length minimizing constant speed curve
if A1(y) = d(7(0),~7(1)) = |¥|() for ZL'-ae. t € (0,1), or, equivalently, if A,(y) =
d?(~v(0),7(1)) for some (and thus every) p > 1. In the sequel, by geodesic we always
mean a length minimizing constant speed curve.

The extended metric space (X,d) is a length space if

d(zg, 1) = inf {Al(’y) cy € AC([0,1]; X), ~(i) = xl} for every xg,z; € X. (5.4)

The collection of all Lipschitz real functions defined in X will be denoted by Lip(X), while
Lip, will denote the subspace of bounded Lipschitz functions.

The slopes |D¥ |, the local Lipschitz constant |Dep| and the asymptotic Lipschitz con-
stant |D*p| of ¢ € Lip,(X) are respectively defined by

o (e(y) — p(z)) o lo(y) — p(@)|
[DFp|(x) = hr;lj;lp o) =, Dg|(z) := hr;lj;lp ) (5.5)
. o lp(y) — ()] . o
D p|(z) := hryT’lziljp W = 17}{61 Lip(f, B, (z)), (5.6)

y#z

with the convention that all the above quantities are 0 if x is an isolated point. Notice
that |D*¢| is an u.s.c. function and that, whenever (X, d) is a length space,

ID*¢|(x) = limsup [De|(y),  Lip(p) = sup [Dp(z)| = sup [D*p(z)]. (5.7)

y—x reX zeX

For ¢ € Lip,(X) we shall also use the upper gradient property

p(v(1)) = (7(0))] S/O Dl (y()[7(8)] dt (5-8)

whose proof easily follows by approximating |D*p| from above with the Lipschitz constant
in balls and then estimating the derivative of the absolutely continuous map ¢ o 7.

5.2 The Hopf-Lax evolution formula

Let us suppose that (X,d) is a metric space; the Hopf-Lax evolution map Q; : Cy(X) —
Cp(X), t > 0, is defined by Qo f = f and

d*(y, z)

Quf(x) = inf f(y) + —2; t>0. (5.9)
We shall need the pointwise properties
igl(ff < Qif(x) <supf forevery z e X, t >0, (5.10)
X
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__Qt f(z) > ]D Q:f|*(z) foreveryz € X, t>0 (5.11)

(these are proved in Proposition 3.3 and Proposition 3.4 of [4], d*/d¢ denotes the right
derivative).

When (X,d) is a length space (Q;);>0 is a semigroup and we have the refined identity
5, Thm. 3.6]

Qt fz) = |DQtf| (x) forevery x € X, t > 0. (5.12)

Inequality ((5.11)) and the length property of X yield the a priori bounds

Lip(Q.f) < 2Lip(f) ¥t>0,  Lip(Qf(z)) <2[Lip(f)]° Ve e X, (5.13)

5.3 Measures, couplings, Wasserstein distance

Let (X,d) be a complete and separable metric space. We denote by (X)) the collection of
its Borel sets and by (X)) the set of all Borel probability measures on X endowed with
the weak topology induced by the duality with the class Cy(X) of bounded and continuous
functions in X. If m is a nonnegative o-finite Borel measure of X, &2%¢(X, m) denotes the
convex subset of the probabiliy measures absolutely continuous w.r.t. m. &2,(X) denotes
the set of probability measures p € Z(X) with finite p-moment, i.e.

/ d?(x, o) dp(z) < oo for some (and thus any) z € X.
X

If (Y,dy) is another sparable metric space, » : X — Y is a Borel map and p € £(X),
ryu denotes the push-forward measure in Z(Y) defined by ryu(B) := u(r~!(B)) for every
BeAY).

For every p € [1,00), the LP-Wasserstein (extended) distance W, between two measures
o, 1 € P(X) is defined as

WP(p, po) := inf {/ d? (21, 22) dp(zy, 22) - p € P(X x X), mjp = uz}, (5.14)
XxX

where 7 : X x X — X, i =1, 2, denote the projections 7(z1, 7o) = x;. A measure p with
T = pu; as in (5.14)) is called a coupling between 1 and po. If g, po € Z,(X) then a
coupling g minimizing ( exists, W, (o, p11) < 00, and (£,(X),W,) is a complete and
separable metric space; 1t is also a length space if X is a length space. Notice that if X is
unbounded (£ (X), W,) is an extended metric space, even if d is a finite distance on X.

The dual Kantorovich characterization of W, provides the useful representation formula
(here stated only in the case p = 2)

1
§W22<N07,U1) = sup {/ Qi dun —/ edpg ¢ € Llpb(X)} (5.15)
X
where (Q;)=o is defined in (5.9).
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5.4 WW,-absolutely continuous curves and dynamic plans

A dynamic plan 7 is a Borel probability measure on C([0,1]; X). For each dynamic plan
7 one can consider the (weakly) continuous curve p = (ps)scpa] C Z(X) defined by
p(s) == (es)ymw, s € [0,1] (we will often write p, instead of p(s) and we will also use an
analogous notation for “time dependent” densities or functions); here

es 1 C([0,1; X) = X, es(7) :=(s) (5.16)

is the evaluation map at time s € [0, 1].
We say that 7r has finite p-energy, p € [1, 00), if

y(m)i= [ Ay dm(y) < oc, (5.17)

a condition that in particular yields v € ACP([0,1]; X) for m-almost every . If for some
p > 1 the dynamic plan 7 has finite p-energy, it is not hard to show that the induced curve
p belongs to ACP([0,1]; (Z(X),W,,)) and that

1
il < / 4uP dre(y) for Llae. s € (0,1), so that / P ds < (m),  (5.18)
0

where |f15] denotes the metric derivative of the curve p in (Z2(X), W,). Notice that the sec-
ond inequality in can also be written as A,(u) < @,(m). The converse inequalities,
which involve a special choice of 7r, provide a metric version of the so-called superposition
principle, and their proof is less elementary.

Theorem 5.1 ([41]) For any p € ACP([0,1]; (Z(X),W,)) there exists a dynamic plan
with finite p-energy such that

1
1 = (e)gm for every t € [0,1], /mt\pdt:%(w). (5.19)
0

We say that the dynamic plan 7 is p-tightened to p if (5.19) holds. For this class of
plans equality holds in (5.18)), namely

|fus|? = / Y|P dav () for Lt-a.e. s € (0,1). (5.20)

Focusing now on the case p = 2, the distinguished class of optimal geodesic plans GeoOpt(X)
consists of those dynamic plans whose 2-action coincides with the squared L?-Wasserstein
distance between the marginals at the end points:

It is not difficult to check that ((5.21)) is equivalent to

m-a.e. 7y is a geodesic and (e, ;)7 is an optimal coupling between g, 1. (5.22)
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It follows that w € GeoOpt(X) is always 2-tightened to the curve of its marginals, and that
a curve p € Lip([0, 1]; (P2(X), Wa)) is a geodesic if and only if there exists m € GeoOpt(X)
having p has curve of marginals (Theorem is needed to prove the “only if” implication).

Finally, when a reference o-finite and nonnegative Borel measure m is fixed, we say that
e 2(C([0,1]; Z(X))) is a test plan if it has finite 2-energy and there exists a constant
R > 0 such that

p o= (e )y = pm < m, o <R m-ae. in X for every t € [0,1]. (5.23)

5.5 Metric measure spaces and the Cheeger energy

In this paper a metric measure space (X,d, m) will always consist of:
e a complete and separable metric space (X, d);

e a nonnegative Borel measure m having full support and satisfying the growth condi-
tion

m(B,(z0)) < AeP”  for some constants A, B > 0, and some zo € X. (5.24)

The Cheeger energy of a function f € L?(X,m) is defined as

Ch(f) := inf{liminf%/X]Dfn\zdm C fo€ Lipy(X), fo— fin L?(X,m)}. (5.25)

n—o0

If f € L*X,m) with Ch(f) < oo, then there exists a unique function |Df|, € L*(X, m),
called minimal weak gradient of f, satisfying the two conditions

Lip,(X)NL*(X,m) > f, = f, IDfu| = G in L*(X,m) = |Dfl|, <G m-ae.
ch(f) = /X D[ dm.
(5.26)

In (5.25) we can also replace |Df| with |D*f| since a further approximation result of [4]
§8.3] (see [1] for a detailed proof) yields for every f € L?*(X,m) with Ch(f) < oo

3f, €Lip,(X)NLAX,m):  fo— f, |D*fa] = |Dflw strongly in L*(X,m). (5.27)

We will denote by W'?(X,d, m) the vector space of the L*(X, m) functions with finite
Cheeger energy endowed with the canonical norm

£ 122 amy = 11122 xmy + 2CH(S) (5.28)

that induces on W?(X,d, m) a Banach space structure. We say that Ch is a quadratic
form if it satisfies the parallelogram identity

Ch(f 4 g) + Ch(f — g) = 2Ch(f) +2Ch(g) for every f,g € W"*(X,d, m). (5.29)
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In this case we will denote by &€ the associated bilinear Dirichlet form, so that Ch(f) =
%8( £, f); if B is the m-completion of the collection of Borel sets in X, we are in the setting
of Section ; keeping that notation, H = L?(X, m) and V is the separable Hilbert space
W12(X,d, m) endowed with the norm . Under the quadraticity assumption on Ch it
is possible to prove [6, Thm. 4.18] that can be localized, namely

DU + )2+ DU — )2 = 2DJ +2IDgl}, mae i X (530
It follows that
1 1 . ID(f+e9)l2, — IDfI2,
(.0) = T(f,0) = 10U + )~ (s — o) = i PV =PI 5 )

is a strongly continuous bilinear map from V to L'(X,m), with I'(f) = |Df|%. The
operator I' is the Carré du Champ associated to € and € is a strongly local Dirichlet form
enjoying useful I'-calculus properties, see e.g. [17, [7,[49], and the mass preserving property
(3.14) (thanks to ([5.24)). In the measure-metric setting we will still use the symbol L to
denote the linear operator —A : V — V' associated to &€, corresponding in the classical
cases to Laplace’s operator with homogenous Neumann boundary conditions. We also set

D:={feV: LfeH}, (5.32)

the domain of L as unbounded selfadjoint operator in H, endowed with the Hilbertian
norm || f||3 := ||fII3 + |[Lf||4. The operator —L generates a measure preserving Markov
semigroup (P;):>o in each LP(X,m), 1 < p < oc.

Recall that the Fisher information of a nonnegative function f € L'(X,m) is defined

F(f) :=4&(\/f,\/f) = 8Ch(\/f) = /{M} @ dm (5.33)

with the usual convention F(f) = +oo whenever /f ¢ W123(X,d, m).

5.6 Entropy estimates of the quadratic moment and of the Fisher
information along nonlinear diffusion equations

In this section we will derive a basic estimate involving quadratic moments, logarithmic
entropy, and Fisher information along the solutions of the nonlinear diffusion equation
in the metric-measure setting of the previous section . In order to deal with
arbitrary measures satisfying the growth condition (5.24)), we follow the approach of [5]:
we will derive the estimates for a reference measure with finite mass and then we will
extend them to the general case by an approximation argument. A basic difference here is
related to the structure of the equations, which are not L? gradient flows; we will thus use
the L'-setting by taking advantage of the m-accretiveness of the operator A of Theorem

3.6l
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Let us first focus on the approximation argument. Taking (5.24) into account, we fix a
point xy € X and we set

1/2

V(z) = <a—|—bd2(x,xo)) . Vi(2) = V(@) Ak, (5.34)

for suitable constants b := B + 1, a > (log A) so that

/ e V@) qm = 2be“/ re " m(B,(z)) dr < eaA/ 2re" dr < 1. (5.35)
X 0 0
As in [B, Theorem 4.20] we consider the increasing sequence of finite measures
mo:=e V'm=fBm, my=7Fm=c%my, B :=c% Y, keN,. (5.36)
Notice that 3y, is a bounded Lipschitz function and ;' is locally Lipschitz. The map
Yi 0~ 0/Br isan isometry of L'(X,m) onto L'(X,my). (5.37)

We will denote by Chy, the Cheeger energy associated to the metric measure space (X, d, my);
by the invariance property [5, Lemma 4.11] and Ch;, is also associated to a sym-
metric Dirichlet form & in L?(X,my), inducing a selfadjoint operator L; with domain
Dy C L*(X,my). We fix amap P: R — R as in and we define the m-accretive
operator Ay in L'(X,my) as in , by taking the closure of the graph of A := —Lyo P
defined by (3.51). We eventually consider the realization of Ay in L'(X, m)

Ay = Y ALY, (5.38)

since Y}, are isometries, Ay, is m-accretive in L'(X,m) and it generates a contraction semi-
group (SF)i>o by Crandall-Liggett Theorem as in Theorem [3.4(ND4). Notice that for every
0 € L'(X,m) with

Yio € L*(X,my) ie. / eV’ 5> dm < oo (5.39)
X
(in particular when g belongs to L?(X, m) and has bounded support), setting of := S¥o

the curve Y0} is a strong solution of the equation u' — Ly P(u) = 0 in W2(0,T;V, V¢ )
and for every entropy function W as in Theorem (ND2) we have

/ W (o /30) B dm + / Ex(P(dt/5), W' (" /B,)) dr = / W(a/B)fdm.  (5.40)

Theorem 5.2 For every g € L'(X,m) we have

’lcle SFo=S,0 strongly in L*(X,m) (5.41)
and the limit is uniform in every compact interval [0,T].
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Proof. By Brézis-Pazy Theorem [22] Thm. 3.1], in order to prove ([5.41)) it is sufficient
to check the pointwise convergence of the resolvent operators Ji= (I +7A) to ), =
(I+7A)" in LY(X,m), i.e

llcle Jf=1.f strongly in L'(X,m) forevery 7 >0, f € L'(X,m). (5.42)

Since J¥, J. are contractions, for every g € L'(X, m) we have
||Jf—f - JTf”L1 < ||Jf'f - Jﬁg + Jig - JTg + JTg - JTfHLl < 2||f - gHL1 + ||J£g - JTgHL1

so that by an approximation argument it is not restrictive to check for f e L'N
L*(X,m) with bounded support.

Let f* = Jkf € L}(X, m); recalling Theorem . it is easy to check that h* =Y, f* =
fk/B, € L*(X, my) is the solution of

hY — LyP(hY) = f/By in L*(X,my).
If we denote by P~ : R — R the inverse function of P, then 2* = P(h¥) belongs to
Dy C L*(X,my,) and solves
P2 — Lkzk = f/ﬂk (5.43)
Introducing the uniformly convex function V*(r fo dx which still satisfies the

uniform quadratic bounds , the solutlon to problem can be characterized as
the unique minimizer in L2(X ,my,) of the uniformly convex functional

z s DF(2) = /X V*(z)dmy, + Chg(z) — /X fzdm. (5.44)

Arguing as in the proof of [5, Theorem 4.18] it is not difficult to show that z* converges
strongly to z, in L*(X,mg) C L*(X,m), where z, is the unique minimizer of

2 O(2) = / V*(z)dm + Ch(z) — / f zdm, (5.45)
b X
with
/ V*(25) dmy, :/ V*(zf)ﬁkdm—)/ V*(z;)dm as k1T oo. (5.46)
X X X
Since every subsequence n — k(n) admits a further subsequence n +— k’(n) along which
AR z, converges mg (and thus m)-a.e., the Lipschitz character of P yields pEM hr

m-a.e.; since By — 1 uniformly on bounded sets We also get fT RN fr m-a.e.
When f > 0 the order preserving property (3.49) shows that f* > 0 and the mass
preserving property yields

/Xffdm:/thdmk:/xfdm:/xﬁdm, (5.47)

so that ff,(n) — f- strongly in L'(X, m). Since the sequence n — k(n) is arbitrary, we
conclude that f* — f, strongly in L'(X, m) as k — oo. When f has arbitrary sign, we still
use the monotonicity property to obtain the pointwise bound |f*| < J¥| f| and we conclude
by applying a variant of the Lebesgue dominated convergence theorem. U
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We consider now the logarithmic entropy density U, (r) := rlogr, r > 0 and for given
nonnegative measures y € Z(X) and k € Ny, we set

U (1) ::/ Uso(0/ ) By, dm = / elog(o/fr) dm,  p = om < m; (5.48)
X X
we will simply write Uy (1) when k = oo and S, = 1; we will set UL (1) = +o0 if u is not
absolutely continuous w.r.t. m. The inequality
Uso(r) > 1 — e — 2 foreveryveR, r>0, (5.49)

and (5.35) show that the negative part of the integrand in (5.48)) is always integrable
whenever ;1 € Z(X) and k < oo with

Uk () +/ VZdu > 0. (5.50)
be
When k = oo and p € P5(X) we also have
Uoo (1) + / Vidp = Uk (u) + / Vidp > 0. (5.51)
b b

Moreover, if pup = opm is a sequence of probability measures with o, — p strongly in
LY(X,m) with g = gm € P5(X), by [3, Lemma 9.4.3] and writing U%_ (1) + [, Vi duy as
the relative entropy of u; with respect to the finite measure my we have

lim inf U (s1,) +/ VEdue > Uso(p) +/ V2dp. (5.52)
Even easier, since the sequence Vj, is monotonically increasing, we have
lim inf/ VEdu > / V2dp. (5.53)

Finally, defining the relative Fisher information in (X,d, my) as in (5.33]) by

Fi(0) := 8Chi(v/0/Bk) (5.54)
and observing that |[\/o/Bk| r2(x.my) = [x 0dm, [5, Proposition 4.17] yields
li]gn inf F.(0x) > F(o). (5.55)
— 00

Theorem 5.3 (Entropy, quadratic moment and Fisher information) In the

metric-measure setting of Section let p € LY( X, m) satisfying i = pm € P5(X) and
U (1) < 00, and let p be the corresponding solution of the nonlinear diffusion equation
(3.31) according to Theorem . Then there exists a constant C' > 0 only depending on

a, B of (3.24) and (5.24) such that for every t € [0,T] the probability measures p; = oym
belong to P2(X) and satisfy

t
uw<ut)+2/ V2dut+3/ Fip,) dr§e0t<uoo(ﬂ)+2/ V2 ). (5.56)
X 2 0 X
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Proof. By a standard approximation argument, the L!-contraction property of Theorem
ﬂ (ND4) and the lower semicontinuity of entropy, quadratic momentum and Fisher infor-
mation ((5.52)), (5.53)), (5.55)), it is not restrictive to assume that p also belongs to L*(X, m)
and has bounded support. By Theorem it is also sufficient to prove the analogous
inequality

t
W) +2 [ Vit [ R ar < (W2 [ vida), 657
X 2 0 X

where pF := SFp and uf := ofm.

Since Uy does not satisfy the conditions of (ND2) of Theorem [3.4, we cannot imme-
diately compute its derivative along the solution of the nonlinear diffusion equation as in
; we thus introduce the regularized logarithmic function

W.(r) = (r+¢e)(log(r+e) —loge) —r =Ux(r+¢e) —Ul(e)(r+e)+e, &>0, (558)
satisfying

1
r+e

W.(0) =W./0) =0, W.r)=log(r+e)—loge, W!'(r)=

£

(5.59)
Applying to W, we obtain
/ W0}/ B) Be dm + / Ex(P(e"/Be), W(dt/B)) dr = / W.(e/B)fedm.  (5.60)
X 0 X

Standard T-calculus (see e.g. [17]) and the fact that oF/By € D(Ch;) for almost every
t €0,7] yield

_Pler) 2
o /Be+e oF /B + €
Setting W!(r) := rlog(r + €) and W2(r) := e(log(r + ¢) — loge) and using the fact that
[y ofdm = [, odm and W2(r) > 0, (5.60) yields

T(P(0}/Br), WL (0F/Br)) = T(of/Br. 0f | Br) > T(of/Br, 0f / Br)-

t k k
/}(W;(Qf/ﬁk)ﬁkdm—i—a/o /XF@;f//ﬂg];i/fk)Bkdmdr (5.61)
< [ (Wierm + w2/ o dm (5:62)

We observe that
Wr) <r(r+e—1), Wrr) L Us(r), W2(r) <, 11% W2(r) =0,
so that we can pass to the limit in (5.61)), (5.62)) as € | 0 obtaining
t
W) +a [ Fuleh) dr < U (). (5.6
0
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We now compute the time derivative of t — [}, Vi duy obtaining

54 4Vb M)
dt Vk d:ut = 2&(P(o /ﬂk Vk )< — / (0f / Br)Vifr dm
b 1/2 8b
< —(Fk( )/ Vidui“) < §Fk(gf)+—2/ Vidpy.
X a” Jx
Integrating in time and summing up with ([5.63) we obtain

U’éo(uf)+2/v2dut 2/ a(&)dréﬂ&(ﬂ)ﬂ/Vidﬂ
X

+§—f ;(/XVidN’:) dr.

Since U (uf) + 2 [, Vidut > [ Vidut Gronwall Lemma yields (5.57) with C := 3ZF1.
U

5.7 Weighted I'-calculus

In the metric-measure setting of Section , consider a nonnegative function g € L (X, m).
Any f € LP(X,m) obviously induces a function in LP(X,n), with n = pm, that we shall
denote f; in the following we will often suppress the symbol “when there will be no risk of
ambiguity:.

Consider now the symmetric and continuous bilinear form in V x V

Eo(f9) :Z/XQF(f,g) dm  f, g€V, (5.64)

which induces a seminorm: we will denote by V, = Vg, the abstract Hilbert spaces con-
structed from €, as in Section [3.2] namely the completion of the quotient space of V
induced by the equivalence relation f ~ g if €,(f —g, f —g) = 0, with respect to the norm
induced by the quotient scalar product. If ¢ € V then its equivalence class in V, will be
denoted by ¢, (or still by ¢ when there is no risk of confusion), whereas we will still use
the symbol €, to denote the scalar product in V,. By locality, if ¢,9 € V with ¢ = ¢
m-a.e. on {p > 0} then ¢, = ¢,. In the degenerate case when ¢ = 0 m-a.e., then V, reduces
to the null vector space and everything becomes trivial.

Notice that the quadratic form %89 is always larger than the Cheeger energy Ch, induced
by the measure n = pm, in the sense that for every f € V %SQ(f) > Chn(f), see also
Lemma below. When ¢ = 1, V; corresponds to the homogeneous space Ve associated
to € already introduced in Section

The following two simple results provide useful tools to deal with the abstract spaces

V.
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Lemma 5.4 (Extension of I' to the weighted spaces V,) Let p € LY(X,m), and let
(pn) C V be a Cauchy sequence with respect to the seminorm of V,, thus converging to
¢ €V,. Then F(gpn) is strongly converging in L'(X, om) to a limit that depends only on o

—~—

and ¢ and that we will denote by I[y(¢). When ¢ = ¢, for some p € V then [,(¢) = I‘(gp)
om-a.e. in X. The map

1 1
L(¢. ) == ZF@(Cb + ) — ZFQ(Cb —v) (5.65)
is a continuous bilinear map from V, to L' (X, om) and (5.64) extends to V, as follows:

&6, 1) = /X oTy(b)dm b eV, (5.66)

Proof. 'The convergence of F((pn) in L'(X, om) and the independence of the limit follow
from the obvious inequality

/X(r(wl) — T (1) gdm:/xr(wl—wg)mr(wlwg)l%dms o1 — well 191 + elly,

for every ¢y, ¥ € V. When ¢ = ¢, then we can choose the constant sequence ¢, = ¢,
thus showing that I,(¢) = I'(p) om-a.e. in X. It is immediate to check that I,(-) satisfies
the parallelogram rule, so that the properties of I, (-, -) defined in , and follow
from the corresponding properties of I and €, in V. O

The following lemma shows that when the weight g satisfies a mild additional regularity

—_~—

assumption, then [,(yp,) = F(ap) coincide with the minimal relaxed slope relative to the
measure gn.

Lemma 5.5 (Comparison with the weighted Cheeger energy) Let n = pm where
0 € L®(X,m) is a nonnegative function satisfying /o € V, and let Ch, be the Cheeger
energy induced by n in L*(X,n) with associated minimal weak gradient |D - |,.,. For every

¢ € V we have ¢ € D(Ch,) with |D@|,w =T (p); in particular, one has the identifications
ID@|wn =I'(¢) = L,(0,) n-a.e. in X.

Proof. By the previous Lemma, setting ¢ = ¢,, with ¢ € V, we have I},(¢) = F(gp) n-a.e.
On the other hand, [2, Thm. 3.6] yields I'(¢) = [D@|,q n-a.e. in X. O

Lemma 5.6 (Stability) Let o, € L°(X,m), t € [0,1], be a uniformly bounded family,
continuous with respect to the convergence in m-measure, let o € LT(X,m) and let By :
V = V be a family of linear operators satisfying

/ oI (Byp) dm < C’/ ol (p) dm  for every t € [0,1], p €V, (5.67)
b b
t — Byp € C([0,1]; V)  for every p € V. (5.68)
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Then By can be extended by continuity to a family of uniformly bounded linear operators
from'V, to'V,, such that

Eo(Bip) < E,(9), for everyt € [0,1], ¢ €V,, (5.69)
t = oL, (B;g) € C([0,1]; LY (X, m))  for every ¢ €V, (5.70)

Proof. Assumption shows that for every t € [0, 1] the operator B; is compatible with
the equivalence relations associated to V, and V,,, so that it can be extended by continuity
to a linear map between the two spaces, still denoted B; and satisfying . Given any
¢ € V,, choosing (p,) C V such that the corresponding elements (p,,), converge to ¢ in
V,, the estimate shows that oI, (B:p,) converges uniformly in time to oI}, (B:¢) in
Ll(X ,m), so that the continuity property follows from the continuity of each curve
L Qtrgt<Bt‘pn)' O

Finally, we discuss dual spaces, following the general scheme described in Section |3.2
see in particular Proposition The space V, is the realization of the dual of V, in V'. Tt
can be seen as the finiteness domain of the quadratic form

1 1
FEl0) =5 (lp) = SE(pp),  LEV (5.71)

peV

We shall denote by €}(-,-) the quadratic form on Vj induced by €;. We denote by —4,
the Riesz isomorphism between V, and Vé’ and by —A7 its inverse. It is characterized by

p=—A) <= &E,(p,0) = () forevery €V, (5.72)

Notice that it is equivalent in to require the validity of the equality for all ¢ € V;
in this sense, corresponds in our abstract framework to the weak formulation of the
PDE —div(oV¢) = ¢ in (2.20), and — A7 is the solution operator. Since —A, is the Riesz
isomorphism, we get

E5(0,0) = &,(A%L, A%0). (5.73)

Correspondingly we set

[(0) :=T,(Ay¢) whenever £ € V. (5.74)
It is clear that I7, : V) L'(X, om) is a nonnegative quadratic map.

Lemma 5.7 (Dual characterization of I'}) For every £ € V' and o € LY(X,m) let us
consider the (possibily empty) closed convex subset of L*(X, om) defined by

G(o,0) :== {g c L*(X, om) : {(@,gp)} < /){g\/F(go) odm for every ¢ € V}. (5.75)

Then £ € V, if and only if G(o, () is not empty; if £ € V, then \/Tx({) is the element of
minimal L*(X, om)-norm in G(p, /).
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Proof. 1f g € G(p,¢) then

1/2
(6.0) < lgllzzceam (Eolp ) for every p €V,

so that £ € V, and
/XF;(K) odm = &3((,0) < /Xg2 odm. (5.76)
Conversely, let us suppose that £ € V, and let ¢ = —A3/; (5.72) yields

(6, 9)] < /X Ty, )] odm < /X To(@) \/Tu(w) odm for every ¢ € V

so that \/ L (0) \/ I[,(¢) € G(o,¢). Combining with (5.76)) we conclude that ,/I(¢) is

the element of minimal norm in G(p, ¢). O

The following lower semicontinuity lemma with respect to the weak topology of V' will
also be useful. Remembering the identification (3.21)), the lemma is also applicable to
sequences weakly convergent in V.

Lemma 5.8 Let 0, — o in L*>(X,m) be nonnegative and assume that £, — ¢ in' V'. Then

liminf &) (£, €,) > E,(L, ). (5.77)

n—oo

If moreover o, — o also in the strong topology of L'(X, m) and

limsup &) (£y,0n) < E(F,£) < o0, (5.78)

n—oo

then for every continuous and bounded function Q : [0,00) — [0,00) we have

Tim. Q(Qn) n)0n dm = /Q () odm. (5.79)

Proof. Concerning ([5.77)), for every ¢ € V, we have

(0, ) — %/ng(gp) dm = lim ((En,gp) - %/Xgnl“(go) dm> < liminf & (£, 0y).

n—oo n—oo

Taking the supremum with respect to ¢ € V we get (5.77)).

Let us consider the second part of the statement and let us set g, = /I ({n),

hn, = gnon. Since h, is uniformly bounded in L?(X,m), possibly extracting a suitable
subsequence we can assume that h, weakly converge in L*(X, m) to h. Since the measures
h,m, o,m weakly converge respectively to hm and om and the densities g, of h,m w.r.t.
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onm satisfy sup,, |gnllz2(x,0,m) < 00 We can apply a standard joint lower semicontinuity
lemma (see, for instance [3, Lemma 9.4.3]) to write h = gp for some g € L?(X, pm), with

/ g% odm < lim inf/ g2 0, dm. (5.80)
X n—oo X

Passing to the limit in the inequalities

|<£n,¢>\g/x\/r;n(£n) V() gndm:/th/r(w)dm for every ¢ €V,
we get
|<€,@Z)>|§/}(h\/F(@/)) dm:/Xg\/F(zﬁ)gdm for every ¢ € V,

which shows that g € G(p,¢). On the other hand, (5.78) and (5.80) yield

/ g*odm < liminf/ g2 0, dm = liminf &y, (U ln) < EL(L,0) = / 5 (L)odm,
X n—oo X

n—o0

so that Lemma |5.7| gives g =  /I(€).
Setting now m, = g,m, M = gm, we know that limsup, [ g2 dm, < [, ¢°dm, and

(5.79) can be written in the form
lim Q On) g diny, = / Q(0)g” dm.

n—oo

This convergence property can be proved writing the integrals in terms of the measures
0, = (0n, gn)gm, which converge in Z(R x R) to 6 = (g, g)ym, using the test function
(u,0) = Q(u)v]”. O

6 Absolutely continuous curves in Wasserstein spaces
and continuity inequalities in a metric setting

In this section we extend to general metric spaces some aspects of the results of [3 Chap. 8].
Even if we will use only the case p = 2, we state some results in the general case for possible
future reference.

Let (X, d) be a complete and separable metric space; we set X := X x [0,1] and define
&:C([0,1],X) x [0,1] = X by &(v,t) := (y(t),t). For every dynamic plan 7 we consider
the measures

M=t Ti=mw®N = &(w) € P(X x[0,1)). (6.1)

|[0,1}’

Notice that the disintegration of fi with respect to time is exactly ((e;)sm)icio,1), i-€. fi
admits the representation

/1:/0 pedA(t)  with g = (eg)y7r. (6.2)
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If 7 has finite p-energy for some p € (1,00), the Borel map (v,t) — v(v,t) = |¥|(t)
(defined where the metric derivative exists) belongs to LP(C([0, 1]; X) x [0, 1], ), so that
the mean velocity v of 7r can be defined by

G(m) = o with 0e (XA, ot = [RldRa0)  (03)

(here (4¢)(ppex © Z(C([0,1]; X)) is the disintegration of & w.r.t. its image f1). More
precisely, Jensen’s inequality gives

/ vPdip < Apy(w). (6.4)

X

In the next definition we make precise the concept of a square integrable velocity density
for a curve of probability measures: differently from [3], here we can consider only the
“modulus” of the velocity field, but this already provides an interesting information in
many situations.

Definition 6.1 (Velocity density) Let u € C([0,1]; 2(X)), i := [ d\ € P(X). We
say that v € LY (X, 1) is a velocity density for u if for every ¢ € Lip,(X) one has

)/@dut—/wdus
X X

The set of velocity densities is a closed convex set in Ll(f(,,&), and we say that v is a

p-velocity density if v € LP(X,f1). We say that v € LP(X, fi) is the minimal p-velocity
density if v is the element of minimal LP(X, fi)-norm among all the velocity densities.

< / |ID*¢|lvdi for every 0<s<t<1 (6.5)
X X(s,t)

Remark 6.2 (Lipschitz test functions with bounded support) We obtain an equiv-
alent definition by asking that (6.5 holds for every test function ¢ € Lip,(X) with bounded
support: in fact, fixing g € X and the family of cut-off functions

Yr(x) = n(d(z,z0)/R)  where n(y) = (1= (y = 1)1)4, (6.6)

every ¢ € Lip,(X) can be approximated by the sequence ¢, := ¢ - ¢,; if v € Ll(f(,ﬁ)
satisfies (6.5)) for every Lipschitz function with bounded support, we can use the dominated
convergence theorem to pass to the limit as n — oo in

)/sondut—/sondus
X X

since

<[ Delvdisll [ vdf,
X X(s,t) (Ban(z0)\Bn(z0))X(s,t)

ID*¢ul(x) < [D*0|(2) Y (@) + sup [p|XE, , (20)\ Ba (o) ()-
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For p € (1,00), we are going to show that the minimal p-velocity density exists for curves
p € ACP([0,1]; (P(X),W,)) and that it is provided exactly by (6.3), for every dynamic
plan with finite p-energy 7 tightened to u. Heuristically, this means that for a tightened
plan 7 associated to p, while branching may occur, the speed of curves at a given point at
a given time is independent of the curve and given by the minimal p-velocity. The starting
point of our investigation is provided by the following simple result.

Lemma 6.3 (The mean velocity is a velocity density) Letw be a dynamic plan with

finite p-energy and let p, fi, v be defined as in (6.1), (6.2), (6.3). Then v € LP(X,f) is a
velocity density for p.

Proof. Immediate, since for all ¢ € Lip,(X) the upper gradient property of |[D*y| yields

[ etui [ wan= [ (o600 -etin)int < [ [ Drelnhie) arant

-/ D62 ())7 (3. 7) () = / Dl de
C([0,1];X) X (s,t) X x(s,t)

The next Lemma shows that we can use a velocity density even with time-dependent
test functions.

Lemma 6.4 Let p € C([0,1]; (X)), p == [
velocity density for p. Then u € AC([0, ] (P
has

pedh € P2(X) and let v € LYX, i) be a
(X), W1)) and for every ¢ € Lip,(X) one

/ op dpy — / s dus < / (07 ¢r + [D* g |v)dp for every 0 < s <t <1, (6.7)
X X X x(s,t)

where .
O ¢p(x) = limsup — (pren () — @r(2)). (6.8)
no R

Proof. 1f p is 1-Lipschitz then [D*p| < 1, so that from (§6.5)) and the dual chacracterization
Wilps, ) = sup

of W, we easily get
/ edus — / pdus| < / m(r)dr, where
p€Lip,(X), Lip(p)<1

m(r) = / vdu,, sothatm e L*(0,1).
X

If we consider the map 7(s,t) := [, ¢, du, and we call L the Lipschitz constant of ¢, we
easﬂygetforeveryOﬁsgs §1 0<t<t<1

t/
(s 8) — (s, )| < LIs' —sl,  |n(s,¢') —n(s,0)| < L / m(r) dr.
t
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so that we can apply [3, Lemma 4.3.4] to get the absolute continuity of t — n(t,t) with

d 1 , 1
—n(t,t) < limsup - / @i d(ptr — pi—p) + limsup — / (Pren — 1) dpsy. (6.9)
dt no N no  hJx

Choosing a Lebesgue point of t — [ « ID*¢lvdp, and applying Fatou’s Lemma we conclude
that we can estimate from above the derivative of ¢ — n(t,t) by

/ O ¢y dpuy + / D"y |vy dpsy.
X X
Since t — n(t,t) is absolutely continuous, by integration we get the result. O

Theorem 6.5 (The metric derivative can be estimated with any velocity density)
Let p € C([0,1]; (X)), ji := [y dX € P(X) and let v € LP(X, 1) be a p-velocity density
for u, for some p € (1,00). Then u € ACP([0,1]; (Z(X),W,)) and

P < / vf dpy  for M-a.e. t € (0,1). (6.10)
b

Proof. We give the proof in the case p = 2, the general case is completely analogous.
With the notation of Kuwada’s Lemma [5, Lemma 6.1], denoting by Q;p the Hopf-Lax
evolution map given by (j5.9)), one has

1
§W22(M57Mt = sup / Qupdu — / o dus 0<s<t<L1.
X

@€Lipy (X
Setting ¢ =t — s and recalling that - ) gives

|D*Qr/€¢|2

57 n X x [0,/],

anr/ZSO S -

the inequality (6.7]) yields
D*Q, .
/le@dut—/ pdps < // | W' +1|D Qr/gso\vs+r) dpstr dr
X

< _/ / Uerr dptstr dr,
2 0 JX

where we used that 2|D*Q,/p¢| vsir < [D*Q,e0|?/€ + €v2,,. We conclude that

W) < 50 =9) [ ([ ) ar

that yields first the 2-absolute continuity of the curve ¢ +— pu, in (P2(X), Ws). Also
inequality ((6.10)) follows, because we have

”f2( ) 1 t+h

.2 . 2 \Ht+-hy Mt . 2 2

— e TV K — f—

| ] }llln% % }llln(l] h/t / v, dpy ) dr / vy dpy

for A-a.e. t € (0,1). O
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Theorem 6.6 (Existence and characterization of the metric velocity density)

[M.1] A curve p € C([0, 1]; Z(X)) belongs to ACP([0, 1]; (Z(X), W), p € (1,00), if and
only if p admits a velocity density in LP(X, ). In this case there exists a unique (up
to fi-negligible sets) minimal p-velocity density v € LP(X, i) and

| i P :/ o’ dpy  for M-a.e. t € (0,1). (6.11)
b

[M.2] If m is a dynamical plan p-tightened to p and the mean velocity v of m is defined as
in (6.3), then v =v fi-a.e. in X and

o(y(t),t) = |¥|(t)  for w-a.e. (7,1). (6.12)

In particular, the velocity of curves depends 7-a.e. only on (y(t),t) and it is inde-
pendent of the choice of 7.

Proof. The characterization of ACP([0,1]; (Z2,(X),W,)) in terms of the existence of a
velocity density in Lp()z' , it) follows in the only if part from the combination of Theorem
with Lemma[6.3] and in the if part from Theorem|[6.5] The existence and the uniqueness
of the minimal p-velocity density is a consequence of the strict convexity of the LP-norm.

If 7 is a dynamic plan p-tightened to p and v is defined in terms of , we can combine
(6.4) and Theorem (which provides the sharp lower bound on the L” norm of velocity
densities) to obtain that v is the minimal p-velocity density and that |, [? = [, v} dp, for
M-a.e. t € (0,1), so follows. Combining this information with yields

/ o dpty = / Kol dm(y)  for Aae. £ € (0,1),
X X

so that, recalling (6.3]), we get

[ ([ platasn) anten = [ [ aiee it

It follows that, for fi-a.e. (z,t), |§:| is 7, +-equivalent to a constant. By the definition of v,
this gives (6.12]) with v in place of ©. Using the coincidence of v and © we conclude. O

7 Weighted energy functionals along absolutely con-
tinuous curves

Let m be a reference measure in X such that (X, d, m) is a metric measure space according
to Section 5.5} and set m :=m ® X, with A = £*[jg1). Let Q : [0,1] % [0, 00) — [0, 00] be a

lower semicontinuous function satisfying

liﬁ)lrﬂ(s,r) =0 for every s € [0, 1]. (7.1)
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Our typical example will be of the form

Q(s,1) = w(s)Q(r). (7.2)

Let us fix an exponent p € (1,00) and let us consider a curve p € ACP([0, 1]; (Z2(X), W,)).
We denote i = fol s dX(s) € 2(X) (namely the probability measure whose second
marginal is A and whose disintegration w.r.t. the second variable is us, s € (0,1)), and by
v E LP(X' , ) the minimal p-velocity density of u. We suppose that

_ dps
~dm

i =om<m, sothat o(s,-)=0s(") for A-a.e. s € (0,1), (7.3)

where dv/dm denotes the Radon-Nikodym density of the measure v with respect to m.
Then we introduce the functional

Agq(p;m) ::/XQ(S,QS)vpd[L:/Xgﬂ(s,gs)vpdtﬁ. (7.4)

We omit to indicate the dependence on p in the notation of the functional Agq, since p will
be fixed throughout this section. Notice that when Q(s,7) = 1 we have the usual action
J5 v’ djt = A,(p), the functional is independent of m and it makes sense even for curves
not contained in Z(X,m).

If 7 is a dynamic plan p-tightened to p (recall that this means @7,(7w) = A,(p)), thanks
to we have the equivalent expression

Ag(jiim) = / / (s, 0u(1(s))) P (5) ds dre (7). (7.5)

Theorem 7.1 (Stability of the weighted action) Let (1,) C ACP([0,1]; (£ (X), W,))
with fi, = o,m <K m, such that

lim 0, = 00 strongly in L*(X ) (7.6)

n—oo

and, Writing oM =: floo =: fol Hoo(S) dA(s), one has

limsup A, () < Ap(pis) < 00. (7.7)
n—o0
Then
lim inf -AQ(:Un; m) > AQ(Mw; m) (78)
n—oo

and, whenever Q is continuous and bounded,

lim Ag(pin; m) = Ag(poo; m). (7.9)

n—oo
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Proof. In this proof we are going to apply standard facts from the theory of Young mea-
sures, we follow [3], even though the state space therein is a Hilbert space, because the
vector structure plays no role in the results we quote, the Polish structure being sufficent.
Up to extraction of a subsequence, and equi-continuity in the weak topology yield

fns — Hoos Weakly in Z(X) for every s € [0, 1]. (7.10)

We can apply [3, Thm. 5.4.4] first to the sequence (fi,,v,), with v, equal to the velocity
densities of ji,,. We find that the family of plans v, := (¢ X v,,)3fi, has a limit point v, in
P (X x[0,00)) whose first marginal is fio, and satisfies (redefining v,, to be the subsequence
converging to V)

/ lylP dv (2, s,y) < lim inf/ Y|P dvy (2, s,y) < Ap(fioo)- (7.11)
X x[0,00)

N0 J X x[0,00)

If (V2s) (wsyex C Z2([0,00)) is the disintegration of Voo W.r.t. fin, setting

Uoo(x78) = / dem,s<y>’
0

we obtain from the previous inequality and Jensen’s inequality that v, belongs to L? (X o),
with [[ose 2, ¢ o < Aplee).

For every ¢ € Lip,(X) and 0 < r < s < 1, we can use the upper semicontinuity of
|ID*¢| to pass to the limit in the family of inequalities corresponding to (6.5)

‘/ Spdﬂn,s_/ Spdlun,r
X X

obtaining
‘/ deﬂw,s _/ Spdﬂoon“ S/ ’D*@h}oo d/]OO'
X X X x(r,s)

It follows that vy is a p-velocity density for the curve jin, so that [lvl”, (R oo > Ay, (o)

<[ el | D"l @)y dva (. 5.9),
X x(r,s) XX (r,s)x[000)

o
and since we already proved the converse inequality, equality holds. If v? is the minimal

p-velocity density, from the equality [[vZ|[}, Rio) = Ay (oo) We get vy = vi,. Denoting

now by (z,y,7) = (z,s,y,r) the coordinates in X x [0,00) x [0,00), let us now consider
the plans o, = (Z,y, 0.(2))sn = (Z,0,(Z), 0n(Z) )4/, € P (X x [0,00) X [0,00)). From
(7.6) we obtain the existence of ¢ : [0, 00) — [0, 00) with ((r) — 400 as r — oo such that

Sup/C(T)Gn(i“,y,r) =Sup/ 0nC(0n) dm < o0,

neN neN J X

so that o, are tight (the marginals of o, with respect to the block of variables (Z,y)
are v,, thus are tight). We can then extract a subsequence (still denoted by o) weakly
converging to o, whose marginal w.r.t. (Z,y) is V.
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The strong L' convergence in (7.6]) also shows that for every ¢ € Cb(f( x R) one has

/C(i’ﬂ‘) dowo(Z,y,r) = lim [ ¢(Z,7)doy(Z,y,7) = lim [ ((Z, 0n(T))0n(T) dm(Z)

:“/Ozx 000 (%)) 000 (%) d(Z "/°°<); 000(7)) dfiioo (7),

so that (¢ X 0c)fleo 15 the marginal w.r.t. (Z,7) of 0.
Hence, disintegrating o, with respect to v.,, we obtain

O oo (dZ, dy,dr) = 0,z (dr) x vz(dy)djs(T).

Since the map (Z,y,r) — Q(s, r)y” is lower semicontinuous and nonnegative in X x [0, 00)?,
assuming (with no loss of generality) 1 = sup Q, we get

liminf Aq(pn;m) = 1iminf/Q(s,7“)yp do,(Z,y,1) > /Q(s,r)yp do oo (Z,y,1)

n—00 n—00
> / (5, 00 )2, dfise > Ad(J100; m).
X

By applying this property with Q and 1 — £, since Aq(u;m) = A,(¢) when Q = 1 and

(7.7) holds, we can use Remark [4.4] to obtain (7.9)). O

8 Dynamic Kantorovich potentials, continuity equa-
tion and dual weighted Cheeger energies

In this section we will still consider a metric measure space (X,d,m) according to the
definition of Section and we will focus on the particular case when

p = 2 and the Cheeger energy Ch is quadratic (see (5.29)), (8.1)

so that V = W2(X,d, m) is a separable Hilbert space; we will also consider continuous
curves (fis)seo,1] C Z(X) with uniformly bounded densities w.r.t. m, i.e.

p e C([0,1]; 2(X)), fs = 05, R :=sup || 0s|| Lo (x,m) < 00. (8.2)
Our main aim is to show that the weighted energies €,, (or better, their dual forms &} )

provide a useful characterization of the minimal 2-velocity of absolutely continuous curves
pin (P9(X), Ws), now not only in the form of inequality as in (6.5]), but in the form of

equality, see (8.5)).

Lemma 8.1 (Absolute continuity w.r.t. V}) Let yu be as in (8.2) and let v € L*(X, 1)
be a velocity density for u, i.e. satisfying (6.5)). Then for every ¢ € V one has

‘/ ¢ (o1 — 0s) dm‘ < / Dol vdip  for every 0 <s<t<1. (8.3)
X X X(s,t)
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In addition o : [0,1] — L1 N L(X,m) has finite 2-energy with respect to the Vi norm,
more precisely

llos — QtH%;é < R(t— 3)/ v?dfi  for every 0 < s <t < 1. (8.4)
X X(s,t)

Proof. In order to prove (8.3) we simply approximate ¢ with a sequence of Lipschitz
functions ¢, strongly converging to ¢ in L?(X, m) such that [D*p,| — |Dypl, in L*(X,m)
and we pass to the limit in (6.5]), using the fact that p; = g;m with uniformly bounded
densities.

By (8.3) it follows that

‘/X(Qt_Qs)‘Pdm‘ S/:(/X|D90|3097“dm>1/2</X"Ufgrdm)lﬂdr
SRI/2(/)(|D30|fUdm)1/2 /St (/va Qrdm>1/2dr,

and since y is arbitrary we obtain (8.4]). O

Theorem 8.2 (Dual Kantorovich potentials and links with the minimal velocity)
Let us assume that Ch is a quadratic form and let p be as in (8.2). Then u belongs to
AC?([0,1]; (2(X), Wy)) if and only if there exists ¢ € L*(0,1; V') such that

/ v (o — 0s)dm = / (e(r), o) dr for every ¢ € V, (8.5)
X s

and, recalling the definition (5.71)) of €} ,

/0 &, (U(r),(r))dr < oco. (8.6)

In particular £(r) € V; for £L'-a.e. v € (0,1) and, moreover, it is linked to the minimal
velocity density v of pu by

/va o dm =&} ({(r),L(r)) for Lteae. re(0,1), (8.7)
v2 =T, (¢,) pr-a.e. in X, for L'-a.e. v € (0,1), (8.8)
where ¢, = —Ayl(r) €V, is the solution of (5.72)) with { = {(r).

Proof. 1f p € AC?*([0,1]; (£2(X),Ws,)) then the existence of ¢ and follow imme-
diately by Lemma [8.1, Theorem and the fact that V' is a separable Hilbert space.
Differentiating with v equal to the minimal velocity density in a Lebesgue point for
S f X |Dylyvs0s dm and for a countable dense set of test functions ¢ in V we get

& (6(r), £(r)) < /X 2ordm for Llae 1€ (0,1), (8.9)
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which in particular yields (8.6).

In order to prove the converse implication (and that equality holds in (8.7)), as well as
(8.8), let us start from p as in (8.2)), satisfying and for some ¢ € L?*(0,1; V).
Let us consider ¢ € Lip(X) with bounded support, the solution ¢, = —A3((r) € V,, of
with ¢ = {(r) and 1, the equivalence class associated to ¢ in V, , so that

(), ) = / 0T, (60, 1y, ) dm

Now observe that (8.5 and yield for every 0 < s <t <1

\/deut—/xwdus s/:

since for ¢ € Lip,(X)

L, (¥,,) =T (¢) = Dy2 < |D*¢|* om-ae. in X.

/X 0Ly, (67, %,,) dm’ dr < /St /X Or (Fgr(¢r))l/2|D*¢| dmdr

In view of Remark , we see that 0, = (Fgr(@n))l/ *isa velocity density for the curve pu.
Applying Theorem [6.5| and (5.73)) we get p € AC?([0, 1]; (Z(X), Ws)). In addition, since

/})&mn /’ (br)ordm = £, (6r.6,) = £5.(L(r), () for L1oae. v € (0,1),

comparing with we obtain that v is the minimal velocity density v, thus obtaining

and (B.8)). O

9 The RCD*(K, N) condition and its characterizations
through weighted convexity and evolution varia-
tional inequalities

9.1 Green functions on intervals
We define the function g : [0, 1] x [0, 1] — [0,1] by

(A =t)s ifse|0,1],
“”y_ﬁu—@iuemu, ©-1)

so that for all t € (0,1) one has
o2
~9°

It is not difficult to check that (see e.g. [55, Chap. 16]) the condition v’ > f can be
characterized in terms of an integral inequality involving g.

(s,6) =0, in 2'(0,1), g(0,t) =g(l,t)=0. (9.2)
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Lemma 9.1 (Integral formulation of u” > f) Letu € C([0,1]) and f € L'(0,1). Then
u" > f in 2'(0,1), (9.3)

if and only if for every 0 <ro <r; <1 andt € [0, 1] one has
1
u((1—t)rg+try) < (1 —t)u(rg) +tu(ry) — (ry —ro)? / F(1—=s)rg+sri)g(s,t)ds. (9.4)
0

Proof. 1In order to prove the implication from ({9.3)) to (9.4]) it is not restrictive to assume
u € C*([0,1]) and f € C([0,1]). The proof of (9.4) follows easily from the elementary
identity

uw((1—t)rg +try) = (1 — t)u(re) + tu(ry) — (ry — 7’0)2/0 u"((1 — s)rg + sr1)g(s, t) ds.

Concerning the converse implication, we choose r; :=r+h, ro =r—h and t = % obtaining

%u(r +h) + %u(r —h) —u(r) > 4h2/0 f(r—h+2hs)g(s,1/2)ds.

Multiplying by 2h~2 and by a nonnegative test function ¢ € C°(0,1) we get after an

integration

1 1 1

= | ) () +C(r =) = 2(r)) dr > 8/ g(s,1/2)</ F(r—h+2hs)C(r) dr) ds.
0 0 0

Passing to the limit as A | 0 we obtain

/Olug”drz8/01g(s,1/2)ds/01f<dr:/Olfgdr. O

In the next lemma we show that functions satisfying the weighted convexity condition

(9.4) are locally Lipschitz, this will allow us to apply Lemma

Lemma 9.2 Let ® C R, © # {0}, be a Q-vector space and let u : (0,1)ND — R
satisfy (9.4) for some f € L .(0,1), for every ro,r1 € (0,1) ND, ¢t € [0,1] such that

(1 —t)ro+try € ©. Then u is locally Lipschitz in (0,1), more precisely for every closed
subinterval [a,b] C (0,1) there exists C > 0 such that

ju(z) —u(y)| < Clz —y|  Va,y € (a,d)ND. (9.5)

Proof.  Since the statement is local and ® is dense, we can assume with no loss of generality

that f € L'(0,1), that 0, 1 € © and that (9.4) holds rg, r;, 71 € [0,1] N D, with r; :=
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(1 — t)ro + try. First of all note that (9.4) is equivalent to the following control on the
incremental ratios: for every rq, r4, r1 € [0,1] N'D one has

u(?“t) — u(ro) < u(rl) — u(rt 7o / f 7’3 S t (9.6)

Ty — To ry— 1y 1—t

Observing that 0 < g(s,t) < t(1 —t), we can easily estimate the remainder in the last
inequality by

t(ll_— to) /0 fro)g(s,t)ds

Given a < b € (0,1) N D, for every z, y € ® N (a,b), = < y, we want to use
iteratively in order to estimate the difference quotient |u(z) — u(y)|/|z — y|-.
Applying with rg = 0, ry = x, r;, = a we obtain

u(z) — ula)

< / @A = [fllzorn. (9.7)

]

u(a) — u(0)

a

< 120 (98)

Analogously, choosing 7o = a, 1y =y, 1, = x in yields

u(:Ex) : Z(a) < U(y; : 7;(55) 1 |t e (9.9)

Putting together and we obtain the desired lower bound

u(y) — u(x u(a) — u(0
e
y—x a
Along the same lines one gets also the upper bound
u(y) — u(x u(1l) — u(b
e

y—x - 1-0b

Since the last two estimates hold for every =,y € © N (a,b) with z # y, the proof is
complete. O

The next lemma provides a subdifferential inequality, in a quantitative form involving f.

Lemma 9.3 Suppose that u € C([0,1]) satisfies u” > f in 2'(0,1) for some f € L*(0,1).
Then, setting u'(04) := limsup, o (u(t) — u(0))/t, we get

(1) — u(0) —/(0,) > /0 £(5)(1 — 5) ds. (9.10)
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Proof. Notice that by
) = u(0) < tu() = u(®) = [ F(s)els. s

Dividing by ¢ and passing to the limit as ¢ | 0, since lim;ot~'g(s,t) = 1 — s pointwise in
(0,1] and 0 < t7'g(s,t) < (1 — s), we get (9.10). O

A similar result holds for the solutions u of the differential inequality
uwe C(0,1]), v +ru<0 in2(0,1), k € R. (9.11)

In this case, choosing [rg, 1] C [0, 1] with § = r; —r¢ € (0, 1], we can compare the function
t — u((1 — t)rg + try), which solves w” + k§?w < 0 in 2'(0,1), with the solution of the
Dirichlet problem

V' +kPv=0 in (0,1), v(0)=u(r), v(1)=u(r), (9.12)
given by
v(t) = u(ro)sm(cﬁj(l —t) + u(rl)sm(Wt) if k0% = w? € (0,72), (9.13)
sin(w) sin(w)
e (w1 1) (1)
sinh(w(1 —¢ sinh(w? _ 2,2
v(t) = u(ro)w + u(rl)m if k0% = <0, (9.14)

observing that the comparison principle gives u((1 — t)ro + try) > v(t) for every t € [0, 1].
By introducing the factors

+00 if k6% > 72,
51.n(wt) if k6% = w? € (0,7?),
a0(5) == :m@’) R (9.15)
if kK =0,
sinh(wt) if K62 = —w? <0
| sinh(w) ’

the solution v of (9.12), thanks to (9.13]) and (9.14)), can be expressed in the form

v(t) = a7 (ry —ro)u(re) + o (ry — ro)u(r)
and the following result holds (see for instance [55, Thm. 14.28]):

Lemma 9.4 Let u € C([0,1]) nonnegative and k € R. Then u”" + ru < 0 in 2'(0,1) if
and only if for every t € [0,1] and for every 0 < ro < ry < 1 with k(ry —rg)* < 7 one has

u((1 = t)rg +try) > a,({l’t) (r1 — ro) u(rg) + a,(f) (r1 — ro) u(ry). (9.16)
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In the same spirit of Lemma [9.2] where we proved that “weighted convex” functions
are locally Lipschitz, next we show that functions satisfying the concavity condition (9.16])
have the same regularity; this will allow to apply Lemma [9.4]

Lemma 9.5 Let ® C R be a Q-vector space with ©® # {0}. Let kK € R and let u :
0,1]ND — R satisfy (9.16) for every ro, 11 € [0,1]ND with k(r; — 1) < 72 and t € [0, 1]
such that (1 —t)ro +try € ®. Then the following hold.

(a) There exists g = €o(k) > 0 with the following property: if

sup  u(ne) < oo, (9.17)

nGN,ngLéJ
for some ¢ € (0,e0) N'D, then sup, cpnp,1) u(r) < oo.
(b) There exists g = o(k) > 0 with the following property: if

sup |u(ne)| < oo, (9.18)
nEN,ng\_éJ

for some € € (0,e0) N'D, then sup,cpnpq) [u(r)] < oo.

(¢) If in addition u : [0,1]ND — R is locally bounded then w is locally Lipschitz in (0,1),
i.e. for every r € (0,1) ND there exist e, C' > 0 such that [r —e,r +¢] C [0,1] and

lu(z) —u(y)| < Clr —y| Ve,ye€lr—er+enNd. (9.19)

Proof.  For simplicity of notation we can assume Q C 2.

(a) Assume by contradiction the existence of a sequence (s,) C (0,1) ND such that
u(s,) — +oo. Clearly there exists § € [0, 1] such that, up to subsequences, s,, — §; let us
start by assuming § = 0, without loss of generality we can also assume that s,, € [0, /4] for
every n € N (gy will be chosen later just depending on k). Applying with 7o = s,
ry =€ and r; = 2¢ we get

u(e) > o) (2 — 5,) u(s,) + o) (2e — s,) u(2e), (9.20)

Wheretn:%%%asn—)oo.
By a Taylor expansion at 0 of the function r — a,&l_t")(r) it is easy to see that

O_(lftn)(28 _ Sn) —_ (1 — tn) + OH<8O> 2

K

: (9.21)

A,

provided gy = g¢(k) > 0 is chosen small enough. But then, observing that inf,, a,g")(Qa —

$p) u(2¢) > —oo, combining ((9.20)) and (9.21) we get

u(e) > ~u(sy) + o) (2 — s,)u(2e) = 400 as n — 400,

| =
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contradicting (9.17). If instead s, — 1, applying (9.16) with ro =1 —2¢, r, = 1 — ¢ and
ry = S,, with analogous arguments we get
1
u(l—¢) > o7t (s, — (1 —2e))u(l — 2) + Zu(5"> — 400 asn — +oo,
contradicting (9.17)). Finally, if lim,, s, = § € (0,1) we can repeat the first argument with

0 replaced by 5 thus reaching a contradiction. The proof of the first statement is then
complete.

(b) Let 9 = €o9(k) > 0 be as above. Since by the first statement we already know that
u is uniformly bounded above, here it is enough to prove a uniform bound from below.
Applying (9.16) to ro = ne and r; = (n+ 1) for every n € NN [0, [1]], we get that

u(r) > o (&) u(ne) + o (e)u((n +1)e) > —=C sup  |u(ne)| > —o0 ,
neN,nSl_éJ

for every r € [ne, (n + 1)e] N D, for some C' > 0 independent of n. Applying the same
argument to 7o = |[1]e, r; = 1 we also obtain a uniform lower bound on [[1],1]ND and
the conclusion follows.

(c) Since the statement is local and © is dense, we can assume with no loss of generality
that u : [0,1] N ® — R is bounded, that 0, 1 € © and that holds for every rq, 1 €
[0,1]ND with k(r; —1)* < 72 and ¢ € [0,1] N Q. First of all note that is equivalent
to the following control on distorted incremental ratios: for every ro, 1 € [0,1]ND, ¢ €
[0,1] N Q with k(r; —7r9)? < 72 it holds

u(r) = o —ro) ulro) _ 3ol (n —ro) u(ry) —u(r)

> , (9.22)
s —Tp ™ — Tt

where 7y := (1 —t)rg +try € [0,1] ND.

Given 7 € (0,1) N D, ¢ > 0 with ¢ < min{r,1 — r} and 4ke? < 7%, and z,y €
DN[r—e,r+e], x <y, we want to use iteratively in order to estimate the difference
quotient |u(x) —u(y)|/|x — y|. We will prove that this is possible provided ¢ is sufficiently

small.
At first apply (0.22) with ro = 0, 11 = z, r, = r — e. Noting that 1 — ¢ = 2=0=2) < O ¢,

x

with a first order Taylor expansion at ¢ = 1 of the explicit expression (9.15]) of %_ta,g_t) (x)
one checks the existence of C, > 0, €, > 0 satisfying (with the above choice of t = t(x,r))

o1 (2)| < C. forallz € [r—e,r+¢], for every € € (0,¢,). (9.23)

1
1-t¢

Analogously, possibly enlarging C). and reducing €, we can also achieve

~& | =

o®(z) — 1‘ < Cp(x — (r —¢)) for every € € (0,¢,). (9.24)
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The combination of ((9.22), (9.23]) and (9.24)) gives

u(r —e) + Cylu(0)] S u(z) —u(r —e)
r—e - x—(r—e)

—C, forevery e € (0,e,) ND. (9.25)

Observing that |%0—I(€t)(y —(r—e))—1] < Cit(y — (r —e)), applying (9.22) with ro =r —e,
ry =1y, ry =, yields

u(z) —u(r —e) +C > uly) — ul(z) , for every e € (0,,) ND. (9.26)

x—(r—e) y—2x
Putting together (9.25)) and ((9.26)) we obtain the desired upper bound

uly) —u(x) _ ulr —e) + Clu(0)]
Yy—x o r—e¢

+ 2C,.

Along the same lines one gets also the lower bound

uly) —ul@) | ulr+2) —uly) o ~Colu(V)] —u(r+2)

—2C,.
y— — (r+e)—y 1—(r+¢)

Since the last two estimates hold for every z, y € ® N [r — e, + ¢] with z # y, the proof
is complete. Il

9.2 Entropies and their regularizations

Let (X,d,m) be a metric measure space as in Section . We consider continuous and
convex entropy functions U : [0,00) — R with locally Lipschitz derivative in (0, 00) and
U(0) = 0. We set

P(r):=rU'(r)=U(r), Q(r):=r"'P(r) € Lip,.(0,00), R(r):=7rP'(r)—P(r). (9.27)

The induced entropy functional is defined by
W)= [ Uledm+ V(e (X) itp=gmtpts ptlm (029)
X

where U’'(0c0) = lim, o U'(r). Since U(0) = 0 and the negative part of U grows at most
linearly, U is well defined and with values in (—oo, +00] if g has bounded support, more
general cases are discussed below.

We say that P is regular if, for some constant a = a(P) > 0, one has

PecCY]0,00)), P(0)=0, 0<a<P(r)<a! foreveryr>0. (9.29)

Notice that in this case @, extended at 0 with the value P’(0), is continuous in [0, c0) and
it satisfies the analogous bounds

a<Q(r)<a! foreveryr>0. (9.30)
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When P is regular, we still denote by P : R — R its odd extension, namely P(—r) := —P(r)
for every r > 0.

Once a regular function P is assigned, a corresponding entropy function U can be
determined up to a linear term by the formula

U(r) = T/lT P(s) ds, (9.31)

so that ((9.29) yields
a|rlogr| < |U(r)] <a'|rlogr| for every r > 0. (9.32)

Motivated by , we call the entropies U satisfying U(1) = 0, normalized. Notice
that P uniquely determines the normalized entropy U. Thus in the case of regular P, the
asymptotic behaviour of U near r = 0 or r = oo is controlled by the one of the logarithmic
entropy functional U, associated to U, namely

Us(r) :==rlogr, Px(r)=r Qx(r)=1, Ru(r)=0. (9.33)

In particular, using one can prove that U(u) is always well defined, with values in
(—o0, +o0], if p € P5(X), see [0, §7,1]. The choice of the base point 1 in the integral
formula provides, thanks to Jensen’s inequality, the lower bound U(x) > 0 whenever
m € Z(X). In addition, we shall extensively use the lower semicontinuity of the entropy
functionals w.r.t. convergence in %5(X), see for instance [55].

Remark 9.6 (Regularized entropies) Let P € C'((0,00)) with P'(r) > 0 for every
r>0and 0 = P(0) = lim, o P(r). It is easy to approximate P by regular functions: we
set for 0 <e < M < o0

- JPA(r) if 0 <r <M,
B(r)=Plr+e)=PE),  Pou(r):= {PE(M) 4 (r— M)P/(M) ifr> M.
(9.34)
Notice that
rP.(r)— P.(r) = R(r +¢) — R(e) + e(P'(¢) — P'(r + ¢)). (9.35)

Besides ((9.33]), our main example is provided by the family depending on N € (1, 00)

Un(r) = Nr(1—r=YN) Py(r)=r"YN Qn(r) =1V,
S-UN (9.36)

Ry(r) = — I :—NPN(T)

together with the regularized functions Py . and Py as in (9.34]).
Notice that a simple computation provides:

1
Ryc(r) = —NPME(T) + e(P]’V,a(O) — PJ/\/,a(T)) for every r € [0, ), (9.37)
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so that the concavity and the monotonicity of Py, give

1 1 1
— NPME(T) +(1- N)sl_l/N > Rye(r) > —NPN,E(T) for every r € [0,00).  (9.38)

The entropies corresponding to Uy, according to (9.28)), will be denoted with Uy:
Un(p) := N — N/ o Ndm  ifp=om+pt, gt Lm. (9.39)
X
In particular Uy (u) = [, Un(0) dm whenever = pm is absolutely continuous.

9.3 The CD*(K, N) condition and its characterization via weighted
action convexity

In this section we start by recalling what does it mean for a metric measure space to have
“Ricci tensor bounded below by K € R and dimension bounded above by N € (1, 0],
this corresponds to the the so-called curvature dimension conditions CD(K, N) or to the
reduced curvature dimension conditions CD*(K, N). First, let us recall the notion of
CD(K, o0) space introduced independently by Lott-Villani [42] and Sturm [51] (see also
[55] for a comprehensive treatment).

Definition 9.7 (CD(K, o0) condition) Let K € R. We say that (X,d, m) satisfies the
CD(K,00) condition if for every p; = oom € D(Us) N Po(X), i = 0, 1, there exists a
Wa-geodesic (fis)sepo,1) connecting jig to py such that

Uso (p1s) < (1 = 8)Uos(pt0) + sUoo (1) — %8(1 —s)W5 (o, n) Vs € (0,1).  (9.40)

If morever (9.40) is satisfied along any geodesic us connecting pg to pi, we say that
(X,d, m) is a strong CD(K, 00) space.

It is well known that smooth Riemannian manifolds with Ricci curvature bounded
below by K are CD(K,co)-spaces; one reason of the geometric relevance of such spaces
is that they form a class which is stable under measured Gromov-Hausdorff convergence
(for proper spaces see [42], for normalized spaces with finite total volume, see [51], for the
general case without any finiteness or local compactness assumption see [33]).

In strong CD(K, 00) spaces (X, d, m), quite stronger metric properties have been proved
in [48]; we list them in the next proposition.

Proposition 9.8 (Properties of strong CD(K, c0) spaces) Let (X,d, m) be a strong
CD(K, 00) space and let py = oom, py = oym € Z(X, m) N Po(X). Then:

[RS1] There exists only one optimal geodesic plan w € GeoOpt(jg, 1) (and thus only one
geodesic connecting puo, H1);
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[RS2] 7 is concentrated on a set of nonbranching geodesics and it is induced by a map;

[RS3] all the interpolated measures pi, = (es)ymw are absolutely continuous w.r.t. m; if
moreover pg, 1 € D(Us), then us have uniformly bounded logarithmic entropies
Uoo (45)-

[RS4] if 0o, 01 are m-essentially bounded and have bounded supports, then the interpolated
measures jts = 0sm = (e5)y have uniformly bounded densities. More precisely the
following estimate holds:

-2
< ¢K™D?/12

|0l oo (xm) < max{|| ool Lo (x.m)s |01l 2o (x.m) } (9.41)

where D := diam(supp gp U supp 01) and K~ := max{0, —K}.

As bibliographical remark let us mention also [31] about existence of optimal maps in
non branching spaces; also note that [RS4] is well known [55, Thm. 30.32, (30.51)], [6], §3]
as soon as the branching phenomenon is ruled out. Remarkably, this property holds even
without the non-branching assumption [46].

Remark 9.9 Notice also the following general fact, holding regardless of curvature as-
sumptions: if pg, 1 € Z(X) have bounded support, then there exists a bounded subset
E of X containing all the images of the geodesics from a point of supp oy to a point
of supp p1; in particular we have that supp(e,)ym] C E for every s € [0,1] and every
7 € GeoOpt (o, fi1).

Lemma 9.10 (X,d, m) is a strong CD(K, c0) space if and only if every couple of measures
to, 1 € D(Uso) N Po(X) with bounded support can be connected by a Wy-geodesic and
(9.40) is satisfied along any geodesic connecting jig to 1.

Proof.  Let us first prove that every couple pg, p1 € D(Us) N P2(X) can be connected
by a Ws-geodesic. For z € X fixed and N sufficiently big, we can define the measures
A %/M_BN(:E) € Py(X).
By choosing a constant C' > B (recall (5.24))), we can introduce the normalized proba-
bility measure m € P(X)
1

= —e CCEDm  with Z::/ e Cd (@) dm(z),
z X

and the corresponding relative entropy functional U, satisfying the identity

Uoo (1) = Uso(pt) — C’/X d?(z,z) dp — log z. (9.42)

Let us denote by g;, 8" the densities of ju;, ul¥ w.r.t. m. From cy 1 1 it is easy to check
that Wa(ul, ;) — 0 and [|8) — 8i||z1(x.m) — 0 as N 1 oo. Since ¢ < ¢3! 5;, the uniform
bound

—e ' < 5N log(a)) < 07 (log 8; — log en) < endi(log :)+ — e log en g
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and the fact that m(X) is finite yields Uso(uN) — Uso (i) as N 1 oo and therefore, by
(9:42), Uso (1)) — Uoo (1) as N — oc.

Since p)’ have bounded support we can find a Wa-geodesic (12 )sejo,1] connecting them
and satisfying the corresponding uniform bound

Uso(pg') < (1= $)Uso (1) + sUoo(p1y') — %8(1 —s)W3 (g, ) Vs €(0,1), (9.43)

which in particular shows that Us(uY) < S < oo for every s € [0,1] and N sufficiently big.
Since the sublevels of Uy, are relatively compact in Z2(X) and the curves [0,1] 3 s — Y
are equi-Lipschitz with respect to Ws, we can extract (see e.g. [3, Prop. 3.3.1]) an increasing
subsequence h +— N(h) and a limit geodesic (is)scp,1) such that ,uév(h) — 1, weakly in
P (X) as h — oo. In particular (p5)scp,1) is a geodesic connecting jug to ;.

Let us now prove that holds along any geodesic connecting pig, p1 € D(Us) N
P5(X). Let pus = (es)ym be a geodesic induced by w € GeoOpt(pig, f11); we consider

Ig:={ye€C0,T];X): ([0,1]) C Br(z)}, cp:=7m(g), == iﬂ'LFR

and pff := (ey)ym’; since € GeoOpt (i, i), (1f)se1] is a geodesic and the measures
pf have bounded support in Bgr(z). Thus for every R > 0 one has that uf, uf, uf
satisfy ; arguing as in the previous step, we can pass to the limit as R — oo using
the facts that Wo(uZ, ps) — 0 for every s € [0,1], Uoo(uf) — Uso(p;) if i = 0, 1, and
liminf g oo Uso (1) > Uso(us) and we obtain the corresponding inequality for pug, ps, -

g

Next, let us recall the definition of reduced curvature dimension condition CD*(K, N)
introduced by Bacher-Sturm [10].

Definition 9.11 (CD*(K, N) condition) We say that (X,d, m) satisfies the CD*(K, N)
condition, N € [1,00), if for every p; = pom € Z(X,m), i = 0,1, with bounded support
there ezists w € GeoOpt(uo, 1) such that

Wns (i) < M — M / (46747 (@0, 1)) 0(30) ™ + 018, (30, 1) )en (1) ™) ()
(9.44)
for every s € [0,1] and M > N, where jis = (e,)y7, the coefficients o are defined in
and Uy is defined in .
If moreover is satisfied along any ® € GeoOpt(ug, 1), we say that (X,d, m)
satisfies the strong CD*(K, N) condition.

Remark 9.12 Definition coincides with the original definition of CD*(K, N) spaces
given in [10]. Note that the additional terms in the right hand side of are due to
our definition of entropy as Uy (om) := M [, o(1 — o) dm = M — M [, o'~ dm, while
the one adopted in [10] was — [, o'~ dm (for absolutely continuous measures). This
convention will be convenient in our work in order to use regularized entropies and analyze
the corresponding non linear diffusion semigroups.
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It can be proved that a strong CD*(K, N)-space is also a strong CD(K, co) space, and
thus properties [RS1-4] hold, see Lemmabelow, whose proof included for completeness
follows the lines of [52, Prop. 1.6]. Conversely, any CD*(K, N) space satisfying [RS1-4] is
clearly strong. Therefore a CD*(K, N) space is strong if and only if [RS1-4] hold.

Lemma 9.13 If (X,d, m) satisfies the (strong) CD*(K,N) condition for some K € R,
N € [1,00), then (X,d,m) is a (strong) CD(K, c0) space.

Proof. By Lemma it is sufficient to prove (9.40) along every Ws-geodesic (1s)sefo,1]
induced by ® € GeoOpt(puo, it1) with p, supported in a bounded set and p; € D(Usy),

i=0, 1.
Let us first notice that for every » > 0

A}im Un(r) =Ux(r), N+ Ux(r) is increasing for all r € (0, 00)
—00

If us = osm, since ug is supported in a bounded set with finite m-measure, it is then not
difficult to prove that

lim Uy (ps) = Uso(pts) for every s € [0, 1]. (9.45)

N—oo

The second important property concerns the coefficients 0&5)(5): it K >0

M( 5) (5)) Kssm (v/K/MS6) — sin(y/K/Msd) 5—2}((3

T Ok (K /M) sin( \/K/—Mé 6\ _S>+O(1) (9.46)

as M 1 oo, and a similar property holds when K < 0.

We thus get
U (pes) - )u (10) — sUnr (1)
< M/ (d(y0,7))) 07 ™M () + (1 — 5 — ag;/;j(d(%,m>)@a”M<%>) dm(v)

and passing to the limit as M 1 oo by applying (9.45)) and ( we obtain

Uso(ts) = (1 = $)Usc (ko) + sUoo(p1) < —gs(l - s) /dQ(%;%) dm(v)

K
=—5s(l- )W (10, )

g

Let us also introduce a more general class of natural entropy functionals, used for
instance in Lott-Villani’s approach of CD spaces [42), 55] (compared to [55], we add a few
more regularity properties on P). They will play a crucial role in the next chapters.
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Definition 9.14 ([55, Def. 17.1]) Let U : [0,00) — R be a continuous and convex en-
tropy function, with U(0) = 0 and U’ locally Lipschitz in (0,00). We say that U belongs to
McCann’s class DC(N), N € [1,00]|, if the corresponding pressure function P = rU’' — U
satisfies P(0) = lim, ;o P(r) = 0 and r — r~ " P(r) is nondecreasing, i.e.

R(r)=rP'(r)— P(r) > —%P(T) for L-a.e. v > 0. (9.47)

We say that U is regular and write U € DC,.4(N) if, in addition, U is normalized and P
1s reqular according to ((9.29)).

If P is regular, we can also write P € DC(N) (resp. P € DC,¢,(NV)) if the corre-
sponding normalized entropy U belongs to DC(N) (resp. DC,¢y(N)). Directly from the
convexity inequality 0 = U(0) > U(r)—rU’(r), it is immediate to see that P is nonnegative.
Moreover, the function V : (0,00) — R* defined by

V(r) :=rNU(r") is convex and nonincreasing. (9.48)

The last condition is actually equivalent to U € DC(N).

Before stating the next result, we introduce a family of weighted energy functionals
taylored to a pressure function P as in § [0.2} if Q(r) := P(r)/r, we consider the weight
QW (s,r) := g(s,t)Q(r), where g is the Green function defined in (9.1)).

We adopt the notation of Section @ If p e AC*([0,1]; (2(X),Ws)) with i = om < m
and v is its minimal 2-velocity density, we set

X

A sm) = Aguo ) = [ g5, 0Qele )% (w.s) diws). - (0.09)

In the following theorem we relate the CD*(K, N) condition, defined in terms of the dis-
tortion coefficients o n, to a modulus of convexity along Wasserstein geodesics of the
entropies induced by maps U € DC(N), very much like in the case N = oo. The main
difference is that the modulus of convexity is not the squared Wasserstein distance, but

the action Ag) (u;m) of (9.49).
Theorem 9.15 Let us assume that [RS1-4] hold. The following properties are equivalent:
[CD1] (X,d,m) is a strong CD*(K, N) space, for some K € R and N € [1,00).

[CD2] For every o = oom, py = oym € P(X, m) with densities o; m-essentially bounded
with bounded support, the geodesic (fit)icjoa) connecting jg to py satisfies (with

Qu(r) =~ as in [©36))

Un (1) < (1= 1) Un (o) +t Un (1) — KAS) (zm)  for every t € 0,1].  (9.50)

([CD3] For every py = oom, g = o1m € P%°(X, m) N Po(X), the geodesic (jur)cio,1) con-
necting po to py satisfies (9.50)).
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[CD4] For every pip = oom, pn = oym € Z(X,m) N Po(X) and every U € DC(N), the
geodesic (fi¢)ie(o,1) connecting fig to p satisfies

Upe) < (1= U (o) + tW(y) — KA (uym)  for every t € 0,1 (9.51)

[CD5] For every g, pn € (X, m) N P2(X) and every regular U € DC,.4(N) the
geodesic (fu)icp0,1) connecting pio to iy satisfies (9.51)).

Remark 9.16 Ifin Theorem[9.15, in all the items [CD3],[CD4],[CD5], the measures fig, ji1
are assumed to be with bounded support, then the equivalence with [CD1],[CD5] holds with
the same proof. Since in the last part of the paper we will work with measures which may
not have bounded support, it will be useful to have the stated form with the extension of

[CD3],[CDA4],[CD5] to measures in Pa(X).

Proof.  The implications [CD4] = [CD3] = [CD2] and [CD4] = [CD5]| are trivial.
We will prove [CD1] = [CD2] = [CD3] = [CD4] = [CD1] and [CD5] = [CD2].

[CD1] = [CD2]. Let o = gom, 3 = oym € Z(X, m) with densities o; m-essentially
bounded with bounded support. By [RS1-4] there exists a unique geodesic p = (ey)ym
connecting fo to py, it is made of absolutely continuous measures with bounded densities
and it is given by optimal maps: gm = p, = (1})s10. Since 7 is concentrated on non-
branching geodesics, we can apply [10, Proposition 2.8 (iii)] to infer that for every ¢ € (0, 1)
there exists a Borel subset E; C supp po with po(X \ E;) = 0 such that

() > ol (d(x, Ti())) 0(x) + 0}y (d(z, Ti(2)) 0 (2), Vo € B, (9.52)

where 0(x) := (o, N Ti)(z). Moreover, by [47, Theorem 1.2], the convexity property
holds for all intermediate times (note that in this case one could argue directly by
knowing that the Wa-geodesic is unique). It follows that, for any fixed countable Q-vector
space © C R, there exists a Borel subset Eg C supp po with po(X \ Eo) = 0 such that for
every x € Fg, every rg,71 € [0,1]ND and ¢t € [0,1] N Q it holds

0,,(2) > o (d( T (@), Ty (2))) 00 (2) + 030 (A(T3 (2), T, (2))) 0y (), (9.53)

where 7, := (1 — t)rg + try. For the moment simply choose ® = Q and, fixed some n € N,
define
§:={m/n : meNm<n}.

By Lemma below we have that the map § € r +— 0,.(z) is uniformly bounded in [0, 1]
for every x € FE, where E C Ey satisfies po(F) = 1. Observe also that d(7,,(x),T,, (z)) =
(r1—ro)d(x, T\ (x)) is uniformly bounded since we are assuming p; to have bounded support,
i =0, 1. Choosing n € N large enough in the definition of §, by Lemma [0.5(b) we infer
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that the map Q € r — 0,(z) is uniformly bounded for every z € E. But then part (c) of

Lemma applied to the function [0,1]NQ > r — 0,(x) € RT gives that such a map is

locally Lipschitz, so it admits a unique continuous extension [0,1] 3 ¢t — 0,(z) € R*.
Observing now that

Tin (AT (@), Ty (0))) = 03 (r = ro)d(a, (@) = ol ) o (1= 7o),

Lemma implies that the continuous map ¢ — 0,(x) satisfies the differential inequality

—0(z) < —%dQ(x Ti(z)) 0y(x) in 2'(0,1), for every z € E. (9.54)

But then, Lemma gives

0i(z) > (1 —t)0(x) + o1 (x N/ (x,Ti(x))g(s,t)ds Vte[0,1], Vz € E.

(9.55)
We now claim that for every ¢ € [0,1] it holds 9, = 9; po-a.e. If it is not the case then
there exists ¢ € [0, 1] and a subset Fy C supp po with po(Fz) > 0 such that

0i(x) # 0¢(x) = lim o, (z) Vo€ Fy, t, € QN[0,1] with ¢, — . (9.56)

n—o0

But choosing © = {q1 + q2f : q1,¢2 € Q}, we get that there exists a subset Ef, C supp o
with po(X \ Eg) = 0 such that the inequality holds for every x € EZ; therefore,
repeating the arguments above, Lemma[9.5]yields that the function [0, 1]ND 3 7 + 0,(z) €
R is locally Lipschitz for every x € Ej. This is in contradiction with the discontinuity

(9.56) at 7, since po(Fy) > 0 and pio(X \ Ep) = 0.
Integrating now (9.55)) in dug(z), since by construction po(X \ E) = 0 and 9, = 0,

to-a.e, we get (9.50)). Indeed

S _ [ a1 .
0rdpg = 0y dpo = Ot o Tydug = Ot dm=1- NUN(M),
E E X X

and

/o1 UX68(m)d2($’T1(x))d“°<x)} gls,)ds = | [/XD (, Ty (x ))duo(:c)] g(s,1) ds

_ / [ /X o) (s, 1

= [ s(s.0)Qn(olx, )0*(2)di(x, 5)
ASN(u;m), (9.57)

where we used the fact that, since the plan @ € GeoOpt(ug, pt1) is concentrated on con-
stant speed geodesics and recalling (6.12]), the minimal 2-velocity v is constant in time and
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given by v(z) = d(z,T1(x)). In particular, implies that whenever AS)N(M; m) is finite
then the function s + 0,(x)d?(z, T1(x))g(s,t) is integrable, and therefore s — 04(x) €
L, .((0,1)), for pg-a.e. z € X.

[CD2] = [CD3]. Let us start by assuming that po = gom, 1 = om, om = p; =
(T})gpt0 = (ey)y7 are as in the above implication, i.e. g;, i = 0,1, are m-essentially bounded
with bounded support, so that by hypothesis we know that u; satisfies . For any Borel
subset AC Supp o with pio(A) > 0, consider the localized and normalized measure p' :=

( poL A = oA XA Ho and its push forwards p (ﬂ)ﬂug‘. By cyclical monotonicity of

the measure- theoretlc support, it is well known that ( )(X A0eg)m € GeoOpt(ud, utt) so

that ' is the Wy-geodesic from p' to pi! with essentlally bounded densities o7 satisfying
0 o Ty = xa0: o T;. Applying (9.49) and (9.50) to the geodesic ui* gives the localized

convexity inequality

/Aotduo > (1—t)/ADoduo+t/A01d,uo+%/A/Olbs(x)d2(x,T1(x))g(s,t) ds dyio(x),

for every ¢ € [0, 1], where 0;(x) := (o, VN o T;)(x) as before. The arbitrariness of the Borel
set A implies that for all ¢ € [0, 1] one has

0(x) > (1 —t)og(x) + 01 (2 N/ (x,Th(x))g(s,t)ds, for pg-a.e. x. (9.58)

Now let instead j1; = o;m € 2%(X,m) N Py(X), i = 0,1, and gm = i, = (Ty)gpto =
(ey)sm be the unique Wh-geodesic joining them. Consider the approximating geodesic
uF = oFm given by Lemma below. Since ¢ are m-essentially bounded with bounded
support, holds for pf by assumption. It follows that there exists Ej; C supp pf C
supp fio with uf (X \ Ej) = 0 such that

3 (2) > (1 — 1)ok(x) + k(a N/ (. Ti(x) g(s,t)ds,  (9.59)

for every x € Ej,, where F(x) = (of o T})™¥/N(x). Without loss of generality we may
also assume Ejy; C {0} > 0}. Defining E; := [,y Bk, by using Lemma (4), we get
that F; C supp uo and po(X \ E;) = 0. Moreover, observe that is still true for the
renormalized measures ¢y, of, since the constants just simplify from both sides thanks to
the homogeneity of the entropy. But then, Lemma [9.17)(3) implies that for po-a.e. z € E
one has 0¥(x) = 0,(x), provided k is large enough. Passing to the limit for k — oo, we
conclude that holds and the thesis follows by integration in dyug(x) as in the impli-
cation [CD1] = [CD2].

[CD3] = [CD4] Let p; = om € 2¢(X,m) N Py(X), i = 0,1, and oym = p; =
(T3)g100 = (ey)ym be the unique Wa-geodesic joining them. Observing that the restriction
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to a subinterval [rg,r;] C [0,1] of a geodesic is still a geodesic, the localization argument
of the implication [CD2] = [CD3] ensures that for every rg,ry,t € [0, 1] one has

0, () > (1 =)0, (x) + 10, (x) + %(rl — 7"0)2/0 0, (z)d* (2, Ty(x)) g(s,t)ds  po-a.e. m,

(9.60)
where 7, := (1 — t)ro + try as before. Note first of all that if K = 0 the proof is simpler
since the non-linear term in all the convexity inequalities just disappear. If K # 0 we first
claim that for pg-a.e. z € X the function s — 94(z) belongs to L} ((0,1)). By Lemma
9.18] we know that for pg-a.e. z € X it holds dy(z),01/2(2),01(z) € (0,00). Specializing
(9.60) to ro = 0,7 = 1,t = 1/2 we get

2 x,1i(x 1/2 1
w (/0 s0(x) ds —|—/ (1 —5)0s(2) ds) < 01/2(3;) <00, pg-ae. .

1/2

In particular, if K > 0, we get that s — 0,(z) belongs to L}, .((0,1)) for pp-a.e. z. Also,

if K < 0, we may assume that A() (u;m) < oo otherwise the thesis of [CD4] trivializes,
and then by (9.57) we get that s |—> 0,(z) € L} .((0,1)). From it follows that for
any fixed countable Q-vector space ®» C R, there exists a Borel subset F5 C supp o
with 1o(X \ Ep) = 0 such that ) holds for every x € Eg, every ro,71 € [0,1] ND
and t € [0,1] N Q. Since s — DS( ) in an element of L] ((0,1)) for ug-a.e. z, choosing
simply ® = Q, for every fixed x € E := Eg, we can apply Lemma to the function
[0,1]NQ > 7 +— 0,.(x) € Rt and infer that such a map is locally Lipschitz; thus it admits
a unique continuous extension [0,1] > ¢ — d;(z) € RT satisfying (9.55). Lemma [0.1] gives

then
2

d K -
@Dt( x) < —NdQ(x,Tl(:z:)) 0,(z) in 2'(0,1), for every x € E . (9.61)

Given now U € DC(N), recalling (9.48)) and taking ((9.61)) into account, we get the following
chain of inequalities in distributional sense

V) = V@) (§a0) + V) G
> —% 0,(x) d*(z, Ty (x)) V' (0y(z)) in 2'(0,1), for every z € E.

Applying again Lemma [9.1] this time with u(t) := V(9;(z)), we obtain

V(0u(x)) < (1 —=t)V(0g(x)) + tV(01(x N/ (2, Ti(x)) V'(0,(x)) g(s,t)ds,
(9.62)
for every x € E. With the same argument as in the proof of [CD1] = [CD2|, we have
that for every ¢ € [0,1] it holds 9;(z) = o(z) = (gt_l/N o Ti)(z) for pg-a.e. x. The
desired inequality (9.51]) follows then by integrating (9.62)) in duo(x), since by construction
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11o(X \ E) = 0. Indeed, recalling that V(d,(z)) = V(g; /" o Ty(z)) = L) e have

otoTe(x)
[veaan = [ veou- [ e au - [ D0 gz,
= /XU(th) d(th):/XU(Qt)dm:u(Mt>

For the action term in observe that, since the plan 7w € GeoOpt(p, f11) is concen-
trated on constant speed geodesics and recalling , the minimal 2-velocity v is constant
in time and given by v(z) = d(x,Ti(x)). Therefore, noting that Q(r) = —ir’ﬁV’(r’%)
for Z'-a.e. r € (0,1), we obtain

K/L/ fxﬂ(”v@@M@ﬂ®hmm

—K/[/ mv%<»wmﬂamm8

:—KA[A&@wwﬂwwwﬂg@wmz—Kﬂﬁmm.

[CD4] = [CD1]. Let py = oom, 1 = oym € (X, m) with densities p; having
bounded support, so in particular u; € Z2(X). By [RS1-4] there exists a unique Ws-
geodesic p; = (ey)ym from pig to iy, it is made of absolutely continuous measures and it is
given by optimal maps: gm = i, = (1})4p0. Choosing U = Uy, we get that j; satisfies
by assumption. Localizing in space and time as above, we obtain , namely

0, () > (1 =)0, (x) + t01(x) + %(7‘1 — r0)2/0 0,.(z)d*(x, Ty (7)) g(s,t)ds  po-a.e. m.

It follows that, for any fixed countable Q-vector space ® C R, there exists a Borel subset
Eo C supp po with po(X \ Fp) = 0 such that holds for every z € FEg, every
ro,71 € [0,1]N®D and ¢ € [0,1] N Q Since by assumption gy and gy are bounded with
bounded supports, it follows that .A o (;m) is finite; thus, from , we get that the
map s — 0s(x) is an element of L}OC((O 1)) for pp-a.e. x € X. Therefore choosing ® = Q,
for every fixed x € E := Eg, we can apply Lemma to the function [0,1]NQ > r —
0,(x) € R* and infer that such a map is locally Lipschitz, so it admits a unique continuous
extension [0,1] 2 ¢ + 0,(z) € RY satisfying (9.55). Lemma gives then (9.54) and
Lemma [9.4] yields

() > oy (d(z, T1(2))) do(x) + 01y (d(x, Ty (2))) 01 (x), Yo € B, ¥t € QN [0,1]. (9.63)

Arguing as in the implication [CD1] = [CD2], we get that for every ¢ € [0,1] one has
0, = 0y, po-a.e. in X. Integrating (9.63)) in dug(x) gives (9.44]) for Uy; since for every
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M > N one has Uy € DC(N), the argument for any other M > N is completely analo-
gous: just replace N with M in the formulas above.

[CD5] = [CD2]. Let p; = om € Z(X,m) with p; m-essentially bounded having
bounded supports, i = 0,1, and gym = p; = (1})s110 = (ey)y7 be the unique Ws-geodesic
joining them. Under our working assumptions we have that g, t € [0, 1], are uniformly m-
essentially bounded with uniformly bounded supports. Given the N-dimensional entropy
U(r) := Nr(1 —r~YN) with associated pressure P(r) := r'='/N for every k € N call P,
the regularized pressure Py := Py, where Py was defined in . Called U, the
regularized and normalized entropy associated to Py as in , observe that

P, — P and Uy — U uniformly on [0, R] for every R € R*. (9.64)

Since Uy € DC,.4(N), by assumption for every k € N we have

/ Uio)dm < (1-1) / Us(00) dm + ¢ / Ui(or) dm
_K/01 USHWS Pk(QS)dQ(x,Tl(m))dm(x)} g(s,t)ds , (9.65)

where we used that Q(r) = P(r)/r by definition. Recalling that ¢, are uniformly m-
essentially bounded with uniformly bounded supports, we infer that m (|, supp(u)) <
oo and the uniform convergence (9.64]) allows to pass to the limit in (9.65), obtaining
(9-50). 0

Lemma 9.17 Let (X,d, m) be a strong CD(K, o) space, so that [RS1-4] hold. Consider
i = om € P(X,m)N Py(X), i = 0,1, and let w € GeoOpt(uo, p1) be the plan
representing the Wy-geodesic oym = iy = (er)ym = (T3)y4 (o) from po to pu.

Then there erist sequences of measures juf = ofm € P%(X, m) and constants c; T 1
such that the curve gfm := pf = (T})y(ul) is the Wa-geodesic from uf to u¥ and it satisfies
the following:

(1) oF are m-essentially bounded and with bounded support, i = 0, 1;
(2) cx of < 0y m-a.e.in X for every t € [0,1];

(3) for every t € [0,1] it holds cy p¥(z) = pi(x) for m-a.e. © € X, for k large enough
possibly depending on x;

(4) uk = ¢, oppo with op 11, po-a.e. on X.

Proof.  Fix a base point T € supp o, call By := By(z) the ball of center z and radius k € N.
For every k € N consider first the densities gf := xp, min{k, oo} and the push forward
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measures i} := (T1);(gkm). Since clearly gf < go and 9§ = go on {z € By : 0o(z) < k},
and since by assumption 77 is pg-essentially injective, we have

dim:=py <p and gf =0 on Ti({x € By : oo(x) <k}). (9.66)

Consider now gf := xp, min{k, g}}. Using again the pg-essential injectivity of 7T; and
observing that gf < g% < o, we can define i := (77 ');(d¥m). By construction we have

gym =i < oym < po and gf = 0o on Ty ' (T (B N {max{o, 0/} < k}));  (9.67)

in particular we have that ¢f < k and supp g¥ C By, i = 0,1. Moreover, for m-a.e. = we
have gi(x) = go(x) for k large enough (possibly depending on ).
Setting ¢ == ik (X), puk == ¢; ik and pf := (T;)y(uk) we get the thesis. d

Lemma 9.18 Let g € P (X) and let T : supp po — X be a po-essentially injective map
such that oym = py = Ty(po) € (X, m). Then

po({x € supp po : 01(T(x)) =0}) =0. (9.68)

In particular, given piy = gem = (T})s(po) @ Wa-geodesic as in [RS1-3], for any finite subset
§ C [0,1] we have
Ho({x € supp po = min 0 (7, () > 0}) = 1. (9.69)

Proof. Let us consider the set A := {x € supp o : 01(T(x)) = 0}. Since by assumption

1 = Ti(po) and T is po-essentially injective, we have that 7' is ps-a.e. invertible and
po = (T~ H)y(uy). Tt follows that

pl4) = (T T(A)) = i (T(4)) = | L dm =0,

since, by definition of A, we have p; = 0 on T'(A). This proves the first statement.
The second one is an easy consequence of the finiteness of §; indeed, called

A, :={x €supp o : o-(T.(z)) = 0},

by the first part of the lemma we have that po(A,) = 0 for every r € §. Denoted with

1
C, = {a: € supp po : or-(Tr(z)) > — for every r € S} ,
n

using the finiteness of § we have

Uac.=x\[JA

neN res

We conclude that (. Cn is of full yy-measure and the proof is complete. U
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9.4 RCD(K,oc0) spaces and a criterium for CD*(K, N) via EVI

Let us first recall the definition of RCD(K, 00) spaces, introduced and characterized in [0]
(see also [2] for the present simplified axiomatization and extension to o-finite measures);
in the statements involving the so-called evolution variational inequalities, characterized
by differential inequalities involving the squared distance, the entropy and suitable action
functionals, we will use the notation

%Q(t} = lim sup Gt h) = ¢t) (9.70)

hl0 h

for the upper right Dini derivative.

Definition 9.19 (RCD(K, o) metric measure spaces) A metric measure space (X,d, m)
is an RCD(K, 00) space if it satisfies one of the following equivalent conditions:

(RCD1) (X,d, m) satisfies the CD(K, 00) condition and the Cheeger energy is quadratic.
(RCD2) For every p € D(Uy) N Po(X) there exists a curve py = Hyp, t > 0, such that

1dt K
——WQZ(,ut, V) + Uso () < Uso(v) — ?WZQ(W, v) foreveryt>0, ve D(Usy).

2 dt
(9.71)

Among the important consequences of the above property, we recall that:
1. RCD(K, o0) spaces are strong CD(K, 00) spaces and thus satisfy properties [RS1-4].

2. The map (H;)¢>o is uniquely characterized by (9.71)), it is a K-contraction in Py(X)
and it coincides with the heat flow Py, i.e.

H,(om) = (P,o)m for every om € D(U.,) N Po(X). (9.72)

3. Lipschitz functions essentially coincide with functions f € V with |Df|,, € L>®(X, m),
more precisely (recall that, according to (3.1]), V. stands for VN L>® (X, m)):

every [ € V, with |Df|, <1 m-a.e. in X admits a 1-Lipschitz representative.
(9.73)

4. The Cheeger energy satisfies the Bakry-Emery BE(K, 00) condition: we will discuss
this aspect in the next Section [10]

We will show that a similar characterization holds for strong CD*(K, N) spaces.
In order to deal with a general class of entropy functionals U with entropy density
satisfying the McCann condition DC(V) and arbitrary curvature bounds K € R, for every
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p € AC%([0,1]; (P5(X), Ws)) with p, < m for £ -a.e. s € (0,1) we consider the weighted
action functional associated to Q(s,7) = w(s)Q(r) as in (7.4), with w(s) :==1 — s:

Aa(jim) = Ao m) = /X (1 - )Q(o(x. 8))v*(x, 5) dji(z, 3). (90.74)

If (X,d, m) is a strong CD(K, 0c0) space then for every pg, p € Z*(X, m) we can also set
Ao (o, pr1;m) == Ayo(p; m),  with g the unique geodesic connecting pg to pq.  (9.75)
Since w(1 — s) + w(s) = 1, we obtain the useful identity

Aq(po, pi;m) = Awg(po, i1 m) + Awg(pin, po; m). (9.76)

We will need the following Lemma, proved in the case of the logarithmic entropy in [2]
Thm. 3.6]. The proof is analogous for regular entropies U”, since their second derivative
U" still diverges like 271

Lemma 9.20 Let U € DC,.,(N) and let p € VN L>®(X, m) be satisfying

/XQU”(Q)QF(Q) dm < 0.

Then U'(p) € V, and

/X Lo(U(0), ) pm = /X F(Plo)g) VeeV.

Theorem 9.21 Let (X,d,m) be a strong CD*(K,N) space and let us suppose that the
Cheeger energy Ch is quadratic as in . Let U € DC,4(N), P, Q as in , A=
inf,>0 KQ(r) and let (S;)i>o be the flow defined by Theorem[3.4)

Then S; induces a A-contraction in (P2(X), Ws) and for every p = om € D(U) N Po(X)
the curve p; := (Sto)m satisfies

+
%i—twg(ut, v)+ U(pe) < U(v) — KAq(pu,v;m)  for every v € D(U) N Po(X), t > 0.
(9.77)

Proof.  The proof of follows the lines of [2] (where the case U = U, was considered),
which extends to the o-finite case the analogous result proved with finite reference measures
m in [6]. All technical difficulties are due to the fact that m is potentially unbounded, the
proof being much more direct for finite measures m.

Specifically, first the proof is reduced to the case of measures p = gm and v with
0 € L*(X,m) and v with bounded support. First of all, notice that the combination of
Theorem and Theorem ensures that the curve t — p, is Ws-absolutely continuous.

85



Then, using the dual formulation (5.15]) of the optimal transport problem, and ({3.35]) one
can show that for #'-a.e. t > 0 one has (see [2, Thm. 6.3])

d1

G3WEer) == [ T Plo) dm (979)

for any optimal Kantorovich potential ¢; € V from p; to v, and the existence of potentials
with this property is ensured by the boundedness of the support of o (see [2, Prop 2.2]).

On the other hand, one can also use the calculus tools developed in [5] [6] to estimate
(see [2, Thm. 6.5])

U(r) — U(pe) — KAa(pe, v;m) > — /X Ly, (@1, U'(01)) 0r dm (9.79)

for some optimal Kantorovich potential ¢, from pu; to v. Using Lemma [9.20] whose appli-

cation is justified by Theorem [5.3] to combine (9.78) and (9.79) gives (9.77).
In turn, the proof of (9.79)) goes as follows. First of all one notices that

N

lim ~AG (1. m) = Aa(jar, vim), (9.80)
where s +— 1154 is any constant speed geodesic joining u; to v. Indeed, setting ps; = 05;m
and denoting by v ,(x) the minimal velocity density of ., we can use the expression (9.1)
of g to write

s 1
AS)(M.,t;m) = / (1-— S)T/ Q(Qm)vfﬁtgnt dmdr —i—/ (1— r)s/ Q(Qr,t)vfjtgr,t dmdr.
0 X s X

Since the first term in the right hand side is o(s) (recall that @ is a bounded function), by
monotone convergence we obtain ((9.80)).
Now, by the convexity inequality (9.51]) one has

1 U(pse) — U
U(v) — U(pe) — lim&)nf —K.A(QS) (p.4;m) > limsup ) <'ut). (9.81)
sl0 s

sJ0 S

In addition, if p; decays sufficiently fast at infinity, one can estimate the directional deriva-
tive of U as follows:

lim sup ) = Ulste) limsup/ U’(Qt)gs’ts_ 2 dm > / Ly (1, U'(01)) 0r dm, (9.82)
X X

sl0 S sl0

where in the last step we used Theorem [8.2 The combination of (9.81)) and (9.82) gives
(9.79), taking (9.80) into account. Then the decay assumption on g; is removed by an

approximation argument, recovering (9.79)) in the general case. This concludes the proof

of (©77).
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Since geodesics have constant speed, from ((6.11]) we obtain the identity

1
1
/ (1 _T)/ v 0rp dmdr = W5 (g, v).
0 x 2

Hence, from (9.77)) we get the standard EVI condition ((9.71)) with U, replaced by U and
K replaced by A, and it is well-known (see for instance [3, Cor. 4.3.3]) that this leads to
A-contractivity. O

Conversely, we can now prove adapting the proof of [27] that the infinitesimal version of
(9.77)) leads to the strong CD*(K, N) condition.

Theorem 9.22 Let (X,d, m) be a strong CD(K, c0) metric measure space. Suppose that
for every U € DC,4(N) and every i = om € Po(X) with o € L*(X, m) with bounded
support there exists a curve py = Syt € Po(X), t > 0, such that

2 T2/
lim sup W (Mh» V) W (Ma V)
h10 2h

+U() < UD) — KAg(fi, 7 m) (9.83)

for every v = om € Po(X) with o € L*(X,m) with bounded support . Then (X,d,m)
satisfies the strong CD*(K, N) condition and the Cheeger energy is quadratic.

Proof. We prove the validity of [CD2] of Theorem [0.15] So, let us fix o, 1 € D(U)
with bounded densities and support and let (ps)scpo1] be the geodesic connecting juo to
i1. Notice that in virtue of [46, Thm. 1.3] we have that us = osm with g, m-essentially
bounded with bounded support. For a given s € (0,1), let ps := Sius be the curve starting

from 1 = ps and satisfying (9.83)).
Choosing v := po and taking the right upper derivative at t = 0 (still denoted for
simplicity by d*/dt) we get

1d*

5 Ve (s 10) g + Ulps) = Upo) < =K Aa(prs, o m).

Similarly, choosing v := p;, we get

1d*
5 Ve (B 1),y + Wlps) = UQn) < =K Aq(ps, pia; m).
Let us observe, as in [27], that

d+
—((1 — $)W35 (s, o) + 3W22(“8»t7“1>) lt=0, >0

dt
since the inequality (a + b)? < a?/s + b*/(1 — s) gives
(1= )W (tts,0, o) + W5 (g p11) = (1= 5) W5 (hio, pur) = (1= 8)W3 (1, o) + W5 (prs, p11).
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Hence, taking a convex combination of the two inequalities with weights (1 — s) and s
respectively, we obtain

(1= 5)U(po) + sU(p) = Ulps) = (1 = ) K Aa(ps, po; m) + s K Aq(ps, pn; m).
Now observe that (for ©, = [ Q(o,)v? dp,, s(1 — &) =)

1 s
Aq (s, po;m) = 32/ Os1—g)(1 = §)dE = / O, rdr
0
and, analogously, that (for ©, as above, s + (1 — s){ =

Aq (s, p1; m (1-15) /@s+(1 s)gl— )dé = /@ (1-7)d

so that the definition (9.1)) of g gives
s 1
(1 — s)Aq (s, pro; m) + sAaq(fis, pr;m) = / O, (1 —s)rdr+ / O,s(1 —r)dr
0 s

1
_ / 0,8(r, 5) dr = AL (ju; m).
0

This proves that holds for every pg, 1 € D(U) with bounded densities and support;
taking Remark into account, we then get that [CD2] holds and therefore (X,d, m)
is a strong CD*(K, N) space. It remains to show that the Cheeger energy is quadratic;
by applying the characterization of RCD(K, 0c) spaces recalled in Definition it is
sufficient to check that yields as a particular case. In fact, we can choose the
regular entropy U (r) := rlogr € DC,.,(NN) with Q) = 1, and observe that the associated
weighted action on constant speed geodesics is nothing but half of the standard 2-action:

1 1
) 1
Aca i) = [ [ (= 5oy dpods = [ (1= s)liufds = SWE (o )
0 X 0

where in the second equality we recalled (6.11]) and in the last one we used that (is)seo)
is a constant speed geodesic. U

Part 111
Bakry-Emery condition and
nonlinear diffusion

10 The Bakry-Emery condition

In this section we will recall the basic assumptions related to the Bakry-Emery condition
and we will prove some important properties related to them. In the case of a locally
compact space we will also establish a useful local criterium to check this condition.
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10.1 The Bakry-Emery condition for local Dirichlet forms and
interpolation estimates

The natural setting is provided by a Polish topological space (X, 7) endowed with a o-finite
reference Borel measure m and a strongly local symmetric Dirichlet form & in L?(X,m)
enjoying a Carré du Champ T’ : D(&)x D(€) — L'(X, m) and a I'-calculus (see e.g. [7, § 2]).
All the estimates we are discussing in this section and in the next one, Section [T} devoted
to action estimates for nonlinear diffusion equations do not really need an underlying
compatible metric structure, as the one discussed in [7, § 3]. We refer to [7, §2] for the
basic notation and assumptions; in any case, we will apply all the results to the case of the
Cheeger energy (thus assumed to be quadratic) of the metric measure space (X, d, m) and
we keep the same notation of the previous Section [5.5] just using the calculus properties
of the Dirichlet form that are related to the I'-formalism.
In the following we set Vo, := VN L®(X, m), Dy := DN L>®(X, m),

{DLp(L) ={feDNL(X,m): Lf e LP(X,m)}  pe[lod, (10.1)

Dy(L)={feD: Lf eV},
endowed with the norms

1A lpes = 1fllv + 1f = Lfllz2azecxmys 11Dy = 1F I Z2cm + 1RSI (10.2)

and we introduce the multilinear form I'y given by

Ly (f,9;9) rzé /X (F(f, 9) Lo —T(f,Lg)e —T(g, Lf)w) dm  (f,9,¢) € D(Ts),

(10.3)
where D(I'y) := Dy(L) x Dy(L) X Dpe(L). When f = g we also set
Ta(fie) = Talf fi) = [ (G001 Lo = T(F.Lf)) dm, (10.4)
so that I ]
Lo(f,9:0) = J0a(f +g59) = JTa(f = g5 9)- (10.5)

I', provides a weak version (inspired by [12, [15]) of the Bakry-Emery condition [13, I1].

Definition 10.1 (Bakry-Emery conditions) Let K € R, N € [1,00]. We say that the
strongly local Dirichlet form & satisfies the BE(K, N) condition, if it admits a Carré du
Champ T and for every (f,¢) € Dy(L) x Dp~(L) with ¢ > 0 one has

o(f: ) > K/ godm+%/X(Lf)2godm. (10.6)

We say that a metric measure space (X,d,m) (see § satisfies the metric BE(K, N)
condition if the Cheeger energy is quadratic, the associated Dirichlet form & satisfies
BE(K,N), and

any f € Vo with T(f) € L>®(X,m) has a1-Lipschitz representative. (10.7)
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Remark 10.2 (Pointwise gradient estimates for BE(K,00)) When N = oo, the in-
equality (10.6) is in fact equivalent (see [7, Cor. 2.3] for a proof in the abstract setup of
this section) to either of the following pointwise gradient estimates

L(P.f) <e M Py(I(f)) m-ae. in X, for every f €V, (10.8)

2k (1)L (P f) < P f? — (Ptf)2 m-a.e. in X, foreveryt >0, f e L*(X,m), (10.9)
where I denotes the real function

1
¢ LKt :
I (t) := / e dr = K(e ) K0,
0 t it K =0.

It will be useful to have different expressions for I's(f; ), that make sense under weaker
condition on f, ¢. Typically their equivalence will be proved by regularization arguments,
which will be based on the following approximation result.

Lemma 10.3 (Density of Dy(L) N Dy~(L)) The vector space Dy(L) N Dp(L) is dense
in Dy(L). In addition, if f € Dr»(L), p € [1,00] satisfies the uniform bounds ¢y < f < ¢y
m-a.e. in X for some real constants cg, c1, then we can find an approximating sequence
(fn) € Dy(L) N Dy (L) converging to f in Dp»(L) with f, — f in'V and Lf, — Lf in
L>NILP if p < oo (in the weak® sense when p = 00), as n — oo and satisfying the same
bounds co < f, < ¢; m-a.e. in X.

Proof.  The proof of the density of Dy(L)NDp~(L) in Dy(L) has been given in [8, Lemma
4.2]. In order to prove the second approximation result, we introduce the mollified heat
flow

1 o
Hf = 5/0 P.f rk(r/e)dr, (10.10)

where & € C2°(0,00) is a nonnegative regularization kernel with [;* r(r)dr = 1.

Setting f, := $H/"f, since f € L?> N L>®°(X,m) it is not difficult to check that f, €
Dy (L) N Dp=(L). In addition, ¢q < f,, < ¢, since the heat flow preserves global lower or
upper bounds by constants.

We then use the fact L is the generator of a strongly continuous semigroup in each
LP(X,m) if p < 0o (and of a weak*-continuous semigroup in L>*(X, m)). O

An immediate corollary of the previous density result is the possibility to test the
condition BE(K, N) on a better class of test functions.

Corollary 10.4 If (10.6) holds for every f € Dy(L) N Dy~ (L) and every nonnegative
¢ € Dp=(L), then the BE(K, N) condition holds.

A first representation of I'y is provided by the following lemma, whose proof is an easy
consequence of the Lebniz rule for I, see [§, Lemma 4.1].

90



Lemma 10.5 If f € Dy(L) N Dy~ (L) and ¢ € Dy<(L) then
1 2
Ta(fie) = [ (GTUNLe +LIT(0) + (LS dm. (10.11)
Recalling we also get

La(fogi) =5 [ (D(79)Lo+ LiT(a.¢) + LaT(f9) + 20 L7 Lg) dm. (10.12)

Notice that (10.11)) makes sense even if f, ¢ € D, provided F(f) and F(f, go) belong to
L?*(X,m). This extra integrability of I" is a general consequence of the BE(K, oo) condition.

Theorem 10.6 (Gradient interpolation, [8, Thm. 3.1]) Assume that BE(K, co) holds,
let A\ > K_, pe{2,00}, f€L*NL®X,m) with Lf € L?(X, m). Then I'(f) € LP(X,m)
and

IT(F) lrxm < el Flloecem 1IN = Lf[lox,m (10.13)

for a universal constant ¢ independent of \, X, m, f (¢ = /27 when p = 00).
Moreover, if f, € Do with sup,, || fullLe(xm) < 00 and f, — f strongly in D, then
I(f,) = T(f) and T(f, — f) — 0 strongly in L*(X, m).

An important consequence of Theorem [10.6]is that D, is an algebra, also preserved by left
composition with functions A € C*(R) vanishing at 0: this can be easily checked by the
formula

L(fg9) = fLg+gLf +2I(f,9),  L(h(f)) = W' (/)Lf +h"(/)T(f) (10.14)

using the fact that F(f), F(f, g) € L*(X,m) whenever f, g € Dq,.
Thanks to the improved integrability of I' given by Theorem [L0.6| and to the previous
approximation result, we can now extend the domain of T'y to the whole of (D4 )3.

Corollary 10.7 (Extension of I'y) If BE(K, 00) holds then T'y can be extended to a con-
tinuous multilinear form in Dy X Dy X Doy by (10.12)) and BE(K, N) holds if and only
of

/X GF(J")LSO +LIT(f,0) +(1- %)w(LfV) dm > K/Xf(f) pdm. (10.15)

15 satisfied by every choice of f, p € Dy, with ¢ > 0.

Proof. Notice that (10.12]) makes sense if f, g, ¢ € D, since F(f), F(g), F(gp) € L*(X,m)
by Theorem [10.6] and that it provides an extension of I'y by Lemma [10.5]

In order to check ((10.15) under the BE(K, N) assumption whenever f, ¢ € Dy, p > 0,

we first approximate f, in D, with elements in Dy(L) via the Heat flow, and then we
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apply Lemma with a diagonal argument to find f,, ¢, € Dy(L)N Dy~ (L) with ¢, >0
such that (10.6)) and (10.11)) yield

1 1
X X
Since, up to to subsequences, we can assume

fo = f, ©n = ¢ strongly in D and m-a.e., ||@n| peoxm) < [l Lo (xm)
| frllzoe(xm) < | fllzexm),  |Lifn| < g m-a.e., for some g € L*(X,m) independent of n

we can apply the estimates stated in Theorem to pass to the limit in the previous
inequality as n — oo.

Conversely, if holds for every f, ¢ € Dy with ¢ > 0, it clearly holds for every
f € Dy(L) N Dy~ (L) and nonnegative ¢ € Dy (L), thus with the expression of I'y given

by (10.4), thanks to Lemma We can then apply Corollary O

10.2 Local and “nonlinear” characterization of the metric BE(K, V)
condition in locally compact spaces

When (X, d,m) is a locally compact space satisfying the metric BE(K, c0) condition, the
I'; form enjoys a few localization properties, that will turn to be useful in the following.

Let us first recall that if (X, d, m) satisfies the metric BE(K, co) condition, then (X, d)
is a length space and the Dirichlet form € associated to the Cheeger energy is quasi-regular
[49, Thm. 4.1].

In the locally compact case, the length condition also yields that (X, d) is proper (i.e. ev-
ery closed bounded subset of X is compact) and thus geodesic (every couple of points can
be joined by a minimal geodesic), see, e.g., [23, Prop. 2.5.22].

A further important property (see e.g. [8, Remark 6.3]) is that € is regular, i.e. VNC,(X)
is dense both in V (w.r.t. the V norm) and in C.(X) (w.r.t. the uniform norm). In par-
ticular, by Fukushima’s theory (see e.g. [25] I7]), every ¢ € V admits a E-quasi contin-
uous representative ¢ uniquely determined up to E-polar sets and every linear functional
¢ :V — R which is nonnegative (i.e. such that (£, o) > 0 for every nonnegative ¢ € V)
can be uniquely represented by a o-finite Borel measure p, which does not charge E-polar
sets, so that ((,¢) = [, @du, for every ¢ € V. We refer to [8, Sect. 5] for more details.
We will often identify ¢ with ¢, when there is no risk of confusion.

Before stating our locality results, we recall two useful facts, obtained in [8] and slightly
improving earlier results in [49]. See Corollary 5.7 for statement (i), and Lemma 6.7 of [§]
for statement (ii) (more precisely, the statement of [§, Lemma 6.7] deals with a Lipschitz
cut off function x with Lx € L>(X, m) and I'(X) € V., but since X is built of the form
n o f with n constant near 0, from Lemma [10.§|i) below and one can get also
Lx € V.)

92



Lemma 10.8 Let us suppose that (X,d, m) satisfies the metric BE(K, 00) condition for
some K € R.

(i) For every f, g € Dra(L) we have F(f, g) €V and the bounded linear functional

VBQ@H/X(—%F(F(f),go)nLLfF(f,@)Jr((Lf)2—KF(f))go)dm (10.16)

can be represented by a finite nonnegative Borel measure denoted by T'; 1| f], satisfying

nmw—KAMﬂwmzéwwhm (10.17)

for every f € Dpa(L)NL>®(X,m) and ¢ € Dy, where in (10.17) we use the extension
of Ta(f; ) provided by Corollary[10.7.

(i) If (X,d) is locally compact, then for every compact set E and every open neighborhood
U D FE there exists a Lipschitz cutoff function X : X — [0, 1] such that supp(X) C U,
X =1 in a neighborhood of E, LX € V, and F(X) € V.

Corollary 10.9 (Locality w.r.t. ¢) Let K € R and N < co. Let us suppose that (X,d)
is locally compact and that (X,d, m) satisfies the metric BE(K, 0o) condition. If
holds for every f € Dy(L) N Dr~(L) and every nonnegative ¢ € Dp(L) with compact
support, then (X,d,m) satisfies the metric BE(K, N) condition.

Proof. 'We argue by contradiction: if BE(K, N) does not hold, by Corollary we can
find f € Dy(L) N Dr~(L) and a nonnegative ¢ € Dy (L) such that

Talfie) = K [ T(f)pdm— [ (Lofpdm<o.

Since Dy(L)ND (L) C Dpa(L)NL>® (X, m) we can apply the representation result (10.17)),
thus obtaining that the measure

po= s k[ f] (Lf)*m

_¥
N
has a nontrivial negative part. Since X is Polish, we can find a compact set E such that

p(E) < 0; approximating E by a sequence of open set U, | E, Lemma [10.8[ii) provides a
corresponding sequence of nonnegative test functions X,, € Dy~ (L) such that

n—oo

lim [ X,du=p(F)<O0.
X

Choosing n sufficiently large, since X, has compact support and belongs to Dy« (L), this
contradicts the assumptions of the Corollary. U
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Theorem 10.10 (Local characterization of BE(K, N)) Let us suppose that (X,d, m)
satisfies the metric BE(K, 0o) condition for some K € R, and that (X,d) is locally compact.
If with N < oo holds for every f € Dp~(L) N Dy(L) with compact support and for
every nonnegative ¢ € Dy (L) with compact support and with infe,,, fp > 0, then (X, d, m)
satisfies the metric BE(K, N) condition.

Proof. By the previous Corollary, we have to check that (10.6) holds if f € Dy(L) N
Dy (L) and ¢ € Dpe(L) nonnegative with compact support. Choosing a cutoff function

X € Dr(L) N Dy(L) with compact support, values in [0,1] and such that X = 1 on a
neighborhood of supp(p) as in Lemma [10.§[(ii), it is easy to check, using Theorem [10.6]
the locality properties of I', L as well as the computation rules

Xf €Dw, L(Xf)=xXLf+2T(x,f)+ fLX, L(xf)=XLf on supp(p),
that Xf € Dy(L) N Dy(L) € Dya(L) N L%(X, m) and that
a(fi) = K [ T(f)pdm=Ta(fixg) = K [ T(7xpdm =
- /X (= 5T(T(f).X¢) + LI T(f.x0) + (L)X = KT(f)xp) dm
= /X (=300, 9) + LA T(XF. ) + (L)% = KT (xf)e ) dm

=I5 k(X[ 0) = 13{61 L5 (X f; %),

DN = DN =

where 1. = ¢ + eX and X € Dy~ (L) is another nonnegative cutoff function with compact
support such that X = 1 in an open neighborhood of supp(Xf). Since by assumption
L5 (X f51:) = 0 we conclude. O

Theorem 10.11 (A nonlinear version of the BE(K, N) condition) If the BE(K, N)
condition holds and P € DC(N) is regular with R(r) = rP'(r) — P(r), then for every
f € Dy and every nonnegative function ¢ € Vo, with P(p) € Dy we have

Ta(f: P(o) + /

XR(gp) (Lf)?dm > K/XF(f) P(y) dm. (10.18)

Conversely, let us assume that (X, d, m) is locally compact and satisfies the metric BE(K, 0o)-
condition. If (10.18)) holds for every function P = Pncar, €, M > 0 as in and
(9-36), every f € Dy(L)ND (L) with compact support and every nonnegative ¢ € Dy (L)
with compact support and infa,pp r @ > 0, then (X, d, m) satisfies the metric BE(K, N) con-
dition.

Proof. The inequality (10.18]) is an obvious consequence of BE(K, N) (in the form of
Corollary [10.7) since P € DC(N) yields R(r) > —~P(r) .
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In order to prove the second part of the statement, we apply the previous Theo-
rem [10.10f we fix f € Dy(L) N D= (L) and ¢ € Dy~ (L) nonnegative, both with compact
support and satisfying inf{y(x) : € supp(f)} > 0; with this choice of f and ¢ we need

to prove ((10.6).

We fix € > 0 and we set ¢ = Pﬁvlg(go); since ¢ is bounded, ¢ € Dy~ (L) and therefore
we can choose M > 0 sufficiently large such that ¢ < M and consequently ¢ = P a(9).

Applying (10.18)) with this choice of f and ¢ and recalling the inequality (9.38)) we get
1 1
Do(fi0) = [ #(Lf)* dm+ (1 - —) el / (Lf)? dm > K / L(f) ¢ dm.
N Jx N X X

Passing to the limit as € | 0 we get (10.6)). O

11 Nonlinear diffusion equations and action estimates

In this section we give a rigorous proof of the crucial estimate we briefly discussed in the
formal calculations of Example The estimate requires extra continuity and summability
properties on F(g) and F(gp), that will be provided by the interpolation estimates of
Theorem [10.6

We will assume that P is regular according to (9.29), we introduce the functions R(z) =
zP'(z) — P(z) and Q(r) := P(r)/r, and we recall the definition of the I'y multilinear form

Ts(p;0) = /X (%LQF(@) dm + o(Lp)* + (g, @)Lw) dm

whenever o, ¢ € Dy, with F(Q), F(go) € H. Recall that, under the BE(K, 00) assump-
tion, f € Dy implies I'(f) € H. Notice also that P(o) € L*(0,T;D) and ¢ bounded
imply T(P(Q)) € L*(0,T;H), so that the regularity of P and the chain rule yield F(Q) €
L2(0,T; H).

Theorem 11.1 (Derivative of the Hamiltonian) Assume that BE(K, 00) holds. Let
0 € ND(0,T), ¢ € WH2(0,T; D, H) be bounded solutions, respectively, of

0o —LP(p) =0 (11.1a)
Oip + P'(0)Lip = 0 (11.1b)

with T' (), T'(¢) € L*(0,T;H). Then the map t — &,,(pr) = [y pL' () dm is absolutely
continuous in [0,T] and we have

%%/XptF(sot) dm:F2(sot;P(pt))+/XR(pt)(L<pt)2dm ZL'ae in (0,7). (11.2)

The proof is based on the following Lemma:
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Lemma 11.2 Assume that BE(K,o0) holds. Let o € ND(0,T), ¢ € WH2(0,T; D, H) be
bounded with T'(0),T'(¢) € L*(0,T;H). Then, for every n € C(0,T) we have

d
//dt o) (pr) dm dt = /m/ Qthot—gotJrF(gt,got)d >dmdt (11.3)

Proof. Let us consider the functions ¢f := 7! [ gy, dr: t = ¢f are differentiable in V
with %905 =& (@i4e — 1), s0 that

1 d d d d
é/XQt&(F(SOf)) dm:/ F(d SOnSOt) dm_—/XQtL@ESﬁidm_/XF(QnSOf) Eﬁofdm

For every n € C(0,7T") we thus have

1/T/i( )T ( E)dmdt—/T (/ Lot & adm—l—/F( )d dm)dt
2 ), Jyat Ot Py = . Mt XQt Pt dtwt . O, P dt%

In order to pass to the limit as € | 0 in the last identity, we observe that anpf — %gpt and
that Ly® — Ly strongly in L?(0, T; H). Moreover, it is easy to check that the convexity of

(> \/F(C) yields

1 3
I'(¢f) < —/ ['(r4r) dr m-ae. in X, for every t € [0,T — ¢, (11.4)
€Jo
so that the convolution inequality fOT e[St +r)drdt < fo t)dt, for ¢ > 0, gives
T—e T—¢
/ / got “dmdt < - / / / cpHr *dmdrdt < / / gpt ? dmdt.
(11.5)

Since ¢; — ¢ strongly in V as € | 0, we have F(got) — F(got) pointwise in L'(X, m), hence

T—e
hm&)nf / / (¢7)) “dmdt > / / (¢1)) ? dmdt.

This, combined with ( - yields the strong convergence of F( ) (OT 5) to F(gp) in
L?(0,T;H). The above mentioned convergences are then sufficient to get (11.3). U

Proof of Theorem The map ¢ — E,,(¢) is continuous since t — g, is weakly™ con-
tinuous in L>(X, m) and ¢ — I'(¢;) is strongly continuous in L*(X,m) (thanks to The-
orem [10.6). For every n € C(0,T), using the differentiability of o in L?(0,T;H) we
have

T d 1 [T d
~ EQt(QOt)Entdt:__ QtF(SOt) dm - ndt
:‘5/ / g (@l () dmd + 5 / / g7 2t () dmdt
1
= —5/ / (oeme)T SOt dmdt—i— 2/ </ LP(Qt)P(‘Pt) dm)d.
0 X
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On the other hand, ((11.3) yields

_E/T/ %(Qtnt)r(@t) dmdt:/Tm/ 0P (01) (Ligt)* + (o1 01) p'(gt)L%) dm dt
/ m/ (0¢)(Lepy) —I—F(P(Qt) o1 L%) dmdt+/ 77t/ (1) LSOt) dm dt.

Combining the two formulas, we get ((11.2)). O

Theorem 11.3 (Action and dual action monotonicity) Let us assume that the BE(K, N)
condition holds, and that P € DC,.4(N).

(i) If 0 € ND(0,T),p € WH2(0,T; D, H) are bounded solutions of (11.1alb) then the map
t— [ ol () dm is absolutely continuous in [0,T] and we have

i;/ pel () dm>K/ (0)T (pr) dm  ZL'-ace. in (0,7). (11.6)

(i) Setting
A= iI>1£ KQ(r) > —o0, (11.7)

if we WY(0,T;H,Dy;) is a solution of ([.15) with @ € V) C Vg, then w, €V, for
all t € [0,T], with

&, (ws, ws) < e’QA(S’t)SZt (we,wy)  for every 0 <t < s <T. (11.8)

(iii) {'f moreover ¢y = —Aj (wi) € V,, is the potential associated to w; according to (5.72),
i.e.
(@1, C) = (wy, C)  for every ( €'V, (11.9)

we have

1 * *
lnr’"lbisoup oh <€Qt(wt,wt) — Egtfh(wt,h,wt,h)) < —K/X Q(ot) 0L, (¢r) dm.  (11.10)

Proof. Since BE(K, N) holds (and thus in particular BE(K, 00)) we can apply of
Theorem , since the interpolation estimate and the regularity properties of o
and ¢ yield F(g) , F((p) € L?(0,T;H). The estimate follows then by the combination
of with Theorem

For 0 <t < s < T, let us now call By; : Vo, — V the linear map that to each
function ¢ € V, associates the value at time ¢ of the unique solution ¢ of with
final condition ¢, = @, given by Theorem . If holds and A is defined as in

we have

/Qtl“(sot) dm§e2A(”)/ osT'(¢) dm, (11.11)
X X
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so that

(A0 e A=D5) %803 (A=t 5 oA 5)
= {wn @) -0 e, (5,0) B, Bug) - 028, (5,0)
"L 0 B2) ~ (Bt Bud) T 8 i)
Taking the supremum with respect to ¢ € V, we get .

Similarly, we can choose a maximizing sequence (p,) C V4 in

1. 1
_Egt (wt?wt) = Ssup <wt7 90> - _EQt (@7 gp)7
2 SOEVoo 2

so that ¢, converge in V,, to the potential ¢, = —A} (w;). Recalling (11.6) and (4.18) we

have

1 1
<wt7 Qpn> - 58&(907” @n) S <wt7h> Bt,t*h90n> - §8Qt7h(Bt,t*h90na Bt,tfhgon)

—K/:h/XQ(Qr)QrF(Bt,rson) dmdr.

Passing to the limit as n — oo and recalling Lemma [5.6| we get

1 1
58; (wt7 wt) < <wt—h; Bt,t—h¢t> - §Egt,h(Bt,t—h¢t, Bt,t—h¢t)

—K/:h/XQ(QT)QTPQT(Btmt)dde

1 t
< §8Zt7h(wt—h’ wt—h) - K/ / Q(Qr)QrPgT(Bt,r@) dmdr.
t—h JX

Dividing by h and passing to the limit as A | 0, a further application of Lemma yields
([I1-10). 0

Corollary 11.4 Let us assume that the BE(K, N) holds, and that P € DC,¢(N). If
0 € ND(0,T) is a nonnegative bounded solution of ([3.31) with /o € V then w, := o,
satisfies

&:, (wy,wy) < e *MEx(wy, wo) < a7 e TE(VD, VD) < o0 (11.12)

with a given by (13.24)).

Proof.  Since wg = LP(p), we have for every p € V

(o) = &P@.9) = [ P@N() dm

~ 2 [ P@VEr(va.y)dm

23_28<\/57 \/—@) + %89<907 90)7

IN
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which yields &%(wq, wo) < 4a~2E(\/2, /). Since, thanks to Corollary |4.7, w solves (4.15)),
we can apply (11.8) to obtain (11.12). O

12 The equivalence between BE(K, N) and RCD*(K, N)

12.1 Regular curves and regularized entropies

Let us first recall the notion, adapted from [7, Def. 4.10], of regular curve. Recall that
E(+,-) stands, in this metric context, for Cheeger’s energy, here assumed to be quadratic.

Definition 12.1 (Regular curves) Let s = osm € Po(X), s € [0,1]. We say that u is
a reqular curve if:

(a) There exists a constant R > 0 such that os < R m-a.e. in X for every s € [0, 1].

(b) p € Lip([0,1]; P5(X)) and in particular (8.4) and the identification between minimal
velocity and metric derivative yield o € Lip([0,1]; V¢).

(c) gs == /0s € V and there exists a constant £ > 0 such that &(gs,9,) < E for every
s € [0,1] (in combination with (a), this yields that o5 € V and also E(ps, 0s) < 4RFE
are uniformly bounded).

The next approximation result is an improvement of [7, Prop. 4.11], since we are able to
approximate with curves having uniformly bounded densities (while in the original version
only a uniform bound on entropies was imposed). This improvement is possible thanks to
[46, Thm. 1.3].

Lemma 12.2 (Approximation by regular curves) Let (X,d, m) be an RCD(K, c0) space
and po, 11 € P2(X). Then there exist a geodesic (is)scjo,1) connecting jio to py in Po(X)
and regular curves (j1))sepoa] with pf = oim, n € N, such that

1
lim Wa(ul, us) =0  for every s € [0,1], lim sup/ |22 ds < Wi (o, pr). (12.1)
n—00 0

n—o0

Moreover, if u; = oom, i =0, 1 then

nll_{glo o — Qz’HLl(X,m) =0 fori=0,1, (12.2)
and
lim U(p)) = U(w;) fori=0,1 and for all U € DC,4(N). (12.3)

n—oQ

Finally, if 0;, 1 =0, 1, are m-essentially bounded with bounded supports then s = osm for
each s € [0, 1] with (0s)scpo,1) uniformly m-essentially bounded with bounded supports, and

05 — 05 strongly in LP(X,m) for all p € [1,00) and in weak *-L>°(X,m) , for all s € [0, 1].
(12.4)
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Proof.  First of all we approximate p;, i = 0, 1, in P5(X) by two sequences v* =
o'm with bounded support and bounded densities o' € L*°(X,m). Whenever po, =
oom (resp. U(py) < oo) we can also choose v so that o' — p; strongly in L'(X,m)
(resp. U(v]") — U(p;)) as n — oo. Applying [46, Thm. 1.3] we can find geodesics (V') sepo,1]
in Z5(X) connecting v/ to vj* with uniformly bounded entropies and densities o7 satisfying
SUPefo,] 105 || (xm) < 00 for every n € N. By setting 7 := v, if s € [0,n/(n + 1)],
v =y if s € [n/(n+ 1),1], we may also assume that v" is constant in a right neigh-
borhood of 1. Since v" € AC*(0,1; 25(X)), we can then apply the same argument of |7,
Prop. 4.11] (precisely, an averaging procedure w.r.t. s and a short time action of the heat
semigroup, to gain V regularity) to construct regular curves v™* = ¢™*m, k € N, in the
sense of Definition [12.1] approximating v™ in energy and Wasserstein distance as k — oo.
Notice also that the construction in [7, Prop. 4.11] provides the monotonicity property
U™) < U™, i = 0,1, thanks to the convexity of U and to fact that U decreases under
the action of the heat semigroup, so that [o]"* — o7 |l (x;m) — 0 and UMY = UW?) as
k — oo by the lower semicontinuity of U. A standard diagonal argument yields a subse-
quence u” := v™*n satisfying the properties stated in the Lemma.

If the starting measures satisfy p; = o;m with g; m-essentially bounded with bounded sup-
ports, then by [46, Thm. 1.3] there exists a Wy-geodesic ps = gsm for each s € [0, 1] with
(0s)sejo,1) uniformly m-essentially bounded with bounded supports. Recalling the regular-
ity and continuity properties of the heat semigroup proved in [0, Thm. 6.1] (see also [2]),
we obtain that the approximations u? (defined above by an averaging procedure w.r.t. s
and a short time action of the heat semigroup) converge in L'(X, m) and are uniformly

bounded in L*(X, m); the claimed convergence (12.4)) follows. O

~n

Given U : [0,00) — R continuous, with U(0) = U(1) = 0 and U’ locally Lipschitz
in (0,00), with P(r) = rU’'(r) — U(r) regular, we now introduce the regularized convex
entropies U. € C%([0,00)), € > 0, defined by

Ucr) = <T+€)/07" P(s) ds—r/o (Pﬁds (12.5)

(s+¢)? s+¢)?

" P(s) " P(s)
7’/1 —(8+€)2ds—|—5/0 —(S+€>2ds,

U.(0) = 0, w®=—A(P@

s+¢e)?

that satisfy (since P(0) = 0)

P'(r)

d Ul(r) = .
s Ul =

(12.6)

Notice that, since U is normalized, for every R > 0 there exists a constant C'r such that
min{U(r),0} < U.(r) Vre€|0,1], 0 <U.r)<Cgrr Vrell,R], (12.7)
moreover one has the convergence property

léiﬁ)l U.(r) =U(r). (12.8)
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We also set

B r P/(S) )

zwy_A s (12.9)
so that gives

2a\/r < Z(r) < 2a /1. (12.10)

Lemma 12.3 (Derivative of the regularized Entropy) Let (0s)scjo,1) be uniformly bounded
densities in W2(0,1;V,V;). Then the map s — [ U-(0s) dm is absolutely continuous in
0,1] and

d d
—/ U-(0s) dm = (=05, Ul(0s))v for L-a.e. s €(0,1). (12.11)
ds Jx ds

Proof. The convexity of U, yields

/ U.(0,) dm — / U.(o,)dm < / U (0)(0s — 0) dm < E(U(0,)"2E* (00 — 0,)"
X X X
< sup |U”| €(0s)?€* (05 — 0r)"?,

so that (3.24) and the last identity in (12.6]) give
1 *
‘/ UE(Qs)dm—/ U-(or) dm‘ < - max (S(Qsags)l/Qag(QraQr)1/2>8 (0s—0)'?. (12.12)
X X

This shows the absolute continuity (see [3, Lem. 1.2.6]). The derivation of (12.11)) is then
standard. g

Lemma 12.4 Let o € V, be nonnegative.

(i) o € Vif and only if Z(o) € V if and only if f{g>0} 07'I'(P(0)) dm < oo. In this

F(P—Q(Q)) dm = lalﬁ)l QF(UQ(Q)) dm. (12.13)

&(2(0). 2(0)) = /{ N

(ii) If Z(0) € V then LP(g) € V!, U

£

(0) = A;(LP(0)) inV, as € |0 and

151151 ; ol (Ul(0)) dm = /X ['(Z(0)) dm = & (LP(0), LP(0)). (12.14)

Motivated by this, we will call U'(0) € V, the limit A%(LP(0)) of Ul(0) in V.

(iii) If ps = osm, s € [0,1], is a regular curve, then s — U(us) is absolutely continuous

and
d

_ d / 1
EU(MS) — V,QS<EQS,U (0s))y, ~for L -a.e.s€(0,1). (12.15)
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(iv) If Z(o) € V, 0, = St0, BE(K, N) holds and A is defined as in (11.7)), then
Z(o) €V, &(Z(ar), Z(ar)) < e ME(Z(0), Z(0))  Vt>0. (12.16)

In particular, if p = om € Po(X) then t — om is a Lipschitz curve in [0, T] with
respect to the Wasserstein distance in PP5(X) with Lipschitz constant bounded by

e My/E(Z(0))-

Proof. The proof of the first claim is standard, see e.g. [5, Lemma 4.10].
In order to prove (ii), let us first notice that

€o(LP(0), LP(0)) < €(Z(0), Z(0))- (12.17)

In fact for every ¢ € V there holds

—ﬂﬂmw:LP@mmmmaéﬁwﬂmmmsaﬂmﬂmmw%wﬂ

On the other hand, choosing as test functions ¢. := —U!(p), taking the last identity in

into account we get
Eole, ) = /X ol (Ul(e)) dm < / (0 +)(U(0))’T (o) dm < &(Z(0), Z(0)),

X

@HMMJ:/F@@Mu@wm:

X x 0

(P(0)) dm 1 E(Z(0), Z(0)) ase 0.

This shows that {(: }.~¢ is an optimal family as e — 0, thus we can apply Proposition[3.1|(b)
to obtain that . converge in V, to a —A%(LP(g)), and that (12.14) holds.

In order to prove ([12.15)) we pass to the limit as € | 0 in the identity obtained integrating
([[2.11)

/ U(0;) dm — / -(0s) dm = / i QT, gr)> dr forevery 0 <s<t<1.

(12.18)
Indeed, in the left hand side it is sufficient to apply the dominated convergence theorem,
thanks to the uniform bounds of (12.7) and (9.32). Since the curve pu is regular, the
modulus of the integrand in the right hand side is bounded from above by

1., .d d

—& (—or, —or) <
QEQT(dT(QT7 err) < C  for every r € [0, 1],

SE(Z(0), 2(0) +

so that we can pass to the limit thanks to ( 11)

The inequality m ) follows by ([11.12)), the fact that %Qt = LP(o;) and (12.14]).
In order to prove the last statement, we apply Theorem , the estimate ((12.14]) which

provides an explicit expression of the metric Wasserstein velocity, and (({12.16]). U

102



12.2 BE(K, N) yields EVI for regular entropy functionals in DC(V)

Theorem 12.5 (BE(K, N) implies contractivity) Let us assume that metric BE(K, N)
holds and that P € DC,.,(N). If A is defined as in , then the nonlinear diffusion
semigroup S defined by Theorem is A-contractive in Po(X), i.e. for all py = om, vy =
om € P5(X) one has

Wa(pe, i) < e ™ Wa(po, o) - with i = (Spo)m, v = (S,0)m. (12.19)
Proof. We assume first that o and o are the extreme points of a regular curve jiy; = gsm.
We set sy = 0sm, with o5, = S;05. Since [i, is Lipschitz with respect to W5 and g, are
uniformly bounded, s — g, is also Lipschitz and weakly differentiable with respect to V;:

we set ws ¢ 1= 05054
By Kantorovich duality,

1
§W22(M0,t7ﬂl,t) zsup{/ QlSDdﬂl,t_/ @duo,t} (12.20)
X X

where ¢ runs among all Lipschitz functions with bounded support. If ¢ is such a function
with Lipschitz constant L, setting ¢, := Qsp, the map n(s,r) := [, @sdp,, is Lipschitz:
in fact, recalling that

Lip(ps) < 2L, sup |¢s(x) — pr(z)] < 2L2|S -7
reX

we easily have

n(s,r) —n(s', I <2L%s = ', |n(s,r) = n(s, )| < 2Ly/m(S) [losr — 05l

where S is a bounded set containing all the supports of ¢, s € [0,1]. From (5.12) we
eventually find

d 1
g sds<__ DSQdS S,ty ¥'s/-
ds/xso fhsp < 2/XMPI st F (Wts s)

Denoting now by r — ¢, the solution of the backward linearized equation (4.2]) (corre-
sponding to ({11.1b))) in the interval [0, ¢] with final condition ¢, := ¢, recalling Corol-

lary [4.7| we get by (4.18) of Theorem [4.5] and (11.6) of Theorem [11.3
<ws,t’ §05> - <ws,07 905,0> - / Ps,0 ast dm’ / |D905|12Udlvbs,t 2 e2At/ |D305,0|%U dN57
b X X

and therefore the relations (6.11]) and (8.7) between minimal 2-velocity and metric deriva-
tive, together with Lemma [8.1], give

1
1
/ erdpg s — / wo dpgy < / <— 5/ ’D%\?p dptss + (wsy, %)) ds
X X 0 X
! 1
/ < B §e2At/ |D<p570|fv dps + / (0s05) @50 dm> ds
0 X X

1 1
_e2At/ |,[:Ls|2 ds.
2 0
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Taking now the supremum with respect to  we get W2((S;0)m, (S;o)m) < e~ 27 fol |f15]* ds.
Using Lemma and the contraction property of S; in L' (X, m) we obtain the same bound
for an arbitrary couple of initial measures. O

Let us recall the notation (see (7.4))

1
Aol m) = / /X Q0)%p, dmds

for the weighted action of a curve u, = gsm w.r.t. m, where v, is the velocity density of
the curve.

Theorem 12.6 (Action monotonicity) Let us assume that metric BE(K, N) holds, and
that P € DC,y(N). Let us = osm, s € [0,1], be a reqular curve and let sy = 05 ,m with
0st = (St0s). Denoting by i, the curve s — s, we have

1 f 1
§A2(u.,t1) + K/ .AQ(,uyt,m) dt S 5A2([L.7t0> 0 S to S tl S 1. (1221)
to

Proof. It is sufficient to prove that the map ¢ — As(pu.¢) is absolutely continuous and
satisfies for every ¢t > 0

. 1

lim sup —— (Az(u.,t) - A2<u_,t,h>) < K Ao(jt.s;m). (12.22)
R10 2h

Let us fix ¢ > h > 0; thanks to Theorem [3.4 and Theorem [4.6] the curves o.; and ., are

L1-a.e. in (0,1) differentiable in V', with derivatives w,,; € Voo Wsi—n €V, .

Recall also the relations (8.7) and (8.8) of Theorem [8.2] linking the minimal velocity
density of a regular curve v, = o,m, its V' derivative £, and the potential ¢, = —AZS ().

By (B7) we get

1 I
e (A2p.0) = Aalpaan)) = 55 /0 (&5 (o w0) = €5, (Wesn,wesn)) ds.

Recalling ((11.8) and the definition (11.7]) of A, one has

& (Ws s W pp) < (€M —1)EX (W yp, Wssop)

(ws,t; ws,t) - & Os,t—h

* *
Os,t Os,t—h

which is uniformly bounded (using (11.8)) once more) by C(t)h, if h < t/2. Therefore the
curve t — As(p.¢) is absolutely continuous; moreover, applying (11.10)), (8.7) and Fatou’s

Lemma we get

. 1 !
lim sup —<A2(M-,t) - ‘A2(N-,t7h)> < —K/ / Q(Qs,t)@s,tvit dmds,
o 2h 0 Jx

where v., is the minimal velocity density of s. ;. U

104



Let us now refine the previous argument. In this refinement we shall use the weighted
action

1
Auolpim) = [ [ sQ(e)itp.dmds
0 X

where id(s) = s. Notice that the weighted action appearing in the EVI property (9.77) is
Ao (p; m), with w(s) = 1 —s; in other words A, (p; m) corresponds to the s-time reversed
weighted action A;qq(p;m).

Theorem 12.7 (Action and energy monotonicity) Let us assume that metric BE(K, N)
holds and that P € DC,(N). Let pus = posm, s € [0,1], be a reqular curve and let
fst = 0s4m with 05y = (Sst05). Denoting by ji.; the curve s — fi,,, we have

1 t 1
éﬂg(u.,t) + tU(,LLLt) + K/ AidQ(uw;m) dr S 5‘/{2(#.,0) + tU(/L07Q). (12.23)
0

Proof. Since by assumption U is continuous and convex, by (3.34) we already know that
the map ¢ — U(p1¢) is nonincreasing; thus it is sufficient to prove that

. 1
limsup - (Aa(pr.0) = Aapto-n)) < Wpaoo) = Wlpun) = Kliag(piim).  (12.24)
hl0 2h

We thus fix 0 < h < t. Recalling Theorem [6.6| and Theorem [8.2] we have

1

1
‘AQ(ILL.’t):/ €.t (050514) ds, ‘AQ(,LL.’t_h):/ & v (05051-1) ds. (12.25)
0 0

It is easy to check that for every 7 > 0 the curve s — pis;—py- is Lipschitz in P(X) and
S+ 0st—n+r 18 Lipschitz in Vg, since for every 0 < 513 < 59 <1

||Qsl,t—h+’r - 952,t—h+’r||Vé S ||Qs1,t—h+7' - Ssl’rng,t—hHVé + ||Ssl7'£)52,t—h - ngi—h-{—THVé

S ||QS1,t—h - ng,t—hHVg’ + CT(SQ — Sl);

for some constant C' independent of sq, so and 7, where in the last inequality we used the
contractivity (3.32) of S in V{ and Theorem (3.4 (ND3).
A similar argument shows the Lipschitz property with respect to the Wasserstein distance:

WQ(Msl,t—h—‘rT» /’LS2,t—h+T) S W2 (/J/Sl,t—h—‘rT7 (SS1TQSQ,t—h)m) + W2 ((SslTng,t—h)ma NSQ,?ﬁ—h—H’)
< e MW (lsy s Mg p—n) + C' T(s2 — s1),

where we applied and point (iv) of Lemma : notice that, along the regular curve
s = 0sm, the quantity &(,/0s,+/0s) is uniformly bounded, so that &(Z(0s—n), Z(0s,—1))
is also uniformly bounded by .

For every r € [0,1],u € [0,], also the curves s + gt := S,,0s 1 are regular: we set

— U
zg, = 0s05,. We have

U U
. Ospik T Osyp
lim —————

=uLP(o,) forevery u e [0,t], s,re€]0,1].
k—0 ’
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Since ol , = 054, it follows that the derivative of s — g, in V{ is

8598,15 - as (Sshgs,t—h) = ng + hLP(Qs,t)

0 , ,
55 / U(ost)dm = v, (2l 4+ hLP(0s4), U (05,6))v, Ltae. in (0,1).
D' s,t st

For every s € [0,1], let ¢y € V be an optimal sequence for d;0;, thus satisfying

]. * . n 1 n
501 (0001, 0s000) = i y, - (20, + BLP(051), F)v,  — 3 / 0541 p...(5) dm.
’ X

Q" Csit n—00 ' 2s,t

Let vy == —U'(0s4) € V,,, and 4, := ¢, — hvg,. We get

n 1 n
\Y <Z§8 + hLP<Q5,t)7 Sps,t>Vgsyt - 5 sttr‘@s,t (Spsi) dm

Qs,t

»

1
=y (e BLP(0y) U0+ i)y, | = /X 00Ty (67, + hv,) dm

a n 1 n n n
=i [ Uledmt oy, (hatidy,, = 580VEntl) + iy (LP() Uy,

h2
_h/ 050 (Y74, s ) dm — —/ 054 (Vs ) dm
X ’ 2 Jx

0 1

h n n n
< _ha X U(QS,t) dm + Vl@s,t <Zs,s7 w57t>V93,t o §€Qs,t( CRA) s,t)’

where we used Lemma m (ii) to get the second equality, and to simplify the third and
second to last terms in order to obtain the last inequality. We observe that ¢, is an
optimal sequence for zif’s: we will denote by 1, its limit in V|, and by ¢, the limit of
¢4, They are related by ’

¢s7t = dJs,t + h'Us,t. (12.26)

Passing to the limit in the previous inequality we obtain

1 % 8 1 * h h
5895’15 (asgs,t) ast,t) S _hg A U<Q57t) dm + §SQs,t (28,87 Zs,s)' (1227)
Observe that u — gy, = Sru0st—n and u z¢, = O0s05, satisty respectively

augg,r - TL(P(Q?J"))’ 811/2:,7“ = TL(P/(Q;T)Z;LJ%
where the second equation follows from Theorem Setting r = s we get

augg,s = SL(P<QQSL,S)>7 auzg,s - SL(P/(QZ,S) Z;L,s)
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Let now B;T be the operator, given by Theorem , mapping ¢ € V into the solution (,

of
d ,
5(’” = —sP (Qs,r)LCs,r r e [O,t], Cst i= C. (12.28)

Theorem and the fact that 2, = 0s0s¢—p and o, = 0s4—h+u yield
1 h *
5 |:8gS t(zs ) s s) 89 t—h (asgs,tfm ast,tfh)]

< K / [ oot (B () dmar
t—h JX

Using the estimate

o (B (600)) < (14 O)Ty, (B (0) 412 (14 )T (B (02,0)

and the uniform bound

/ 00s Ty, (B (0)) dm < C / 0Ty (ver) dm < C,
X

Lemma eventually yields

* * < _
11I2¢S()up 2% (ggsz( ss? ss) 8@ it h(asgs,t—hyasgs,t—h)> = KS/XQ(QS,t)QSt Os, t(¢5 t)

Combining this estimate with (12.27]), we get

i sup o (€5, (0050, 0050 = &, (005 005-0))

0
< —KS/ Q(Qs,t)Qs,ths,t(¢s,t) dm — 8_/ U(Qs,t) dm
X S Jx

By recalling ((12.25)) and Theorem , the integration w.r.t. s in (0, 1) of the last inequality
gives (|12.24]). Il

Theorem 12.8 (BE(K, N) implies CD*(K, N)) Let us suppose that (X,d, m) is a metric
measure space satisfying the metric BE(K, N) condition. Then for every entropy function
U in DC,¢y(N) and every i = om with o m-essentially bounded with bounded support, the
curve py = (Sg0)m is the unique solution of the Evolution Variational Inequality . In
particular (X,d, m) is a strong CD*(K, N) space.
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Proof. Under the above conditions, one can apply [7, Cor. 4.18] to obtain that (X, d, m)

is an RCD(K, 00) space, in particular the assumptions of Lemma are satisfied. Now

let S; be the solution of the nonlinear diffusion semigroup of Theorem and let 7 = om

with o m-essentially bounded with bounded support; we consider a family of rer curves
12.

,ugn) = gg ‘m ap rox1mat1ng a geodesic g from v to p in the sense of Lemma |12.2| and we

set ,ug? = (Syo™)m. Applying (12.23) of Theorem [12.7| we get

1 ! 1 n n
§Axun+¢wpu-+K/fmam&mﬁws§ﬂmmh+ﬂu%w. (12.29)
0

Dividing by ¢t > 0 and letting n — oo,t | 0 we get

.AQ(,LL.(;L)) — As (,u.(,%))
2t

lim sup lim sup
tl0 n—00

n K t . n
+ U(,ug’t)) + - / AidQ(,u_(?ﬂ); m) dr) < lim sup U(,ué’o)).
0

n—oo

(12.30)
Next we pass to the limit in the different terms, setting us; = (Ssos)m. First of all,
combining with the lower semicontinuity of the 2-actions and recalling that () is a
Ws-geodesic we get

1 (m)
lim sup lim sup % (.Ag( V) — Ag( )) > lim sup %(.AQ(/J/ t) — Ag(u,,0)>

tl0 n—00 2 tl0

1
> limsup o (WE (7, p1.) = WE(m, 1)) (1231)
an) 2t

In virtue of ((12.3)) and of the lower semicontinuity of the entropy we also get
lim inf lim me(MM) > hm 1nfU(,u1 ¢) > U(p), lim U(uéno)) =U(D). (12.32)
n—00 ’

t}0 n—00

Regarding the term with the integral of the actions we claim that the joint limit as t |
0,n — oo exists with value

lim AldQ (s m) dr = Ajao(7, i; m). (12.33)
t}0,n—0c0 t
In order to prove ((12.33), we ﬁrst show that
twlinfgooﬂidcz(u(t)a m) = Ajag(p.sm) = Aaq(, iy m). (12.34)

In order to show the convergence we wish to apply Theorem [7.1] let us then verify its
assumptions.

Recalling that by Lemma - we have ps QNN 0 strongly in L'(X,m) for every s €
0,1], using the L'-contractivity and L'-continuity of the semigroup proved in Theorem
(ND4), we obtain

limsup ||os — Qst HLl(Xm) < hmsuip <HQS — OstllLrxmy + 05t — Qst HLl(Xm)>

t}0,n—o00

< hmisup ||Qs - Qs,tHLl(X,m) + hmsup ||Qs - QS )||L1 (X,m) — 0,
tl0

n—00
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which in turn implies (by dominated convergence)

g(?) — 0. asn — oo,t ] 0, strongly in L'(X, ). (12.35)
Now let (¢,)nen be any sequence with ¢, | 0. First of all, by the lower semicontinuity of

the 2-actions we have liminf, Ay (p. (n )) > As(ft.0). On the other hand, by Theorem (12.6
we have

t
Aa(p) < <2K [ Ag(usm)ds + Ax(u7) < 21K (sup Q) / Ao ds + A ()
0

which, by Gronwall Lemma, implies sup;c( Ag(u ¢ ) < C=0C(p.,K,sup|Ql)).
Therefore, again by Theorem [12.6] we get

tn
lim sup Ag (1" 'y ') < limsup ( — ZK/ Ag(p.i;m)dt +A2(u,(f))))
0

n—o0 n—oo

< limsup (C(ue, K, 5up | Q1)) + A () ) = limsup Ay (15) = Aa(je.0)-

n—oo n—oo

It follows that lim,, . Az (u(tn) As(p. o) for any sequence t,, | 0 and then

Hlf)omtwﬂﬂu V) = Aa(p.0)-
We can then apply T heorem u and obtain the claim ((12.34) and then ((12.33)).
Putting together ((12.31] and m we obtain

hmfaup2 (w2 (s 7) = WE (1 9) ) + W) + KAiaq (7, jism) SU(D).  (12.36)
t

Recalling that w(s) =1 — s, and that p1, = (S;0)m = g, the last identity is equivalent to

: 1 _ - _ o _
lim sup % (Wg(,ut, v) — Wi (i, 1/)) + U(p) + KA (g, 7;m) < U(D). (12.37)

t10

This proves ((9.83)); therefore the strong CD*(K, N) property, is an immediate consequence
of Theorem [9.22] O

12.3 RCD*(K, N) implies BE(K, N)

In this section we will assume that (X,d, m) is an RCD*(K, N) space and we will show
that the Cheeger energy satisfies BE(K, N). By [7] we already know that BE(K, 00) holds.

In the following, we consider an entropy density function U = Un .y € DC,ey(INV) of
the form given by through the regularization and we will denote by (S¢)¢>o the
nonlinear diffusion flow provided by Theorem and satisfying the EVI property
by Theorem [9.21]
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Lemma 12.9 Let us = osm be a Lipschitz curve in Po(X) such that s — Enty(us) is
continuous. For a given integer J, consider the uniform partition 0 = sy < 51 < -+ <
s; = 1 of the time interval [0,1] of size 0 := J~! and the piecewise geodesic u! = o’/m,
s € [0,1], obtained by glueing all the geodesics connecting jis; , to fis, .

Then ofy — oy in LN(X x [0,1],m® Z").

Proof.  First of all, since fi( is a Lipschitz curve in &,(X), it is clear that the geodesic
interpolation converges, i.e. pfy — .y in C°([0,1], Z5(X)). Therefore for every s € [0, 1]
we have u? — u, weakly and thus (see for instance [3, Lemma 9.4.3])

Enty (s1) < lim inf Enty (1)), Vs €0,1]. (12.38)
—00

On the other hand it is not difficult to prove also the converse inequality

Enty, () > limsup Enty (p/), Vs € [0,1]. (12.39)

s
J—o0

Indeed, the K-geodesic convexity of the entropy along geodesics ensured by RCD(K, co)
yields

tH1—t)

Entm(u{l—t)s]-+tsj'+1> S (1 - t)Entm(:qu) + tEntm(:quJrl) - K W22 (Msp :LLSjJrl)? (1240)

for all t € [0,1]. Since the maps s — Enty(15) € RT and s — ps € P9(X) are continuous,

we get ((12.39) by passing to the limit as J — oo in (12.40)).
From the convergence u{) — ey in C°([0, 1], P»(X)) we infer that the family {47, 115 }sepo,1),sen

is tight. The thesis then follows from the following Lemma [12.10| combined with the Dom-
inated Convergence Theorem. Il

We next state a well known consequence of the strict convexity of the function ¢ — tlogt
on [0,00) (see e.g. [0, Theorem 3]).

Lemma 12.10 Forn € N, let op,m = p, € Z(X) and pm = p € P(X) be such that
® [, — p weakly in P (X),
e Enty(u,) — Entyn(p) as n — oc.
Then g, — o strongly in L'(X, m).
Lemma 12.11 Let us = psm be a Lipschitz curve in P5(X) with s — o5 continuous

w.r.t. the L'(X,m) topology and sup, ||0s||L=xm) < 00. Then, defining jis; = 0s¢m with
0st = (St0s), one has

1d*
55‘/42(#.7,5) < —KAg(p.p;m)  for every t > 0. (12.41)
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Proof. The L'(X,m) contractivity of S ensures that s — g, t > 0 are equi-continuous
in L'(0,1; L'(X,m)), while the embedding provides the continuity of ¢ — g, when
s is fixed; combining these properties we know that (s,t) — o, is continuous w.r.t. the
L'(X,m) topology. In addition, it is easily seen that the L*(X,m) norms of g,,; are
uniformly bounded, and s — ps; = 0s¢m is a Lipschitz curve in &25(X).

For a fixed integer J we consider the uniform partition 0 = so < s1 < -+ < s;7 = 1 of the
time interval [0, 1] of size o := J~!, and the corresponding piecewise geodesic approximation
:U’:e],t of Hos,t-

Summing up the Evolution Variational Inequality for s, ,+ and test measure
ps;,« and the corresponding one for ps; e and test measure p,,_, ; we use the Leibniz rule 13,
Lemma 4.3.4] to get that ¢ — W3 (ps,_, 4, jts,+) is locally absolutely continuous in [0, c0),
and that

1d
§&W22(/'L8j_17t7 MSj,t) S _K <‘AWQ(ILLSJ'—1,t7 #’Sj,t; m) + ‘A'UJQ (l’[’Sj,t) /"LSj_l,t; m))
for j =1,...,J and Z!-a.e. t > 0. Denoting by u{t the piecewise geodesic curve as in the
previous lemma, we obviously have
1
‘AQ(”{t) = ; Z W22(Iu5j—17t7 :qu,t)’
j=1

while (9.76) gives

M“

1
‘A M t7 ; < wQ ,usj 1,t7/jls],t7 )+‘AWQ(MSj,t7/“’LSj_17t;m)>'

j=1
We end up with

1d
§EA2( 7)< —KAQ(,LL‘,{t;m) for #t-ae. t >0, (12.42)

or, in the equivalent integral form,
1 J 1 J 2 J
§.A2(/L7t2> — 5./42(/,6_’1‘/1) <-K AQ(,u_’t;m) dt 0<t <ty (1243)
t1

By Lemma we know that the curves p” /, converge to the curves ., in L' (X x[0,1], m®
£ as J — oo. This enables us to apply Theorem - notice that . holds because
the piecewise geodesic interpolation does not increase the action), so that we can pass to
the limit as J 1 oo in ((12.43)) and use ([7.9) to get

1 1 2

§A2(u.,t2) - §A2(p¢7tl) < —K/ Ag(p.¢;m) dt forall 0 <t; <ty <T. (12.44)

t1
O
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Corollary 12.12 Under the same assumptions and notation of the previous Lemma|12.11
if A is defined as in (11.7)) then

Ag(p.) < e MAs(po)  for every t > 0. (12.45)

In particular, if L is the Lipschitz constant of the initial curve (is)scp1 i (P2(X), Wa)
and s+ g5, € C([0,1]; V') then

&y (0505, 0s050) <€ MLP Vs el0,1], VE>0. (12.46)

Proof.  The action estimate (|12.45)) follows easily by ((12.41]) and the fact that the definition
of A gives —KAg(p.s;m) < —AAs(pi.r).
By repeating the estimate above to every subinterval of [0, 1], the identity (8.7]) of
Theorem and the equality (6.11]) between minimal velocity and metric derivative yield
€% (D505, 0504) < e 2 L2 Lae. s€0,1], Vt > 0.

Os,t

The thesis ((12.46) then follows by the lower semicontinuity of the map s — €} (95051, 050s.t)
ensured by Lemma , since the maps s — 05054, S — 05+ are continuous in V' and weak*-
L>(X, m) respectively. O

We can now prove the implication from RCD*(K, N) to BE(K, N); we adopt a pertur-
bation argument similar to the one independently found in [16].

Theorem 12.13 [If (X,d,m) satisfies RCD*(K, N) then the metric BE(K, N) condition
holds.

Proof.  Let us first remark that (X, d, m) satisfies the metric BE(K, co) condition and that
(X,d) is locally compact; in order to check BE(K, N) we can thus apply Theorem .

We fix f € Dy(L)NDp(L) with compact support and p = gm € (X)) with compactly
supported density ¢ € Dy~ (L) satisfying 0 < ry < ¢ m-a.e. on the support of f. With
these choices, our goal is to prove the inequality

Ta(f; Plo)) + /

X

R(o) (Lf)*dm > K/XF(f) P(0) dm. (12.47)

We define
¥ :=—oLf —T(o,f).

Since o and f are Lipschitz in X, recalling Theorem [10.6|and Lemma [10.8 one has 1) € V
and
|| < ap for some constant a > 0. (12.48)

In addition, ¥ has compact support and

/wgdm:/ oT(f,¢)dm V¢ eV, /wdm:O, (12.49)
X X X
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3Ei0.0) = 3l = .y = 5 [ ar () dm. (12:50)

We then set o, := o + s, so that J,0, = 1, and we observe that ((12.48)) gives
(1 as)o < os < (1 +as)o. (12.51)

This, together with (12.49)), implies that g;m € Z(X) for s € [0,1/a]; moreover, ((12.51))
also gives (1 —as)E,(p) < &,.(¢) < (14 as)E,(p) for all ¢ € V, so that by duality we get

(1+as) "1, 0) < & (¥,9) < (1 —as) ' & (4, ). (12.52)
It follows that og is Lipschitz in &25(X) by Theorem 8.2/ and
I £5,(6,0) = £3(0,0) = (1, ) (12.53)

We set 0! = S;0,, w! := 050!, o' = S;0. Recall that, thanks to Corollary [L.7} ¢

w! belong to W12(0,T;H,D}) C C([0,T]; V') and solve the PDE d,w = L(P'(p})w) of
Theorem with the initial condition w = 0s0, = . The contraction property of S in
L'(X,m) and the integrability of 1 yield

ok = &'l xam < llos = ellorcem = slllleixm Vs € (0,1/a), VE€[0,T].  (12.54)

Combining Theorem the estimate (12.46) and (12.52) we also get

—2At

sup &% (wt wt) <
ogsgs ot (W5, w) < 1—aS

&y, ) V>0, VS € (0,1/a). (12.55)

Theorem [4.5(L3) in combination with (12.51)) and (12.54) also shows that

lim sup |Jw) —wf|lvy =0 forevery T >0 and lim |w’ — [y, = 0. (12.56)
sd0 0<t<T é s,t1.0 é

Combining the lower semicontinuity property (5.77) with (12.55)), (12.56) and recalling
(112.50)), we get

lim £, (!, w!) = 510, ) = &,(/, /) (1257)

¢
s,t40 s

we are then in position to apply Lemma [5.8 and infer that

iy [ Q)AL () dm = [ Qloyar (1) dm. (12.58)

s,t40

Moreover, by ((12.54]) and ((12.56|) we can find a nondecreasing function (0,1) 3 ¢ — S(¢) > 0
with S(t) < t?, such that

lim sup ¢ !w! — willw =0, lim sup Y|t — ol 1o = O,
HO 0<s<s() oz =il t0 o<s<s(t) lo: = el com
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so that

lim o l(wt — 1, f)ds = lim 1( -, f) (12.59)
to J, t s ’ 10 ¢ ’
and
) S(t) 1 . ) 1 ]
ltlﬂ)l g /X Z(Qs — o)I'(f) dmds = ltlﬁ)l ; g(g — 0)I'(f) dm, (12.60)

provided the limits in the right hand sides exist. Eventually, (12.50)), (12.52)) and 1—as >
yield

1
2
* e* 1 *
30 (0,0 < 514 20980 0) = (. 1) — 5 [ P(f) dm+ asy(w.0)
X
so that the bound S(t) < ¢* yields

1

S(t)
—ﬁ £ (1, ) ds < (i, f) —

2 1/ ol (f) dm + 1at2 Eo(f, f). (12.61)

2 Jx

Combining Theorem and Lemma [12.11] (applied to the rescaled curves in the interval
(0, 5(t))) we get

1[50 (t) 1 50
3 ][ & ( “Yds + K/ ][ / Q%) QTI‘* Ddmdsdr < 3 ][ &, (1, 1) ds,
0 0

(12.62)
so that (12.61]) and the very definition of 82@ yield

]€S(t)<(wz7f> / 0(f) dm ds+K/ ][ /Q o) o (w]) dm ds dr

<@ f) =5 [ o0 (r)dm+ Gare (1. )

and, dividing by ¢ > 0,

FCutvn =) [ - argamascr £ [ a@ersanmas
< StaEu(f. 1)

Passing to the limit as ¢ | 0 and recalling (12.58)), (12.59) and ((12.60) we eventually get

t t

. Wy — L. -
lim (=2 ¢,f>—§1tlgl XQ t °T(f) dm+K/XQ(g)QF(f)dm§O. (12.63)

Observe now that

L~ fy = ][ (L(P (). f) dr = f (P (g, Lf) dr = f (wf, P(@)Lf) dr

t
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We can then pass to the limit since w{ — ¢ in V¢, P'(¢p) — P'(0) in V (thanks to (3.30))
with uniform L*> bound and Lf € V. We get, by the definition of 1, that

i ()~ 0. 7) = 0. P(LE) = = [ (eP@LIP+T(P(@). 1) L) dm. (1260

tlo t

Similarly, since (o' — 0) — LP(p) in V', I'(f) € V and P(o) € Dy, we obtain

i
lim [ Z—2T(f)dm :/ LP(o)T(f) dm. (12.65)
to Jx 1 X
Combining ((12.63)) with (12.64]) and ( m we obtain
—/ P'(0)(o(Lf)* +T(P(o), f))Lf + LP( )L (f) dm < K/ f)dm (12.66)
X
and finally ((12.47)) is achieved. By applying Theorem [10.11| we then get BE(K, N). O
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