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Spreading depression (SD) is a neurophysiological phenomenon characterized by abrupt 
changes in intracellular ion gradients and sustained depolarization of neurons. It leads 
to loss of electrical activity, changes in the synaptic architecture, and an altered vascular 
response. Although SD is often described as a unique phenomenon with homogeneous 
characteristics, it may be strongly affected by the particular triggering event and by 
genetic background. Furthermore, SD may contribute differently to the pathogenesis 
of widely heterogeneous clinical conditions. Indeed, clinical disorders related to SD vary 
in their presentation and severity, ranging from benign headache conditions (migraine 
syndromes) to severely disabling events, such as cerebral ischemia, or even death in 
people with epilepsy. Although the characteristics and mechanisms of SD have been 
dissected using a variety of approaches, ranging from cells to human models, this phe-
nomenon remains only partially understood because of its complexity and the difficulty 
of obtaining direct experimental data. Currently, clinical monitoring of SD is limited to 
patients who require neurosurgical interventions and the placement of subdural electrode 
strips. Significantly, SD events recorded in humans display electrophysiological features 
that are essentially the same as those observed in animal models. Further research 
using existing and new experimental models of SD may allow a better understanding 
of its core mechanisms, and of their differences in different clinical conditions, fostering 
opportunities to identify and develop targeted therapies for SD-related disorders and 
their worst consequences.

Keywords: spreading depression, spreading depolarization, migraine, ischemia, subarachnoid hemorrhage, 
epilepsy, sudden unexpected death in epilepsy

iNTRODUCTiON

Transient brain dysfunctions characterize several neurological disorders, leading to episodic mani-
festations, e.g., headache or epileptic seizures. In most transient neurological disorders, the complex 
pathophysiological processes underlying the occurrence of neuronal and/or glial breakdown and 
subsequent functional recovery are largely unknown; however, the spreading depression (SD) phe-
nomenon is undoubtedly one of the main ones and seems to play a crucial role in several conditions, 
primarily ischemia, seizures, migraine, and migraine variants.
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The term “spreading depression” indicates slowly propa-
gating changes in neuronal electrical potentials, coinciding 
with or leading to a silencing of brain electrical activity. The 
phenomenon self-propagates as a wave in the gray matter 
by means of contiguity, regardless of functional divisions or 
arterial territories (1). The first description of SD appeared in 
1944 in a study showing a spreading decrease of excitability 
in experimental epilepsy (2). Numerous studies have further 
investigated this phenomenon in normal and pathological 
conditions, with the aim of reaching a better understanding of 
its involvement in clinical conditions like migraine, ischemic 
and traumatic brain injury (TBI), transient global amnesia, and 
epilepsy. However, it remains incompletely understood due 
to the complexity of synaptic physiology and the difficulty in 
obtaining direct experimental data. Moreover, it is still debated 
whether the spreading phenomenon should more properly be 
considered to refer to the depression or to the depolarization, 
even though the two propagates in the tissue together (3–5). 
Some authors use “spreading depolarization” as a generic term 
indicating the biophysical mechanism underlying the progres-
sive, self-propagating, and ultimately near-complete neuronal 
depolarization (6), and “spreading depression” to refer to the 
silencing of brain electrical activity, considered a consequence 
or epiphenomenon of the spreading depolarization. Others, 
instead, use the terms “spreading depression” and “spreading 
depolarization” according to the presence, respectively, of 
normal or impaired local metabolic conditions when the phe-
nomenon occurs (7, 8). Differences in terminology arise from 
the evidence that there exist different types of propagating depo-
larization characterized by heterogeneous molecular signatures. 
Indeed, pharmacological inhibition of the presumed molecular 
pathways gives different results according to the initial meta-
bolic condition (8). The purpose of this review is to explain why 
these phenomena may be regarded as the pathophysiological 
correlates of different disorders, and from this perspective we 
consider the first definition less confusing. Therefore, in the 
present review, the term SD is taken to refer to both spreading 
phenomena: the propagating depolarization, understood as 
the initial phenomenon, and the SD proper, understood as its 
ultimate consequence or epiphenomenon.

MeCHANiSMS OF SD

Neurons use electrochemical energy to drive signaling in the 
brain. They store this energy in the form of ion gradients across 
the cell membrane, and the main ions involved in neuronal 
excitability are sodium, potassium, and chloride. An electrical 
signal in a neuron requires only a small amount of this energy 
(9). During an action potential, the flux of very few ions through 
specific membrane channels causes the membrane potential to 
rise and fall within the space in a millisecond (10). The activity of 
the Na/K-ATPase pump is crucial in restoring ion homeostasis. 
The brain consumes about 20% of the body’s basal energy (11) 
and Na/K pumps use about half of this 20% share in maintaining 
ionic gradients.

Glial cells also play a critical role, serving to buffer K+ ions in 
the extracellular space and absorb the glutamate released from 

excitatory synapses, thereby avoiding excitotoxicity reactions. 
However, when the concentration of these molecules exceeds a 
certain threshold, neuronal and glial transporters can no longer 
cope with the efflux. This results in massive extracellular accumu-
lation of potassium and glutamate and in large cell depolarization 
accompanied by loss of membrane resistance and large shifts in 
the intra- and extracellular ion concentrations, preventing the 
generation of action potentials (12).

At the onset of an action potential, the membrane potential 
rises rapidly because of the opening of sodium channels, which 
temporarily generates an inward current that is not balanced 
by outward currents. By contrast, the slow temporal evolution 
of the depolarization typical of SD is due to a more gradual 
modification of the resting membrane potential, mediated by 
changes in intracellular and extracellular ion concentrations. 
Extracellular K+ concentrations, in particular, seem to be 
decisive in triggering and propagating the SD phenomenon. In 
physiological conditions, extracellular concentrations of K+ are 
relatively low, and the extracellular space is relatively small. K+ 
concentrations can increase rapidly by means of transmembrane 
fluxes (6, 7). Since the electroneutrality between the two sides of 
the cell membrane needs to be preserved and the membrane has 
a limited capacitance, changes in ion concentrations and sus-
tained depolarization cannot result from a single ionic current 
but are mediated by sets of opposing currents. It is necessary 
to bear this concept in mind when seeking to interpret data 
from experimental studies aimed at blocking specific currents 
and investigating those involved in the SD phenomenon. SD is 
a process resting on breakdown of ion homeostasis that occurs 
when passive cation influx across cell membranes exceeds ATP-
dependent Na+ and Ca2+ pump capacity (13). The massive dis-
charge of the membrane potential seen in SD creates a signature 
shift of the extracellular potential that can be as great as −30 mV. 
This potential shift has a slow onset (many seconds), and it is 
difficult to detect with traditional high-pass AC amplifiers. To 
observe it, an unfiltered direct-coupled (DC) amplification is 
required; for this reason, it has classically been referred to as the 
DC shift (14) (Figure 1).

Reduction of Local electrical Activity
The propagating depolarization phenomenon results in a reduc-
tion of electrical activity that shows up as a marked negative slow 
potential change (4, 15, 16). This change may result from lon-
gitudinal gradients of depolarization along neurons (6). In fact, 
neurons do not seem to be inactivated along their entire anatomy 
during the massive cell depolarization; instead they maintain 
their integrity and electrical function, except in the dendritic 
zone where ion channel opening allows large sustained influxes 
of small cations, such as sodium and calcium (6). Intracellular 
potential gradients, from zero to rest, can be supported by a 
combination of shunted membranes and ion redistribution along 
discrete cell subregions.

The suppression of electrical activity in SD rests on reduc-
tion of synaptic currents that, in turn, reduces neuronal energy 
requirements. The cause of this reduction seems to be presynaptic. 
Synaptic failure is induced by high extracellular levels of adeno-
sine, a breakdown product of ATP, which prevents the vesicular 
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FigURe 1 | Full-band (DC-coupled) recordings of spreading depression. Two 
events propagate across the full electrode strip from electrodes 6 to 1, as 
shown by negative DC shifts and 0.5–50 Hz depressions of spontaneous 
activity. Analysis focused on electrode 3 in monopolar mode (electrode 3 
versus reference, gold). Adapted from Ref. (14).
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release of glutamate. Adenosine levels may rise as a result of 
increased ATP consumption (17, 18). Electrical activity remains 
suppressed for several minutes after repolarization, and neurons 
do not generate action potentials upon application of glutamate 
during this period (18). Recent experiments demonstrated that 
the large reduction in action potential firing observed after SD 
could be due to a shift in the excitation/inhibition ratio toward 
inhibition. They showed that reduced action potential firing, like 
post-synaptic potential amplitude changes, lasted at least an hour 
after the depolarizing event (19).

Cell Swelling and Beading
Neurons have been found to show a morphological change during 
SD. Authors describe neuronal swelling and a transitory change 
in dendritic structures (“beading”) with an apparent loss of many 
dendritic spines (20). Extracellular volume decreases from 20 to 
~5% because of the water influx due to ion changes, leading to 
intracellular hyperosmolality (21–24). The change in morphol-
ogy of most dendrites is reversible and neuronal cell bodies were 
found to regain their previous volumes within 8–10 min after SD 
(20, 25–27). Moreover neurotransmitters, such as acetylcholine, 
γ-aminobutyric acid (GABA), and glutamate, are released in large 
amounts (28). Among these, GABA is particularly interesting 
as it can play two roles; indeed, GABAA receptors contribute to 
limit the propagation rate (29), but may also facilitate cell swelling 
through chloride entry (30, 31). Indeed, blockade of Cl-coupled 
transporters leads to a significant reduction in dendritic beading 
without interfering with SD (32).

Propagation
The depolarization propagates through the gray matter like a 
wave, typically spreading at a rate of 2–6 mm/min (15). Rather in 
the manner of an action potential, the depolarization wave, once 
triggered, propagates in an all-or-none fashion, regardless of the 
stimulus type or intensity. The exact propagation mechanism is 
not yet completely understood, even though some hypotheses 
have been advanced (33). Non-mutually exclusive mechanisms 
involved in the propagation may rely on the diffusion of extra-
cellular potassium or glutamate, or alternatively on the opening 
of neuronal or glial gap junctions (12). However, the hypoth-
esis of propagation based on regenerative glutamate release via 
N-methyl-d-aspartate receptor activation (28) runs into the 
problem that indirect calcium release from mitochondria seems 
insufficient to drive this process—depolarization in naive tissues 
has been found to be blocked by removal of extracellular calcium 
or inhibition of voltage-gated calcium channels (34–36)—while 
a transcellular pathway for diffusion via neuronal gap junc-
tions (37) also seems highly unlikely, given that pyramidal cells 
display gap junctions only in early brain development (38), 
while in adult animals these junctions are present only between 
interneurons (39).

Tissue Recovery and the Role of 
Astrocytes
Under normal oxygen conditions, electrical activity returns to 
its normal state within a few minutes after tissue depolarization, 
and then ion homeostasis is restored. Several mechanisms are 
involved in this tissue recovery: the Na/K-pump is activated 
as a result of increased intracellular sodium and extracellular 
potassium levels (40–42); repolarization of the neuronal mem-
brane potential closes the voltage-gated channels, decreasing 
the potassium efflux and thereby allowing the pump to restore 
physiological ion concentrations. The repolarization is also 
promoted by the glial buffering of extracellular potassium in 
the extracellular space (43, 44). Under ischemic conditions, the 
compensatory action of astrocytes is hindered because astrocytic 
Na/K-ATPases lack ATP. Consequently, intra-astrocytic sodium 
rises (45), and potassium is spilled out instead of taken up (46). 
Loss of astrocytic function may severely limit neuronal survival 
under ischemia (47). SD is due, primarily, to disruption of neu-
rons, while astrocytes remain functional and support neuronal 
recovery. In this process, changes in intracellular calcium, which 
rises first in neurons, then in astrocytes, suggest that neurons 
lead and astrocytes follow (48). Moreover, SD and the associated 
neuronal calcium wave remain unaffected when the astrocytic 
calcium wave is blocked by the depletion of internal calcium 
stores (35). However, SD involves a complex interplay between 
the activities of neurons, glia, and blood vessels. Interestingly, one 
study found that inhibition of astrocyte signaling did not abolish 
SD, although the changes in vascular caliber normally associated 
with SD were absent, suggesting that astrocytes play a key role 
in mediating the vascular response to the SD phenomenon, but 
not necessarily its propagation (48). Moreover, astrocytes swell 
markedly under ischemic conditions (26). Recent optogenetic 
studies have shown that SD can be elicited by specific stimulation 
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of astrocytes. The finding that light stimulation of mice express-
ing a light-activated channel specific for astrocytes resulted in 
sustained depolarization of astrocytes and eventually elicited SD 
further adds to the evidence that astrocytes could have a primary 
role in SD initiation (49).

vascular Response
In healthy tissues, increased electrical activity is coupled with 
the release of vasodilator factors, such as nitric oxide (NO) and 
arachidonic acid metabolites, which increase local blood flow 
to meet increased energy expenditure (50). This system, known 
as “neurovascular coupling,” involves neurons, astrocytes, and 
arterioles (48, 51–53). In damaged tissues, on the other hand, 
the restorative vascular response is absent, and indeed there is a 
vasoconstrictor response (1, 13).

In the presence of extensive disruptions, such as SD, the ves-
sel response is strongly nonlinear. While moderate increases in 
extracellular potassium cause vasodilation, stronger increases 
induce vasoconstriction (53). The neurovascular response to SD 
typically shows a triphasic pattern (constriction, dilation, and 
then prolonged slight constriction), but it differs greatly between 
species and conditions, ranging from pure constriction to pure 
dilation (54).

Animal Models and experimental 
Triggering
Experimentally, SD can be induced by various stimuli, includ-
ing intense electrical stimulation, mechanical damage (needle 
prick), and administration of K+ or glutamate (55). Ultimately, 
these stimuli lead to glutamate-induced toxicity (21). Glutamate 
activates calcium and sodium channels, particularly the NMDA 
receptor channel, in a pathologic manner, causing the membrane 
potential to change from approximately −70 to −10 mV (13). 
Triggers of SD fall into two categories: those that depolarize 
neurons through sodium and/or calcium channel activation, 
and those that depolarize neurons indirectly via Na/K-ATPase 
activity reduction (7). Stimuli belonging to the first group include 
ictal epileptic events, administration of glutamate or potassium, 
and administration of neurotoxins, e.g., veratridine. The second 
group includes conditions associated with ATP depletion, such 
as ischemia, hypoxia and hypoglycemia, drugs such as ouabain 
or palytoxin, and brain topical superfusion of the vasoconstrictor 
endothelin-1 (56).

Spreading depression induced using transcranial stimulation 
of channelrhodopsin-2 ion channels was recently found to be 
similar to the SD changes evoked with KCl (57). Since different 
mechanisms of induction lead to different pharmacological effects, 
it is important to understand which experimental methods of SD 
induction are most relevant to specific human conditions (8).

genetic influences
Gene mutations can decrease the threshold for the SD, by leading 
to spontaneous excessive localized increases in K+ or glutamate in 
some individuals. A genetic contribution to this phenomenon has 
emerged through study of, for example, mutations in the hemi-
plegic migraine-associated genes (58–62). Different genetically 

modified mice, characterized by astrocyte-directed inactivation 
of Cx43, showed a similar increased propensity to SD (63), since 
functional gap junctions are involved in spatial potassium buffer-
ing. Studies indicate that the propensity to SD in rodent models 
could also be related to gender (64), with female mice showing 
a lower threshold for induction of SD compared with their male 
counterparts (59, 65). The influence of sex hormones in this pro-
cess is reported in different studies: SD susceptibility was found to 
increase in the presence of estrogen, whereas exposure to testos-
terone had the opposite effect (59, 66). This important sex-related 
effect might be due to the sexual dimorfism of chloride regulation 
as it has been shown that the main cotransporter responsible for 
chloride extrusion, KCC2, is downregulated by sex hormones in 
certain brain areas leading to less effective inhibition (67, 68).

SD iN DiSeASe CONDiTiONS

A few studies have recently investigated the occurrence of SD as a 
characteristic of disease states in humans. The depolarizing phe-
nomenon in SD is not substantially assessable by scalp EEG due to 
the filtering effect of the scalp, dura, and bone. Scalp EEG allows 
the detection of low amplitude and high frequency changes, like 
those seen during seizures, but not the slower, although higher 
amplitude, changes characteristic of SD (13). However, an attempt 
to find the scalp correlate of SD has been made through scalp 
EEG performed simultaneously with cortical surface recording 
using electrocorticography strips (69). Clinical monitoring of SD 
is currently limited to patients who need neurosurgical interven-
tions necessitating the placement of subdural electrode strips (14, 
69). SD events, recorded in humans, have electrophysiological 
features that are essentially the same as those observed in animal 
models. Furthermore, measurement of regional cerebral blood 
flow in migraine patients has revealed spreading oligemia whose 
scale and timing are similar to what is observed in SD (70).

Migraine
Migraine is a common disorder characterized by recurrent attacks 
of severe, usually unilateral, headache accompanied by other 
symptoms (nausea and/or vomiting, photophobia and/or phono-
phobia). It is one of the most prevalent neurological disorders, 
affecting on average more than 15–20% of the population and 
showing a female:male ratio of 3:1. There are several subtypes of 
migraine; the two major ones are migraine with aura and migraine 
without aura (71). The migraine aura is a complex of neurological 
signs and symptoms that typically precedes headache onset by 
20  min, and lasts 5–60  min before disappearing. More rarely, 
however, aura symptoms can accompany the headache for hours 
or even days. Auras consist mainly of transient visual, sensory, or 
language disturbances. Visual symptoms are the most common, 
and typically consist of unformed flashes of light moving across 
the visual field. Progression of the aura in migraine shows the 
typical spatial and temporal features of experimentally induced 
cortical SD in animals (56, 72). Moreover, waves of alterations 
in cortical activity and blood flow have been captured through 
functional imaging studies and found to show SD-like features 
both in migraineurs with and in those without aura (73–75). 
However, the link between SD and migraine without aura is still 
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poorly understood, and it is not yet clear whether the SD runs 
over silent areas of the cortex, for example, subcortical regions 
(e.g., the hippocampus) (63), or whether, instead, it fails to reach 
the clinical threshold (76). Hemodynamic data are also conflict-
ing, since some studies have shown no changes in cerebral blood 
flow during migraine attacks without aura, by contrast with the 
post-SD oligemia observed during auras in other research (77).

Cortical SD is now widely assumed to be the electrophysiologi-
cal mechanism of migraine aura, and a large body of evidence 
supports this assumption. SD is the first endogenous event iden-
tified upstream to trigeminovascular activation leading to pain 
and blood flow changes. Although speculative, SD would emerge 
as a common pathophysiological mechanism causing pain and 
local autonomic changes, as well as hemodynamic patterns 
similar to migraine headaches in humans (78). A link between 
headache localization and the neurobiology of aura is provided 
by SD-induced activation and sensitization of neuropeptide-con-
taining trigeminal peripheral nociceptors innervating ipsilateral 
cranial tissues (8). A drastic depolarization, as those occurring 
during cortical SD, will release noxious molecules such as differ-
ent ions, i.e., H+ and K+, or NO, in the neocortical extracellular 
space (76). The rise in extracellular K+ during SD is thought to 
depolarize and excite the nociceptive fibers in the ophthalmic 
division of the trigeminal nerve enveloping the pial arteries, 
resulting in release, from the primary meningeal afferents, of 
pro-inflammatory peptides, i.e., calcitonin gene-related peptide 
and substance P (CGRP), that induce vasodilation and plasma 
protein extravasation, thus triggering the headache (77, 79, 80).

This theory has been confirmed by the increased pro-inflam-
matory peptide levels seen in patients with migraine attacks (81) 
as well as in electrically stimulated rats (82). Repetitive episodes 
of SD, moreover, have been found to induce inflammatory cas-
cades that resulted in the production of cyclooxygenase 2 and 
inducible NO synthase, and in the activation of microglia (82, 83). 
The clearance of extracellular macromolecules is thought to be 
mediated mainly by the glymphatic pathway, a system consisting 
of astroglial cells forming series of perivascular compartments 
that clear waste products from the brain (84). Significantly (from 
the perspective of the migraine pathomechanism), it has recently 
been demonstrated that SD impairs glymphatic flow, thus 
interfering with the clearance of excitatory and inflammatory 
chemicals and might foster localized cortical hyperexcitability and 
structural thickening (85). SD, therefore, by supporting inflam-
matory responses and the consequent activation and sensitization 
of meningeal trigeminal afferents, seems to play a strong role in 
headache pathophysiology. A mutually causative link between 
inflammation and SD is suggested by the recent observation that 
maternal inflammation interferes with chloride regulation of the 
off-springs, delaying the switching from depolarizing (high intra-
cellular Cl) to hyperpolarizing GABA (86) (low intracellular Cl). 
If the connection between inflammation and chloride control was 
established also in adults, SD and inflammation might constitute 
a self-supporting system that may lead to a gradual worsening of 
the condition.

The exact mechanisms of brain dysfunction leading to the 
onset of a migraine attack, as well as the determinants affect-
ing individual susceptibility to SD in the human brain, remain 

unknown. Genetic factors predisposing to migraine with aura 
also enhance susceptibility to SD (87). Most studies exploring 
these aspects involve transgenic mice expressing mutations asso-
ciated with the different forms of familial hemiplegic migraine 
(FHM), or with cerebral autosomal dominant arteriopathy with 
subcortical infarcts and leukoencephalopathy (88, 89). Migraine 
is multifactorial and its rare monogenic forms (i.e., FHMs) 
phenocopy most or all the clinical features of the classic form 
of the disease, although they typically show a longer duration of 
auras as well as the presence of motor features (90). Three main 
FHM genes have been identified: CACNA1A (FHM1) encoding 
the alpha subunit of the neuronal voltage-gated Ca2+ channel 
(Cav2.1) (91), the ATP1A2 gene (FHM2) encoding the alpha-2 
subunit of a Na+/K+ pump (61), and the SCN1A gene (FHM3) 
whose mutations result in defects of the alpha-1 pore-forming 
subunit of the neuronal voltage-gated Na+ channel (Nav1.1) (92).

Acetazolamide, used to treat headaches associated with FHM, 
has been shown to decrease the frequency of attacks, and its 
effectiveness has been suggested to be due to improvements in 
ion channel function (93, 94). In the central nervous system, 
acetazolamide penetrates the blood–brain barrier slowly and 
causes carbonic acidosis through carbonic anhydrase inhibi-
tion (95); this acidosis may also serve to selectively reduce the 
buffering of rapid pH changes occurring in SD. Indeed, at the 
onset of SD, there is a brief extracellular alkaline shift (96) that 
transiently promotes neuronal injury by eliminating the proton 
block of NMDA receptors (97). Transgenic mice expressing either 
FHM1 or FHM2 mutations show both enhanced susceptibility to 
SD and altered synaptic transmission, thus highlighting possible 
pathophysiological mechanisms underlying FHM (98). However, 
whether these mutations also predispose to typical migraine 
remains poorly understood (99). Finally, there is evidence to 
suggest that sex hormones may modulate SD susceptibility in 
humans (100), as well as in FHM animal models (66). Sex hor-
mones may enhance susceptibility to SD in FHM1 female mice, 
and this increased susceptibility may recover after oophorectomy 
or estradiol treatment (59, 66). These findings may, in part, 
explain the increased prevalence of migraine in females and its 
variability across the individual life span.

Different classes of prophylactic drugs for migraine, such as 
antiepileptic drugs (topiramate, valproate, and lamotrigine), as 
well as propranolol, amitriptyline and methysergide, are able to 
suppress SD, through different mechanisms of action (101), and 
they are equally efficacious both in forms with and without aura 
(102). Lamotrigine, in particular, targeting Ca2+ and Na2+ chan-
nels and glutamatergic or GABAergic transmission (mechanisms 
common to most antiepileptic drugs), has been shown to be 
effective in the prevention of migraine aura possibly through an 
inhibitory effect on SD and a consequent suppressive effect on 
the aura phenomenon (103, 104). Furthermore tonabersat, a rela-
tively novel benzopyran derivative known to inhibit gap-junction 
communication between neurons and satellite glial cells in the 
trigeminal ganglion (105) and to markedly reduce SD-associated 
events in preclinical studies (106) has been proposed in migraine 
prophylaxis and to relieve headache in migraineurs (107). 
However, results of randomized, double-blind, placebo-controlled 
studies showed benefit on attacks of migraine aura but no effects 
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in reducing migraine pain days when chronically administered to 
patients (108). Results in acute studies are conflicting.

Administration of the serotonin precursor 5-hydroxytryp-
tophan in animal models has also been shown to decrease the 
frequency of KCl-induced SD in female rats, suggesting a possible 
role for serotonergic agents as therapeutic tools in migraine with 
aura in females (109). Blocking the SD mechanism, therefore, 
seems to be a rational approach to explore in molecular research 
aimed at improving the prevention and treatment of migraine with 
aura. However, the evidence that different symptoms of migraine 
may already be present at the time the visual aura occurs, and the 
fact that aura can be painless in some migraineurs, confirm that 
the real role of SD in migraine is still to be entirely clarified.

New approaches to migraine treatment were recently 
developed adopting fremanezumab, a humanized monoclonal 
antibody (CGRP-mAb) able to reduce the availability of CGRP. 
Fremanezumab pre-treatments prevents headache by selectively 
inhibiting the responsiveness of Aδ neurons (peripherally) and 
high threshold neurons (centrally), but not C-fiber neurons, as 
reflected in a decreased percentage of neurons showing activation 
by SD. The selective inhibition of fremanezumab on meningeal 
nociceptors might explain why a CGRP-mAb may not be effec-
tive in all migraineurs (110). Another CGRP receptor antagonist, 
MK-8825, dose dependently seems to attenuate SD-induced 
trigeminal nerve mediated pain response but without altering SD 
waves (111).

Other Migraine Disorders
It is worth noting that the International Classification of 
Headache Disorders, third version (71) lists features for other 
less frequent migraine disorders, such as status migrainosus, per-
sistent aura without infarction, and migrainous infarction (71). 
The aforementioned SD mechanisms may play a significant role 
in these conditions, as demonstrated specifically in migrainous 
infarction, a condition that may lie on a continuum with cerebral 
ischemia (see below) (112–114). It has been shown that FHM1 
mutations may share genetic determinants of migraine with 
aura and stroke; indeed, these mutations, typically associated 
with migraine with aura, increase stroke vulnerability and also 
accelerate stroke evolution (115) by enhancing the susceptibility 
to ischemic depolarizations, a process akin to SD. In addition, in 
a subset of migraineurs, the presence of small microemboli could 
trigger SD and thus possibly be a stimulating mechanism for aura 
even in the absence of tissue injury (116).

ischemia and Subarachnoid Hemorrhage
The term ischemia (or stroke) refers to a decrease in blood sup-
ply to a tissue or organ. In focal cerebral ischemia, in particular, 
cerebral blood flow reduction is confined to a single anatomic 
area of the brain (117, 118), and has a number of effects on the 
surrounding nervous tissue, including excitotoxicity, oxidative 
stress, and apoptosis (119). In the early phase of ischemia, tissue 
damage is primarily related to direct metabolic failure caused 
by the decreased blood flow (120); this leads to impairment 
of ionic pumps (7), which in turn results in ionic imbalance 
and accumulation of cytosolic sodium and calcium ions and 
extracellular potassium (121), causing water influx into cells, 

tissue swelling, and permanent depolarization of cell mem-
branes. Immediately after the acute phase, the damage spreads, 
over several hours, to the adjacent areas, or ischemic penumbra 
(122), i.e., to a wider area of tissue that also becomes severely 
compromised by the blood flow reduction (123). This process is 
driven by a plethora of electrochemical events, so-called peri-
infarct depolarizations (PIDs) that produce multiple waves of 
cortical SD-like activity and are fundamental mechanisms in 
the continuous elicitation of the biochemical cascade of cell 
injury. While SD is not directly linked to cell death or damage 
in a normally perfused brain, recurrent PIDs in an ischemic 
brain are associated with enlargement of the infarcted volume 
(13, 124, 125).

The features PIDs are similar to those of SD, with extracellular 
DC shifts of 20 mV, a propagation velocity of 3–5 mm/min, and 
disruption of the cellular ion balance. In all animal studies of focal 
ischemia, the vascular responses of ischemic tissue and adjacent 
areas were seen to vary considerably, depending on distance from 
the ischemic focus (126–128). In more severely ischemic areas 
PIDs mainly cause monophasic hypoperfusion; instead, where 
ischemia is milder, the response becomes biphasic, with an initial 
hypoperfusion followed by peak hyperemia. In non-ischemic 
adjacent areas, PIDs cause only hyperemia, and there is no 
hypoperfusion (129, 130). NO may play a role (129, 131), since the 
reduction in O2 availability, due to the ischemic condition, may 
in fact reduce NO synthase. This would result in a diminished 
NO-dependent vasodilation. Another factor is the extracellular 
concentration of K+ that, in the injured brain, is usually higher 
than normal. High concentrations of K+ are linked to a stronger 
vasoconstriction (132).

Spreading depression has also been observed in the brains 
of patients affected by cerebral ischemia, and in these subject 
PIDs, similarly to those measured in animals and associated with 
different hemodynamic responses, such as hyperemia, biphasic 
response, or hypoperfusion, have been linked to increase of the 
infarcted volume (133, 134).

Taken together, animal models and human studies show that 
SD-like depolarizations, i.e., PIDs, may represent a core mecha-
nism for stroke pathophysiology, clearly related to the expansion 
of the infarcted volume and the spread of ischemia (83).

About 10–20% of all cases of stroke, however, result from 
subarachnoid hemorrhage, usually originating from the rupture 
of an aneurysm (135). After the occurrence of a subarachnoid 
hemorrhage, delayed ischemia affects the injured brain and can 
cause fatal damage or permanent injury (136). SD may play a 
pivotal role in this delayed cerebral ischemia and contribute to 
its diffusion (137). Although SD has been observed in animal 
models of brain hemorrhage, its precise role has never been 
demonstrated in a clear and reproducible manner, and therefore 
it remains debated (138, 139). For example, local superfusion of 
hemoglobin in rat brains, together with elevated concentrations of 
extracellular K+, induces SD with a monophasic vasoconstriction 
response. Hemoglobin is indeed thought to reduce NO concen-
tration, by acting as a scavenger (140). Moreover, the superfusion 
of hemoglobin or NO synthase inhibitors, with the addition of 
either endothelin-1 or a small amount of glucose, is sufficient to 
produce SD and the spreading of ischemia (141).
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Spreading depression after subarachnoid hemorrhage has also 
been observed in humans, accompanied by an increase in the 
infarcted tissue volume and delayed ischemia (16). In subarach-
noid hemorrhage, as in ischemia, SD and PIDs may be worsening 
factors, given their detrimental impact on already damaged brain 
tissue. They have a dual mechanism of action: increasing meta-
bolic activity and reducing blood supply.

Traumatic Brain injury
In recent clinical studies, SD has emerged as a potent patho-
mechanism of the progression of secondary injury in TBI 
(142–144). The incidence of SD among TBI patients is reported 
to be around 50–70%, and SD often occurs in repetitive patterns 
over a period of at least 7 days post-trauma (143, 144). Although 
the probability of SD is theoretically increased as a result of 
lower levels of cerebral perfusion and high systemic temperature, 
which lead to an increased mismatch between energy supply and 
demand (145), the vast majority of SD in TBI occurs when the 
systemic variables are in the normal range (142). In post-TBI 
patients, who underwent craniectomy, the EEG was able to track 
40% of depolarizations, recorded simultaneously with cortical 
electrodes (144). Following TBI, increased glutamate levels trig-
ger SD (146–148). In addition, astrocyte activity increases after 
TBI (149) while the expression of GLT-1, a glutamate transporter, 
is reduced (146). It remains unknown how an acute cortical lesion 
might, in relation to the site of the injury, affect the site of initia-
tion and subsequent propagation of SD. The cortical injury site 
is not capable of initiating SD, and the depolarization takes place 
in the surrounding peri-injury zone. Instead, the injury zone has 
been found to act as an attractor, having the ability to support SD 
initiated in nearby, less compromised networks (150).

epilepsy and Sudden Unexpected Death in 
epilepsy (SUDeP)
In addition to its possible roles in migraine and cerebral ischemia, 
subarachnoid hemorrhage, and TBI, SD has been also related to 
epileptiform activity (13, 56, 151–153). SD, as we have seen, is a 
disruption of electrical activity caused by a strong ion concentra-
tion change in the extracellular space. The impaired ion homeo-
stasis associated with SD triggers a cascade of cellular events 
leading to toxic release of glutamate (21). From this perspective, 
excitotoxic states emerge as a mechanism common to both SD 
and seizures, in the former caused by neuronal activity depres-
sion, and in the latter by neuronal hyperactivation.

Because of this shared background, there exists a complex 
and as yet poorly understood interrelation between epileptic 
activity and SD. Several studies have shown that seizures can 
either potentiate or limit SD waves, depending on whether 
they occur before, during or after the SD event. Some authors, 
examining brain slices from individuals with epilepsy, showed 
that their tissue was highly susceptible to generating SD waves 
(154). Similarly, studies of animal models of seizures, induced 
pharmacologically, have shown an increase in SD wave suscepti-
bility after seizure events (155, 156). The depression of neuronal 
electrical activity caused by depolarizing waves may be the 
cause of the post-ictal depression state typically seen in epilepsy. 

Multiple SD waves have been shown to occur during post-ictal 
periods, providing a possible explanation for the observed slow 
post-seizure cognitive recovery (155). Looking at the question 
from the opposite perspective, SD may create an environment 
conducive to the onset of epileptiform activity. Both mouse 
and human experiments have shown states of hyperexcitability 
following a cortical depression period, akin to that seen prior 
to epileptic seizures (157–159). An explanation for this may be 
related to the neuronal swelling that occurs following SD waves, 
which may increase neuronal excitability through activation of 
NMDA receptor-dependent inward currents (160). Furthermore, 
a change in the pattern of neurotransmitter receptor distribu-
tion has been noticed after cortical SD events, and this may in 
turn imply a lowering of the seizure threshold (161). Contrary 
to this potentiation effect, SD is also capable of interrupting a 
seizure, even leading to refractory periods of seizure silencing in 
rats (155, 162, 163). Conversely, stimulation-induced recurrent 
epileptiform discharges have been shown to block cortical and 
subcortical SD in rats (164). These findings do not allow a single 
interpretation of the interplay between SD and epilepsy, but they 
strongly suggest that there is a common mechanism in which a 
pivotal role may be played by NMDA receptors (165).

It has also been suggested that the process of SD could underlie 
failure of the brain to recover following a seizure (166). Seizures 
are typically accompanied by transient alterations in cardiac and 
respiratory rates, but these events are generally reversible as soon 
as the seizure ends. However, SUDEP, a condition where death is 
caused by seizure-induced cardiorespiratory collapse, is among 
the leading causes of mortality associated with epilepsy-related 
disorders. Although it accounts for about 17% of epilepsy-related 
deaths (167) (~50% among cases of refractory epilepsy) (168, 
169), there is still no consistent and strong body of literature on 
the topic, containing comparable data linking SUDEP with its 
risk factors. This knowledge gap is probably attributable largely to 
the great heterogeneity of research approaches, the multifactorial 
nature of SUDEP, and also the impracticality of following a large 
number of individuals with epilepsy from diagnosis to death. 
Furthermore, investigation of SUDEP is also complicated by 
the fact that the exact mechanism underlying this phenomenon 
remains to be fully elucidated.

Studies both in humans and in mice (170–172) have sug-
gested that a genetic misregulation of brain centers controlling 
autonomic functions, resulting in alterations in membrane excit-
ability or synaptic activity in pathways that control heart rate or 
agonal respiration, is the basis of increased risk of SUDEP (173, 
174). Moreover, several mutations in genes linked to increased 
SUDEP susceptibility have been demonstrated to be directly 
linked to a lower threshold for SD in mice (170, 171). Against 
this background, Aiba and Noebels (166) have proposed that 
the SD phenomenon is the causative process leading to cardiac 
and respiratory shutdown in susceptible individuals (175). If 
triggered in the brainstem, the depolarizing electrical wave may 
diffuse across cardiorespiratory centers in the medulla, leading 
to complete arrest of pace-making neuronal centers, hindering 
recovery of heartbeat and normal respiration after a seizure 
and leading to death (166). In the same study, cortical seizures, 
obtained by cortical application of 4-aminopyridine, were found 
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to be capable of causing a slowly spreading negative DC potential 
which also can diffuse down to the dorsal medulla.

Two relatively recent genetic mouse models, Kv1.1 potassium 
channel and Scn1a sodium channel KO animals, which replicate 
many aspects of human SUDEP, have provided strong indications 
that SD acts as an intermediary between a severe seizure event 
and consequent cardiorespiratory failure leading to sudden death. 
Functional alterations of these genes impair neuronal excitability 
through different membrane and synaptic mechanisms (166, 
174, 176). Ablation of the Kv1.1 gene has a strong effect on both 
excitatory and inhibitory neurons, whereas lack of the Scn1a 
channel reduces forebrain interneuron excitability (177–180). In 
both cases, the result is disruption of the excitatory/inhibitory 
equilibrium and a dramatic lowering of the threshold for trigger-
ing SD waves. As a consequence, whereas these animals recover 
normally if seizures remain below this threshold, severe seizures 
can trigger an SD event, leading to death within minutes (166, 
176). This mechanistic interpretation of SUDEP may explain 
why epileptic individuals with seizure-induced cardiorespiratory 
arrest may fail to be revived using conventional cardiopulmonary 
resuscitation procedures, and suggests a possible therapeutic 
target for this fatal complication of epilepsy.

THe “DARK SiDe” OF SD

In the past few years, the main hindrance to the study of SD was 
the difficulty in detecting depolarization wave non-invasively 

in the human brain (181). On the other side evidence associ-
ates SD to a plethora of phenomena, from relatively benign 
migraine aura attacks to severe brain injuries, such as ischemic 
strokes, subarachnoid or intracerebral hemorrhage, and 
SUDEP. This heterogeneous presentation increases the interest 
on SD as a pathological mechanism of great importance for 
clinical neuroscience. The “dark side” of this process is that it is 
hard to explain the heterogeneity of SD and to predict ab initio 
its severity. As already speculated by others, the mechanisms 
underlying the different clinical outcomes of SD can depend 
on several factors. One of these is the specific brain “status” 
based on the patient’s vascular and metabolic conditions, an 
as yet vague genetic predisposition, and eventually preexistent 
pathological conditions (13, 50). For instance SD is a relatively 
benign phenomenon in migraineurs because it occurs in 
normal human brains with preserved perfusion and energy 
metabolism. Conversely, in injured brain with compromised 
energy metabolism and perfusion, one could hypothesize that 
SD might contribute to further brain damage, such as expan-
sions of brain infarcts, and could impair clinical recovery, or 
trigger new deficits. Yet, other factors need to be determined in 
the frequency, properties, and impact of SD, including the role 
of chronic medications and variations in plasma osmolality, 
and serum levels of electrolytes and glucose (147). In sight of 
these speculations, we need further understanding on how per-
turbed tissue will affect the expression and the consequences 
of SD.

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


9

Cozzolino et al. Understanding SD

Frontiers in Neurology | www.frontiersin.org February 2018 | Volume 9 | Article 19

ReFeReNCeS

1. Offenhauser N, Windmüller O, Strong AJ, Fuhr S, Dreier JP. The gamut of 
blood flow responses coupled to spreading depolarization in rat and human 
brain: from hyperemia to prolonged ischemia. Acta Neurochir Suppl (2011) 
110:119–24. doi:10.1007/978-3-7091-0353-1_21 

2. Leão AAP. Spreading depression of activity in the cerebral cortex. 
J Neurophysiol (1944) 7. Available from: http://jn.physiology.org/
content/7/6/359

3. Kager H, Wadman WJ, Somjen GG. Conditions for the triggering of spread-
ing depression studied with computer simulations. J Neurophysiol (2002) 
88:2700–12. doi:10.1152/jn.00237.2002 

4. Hossmann K-A. Viability thresholds and the penumbra of focal ischemia. 
Ann Neurol (1994) 36:557–65. doi:10.1002/ana.410360404 

5. Dreier JP, Ebert N, Priller J, Megow D, Lindauer U, Klee R, et al. Products 
of hemolysis in the subarachnoid space inducing spreading ischemia in the 
cortex and focal necrosis in rats: a model for delayed ischemic neurological 
deficits after subarachnoid hemorrhage? J Neurosurg (2000) 93:658–66. 
doi:10.3171/jns.2000.93.4.0658 

6. Canals S, Makarova I, López-Aguado L, Largo C, Ibarz JM, Herreras O. 
Longitudinal depolarization gradients along the somatodendritic axis of 
CA1 pyramidal cells: a novel feature of spreading depression. J Neurophysiol 
(2005) 94:943–51. doi:10.1152/jn.01145.2004 

7. Somjen GG. Mechanisms of spreading depression and hypoxic spreading 
depression-like depolarization. Physiol Rev (2001) 81:1065–96. doi:10.1152/
physrev.2001.81.3.1065 

8. Pietrobon D, Moskowitz MA. Chaos and commotion in the wake of cortical 
spreading depression and spreading depolarizations. Nat Rev Neurosci (2014) 
15:379–93. doi:10.1038/nrn3770 

9. Dreier JP, Isele T, Reiffurth C, Offenhauser N, Kirov SA, Dahlem MA, et al. 
Is spreading depolarization characterized by an abrupt, massive release 
of Gibbs free energy from the human brain cortex? Neuroscientist (2013) 
19:25–42. doi:10.1177/1073858412453340 

10. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology 
of the Cell. New York: Garland Science (2002).

11. Rolfe DF, Brown GC. Cellular energy utilization and molecular origin 
of standard metabolic rate in mammals. Physiol Rev (1997) 77:731–58. 
doi:10.1152/physrev.1997.77.3.731 

12. Zandt B-J, Stigen T, Ten Haken B, Netoff T, van Putten MJAM. Single 
neuron dynamics during experimentally induced anoxic depolarization. 
J Neurophysiol (2013) 110:1469–75. doi:10.1152/jn.00250.2013 

13. Dreier JP. The role of spreading depression, spreading depolarization and 
spreading ischemia in neurological disease. Nat Med (2011) 17:439–47. 
doi:10.1038/nm.2333 

14. Hartings JA, Li C, Hinzman JM, Shuttleworth CW, Ernst GL, Dreier JP, 
et  al. Direct current electrocorticography for clinical neuromonitoring of 
spreading depolarizations. J Cereb Blood Flow Metab (2017) 37:1857–70.  
doi:10.1177/0271678X16653135 

15. Leão AAP. Further observations on the spreading depression of activity in 
the cerebral cortex. J Neurophysiol (1947) 10. Available from: http://jn.phys-
iology.org/content/10/6/409.1.long

16. Dreier JP, Woitzik J, Fabricius M, Bhatia R, Major S, Drenckhahn C, et al. 
Delayed ischaemic neurological deficits after subarachnoid haemorrhage 
are associated with clusters of spreading depolarizations. Brain (2006) 
129:3224–37. doi:10.1093/brain/awl297 

17. Schock SC, Munyao N, Yakubchyk Y, Sabourin LA, Hakim AM,  
Ventureyra ECG, et al. Cortical spreading depression releases ATP into the 
extracellular space and purinergic receptor activation contributes to the 

CONCLUSiON

The ambiguous interplay between SD and the various related 
clinical phenotypes precludes univocal identification of its precise 
role in brain disease. Even though it is often considered a single 
phenomenon with homogeneous characteristics—its signature 
features being slowly propagating changes in neuronal electrical 
potentials and silencing of brain electrical activity, together with 
neuronal swelling and distortion of dendritic spines (147)—SD 
shows some heterogeneity in its cellular and molecular mechanisms 
(8), and appears to play different roles in different clinical disorders 
(as an event-triggering process, secondary effect, or simple epiphe-
nomenon) (Figure 2). Further advances in our knowledge of this 
phenomenon are necessary in order to improve our understand-
ing of these different conditions, since better disentangling of the 
underlying processes may also foster the development of targeted 
interventions able to prevent their most dramatic consequences.

However, as well as studying the specific mechanisms char-
acterizing the different disorders, it is still necessary and may 
well be useful to focus, also, on the common features of SD 
in the various conditions. A number of models of genetically 
determined migraines (like FHMs) or epilepsy, such as Kv1.1 
potassium channel and Scn1a−/− animals (177–180), are already 
widely available and may serve as useful, paradigmatic tools able 
to disclose the core mechanisms of the SD phenomenon, com-
mon to the different clinical disorders. This might help to identify 
new treatment targets, possibly making it possible to overcome 
the traditional, only partially efficacious, therapeutic approaches, 
i.e., with classic antimigraine or antiepileptic drugs, and open 
new perspectives for treating these disorders or preventing their 
worst consequences.

Despite the development of several animal models for the 
study of SD, many questions remain open as a result of its 
complexity and the difficulty of obtaining direct experimental 
data in humans. In addition to more detailed characterization of 
existing or new models of spontaneous SD, which may be useful 
for dissecting and clarifying the pathomechanisms in animals, we 
need to continue developing non-invasive technologies (182) that 
might allow us to gather additional information in humans, since, 
for the moment, subdural strips continue to be the main means of 
monitoring SD in this setting.
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