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Abstract We prove that, for some classes of complex nilmanifolds, the Bott—Chern
cohomology is completely determined by the Lie algebra associated with the nil-
manifold with the induced complex structure. We use these tools to compute the
Bott—Chern and Aeppli cohomologies of the Iwasawa manifold and of its small
deformations, completing the computations by M. Schweitzer (arXiv:0709.3528v1
[math.AG]).
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1 Introduction

On compact oriented Riemannian manifolds, Hodge theory allows us to compute co-
homology solving systems of differential equations. For nilmanifolds, namely, com-
pact quotients of connected simply connected nilpotent Lie groups by co-compact
discrete subgroups, K. Nomizu proved in [21, Theorem 1] that the de Rham complex
admits a finite-dimensional subcomplex, defined in Lie theoretic terms, as minimal
model. Furthermore, also the Dolbeault cohomology often reduces to the cohomol-
ogy of the corresponding finite-dimensional complex of forms on the Lie algebra;
this happens, for example, for holomorphically parallelizable complex structures, as
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proved by Y. Sakane in [25, Theorem 1], or for rational complex structures, as proved
by S. Console and A. Fino in [6, Theorem 2]; see the surveys [5] and [24] and also
[22] for more results in this direction.

Together with the Dolbeault cohomology, the Bott—Chern cohomology provides
an important tool to study the geometry of complex manifolds; it is the bi-graded
algebra defined by

HES(X) - kerd Nkerd
B T s

X being a complex manifold. It turns out that there is a Hodge theory also for the
Bott—Chern cohomology (see, e.g., [26, Sect. 2]) and therefore, if X is compact, then
the C-vector space Hl;’é(X ) is finite-dimensional; furthermore, if X is a compact
Kahler manifold or, more generally, if X is in Fujiki class C, then the Dolbeault
and Bott—Chern cohomologies coincide and they give a splitting for the de Rham
cohomology algebra.

In this paper, we give some tools to compute the Bott—Chern cohomology ring of
certain compact complex homogeneous manifolds.

More precisely, let N = I'\G be a nilmanifold endowed with a G-left-invariant
complex structure J, and denote the Lie algebra naturally associated with G by g and
its complexification by gc¢ := g ®g C. Dealing with G-left-invariant objects on N, we
mean objects whose pull-back to G is invariant for the left-action of G on itself. For
any k € Nand p, g € N, we denote the space of smooth global sections of the bundle
of real k-forms (respectively, complex k-forms, (p, ¢)-forms) on N by the symbol
AN (respectively, AK(N; C), AP4N). For any p, q € N, the (p, g)-th Bott—Chern
cohomology group H gbq (N) of N is computed as the cohomology of the complex

Clg— 39 d
AP=La-ty 5 APa N S APHTL(N ©),

Restricting to G-left-invariant forms A% N >~ A**g on N, one has the subcomplex

99 d
/\p_l’q_lgzé s /\p,qg(ﬂé S Ap+q+lg?kc

N

a0
/\p—l,q—lN — APIN —— /\P+¢]+1(N;(C)

We prove the following theorem, which extends the results in [25, Theorem 1], [8,
Main Theorem], [6, Theorem 1, Theorem 2, Remark 4], [22, Theorem 1.10], see also
[5, 24], to the Bott—Chern case.

Theorem (see Theorem 3.8 and Theorem 3.9) Let N = I'\G be a nilmanifold en-
dowed with a G-left-invariant complex structure J and denote the Lie algebra natu-
rally associated with G by g. Then, for every p, q € N, the injective homomorphism
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in cohomology

ker(d: AP gk — APTatlgh)

1 = [ HPJ] N
im(30: AP—la=l gt — APdagh) sc (N)

induced by (1) is an isomorphism, provided one of the following conditions holds:

N is holomorphically parallelizable;

J is an Abelian complex structure;

J is a nilpotent complex structure;

J is a rational complex structure;

g admits a torus-bundle series compatible with J and with the rational structure
induced by T.

Moreover, the property of i being an isomorphism is open in the space of all G-left-
invariant complex structures on N .

Similar results are obtained for a certain class of solvmanifolds.

Then, we use these tools to explicitly compute the Bott—Chern cohomology for a
three-dimensional holomorphically parallelizable nilmanifold, the so-called Iwasawa
manifold (see, e.g., [12]) and for its small deformations. The Iwasawa manifold is one
of the simplest examples of a non-Kiahler manifold: indeed, being non-formal, see
[12, page 158], it admits no Kéhler structure; it has been studied by several authors
as a fruitful source of interesting behaviors; see, for example, [1-3, 12, 19, 29].

Regarding the Dolbeault cohomology, I. Nakamura, in [19], already computed the
Hodge numbers for the Iwasawa manifold and for its small deformations; he used
these computations to prove that the Hodge numbers are not invariant under small
deformations, [19, Theorem 2] (compare also [29, Sect. 4]), and that small deforma-
tions of a holomorphically parallelizable complex structure are not necessarily holo-
morphically parallelizable, [19, page 86] (compare also [23, Theorem 5.1, Corollary
5.2]). The Bott—Chern cohomology and its computation for the Iwasawa manifold
appeared in the work by M. Schweitzer, see [26, Sect. 1.c], while the computations
of the Bott—Chern cohomology for its small deformations were there announced but
never written.

In particular, the computations in Sect. 5.3 show that one can use the Bott—Chern
cohomology to get a finer classification of small deformations of the Iwasawa mani-
fold than using the Dolbeault cohomology as in [19, page 96].

2 The Bott—Chern and Aeppli Cohomologies of a Complex Manifold
2.1 The Bott—Chern Cohomology

Let X be a compact complex manifold of complex dimension n and denote its com-
plex structure by J. The Bott—Chern cohomology groups are defined, for p,q € N,
as

ker(d: AP91X — /\P+q+l(X; C))
im(33: AP—L4=1 X — APtlLa+lx)’

HEA (X) =
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Note that, for every p, g € N, the conjugation induces an isomorphism
HEA (X)) ~ HEP(X),

unlike in the case of the Dolbeault cohomology groups.
For every k € N and for every p, g € N, one has the natural maps

P Hpe(X) = Hjp(X;C) and  HEI(X) - HY(X),
r4s=k

In general, these maps are neither injective nor surjective; see, e.g., the examples in
[26, Sect. 1.c] or Sect. 5.3; if X satisfies the 39-Lemma (for example, if X admits a
Kéhler structure or if X is in Fujiki class C), then the above maps are isomorphisms;
see [10, Remark 5.16].

We collect here some results on Hodge theory for the Bott—Chern cohomology,
referring to [26, Sect. 2] (see also [4, Sect. 5]). Fix g a J-Hermitian metric on X and
define the 4th-order self-adjoint elliptic differential operator

Apc:=000 0" +0 0500 +0 00 0+ 990 0+9 9+ 0*9:

see [16, Proposition 5] and also [26, Sect. 2.b], [4, Sect. 5.1]. Given u € AP9X, one
has that

u=0,
Apcu=0 & ou=0,
3 0*u=0;

moreover, A ¢ being a self-adjoint elliptic differential operator, the following result
holds; see, e.g., [15, page 450].

Theorem 2.1 ([26, Théoreme 2.2], [26, Corollaire 2.3]) Let X be a compact complex
manifold and denote its complex structure by J; fix g a J-Hermitian metric on X.
Then there are an orthogonal decomposition

A®*X =kerAgc ® imdd @ (ima* + img*)
and an isomorphism

Hyl (X) ~ker Agc.

In particular, its Bott—Chern cohomology groups are finite-dimensional C-vector
spaces.

2.2 The Aeppli Cohomology

Let X be a compact complex manifold of complex dimension n and denote its com-
plex structure by J. For p, ¢ € N, one defines the Aeppli cohomology group H f; 4(X)
as

ker(39: AP X — APFHLa+ X))
(m@: AP~L4 X > AP4X)) + (im(3: AP9—1 X — AP4X))

HY Y (X) =
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As for the Bott—Chern cohomology, the conjugation induces an isomorphism
HY N (X) ~ HPP(X)

for every p,q € N.
Furthermore, for every k € N and for every p, g € N, one has the natural maps

Hr o (X;0) — @ Hy'(X) and  HP'(X) — HY (X0,
r+s=k

which are, in general, neither injective nor surjective; once again, the maps above
are isomorphisms if X satisfies the dd-Lemma, [10, Remark 5.16], and hence, in
particular, if X admits a Kdhler structure or if X is in Fujiki class C.

Remark 2.2 On a Kihler manifold X, the fundamental 2-form o associated with
the metric defines a non-zero class in H 5 (X R). For general Hermitian manifolds,
special classes of metrics are often defined in terms of closedness of powers of w
(e.g., a Hermitian metric on a complex manifold of complex dimension » is said to
be balanced if dw"~! =0, pluriclosed if 99w = 0, astheno-Kiihler if 900w"~2 =0,
and Gauduchon if 390" ! = 0), so they define classes in the Bott—-Chern or Aeppli
cohomology groups. It would be interesting to see if these classes can play a role
similar to the one played by the Kéhler class in some contexts.

We refer to [26, Sect. 2.c] for the result that follows (for a hypercohomology inter-
pretation of the Bott—Chern and Aeppli cohomologies and its applications, see [11,
Sect. VI.12.1], [26, Sect. 4], [17, Sect. 3.2, Sect. 3.5]).

Fix a J-Hermitian metric g on X and define the 4th-order self-adjoint elliptic
differential operator

Ay:=030"+039 +09 9*00 + 999 9* + 09 00" + 00799 ;
one has an orthogonal decomposition
A®*X =kerA, ® (ima + img) @ im (85)*
from which one gets an isomorphism
HY*(X) ~ ker An;

this proves that the Aeppli cohomology groups of a compact complex manifold are
finite-dimensional C-vector spaces.

In fact, for any p,q € N, one has that the Hodge-*-operator associated with a
J-Hermitian metric induces an isomorphism

HEA X)) ~HT"P(X)

between the Bott—Chern and the Aeppli cohomologies.
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3 Some Results on Cohomology Computation

In this section, we collect some results about cohomology computation for nilman-
ifolds and solvmanifolds. Using these tools, one recovers the de Rham, Dolbeault,
Bott—Chern, and Aeppli cohomologies for the Iwasawa manifold and for its small
deformations; see Sects. 5.1, 5.2 and 5.3.

Let X = TI'\G be a solvmanifold, that is, a compact quotient of the connected
simply connected solvable Lie group G by a discrete and co-compact subgroup I"; the
Lie algebra naturally associated with G will be denoted by g and its complexification
by gc := g ®r C. Dealing with G-left-invariant objects on X, we mean objects on X
obtained by objects on G that are invariant under the action of G on itself given by
left-translation.

A G-left-invariant complex structure J on X is uniquely determined by a linear
complex structure J on g satisfying the integrability condition

Vx,yeg, Nij;(,y) =[x, yl+JUx, yl+Jlx, Jy]l=[Jx, Jy]=0;

see [20, Theorem 1.1]. Therefore, the set of G-left-invariant complex structures on X
is given by

C (g) :={J€End(g) : J2=—idg and Nij,=0].

Recall that the exterior differential d on X can be written using only the action of
['(X; TX) on C*(X) and the Lie bracket on the Lie algebra of vector fields on X.
One has that the complex (A®g*, d) is isomorphic, as a differential complex, to the
differential subcomplex (A? X, dl‘Ai.nv x) of (A*X, d) given by the G-left-invariant
forms on X.

If a G-left-invariant complex structure on X is given, then one has also the

double complex (A®*® 9<*C’ 0, 5), which is isomorphic, as a double complex, to the
double subcomplex (AJe X, 0| sex, D oox) of (A**X, 0, ) given by the G-left-
invariant forms on X. " "

Finally, given a G-left-invariant complex structure on G and fixed p,q € N, one

has also the following complexes and the following maps of complexes:

90 d
—1,q—1 g % 1
AP q g?é = AP qg(C [ /\PJF(I+ gz’é
90 d
p—1,q—1 P:q g+, . ; 2)
/\inv X Niny X /\inv (X; C)
m
\[\i i \[\i
99 d

AP—La—ly ———= AP4X ——— APt (X C)

the same can be repeated for the complex used to define the (p, ¢)-th Aeppli coho-
mology group.
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For » € {3, 8, BC, A} and K € {R, C}, we will write H$p(g:K) and H.*(gc)
to denote the cohomology groups of the corresponding complexes of forms on g,
equivalently, of G-left-invariant forms on X. The rest of this section is devoted to the
problem of whether these cohomologies are isomorphic to the corresponding coho-
mologies on X.

3.1 Classical Results on Computation for the de Rham and Dolbeault Cohomologies

One has the following theorem by K. Nomizu, saying that the de Rham cohomology
of a nilmanifold can be computed as the cohomology of the subcomplex of left-
invariant forms.

Theorem 3.1 ([21, Theorem 1]) Let N = I'\G be a nilmanifold, and denote the
Lie algebra naturally associated with G by g. The complex (A®g*, d) is a minimal
model for N. In particular, the map of complexes (AN*g*, d) — (AN, d) is a quasi-
isomorphism, that is, it induces an isomorphism in cohomology:

i H3p(g:R) —> H3p(N:R).

The proof rests on an inductive argument, which can be performed since every
nilmanifold can be seen as a principal torus-bundle over a lower-dimensional nil-
manifold.

A similar result holds also in the case of completely solvable solvmanifolds and
has been proved by A. Hattori in [13, Corollary 4.2], as a consequence of the Mostow
Structure Theorem (see also [27, Chap. 3]). We recall that a solvmanifold X = I'\G
is said to be completely solvable if, for any g € G, all the eigenvalues of Adg are
real, equivalently, if, for any X € g, all the eigenvalues of ad X are real.

Theorem 3.2 ([13, Corollary 4.2]) Let X = I'\G be a completely solvable solviman-
ifold and denote the Lie algebra naturally associated with G by g. Then the map
of complexes (A*g*, d) — (A*X, d) is a quasi-isomorphism, that is, it induces an
isomorphism in cohomology:

i H3p(g: R) — Hip(X:R).

In general, for non-completely solvable solvmanifolds the map of complexes
(A®g*, d) = (A*X, d) is not necessarily a quasi-isomorphism, as the example in [9,
Corollary 4.2, Remark 4.3] shows (for some results about the de Rham cohomology
of solvmanifolds, see [7]).

Considering nilmanifolds endowed with certain G-left-invariant complex struc-
tures, there are similar results also for the Dolbeault cohomology; see, e.g., [S] and
[24] for surveys on the known results. (Some results about the Dolbeault cohomology
of solvmanifolds have been recently proved by H. Kasuya, see [14].)

Theorem 3.3 ([25, Theorem 1], [8, Main Theorem], [6, Theorem 2, Remark 4], [22,
Theorem 1.10]) Let N = I'\G be a nilmanifold, and denote the Lie algebra naturally
associated with G by g. Let J be a G-left-invariant complex structure on N. Then,
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for every p € N, the map of complexes

(AP*gE, 3) = (AP°N, ) 3)
is a quasi-isomorphism, hence

it H® (gc) —> Ha*(N),

provided one of the following conditions holds:

e N is holomorphically parallelizable; see [25, Theorem 1],

e J is an Abelian complex structure (i.e., [Jx, Jy] = [x, y] for any x,y € g); see
[6, Remark 4];

e J is a nilpotent complex structure (i.e., there is a G-left-invariant co-frame
(', ..., "} for (TYON)* with respect to which the structure equations of N are
of the form

do/ = Z A;lka)h/\wk—i— Z B,]lka)h/\d)k
h<k<j hk<j

with {A;lk, szW}j,h,k C C); see [8, Main Theorem];

o J is a rational complex structure (i.e., J(gg) € gg where gq is the rational struc-
ture for g—that is, a Q-vector space such that g = gg ®qg R—induced by T'); see
[6, Theorem 2];

e g admits a torus-bundle series compatible with J and with the rational structure
induced by T'; see [22, Theorem 1.10].

We recall also the following theorem by S. Console and A. Fino.

Theorem 3.4 ([6, Theorem 1]) Let N = I'\G be a nilmanifold, and denote the Lie al-
gebra naturally associated with G by g. Given any G-left-invariant complex structure
J on N, the map of complexes (3) induces an injective homomorphism i in cohomol-
0gy, [6, Lemma 9]:

i Hg” (gc) — Hg”(N).

Let U C C(g) be the subset containing the G-left-invariant complex structures J on
N such that the inclusion i is an isomorphism:

U= {J €Cg) : it HY* (go) > Hg'"(N)} CC(g).
Then U is an open set in C(g).

The strategy of the proof consists in proving that the dimension of the orthogonal
of Hg"(g(c) in HB_"(N ) with respect to a given J-Hermitian G-left-invariant metric
on N is an upper-semi-continuous function in J € C(g) and thus if it is zero for a
given J € C(g), then it remains equal to zero in an open neighborhood of J in C(g).

We will use the same argument in proving Theorem 3.9, which is a slight modifi-
cation of the previous result in the case of the Bott—Chern cohomology.

The aforementioned results suggest the following conjecture.
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Conjecture 3.5 ([24, Conjecture 1]; see also [8, page 5406], [6, page 112]) Let N =
I'\G be a nilmanifold endowed with a G-left-invariant complex structure J, and
denote the Lie algebra naturally associated with G by g. Then the maps of complexes
(3) are quasi-isomorphisms, that is, they induce an isomorphism in cohomology:

i: Ho* (gc) = H*(N).

Note that, since i is always injective by [6, Lemma 9], this is equivalent to asking
that

dime (H3* (g0)) =0,

where the orthogonality is meant with respect to the scalar product induced by a given
J-Hermitian G-left-invariant metric g on N.

3.2 Some Results on Computation for the Bott—Chern Cohomology

We prove here some results about Bott—Chern cohomology computation for nilman-
ifolds and solvmanifolds.

The first result is a slight modification of [6, Lemma 9] proved by S. Console and
A. Fino for the Dolbeault cohomology; we repeat here their argument in the case of
the Bott—Chern cohomology.

Lemma 3.6 Let X = I'\G be a solvmanifold endowed with a G-left-invariant com-
plex structure J, and denote the Lie algebra naturally associated with G by g.
The map of complexes (2) induces an injective homomorphism between cohomology
groups

it Hyo (gc) = Hyo(X).

Proof Fix p,q € N. Let g be a J-Hermitian G-left-invariant metric on X, and con-
sider the induced scalar product (-|-) on A**X. Hence both 9, d and their adjoints 9%,

3 preserve the G-left-invariant forms on X and therefore also A e does. In such a
way, we get a Hodge decomposition also at the level of G-left-invariant forms:

AP gt =ker Apc Lapagy @ im 3D \p-tg-1

*

8c
. . ¥
@ (lma*L/\p+l.ng + lma |_/\p,q+lgé> .

Now, take [w] € H} (gc) such that i[w] =0 in HpJ(X), that is, » is a G-

left-invariant (p, g)-form on X and there exists a (possibly non-G-left-invariant)

(p—1,qg — 1)-form n on X such that w = 99 1. Up to zero terms in H};’Cq(g(c),

we may assume that 1 € (i(AP9g%))t € AP X. Therefore, since 3 9*99n is a G-
left-invariant form (997 being a G-left-invariant form), we have that

0=(5"0"03n|n) = |93n]” = o)

and therefore w = 0. O
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The second general result says that, if the Dolbeault and de Rham cohomologies
of a solvmanifold are computed using just left-invariant forms, then also the Bott—
Chern cohomology is computed using just left-invariant forms. The idea of the proof
is inspired by [26, Sect. 1.c], where a similar argument is used to explicitly compute
the Bott—Chern cohomology in the special case of the Iwasawa manifold.

Theorem 3.7 Let X = I'\G be a solvmanifold endowed with a G-left-invariant com-
plex structure J, and denote the Lie algebra naturally associated with G by g. Sup-
pose that

i: Hig(g;C) = HJp(X;C) and i: Hg*' (gc) = Hg'"(X).
Then also
it HyS (gc) = Hys(X).

Proof Fix p,q € N. We prove the theorem as a consequence of the following steps.

Step 1 We may reduce to studying if mdOAPIX an be computed using just G-left-

. . imaa
invariant forms.
Indeed, we have the exact sequence
imdNAP9X
0> —— = — HPI(X) > HI'TI(X: 0)
im 93 Bc R

and, by hypothesis, H7,(X; C) can be computed using just G-left-invariant forms.
Step 2 Under the hypothesis that the Dolbeault cohomology is computed using just
G-left-invariant forms, if  is a G-left-invariant 3-closed form then every solution ¢
of 3¢ =V is G-left-invariant up to d-exact terms.
Indeed, since [¢] =0 in Hg"(X ), there is a G-left-invariant form « such that
¥ = da. Hence, ¢ — « defines a class in Hg'"(X) and hence ¢ — a is G-left-invariant

uptoa 9-exact form, and so is ¢.
Step 3 Under the hypothesis that the Dolbeault cohomology is computed using

just G-left-invariant forms, the space % can be computed using just G-left-
invariant forms.
Consider
. .= ImdNAPIX
w??=dn mod imdd € ——. 4
1imaa

Decomposing n =: ) P nP 4 in pure-type components, the equality (4) is equivalent
to the system

apPta=1.0 = 0 mod imdd
nPta—t=l 4 gprta—t=1.t = 0 mod imdd for £e{l,...,q—1}
onPa~! 4+ gpP~l4  =@P9 mod imda

nbrra—t=1 4 gpt-lrta—t = ¢ mod imdd for Le{l,...,p—1}
anOrta—1 = 0 modimdd
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Applying Step 2 several times, we may suppose that, for £ € {0,..., p — 1}, the
forms nZ’P"’q_e_l are G-left-invariant; indeed, they are G-left-invariant up to 9-
exact terms, but d-exact terms give no contribution in the system, since it is modulo
im 89. Analogously, using the conjugate version of Step 2, we may suppose that, for
Le/{0,...,q — 1}, the forms n"“’z’m are G-left-invariant. Then we may suppose
that 0?4 = anP4~! 4 9nP~14 is G-left-invariant. O

As a corollary of Theorem 3.1, Theorem 3.3, and Theorem 3.7, we get the follow-
ing result.

Theorem 3.8 Let N = I'\G be a nilmanifold endowed with a G-left-invariant com-
plex structure J, and denote the Lie algebra naturally associated with G by g. Sup-
pose that one of the following conditions holds:

N is holomorphically parallelizable;

J is an Abelian complex structure;

J is a nilpotent complex structure;

J is a rational complex structure;

g admits a torus-bundle series compatible with J and with the rational structure
induced by T.

Then the de Rham, Dolbeault, Bott—Chern, and Aeppli cohomologies can be com-
puted as the cohomologies of the corresponding subcomplexes given by the space of
G -left-invariant forms on N in other words, the inclusions of the several subcom-
plexes of G-left-invariant forms on N into the corresponding complexes of forms on
N are quasi-isomorphisms:

it Hjp (@:R) S HIp(N:R) and i: H*® (gc) = H®* (N),
forx€{d, d, BC, A}.

A slight modification of [6, Theorem 1] by S. Console and A. Fino gives the fol-
lowing result, which says that the property of computing the Bott—Chern cohomology
using just left-invariant forms is open in the space of left-invariant complex structures
on solvmanifolds.

Theorem 3.9 Let X =TI'\G be a solvmanifold endowed with a G-left-invariant com-
plex structure J, and denote the Lie algebra naturally associated with G by g. Let
* € {0, 0, BC, A}. Suppose that

i: H® (go) = HE®(X).

Then there exists an open neighborhood U of J in C(g) such that any J € U still
satisfies

is H (90) = HE® (X))
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In other words, the set
U:= {] eC(g) :i: H:]" (gc) Sy H:J" (X)}
is open in C(g).
Proof As a matter of notation, for ¢ > 0 small enough, we consider
{(X, Jy) : t € A0, &)} - A0, &)

a complex-analytic family of G-left-invariant complex structures on X, where
A0,e) :={t e C" : [t] < ¢} for some m € N\ {0}; moreover, let {g:};ca(,s) be
a family of J;-Hermitian G-left-invariant metrics on X depending smoothly on ¢. We
will denote by 3, := 3, and 5? = — %4, 0y, %, the delbar operator and its g;-adjoint,
respectively, for the Hermitian structure (J;, g;), and we set A; := A, 5 one of the
differential operators involved in the definition of the Dolbeault, conjugate Dolbeault,
Bott—Chern, or Aeppli cohomologies with respect to (J;, g;); we remark that A, is a
self-adjoint elliptic differential operator for all the considered cohomologies.

By hypothesis, we have that (H:]’O' (gc))* = {0}, where the orthogonality is meant
with respect to the scalar product induced by gg, and we have to prove the same
replacing 0 with € A(0, ¢). Therefore, it will suffice to prove that

1
A0, ) 3t +> dimg (H;_;; (g@)) eN

is an upper-semi-continuous function at 0.

For any t € A(0,¢), A; being a self-adjoint elliptic differential operator, there
exists a complete orthonormal basis {e;(¢)};c; of eigenforms for A; spanning
(/\;;' gj“C)J-, the orthogonal complement of the space of G-left-invariant forms; see
[16, Theorem 1]. For any i € I and ¢ € A(0, ¢), let a;(¢) be the eigenvalue corre-
sponding to ¢;(¢); A; depending differentiably on ¢t € A(0, ¢), for any i € I, the
function A(0, &) > t — a;(t) € C is continuous; see [16, Theorem 2]. Therefore, for
any to € A(0, €), choosing a constant ¢ > 0 such that ¢ & {a; (t9) : i € I}, the function

W.: A(0,e) > N, t+>dimspan{e;(t) : a;(t) <c}

is locally constant at fy; moreover, for any ¢t € A(0, €) and for any ¢ > 0, we have

We(r) 2 dime (125 (gc))

Since the spectrum of A;, has no accumulation point for any 7y € A(0, &), see [16,
Theorem 1], the theorem follows choosing ¢ > 0 small enough so that W.(0) =
dime (H2® (g0)) ™ O

In particular, Theorem 3.8 and Theorem 3.9 say that the following conjecture,
which generalizes Conjecture 3.5, holds for certain left-invariant complex structures
on nilmanifolds.
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Conjecture 3.10 Let N = I'\G be a nilmanifold endowed with a G-left-invariant
complex structure J, and denote the Lie algebra naturally associated with G by g.
Then the de Rham, Dolbeault, Bott—Chern, and Aeppli cohomologies can be com-
puted as the cohomologies of the corresponding subcomplexes given by the space of
G-left-invariant forms on N, that is,

dimg (Hjg (g; R))J' =0 and dimc (H* (g(c))J‘ =0,

where x € {0, 9, BC, A} and the orthogonality is meant with respect to the scalar
product induced by a given J-Hermitian G-left-invariant metric g on N.

4 The Iwasawa Manifold and Its Small Deformations
4.1 The Iwasawa Manifold
Let H(3; C) be the 3-dimensional Heisenberg group over C defined by
1 2
H3:C):=1{0 1 z2]|eGL3;0) :z' A P2eCy,
0 0 1

where the product is the one induced by matrix multiplication. It is straightforward
to prove that H(3; C) is a connected simply connected complex 2-step nilpotent Lie
group, that is, the Lie algebra (b3, [, -]) naturally associated with H(3; C) satisfies

[h3, b3]# 0 and [b3, [b3, 311 =0.
One finds that

(,01 = le

(,02 — de

¢ i=dz? —z1dZ?
is a H(3; C)-left-invariant co-frame for the space of (1, 0)-forms on H(3; C) and that
the structure equations with respect to this co-frame are

de!' =0

dg?=0

dg3 = —p' A2

For the sake of completeness, we write also

dpl=0 g =0
3p2=0 and {9¢>=0
33 =—¢! Ap? 33 =0.

Consider the action on the left of H(3; Z[i]) := H(3; C) N GL(3; Z[i]) on H(3; C)
and take the compact quotient

I3 := H(@3; Z[i])\ H(3; C).
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Fig. 1 The double complex
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One gets that I3 is a 3-dimensional complex nilmanifold, whose (H(3; C)-left-
invariant) complex structure Jy is the one inherited by the standard complex structure
on C3; I3 is called the Iwasawa manifold.

Since the forms <p1 s (pz, and (p3 are H(3; C)-left-invariant, they define a co-frame
also for (T'1:°I3)*. Note that I3 is a holomorphically parallelizable manifold, that is,
its holomorphic tangent bundle is holomorphically trivial.

Since, for example, <p3 is a non-closed holomorphic form, it follows that I3 ad-
mits no Kihler metric. In fact, one can show that I3 is not formal, see [12, page
158], therefore the underlying smooth manifold of I3 has no complex structure ad-
mitting Kéhler metrics, even though all the topological obstructions concerning the
Betti numbers are satisfied.

We sketch in Fig. 1 the structure of the finite-dimensional double complex
(A**(h3 ®r O)*, 9, 9): horizontal arrows are meant as 9, vertical ones as 9 and
zero arrows are not depicted.

4.2 Small Deformations of the Iwasawa Manifold

I. Nakamura classified in [19, Sect. 2] the three-dimensional holomorphically paral-
lelizable solvmanifolds into four classes by numerical invariants, giving I3 as an ex-
ample in the second class. Moreover, he explicitly constructed the Kuranishi family
of deformations of I3, showing that it is smooth, [19, pages 94-95], compare also [23,
Corollary 4.9]; in particular, he computed the Hodge numbers of the small deforma-
tions of I3 proving that they do not have to remain invariant along a complex-analytic
family of complex structures, [19, Theorem 2], compare also [29, Sect. 4]; moreover,
he proved in this way that the property of being holomorphically parallelizable is
not stable under small deformations, [19, page 86], compare also [23, Theorem 5.1,
Corollary 5.2]. I. Nakamura divided the small deformations of I3 into three classes
according to their Hodge diamond; see [19, page 96] (see also [28, Sect. 17]).
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Theorem 4.1 ([19, pages 94-96]) There exists a locally complete complex-analytic
Samily of complex structures {X¢ = (I3, J)}tea(0,s), deformations of 13, depending
on six parameters

6
t=(t11, ti2, 021, 12, 131, 132) € A(0,8) C C°,

where & > 0 is small enough, A0, €) :={s € C° : |s| <&}, and Xo =1;.
A set of holomorphic coordinates for Xy is given by

chi=c ) =2+ Y i 2
=2 =2+ Y o 2
3= =22+ Yt + e 2HF+AGL ) - D) D

where

D(t):= det(“1 ’12)

1 12

and

A (21, 22) = % <I11 1] (21)2 +2t1 1 P+t <22)2> .
For every t € A(0, €), the universal covering of Xy is C3; more precisely,
X¢= T\ C,
where Ty is the subgroup generated by the transformations
(' 2 ) e (22 1),
varying (@', w2, @3) € (Z[i])3, where
=l (@ + 110" + 1207
2=+ (0 + 110" + 1 @?)

=04+ md 413007 + o' 2
+ (1 @' +122@*) (¢ + o) + A@', @) — D(t) .

Bott—Chern cohomology distinguishes a finer classification of small deformations
of I3 than Nakamura’s classification into three classes; see Sect. 5.3; the classes and
subclasses of this classification are characterized by the following values of the pa-
rameters:

class (i) tj1 =t =t =1ty =0;
class (ii) D(t) =0 and (111, t12, t21, t22) # (0, 0, 0, 0):

subclass (ii.a) D(t)=0andrk S =1;
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subclass (ii.b) D(t) =0and rk S =2;
class (iii) D(t) #0:

subclass (iii.a) D(t) Z0and kS =1;
subclass (iii.b) D(t) #0and tk S =2;

the matrix S is defined by

S:(Uli 022 9132 Uzi)
011 923 021 013

where 0,7, 0,3, 057, 055 € C and o1 € C are complex numbers depending only on t
such that

def = 020 NG + 0110 NG + 0390 AGL+ 031 9 NG+ 0236 A G
being
oli=dgl, gi=di g i=dgd - g - (mE ) dgs

see Sect. 4.3. The first-order asymptotic behavior of 012, 017, 03, 0,7, 0,5 for t near
0 is the following:

o =—1+o(t])

0,1 =1t +o(t])

015 =12 +o(|t]) for t € classes (i), (ii), and (iii), 5)
0,7 = —t1 +o(t])

055 = —t12 +o(t))

and, more precisely, for deformations in class (ii) we actually have that

oz =—1+o(t))

o171 =11 (1+0(1))

o3 =tn(1+0(l))  forteclass (ii). (6)
0,7 = —t11 (1 +0(1))

055 =—t12 (1 +0(1))

The complex manifold X¢ is endowed with the Ji-Hermitian H(3; C)-left-
invariant metric g¢, which is defined as follows:

3
gii=Y ¢l O
j=1
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4.3 Computation of the Structure Equations for Small Deformations of the Iwasawa
Manifold

In this section, we give the structure equations for the small deformations of the
Iwasawa manifold; we will use these computations in Sects. 5.2 and 5.3.
Consider

1. 1
Yt = d;’t
2. 2
Py = d{t
@ i=dgd — z1dgE — (11 2! + 122 22)dg
as a co-frame of (1, 0)-forms on X¢. We want to write the structure equations for X
with respect to this co-frame.

For the complex structures in the class (i), one checks that the structure equations
are the same as the ones for I3, that is,

d(pt1 =0
d(pt2 =0 for t € class (i).
dgf = —¢¢ A ¢}

For small deformations in classes (ii) and (iii), we have that

d(ptl =0
dp? =0
d(pg =0 (ptl A (pt2 for t € classes (ii) and (iii),

+o179f NG+ o390 NG

+0y1 9t NG+ 00 9 AL

where 012, 0|7, 0,3, 057, 0,3 € C are complex numbers depending only on t; their
explicit values in the case of class (ii) have been written down by the author and
A. Tomassini in [2, page 416] and in the case of class (iii) are a bit more involved;
here, we need just the first-order asymptotic behavior for t near 0 given in (5) and (6).

5 The Cohomologies of the Iwasawa Manifold and of Its Small Deformations

5.1 The de Rham Cohomology of the Iwasawa Manifold and of its Small
Deformations

By a result by C. Ehresmann, every complex-analytic family of compact complex
manifolds is trivial as a differentiable family of compact differentiable manifolds; see,
e.g., [18, Theorem 4.1]. Therefore, the de Rham cohomology of small deformations
of the Iwasawa manifold is the same as the de Rham cohomology of I3, which one
can compute with the aid of Nomizu’s theorem, [21, Theorem 1].
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In the table below, we list the harmonic representatives with respect to the metric
go instead of their classes, and we shorten the notation (as we will do also in the
following) writing, for example, 48 := ¢4 A @5.

!B, @132, 1313 1323 23 2323 1123 ¢ 8
(P12313, ¢12323, (p13123’ ¢23123 4

a]; #(I3;C)  go-harmonic representatives dimension
k=1 <p <p2 @1 <Z’2 o 4
k=2 L
k=3 o123 :(pm’ (pmz, @23]’ g0232’ ¢1}3’ (pl%?’ (/)21?: ‘Pzzi_‘/’]z} 10
k=4 1231 1232 1313 1323 2313 2323 1123 2123
k=5

Note that all the go-harmonic representatives of Hj,(Il3; R) are of pure type with
respect to Jy, that is, they are in (AP413 @ A9°PI3) N APT4I; for some p,q €
{0, 1, 2, 3}. This does not hold true for J; with t £ 0 small enough; see [2, The-
orem 5.1].

5.2 The Dolbeault Cohomology of the Iwasawa Manifold and of Its Small
Deformations

The Hodge numbers of the Iwasawa manifold and of its small deformations have
been computed by I. Nakamura in [19, page 96]. The g¢-harmonic representatives for
Hg"(Xt), for t small enough, can be computed using the considerations in Sect. 3.1
and the structure equations given in Sect. 4.3. We collect here the results of the com-
putations.

In order to reduce the number of cases under consideration, note that, on a com-
pact complex Hermitian manifold X of complex dimension n, for any p, g € N, the
Hodge-*-operator induces an isomorphism between

HI(X) = Hy "7 (X) ~ HY "),
Regarding 1-forms, we have that

3 forteclass (i)

dime HM0(Xp) =
% (Xe) {2 for t € classes (ii) and (iii),

which in particular means that Xy is not holomorphically parallelizable for t in classes
(ii) and (iii), see [19, pages 86, 96], and that

dimc Hg’l (X¢) =2 forteclasses (i), (i), and (iii).
Regarding 2-forms, we have that

3 forteclass (i)
dimc H;*O(Xt) =12 forteclass (ii)
1 fort e class (iii)
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and

6 fortecl j
dime HI (x = |0 forteclas@
9 5 fort € classes (ii) and (iii)
and
dimc Hg’z(Xt) =2 forte classes (i), (i), and (iii).

Finally, regarding 3-forms, we have that
dime H2*(Xy) =1 for t € classes (i), (ii), and (iii)

and
6 fort e class (i)
dim¢ ng’l (Xt) =15 forteclass(ii)
4 for t € class (iii).

5.3 The Bott—Chern and Aeppli Cohomologies of the Iwasawa Manifold and of Its
Small Deformations

In this section, using the results of Theorem 3.8 and Theorem 3.9, we explicitly com-
pute the dimensions and we compute the g¢-harmonic representatives for Hy 2 (X¢),
for t small enough.

In order to reduce the number of cases under consideration, note that, on a compact
complex Hermitian manifold X of complex dimension n, for every p,q € N, the
conjugation induces an isomorphism between

HEA (X))~ HEP(X)
and the Hodge-*-operator induces an isomorphism between
HEA(X) — Hy " (X);
furthermore, note that

HZO(X) ~ ker (d: APO X 5 APFL (X C))

and
,0 ,0
Hye (X) 2 Hy ™ (X).
We summarize the results of the computations below in the following theorem.

Theorem 5.1 Let I3 be the Iwasawa manifold, and consider its small deformations
{Xt = I3, JD}tea(0,s), where & > 0 is small enough, and Xo = I3. Then the dimen-

sions h’é’g = hg’g (X¢) := dim¢ Hg’cq (X¢) = dimc Hi_p’3_q (X¢) do not depend on
te A0, e)if p+qisoddor(p,q)e{(l,1), (3,1), (1,3)}, and they are equal to

1.0 _ ;01 _
hge =hge =2,
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hyd=h%2 €(1,2,3),  hye=4,

BC =
Wpe=he =1, hye=hze=6,
Whe=hge=2  hyeef6.7.8),
hye = hge=3.

Remark 5.2 As a consequence of the computations below, we notice that the Bott—
Chern cohomology allows us to give a finer classification of the small deformations
of I3 than the Dolbeault cohomology; indeed, note that dim¢ Hg’é(X t) assumes dif-
ferent values according to different parameters in the same class (ii) or (iii); in a
sense, this says that the Bott—Chern cohomology “carries more information” about
the complex structure than the Dolbeault one. Note also that most of the dimensions
of Bott—Chern cohomology groups are invariant under small deformations; this hap-
pens, for example, for the odd-degree Bott—Chern cohomology groups.

1-Forms It is straightforward to check that
Hllg’g(Xt) = (C<<pt1, got2> for t € classes (i), (ii), and (iii).
2-Forms It s straightforward to compute
Hé’g(Xt) = C<‘Pt12» o3, ¢t23> for t € class (i).

The computations for Hé’g(Xt) reduce to finding ¢ = A gptlz + B (pt13 +C ¢t23 where
A, B, C € C satisfy the linear system

0 0 0 A 0
0 —oy; o171 )-IB|=|0],
0 -0y o5 C 0

whose matrix has rank O for t € class (i), rank 1 for t € class (ii), and rank 2 for
t € class (iii); so, in particular, we get that

dime Hyp(Xg) =2 for t € class (ii)

and
dime Hyp(Xg) =1 for t € class (iii)

(more precisely, for t € class (iii) we have Hé’g(Xt) = (C((ptlz)).
It remains to compute Hé’cl (X¢) for t € classes (i), (ii), and (iii). First of all, it is
easy to check that

HI (X0 2 Cloll, o2, 921, 922)  for t € classes (i), (ii), and (iii),
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and equality holds if t € class (i), hence, in particular, if t = 0; this immediately im-
plies that

Hy (X0 = (C<<pt”, 02, o2l (pt22> for t € classes (i), (i), and (iii);

indeed, Hé’cl(Xt) being isomorphic to the kernel of the self-adjoint elliptic dif-

ferential operator Agc " [A11x,, the function t — dimc Hé’cl(Xt) is upper-semi-
continuous at 0. (One can explain this argument by saying that the new parts ap-
pearing in the computations for t # 0 are “too small” to balance out the lack for the
d-closure or the d-closure.) From another point of view, we can note that (1, 1)-forms
of the type ¥ = A (pt13 + B gat23 +C (p?l + D (pf‘z are Agcjt -harmonic if and only if
A, B, C, D e C satisfy the linear system

—onn 0 —o3 —ojf A 0
0 -0 —0y; —0yj |B|_10
7 on on 0 ()70
0’22 —02] 0 g12 D 0

whose matrix has rank 4 for every t € classes (i), (ii), and (iii).
3-Forms It it is straightforward to compute

Hg’g(Xt) = (C<got123> for t € classes (i), (ii), and (iii).
Moreover,

012 123

2,1 121 122 131 922 123 132, 921 123 231
HBC(Xt):(C<<Pt SO TT,OT T ==T 0  =—T, o =—=,
o012 012 012

e
P2 - U ¢§23> for t € classes (i), (ii), and (iii);
012

in particular,
2,1 1 2 1 2 i 2 .
HBC(Xt) = (C<(p1121 ) (ptlzzv (pt131 ) (Pt1327 (pt231 1) ¢t232> fOr t € ClaSS (l)
From another point of view, one can easily check that
H2 (X0 2 ©<<ptm, <p322> for t € classes (i), (ii), and (iii)

and that the (2, 1)-forms of the type y = A (ptl 23 +B (ptl3T +C (pt132 +D gotz3T +E (,033i
are A BCy, -harmonic if and only if A, B, C, D, E € C satisfy the equation

(W Oy —031 013 ‘711)‘

O Q>
Il
L
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whose matrix has rank 1 for every t € classes (i), (ii), and (iii). Note in particular that
the dimensions of Hg’g(Xt) and of Hé’CI(Xt) do not depend on t.

4-Forms 1t is straightforward to compute
Hy (X0 = (C<(pt123i, <pt123§> for t e classes (i), (i), and (iii)
and
Hé’cz(xt) _ (C<(pt1213’ 90:2237 t13i§’ <ptl3i§, (pt1323’ wfﬂi,
(pfﬂg, (p12323> for t € class (i).
Moreover, one can check that

leg’g(Xt) > (C(gotnig, <pt122§, gotlﬂ_, <pt23ﬁ> for t € classes (i), (ii), and (iii).

For Hé’CZ(Xt) with t € classes (ii) and (iii), we get a new behavior; there are sub-
classes in both class (ii) and class (iii), which can be distinguished by the dimension
of Hé’cz(Xt). Indeed, consider (2,2)-forms of the type ¢ = A(,ot1313 + B(,ot1323 +
C <pt23 34 Dgot2323; a straightforward computation shows that such a ¥ is Agc e
harmonic if and only if A, B, C, D € C satisfy the linear system

O = >
I
A~
o O
~——

(022 —013 03] 011),
0y —031 —013 Oqf

as one can easily note, the rank of the matrix involved is O for t € class (i), while it is
1 or 2 depending on the values of the parameters and independently from t belonging
to class (ii) or class (iii). Therefore,

dim¢ Hé’cz (X¢y) =7 fort e subclasses (ii.a) and (iii.a)
and

dim¢ Hé’CZ(Xt) =6 fort € subclasses (ii.b) and (iii.b).

5-Forms Finally, let us compute H g’CZ(Xt).
It is straightforward to check that

Hg’g(Xt) = (C<<pt123i§, (p112313, ¢t123i§> for t € classes (i), (ii), and (iii);

in particular, it does not depend on t € A(0, ¢).
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Appendix: Dimensions of the Cohomologies of the Iwasawa Manifold and of
Its Small Deformations

H, by by bs by bs

I3 and (i), (ii), (iii) 4 8 10 8 4
o0 1,0 0,1 2,0 1,1 0,2 3.0 2,1 1,2 03 3,1 2,2 1,3 3.2 2.3

H3 L I A L L A L

I3 and (i) 3 2 3 6 2 1 6 6 1 2 6 3

(ii) 2 2 2 5 2 1 5 5 1 2 5 2 2 2
(iii) 2 2 1 5 2 1 4 4 1 2 5 1 2 2

oo 10 ,01 ,20 .11 .02 .30 ,21 ,12 ,03 ,31 .22 .13 .32 .23
HBC hBC hBC hBC hBC hBC hBC hBC hBC hBC hBC hBC hBC hBC hBC
Iyand (i) 2 2 3 4 3 1 6 6 1 2 8 2 3 3
(ii.a) 2 2 2 4 2 1 6 6 1 2 7 2 3 3
(ii.b) 2 2 2 4 2 1 6 6 1 2 6 2 3 3
(iii.a) 2 2 1 4 1 1 6 6 1 2 7 2 3 3
(iii.b) 2 2 1 4 1 1 6 6 1 2 6 2 3 3

o0 1,0 0,1 2,0 1,1 0,2 3,0 2,1 1,2 0,3 3.1 2,2 1,3 32 2.3
HA hA hA hA hA hA hA hA hA hA hA hA hA hA hA
I3 and (i) 3 3 2 8 2 1 6 6 1 3 4 3 2 2
(ii.a) 3 3 2 7 2 1 6 6 1 2 4 2 2 2
(ii.b) 3 3 2 6 2 1 6 6 1 2 4 2 2 2
(iii.a) 3 3 2 7 2 1 6 6 1 1 4 1 2 2
(iii.b) 3 3 2 6 2 1 6 6 1 1 4 1 2 2
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