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Abstract

We investigate in detail solutions of supergravity that involve warped products of flat geometries

of the type Mp+1 × R × TD−p−2 depending on a single coordinate. In the absence of fluxes,

the solutions include flat space and Kasner–like vacua that break all supersymmetries. In the

presence of a symmetric flux, there are three families of solutions that are characterized by a

pair of boundaries and have a singularity at one of them, the origin. The first family comprises

supersymmetric vacua, which capture a universal limiting behavior at the origin. The first and

second families also contain non–supersymmetric solutions whose behavior at the other boundary,

which can lie at a finite or infinite distance, is captured by the no–flux solutions. The solutions

of the third family have a second boundary at a finite distance where they approach again the

supersymmetric backgrounds. These vacua exhibit a variety of interesting scenarios, which include

compactifications on finite intervals and p + 1–dimensional effective theories where the string

coupling has an upper bound. We also build corresponding cosmologies, and in some of them the

string coupling can be finite throughout the evolution.
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1 Introduction and Summary

Supersymmetry is a spacetime symmetry, whose breaking can be realized in manifold ways [1],

above and beyond the homogeneous setting at work for the gauge symmetries of the Standard

Model of Particle Physics. A number of scenarios where a partial breaking of supersymmetry is

induced by compactifications on suitable internal manifolds, where extended objects (p–branes

and orientifolds) are possibly present, have been widely explored in connection with String The-

ory [2]. Still, one can fairly state that our current understanding of String Theory is confined, to

a large extent, to vacua where some residual amount of supersymmetry is preserved. These cases

can be investigated by powerful tools, which rest on solving first–order Killing spinor equations

(for a review, see [3]).

In this paper we explore the option of breaking supersymmetry spontaneously and completely

via inhomogeneous vacuum solutions of the ten–dimensional supersymmetric strings. We rely on

the complete equations of Supergravity [4], prescribing some symmetry properties. In contrast

with the well–explored Scherk–Schwarz compactifications [5], which rest on modified boundary

conditions, here the bulk plays a central role. Drawing some motivation from branes, we consider

inhomogeneous geometries depending on a single spatial coordinate. The class of vacua that we

address is also relevant to eleven–dimensional supergravity [6], involves warped products of two

symmetric spaces, and is described by metric tensors of the form

ds 2 = e2A(r) γµν(x) dx
µ dxν + e2B(r) dr2 + e2C(r) γmn(ξ) dξ

m dξn . (1.1)

Here γµν(x) and γmn(ξ) describe, in general, maximally symmetric spaces of dimensions p + 1

and D − p − 2, with curvatures k and k′, and the standard BPS branes in ten dimensions are

encompassed by eq. (1.1) with k = 0 and k′ = 1, so that γµν(x) is a Minkowski metric while

the ξ-coordinates describe a sphere. This motivated us to focus on vacua of this type with

k = k′ = 0, which can describe compactifications on products of intervals and internal tori

resulting in lower–dimensional Minkowski spaces. This type of setting is relatively simple, and

yet it suffices to provide different scenarios where supersymmetry breaking is induced in static

vacua, starting from supersymmetric strings, also in the presence of internal fluxes compatible

with the symmetries of eq. (1.1). Backgrounds of this type can describe compactifications to flat

space where gravity and gauge interactions are effectively p+1–dimensional, as in [7]. In addition,

most of the static vacua that we shall construct have interesting cosmological counterparts, which
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can be reached by analytic continuation.

The plan of this paper is as follows. In Section 2 we set up our notation, describe the relevant

portions of the string effective actions and their main features, together with the salient properties

of the class of metrics of interest. We also identify the symmetric field profiles that are allowed in

them. In Section 3 we build a reduced action principle, and we identify the convenient “harmonic

gauge”

B = (p+ 1)A + (D − p− 2)C , (1.2)

which greatly simplifies the resulting equations. In Section 4 we determine the supersymmetric

vacua of the form (1.1), solving the corresponding Killing spinor equations. All these vacua,

aside from flat space, require the presence of symmetric fluxes. In Section 5 we determine the

simplest class of solutions of the form (1.1) in the absence of internal fluxes. Aside from flat

space, they are Kasner–like backgrounds depending on two independent parameters spanning

an elliptical cylinder and break supersymmetry completely. We also consider the corresponding

cosmologies, which can be obtained by analytic continuations. In Section 6 we determine the

general backgrounds of the form (1.1) in the presence of a symmetric internal form flux. There

are three families of solutions, which have a pair of singularities and are distinguished by the

energy of the Newtonian model reviewed in Appendix B. The zero–energy family includes the

supersymmetric solutions of Section 4, which capture the limiting behavior at the origin in all

cases. The remaining zero–energy solutions and the positive–energy ones approach at the other

boundary, which can lie at a finite or infinite distance, the zero–flux Kasner–like backgrounds.

Finally, the negative–energy family has a second boundary at a finite distance, where it approaches

again the supersymmetric behavior. Many new options emerge, including compactifications to

p+1 dimensions where the string coupling is everywhere bounded. By an analytic continuation,

we also build corresponding cosmologies in Section 7. Our conclusions can be found in Section 8.

Finally, in Appendix A we collect, for the reader’s convenience, some technical details that are

used extensively in the paper.
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2 Effective Action and Symmetric Profiles

In this section we describe our basic setup and the notation that we shall use for the solutions of

interest. We use a “mostly–plus” signature, defining the Riemann curvature tensor via 1

[∇M ,∇N ]VQ = RMNQ
P VP , (2.1)

so that

RMNQ
P = ∂N ΓP

MQ − ∂M ΓP
NQ + ΓP

NR ΓR
MQ − ΓP

MR ΓR
NQ . (2.2)

We also define the Ricci tensor as

RMQ = RMNQ
N . (2.3)

In general, late capital Latin indices refer to the collection of curved labels (space–time or inter-

nal), and among these we distinguish space–time (small Greek) and internal (late Latin) curved

labels. Moreover, all our Γ–matrices will be curved, while all our γ–matrices will be flat, and we

reserve early Latin letters to flat labels.

2.1 Effective Action and Equations of Motion

In the string frame, the bosonic portions of the low–energy effective field theories that we shall

consider, here and in [9], include the following contributions:

S =
1

2 (α′)
D−2

2

∫
dDx
√
−G

{
e−2φ

[
R + 4(∂φ)2

]
− τD−1

α′ e γS φ − 1

2 (p + 2)!
e−2 βS φH2

p+2

− α′

4
e−2αS φ tr (Fµν Fµν)

}
. (2.4)

This prototype action thus involves, in general, three types of fields aside from gravity: the dilaton

φ, a gauge field A of field strength

F = dA − iA2 , (2.5)

and a (p + 1)–form gauge potential Bp+1 of field strength Hp+2 = dBp+1. The values of p

and of the two constants αS and βS for supersymmetric strings are collected in Table 1. Here

the “tadpole term” proportional to τD−1 can describe a non–critical potential if γS = −2 and

D 6= 10, with τD−1 ∼ D − 10, an overall brane–orientifold tension if γS = −1 and D = 10, or a

contribution emerging from genus–one amplitudes if γS = 0 and D = 10. In this paper, our focus

1These conventions are as in [8].
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Model p αS βS

IIA I, V ;(0, 2, 4, 6, 8) – 1, −1; (0, 0, 0, 0, 0)
IIB I, V ;(− 1, 1, 3, 5, 7) – 1, −1; (0, 0, 0, 0, 0)

SO(32) open (1, 5) 1
2 (0, 0)

SO(32), E8 × E8 heter. I, V 1 1, −1

Table 1: String–frame parameters for the supersymmetric ten–dimensional string models. Roman numer-

als refer to NS-NS branes, entries within parentheses refer to RR ones, and dashes signal couplings that

are not present in the low–energy effective theory.

will be on supersymmetric critical superstrings and on the eleven–dimensional supergravity, for

which τD−1 = 0. In [9] we shall study the effects induced by tadpole potentials involving a single

exponential, which will depend on the choice of γ. Here we shall set up the general formalism,

also for generic values of D, insofar as possible, before concentrating on the solutions for τD−1 = 0

in D = 10, 11.

In the Einstein frame, with the corresponding metric g related to G according to

GMN = e
4φ

D−2 gMN , (2.6)

the action of eq. (2.4) becomes

S =
1

2(α′)
D−2

2

∫
dDx
√−g

[
R − 4

D − 2
(∂φ)2 − τD−1

α′ e γ φ − e−2βp φ

2 (p+ 2)!
H2

p+2

− α′ e−2αφ

4
tr
(
FMN FMN

) ]
, (2.7)

with

α = αS −
D − 4

D − 2
, βp = βS −

D − 2(p + 2)

D − 2
, γ = γS +

2D

D − 2
. (2.8)

The values of these quantities for the ten–dimensional superstrings are collected in Table 2, and

the corresponding field equations, here written for a generic potential V (φ), read

RMN −
1

2
gMN R =

4

D − 2
∂Mφ∂Nφ +

e− 2 βp φ

2(p+ 1)!

(
H2

p+2

)
MN

+
α′ e−2αφ

2
tr
(
FMP FN

P
)

− 1

2
gMN

[4 (∂φ)2
D − 2

+
e− 2βp φ

2(p + 2)!
H2

p+2 +
α′ e−2αφ

4
tr
(
FMN FMN

)
+ V (φ)

]
,

8

D − 2
✷φ = − βp e

− 2βp φ

(p + 2)!
H2

p+2 −
α′(D − 2)α e−2αφ

16
tr
(
FMN FMN

)
+ V ′(φ) ,

d
(
e− 2βp φ ∗Hp+2

)
= 0 , D

(
e− 2αφ ∗ F

)
= 0 . (2.9)
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Model p α βp

IIA I, V ;(0,2,4,6,8) – 1
2 ,− 1

2 ;
(
− 3

4 ,− 1
4 ,

1
4 ,

3
4 ,

5
4

)

IIB I, V ;(-1,1,3,5,7) – 1
2 ,− 1

2 ;
(
− 1,− 1

2 , 0,
1
2 , 1
)

SO(32) open (1,5) 1
2

(
− 1

2 ,
1
2

)

SO(32), E8 × E8 heter. I, V 1 1
2 ,-

1
2

Table 2: Einstein–frame parameters for the supersymmetric ten–dimensional string models. Roman

numerals refer to NS-NS branes, entries within parentheses refer to RR ones, and dashes signal couplings

that are not present in the low–energy effective theory.

We shall often use the alternative form of the Einstein equations

RMN =
4

D − 2
∂Mφ∂Nφ +

1

2(p + 1)!
e− 2βp φ

(
H2

p+2

)
MN

+
α′ e−2αφ

2
tr
(
FMP FN

P
)

+ gMN

[
− (p + 1) e− 2βp φ

2(D − 2)(p + 2)!
H2

p+2 −
α′ e−2αφ

4(D − 2)
tr
(
FMN FMN

)
+

V (φ)

D − 2

]
, (2.10)

and when taking into account the tadpole potential in [9], we shall refer to

V (φ) =
τD−1

α′ eγ φ . (2.11)

Note also that in the type IIB string there is a five–form field strength, which satisfies the first–

order self–duality equation

H5 = ∗H5 , (2.12)

and taking it into account will require some slight amendments of the formalism that we shall

return to in due time.

We can now set up our systematic search for symmetric profiles within the class of effective

Lagrangians in eq. (2.7). We begin with a detailed discussion of their features for the various

types of fields.

2.2 Isometry Groups and Metric Profiles

The familiar supersymmetric p–branes live in asymptotically flat D–dimensional spacetimes,

and are special solutions of the low–energy Supergravity with isometry groups ISO(1, p) ×
SO(D − p− 1). These are special cases of more general D–dimensional manifolds, with isom-

etry groups Gk(p+ 1)×Hk′(D − p− 2). Here Gk(p+ 1) and Hk′(D − p− 2) denote the isometry
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groups of the maximally symmetric Lorentzian or Euclidean manifolds with dimensions equal

to p + 1 and D − p − 2, and k and k′, equal to ±1 or 0, determine the corresponding constant

curvatures. As is well known, the space–time isometry groups Gk for the three cases k = 1, 0,−1
are SO(1, p + 1), ISO(1, p) and SO(2, p). In a similar fashion, the internal isometry groups Hk′

for k′ = 1, 0,−1 are SO(D− p− 1), ISO(D− p− 2) and SO(1,D− p− 2). In some special cases,

as in [10], the radial coordinate combines with one set or the other, the corresponding symmetry

enhances, and different values of k or k′ merely reflect different choices of coordinate sets. The

ordinary supersymmetric branes have k = 0 and k′ = 1.

All the preceding options are available insofar as p < D− 3, and lead one to distinguish p+ 1

space–time coordinates xµ, (µ = 0, . . . , p), D−p−2 internal coordinates ξm, (m = 1, . . . ,D−p−2),
and a radial coordinate r, invariant under the isometry groups, on which the profiles we are after

will depend. If p = D − 3 there is a single ξ–coordinate and only the choice k′ = 0 is possible,

while if p = D − 2 there are no ξ–coordinates altogether. We shall work at times with general

values of D but, as we have stated, we have in mind primarily critical superstrings, for which

D = 10. The three choices k = ±1, 0 select de Sitter, anti de Sitter and Minkowski space–time

manifolds, while k′ = 0 selects a Euclidean internal space (or, more generally, a product of tori,

where only continuous internal translations are left), k′ = 1 selects a sphere, while k′ = −1 selects

a hyperbolic space.

The class of D–dimensional metrics compatible with the above symmetries takes the form

ds 2 = e2A(r) γµν(x) dx
µ dxν + e2B(r) dr2 + e2C(r) γmn(ξ) dξ

m dξn , (2.13)

where γµν is a (p + 1)–dimensional metric of constant curvature k and γmn(ξ) is a (D − p − 2)–

dimensional metric of constant curvature k′. The complete metric thus involves three dynamical

functions of a single variable r. The preceding discussion motivates our choice, which was antic-

ipated in eq. (1.1) of the Introduction.

In this paper we shall begin with the general setup for the field equations to then concentrate

on solutions with k = k′ = 0. This choice describes vacua, rather than branes, which include com-

pactifications on internal tori. The redundancy resulting from the introduction of an independent

function B(r) has the virtue, as in [11], of allowing a wider class of exact solutions.

Here we shall find it convenient to work in the “harmonic gauge”, whereby

B = (p + 1)A + (D − p− 2)C , (2.14)

9



which will simplify the resulting equations. Moreover, we shall also explore counterparts of these

solutions that are obtained via an analytic continuation of r and x0 to imaginary values. These

build anisotropic cosmologies and generalize previous results [11, 12, 13] 2. We shall address

elsewhere [9] the effects of the tadpole potential (2.11) on vacuum profiles.

2.3 Symmetric Tensor Profiles

In this section we characterize the symmetric tensor profiles of interest, largely with reference

to the case k = k′ = 0, although most expressions have a more general applicability. Here we

are interested in field configurations compatible with the isometries of the class of metrics in

eq. (2.13). Therefore, we can begin by considering the closed and invariant volume forms 3

ǫ(p+1) =
√
−γ(x) dx0 ∧ .. ∧ dxp , ǫ̃(D−p−2) =

√
γ(ξ) dξ1 ∧ .. ∧ dξD−p−2 , (2.15)

since combining them with dr one can the build profiles of closed r–dependent form fields

b′p+1(r) ǫ(p+1) dr , b̃′D−p−2(r) ǫ̃(D−p−2) dr , (2.16)

where b and b̃ are functions of r and also the closed r-independent forms

hp+1 ǫ(p+1) , h̃D−p−2 ǫ̃(D−p−2) , (2.17)

where hp+1 and h̃D−p−2 are two constants. In components

Hp+2, µ1...µp+1r =
√
−γ(x) ǫµ1...µp+1 b

′
p+1(r) ,

HD−p−1, i1...iD−p−2 r =
√
γ(ξ) ǫi1...iD−p−2

b̃′D−p−2(r) , (2.18)

and

Hp+1, µ1...µp+1 =
√
−γ(x) ǫµ1...µp+1 hp+1 ,

HD−p−2, i1...iD−p−2
=

√
γ(ξ) ǫi1...iD−p−2

h̃D−p−2 . (2.19)

We can now concentrate on the first member of each of the preceding couples, since the others

are related to them by dualities.

The forms in eqs. (2.16) and (2.17) have degrees p + 2, D − p − 1, p + 1 and D − p − 2, and

correspond to field strengths of forms of degrees p + 1, D − p − 2, p and D − p − 3. The two

2In this case the internal symmetry groups remain as above, while Gk(p + 1) become Hk(p + 1), the isometry

groups of the spatial slices of these cosmologies.
3In our conventions ǫ01... = +1 and ǫ01... = −1.
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cases in eqs. (2.17) are special, in that they are r–independent, and moreover the corresponding

gauge fields are invariant under the isometry groups only up to gauge transformations. Therefore,

they have to be treated with care, and we shall return to this issue in the following section, after

eq. (3.3). Since all these forms are closed, the Bianchi identities are satisfied by the tensor profiles

in eqs. (2.16) and (2.17). Moreover, taking into account that

∗ǫ(p+1) = eB−(p+1)A+(D−p−2)Cdr ∧ ǫ̃(D−p−2) ,

∗ǫ̃(D−p−2) = (−1)(p+2)(D−p−2) eB+(p+1)A−(D−p−2)Cǫ(p+1) ∧ dr . (2.20)

one can see that the dynamical equations (2.9) are identically satisfied by the r–independent

forms in eq. (2.17), for arbitrary r–dependent scalar profiles φ(r) and metric profiles in eq. (2.13).

On the other hand, the two profiles in eq. (2.16) satisfy eqs. (2.9) if

b′p+1(r) = Hp+2 e
2βpφ+B+(p+1)A−(D−p−2)C ,

b′D−p−2(r) = H̃D−p−1 e
2βD−p−3φ+B−(p+1)A+(D−p−2)C , (2.21)

where the factors are a pair of constants.

Summarizing, in form language the four symmetric tensor profiles are described by

Hp+2 = Hp+2 e
2βpφ+B+(p+1)A−(D−p−2)C

√
−γ(x) dx0 ∧ . . . ∧ dxp ∧ dr ,

Hp+1 = hp+1

√
−γ(x) dx0 ∧ . . . ∧ dxp . (2.22)

and by

HD−p−1 = H̃D−p−1 e
2βD−p−3φ+B−(p+1)A+(D−p−2)C dy1 ∧ . . . ∧ dyD−p−2 ∧ dr ,

HD−p−2 = h̃D−p−2

√
γ(ξ) dy1 ∧ . . . ∧ dyD−p−2 . (2.23)

For brane profiles k′ would be equal to one, r would be a radial coordinate and the internal

space would be a sphere. The total “electric” charge of the first profile in eq. (2.22) would be

finite and given by

qe = Hp+2ΩD−p−2 , (2.24)

with ΩD−p−2 the volume of a unit internal sphere. The first profile would then be the configuration

sourced by an electric p-brane, whose counterpart in Maxwell’s theory is the Coulomb field of a

point charge. On the other hand, with a sphere as internal space, the second profile in eq. (2.22),

which also respects the symmetry of the background, would be a uniform field in spacetime, which

11



would result from uncharged open p-branes carrying, on their boundaries, opposite charges of one

lower dimension, associated to (p − 1)-(anti)branes. Its counterpart in the standard Maxwell’s

theory would be a uniform “electric” field resulting from a pair of opposite charges q and −q
moved, in opposite directions, to a very large mutual distance r0, in such a way the ratio q

r20

remains finite. The second profile in eq. (2.23) would be the configuration sourced by a magnetic

p-brane, with magnetic charge

qm = hD−p−2ΩD−p−2 , (2.25)

whose counterpart in the standard Maxwell theory would be the field of a magnetic monopole,

while the first profile in eq. (2.23) is the dual of the second profile in eq. (2.22).

There are also some special tensor profiles that are relevant for type–IIB supergravity in ten

dimensions. They lead to an interesting class of vacua, which will be dealt with at length in [14].

A proper account of the contribution of these profiles requires a few additional comments, since

the corresponding field strength is self–dual. To begin with, one can start from the solution of

the self–duality condition, which reads

H5 =
H5

2
√
2

(
eB+4A− 5C ǫ(4) ∧ dr + ǫ̃(5)

)
, (2.26)

since β = 0 in this case. For k′ = 1 this type of profile would be associated to a dyon. In a similar

fashion, a second type of profile,

H5 =
h5

2
√
2

(
ǫ(5) + e−5A+B+4C dr ∧ ǫ̃(4)

)
, (2.27)

is the counterpart of eq. (2.26) for the h field strengths discussed above.

3 Dynamical Action Principle and Equations of Motion

In this section we derive a dynamical action principle inserting in eq. (2.7) the symmetric profiles

that we have described. To begin with, up to an overall factor that we shall leave out consistently,

the metric of eq. (2.13) and a symmetric scalar profile lead to the reduced action principle

S =
1

2

∫
dr
{
e(p+1)A−B+(D−p−2)C

[
p(p+ 1)

(
A′)2 + (D − p− 2)(D − p− 3)

(
C ′)2

− 4 (φ′)2

D − 2
+ 2(p + 1)(D − p− 2)A′ C ′

]
+

k

α′ p (p + 1) e(p−1)A+B+(D−p−2)C

− TD−1 e
(p+1)A+B+(D−p−2)C+γφ +

k′

α′ (D − p− 2)(D − p− 3) e(p+1)A+B+(D−p−4)C
}
, (3.1)

12



where

TD−1 =
τD−1

α′ , (3.2)

and k and k′, as we have already stated, are the curvatures of the (p + 1)–dimensional metric

γµν(x) and of the (D − p − 2)–dimensional metric γmn(ξ). From now on, for brevity, TD−1 will

be concisely denoted by T .

As we have seen, there are two independent options for the inclusion of symmetric tensor fluxes

in the class of metric of eq. (2.13). The first one corresponds to the first profile in eq. (2.16) for

a (p + 1)–form gauge field, with b′p+1(r) given in eq. (2.21), and contributes to the dynamical

action principle the term

∆S(1)H =
1

4

∫
dr e− 2βp φ− (p+1)A−B+(D−p−2)C

(
b′p+1

)2
. (3.3)

The second independent option corresponds to the first profile in eq. (2.17) for a p–form gauge

field, but is not described in these simple symmetrical terms, as we have stressed. Therefore we

shall only include its contribution to the equations of motions, deducing it from eqs. (2.9) and

(2.10), while also making use of eq. (A.10). With this proviso, and with different choices of p

and βp, one can describe in this fashion, as we have anticipated, all symmetric “electric” and

“magnetic” fluxes of interest.

One can now combine the different contributions described in Section 2, aside from the one

related to hp+1, and the end result reads

S =
1

2

∫
dr
{
e(p+1)A−B+(D−p−2)C

[
p(p+ 1)

(
A′)2 + (D − p− 2)(D − p− 3)

(
C ′)2

− 4 (φ′)2

D − 2
+ 2(p + 1)(D − p− 2)A′ C ′

]
+

k

α′ p (p+ 1) e(p−1)A+B+(D−p−2)C

− T e(p+1)A+B+(D−p−2)C+γφ +
k′

α′ (D − p− 2)(D − p− 3) e(p+1)A+B+(D−p−4)C

+
1

2
e− 2 βp φ− (p+1)A−B+(D−p−2)C

(
b′p+1

)2 }
. (3.4)

In the resulting equations of motion, we shall also include shortly the contribution related to

hp+1, starting from eqs. (2.9) and (2.10). To begin with, the first tensor profile of Section 2.3

satisfies the simple equation

(
e− 2βp φ− (p+1)A−B+(D−p−2)C b′p+1

)′
= 0 . (3.5)

which is solved by

b′p+1(r) = Hp+2 e
2βpφ+B+(p+1)A−(D−p−2)C , (3.6)
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as we had seen more generally in eq. (2.22). It is now convenient to work in the “harmonic” gauge

(p+ 1)A − B + (D − p− 2)C = 0 , (3.7)

which reduces the equations of motion for A, C and φ to

A′′ = − T

(D − 2)
e2B+ γ φ +

k p

α′ e
2(B−A) (3.8)

+
(D − p− 3)

2 (D − 2)
e2B+2βp φ− 2(D−p−2)CH2

p+2 +
(D − p− 2)

2 (D − 2)
e2B− 2βp−1 φ− 2(p+1)Ah2p+1 ,

C ′′ = − T

(D − 2)
e2B+ γ φ +

k′(D − p− 3)

α′ e2(B−C) (3.9)

− (p+ 1)

2 (D − 2)
e2B+2βp φ− 2(D−p−2)CH2

p+2 −
p

2 (D − 2)
e2B− 2βp−1 φ− 2(p+1)Ah2p+1 ,

φ′′ =
T γ (D − 2)

8
e2B+ γ φ (3.10)

+
βp (D − 2)

8
e2B+2 βp φ− 2(D−p−2)CH2

p+2 +
βp−1 (D − 2)

8
e2B− 2βp−1 φ− 2(p+1)Ah2p+1 .

Here we have included the contributions related to hp+1, and moreover the equation for B, which

is usually called “Hamiltonian constraint”, reads

(p+ 1)A′[pA′ + (D − p− 2)C ′] + (D − p− 2)C ′[(D − p− 3)C ′ + (p+ 1)A′]

− 4 (φ′)2

D − 2
+ T e 2B+ γ φ − k p(p+ 1)

α′ e2(B−A) − k′(D − p− 3)(D − p− 2)

α′ e2(B−C)

+
1

2
e 2βp φ+2B− 2 (D−p−2)C H2

p+2 −
1

2
e− 2βp−1 φ− 2(p+1)A+2B h2p+1 = 0 . (3.11)

Notice that this system has an interesting discrete symmetry: its equations are left invariant

by the redefinitions

[
A,C, p, k, k′

]
←→

[
C,A, D − p− 3, k′, k

]
,

[
H2

p+2, βp;h
2
p+1, βp−1

]
←→

[
−h2p+1,−βp−1;−H2

p+2,−βp
]
, (3.12)

which can be regarded as implementing an “electric-magnetic” duality. The simultaneous presence

of Hp+2 and hp′+1 profiles is only relevant in one special case, for type IIA, with one of them

of NS-NS type and the other of RR type. In the following, we shall focus on solutions with

k = k′ = 0, leaving the study of the other types of configurations to [15].

As we have anticipated, two special cases, related to the type–IIB string, must be treated

separately, since they involve fluxes of the self–dual five–form field strength, for which we refer

the reader to eqs. (2.26) and (2.27). The complete equations of motion for the first case are

RMN =
1

24

(
H2

5

)
MN

+
1

2
∂M φ∂N φ , (3.13)

14



and their reduced form for the class of metrics of interest in the “harmonic” gauge B = 4A+5C

and for the symmetric H5 profile of eq. (2.26) reads

A′′ =
H2

5

8
e8A ,

C ′′ = − H2
5

8
e8A ,

φ′′ = 0 . (3.14)

The corresponding Hamiltonian constraint is

3
(
A′)2 + 10A′ C ′ + 5

(
C ′)2 =

1

8

(
φ′
)2 − H2

5

16
e8A . (3.15)

The counterpart of these results for the hp+1–fluxes corresponds to p = 4, and in this case

A′′ =
h25
8
e8C ,

C ′′ = − h25
8
e8C ,

φ′′ = 0 . (3.16)

while the Hamiltonian constraint becomes

5
(
A′)2 + 10A′ C ′ + 3

(
C ′)2 =

1

8

(
φ′
)2

+
h25
16

e8C . (3.17)

4 Supersymmetric Vacua with Fluxes

In this section we determine which backgrounds of the general form of eq. (2.13) with k = k′ = 0,

with corresponding symmetric profiles as in eq. (2.22), are supersymmetric. These are special

solutions of eqs. (3.8)–(3.11), and in a particular case of eqs. (3.14) and (3.15), which maintain part

of the original ten–dimensional supersymmetry, and we shall obtain them solving the first–order

Killing equations. The corresponding solutions for k′ = 1 are the well-known BPS brane profiles

(for a review, see [16] or Polchinski’s book in [2]). We begin from the case of eleven–dimensional

supergravity [6], which is simpler since it does not contain a dilaton field.

4.1 Supersymmetric Vacua of Eleven–Dimensional Supergravity

In this case the starting point is provided by the supersymmetry transformations of eleven–

dimensional gravitino [6],

δ ψM = DM ǫ +
1

288

(
ΓM

N1N2N3N4 − 8 δM
N1 ΓN2N3N4

)
HN1N2N3N4 ǫ , (4.1)
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where

Dµ ǫ = ∂µ ǫ +
1

2
A′ eA−Bγµ γr ǫ ,

Dr ǫ = ∂r ǫ ,

Dm ǫ = ∂m ǫ +
1

2
C ′ eC−Bγm γr ǫ . (4.2)

Following the discussion in Section 2.3, one can see that there are two H-type field strengths of

interest, with p = 2, 5, and correspondingly two possible cases.

• For p = 2 there is an internal T 7, and the H-form in the first of eqs. (2.22), in the harmonic

gauge and with no dilaton, reads

H4 = H4 e
6A ǫ3 ∧ dr . (4.3)

Moreover, in this symmetric profile the three groups of supersymmetry transformations

become

δ ψµ = ∂µ ǫ +
1

2
γµ γr

[
A′ eA−B +

H4

3
e4A−B γ

]
ǫ ,

δ ψr = ∂r ǫ +
H4

6
e3A γ ǫ , (4.4)

δ ψm = ∂m ǫ +
1

2
γm γr

[
C ′ eC−B − H4

6
e3A+C−B γ

]
ǫ ,

where the matrix γ, defined by

γ =
1

6
ǫµνρ γ

µνρ , (4.5)

satisfies

γ2 = 1 , γµ γ = − γ γµ =
1

2
ǫµνρ γ

νρ . (4.6)

One can now solve the conditions

δ ψM = 0 , (4.7)

making use of their explicit form in eqs. (4.4), which leads to

γ ǫ = − ǫ , ∂µ ǫ = 0 , ∂m ǫ = 0 ,

(
e− 3A

)′
= H4 r , C ′ = − 1

2
A′ . (4.8)

Notice that, if H4 = 0, flat space is the only solution. Similar considerations apply to all

the following cases.
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Up to a translation of r and a rescaling of the y coordinates, the metric reads

ds2 = (|H4| r)−
2
3 dx2 + (|H4| r)

1
3
(
dr2 + dy2

)
. (4.9)

Finally, the condition δ ψr = 0 gives the differential equation

∂r ǫ +
1

6 r
ǫ = 0 , (4.10)

which determines the r–dependent spinor profile and is solved by

ǫ(r) =
ǫ0

(|H4 r|)
1
6

, (4.11)

with ǫ0 a constant spinor subject to the condition

γ ǫ0 = − ǫ0 . (4.12)

The preceding results also determine the tensor profile

H4 = H4
ǫ3 ∧ dr
(|H4| r)2

, (4.13)

whose dual is

⋆H4 = H4 ǫ̃7 . (4.14)

• In the p = 5 case there is an internal T 4, and the dual of the seven–form H-field strength is

H4 = H7 ǫ̃4 . (4.15)

The three groups of supersymmetry transformations read

δ ψµ = ∂µ ǫ +
1

2
γµ γr

[
A′ eA−B +

H7

6
eA−4C γr γ

]
ǫ ,

δ ψr = ∂r ǫ +
H7

12
eB−4C γr γ ǫ , (4.16)

δ ψm = ∂m ǫ +
1

2
γm γr

[
C ′ eC−B − H7

3
e−3C γr γ

]
ǫ .

Now, defining γ as

γ = γ7 γ8 γ9 γ10 , (4.17)

the Killing spinor equations require that ǫ be an eigenvector of γ γr, and one can make the

choice

γr γ ǫ = ǫ . (4.18)
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This is possible since

(γr γ)
2 = 1 , (4.19)

and then

ds2 = (|H7| r)−
1
3 dx2 + (|H7| r)

2
3
(
dr2 + dy2

)
,

ǫ(r) =
1

(|H7| r)
1
12

ǫ0 , (4.20)

with ǫ0 a constant spinor subject to the projection (4.18).

Summarizing, we have seen that eleven–dimensional supergravity admits, in addition to flat

space, which preserves 32 supersymmetries, other backgrounds with H-fluxes that preserve 16

supersymmetries. They are in one-to-one correspondence with BPS brane solutions, and the

difference is that spheres in the transverse space are replaced by flat space or tori. In the latter

case they describe compactifications to three or six dimensions. Following similar steps, one can

see that there are no corresponding solutions with h-fluxes.

We can now turn to discuss ten–dimensional supersymmetric strings, referring explicitly to

type IIA and IIB models, although part of the latter options clearly apply to type I. One must

distinguish further two cases, according to whether Hp+2 is an RR or NS-NS form, and the

self–dual five-form field strength of type IIB will be treated separately.

4.2 RR H–Forms in Ten Dimensions

Let us begin our discussion from the case of RR forms. We can now let D = 10, while also

recalling that p is even for type IIA and odd for type IIB. We work in the string frame, in order

to rely directly on the setup of [17], while also leaving aside momentarily the p = 3 case, so that

the metric has the form of eq. (1.1) with A, B and C replaced by

As = A +
φ

4
, Bs = B +

φ

4
, Cs = C +

φ

4
, (4.21)

and consequently the harmonic gauge condition (3.7) becomes

Bs = (p+ 1)As + (8− p)Cs − 2φ . (4.22)

In the string frame, as we stressed in Section 2.3, βS = 0, and taking into account the gauge

condition, one can translate the first of eqs. (2.22), into

H(p+2) = Hp+2 e
Bs+(p+1)As−(8−p)Cs dx0 ∧ . . . ∧ dxp ∧ dr . (4.23)
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Here all γ matrices are flat, so that taking into account the pairs of “dual” contributions and

using
/H(p+2)

(p+ 2)!
= Hp+2 e

− (8−p)Cs γ0...p γr , (4.24)

the supersymmetry transformations of the Fermi fields taken from [17] finally read

δ λ = e−Bs

(
γr φ

′ ǫ + Hp+2 e
−φ+(p+1)As (−1)p (3− p)

4
γ0...p γr P p

2
+1ǫ

)
,

δ ψr = ∂r ǫ +
Hp+2

8
e−φ+(p+1)As γ0...p P p

2
+1ǫ , (4.25)

δ ψµ = ∂µ ǫ +
1

2
γµγr e

−pAs−(8−p)Cs+2φA′
s ǫ +

Hp+2

8
eφ+As − (8−p)Cs γ0...pγr γµP p

2
+1ǫ ,

δ ψm = ∂m ǫ +
1

2
γmγr e

2φ−(p+1)As−(7−p)Cs C ′
s ǫ +

Hp+2

8
eφ− (7−p)Cs γ0...pγr γm P p

2
+1ǫ ,

after making use of the gauge condition (4.22). Here P p
2
+1 [17] has the following form:

1. for type IIA P p
2
+1 = (γ11)

p
2
+1, with p even;

2. for type IIB P p
2
+1 = σ1 if p = 1, 5, and P p

2
+1 = iσ2 in the remaining cases.

For p 6= 3, one can conveniently start from the first of eqs. (4.25), demanding that

δ λ = e−Bγr φ
′
(
ǫ − Hp+2

φ′
e−φ+(p+1)As

(3− p)
4

γ0...p P p
2
+1ǫ

)
= 0 . (4.26)

This equation involves a projection on ǫ provided

φ′ = ± (3− p)
4

Hp+2 e
(p+1)As−φ , (4.27)

since then it reduces to (
1 ∓ γ0...p P p

2
+1

)
ǫ = 0 , (4.28)

which halves the number of supersymmetries with respect to those present in the ten–dimensional

Minkowski vacuum. One can see that in all cases, for both IIA and IIB,

(
γ0...pP p

2
+1

)2
= 1 , (4.29)

and therefore the preceding condition is indeed a consistent projection. For p 6= 3 the condition

δ ψr = 0 can be turned into (
∂r +

1

2(3 − p) φ
′
)
ǫ = 0 , (4.30)

whose solution is

ǫ = e
− φ

2(3−p) ǫ0(x, y) , (4.31)
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while the condition δ ψµ = 0 reads

∂µǫ +
1

2
γµ γr e

−pAs−(8−p)Cs+2φ

(
A′

s +
φ′

(3− p)

)
ǫ = 0 . (4.32)

Since the projection anticommutes with γν γr, one thus gets the two conditions

A′
s +

φ′

(3− p) = 0 ,

∂µ ǫ = 0 . (4.33)

In a similar fashion, from δ ψm = 0 one can deduce that

∂mǫ +
1

2
γm γr e

2φ−(p+1)As−(7−p)Cs

(
C ′
s −

φ′

(3− p)

)
ǫ = 0 . (4.34)

Making use of eq. (4.31), one can now replace ǫ with ǫ0, and then all residual r–dependence must

disappear, so that

e2φ−(p+1)As−(7−p)Cs

(
C ′
s −

φ′

(3− p)

)
= − 2σ , (4.35)

with σ a constant. Eq. (4.34) thus reduces to

∂mǫ = σ γm γr ǫ , (4.36)

which implies

∂m ∂n ǫ = − σ2 γm γn ǫ . (4.37)

Since the partial derivatives commute, the only possible choice is σ = 0, so that finally

C ′
s −

φ′

(3− p) = 0 . (4.38)

Consequently, ǫ0 is also independent of the internal coordinates.

Summarizing, we have found that

ǫ = e
− φ

2(3−p) ǫ0 , (4.39)

where ǫ0 is a constant spinor subject to the projection (4.28), and integrating eqs. (4.33) and

(4.38)

As = − φ

(3− p) + as , Cs =
φ

(3− p) + cs , (4.40)

with as and cs two additive constants, so that

e2As = e
− 2φ

3−p
+2 as , e2Cs = e

2φ
3−p

+2 cs , e2Bs = e
2φ
3−p

+2(p+1)as+2(8−p)cs . (4.41)
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Now eq. (4.27) becomes

φ′ = ± 3− p
4

Hp+2 e
− 4φ

(3−p)
+(p+1)as , (4.42)

so that for p 6= 3 the string–frame solution reads

eφ = eφs [|Hp+2| r]
3−p
4 , (4.43)

in the region r > 0, where

eφs = e
(p+1)(3−p)

4
as . (4.44)

Consequently, after rescaling the y coordinates, for p 6= 3 the string–frame metric and the form

profile read

ds2 = e
3−p
2

as [|Hp+2| r]−
1
2 dx2 + [|Hp+2| r]

1
2

(
e 2 bs dr2 + e 2 ds dy2

)
,

H(p+2) =
Hp+2

|Hp+2 r|2
dx0 ∧ . . . ∧ dxp ∧ dr , (4.45)

taking also eq. (4.23) into account, where

2 bs =
5

2
(p+ 1) as + 2(8 − p)cs ,

2 ds =
p+ 1

2
as + 2cs . (4.46)

More conveniently, one can rescale the x, y and r coordinates, in such a way that the three

vacuum profiles become

ds2 = [|Hp+2| r]−
1
2 dx2 + [|Hp+2| r]

1
2
(
dr2 + dy2

)
,

H(p+2) = e
(3−p)(8−p)

5
cs

Hp+2

|Hp+2 r|2
dx0 ∧ . . . ∧ dxp ∧ dr ,

eφ = e−
(3−p)(8−p)

5
cs [|Hp+2| r]

3−p
4 , (4.47)

while the Killing spinor becomes

ǫ = e
− φ

2(3−p) ǫ0 ,
(
1 ∓ γ0...p P p

2
+1

)
ǫ0 = 0 , (4.48)

with ǫ0 a constant spinor. Notice also that

⋆H(p+2) = e
(3−p)(8−p)

5
cs Hp+2 dy

1 ∧ . . . ∧ dy8−p . (4.49)

The corresponding form of the metric in the Einstein frame is determined by eqs. (4.45) or (4.47),

using eq. (4.21), and reads

ds2 = e
(3−p)(8−p)

10
cs
[
[|Hp+2| r]

p−7
8 dx2 + [|Hp+2| r]

p+1
8
(
dr2 + dy2

)]
. (4.50)
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The special case p = 3 is discussed at length in [14], and here we can just summarize the

results,

ds2 =

[ √
2

|H5| r

] 1
2

dx2 +

[ |H5| r√
2

] 1
2 (
dr2 + dy2

)
,

H5 =
H5

2
√
2



[ √

2

|H5| r

]2
dx0 ∧ . . . ∧ dx3 ∧ dr + dy1 ∧ . . . ∧ dy5


 ,

φ = const . (4.51)

This background is compatible with the existence of the Killing spinor

ǫ =

[ √
2

|H5| r

] 1
8

ǫ0 , (4.52)

where ǫ0 is a constant spinor subject to the condition

γ0...3 i σ2 ǫ0 = sign (H5) ǫ0 , (4.53)

The reader should note the self–dual nature of the form and the absence of an overall constant.

4.3 NS–NS H–Forms in Ten Dimensions

In this case the values of the constant β of Section 2 are different, and lead to a different set of

supersymmetry transformations. Here we shall elaborate separately on the two cases of interest,

p = 1 and p = 5.

4.3.1 The p = 1 case

Let us begin by considering the NS-NS three–form, for which the supersymmetry transformations

become

δ λ ≡ e−Bs γr

(
φ′ +

1

2
H3 e

2φ+Bs − 7Cs γ01 P
)
ǫ = 0 ,

δ ψr ≡
(
∂r +

1

4
H3 e

2φ+Bs − 7Cs γ01 P
)
ǫ = 0 ,

δ ψµ ≡
(
∂µ +

1

2
γµγr e

As−Bs A′
s +

1

4
H3 ǫµν e

2φ+As − 7Cs γν γr P
)
ǫ = 0 ,

δ ψm ≡
(
∂m +

1

2
γmγr e

Cs−Bs C ′
s

)
ǫ = 0 , (4.54)
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taking into account that for the NS two–form βp = 1 in the string frame, and making use of

eq. (2.22). Here P [17] has the following form:

1. For type IIA: P = γ11;

2. For type IIB: P = −σ3.

To begin with, let us note that, in all cases,

(
γ01 P

)2
= 1 , (4.55)

so that the variation of λ tells us that

γ01 P ǫ = σ ǫ , (4.56)

with σ = ±1, and then

φ′ = − σH3

2
e 2φ+Bs − 7Cs . (4.57)

The second equation is thus solved by

ǫ = e
φ
2 ǫ0(x, y) , (4.58)

and then, as in previous cases, the last equation implies that

C ′
s = 0 , ∂i ǫ0 = 0 . (4.59)

Now the third equation reduces to

(
∂µ +

1

2
γµγr e

As−Bs
(
A′

s − φ′
))

ǫ = 0 , (4.60)

using ǫµν γ
ν = γµ γ

01, and the integrability of these conditions translates, as in previous cases,

into

∂µ ǫ0 = 0 , A′
s = φ′ , (4.61)

so that As = φ+ as, where as is a constant. The resulting equation for φ is

φ′ = − σH3

2
e 2(φ+as) , (4.62)

which is solved by

e 2φ =
e− 2 as

(σH3 r)
, (4.63)
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up to a translation of r. The gauge condition (4.22) determines now

Bs = 2 as + 7Cs , (4.64)

and one is thus finally led to the string–frame results

ds2 =
dx2

r
+ dr2 + dy2 ,

eφ =
eφ0

r
1
2

,

ǫ =
1

r
1
4

ǫ0 ,

H3 = σ
dx0 ∧ dx1 ∧ dr

r2
. (4.65)

Here σ is a sign, and this simple result is reached after rescaling the x and y coordinates and ǫ0,

which is a constant spinor subject to the projection (4.56), and after some redefinitions of the

constants. In the Einstein frame, the metric becomes

ds2 =
dx2

r
3
4

+ r
1
4
(
dr2 + dy2

)
. (4.66)

4.3.2 The p = 5 case

Recasting now the seven–form field strength in terms of a dual three-form, as

H̃3 = H7 dy
1 ∧ dy2 ∧ dy3 , (4.67)

the relevant portions of the supersymmetry transformations of eqs. (4.25) become

δ λ ≡ e−Bs γr

(
φ′ +

1

2
H7 e

Bs − 3Cs γr γ
123 P

)
ǫ = 0 ,

δ ψr ≡ ∂r ǫ = 0 ,

δ ψµ ≡
(
∂µ +

1

2
γµγr e

As−Bs A′
s

)
ǫ = 0 ,

δ ψm ≡
(
∂m +

1

2
γmγr e

Cs−Bs C ′
s +

1

8
H7 ǫmnp γ

np e− 2Cs P
)
ǫ = 0 , (4.68)

and imply that now ǫ is a constant spinor, say ǫ0, with

γr γ
123 P ǫ0 = σ ǫ0 ,

A′
s = 0 ,

C ′
s = φ′ ,

φ′ = − H7 σ

2
e 6As − 2φ , (4.69)
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where σ = ±1. Consequently, working in the region r > 0, one can choose

eφ = (|H7| r)
1
2 , (4.70)

while the string–frame metric is

ds2 = dx2 + |H7| r
(
dr2 + dy2

)
, (4.71)

up to rescalings of the x and y coordinates. With some redefinitions as above, these results can

also be presented in the form

ds2 = dx2 + |r|
(
dr2 + dy2

)
,

eφ = |r|
1
2 eφ0 ,

H̃3 = dy1 ∧ dy2 ∧ dy3 . (4.72)

In the Einstein frame, the metric becomes

ds2 =
dx2

r
1
4

+ r
3
4
(
dr2 + dy2

)
. (4.73)

4.4 h–Forms

Let us begin from RR forms, where our starting point is

/H(p+1)

(p+ 1)!
= hp+1 e

−(p+1)As γ0...p , (4.74)

where the form profile was given in eq. (2.22), and the supersymmetry transformations include

δ λ = e−Bsγr

(
φ′ + hp+1 e

φ+Bs − (p+1)As
(4− p)

4
γ0...p γr P p+1

2

)
ǫ . (4.75)

However, in contrast with the preceding cases, now

(
γ0...p γr P p+1

2

)2
= − 1 , (4.76)

and consequently the spinor would have to satisfy

γ0...p γr P p+1
2
ǫ = ± i ǫ , (4.77)

so that there are no solutions of these Killing spinor equations with a due real profile for φ.

Similar considerations hold for the NS-NS h–cases.

The solutions that we have displayed are supported by an internal flux. They will play a role

in the non–supersymmetric backgrounds that we shall explore in Section 6, where they capture

limiting behaviors close to a singularity.
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5 Vacuum Solutions and Cosmologies without Form Fluxes

In this section we construct all the exact vacuum solutions within the class of metrics (1.1) with

k = k′ = 0, an r-dependent dilaton profile and no form fluxes. As we just saw, the non–trivial

solutions within this class will necessarily break supersymmetry. Then, via suitable analytic

continuations, we derive from them corresponding classes of cosmological solutions.

5.1 Static Backgrounds

In this case eqs. (3.8), (3.9) and (3.10) reduce to

A′′ = 0 , C ′′ = 0 , φ′′ = 0 , (5.1)

and therefore the general solution in the harmonic gauge takes the form

A = A1 r + A2 , B = (p + 1)A + (D − p− 2)C ,

C = C1 r + C2 , φ = φ1 r + φ2 , (5.2)

where the Ai, Ci, φi are arbitrary constants. The constants A2 and C2 can be removed by

rescaling all coordinates, thus bringing the solution to the form

ds2 = e2A1r dx2 + e2 µ r dr2 + e2C1r d~y 2 ,

eφ = eφ1r+φ2 , (5.3)

where for simplicity we retain the same symbols, and where

µ = (p+ 1)A1 + (D − p− 2)C1 . (5.4)

The Hamiltonian constraint (3.11) reduces in this case to the homogeneous quadratic form

4φ21
D − 2

= p(p+ 1)A2
1 + 2(p + 1)(D − p− 2)A1C1 + (D − p− 2)(D − p− 3)C2

1 . (5.5)

and the special choice A1 = C1 = φ1 = 0 corresponds to the supersymmetric flat–space vacuum.

Let us also record two useful alternative presentations of this constraint,

4φ21
D − 2

+ (p+ 1)A2
1 + (D − p− 2)C2

1 = [(p+ 1)A1 + (D − p− 2)C1]
2 (5.6)

and
4 p φ21

(p+ 1)(D − 2)
=

[
pA1 + (D − p− 2)C1

]2
− (D − 2)(D − p− 2)

p+ 1
C2
1 . (5.7)
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Eq. (5.6) shows that, away from the flat–space solution, the values of A1 and C1 are subject

to the condition that µ 6= 0. Therefore, letting

αA =
A1

µ
, αC =

C1

µ
, αφ =

φ1
µ
, (5.8)

the αi are determined by the original Hamiltonian constraint (5.6) divided by µ2,

(p+ 1)α2
A + (D − p− 2)α2

C +
4α2

φ

D − 2
= 1 , (5.9)

which defines an ellipsoid, while the definition of µ turns into

(p+ 1)αA + (D − p− 2)αC = 1 , (5.10)

which describes a plane. The independent geometries in this class are thus determined by their

intersections, which are the points of the ellipse

(p+ 1)(D − 1)2

(D − 2)(D − p− 2)

(
αA −

1

D − 1

)2

+
4(D − 1)

(D − 2)2
α2
φ = 1 . (5.11)

We have thus obtained a family of solutions

ds2 = e2αA µ r dx2 + e2 µ r dr2 + e2αC µ r d~y 2 ,

eφ = eαφ µ r eφ2 , (5.12)

where µ is an arbitrary nonzero constant and

αA =
1

D − 1

[
1 +

√
(D − 2)(D − p− 2)

(p + 1)
cos θ

]
,

αC =
1

D − 1

[
1 −

√
(D − 2)(p + 1)

(D − p− 2)
cos θ

]
,

αφ =
D − 2

2
√
D − 1

sin θ ≡ 2

γc
sin θ , (5.13)

which are thus parametrized by an angle θ, by the constant φ2 that enters the dilaton profile and

by the scale µ, and where

γc =
4
√
D − 1

D − 2
, (5.14)

equals 3
2 in ten dimensions. For any given choice of αA and αC , there are pairs of solutions

that are mapped into one another by θ → −θ, which turns αφ to −αφ. This is the S–duality

transformation gs → 1
gs
, which links the type-I and SO(32) heterotic strings and maps the type-

IIB string into itself. Particular cases are the two isotropic nine–dimensional solutions, with
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αA = αC , which are obtained for θ = ±π
2 , for which

ds2 = e
2µ r
D−1

(
dx2 + d~y 2

)
+ e2µ r dr2 ,

eφ = e±
2 µ r
γc eφ2 , (5.15)

and the constant dilaton solutions, for which θ = 0, π and

αA =
1

D − 1

[
1 ±

√
(D − 2)(D − p− 2)

(p+ 1)

]
,

αC =
1

D − 1

[
1 ∓

√
(D − 2)(p + 1)

(D − p− 2)

]
, (5.16)

which are conventional Kasner solutions. Note that for D = 11 these expressions provide su-

persymmetry breaking solutions to the eleven–dimensional supergravity. On the other hand, the

D = 2 case is special, since the solutions reduce to Rindler space.

The backgrounds depend apparently on the three quantities µ, θ and φ2. Note, however, that

the redefinition

r = λ (r̃ + r0) , (5.17)

where λ is an arbitrary positive constant and r0 is determined by

e2µλr0 λ2 = 1 , (5.18)

turns the background into

ds2 = e2αA µ̃ r̃ dx̃2 + e2 µ̃ r̃ dr̃2 + e2αC µ̃ r̃ d~̃y
2
,

eφ = eαφ µ̃ r̃ eφ̃2 . (5.19)

These expressions are of the same form, up to rescalings of the x and y coordinates, but with

different values of the parameters, since now

µ̃ = λµ ,

eφ̃2 = eφ2 λ−αφ = eφ2 λ
− 2

γc
sin θ

. (5.20)

Therefore, the triplets
(
µ, θ, φ2

)
and

(
µ̃, θ, φ̃2

)
are equivalent for arbitrary nonzero values of λ.

Note also that the backgrounds in eqs. (5.12) include flat space, which corresponds to µ = 0

and is supersymmetric. As we have just seen, they also include another branch, which is not

supersymmetric and is parametrized by the triplets
(
µ, θ, φ2

)
, with µ 6= 0, up to the identifications

(5.20).
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For positive values of µ a singularity is always present, at a finite distance 1
µ
from the origin,

as r → −∞. In this case, one can also define the new variable

ξ =
1

µ
eµ r , (5.21)

where clearly 0 < ξ <∞, which turns the background into the space–dependent Kasner–like form

ds2 = (µξ)2αA dx2 + dξ2 + (µξ)2αC d~y 2 ,

eφ = (µξ)αφ eφ2 , (5.22)

where the singularity now lies at ξ = 0. For nonzero values of µ, rescaling the x and y coordinates

and redefining φ2 removes µ completely. However, this new coordinate system was reached by

the transformation (5.21), which becomes singular as µ→ 0, so that the supersymmetric solution

is lost in this way. On the other end, the presentation (5.12) has the virtue of encompassing

both the non–supersymmetric solutions and the supersymmetric one. In this sense, µ can be

regarded as determining the scale of supersymmetry breaking. The case of eleven–dimensional

supergravity is captured again by solutions with αφ = 0.

Finally, let us stress that the quantity γc in eq. (5.14) will play an important role in connec-

tion with dilaton tadpole potentials. It signals the transition to the climbing behavior [13] of

corresponding cosmologies but, as we shall see in [9], it also affects in an important fashion the

general dynamics of these systems.

5.2 Cosmological Backgrounds

The analytic continuation r → i τ , and corresponding redefinitions A1 → −iA1, C1 → −i C1 and

φ1 → −i φ1, after the transition to the cosmic time t, yield

ds2 = −dt2 + t2αA dx2 + t2αC d~y 2 ,

eφ = tαφ eφ2 , (5.23)

where the parameters are still determined by eqs. (5.13). These are effectively Kasner–like so-

lutions arising from D + 1 dimensions where, if αφ 6= 0, the dilaton spans the whole real axis

during the cosmological evolution, moving toward larger or smaller values depending on the free

sign choice for αφ in eq. (5.9). There is an interesting option, just like in a conventional Kasner

Universe, which is allowed by eq. (5.10) for 1
p+1 < αA < 1√

p+1
: an expansion in the x–directions

can be accompanied by a contraction in the y–directions.
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6 Vacuum Solutions with Form Fluxes

In Section 4 we saw that form fluxes allow an interesting class of supersymmetric vacua. We can

now extend the discussion, exploring the general class of solutions that are allowed by eqs. (3.8)–

(3.11), and in two particular cases by eqs. (3.14) and (3.15), or by eqs. (3.16) and (3.17), in the

presence of form fluxes of the H and h types, in the nomenclature of Section 2.3.

Before exploring these solutions, let us recall again that in ten dimensions the H–contributions

can be associated to RR forms in the type–IIB string when p is odd, and to RR forms in the

type–IIA string when p is even, and the p = 1, 5 cases are also relevant for the SO(32) type-I [18]

orientifold [19] model. Moreover, inD = 10 these systems can also encompass the fluxes associated

to the fundamental string and to the NS fivebrane, in the type–II and heterotic strings, where

they can be present. Finally, one can adapt these considerations even to the eleven–dimensional

supergravity [6], where p = 2, 5, setting βp = 0 and confining the attention to solutions with a

vanishing dilaton. We first discuss the H–fluxes, to then return at the end of the section to the

h–fluxes.

6.1 Solutions with H–Fluxes

Let us begin again by spelling out the basic ingredients for arbitrary values of D, before

specializing to the most relevant options. For this class of solutions, it is convenient to work in

terms of the three variables (C,φ,Z), where

Z = (p + 1)A + βp φ , (6.1)

is related to the exponent that accompanies the flux contributions. The relevant values of βp

were given in Section 2. This choice leads to the three equations

C ′′ = − (p+ 1)

2 (D − 2)
e 2Z H2

p+2 ,

φ′′ =
βp (D − 2)

8
e 2Z H2

p+2 ,

Z ′′ =
H2

p+2

2(D − 2)

[(
βp (D − 2)

2

)2

+ (D − p− 3)(p + 1)

]
e 2Z . (6.2)

Notice that there are linear combinations of C and Z, and of φ and Z, whose second derivative
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with respect to r vanishes identically. Consequently, letting

δ2 =
1

(D − 2)

[(
βp (D − 2)

2

)2

+ (D − p− 3)(p + 1)

]
, (6.3)

one can relate C and φ to Z according to

C = − (p+ 1)

(D − 2) δ2
Z + C1 r + C2 ,

φ =
βp (D − 2)

4 δ2
Z + φ1 r + φ2 , (6.4)

where C1,2 and φ1,2 are integration constants, and finally these results determine A and B as

A =
(D − p− 3)

(D − 2) δ2
Z − βp

p+ 1
(φ1 r + φ2) , (6.5)

B = − (p+ 1)

(D − 2) δ2
Z − βp (φ1 r + φ2) + (D − p− 2)(C1 r + C2) .

The Hamiltonian constraint (3.11) now gives

(Z ′)2 = ∆2 e 2Z + E , (6.6)

where

∆2 =
H2

p+2 δ
2

2
. (6.7)

and

E = δ2

[(
p β2p
p+ 1

− 4

D − 2

)
φ21 + (D − p− 2)C1 [(D − p− 3)C1 − 2βp φ1]

]
. (6.8)

Eq. (6.6) has the form of an energy–conservation condition for a Newtonian particle moving in

one dimension with total energy E. It corresponds to one of the options discussed in Appendix B,

with ǫ = 1, and thus with “negative potential energy”. As explained in Appendix B, the value of

the “energy” E determines the form of Z. Letting

e−Z = f(r) , (6.9)

the different cases are all encompassed by

f(r) =
∆√
E

sinh
(√

Er
)
, (6.10)

up to a translation of r. In detail, the result for E = 0

f(r) = ∆ r , (6.11)
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can be recovered as a limit, while the result for E < 0,

f(r) =
∆√
|E|

sin
(√
|E|r

)
. (6.12)

can be recovered by an analytic continuation. In all cases, one should confine the range of r to a

region where f > 0. This is the half-line r > 0 in the first two cases and the interval 0 < r < π√
|E|

in the last case.

Using eqs. (6.4), (6.5) and (6.9), the solutions for the different fields take the form

ds2 = [f(r)]− 2σA e
− 2 βp(φ1 r+φ2)

p+1 dx2 + [f(r)] 2σB e− 2βp(φ1 r+φ2)+2(D−p−2)(C1 r+C2)dr2

+ [f(r)] 2σB e 2(C1 r+C2) d~y 2 ,

eφ = [f(r)]−σφ eφ1 r+φ2 ,

Hp+2 = Hp+2
ǫp+1 dr

[f(r)]2
, (6.13)

where

σA =
(D − p− 3)

δ2 (D − 2)
, σB =

(p + 1)

δ2 (D − 2)
, σφ =

βp (D − 2)

4 δ2
. (6.14)

Note that the values of βp given in Section 2, with the integration constants and the energy E

related as in eq. (6.8), imply that σφ can have both signs in the cases of interest. We can now

discuss, in sequence, the cases of D = 11 and D = 10. In the latter case we treat separately the

self–dual p = 3 solutions.

6.1.1 Solutions of Eleven–Dimensional Supergravity

These solutions are simpler, and can be obtained from eqs. (6.13) setting D = 11 and βp = 0,

while also removing the dilaton, so that φ1 = 0. Note that δ2 = 2 for the two relevant cases

p = 2, 5, and now the energy E in eq. (6.8) becomes

E = 2(8− p)(9− p)C2
1 , (6.15)

and is thus always positive. Consequently, one finds

f(r) =
|Hp+2|√

2(9− p)(8− p) |C1|
sinh

(√
2(9 − p)(8− p) |C1| r

)
, (6.16)

while

ds2 = [f(r)]−
8−p
9 dx2 + [f(r)]

p+1
9

[
e 2(9−p)(C1 r+C2)dr2 + e 2(C1 r+C2) d~y 2

]
,

Hp+2 = Hp+2
ǫp+1 dr

[f(r)]2
. (6.17)
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In the limit C1 → 0

f(r) = |Hp+2| r . (6.18)

and one recovers the supersymmetric solutions described in Section 4, eqs. (4.9) and (4.20).

These solutions are to be considered for r > 0, and there are singularities at r = 0,∞, which

are separated by a finite distance for C1 < 0 and by an infinite distance if C1 ≥ 0. In both

cases of interest, with p = 2, 5, the integral of ⋆Hp+2 over the internal torus is Hp+2 times the

“parametric” volume of the torus, proportional to R9−p, where R denotes the range of the y-

coordinates. This result does not depend on r, as demanded by the equation for the form, but is

not zero and its limiting value as r → 0, where the internal torus associated to the y-coordinate

shrinks to a point, reveals the presence of a charged extended object with a (p+ 1)-dimensional

world volume. In Section 6.1.6 we shall gather further indications on this type of extended objects,

resorting to a probe brane.

As r → 0, the general solution in eqs. (6.20) approaches the supersymmetric results that were

obtained in Section 4. On the other hand, as r →∞ for C1 6= 0, letting

σ =
√

2(9 − p)(8− p) , (6.19)

ds2 ∼ e−
8−p
9

σ|C1|r dx2 + e
p+1
9

σ|C1|r
[
e 2(9−p)C1 rdr2 + e 2C1 r d~y 2

]
,

Hp+2 ∼ Hp+2 ǫp+1 dr e
− 2σ|C1|r . (6.20)

Therefore, the form flux disappears, and the comparison with eqs. (5.12) shows that the solutions

approach the Kasner–like backgrounds that we discussed in the previous section, with exponents

αA = − (8− p)σ
(p+ 1) σ + 18 ǫ (9− p) ,

αC =
(p+ 1) σ + 18 ǫ

(p+ 1) σ + 18 ǫ (9− p) , (6.21)

where ǫ is the sign of C1. In particular, for p = 2

αA =
1

10

(
1 − ǫ

√
21
)
, αC =

1

10

(
1 +

9 ǫ√
21

)
, (6.22)

while for p = 5

αA =
1

10

(
1 − ǫ

√
6
)
, αC =

1

10

(
1 +

3

2
ǫ
√
6

)
, (6.23)

and agree with the values given by eqs. (5.16) with D = 11 and p = 2, 5. Here we are working

in the region r > 0, so that C1 < 0 corresponds to a finite length of the internal interval, while

C1 > 0 corresponds to an infinite length of the internal interval.
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The basic lesson of this setup is clearly visible from these examples: the flux introduces a

singularity at r = 0, where the background approaches a supersymmetric configuration, while

also halving the range of r. As r → +∞, for C1 6= 0 these backgrounds approach the no–flux

Kasner–like behavior of Section 5, but the presence of fluxes makes it possible to attain a finite

length for the internal interval.

6.1.2 Solutions for p = 3 and D = 10, the Self–Dual Case for Type IIB

This special case is characterized by βp = 0, and the starting point is provided by eqs. (3.14),

which imply

φ = φ1 r + φ2 , C = − A − α r − β , (6.24)

where φ1, φ2, α and β are four constants. Letting now Y = e−4A, the Hamiltonian con-

straint (3.15) becomes
(
Y ′)2 − 40

(
α2 − φ21

40

)
Y 2 =

1

2
H2

5 , (6.25)

and there are three classes of solutions, which can be studied following Appendix B.

1. If α2 − φ2
1

40 = α̃2 > 0, the Hamiltonian constraint describes an inverted harmonic

oscillator with positive total energy, and the solution reads

Y =
H5 ρ√

2
sinh

(
r

ρ

)
, (6.26)

where 0 < r <∞, and

ρ =
1

2 α̃
√
10

. (6.27)

Consequently

ds2 = (Y )−
1
2 dx2 + (Y )

1
2

[
e
− 5 ǫ

√
1+ (φ1 ρ)2

√
10

r
ρ
− 10β

dr2 + e
− ǫ

√
1+ (φ1 ρ)2

√
10

r
ρ d~y 2

]
,

H5 =
H5

2
√
2

(
ǫ(4) dr

Y 2
+ e5β ǫ̃(5)

)
, eφ = eφ1 r+φ2 . (6.28)

where ǫ = ±1 is the sign of α. These solutions depend on φ1, φ2, β and involve finite

values of ρ. However, rescalings of the x and y coordinates and redefinitions of φ1 so that

φ1ρ = φ̃1, and of β so that β = β̃ + 1
4 log ρ, can eliminate the dependence on ρ altogether,

thus leaving a three–parameter family of solutions. Negative or zero values of φ1 grant a

bounded string coupling, while positive values of α grant a finite internal length.
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2. If α2 − φ2
1

40 = 0, the solution is simply

Y =
H5 r√

2
, (6.29)

where 0 < r <∞, and consequently

ds2 = (Y )−
1
2 dx2 + (Y )

1
2

[
e
− 5ǫ|φ1|r√

10
− 10β

dr2 + e
− ǫ|φ1|r√

10 d~y 2

]
,

H5 =
H5

2
√
2

(
ǫ(4) dr

Y 2
+ e5β ǫ̃(5)

)
, eφ = eφ1 r+φ2 . (6.30)

These expressions are limiting forms of eqs. (6.28) as ρ → ∞, and depend on the three

parameters φ1, φ2 and β. For φ1 = 0, they reduce to the supersymmetric solutions of

Section 4, and in this case β can be eliminated rescaling the coordinates. Negative values of

φ1 grant a bounded string coupling, while positive values of α grant again a finite internal

length.

3. If α2 − φ2
1

40 = − α̃2 < 0, the Hamiltonian constraint describes an ordinary harmonic

oscillator, and the solution reads

Y =
H5 ρ√

2
sin

(
r

ρ

)
, (6.31)

where 0 < r < π ρ, with

ρ =
1

2 α̃
√
10

. (6.32)

Now φ21 ρ
2 > 1, and the solution reads

ds2 = (Y )−
1
2 dx2 + (Y )

1
2

[
e
− 5ǫ
√

(φ1 ρ)2 − 1
√

10
r
ρ
− 10β

dr2 + e
− ǫ

√
(φ1 ρ)2 − 1
√

10
r
ρ d~y 2

]
,

H5 =
H5

2
√
2

(
ǫ(4) dr

Y 2
+ e5β ǫ̃(5)

)
, eφ = eφ1 r+φ2 . (6.33)

As in the first case, one can eliminate ρ, and this is therefore a three–parameter family of

solutions, with a bounded string coupling for all values of φ1 since the range of r is bounded.

The length of the internal interval is always bounded in this case.

As r → 0 the three families of solutions approach the supersymmetric ones of Section 4. This

is also true at the other end for the third type of solutions. As r → ∞ the solutions of the first
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type approach the Kasner–like behavior of Section 5, with

αA = − 1

1 − ǫ
√
10

√
1 + φ̃ 2

1

,

αC =
1 − ǫ

5

√
10

√
1 + φ̃ 2

1

1 − ǫ
√
10

√
1 + φ̃ 2

1

,

αφ =
4 φ̃1

1 − ǫ
√
10

√
1 + φ̃ 2

1

, (6.34)

which satisfy the constraints of eqs. (5.9) and (5.10). The corresponding relations for the second

case with φ1 6= 0 can be obtained from these expressions in the limit φ̃1 →∞, so that the behavior

as r →∞ is again Kasner-like, with (αA, αC , αφ) =
(
0, 15 , − ǫ

√
2
5

)
.

These families of solutions have the very interesting property of allowing, within a certain range

of values for the parameters, compactifications to four–dimensional Minkowski space that combine

a five–torus with an internal interval of finite length, where the string coupling is everywhere

bounded. We shall return to them in [14].

6.1.3 Solutions for D = 10 and p 6= 3, 8

In order to discuss the remaining ten–dimensional solutions, we now return to eqs. (6.13) and

(6.14), which reduce in D = 10 to

ds2 = [f(r)]
p−7
8 e−

2 βp(φ1 r+φ2)

p+1 dx2 + [f(r)]
p+1
8 e− 2βp(φ1 r+φ2)+2(8−p)(C1 r+C2)dr2

+ [f(r)]
p+1
8 e 2(C1 r+C2) d~y 2 ,

eφ = [f(r)]−βp eφ1 r+φ2 ,

Hp+2 = Hp+2
ǫp+1 dr

[f(r)]2
. (6.35)

Moreover, in the string frame and for Ramond–Ramond forms this class of solutions reads

ds2s = [f(r)]−
1
2 e

2(φ1 r+φ2)

p+1 dx2 + [f(r)]
1
2 e

(4−p)(φ1 r+φ2)

2
+2(8−p)(C1 r+C2)dr2

+ [f(r)]
1
2 e 2(C1 r+C2)+

φ1r+φ2
2 d~y 2 ,

eφ = [f(r)]
3−p
4 eφ1 r+φ2 ,

Hp+2 = Hp+2
ǫp+1 dr

[f(r)]2
(6.36)
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while for NS–NS forms

ds2s = [f(r)]
p−5
4 e

(φ1 r+φ2)
(p−1)
(p+1) dx2 + [f(r)]

p−1
4 e

(p−2)
2

(φ1 r+φ2)+2(8−p)(C1 r+C2)dr2

+ [f(r)]
p−1
4 e 2(C1 r+C2)+

φ1r+φ2
2 d~y 2 ,

eφ = [f(r)]
p−3
4 eφ1 r+φ2 ,

Hp+2 = Hp+2
ǫp+1 dr

[f(r)]2
, (6.37)

with p = 1, 5. In all these cases D = 10, and δ2 = 2, so that our starting point is

E = 2

[(
p β2p
p+ 1

− 1

2

)
φ21 + (8− p)C1 [(7− p)C1 − 2βp φ1]

]
. (6.38)

For p 6= 7, this expression can be cast in the convenient form

E = 2

[
(8− p)(7− p)

(
C1 −

βp φ1
7− p

)2

− 8φ21
(p + 1)(7 − p)

]
, (6.39)

while if p = 7

E =
3

4

[(
φ1 −

8

3
C1

)2

− 64

9
C2
1

]
. (6.40)

In order to discuss these solutions further, one must now distinguish three sub–cases, depending

on the value of E:

1. If E > 0 in eq. (6.39), letting E = 1
ρ2
, one can see from eq. (6.10) that

f(r) = |Hp+2| ρ sinh

(
r

ρ

)
, (6.41)

where 0 < r <∞, up to a translation and a choice of orientation on the r axis. Eq. (6.39)

then shows that, for p < 7, the independent choices for C1 and φ1 can be expressed in terms

of a real parameter ζ according to

C1 =
βp
4 ρ

√
p+ 1

7− p sinh ζ ± cosh ζ

ρ
√

2(8 − p)(7− p)
,

φ1 =

√
(p + 1)(7− p)

4 ρ
sinh ζ , (6.42)

while for p = 7

φ1 = ± 2√
3 ρ

e± ζ , C1 =

√
3

4 ρ
sinh ζ . (6.43)

2. If E = 0, one can see from Appendix B that

f(r) = |Hp+2| r , (6.44)
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where 0 < r <∞, and then for p < 7

C1 =
φ1

7− p

[
βp ±

2
√
2 sign(φ1)√

(p+ 1)(8 − p)

]
, (6.45)

while for p = 7 there are again two branches of solutions, with

φ1 = 0 (6.46)

and C1 arbitrary, or with

φ1 =
16

3
C1 . (6.47)

The solutions with E = 0 and φ1 = 0 are supersymmetric, and were already discussed in

Section 4.

3. If E < 0, letting E = − 1
ρ2
, one can see from Appendix B that

f(r) = |Hp+2| ρ sin

(
r

ρ

)
, (6.48)

where 0 < r < π ρ, up to a translation and a choice of orientation on the r axis. Eq. (6.39)

then shows that for p < 7 the independent choices for C1 and φ1 can be expressed in terms

of a real parameter ζ, according to

φ1 = ±
√
(p + 1)(7− p)

4 ρ
cosh ζ ,

C1 = ± βp
4 ρ

√
p+ 1

7− p cosh ζ +
sinh ζ

ρ
√

2(8 − p)(7− p)
. (6.49)

For p = 7, there are again two branches of solutions, with

φ1 = ± 2√
3 ρ

e± ζ , C1 =

√
3

4 ρ
sinh ζ . (6.50)

Summarizing, this class of backgrounds with fluxes apparently contains five real parameters

and a two-valued discrete one, which identifies the two branches. The real parameters are Hp+2

and ρ, both of which enter the function f of eq. (6.10), ζ, and the three constants C2, φ2,

leaving aside the moduli of the internal torus. However, rescaling the coordinates and redefining

the constants C1, C2, φ1 and φ2 one can remove completely the dependence on both ρ and

Hp+2 in eqs. (6.35). In conclusion, one is left with ζ, C2 and φ2, for each of the two branches.

These considerations hold for both positive and negative values of E, while for E = 0 one can

remove Hp+2 by a rescaling and then, proceeding as in other case, one ends up again with three

parameters, say φ1, φ2 and C2.
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6.1.4 Solutions for D = 10 and p = 8

This is a formal limit of the general solutions. In this case C is not present and the energy is

positive, with

E =
1

ρ2
=

16

9
φ21 , (6.51)

so that

f(r) = |H10| ρ sinh

(
r

ρ

)
. (6.52)

Consequently, using

φ1 = ± 3

4 ρ
, (6.53)

one gets

ds2 = e∓
15
72

r
ρ
− 5

18
φ2

[
|H10| ρ sinh

(
r

ρ

)] 1
8

dx2 + e∓
15
8

r
ρ
− 5

2
φ2

[
|H10| ρ sinh

(
r

ρ

)] 9
8

dr2 ,

eφ =
e±

3
4

r
ρ eφ2

[
|H10| ρ sinh

(
r
ρ

)]5
4

, (6.54)

H10 =
H10 ǫ10[

|H10| ρ sinh
(
r
ρ

)]2 .

In the string frame these results become

ds2s = e±
1
6

r
ρ
+ 2

9
φ2

[
|H10| ρ sinh

(
r

ρ

)]− 1
2

dx2 + e∓
3
2

r
ρ
− 2φ2

[
|H10| ρ sinh

(
r

ρ

)] 1
2

dr2 . (6.55)

There are two branches of solutions, in which the string coupling always diverges at the origin

and tends to zero as r → ∞. As above, finite values of |H10| and |ρ| can be eliminated by

redefinitions of φ2 and rescalings of the coordinates. Hence, this is effectively a one–parameter

family with two branches. The length along the r direction and the effective Planck mass are

finite for the upper branch and infinite for the lower one. In the former case, the string coupling

vanishes at the right end of the interval. There is also a special E = 0 solution, which can be

obtained in the limit ρ→∞, and reads

ds2 = (|H10| r)
1
8 dx2 + e−

5
2
φ2 (|H10| r)

9
8 dr2 ,

eφ =
eφ2

(|H10| r)
5
4

, (6.56)

H10 =
H10 ǫ10

(|H10| r)2
,
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while the corresponding string–frame expressions are

ds2s = e
2
9
φ2 (|H10| r)−

1
2 dx2 + e− 2φ2 (|H10| r)

1
2 dr2 ,

eφ =
eφ2

[|H10| r]
5
4

. (6.57)

This is the familiar supersymmetric D8 brane solution of type IIA, which we also encountered

in Section 4, while the backgrounds in eqs. (6.54) are non–supersymmetric deformations of it.

Notice also that all these solutions behave in the same fashion near r = 0, where they approach

the supersymmetric background of Section 4.

6.1.5 General Properties of the Ten–Dimensional Solutions

These metrics are always singular at r = 0. This can be seen from the scalar curvature, which is

always singular for p 6= 3, or from the invariant RMNR
MN , which is singular in the latter case.

6.1.5.1 Behavior near r = 0

Close to r = 0, the function f(r) of eq. (6.10) becomes independent of E, and

f(r) ∼ |Hp+2| r . (6.58)

The limiting behavior of the solutions is thus, for p 6= 3,

ds2 ∼ (|Hp+2| r)
p−7
8 dx2 + (|Hp+2| r)

p+1
8

(
e− 2βpφ2 e2(8−p)C2 dr2 + d~y 2

)
,

eφ ∼ (|Hp+2| r)− βp eφ2 ,

Hp+2 ∼ Hp+2
ǫp+1 dr

(|Hp+2| r)2
. (6.59)

This result is the same for the three classes of backgrounds, while the contributions of φ1 and

C1 are subdominant. Note that this general limiting behavior reproduces the supersymmetric

profiles of Section 4, and indeed eqs. (6.59) and (4.50) coincide, up to a rescaling of r. This result

is what we also found for the eleven–dimensional supergravity and for the self–dual case of type

IIB.

The limiting form of the backgrounds close to r = 0 affords a convenient presentation in terms

of a variable ξ that measures the proper length along the r–direction. Letting

|Hp+2| ξ = 16 e− βp φ2 e(8−p)C2
(|Hp+2| r)

p+17
16

p+ 17
, (6.60)
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the metric and the string coupling take the simple forms

ds2 = (|Hp+2| ξ)−
2(7−p)
(p+17) dx · dx + d ξ2 + (|Hp+2| ξ)

2(p+1)
(p+17) d~y · d~y ,

eφ =
eφ2

(|Hp+2| ξ)
16 βp
p+17

, (6.61)

after absorbing some constants in the normalizations of the x and y coordinates, and after a

redefinition of φ2. These expressions define a Kasner–like background but are different from

those of Section 5. Notice that the contribution to the length of the interval from the ξ = 0 end

is always finite, so that these spacetimes have a boundary there, where the string coupling can

vanish or diverge, depending on the value of βp. In particular, for RR forms the string coupling

is finite for p ≤ 3, and the same is true for the NS–NS 7–form field strength.

6.1.5.2 Behavior for large values of r

On the other hand, the asymptotic behavior for large values of r depends on the energy E, so

that one must distinguish a number of cases.

1. For E > 0 and p < 7, in terms of the proper length ξ, as r → +∞ the metric and string

coupling approach

ds2 ∼ ξ 2αA dx2 + dξ2 + ξ 2αC dy2 ,

eφ ∼ ξαφ , (6.62)

with

αA =
a

b
, αC =

c

b
αφ =

f

b
, (6.63)

where, for p < 7,

a = − 1

ρ

[
7− p
16

+
βp
4

√
7− p
p+ 1

sinh ζ

]
,

b =
1

ρ

[
p+ 1

16
+

βp
4

√
p+ 1

7− p sinh ζ ±
√

8− p
2(7 − p) cosh ζ

]
,

c =
1

ρ

[
p+ 1

16
+

βp
4

√
p+ 1

7− p sinh ζ ± 1√
2(7 − p)(8− p)

cosh ζ

]
,

f =
1

ρ

[
− βp +

1

4

√
(p+ 1)(7 − p) sinh ζ

]
. (6.64)
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For p = 7, with the parametrization (6.43), the coefficients become

a = ∓ e±ζ

4
√
3 ρ

,

b =
1

ρ

[
1

2
∓ 2 e±ζ

√
3

+

√
3

4
sinh ζ

]
,

c =
1

ρ

[
1

2
+

√
3

4
sinh ζ

]
,

f =
1

ρ

[
± 2 e±ζ

√
3
− 1

]
. (6.65)

αA, αC and αφ satisfy eqs. (5.9) and (5.10), so that the large–r behavior of these solutions is

captured by the Kasner–like vacua of Section 5. This can be verified from these expressions,

but it is implied by the fact that, for E > 0, Z ∼ − r
ρ
as r → ∞. As a result, A, C

and φ in eqs. (6.4) and (6.5) approach a linear dependence on r, while the Hamiltonian

constraint (6.38) is independent of the flux. This is precisely the setting of Section 5.

Depending on the sign of b, this type of asymptotic behavior corresponds indeed to one

or the other of the two regions r → ±∞ of eqs. (5.12), which describe corresponding

solutions in the absence of a flux. On the other hand, close to r = 0 the flux dominates

and spacetime ends. For this reason one can obtain solutions with positive energy, finite

string coupling, finite r–length and finite effective Planck mass in the presence of fluxes,

which was impossible in the setup of Section 5. One can rightfully state that these vacua

interpolate between the supersymmetric solutions of Section 4, in the region where the flux

dominates, and the Kasner–like solutions in the absence of fluxes of Section 5, in the region

where the flux fades out.

Alternatively, in the absence of flux there was always a boundary, in eq. (5.12), as r → −∞,

and here the flux introduces another boundary. If the new boundary coincides with the

original one, the resulting setup is similar to the one in Section 5. However, if the new

boundary lies at the other end, the result can be a finite interval with the novel features

that we have illustrated. B determines indeed the length of the interval, which can be

finite or infinite, and the same is true for the asymptotic behavior of the string coupling as

r→ +∞. Moreover, in the gauge F = 0 the (p+1)–dimensional Planck mass is determined

by B −A if the internal (8− p) dimensions are compact, since

(
MP l(p+1)

)p−1
=
(
MP l(10)

)8
Vol(T p+1) ×

∫ ∞

0
dr e2(B−A) , (6.66)
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where Vol(T p+1) = Rp+1 is the parametric volume of the internal torus. Since asymptoti-

cally B −A ∼ (b− a)r, the finiteness of the p+ 1–dimensional Planck mass is granted by a

negative sign of

b − a =
1

ρ

[
1

2
+

2βp√
(p+ 1)(7 − p)

sinh ζ ±
√

(8− p)
2(7− p) cosh ζ

]
(6.67)

if p < 7, or by a negative sign of

b − a =
1

ρ

[
1

2
∓ 7 e±ζ

4
√
3

+

√
3

4
sinh ζ

]
(6.68)

if p = 7, since the corresponding contributions at the origin are well behaved for all values

of p. Both options are possible, depending on the branch and the value of ζ, but for

p > 0 finite(infinite) internal lengths always accompany finite(infinite) values of the effective

Planck mass.

There are also special values of ζ in both branches, such that f = 0,

sinh ζ =
4βp√

(p+ 1)(7 − p)
, (6.69)

for which the string coupling approaches a finite value as r → +∞. This value separates

the two regions of strong and weak coupling for large values of r. Hence, there are cases

where supersymmetry is broken, the string coupling is bounded, the length of the r–interval

is finite and the effective Planck mass are also finite.

In particular, for p = 3, a special case of eqs. (6.28) with φ1 = 0 yields a relatively sim-

ple four–dimensional flat vacuum of this type from the type–IIB string, where the string

coupling is constant, and is thus finite everywhere. In the Einstein frame, with vanishing

values for φ2 and β, the corresponding metric reads

ds2 =

[ |H5|√
2
ρ sinh

(
r

ρ

)]− 1
2

dx2

+

[ |H5|√
2
ρ sinh

(
r

ρ

)] 1
2
(
e
−
√

5
2

r
ρ dr2 + e

− r

ρ
√

10 d~y 2

)
. (6.70)

The corresponding five-form field strength reads

H5 =
H5

2
√
2





dx0 ∧ ... ∧ dr
[
|H5|√

2
ρ sinh

(
r
ρ

)]2 + dy1 ∧ ... ∧ dy5





. (6.71)

Notice that, in the limit ρ → ∞, these expressions reduce the supersymmetric ones in

eqs. (4.51), which were obtained from the Killing–spinor equations.
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2. For E = 0, f(r) is given in eq. (6.44), and for large values of r and for RR forms, the

contributions to the metric behave as

A ∼ − |φ1| ǫ (p− 3) r

4 (p+ 1)
,

B ∼ ǫ |φ1| r
4(7− p)√p+ 1

[
(p − 3)

√
p+ 1 ± 8 ǫ

√
2
√

8− p
]
,

C ∼ |φ1| ǫ r
4(7− p)√p+ 1

[
(p − 3)

√
p+ 1 ± 8

√
2√

8− p

]
,

φ ∼ ǫ |φ1| r , (6.72)

where ǫ is the sign of φ1.

Consequently, for φ1 6= 0 the solutions approach, at the second boundary, a no–flux Kasner–

like behavior as in eqs. (6.62), with

αA = − (7− p)(p − 3)√
p+ 1

[
(p− 3)

√
p+ 1 ± 8 ǫ

√
2
√
8− p

] ,

αC =
(p − 3)

√
p+ 1 ± 8 ǫ

√
2√

8−p[
(p− 3)

√
p+ 1 ± 8 ǫ

√
2
√
8− p

] ,

αφ =
4 ǫ (7 − p)√p+ 1[

(p− 3)
√
p+ 1 ± 8 ǫ

√
2
√
8− p

] , (6.73)

so that, in the parametrization of eqs. (5.13),

sin θ =
3 ǫ (7 − p)√p+ 1[

(p− 3)
√
p+ 1 ± 8 ǫ

√
2
√
8− p

] . (6.74)

Different options are thus possible, in the two branches of these solutions, for the length of

the internal interval and for the behavior of the string coupling.

On the other hand, for φ1 = 0 the solutions in this class reduce to the supersymmetric

ones obtained in Section 4 from the conditions determining the Killing spinors. In terms of

the proper length, their limiting behavior is captured by eqs. (6.61), which are not of the

flux–free form (5.13).

3. For E < 0 the range of r is finite, together with the length of the interval, since the

behavior at the two ends is the same as in eqs. (6.59). Moreover, depending on the sign

of βp, the string coupling can vanish or diverge at both ends. It vanishes for RR forms

for p < 3, and also for the NS 7–form, while it blows up for RR forms for p > 3 and for

the fundamental string. The effective Planck mass is finite in all cases. All these solutions

break supersymmetry and have no counterparts in the absence of fluxes.
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Summarizing, the r interval can have a finite or infinite length, depending on the values of C1

and φ1, the two constants in eqs. (6.4), and the string coupling diverges at least at one end, in

most cases. However, due to the presence of fluxes, in some cases with broken supersymmetry

the string coupling can remain bounded everywhere, even within intervals of finite length, and

the effective Planck mass in p+ 1 dimensions can also be finite.

6.1.6 Behavior of a Probe Dp-Brane

One can describe a probe p-brane moving along the r direction in the class of backgrounds of

interest, considering the action

S = −TpVp
∫
dt e−φ eA(p+1)

√
1 − e2(B−A) ṙ2 + qpVp

∫
dt bp+1 . (6.75)

It can be deduced from the string–frame results of eq. (6.36), so that

b′p+1 =
Hp+2

[f(r)]2
. (6.76)

One is thus led, for E > 0, to

bp+1 = −
√
E

Hp+2
coth

(√
Er
)
, (6.77)

while the other cases with E ≤ 0 can be obtained as a limit or by an analytic continuation, and

consequently

S = −TpVp
∫

dt

f(r)

√
1 − ṙ2f(r) e

(3−p)p
2(p+1)

(φ1r+φ2) − qpVp
√
E

Hp+2

∫
dt coth

(√
Er
)
, (6.78)

where Vp denotes the volume in the spatial directions for the brane. It is interesting to take a

closer look at the behavior near r = 0, where the background approaches the supersymmetric

limit. For a non–relativistic brane

S ≃
∫
dt

[
− Tp Vp

f(r)
+ ṙ2

Tp Vp
2

e
(3−p)p
2(p+1)

(φ1r+φ2)
]
− qpVp

√
E

Hp+2

∫
dt coth

(√
Er
)
, (6.79)

and close to r = 0 one can thus identify the potential

V (r) =
Vp

Hp+2 r
(Tp + qp) . (6.80)

Its gravitational portion, proportional to the tension Tp, is repulsive, while its “electric” portion,

proportional to the charge qp, is also repulsive for qp > 0. Therefore, the singularity at r = 0

behaves like a BPS extended object of negative tension and positive charge, which in ten dimensions
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is naturally regarded as an orientifold, since the two contributions are equal in magnitude. While

we have derived them working for E > 0, these results apply for all values of E. Moreover,

similar considerations apply to eleven–dimensional supergravity, where there is no dilaton and,

as we have seen, E > 0.

6.2 Solutions with h–Fluxes

We can now turn to the second option that we have discussed in Section 2, the presence of

h–fluxes, with field strength

Hp+1 = hp+1 ǫp+1 , (6.81)

with a constant hp+1.

For non-selfdual cases, the starting point is now the system

A′′ =
(D − p− 2)

2 (D − 2)
e2Y h2p+1 ,

C ′′ = − p

2 (D − 2)
e2 Y h2p+1 ,

φ′′ =
βp−1 (D − 2)

8
e2 Y h2p+1 , (6.82)

which a special case of eqs. (3.8)–(3.11), where p > 0 and

Y = (D − p− 2)C − βp−1 φ , (6.83)

after using the harmonic gauge condition. One can therefore work with the equation for Y ,

Y ′′ = − ∆̃2 e2 Y , (6.84)

where

∆̃2 =
δ̃ 2

2
h2p+1 , (6.85)

and

δ̃ 2 =
p(D − p− 2)

(D − 2)
+

β2p−1 (D − 2)

4
, (6.86)

which determines the behavior of A, C and φ, according to

A = − D − p− 2

(D − 2) δ̃ 2
Y + A1 r + A2 ,

φ = − βp−1 (D − 2)

4 δ̃ 2
Y + φ1 r + φ2 ,

C =
p

(D − 2) δ̃2
Y + βp−1

φ1 r + φ2
D − p− 2

, (6.87)
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where A1, A2, φ1 and φ2 are constants. The equation for Y can turned into the non–relativistic

energy conservation condition
(
Y ′)2 = − ∆̃2 e2Y + Ẽ , (6.88)

where now Ẽ must be positive, while the Hamiltonian constraint reads

(p + 1)A′[pA′ + (D − p− 2)C ′] + (D − p− 2)C ′[(D − p− 3)C ′ + (p + 1)A′]

− 4 (φ′)2

D − 2
− 1

2
e 2Y h2p+1 = 0 , (6.89)

and allows to relate Ẽ to the integration constants, according to

Ẽ = δ̃ 2

[
p(p+ 1)

(
A1 +

βp−1

p
φ1

)2

− φ21

(
β2p−1 (D − 2)

p (D − p− 2)
+

4

D − 2

)]
. (6.90)

Equivalently

Ẽ = δ̃ 2

[
p(p+ 1)

(
A1 +

βp−1

p
φ1

)2

− 4φ21 δ̃
2

p (D − p− 2)

]
, (6.91)

where we used eq. (6.86). This result is consistent with eq. (6.8) and with the symmetry trans-

formation in eq. (3.12).

In ten dimensions, after using the Ramond–Ramond expression for βp−1, letting Ẽ = 1
ρ̃2
, the

preceding expression can be cast in the form

1 = 2 ρ̃2

[
p(p+ 1)

(
A1 +

p− 4

4 p
φ1

)2

− 8φ21
p (8− p)

]
, (6.92)

and one can parametrize the solutions according to

φ1 =
1

4ρ̃

√
p(8− p) sinh ζ̃ ,

A1 = − p− 4

16 ρ̃

√
8− p
p

sinh ζ̃ ± 1

ρ̃
√

2p(p+ 1)
cosh ζ̃ . (6.93)

According to Appendix B,

e−Y ≡ f̃(r) = |hp+1| cosh
(
r

ρ̃

)
, (6.94)

so that −∞ < r < +∞, and consequently

ds2 =
[
f̃(r)

] 8−p
8
[
e 2(A1 r+A2) dx2 + e

p−4
2

(φ1 r+φ2)+2(p+1)(A1 r+A2)dr2
]

+
[
f̃(r)

]− p
8
e

(p−4)
2(8−p)

(φ1 r+φ2) d~y 2 ,

eφ =
[
f̃(r)

] p−4
4
eφ1 r+φ2 ,

Hp+1 = hp+1 ǫp+1 . (6.95)
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In this setting the string coupling can be bounded everywhere provided

±
√
p(8− p) sinh ζ̃ + p − 4 < 0 , (6.96)

or

p < 4 ,
∣∣∣sinh ζ̃

∣∣∣ ≤
∣∣∣∣∣

p− 4√
p(8− p)

∣∣∣∣∣ , (6.97)

but the length of the internal interval and the effective Planck mass are always infinite. There

are again several options for the length of the internal interval and for the effective Planck mass,

and the p = 4 case must treated separately, since the five form in type IIB is self-dual.

7 Cosmologies with Fluxes

There are also interesting cosmological counterparts of the preceding solutions, which can be

obtained by the analytic continuation of r to τ in the original system of eqs. (6.2).

7.1 Cosmological Solutions with H–Fluxes

The analytic continuation has a notable consequence: it reverts the Newtonian potential, so that

the solutions are related to the case ǫ = −1 in Appendix B, and rest on

g(τ) = |Hp+2| ρ cosh

(
τ

ρ

)
. (7.1)

As a result, these cosmologies are described by

ds2 = [g(τ)]
p−7
8 e

− 2 βp(φ1 τ+φ2)

p+1 dx2 − [g(τ)]
p+1
8 e− 2βp(φ1 τ+φ2)+2(8−p)(C1 τ+C2)dτ2

+ [g(τ)]
p+1
8 e 2(C1 τ+C2)d~y 2 ,

eφ = [g(τ)]− βp e 2 (φ1 τ+φ2) ,

Hp+2 = Hp+2
ǫp+1 dr

[g(τ)]2
. (7.2)

Here −∞ < τ <∞, and there are two branches for C1 and φ1, which can be parametrized as

C1 =
βp
4 ρ

√
p+ 1

7− p sinh ζ ± cosh ζ

ρ
√

2(8− p)(7− p)
,

φ1 =

√
(p+ 1)(7 − p)

4 ρ
sinh ζ , (7.3)

for p < 7, and as

φ1 = ± 2√
3 ρ

e± ζ , C1 =

√
3

4 ρ
sinh ζ (7.4)
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for p = 7.

Different types of asymptotic behavior are possible as τ → ǫ∞, where ǫ = ±1, as can be seen

from the limiting forms,

ds2 ∼ − e 2 b τ dτ2 + e 2 a τ dx2 + e 2 c τ dy2 ,

eφ ∼ e f τ , (7.5)

with

a = − 1

ρ

[
7− p
16

ǫ +
βp
4

√
7− p
p+ 1

sinh ζ

]
,

b =
1

ρ

[
p+ 1

16
ǫ +

βp
4

√
p+ 1

7− p sinh ζ ±
√

8− p
2(7− p) cosh ζ

]
,

c =
1

ρ

[
p+ 1

16
ǫ +

βp
4

√
p+ 1

7− p sinh ζ ± 1√
2(7− p)(8− p)

cosh ζ

]
,

f =
1

ρ

[
− βp ǫ +

1

4

√
(p + 1)(7 − p) sinh ζ

]
, (7.6)

while for p = 7, with the parametrization (7.4), the coefficients become

a = ∓ e±ζ

4
√
3 ρ

,

b =
1

ρ

[
ǫ

2
∓ 2 e±ζ

√
3

+

√
3

4
sinh ζ

]
,

c =
1

ρ

[
ǫ

2
+

√
3

4
sinh ζ

]
,

f =
1

ρ

[
± 2 e±ζ

√
3
− 1

]
. (7.7)

The solutions manifest a power–like behavior in terms of the cosmic time for large values of τ ,

close to the initial and final singularities, with different scale factors for the physical and internal

portions of the space:

ds2 = − dt2 + a21(t) dx
2 + a22(t) dy

2 . (7.8)

Here

a1 ∼ |b t|
a
b , a2 ∼ |b t|

c
b , (7.9)

so that different types of scenarios are possible, with both portions of the space expanding or one

expanding and one contracting, depending on the relative signs of these quantities. This is also

true for the string coupling, which can attain strong or weak coupling at the singularities. In the

RR case the string coupling can be bounded during the whole cosmological evolution if p ≥ 3 and

|ζ| is small enough, and the same is true in the NS-NS case for p = 1.
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7.2 Cosmological Solutions with h–Fluxes

The solutions for this case can be deduced from eqs. (6.13), making use the transformations of

eqs.(3.12). One thus obtains

ds2 = [f(τ)] 2 σB

[
e 2(A1 r+A2) d~x 2 − e 2βp−1(φ1 r+φ2)+2(p+1)(A1 r+A2)dτ2

]

+ [f(τ)]− 2σA e
2 βp−1(φ1 τ +φ2)

D−p−2 d~y 2 ,

eφ = [f(τ)]− σφ eφ1 τ+φ2 ,

Hp+1 = hp+1 ǫp+1 , (7.10)

where

σA =
p

δ̃2 (D − 2)
, σB =

(D − p− 2)

δ̃2 (D − 2)
, σφ = − βp−1 (D − 2)

4 δ̃2
, (7.11)

and

δ̃2 =
1

(D − 2)

[(
βp−1 (D − 2)

2

)2

+ p(D − p− 2)

]
. (7.12)

Here

f(τ) =
∆̃√
E

sinh
(√

Eτ
)
, (7.13)

∆̃2 =
h2p+1 δ̃

2

2
. (7.14)

and

E = δ̃2

[(
(D − p− 3)β2p−1

D − p− 2
− 4

D − 2

)
φ21 + (p+ 1)A1 [pA1 + 2βp−1 φ1]

]
. (7.15)

There are now two cases of interest. The first is D = 11, where βp−1 = 0 and p = 3, 6. The second

is D = 10, where in the RR case p is even in Type IIA and odd in Type IIB and βp−1 =
p−4
4 . The

p = 4 case is special, since the form is self–dual, and must be treated separately. On the other

hand, in the NS-NS case p = 2 with β1 =
1
2 and p = 6 with β5 = − 1

2 , as can be seen in Table 2.

7.2.1 The D = 11 Cases

In these cases δ̃2 = 2, and one can see from eq. (7.15) that E ≥ 0. Therefore, for p = 3 one

obtains the five–dimensional cosmologies

ds2 = [f(τ)]
2
3

[
e 2(A1 r+A2) d~x 2 − e 8(A1 r+A2) dτ2

]
+ [f(τ)]−

1
3 d~y2 ,

H4 = h4 ǫ4 , f(τ) =
h4

2
√
6 |A1|

sinh
(
2
√
6 |A1| τ

)
, (7.16)
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while for p = 6 one obtains four–dimensional cosmologies if the x are compact coordinates and

the y are non–compact coordinates

ds2 = [f(τ)]
1
3

[
e 2(A1 τ+A2) d~x 2 − e 14(A1 τ+A2) dτ2

]
+ [f(τ)]−

2
3 d~y 2 ,

H4 = h7
ǫ3 dτ

[f (τ)]2
, f(τ) =

h7

2
√
21 |A1|

sinh
(
2
√
21 |A1| τ

)
, (7.17)

but in this case one must let τ run backwards from +∞. The E = 0 solutions can be recovered

in the limit A1 → 0.

7.2.2 The D = 10 Cases

In all these cases (RR for p 6= 4 and NS-NS) there are three classes of solutions, as in Section 6.1,

depending on the value of E.

1. If E > 0 in eq. (6.39), letting E = 1
ρ2
, one can see from eq. (7.13) that

f(τ) = ∆̃ ρ sinh

(
τ

ρ

)
, (7.18)

where 0 < τ <∞, up to a translation and a choice of orientation on the r axis. Eq. (7.15)

then shows that, for p > 0, the independent choices for A1 and φ1 can be expressed in terms

of a real parameter ζ according to

A1 = − βp−1

4 ρ

√
8− p
p

sinh ζ ± cosh ζ

ρ
√

2p(p + 1)
,

φ1 =

√
p(8− p)
4 ρ

sinh ζ , (7.19)

while for p = 0

φ1 = ± 2√
3 ρ

e± ζ , A1 =

√
3

4 ρ
sinh ζ . (7.20)

2. If E = 0, one can see from one can see from eq. (7.13)

f(τ) = ∆̃ τ , (7.21)

where 0 < τ <∞, and then for p > 0

A1 =
φ1
p

[
−βp−1 ±

2
√
2 sign(φ1)√

(p+ 1)(8 − p)

]
, (7.22)

while for p = 0 there are again two branches of solutions, with

φ1 = 0 (7.23)
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and A1 arbitrary, which are Kasner–like, or with

φ1 =
16

3
A1 . (7.24)

3. If E < 0, letting E = − 1
ρ2
, one can see from eq. (7.13) that

f(τ) = ∆̃ ρ sin

(
τ

ρ

)
, (7.25)

where 0 < τ < π ρ, up to a translation and a choice of orientation on the τ axis. Eq. (7.15)

then shows that for p > 0 the independent choices for A1 and φ1 can be expressed in terms

of a real parameter ζ, according to

φ1 = ±
√
p(8− p)
4 ρ

cosh ζ ,

A1 = ∓ βp−1

4 ρ

√
8− p
p

cosh ζ +
sinh ζ

ρ
√

2p(p + 1)
. (7.26)

On the other hand, for p = 7 there are again two branches of solutions, with

φ1 = ± 2√
3 ρ

e± ζ , A1 =

√
3

4 ρ
sinh ζ . (7.27)

Within this class of solution it is relatively simple to attain a bounded string coupling through-

out a four–dimensional cosmological evolution. This is the case, for example, for the upper branch

of four–dimensional solutions in eqs. (7.19) with an NS-NS flux (p = 2, β1 = 3
4).

8 Conclusions

In this paper, starting from the special class of metric profiles of eq. (1.1), we have set up a

formalism that can encompass a wide class of compactifications (or cosmologies) depending on a

single coordinate. These involve, in general, a maximally symmetric spacetime and a maximally

symmetric internal space, and are also suitable to describe brane profiles. Here we have confined

our attention to compactifications from D = 10 and D = 11 to Minkowski spaces, resorting to

a simple flat internal manifold, a torus, but one can conceive generalizations of our results that

involve Ricci–flat internal spaces. A warping factor is always present, and plays an important

role in these types of vacuum solutions. Settings of this type induce a spontaneous breaking of

supersymmetry, in ways that are controlled by tunable parameters.

After discussing the supersymmetric options that, aside from flat space, require the presence

of internal fluxes, we have considered vacuum solutions that break supersymmetry in the absence
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of fluxes. These are generalized Kasner solutions that are characterized by a singularity at a

finite distance, and the string coupling diverges either there or at infinity. We then examined the

general effects of a form flux compatible with the symmetries of the metrics in eq. (1.1). This

addition resulted in the emergence of three families of backgrounds, which are distinguished by

the energy E of a Newtonian particle subject to an exponential potential. The three families

of solutions have in common a singular boundary at the origin, where the form field strength

diverges and where they approach a supersymmetric limit, which belongs to the zero–energy

family. The behavior of a probe brane in the vicinity of this boundary revealed the presence

at the origin of a BPS–like extended object, with negative tension and positive charge. In the

resulting allowed region, the two families of non–supersymmetric solutions with E ≥ 0 interpolate

between a supersymmetric vacuum at the origin and one of the Kasner–like vacua with no flux

at the other boundary, which can lie at a finite or infinite distance from it. The solutions of the

third family, with E < 0, have a second boundary at a finite distance from the origin where they

approach again a supersymmetric behavior. Curvature singularities remain present in all these

vacua [20], but the string coupling is everywhere bounded in some cases. We have characterized

precisely their moduli spaces, which include special subsets of parameters where supersymmetry is

recovered globally. We have also studied corresponding classes of cosmological models, which can

be obtained from the vacuum solutions via analytic continuations. In one class of these models,

it is simple and natural to obtain finite values of the string coupling throughout the cosmological

evolution.

The solutions that we have discussed result in lower–dimensional Minkowski spaces, and in

this respect they are somewhat reminiscent of the well-known and widely explored Calabi-Yau

vacua [2], which led to systematic investigations of the partial breaking of supersymmetry in String

Theory. Ending up in Minkowski space is clearly interesting in connection with Particle Physics.

However, it also hides internal scales, opening a potentially useful window for perturbatively

stable vacua. This feature should be contrasted with the behavior of the non–supersymmetric

AdS ×S solutions of [10], where the scales of the internal spheres and of the AdS spacetimes are

related, and consequently unstable Kaluza–Klein modes show up inevitably [21] (see [22] and [23]

for reviews). Among the vacua that we have analyzed, we have found a particularly interesting

class of IIB compactifications to four dimensions supported by a flux of the self–dual five form,

where the string coupling is everywhere bounded. In [14] we shall explore further these fluxed

compactifications to four dimensions, addressing in detail the key issue of perturbative stability,
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which has proved daunting for non–supersymmetric AdS vacua.

A common feature of non–supersymmetric vacua is the emergence of severe back-reactions.

This will be the case for all the examples discussed in this paper, once quantum effects are

taken into account. Back-reactions have long been recognized as an important issue in the widely

explored context of Scherk-Schwarz compactifications [5], which have simple realizations in String

Theory [24], even when open string are present [25]. However, similar back-reactions present

themselves in a more basic context already in ten dimensions, in the three ten–dimensional

non–supersymmetric non–tachyonic models of [26], [27], and of [28], where supersymmetry is

non-linearly realized [29], and lead to the emergence of a peculiar contribution to the low–energy

effective action, a “tadpole potential”

∆S = − T

∫
d10x

√−g eγφ , (8.1)

where γ = γc = 3
2 for the orientifold models and γ = 5

2 for the heterotic SO(16) × SO(16)

model. The same types of potentials are the leading contributions to generic string models when

quantum corrections due to broken supersymmetry are taken into account. Their effects on

vacuum solutions of the type considered here will lead to generalizations of the Dudas–Mourad

vacuum [11], of their counterparts for generic values of γ in [12], and of the climbing–scalar

cosmologies [13], with a number of novel features. These systems are the main topic of the

companion paper [9].
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Appendix A Some Technical Details

For the backgrounds of eq. (1.1), the Riemann tensor is computed most conveniently starting

from the one–form spin connection, with non–vanishing components

ωµ
r = − ωr

µ = eA−B A′ dxµ , ωi
r = − ωr

i = eC−B C ′ dyi . (A.1)

The non–vanishing contributions to the curvature two-form

ΩA
B ≡ 1

2
RMNA

B dxM ∧ dxN = dωA
B + ωA

C ∧ ωC
B , (A.2)

when converted to curved indices, determine the background Riemann tensor, where here we add

also the contributions from the curvatures of the maximally symmetric metrics γµν and γmn:

Ωrµ = −
(
eA−B A′)′ dr ∧ dxµ , Ωrm = −

(
eC−B C ′)′ dr ∧ dym ,

Ωµν = −
[
e2(A−B)

(
A′)2 − k

α′

]
dxµ ∧ dxν ,

Ωmν = − eA+C−2B A′ C ′ dym ∧ dxν ,

Ωmn = −
[
e2(C−B)

(
C ′)2 − k′

α′

]
dym ∧ dyn . (A.3)

Consequently, the Riemann tensor with all curved indices has the non–vanishing components

Rrµr
ν = − δµ

ν eB−A
(
eA−B A′)′ , Rrmr

n = − δm
n eB−C

(
eC−B C ′)′ ,

Rαβµ
ν = − γµ[α δβ]

ν

[
e2(A−B)

(
A′)2 − k

α′

]
, Rνnµ

m = − e2(A−B) γµν δn
mA′C ′ ,

Rmnp
q = − γp[m δn]

q

[
e2(C−B)

(
C ′)2 − k′

α′

]
, Rνnm

µ = e2(C−B) δν
µ γmnA

′ C ′ , (A.4)

together with others obtained from these by symmetry, and thus

R(0)
µν = − γµνe

2A
[
p(A′)2 e−2B + (D − p− 2)A′ C ′e−2B +

(
A′eA−B

)′
e−A−B

− p k

α′ e
−2A

]
,

R(0)
rr = −

[
(p+ 1)

(
A′eA−B

)′
eB−A + (D − p− 2)

(
C ′eC−B

)′
eB−C

]
,

R(0)
mn = − γmne

2C
[
(D − p− 3)(C ′)2 e−2B + (p+ 1)A′ C ′e−2B +

(
C ′eC−B

)′
e−B−C

− (D − p− 3) k′

α′ e−2C

]
. (A.5)
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In the harmonic gauge (2.14)

R(0)
µν = − γµν

[
e2(A−B) A′′ − p k

α′

]
,

R(0)
rr = −

[
(p+ 1)A′′ + (D − p− 2)C ′′ − p(p+ 1)

(
A′)2

− (D − p− 2)(D − p− 3)
(
C ′)2 − 2(p+ 1)(D − p− 2)A′C ′

]
,

R(0)
mn = − γmn

[
e2(C−B) C ′′ − (D − p− 3) k′

α′

]
. (A.6)

Consequently the scalar curvature is

R = −2e−2B
[
(p+ 1)A′′ + (D − p− 2)C ′′]

+
p(p+ 1)k

α′ e−2A +
(D − p− 1)(D − p− 2)k′

α′ e−2C (A.7)

+ e−2B
[
p(p+ 1)(A′)2 + 2(p + 1)(D − p− 2)A′C ′ + (D − p− 2)(D − p− 3)(C ′)2

]
.

and therefore

Grr = − 1

2

p(p+ 1)k

α′ e2(B−A) − 1

2

(D − p− 1)(D − p− 2)k′

α′ e2(B−C) (A.8)

+
1

2

[
p(p+ 1)(A′)2 + 2(p+ 1)(D − p− 2)A′C ′ + (D − p− 2)(D − p− 3)(C ′)2

]
.

In order to build the contributions of tensor fields strengths to the Einstein equations one needs

to take into account some properties of the field strengths of eqs. (2.18) and (2.19),

(
Hp+2

2
)
µν

= − (p+ 1)!
(
b′p+1(r)

)2
e−2pA−2B γµν ,

(
Hp+2

2
)
rr

= − (p+ 1)!
(
b′p+1(r)

)2
e−2(p+1)A , (A.9)

and
(
Hp+1

2
)
µν

= − p! h2p+1e
−2pAγµν . (A.10)

There are also two special cases related to self–dual forms. The first concerns the self–dual profile

of eq. (2.26), for which

(
H5

2
)
µν

= − 3H2
5 e

2A−10C γµν ,
(
H5

2
)
rr

= − 3H2
5 e

2B−10C ,

(
H5

2
)
mn

= 3H2
5 e

−8C γmn , (A.11)

consistently with

H2
5 = 0 , (A.12)

which is implied by the self–duality. The second concerns the corresponding h-profile of eq. (2.27),

for which

(
H5

2
)
µν

= − 3h25 e
−8A γµν ,

(
H5

2
)
rr

= 3h25 e
2B−10A ,

(
H5

2
)
mn

= 3h25 e
2C−10A γmn . (A.13)
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Appendix B A Useful Newtonian Model

In this Appendix we discuss the differential equation

Z ′′ = ǫ∆2 e 2Z , (B.1)

where ǫ = ±1 and ∆ is real and positive, which plays a role in various parts of the paper. This

equation has the first integral

(Z ′)2 = E + ǫ∆2 e2Z , (B.2)

which has the form of an energy conservation condition for a Newtonian particle, and in order to

proceed further one must distinguish a few cases.

1. If ǫ = 1 and E = 1
ρ2
> 0, letting

x =
r

ρ
(B.3)

eq. (B.2) becomes (
dZ

dx

)2

= 1 + (∆ ρ)2 e2Z . (B.4)

The redefinition

Z = Z̃ − log(∆ ρ) (B.5)

leads to the reduced equation

(
dZ̃

dx

)2

= 1 + e2 Z̃ , (B.6)

and therefore finally to the solutions

Z = − log

[
∆ ρ sinh

(
r − r0
ρ

)]
, (B.7)

in the region r > r0, or

Z = − log

[
∆ ρ sinh

(
r0 − r
ρ

)]
, (B.8)

in the region r < r0.

2. If ǫ = 1 and E = − 1
ρ2
< 0, letting

x =
r

ρ
(B.9)

eq. (B.2) becomes (
dZ

dx

)2

= − 1 + (∆ ρ)2 e2Z . (B.10)
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The redefinition

Z = Z̃ − log(∆ ρ) (B.11)

leads to the reduced equation

(
dZ̃

dx

)2

= − 1 + e2 Z̃ , (B.12)

and therefore finally to the solution

Z = − log

[
∆ ρ cos

(
r − r0
ρ

)]
, (B.13)

which is valid for |r − r0| < π ρ
2 , and one can conveniently choose r0 = 0. These solutions

can be obtained from those of the preceding case letting

r − r0 → i
(
r − r0 −

π

2

)
, ∆ → − i∆ . (B.14)

3. If ǫ = 1 and E = 0, eq. (B.2) reduces to

Z ′ = ±∆ eZ , (B.15)

which can be simply integrated and yields

e−Z = ∓∆(r − r0) , (B.16)

where r0 is another integration constant. Here clearly the upper sign is associated to the

region r < r0, where the real solution reads

Z = − log∆ (r0 − r) . (B.17)

while the lower one is associated to the region r > r0, where the real solution reads

Z = − log∆ (r − r0) . (B.18)

These types of solutions capture the limiting behavior of the preceding cases when E is

negligible with the respect to the exponential e2Z , and thus as ρ→∞.

4. Finally, If ǫ = −1 and E = 1
ρ2
> 0, letting

x =
r

ρ
(B.19)

eq. (B.2) becomes (
dZ

dx

)2

= 1 − (∆ ρ)2 e2Z . (B.20)
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The redefinition

Z = Z̃ − log(∆ ρ) (B.21)

leads to the reduced equation

(
dZ̃

dx

)2

= 1 − e2 Z̃ , (B.22)

and therefore finally to the solution

Z = − log

[
∆ ρ cosh

(
r − r0
ρ

)]
, (B.23)

for all real values of r. This can be continued to the first solution combining the two

transformations
r

ρ
→ r

ρ
+ i

π

2
, ∆ → − i∆ . (B.24)
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