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aDepartamento de Matemática e Estat́ıstica, Universidade Estadual de Ponta Grossa
Avenida General Carlos Cavalcanti, 4748. 84032-900 Ponta Grossa, PR, Brazil

bDipartimento di Fisica, Università di Palermo
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Abstract

We introduce a new statistical test of the hypothesis that a balanced panel of
firms have the same growth rate distribution or, more generally, that they share
the same functional form of growth rate distribution. We applied the test to
European Union and US publicly quoted manufacturing firms data, considering
functional forms belonging to the Subbotin family of distributions. While our
hypotheses are rejected for the vast majority of sets at the sector level, we cannot
rejected them at the subsector level, indicating that homogenous panels of firms
could be described by a common functional form of growth rate distribution.
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1. Introduction

Since R. Gibrat proposed a stochastic model to describe the growth of a
firm [1] an important branch of the literature has been concerned with the
empirical testing of its consequences (see [2] for a review and also [3] for updated
references). Gibrat’s model deals with the growth of a single firm and it is based
upon two assumptions, namely (i) the Law of Proportionate Effect (also known
as Gibrat’s law), stating that the proportionate growth of a firm in a given period
is a random variable independent of the initial firm size and (ii) the assumption
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of statistical independence of successive growths. The main consequences of the
model are that, after a long period (typically one year), the logarithmic growth
rates are normally distributed and independent of the initial firm’s size. In the
literature the size of the firm is measured with different proxies such as the total
annual sales, the total annual revenue/turnover, the number of employees, etc.

Recently, the empirical investigations on the validity of Gibrat’s model or
of alternative growth models are receiving an increasing and renewed interest
motivated by the electronic availability of extensive data sets containing a large
number of firms which could in principle allow to scrutinize among alternative
models with high statistical accuracy [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. However
even in such data sets it is hard to empirically test the single firm models
because the available data sets typically contain a large number of firms which
are sampled over a small number of time periods each. Moreover for balanced
panels, the longer is the time period considered, the smaller is the number of
firms in the panel1.

The traditional approach to circumvent the above difficulty of short time
series is to assume that the growth time series of each individual firm is a
specific realization of the same stochastic process which governs the growth
dynamics of all the firms. In other words, such an approach assumes that
each firm is statistically identical to the model firm (MF) described by that
stochastic process. Conversely, the statistical properties of the model firm at
a given instant of time can be inferred from the statistical properties of the
panel of all the firms at the same time. Moreover, if the MF stochastic process
is stationary, the statistical properties of each firm and therefore of the pooled
sample of all the firms is time independent. By assuming the MF hypothesis,
earlier empirical investigations have in general corroborated Gibrat’s model,
whereas many recent studies carried over large data sets claim that it must be
rejected [2, 3]. For instance, several recent works find a non Gaussian, “tent
shaped” distributions for the aggregate of growth rates [4, 5, 10, 11], and also
evidences in some data sets for a dependence of the growth rate distributions
on the firms initial size (see, for example, [4]-[13] and references therein). These
tests of the Gibrat’s model are based on the MF hypothesis and it is therefore
important to investigate whether this hypothesis is valid.

As we have discussed above, the shortness of the firm growth time series
makes difficult to test the MF hypothesis. In this article we introduce a method
to test the MF hypothesis, which is powerful even when the time series are
short, provided the number of firms in the panel is large, as explained in section
2.1. We also consider the more general hypothesis that there is some level
of heterogeneity among individual firms. More specifically we also test the
hypothesis that all firms in a balanced panel have the same specific functional
form of the growth rate distribution, although the parameters that characterize
the distribution may be different from firm to firm. We apply our method to

1Balanced panels contains only firms for which there are data in the whole period under
study. As a consequence, firms that enter or exit the market in that period are not considered.
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balanced panels of (i) firms homogeneous at the manufacturing sector level and
(ii) homogeneous at the lower level of manufacturing subsectors. We consider
different time periods length ranging from 8 to 18 years. We find that the
statistical validation of the null hypotheses strongly depends on the homogeneity
(in time and in the sectorial composition) of the panel.

The article is organized as follows. In the next section we present the ratio-
nale of our approach in testing a functional form common to all firms of a panel.
In Section 3 we apply this approach to the study of balanced panels containing
publicly quoted manufacturing firms from Compustat and Amadeus databases.
We consider both sector and subsector homogeneous panels of firms. We test
the model firm hypothesis and the hypothesis of a specific common functional
form of the growth rate distribution by considering distributions belonging to
the Subbotin family. In the last section we present our conclusions.

2. A procedure to test whether the same functional form of the
growth rate distribution is common to all firms of a panel

In this work we consider only balanced panels containing N firms whose size
Sji (i = 1, 2, · · · , N) is recorded for T + 1 instants of time j (j = 0, 1, 2, · · · , T ).
The logarithmic growth rate of the i-th firm at time j (j > 0) is defined as

rji = ln
Sji
Sj−1
i

. Our basic assumptions are:

B1: single firms grow independently among themselves;

B2: the time series of the growth rate of each firm consists of statistically
independent records;

B3: the time series of growth rate of each firm is stationary.

B4: let pi(ri) be the time independent probability density function (pdf) of
the growth rate ri for the i-th firm. The idiosyncratic parameters of firm i
are its mean µi and standard deviation σi of its growth rate distribution.
The pdf of the standardized variable Zi = ri−µi

σi
is pstd

i (zi). We assume

that such distribution is the same for all firms and it will be denoted pstd.

Under assumptions B1-B4 the pdf of the growth rate r obtained by pooling
together all firms is given by

P (r) =
1

N

N∑
i=1

pi(r). (1)

P (r) is defined as the pdf of the growth rate r by a random selection of a firm
in the pooled sample. Now, suppose one knows a priori the actual idiosyncratic
parameters µi and σi of each firm and standardizes each firm growth rate ri by
using these parameters. The pdf for the aggregate standardized growth rates
Zi, analogous to that given in (1), will be given by PZ(z) = 1

N

∑N
i=1 p

std
i (z) =
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pstd(z), i.e., it will be identical to the probability distribution assumed to be
common to all the single firms. Such a standardization procedure has the effect
of removing the idiosyncrasies among single firms. As a special case, if the single
firm growth rates ri are all identically distributed according to a pdf pr(r) (this
case corresponds to the MF hypothesis) then not only PZ(z) = pstd

r (z), but also
P (r) = pr(r), as it can be straightforwardly seen from Eq. (1).

The above considerations may suggest that under assumptions B1-B4 it is
sufficient to observe the aggregate distribution of all the standardized empirical
growth rates to infer the common shape pstd of the single firm growth distribu-
tions. Unfortunately, in practical situations things are not so simple. The main
difficulty is that one does not know a priori the actual idiosyncratic parame-
ters µi and σi. Usually these parameters must be estimated from the empirical
time series of each individual firm. As already mentioned, available data sets
typically contain a small number of time records for each firm and consequently
only very imprecise estimates for these parameters are available. Such noisy es-
timates of the parameters may cause the aggregate distribution of standardized
growth rates to deviate significantly from the theoretically expected pstd(z).

In order to illustrate this point we perform some numerical simulations. De-
note the empirical time series of growth rates of the i-th firm by {rji }Tj=1, and
the time series estimates of the parameters µi and σi by µ̂i and σ̂i, respectively.
By standardizing each observed single firm time series by using these sample es-
timates we obtain the corresponding time series of the empirically standardized

growth rates {zji }Tj=1 for the i-th single firm, where zji =
rji−µ̂i
σ̂i

. From now on we
shall refer to this standardization with sample moments as a z-transformation
and the corresponding standardized growth rate as z-growth rate. We artificially
generated N = 10, 000 independent time series of length T , each one generated
from T independent outcomes drawn from a given distribution. Each time series
was standardized by using the usual sample estimates of the mean and standard
deviation. We then plot the histogram for the aggregate of all standardized ar-
tificial data. We consider different time series length ranging from T = 8 to
T = 60. These values are typically observed in empirical investigations of real
firm data. As it is illustrated in Figure 1, the distribution of the aggregate
z-transformed outcomes may be quite different from the distribution we used
to generate the data. Such a deviation is more significant for short time series
length T . Whereas for time series generated from a Gaussian distribution (see
Fig 1a) the z-transformation does not change appreciably the functional form,
for non Gaussian variables the use of sample moments to perform the standard-
ization can dramatically change the distribution. For example, in Fig 1b we
observe that for time series of length T = 8 generated from a Laplace distribu-
tion, the distribution of the aggregate standardized variables looks more similar
to a Gaussian than to a Laplace distribution. Thus, from a visual inspection
of this plot, one could be lead to incorrectly conclude that data are generated
from a Gaussian distribution. Customary statistical tests corroborate our con-
clusion that the standardization procedure with sample moments on short time
series lead to aggregate standardized variables whose distribution is artificially

4
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Figure 1: (Color) Histograms for the aggregate of all standardized artificial data for several
time series lengths. Data are generated according to a Gaussian (panel a) and Laplace (panel b)

distribution. In each figure we plotted for comparison the corresponding distribution pstd(z) which
would be the expected one if the mean and standard deviation estimates were sufficiently accurate.
In panel b we plotted also the standard Gaussian distribution, for the sake of comparisons.

close to a Gaussian. This example illustrates the need for an accurate test for
discriminating among alternative hypotheses for the common functional form
of the growth rate distribution.

Since for short time series the distribution of z-growth rate obtained by z-
transforming with sample moments may be very different from the underlying
common functional form, one should compare the empirical z-growth distribu-
tion with a distribution which takes into account the deformations caused by
the noisy nature of parameters estimators. Our idea is to find this expected
distribution through a Monte Carlo procedure.

Suppose we have an empirical set of N firm growth rates recorded for T time
steps. We want to test the hypothesis that a specific functional form pstd(z) is
common to all firms and that firms are different only because the mean and the
standard deviation of the growth rate is idiosyncratic for each firm. The steps
of our test are the following:

1. if one wants to test a specific functional form for the single firms (a Gaus-
sian, a Laplacian or any other specific functional form), then generate a
large number M (M � N) of surrogate time series of length T , {yjk}Tj=1,
(k = 1, ...,M), independently drawn from the hypothesized single firm
distribution. Without loss of generality we can take such a distribution to
be pstd(z) for all the artificial time series (this statement will become clear
after step 2). On the other hand, if one wants to test the MF hypothesis,
for which the single firm distribution is not known, we first built an N×T
data matrix D = dij where each entry dij is the growth rate rji of the i-th
firm at the j-th time period, with i = 1, · · · , N and j = 1, · · · , T . We
then build M new surrogate firm time series by randomly choosing (with
replacements) T values from matrix D;
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2. z-transform each of theseM artificial time series by using its corresponding
estimates µ̂yk and σ̂yk for the mean and standard deviation, respectively2;

3. construct the distribution of all the above artificial z-growth rates pooled
together. This is the distribution of aggregate of z-growth rates expected
under the null hypothesis;

4. apply several goodness of fit tests to compare the expected distribution
obtained in step 3 with that obtained from the empirical z-growth rates.

In what concerns the last step we shall follow reference [15] and use goodness
of fit tests based on the empirical cumulative distribution function (EDF tests).
As EDF tests require the expected cumulative distribution obtained under the
null hypothesis to be continuous, in this work we did linear interpolations be-
tween each successive pair of discrete points of the discrete distribution obtained
in step 3 in order to make it suitable for the use in such tests.

2.1. Analysis of the power of the test for a class of distributions

Before we apply our approach to analyze empirical data we present some
studies concerning the power of our test. For the last step of the procedure intro-
duced above we shall consider, as suggested in [15], the statistics A2 (Anderson-
Darling), W 2 (Cramer-Von Mises), and U2 (Watson), besides D (Kolmogorov).
We will reject the null hypothesis at the level of significance α if it is rejected
by at least one of these four statistics at that significance level. This global
test (considering all the four EDF statistics combined) tends to increase the
probability of a Type I Error (the probability to reject the null when it is valid)
beyond the value α. On the other hand, with this criterion we expect to in-
crease the power of the global test in comparison with each single test applied
separately.

In order to study the power of the global test we used a Monte Carlo pro-
cedure to generate a thousand of N × T panels, each of them containing N
independent time series of length T drawn from a specified distribution Ha (the
“alternative” hypothesis) and after z -transformed by using the time series es-
timates. We built panels with N ranging from 5 to 350, and for T = 9 and
T = 18. As for the alternative hypothesis we considered some members of the

2A sample of outcomes {yj}Tj=1 from a pdf pY with parameters µ and σ can be obtained by

first sampling a set {xj}Tj=1 from the standard version of pY and, subsequently, by performing

the transformation yj = µ+σxj . The z-transformed sample corresponding to the y outcomes

will then be {zjy}Tj=1, with zjy =
yj−µ̂y
σ̂y

, where µ̂y = µ+ σµ̂x and σ̂y = σσ̂x, and µ̂x and σ̂x

are the time series estimates for the mean and standard deviation of the outcomes {xj}Tj=1,

respectively. Therefore, zjy =
(µ+σxj)−(µ+σµ̂x)

σσ̂x
= xj−µ̂x

σ̂x
= zjx. In other words, after step 2

the artificially generated z-growth rates would be insensitive with respect to any arbitrary set
of “artificial idiosyncratic parameters” µk and σk (k = 1, · · · ,M) one could associate to the
set of M artificial time series.
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Subbotin family of distributions, which includes the Laplacian and the Gaussian
distributions as particular cases and whose pdf has the following general form

p(r) =
1

2γβ
1
β Γ
(

1
β + 1

) exp

(
− 1

β

∣∣∣∣r − µγ
∣∣∣∣β
)
. (2)

The parameter β characterizes the shape of the distribution, the parameter µ is
the mean and, for each β, parameter γ is proportional to the standard deviation.

In fact the standard deviation is given by σ = γ β
1
β

√
Γ( 3

β )
Γ( 1

β )
. The smaller is the

value of the shape parameter β, the more leptokurtic is the distribution. For
the alternative distributions we choose the Subbotin members given by β = 1/2,
3/4, 1 (Laplace), 3/2, and 2 (Gaussian).

Through a Monte Carlo procedure we then calculate the critical values of
each of the four considered statistics at the level of significance α for a set of
null hypotheses identical to that chosen for the alternatives Ha (for the details
about the Monte Carlo procedure to calculate critical values for EDF statistics
see [21]).

Finally, we applied the global test in each of the 1, 000 panels to calculate the
rate of rejection of the null H0 for each case (each case corresponds to a given
Ha and a given panel dimension N × T ). When H0 6= Ha this rate corresponds
to the power of the global test, whereas when H0 = Ha such a rate corresponds
to the effective probability of a Type I Error.

Figure 2 shows the results for some of the cases studied, but it illustrates the
general behavior for all the cases we considered3. In that Figure we can observe
that when T and N are both relatively small the test shows a low power to
reject nulls which are close to the actual distribution Ha. For instance, plot
2(a) shows that when Ha is a Subbotin with β = 3/4 there is a high probability
that the nulls corresponding to β = 1/2 and β = 1 will be accepted if N is
relatively small. For fixed N and T the power increases as H0 deviates from
Ha. On the other hand, if N or T is relatively large the power is very high
in general. For a high value of T and a not so small value of N (N > 60, for
instance), the test have a very high probability to reject a null which deviates
even slightly from Ha. For instance, plots for T = 18 [(b), (d), and (f)] show
that the valleys are narrower in comparison with those in the plots at the first
column, in such a way that even the nulls closer to the actual Ha have a high
probability to be rejected.

3. Statistical tests of empirical data

In this section we illustrate our approach by applying it to six data sets.
Data were obtained from two major databases: (i) the Compustat database,

3An enlarged set of results is available upon request
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Figure 2: (Color) Analysis of the power of the global test for a significance level α = 0.05. The
horizontal axis corresponds to the values of the shape parameter β0, associated with the null H0.
The alternative distribution Ha, from which the data were actually drawn, is a Subbotin with
β = 3/4 [plots (a) and (d)], β = 1 [plots (b) and (e)], and β = 3/2 [plots (c) and (f)]. Horizontal
dashed and dotted lines at rejection rates of respectively 100% and 80% are shown for reference. In
each plot the value of the minimum gives the effective probability of a Type I Error in the global
test (which is in general slightly greater than α).
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and (ii) Amadeus Top 250,000 database.
The Compustat database [16] is issued by Standard & Poor’s and contains

data derived from publicly quoted North American companies. The Amadeus
Top 250,000 [17] is issued by Bureau van Dijk and contains data about Euro-
pean firms4. The Amadeus Top 250,000 database also gives the information
about whether or not a firm is publicly quoted. In order to be consistent with
respect to the Compustat database, in our investigations we considered only
those firms from the Amadeus Top 250,000 database that are publicly quoted.
For both databases we considered only manufacturing firms according to the
NAICS classification. Specifically, the manufacturing sector is characterized by
2-digit NAICS codes ranging from 31 to 33 [18].

Specifically, the six data sets we investigated are

D1: all the European Union5 firms in Amadeus Top 250,000 database for which
there are data on annual revenue/turnover for the whole period from 1996
to 2004 (N = 698, T = 8);

D2: all the US firms in Compustat database for which there are data on annual
sales for the whole period from 1981 to 1999 (N = 764, T = 18);

D3: the same set of firms of D2, but with the time period restricted to 1981-
1990 (N = 764, T = 9);

D4: the same set of firms of D2, but with the time period restricted to 1990-
1999 (N = 764, T = 9);

D5: all the US firms in Compustat database for which there are data on annual
sales for the whole period from 1990 to 1999 (N = 1, 412, T = 9);

D6: all firms present in D5 but not in D4, for the same time period common
to both data sets (N = 648, T = 9).

These sets are homogeneous at the manufacturing sector level. In the next sub-
section we also apply our test to panels of firms which are homogeneous at the
subsector level.

As a result, the proxy of the firms size is given by (i) data expressed in
Euro on annual revenue/turnover in set D1 (Amadeus) and (ii) data expressed
in dollars on annual sales for all the other sets (Compustat). For each firm,
the growth rates thus obtained have then been de-trended for the annual GDP

4To be included a company should satisfy at least one of the following size inclusion crite-
ria. For the UK, Germany, France, Italy, Spain, Ukraine and Russian Federation: operating
revenue equal to at least 15 million EUR, total assets equal to at least 30 million EUR, number
of employees equal to at least 200. For all other countries: operating revenue equal to at least
10 million EUR, total assets equal to at least 20 million EUR, number of employees equal
to at least 150. Note that companies with ratios Turnover per employee or Total Assets per
employee below 1,000 EUR are excluded from the TOP 250,000

5We considered here the 25 countries version for the European Union. Amadeus Top
250,000 has also an European Union version comprising 15 countries.
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variation of the country in which the firm is located. The data for the GDP
variation and the exchange rates to convert the national currencies to Euro (or
ECU, before Euro) were obtained from the International Financial Statistics
(IFS) of the International Monetary Fund [19].

For each of the above sets of data we tested six null hypotheses. One of them
is the MF hypothesis that all firms have a common single firm distribution also
characterized by the same parameters for all firms. In the remaining five cases
the null hypothesis is that the single firm distribution is given by a member of
the Subbotin family of distributions of Eq. (2) [6, 20] characterized by a mean
and standard deviation that can be different for different firms. We consider the
same Subbotin distribution as those used in the previous section for the analysis
of test power (i.e. β = 1/2, 3/4, 1, 3/2, and 2) 6. Monte Carlo simulations were
used to compute the relevant critical p-values at 1%, 5%, and 10% significance
levels for the considered EDF statistics, according to the procedure illustrated
in subsection 2.1.

3.1. Results on panels homogenous at the sector level

We summarize all the results in Table 1. We first note that for all the data
sets, all the four EDF statistics reject the MF hypothesis with a p-value < 1%
for all data sets (see the first column of results in Table 1). This means that, if
B1-B4 are valid assumptions, then the individual firms are heterogeneous with
respect to the growth rate mean and standard deviation.

The five remaining versions for the null hypothesis tested whether those dis-
tributions share a common functional form. For all the data sets and all the
considered statistics, one must reject a common functional form of the distribu-
tion corresponding to β = 1/2, β = 3/4, β = 3/2, and β = 2 (Gaussian), with
a p-value < 1%. For data sets D1, D3, D4, and D6 the Laplace distribution
(β = 1) is also rejected by all the statistics with a p-value < 1%.

On the other hand, for data set D5 all the tests show that one cannot reject
the null hypothesis of Laplace distribution at a significance level of 5%. For
data set D2 the Laplace null hypothesis cannot be rejected according to the
Kolmogorov test with a p-value between 1% and 5%, and it is rejected by the
remaining statistics (p-value < 1%).

Data sets D4 and D6 are disjoint and their union is the D5 set of firms.
The selection of the D4 and D6 sets is based on their past business activity.
In fact firms in D4 were active in the whole period 1981-1999 and therefore
have a business activity documented well before the starting data of recording
in the panel (1990), whereas those in D6 were active in a shorter time sub-
period before 1990. Our results suggest that the common Laplace functional
form observed in D5 might depend on the specific way the panel is selected,
since the same statistical conclusions are not shared by both its subsets D4 and
D6 which are discriminating about the business history of the firms. Figure 3a

6The investigation can be extended to other classes of distributions, including asymmetric
ones.
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Figure 3: (Color) a) Comparison between the pdf of the aggregate of empirical z-growth rates for
set D5 and the pdf for the six null hypotheses considered. b) Pdf of the aggregate of empirical
z-growth rates for data set D5 and its subsets D4 and D6.

shows the histogram corresponding to data set D5, as well as the expected pdfs
for the six null hypotheses considered here. A visual inspection corroborates the
results of Table 1, in the sense that the Laplace pdf (β = 1) fits the empirical
distribution better than the other pdfs. On the other hand, Figure 3b illustrates
the heterogeneity between the two subsets D4 and D6 of set D5. It is clear that
set D4 and D6 are asymmetric with respect to zero and their asymmetry is
opposite. When one consider set D5 these opposite asymmetries cancel out. It
is worth noting that the main source of discrepancy of D4 and D6 sets comes
from the central part of the distribution whereas the tails are well described by
the Laplace distribution.

3.2. Results on panels homogenous at the subsector level

We now consider panels of firms which are homogeneous at the subsector
level. The role of subsector homogeneity of panel of firms in the growth rate
distribution has been considered, for example, in [10, 11]. The NAICS classifi-
cation for both databases contains a three digits classification of firms in terms
of subsectors. Since most subsectors in our set of firms are small, here we focus
on three large manufacturing three digit subsectors for each of the data sets
considered above. Specifically for the European Union (Amadeus) set we con-
sider subsectors Chemical Manufacturing (code 325) Computer and Electronic
Product Manufacturing (code 334), and Food Manufacturing (code 311). For
the US (Compustat) database we consider the same first two subsectors and
Machinery Manufacturing (code 333).

We perform the same statistical tests as in the sector case of the previous
section, namely we use the EDF statistics to test the model firm hypothesis
and the hypothesis that the growth rate of different firms is described by the
same functional form belonging to the Subbotin class of Eq. (2) with β =
1/2, 3/4, 1, 3/2, and 2. The result of these statistical tests is summarized in
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Table 2. For a given set (D1, ..., D6) and for a given sector/subsector, we report
in boldface those cases for which all the four EDF statistics accept the hypothesis
with a p-value larger than 10%. We report also those less stringent cases for
which all the four EDF statistics accept the hypothesis with a p-value larger
than 5%.

As already mentioned above, at the manufacturing sector level only data
set D5 is able to satisfy the criteria for the inclusion in the table. For three
digit subsectors the results are pretty different. In fact, we find that for most
panels there is one or more hypotheses that are accepted according to our strict
test. For example, for subsector 325 of set D3 both the Laplace (β = 1) and
the Subbotin with β = 3/2 hypothesis are accepted with an high p-value. The
results of subsection 2.1 indicate that this might be due to the low power of
our test to discriminate among nulls which are somewhat close to the actual
empirical distribution (this is a typical case of small T and relatively small
N). Besides that, we recall that in this case the power of the test increases
as the null deviates from the actual distribution. Taking into consideration
such features of the test, we could guess that the actual distribution may be
well approximated by some Subbotin with β close to 1. Moreover, overall our
results show that firms homogenous with respect to the subsector of activity
are typically well described by a common functional form. The MF hypothesis
is also accepted in several cases sometimes together with a specific functional
form (see, for example, panel D6 subsector 333), indicating the possibility that
the considered panel is described by a specific functional form with the same
idiosyncratic parameters for all firms. Note also that short time series pass the
test more often than long time series. In fact, for set D2, describing US firms
in the 18 year time period, only subsector 325 passes the test, and for the other
two subsectors no null hypothesis is accepted. When we split this set in two 10
year subperiods (set D3 and set D4) we accept one or more hypotheses for all
the subsectors. Finally, the table shows that the Laplace distribution is the null
hypothesis which is accepted more often.

In conclusion our statistical tests give indications that those panels of firms
which are homogeneous with respect to the subsector of activity and within a
short period of time (roughly a decade) can be often described by some member
of the Subbotin family as a common functional form for all the individual firms.
On the other hand, application of our tests to panels which are homogeneous
only at the sector level of activity, or to panels encompassing a large time
span (roughly two decades), often rejected the nulls considered here. It is worth
mentioning that the results already shown in Fig. 2 indicate that such behaviour
might be partly expected due to a diminished power of our test when T is small.
On the other hand this effect might also be a genuine one. In fact, it might
be related to the fact that (i) different subsectors have sizable idiosyncratic
growth components and aggregating subsectors together distorts the form of
the distribution; (ii) there are slow time dependent factors which affect the
dynamics of the moments of the distribution. Thus even if for short time periods
our null hypothesis cannot be rejected, when the investigated period is long the
distribution of growth rates is not anymore described by a common functional
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D1 D2 D3 D4 D5 D6
T=8 T=18 T=9 T=9 T=9 T=9

Sector – – – – Laplace –
N=698 N=764 N=764 N=764 N=1412 N=648

325 Laplace, Laplace Laplace, β = 3/4, – –
β=3/2 β=3/2 Laplace
N=94 N=87 N=87 N=87 N=209 N=122

334 MF – Laplace, MF Laplace Laplace
β=3/2

N=69 N=161 N=161 N=161 N=364 N=203

311 MF, Laplace,
β = 3/4, β=3/2

N=75

333 – MF Laplace, Laplace, MF
β=3/2 β = 3/2 β=3/2

Laplace
N=82 N=82 N=82 N=140 N=58

Table 2: Summary of the null hypotheses that are accepted for the different data sets analyzed,
at the level of the manufacturing sector and its considered subsectors. We report those
hypothesis accepted with a p-value larger than 10% on all four statistics (boldface) and those
hypotheses accepted with a p-value larger than 5% on all four statistics (normal). Note that
subsector 311 is for European firms only (set D1) and subsector 333 is for US firms only (set
D2, ..., D6).

form; and (iii) for large data sets, or panels with a large time span, the test
has a high power, rejecting nulls which deviate even slightly from the actual
distribution. In these cases it could be instructive to consider a more refined
set of nulls, perhaps other members of the Subbotin family with β interpolating
the values considered in this work, or even asymmetric distributions.

4. Conclusions

We have introduced a method testing hypotheses about the nature of the
growth rate stochastic process of single firms belonging to a panel of firms. As a
particular case, our method allows to test the widely used model firm hypothesis,
which assumes that all firms follow the same stochastic process. The relevance
of the test resides in its ability to cope with the common problem in firm growth
analysis consisting in having data sets with a large number of firms but only a
small number of time records for each firm.

We have applied our method to empirical data of US and European Union
publicly quoted manufacturing firms. Our results indicate that the model firm
hypothesis must be rejected for all the considered panels at the sector level of
aggregation. Moreover, at this level, and under assumptions B1-B4, our results
lead to the rejection of most of our tested hypotheses on a common functional
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form of growth rate distribution belonging to the Subbotin family. Among the
rejected hypotheses there is the Gaussian distribution, which is the functional
form expected if the Gibrat’s model were valid at the level of single firms.

In the sector sets considered here, there is also a case of no-rejection (by all
the four statistics at the 5% significance level) occurred with set D5 and only
for the null hypothesis of a Laplace distribution, which is often considered in
the literature as a valid alternative to the Gaussian one [4, 5, 10]. However,
our test rejects the null hypothesis of Laplace distribution for the two subsets
of D5, termed D4 and D6. Specifically, growth rate distribution of firms with
longer business activity7 (D4) have more mass for small positive rates, whereas
growth rate distribution of firms with a relatively shorter business activity (D6)
have more mass for small negative rates. This opposite asymmetry suggests a
role of the business activity of a firm which is not captured in the symmetric
distributions considered here. Such a conjecture deserves further and deeper
investigations.

The investigation of panels of firms belonging to the same subsector indicates
that our null hypothesis of a common functional form cannot often be rejected
at the 5 % significance level (in several cases the null cannot be rejected even
at the 10 % significance level). This seems to be more is much stronger when
the investigated time period is not too long (roughly one decade, in our case).
Further investigations are needed in order to understand whether such an effect
is simply due to a diminished power of our statistical test when T is small, or
it is grounded on sound economic motivations.

The Laplace distribution is often accepted in our global statistical test with a
significance level of 5 %, whereas the Gaussian distribution is never accepted at
that significance level. Therefore we conclude that for balanced panels of firms
homogeneous with respect to the subsector level of activity, and for short time
periods, the hypothesis of a common functional form belonging to the Subbotin
family of distributions (and sometimes even the model firm hypothesis) typically
describes well the growth dynamics of single firms. On the contrary, when
one aggregates heterogenous sets of firms (belonging to different subsectors of
activity, for instance) or consider large time periods the hypothesis of a common
functional form of the growth rate distribution is often rejected.

Finally, we would like to emphasize that our results are relative to balanced
panels of publicly quoted firms. One has therefore to consider, for instance, obvi-
ous survivorship biases [22] that might prevent a straightforward generalization
of our results to a general set of firms.

The results reported in this article confirm that the empirical characteriza-
tion and the theoretical modeling of the growth rates distribution of individual
firms and of a panel of firms is still an open and challenging subject.

7In this paper “activity” refers to the presence or absence of a firm in the database. A
firm that starts the activity in a given year could be either a new firm created in that year
or a firm that entered the database in that year because, for example, started to be publicly
quoted.
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