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ABSTRACT
We present an updated, optimized version of GAME (GAlaxy Machine learning for Emission
lines), a code designed to infer key interstellar medium physical properties from emission line
intensities of ultraviolet /optical/far-infrared galaxy spectra. The improvements concern (a)
an enlarged spectral library including Pop III stars, (b) the inclusion of spectral noise in the
training procedure, and (c) an accurate evaluation of uncertainties. We extensively validate the
optimized code and compare its performance against empirical methods and other available
emission line codes (PYQZ and HII-CHI-MISTRY) on a sample of 62 SDSS stacked galaxy spectra
and 75 observed HII regions. Very good agreement is found for metallicity. However, ionization
parameters derived by GAME tend to be higher. We show that this is due to the use of too limited
libraries in the other codes. The main advantages of GAME are the simultaneous use of all the
measured spectral lines and the extremely short computational times. We finally discuss the
code potential and limitations.
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1 IN T RO D U C T I O N

Understanding the structure and physical properties of the interstel-
lar medium (ISM) in galaxies, especially at high redshift, is one
of the major drivers of galaxy formation studies. Measurements of
key properties as gas density, column density, metallicity, ioniza-
tion parameter, and Habing flux, rely on galaxy spectra obtained
through the most advanced telescopes (both earth-based and space-
borne) and, in particular, on their emission lines (Osterbrock 1989;
Stasińska 2007; Hammer et al. 2017; Pérez-Montero 2017; Stanway
2016). However, finding diagnostics that are free of significant sys-
tematic uncertainties remains an unsolved problem (Bresolin 2017,
and references therein).

Today, extensive spectroscopic studies of the redshifted ultravi-
olet (UV) and optical emission lines of distant galaxies (z � 2)
are limited to relatively small (with respect to the local Universe)
samples of star-forming galaxies (Shapley et al. 2003; Erb et al.
2010; Stark et al. 2014). The situation is even worse for higher
redshifts (z � 6) where emission line measurements are limited to
few very bright galaxies (Sobral et al. 2015; Stark et al. 2017) and
gravitationally lensed objects (Stark et al. 2015a,b). One of the main
issues is that for such distant galaxies, the number of UV and optical
emission lines available is almost always limited to a couple if not
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to a single extremely bright line. High-quality rest-frame UV and
optical spectra, including also fainter lines of high-z galaxies, have
to wait for new facilities such as the James Webb Space Telescope
and the Extremely Large Telescope. These instruments will revolu-
tionize the current research, in terms of both quality and amount of
data (estimated production rate is petabyte yr−1; Garofalo, Botta &
Ventre 2017).

This latter aspect, in particular, will bring the astrophysical com-
munity into an era where Machine Learning (ML) algorithms and
Big Data Analytics architectures will become fundamental tools in
the data-mining process. This is already the case for local obser-
vations where, e.g. Integral Field Units (IFUs) are already able to
provide observations of local galaxies containing tens of thousands
of spaxels (Cresci et al. 2017). The development of new methods
will be therefore crucial, especially in the analysis of galaxy spec-
tra, which, combining the efforts from different instruments, will
include faint lines arising from very extended wavelength ranges
[i.e. from UV to far-infrared (FIR) rest frame].

The usual emission line diagnostics will still represent extremely
useful tools, albeit they will be likely unable to reach firm conclu-
sions as they rely on a very limited set of lines. These diagnostics are
in fact based on UV/optical line ratios (Pagel et al. 1979; McGaugh
1991; Kewley & Dopita 2002; Kobulnicky & Kewley 2004; Pettini
& Pagel 2004; Pilyugin & Thuan 2005; Bresolin 2007; Bresolin
et al. 2009a; Marino et al. 2013; Brown, Martini & Andrews
2016; Pilyugin & Grebel 2016). This is mostly because UV/optical
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Recombination Lines (RLs) emitted by the lightest elements (hy-
drogen and helium) are the strongest feature in galaxy spectra. The
analogue ones emitted by heavy element can be extremely weak
(up to 103−4 times fainter than the H β 4861 Å line) and thus very
difficult to measure in very distant objects. The brightest metal lines
are instead the Collisionally Excited Lines (CELs), corresponding
to forbidden transitions.

Some recent works have started to explore new diagnostics based
also on FIR lines (Nagao et al. 2011; Farrah et al. 2013; De Looze
et al. 2014; Pallottini et al. 2015; Vallini et al. 2015; Pereira-
Santaella et al. 2017; Vallini et al. 2017; Rigopoulou et al. 2018). Fa-
cilities such as the Atacama Large Millimeter/submillimeter Array
will allow us to construct catalogues containing not only informa-
tion on the UV/optical/near-infrared (IR) part of the spectrum but
also on the FIR lines (i.e. [C II] λ157 µm, [O I] λ63 µm, [N II] λ122
µm, [O III] λ88 µm). Such FIR lines would perfectly complement
UV/optical/near-IR lines. However, to fully exploit the information
contained in the combined line set, new methods and libraries of
synthetic observations are needed.

In this context, several methods in the literature have been de-
veloped that widely use ionized gas to infer galaxy physical prop-
erties from emission line intensities (Stasińska 2004). A common
method to measure abundances is based on the determination of
the electron temperature. The electron temperature Te can be cal-
culated from auroral to nebular emission-line ratios such as RO3 =
[O III] λ4959+5007 / [O III] λ4363 (Osterbrock 1989; Pérez-Montero
2017). Alternatively, one can use the ratio of RLs of ions, which
shows a weak dependence on Te and the electron density ne (Pe-
imbert 2003; Tsamis et al. 2003; Peimbert, Peimbert & Ruiz 2005;
Garcı́a-Rojas & Esteban 2007; López-Sánchez et al. 2007; Esteban
et al. 2009; Bresolin et al. 2009b; Esteban et al. 2014; Peimbert &
Peimbert 2014; Bresolin et al. 2016). Given that RLs and auroral
lines can be extremely weak in faint, distant, or high metallicity
objects, other methods that use CELs and Balmer lines have been
devised to compute the ISM physical properties. These are referred
to as the Strong Emission Line (SEL) methods and they are based
on the comparison of theoretical spectra from a grid of photoioniza-
tion models (McGaugh 1991; Zaritsky, Kennicutt & Huchra 1994;
Kewley & Dopita 2002; Kobulnicky & Kewley 2004; Tremonti et al.
2004; Kewley & Ellison 2008; Dopita et al. 2016) or on empirical
calibrations obtained for samples for which a previously derived
metallicity estimate via the electronic temperature method exists
(Alloin et al. 1979; Pagel et al. 1979; Pettini & Pagel 2004; Na-
gao, Maiolino & Marconi 2006; Maiolino et al. 2008; Nagao et al.
2011; Marino et al. 2013; Pilyugin & Grebel 2016; Curti et al.
2017). In addition to these, there are codes capable to infer the
abundance and ionization parameter of H II regions: IZI (Blanc et al.
2015, based on a Bayesian approach), PYQZ (Dopita et al. 2013),
HII-CHI-MISTRY (Pérez-Montero 2014), and BOND (Vale Asari et al.
2016).

Within our group, we have developed GAME (GAlaxy Machine
learning for Emission lines), a new fast method to reconstruct the
physical properties of the ISM by using all the information repre-
sented by the emission line intensities present in the whole available
spectrum (Ucci et al. 2017, hereafter U17). U17 represented a sort
of ‘feasibility study’: our primary objective was to verify whether
ML techniques can be used to predict the physical properties of
galaxies. Using the AdaBoost method, we verified that the emission
line intensities can effectively provide information on the state of
the gas (especially for metallicity).

As a next step, we present here the current (updated and opti-
mized) version of the GAME code (Section 2, for the workflow of

Table 1. Range of ISM physical properties used to construct
the GAME library.

Parameter Min value Max value

log (Z/Z�) −3.0 0.5
log (n/cm−3) −3.0 5.0
log (U) −4.0 3.0
log (NH/cm−2) 17.0 23.0

the code, see also Appendix A1) that is based on a new library of
photoionization models (50 000 synthetic spectra). In addition to
the technical improvements, we present also a strategy to deal with
uncertainties for an ML-based code. We further implemented an ap-
proach to include noise in the library during the ML training phase,
in order to apply GAME to real spectroscopic observations. Another
key result concerns the treatment of the emission line degeneracy
with physical properties. This is discussed in the framework of
the application of GAME to study the ISM of star-forming galaxies
(Section 3). In Section 4, we also test the performances of GAME,
comparing it to other methods/codes and against a sample of H II re-
gions with available abundance determinations. We finally discuss
the potential and limitations of GAME in Section 5.

2 G A ME

GAME is a code that, by using as input spectral emission line inten-
sities, infers key galaxy ISM physical properties (see U17 for full
details). It is based on a Supervised Machine Learning algorithm
called AdaBoost with Decision Trees as base learner trained with a
large library of synthetic spectra.

To generate each spectrum, we ran the photoionization code
CLOUDY V13.03 (Ferland et al. 2013), using as input the quadru-
plet (n, NH, U, Z), where n is the total hydrogen density, NH the
column density, U the ionization parameter, and Z the metallicity.
We assume an oxygen abundance 12 + log (O/H) = 8.69 and solar
abundance ratios for all the elements2 (Allende Prieto, Lambert &
Asplund 2001; Asplund et al. 2004, 2009). The library covers a
large range of physical conditions found in the ISM, as reported in
Table 1. The total wavelength coverage of the synthetic spectra in
the library ranges from the Lyα (1216 Å) wavelength up to 1 mm.
However, GAME is able to deal with any subset of emission lines
within the input spectra.

A Decision Tree (Breiman et al. 1984) recursively partitions the
data with respect to the input feature space in branches first (i.e.
the branches correspond to different regions of the input feature
space) and then into an increasing number of ‘leaves’. Because it
is possible to improve the power of many base learners into ‘en-
semble learning methods’ (Dietterich 2000), we can combine many
Decision Trees to make a ‘forest’. A common way to produce a
forest of Decision Trees is the algorithm called Adaptive Boosting
or Adaboost (Drucker 1997; Freund & Schapire 1997; Hastie, Tib-
shirani & Friedman 2009). AdaBoost improves the performance of
a base learner by accounting for the elements in the training set
that have large prediction errors. We refer the interested reader to

1 The Appendices are available online on the Monthly Notices of the Royal
Astronomical Society website.
2 Such assumption can be relaxed, but this would require to build a dedicated
library. We plan to explore the effect of peculiar abundances in the future
work.
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Schapire (1990) and Drucker (1997) for a detailed description of
the AdaBoost algorithm.3

By running GAME, it is possible to infer four ‘default labels’: (n,
NH, U, Z). Besides these default labels (i.e. the physical proper-
ties used to generate the CLOUDY photoionization models; see Sec-
tion 2.1.1), in the GAME library the user can find ‘additional labels’,
as for example the radius of the cloud r, the visual extinction in mag-
nitudes AV, or the FUV (6–13.6 eV) flux in Habing units G/G0.4

In this paper, we have chosen as additional label G/G0: the GAME
output is therefore a set of values for n, NH, U, Z, G/G0.

2.1 Model improvements

In this section, we describe some new important improvements
introduced here with respect to the original version of the code
presented in U17. These concern (a) the build-up of the spectral
library, (b) the inclusion of noise in the training procedure, and
(c) the evaluation of the uncertainties; they are described in the
following. More technical and detailed materials can be found in
the Appendices.

2.1.1 Library of synthetic spectra

Concerning the library, the main improvements in the current ver-
sion are as follows:

(i) The library now contains 50 000 synthetic spectra, i.e. it is
∼65 per cent larger than that used in U17.

(ii) We added SEDs of Population III stars generated via the YG-
GDRASIL code (Zackrisson et al. 2011). We adopted the Zackrisson
et al. (2011) model with a zero-metallicity population and a Kroupa
IMF (Kroupa 2001) in the interval 0.1–100 M� based on a rescaled
single stellar population from Schaerer (2002). For the star forma-
tion history, we have chosen an instantaneous burst with age set to
2 Myr.

(iii) In addition to the graphite and silicate dust grains, we have
added polycyclic aromatic hydrocarbons (PAHs) as these particles
considerably affect EUV extinction and are an important heating
source, especially in neutral regions. These contributions are mod-
elled following Weingartner & Draine (2001). For the effect of
stochastic heating, we refer to the work of Guhathakurta & Draine
(1989). A power-law distribution of PAH is assumed with 10 size
bins (Abel et al. 2008). The dust-to-gas ratio has been linearly scaled
with metallicity.

2.1.2 Training library with noise

The library discussed so far is made of purely theoretical models.
Observed spectra contain noise that must be taken into account.
Our approach is to include within the ML training phase a library
containing noisy models. To this aim, we have generated a new
library (100 000 models) made by two parts: the first is the original
library of 500 000 photoionization models and the second is the
same library to which Gaussian random noise has been added to the

3 Both the implementations of AdaBoost and Decision Trees within GAME

are included in the scikit-learn PYTHON package (Pedregosa et al. 2011),
http://scikit-learn.org/.
4 G0 = 1.6 × 10−3 erg s−1 cm−2 (Habing 1968)

Table 2. Different models used for the GAME validation test (Section 3).

Name log (n/cm−3) log (NH/cm−2) log (U) Z/Z�
model (a) 2.861 19.725 −3.166 0.2283
model (b) 2.827 19.643 −3.093 0.2361
model (c) 2.795 19.737 −3.084 0.2498
model (d) 2.758 19.648 −3.103 0.2939
model (e) 2.634 19.606 −2.964 0.2548
model (f) 2.574 19.757 −2.847 0.2932

lines with an amplitude equal to 10 per cent of the line intensity.5

The sum of these two libraries represents therefore our final training
data set. We test GAME against synthetic noisy spectra in Section 3.1.

2.1.3 Uncertainties on the inferred physical properties

The final improvement concerns a robust estimate of the uncertain-
ties associated with the inferred physical properties. The method
works as follows. For each input spectrum, we construct N modi-
fied versions of it by adding to the line intensities Gaussian noise.
For each input line intensity I with associated error e, the code ex-
tracts N new intensities i from the following Gaussian distribution:

P (i) = 1√
2πe2

exp

[
− (i − I )2

2e2

]
. (1)

For upper limits instead, the code generates a new line by taking
a random number uniformly distributed between zero and the upper
limit.

With this procedure, the code generates multiple individual new
observations of each spectrum. Then, for each input spectrum, we
obtain N determinations of the quintuplet of physical properties (n,
NH, G/G0, U, Z). By default, the code gives as final output for
each spectrum the average, the median, and the standard deviation
of these N values. Optionally, the code can return all the N deter-
minations of the physical properties, which can be subsequently
combined into a probability distribution function.

3 VA L I DATI O N O F TH E C O D E

3.1 Noise in observed spectra

We now analyse how noise on the line intensities can affect the
determination of the physical properties.

We start from the emission lines of a synthetic spectrum for
which the true physical properties, i.e. those used to generate it,
are known. The effect of noise can be mimicked by perturbing
each of the synthetic line intensities around its original value. If we
then apply GAME to the perturbed intensities, it is possible to assess
how the inferred physical properties vary as a function of the noise
amplitude. This can be done by using in the ML training phase both
the original library (500 000 models) and the one including noise
(Section 2.1.2). To perform this analysis, we apply the following
steps:

(i) generate two synthetic spectra: ‘model (a)’ and ‘model (b)’
(see Table 2 for details);

(ii) choose a set of emission lines to use for the calculation (re-
ported in Table 3);

5 Higher noise values would lead to completely noise-dominated models:
given the large degeneracy in the emission line intensities (see Section 3.2),
GAME would then not be able to reliably discriminate among different models.
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Table 3. Emission lines used to compute
the values of the physical properties in Sec-
tion 3.1.

Line Wavelength (Å)

[O II] 3726
[O II] 3729
[Ne III] 3869
Hδ 4102
Hγ 4341
[O III] 4363
Hβ 4861
[O III] 4959
[O III] 5007
He I 5876
[O I] 6300
[N II ] 6548
Hα 6563
[N II] 6584
[S II] 6717
[S II] 6731
[Ar III] 7135

(iii) choose a set of 20 values of noise percentages (ni =
1 per cent, 2 per cent, 3 per cent,..., 20 per cent) and compute 50 dif-
ferent realizations of these two spectra for each ni value: for each
realization, we added to the emission line intensities a Gaussian
random value between 0 and ni percent of the intensity of the line
itself;

(iv) run GAME to infer the values of the physical properties on
both the original library (500 000 photoionization models) and the
noisy library (1000 000 models; see Section 2.1.2).

Results are shown in Fig. 1, where we report the inferred physical
properties for models (a) and (b). When the code is trained without
noise – first and third columns for models (a) and (b), respectively –
adding noise to the spectrum to a level as low as ni = 4 per cent can
lead to differences between the true and inferred properties up to 2
orders of magnitude. Noisier spectra yield even larger differences.

Second and fourth columns of Fig. 1 show that including the
noise in the training procedure reduces these differences in the
determination of the physical properties. Interestingly, we also see
that metallicity determinations are quite robust. In fact, even adding
noise at 20 per cent level, the inferred metallicity is within a factor
of 2 from the true value, confirming previous conclusions in U17.

Although the library has been constructed with a noise percentage
up to 10 per cent, training the ML algorithm with this library allows
GAME to return outputs consistent with the ‘true’ values even if
applied to spectra with greater noise. In fact, as can be seen from
Fig. 1, the mean of the inferred values agrees quite well with the
‘true’ values up to noise level as large as 20 per cent.

Using noiseless libraries with low SNR spectra can lead to wrong
determinations of the intrinsic physical properties (see Fig. 1). This
issue is even more severe for weak lines such as [O I] λ6300 or
[Ar III] λ7135 (see Table 3), which can be fundamental for the
determination of the physical properties (i.e. they could have a very
high feature importance; see Appendix B).

3.2 Emission line degeneracy

Measurements of ISM physical properties are generally based on the
comparison between observations and empirically calibrated line
ratio or synthetic spectra obtained from photoionization models.

Although empirical calibrations using the electronic temperature
are preferable (with respect to theoretical calibrations) because they
are based on a quantity directly inferred from observables (Curti
et al. 2017), they also suffer from some limitations (Pérez-Montero
2017, and references therein). The major among these is that cali-
brations often use galaxy samples that do not properly cover all the
physical properties of space. Hence, empirical calibrations obtained
from a sample of low-excitation H II regions could give unreliable
results when applied to global galaxy spectra (Curti et al. 2017).

Comparisons with photoionization models are usually performed
changing the metallicity and the ionization parameter, but they are
limited to a small range of other ISM physical properties (i.e. den-
sity) if not only to a single value (Pérez-Montero 2014; Vale Asari
et al. 2016; Pérez-Montero & Amorı́n 2017). This is problematic,
as the ISM density distribution has a dynamic range that can easily
span several dex (Hughes et al. 2017).

For this reason, we produced an extended library of physically
motivated theoretical models (with 500 000 models described in
Section 2.1.1), whose purpose is to cover the large range of physical
conditions found in the ISM. In this section, we will show that, with
such a library, the emission lines arising from different combinations
of the input physical properties (density, column density, ionization
parameter, and metallicity) are extremely degenerated even if the
variation of the physical parameters is at the percent level.

We considered 300 photoionization models with the following
physical properties:

−1.8 < log(n/cm−3) < −1.3

17.3 < log(NH/cm−2) < 17.8

−1.5 < log(U ) < −1.0

0.3 < Z/Z� < 0.6.

We then compute the following line intensities: [O III] λ3727, HeII
λ4686, [O III] λ5007, Hα, [N II] λ6584, [S II] λ6717. In Fig. 2, we
report the ratio of the line intensities for the i-th model and the first
one within this set of 300 models. This figure shows that although
the physical parameters considered in the models vary within small
ranges, they still result into intensity variations of several orders
of magnitudes, especially for [O III] λ3727, [N II] λ6584, and [S II]
λ6717.

In Fig. 3, in a similar way, we show the variation for some
emission line ratios (based on commonly used emission line diag-
nostics):

O3N2 = ([O III]λ5007/Hβ)/([N II]λ6584/Hα) ,

R23 = ([O II]λ3727 + [O III]λ4959 + [O III]λ5007)/Hβ ,

N2 = [N II]λ6584/Hα ,

O32 = [O III]λ5007/[O II]λ3727.

These emission line ratios suffer also from intensity variations up to
2.5 dex. What emerges is that not only the intensity of the lines but
also their ratios seem to be affected by a non-negligible degenera-
tion. Interestingly, this is not true in the case of R23, which remains
approximately constant, at least in the small range of physical prop-
erties considered in this section. However, it must be noticed that
in a larger metallicity range (−2 � log(Z/Z�) � 0.5), R23 is not
monotonically dependent on Z (e.g. Nagao et al. 2006, first panel in
fig. 6). Moreover, one of the fundamental advantages of using GAME

lies in the fact that instead of inferring one single physical property
at one time (i.e. metallicity in the case of R23), it can retrieve si-
multaneously n, U, NH, G/G0, Z for an extended range of physical
properties (see Table 1).
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Figure 1. Inferred values of the physical properties for models (a) and (b) in Table 2 with noise added to the emission line intensities. The circles represent the
mean of the inferred values for each of the 50 realizations and the error bars denote the minimum and maximum value inferred. The shaded region represents
values between the first and third quartile. The dashed horizontal line is the ‘true’ value used to generate the two models.

To fully appreciate this aspect over the entire range of opti-
cal wavelengths, using the set of photoionization models listed
in Table 2, we show in Fig. 4 how a small change in the phys-
ical properties is mirrored into large line intensity variations.
Panel 1 of Fig. 4 shows the spectrum for model (a); the remain-
ing panels show the spectral differences with the other models
(b)–(f). Although the variation of metallicity between model (a)
and (b) is <0.008 dex, varying simultaneously n, NH, and U by
0.03, 0.08, and 0.07 dex induces large differences in the resulting
spectrum.

GAME is based on a very large library and uses all the informa-
tion carried by the spectral lines on the physical properties. This
approach, allowed by the ML implementation, could overcome the
degeneracy better than model fitting techniques, typically based on
χ2 methods, i.e. the minimization of the Euclidean distance between
models:

D(m, l) =
√√√√ n∑

i=1

(mi − li)2 , (2)

MNRAS 477, 1484–1494 (2018)
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Figure 2. Ratios of the line intensities, Ii, for different emission lines be-
tween the i-th model and the first one (intensity I0) within our set of synthetic
models described in Section 3.2.

Figure 3. Ratios of commonly used line intensity diagnostics (O3N2, R23,
N2, O32) between the i-th model (Di) and the first one (D0) within our set
of synthetic models described in Section 3.2.

Figure 4. Optical spectra of the models reported in Table 2. Panel 1 shows model (a); other panels show the difference between models (b)–(f) and model (a).
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Figure 5. Ratios between the inferred and true values of the physical properties using two approaches: GAME (black shaded region) and the minimization of
the Euclidean distance D(m, l) (green line, see equation 2). The test has been performed using 10 per cent of noiseless library. The standard deviations of the
distributions (σ ) are also shown.

Table 4. Set of emission lines used to assess
the predictive performances of GAME (see the
text for details).

Line Wavelength [Å]

Hβ 4861
[O III] 5007
He I 5876
[O I] 6300
H α 6563
[N II] 6584
He I 6678
[S II] 6717
[S II] 6731

where mi is the value of the emission line intensities of a given
model and li the corresponding i-th value contained in the library.
In the following, we show that minimizing such function does not
necessarily lead to a correct determination of the physical properties.

In Fig. 5, we compare the inferred values of the physical prop-
erties using the two approaches, GAME versus D(m, l) minimization
(equation 2), using the set of emission lines in Table 4. We perform
the test on 10 per cent of the noiseless library (GAME uses the remain-
ing 90 per cent as the training data set), including 50 000 models.
On this reduced set, we infer the physical values both with GAME

and by distance minimization.

Trying to recover a spectrum that is as similar as possible to the
input spectrum (minimizing the distance) leads to worse results with
respect to GAME. In Fig. 5, it is evident that the standard deviation
of the logarithm of the ratio between the ‘predicted’ and ‘true’
values in the case of GAME is a factor of 2 smaller than the D(m, l)
minimization approach. The similarity between two spectra, given
the extreme degeneration (see Section 3.2), does not necessarily
mean a good correlation with their physical properties. This was
expected since other ML techniques as k-Nearest Neighbour (with k
= 1 in the case of equation 2) work well when the input space has
a low dimensionality, which does not apply to our problem.

4 C O M PA R I S O N W I T H OT H E R M E T H O D S

4.1 Overview

The most prominent feature of GAME is that it exploits the full
information encoded in a spectrum. Instead of using small, pre-
selected subsets of emission line ratios, GAME can use an arbitrary
number of lines to infer the ISM physical properties. Additionally,
its usage is not limited to a specific ISM phase (i.e. H II regions).

Another key advantage of the ML implementation is that, once
trained, it requires a very short computational time (see also
Appendix C). This is a crucial feature in view of applications to
modern IFU observations with ∼1000 000 spaxels, each one with a
substantial number (>10) of observed lines per spectrum.
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Figure 6. Comparison between the metallicity inferred with the empirical
calibrators of Curti et al. (2017) and by GAME (blue diamonds), PYQZ (red
circles), and HII-CHI-MISTRY (green squares) on 62 stacked galaxy spectra (see
text for details).

4.2 Quantitative comparison: galaxies

Here we quantitatively compare GAME with other empirical calibra-
tions and results from different codes. To perform this comparison,
we use a sample of 62 stacked galaxy spectra. These spectra are
obtained from SDSS star-forming galaxies in 0.027 < z < 0.25 and
are fully described in Curti et al. (2017). The spectra are stacked in
bins of 0.1 dex according to the log values of their [O II] λ3727/H β

and [O III] λ5007/H β ratios. For each of the stacked spectra, Curti
et al. (2017) derived the corresponding metallicity, using a set of
new and self-consistent empirical calibrations. We compare such
determination with the results of GAME and the results from two
widely used emission line codes, PYQZ and HII-CHI-MISTRY.

PYQZ6 (Dopita et al. 2013) is a public PYTHON code that uses
abundance- and excitation-sensitive line ratios to define a plane
in which the oxygen abundance and ionization parameter can be
determined by interpolating a grid of photoionization models to
match the observed line ratios.

HII-CHI-MISTRY 7 (Pérez-Montero 2014) is a publicly available
PYTHON code. This code takes the extinction-corrected emission line
fluxes and, based on a χ2 minimization on a photoionization model
grid, determines chemical abundances (O/H, N/O) and ionization
parameter. In this work, we use the version 3.0 of the code, dealing
with input line uncertainties via a Monte Carlo approach.

As evident from the comparison shown in Fig. 6, the empirical
method tends to slightly overestimate metallicity with respect to all
codes. Besides, the mean offset and the standard deviation between
GAME predictions and those from other methods are small (less than
0.3 dex). Overall, the agreement on metallicity is good.

We extend the comparison among the three codes to the ioniza-
tion parameter (Fig. 7). Interestingly, the GAME results markedly
differ from those obtained with the other two codes. This can
be due to the fact that PYQZ and HII-CHI-MISTRY only contain mod-
els with a narrower U range (i.e. −3.5 < log UPYQZ < −1.5, and

6 http://fpavogt.github.io/pyqz/index.html
7 http://www.iaa.es/epm/HII-CHI-mistry.html

Figure 7. Ionization parameter, U, distribution for 62 stacked galaxy spectra
inferred by GAME (grey dotted histogram), GAME with a reduced library
(empty), PYQZ (red), and HII-CHI-MISTRY (green). The horizontal lines denote
the U range considered in the libraries of the different codes.

−4.0 < log UHII-CHI-MISTRY < −1.5). To verify this point, we ran
GAME with a reduced library containing ionization parameter values
in the range −4.0 < log (U) < −1.5. Fig. 7 clearly shows that with
the reduced library, GAME infers U values that are in agreement with
those from the other two codes; e.g. the means of the inferred values
are respectively μ(PYQZ) = −2.67, μ(GAME) = −2.76, and μ(HII-CHI-
MISTRY) = −2.88. Hence, it is important to consider U values that
are larger than usually assumed.

Values of U up to 10 are expected in line-emitting galaxies. Let
us consider the relation between the ionizing photon flux and the
star formation rate (e.g. Murray & Rahman 2010):

Q(H) = 2.46 × 1053

(
SFR

M� yr−1

)
s−1. (3)

For a compact galaxy with an SFR = 1 M� yr−1, n = 1 cm−3,
and radius 1 kpc, we obtain log(U) ∼ 0.6, consistently with the
upper limit found with GAME (see Fig. 7). As discussed in U17,
the spectrum emerging from a galaxy is weighted by the column
densities along the line of sight. If diffuse phases are dominant in
the build-up of the final spectrum, their low density pushes U ∝ n−1

towards large values.
Note that although the full library contains spectra with

−4.0 < log(U) < 3 (see Table 1), GAME does not infer values
log(U) > 1. This implies that this bound is set by the physical
conditions, and it is independent of the library extension.

We finally note that U is the physical parameter most affected
by uncertainties. The bootstrap routine now included in the code
should however significantly mitigate the problem: although the
inferred values for U cover a large range, their PDF obtained with
the bootstrap is highly peaked (see Appendix A4 and Fig. A3).

4.3 Quantitative comparison: H II regions

As an additional comparison, we apply GAME to a sample of 75
observed H II regions with available chemical abundance determi-
nations. We choose H II regions for which a large number (N > 13)
of high-quality (typical errors <10 per cent) emission lines is avail-
able. Our final sample is composed of the following:
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Figure 8. Comparison of the oxygen abundance determinations for H II

regions reported in van Zee & Haynes (2006) and Fernández-Martı́n et al.
(2017) with those inferred by GAME.

(i) 66 H II regions located in 21 dwarf irregular galaxies observed
by van Zee & Haynes (2006). For 25 H II regions, oxygen abun-
dances are obtained via direct detection of emission lines trac-
ing the electron temperature; for the remaining 41 H II regions,
abundances are inferred through SEL methods. The emission lines
(where available) used as input for GAME are [O II] λλ3727+3729,
[Ne III] λ3869, [O III] λλ4959+5007, [O I] λ6300, [S III] λ6312, Hα,
[N II] λλ6548+6584, HeI λ6678, [S II] λλ6717+6731, and [Ar III]
λ7135 (table 3 of that paper);

(ii) 9 H II regions located towards the Galactic anticentre ob-
served by Fernández-Martı́n et al. (2017) for which more than 60
emission line measurements are available (table A.1 of that paper).

Results are shown in Fig. 8, where we compare the abundance
determinations reported in the cited works with the GAME results.
The metallicity values inferred by GAME (Z/Z�) are converted into
oxygen using the relation 12+log(O/H) = 8.69. The overall agree-
ment between the two methods is good. The scatter does not seem
to correlate with metallicity and the dispersion is of �0.2–0.3 dex.
The mean offset (between the results inferred with GAME and the
published results reported in Fig. 8) and its standard deviation are,
respectively, 0.08 and 0.29. Differences among the results of dif-
ferent methods can arise because of several reasons. First of all,
the oxygen abundance we infer from the metallicity assumes solar
abundances. Moreover, while GAME adopts input emission lines that
are not de-reddened, the reddening corrections adopted by van Zee
& Haynes (2006) and Fernández-Martı́n et al. (2017) (i.e. ne =
100 cm−3, Case B recombination, different extinction curves) may
have a significant impact on the determination of physical proper-
ties.

The main advantage of GAME is that it does not use any assump-
tion on the physical properties of gas (e.g. density, temperature)
defining the emission line spectrum we are looking at. The code
is able to recover the physical properties (in this case, metallicity)
by extracting them from a library containing a vast collection of
physical conditions of the ISM. We also note that GAME does not
even use the information that the sample refers to H II regions: it
simply searches the library, trains itself, and gives the best predicted
physical conditions.

5 SU M M A RY A N D D I S C U S S I O N

We presented an updated and optimized implementation of GAME

(U17), a code designed to infer ISM physical properties from emis-
sion line spectra. The code is based on an ML algorithm (AdaBoost
with Decision Trees as base learner) to calculate density (n), column
density (NH), ionization parameter (U), metallicity (Z), and FUV
flux in the Habing band (G/G0), given an arbitrary set of emission
line flux measurements (or upper limits) with their uncertainties.

GAME is extremely reliable, particularly for the metallicity deter-
mination: the five-fold cross-validation score with the set of emis-
sion lines reported in Table 4 is higher than 0.95. Although some
properties, as metallicity, are easily and robustly recovered also from
noisy spectra with few emission lines, other physical properties re-
quire higher quality data with more lines measurements. We have
shown that for a given set of emission lines if the cross-validation
score for the metallicity is 0.95, it might happen that lower scores
are obtained for n and NH (both ∼0.8) and U (∼0.7).

Another key point in our analysis is that the emission line in-
tensities are highly degenerate. A small variation of the physical
properties leads to large changes in the emission line intensity ra-
tios. The ML approach used here can overcome this issue much better
than classical fitting methods based on χ2 minimization. Noticeably,
such important result can be achieved also when the spectra include
noise as in real observations.

We have compared GAME with methods based on empirical cali-
brations (Curti et al. 2017) and other codes (PYQZ and HII-CHI-MISTRY)
by considering a sample of 62 stacked spectra from SDSS galaxies
(Curti et al. 2017). While a very good agreement has been obtained
in terms of the metallicity determination for the considered sam-
ple, we find discrepancies in the derived values of the ionization
parameter. We discuss possible reasons for such disagreement in
Section 4.

Finally, we have tested our code on a sample of 75 H II regions
with direct method and SEL abundance determinations (van Zee &
Haynes 2006; Fernández-Martı́n et al. 2017) to study how GAME can
recover these values. We found that the oxygen abundance determi-
nations are in good agreement with those inferred with GAME with a
typical scatter around 0.2–0.3 dex. The applications of GAME are not
only limited to H II regions, but the code can also deal equally well
with different phases of the ISM, including the molecular one. This
is because the underlying library covers the largest possible range
of physical conditions characterizing the ISM. Furthermore, GAME

offers the possibility to use an arbitrary set of emission lines, which
span a wavelength range from the Lyα one (1216 Å) to 1 mm. These
features allow the user to infer the physical properties of phases
ranging from the hot ionized medium to dense molecular cores.

One of the main limitations of GAME (and other methods/codes)
relies on the possible presence of different ISM phases/gradients
along the line of sight contributing to the same spectrum. This in-
troduces a complexity that cannot be managed at the present time.
We preliminarily discussed this issue in U17. The main result there
was that in such conditions, the returned physical parameters are
biased towards the phase with largest gas column density. To make
progress, we plan to investigate this issue in more details using
emission line spectra generated from high-resolution galaxy sim-
ulations. Simulated galaxies and their spectra offer the advantage
that the physical conditions of the gas shaping the observed spectra
are precisely known. This will allow us to (a) devise more stringent
reliability tests for GAME, and (b) understand how to maximize the
information retrieval from spectra arising from multiphase lines of
sight (for this issue, we also refer the reader to section 5.3 of U17).
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It is nowadays possible to obtain spatially resolved spectra of
galaxies. The information coming from different regions of a galaxy
requires the development of new methods in order to obtain the
physical conditions of the different phases of the ISM. Large li-
braries and robust algorithms will be crucial in the analysis of
galaxy spectra that include faint lines arising from extended wave-
length ranges. Combining the UV/optical/IR/FIR information from
the same object will be the next step towards a better understanding
of the internal structure of distant galaxies.
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Carraro G., 2009b, ApJ, 700, 309
Bresolin F., Kudritzki R.-P., Urbaneja M. A., Gieren W., Ho I.-T., Pietrzyński
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740, 13
Zaritsky D., Kennicutt Jr R. C., Huchra J. P., 1994, ApJ, 420, 87

S U P P O RTI N G IN F O R M AT I O N

Supplementary data are available at MNRAS online.

Appendix

Please note: Oxford University Press is not responsible for the
content or functionality of any supporting materials supplied by
the authors. Any queries (other than missing material) should be
directed to the corresponding author for the article.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 477, 1484–1494 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/477/2/1484/4956048 by scuola3 scuola3 on 29 July 2019

http://dx.doi.org/10.1088/0004-637X/813/1/36
http://dx.doi.org/10.1086/498017
http://dx.doi.org/10.1086/320852
http://dx.doi.org/10.1088/0004-637X/740/1/13
http://dx.doi.org/10.1086/173544
https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/sty804#supplementary-data

