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We analyze the parametric structure of twin Higgs (TH) theories and assess the gain in fine tuning which
they enable compared to extensions of the standard model with colored top partners. Estimates show that, at
least in the simplest realizations of the TH idea, the separation between the mass of new colored particles
and the electroweak scale is controlled by the coupling strength of the underlying UV theory, and that a
parametric gain is achieved only for strongly-coupled dynamics. Motivated by this consideration we focus
on one of these simple realizations, namely composite TH theories, and study how well such constructions
can reproduce electroweak precision data. The most important effect of the twin states is found to be the
infrared contribution to the Higgs quartic coupling, while direct corrections to electroweak observables are
subleading and negligible. We perform a careful fit to the electroweak data including the leading-
logarithmic corrections to the Higgs quartic up to three loops. Our analysis shows that agreement with
electroweak precision tests can be achieved with only a moderate amount of tuning, in the range 5%–10%,
in theories where colored states have mass of order 3–5 TeVand are thus out of reach of the LHC. For these
levels of tuning, larger masses are excluded by a perturbativity bound, which makes these theories possibly
discoverable, hence falsifiable, at a future 100 TeV collider.
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I. INTRODUCTION

The principle of naturalness offers arguably the main
motivation for exploring physics at around the weak scale.
According to naturalness, the plausibility of specific
parameter choices in quantum field theory must be assessed
using symmetries and selection rules. When viewing the
standard model (SM) as an effective field theory valid
below a physical cutoff scale and considering only the
known interactions of the Higgs boson, we expect the
following corrections to its mass.1

δm2
h ¼

3y2t
4π2

Λ2
t −

9g22
32π2

Λ2
g2 −

3g21
32π2

Λ2
g1 −

3λh
8π2

Λ2
h þ � � � ;

ð1:1Þ

where each Λ represents the physical cutoff scale in a
different sector of the theory. The above equation is simply
dictated by symmetry: dilatations (dimensional analysis)
determine the scale dependence and the broken shift
symmetry of the Higgs field sets the coupling dependence.
Unsurprisingly, these contributions arise in any explicit UV
completion of the SM, although in some cases there may be
other larger ones. According to Eq. (1.1), any given (large)
value of the scale of new physics can be associated with a
(small) number ϵ, which characterizes the accuracy at
which the different contributions to the mass must cancel
among themselves, in order to reproduce the observed
value mh ≃ 125 GeV. As the largest loop factor is due to
the top Yukawa coupling, according to Eq. (1.1) the scale
ΛNP where new states must first appear is related to m2

h
and ϵ via

Λ2
NP ∼

4π2

3y2t
×
m2

h

ϵ
⇒ ΛNP ∼ 0.45

ffiffiffi
1

ϵ

r
TeV: ð1:2Þ

The dimensionless quantity ϵ measures how finely-tuned
m2

h is, given ΛNP, and can therefore be regarded as a
measure of the tuning. Notice that the contributions from g22
and λh in Eq. (1.1) correspond to ΛNP ¼ 1.1 TeV=

ffiffiffi
ϵ

p
and

ΛNP ¼ 1.3 TeV=
ffiffiffi
ϵ

p
, respectively. Although not signifi-

cantly different from the relation in the top sector, these
scales would still be large enough to push new states out of
direct reach of the LHC for ϵ ∼ 0.1.
Indeed, for a given ϵ, Eq. (1.2) only provides an upper

bound for ΛNP; in the more fundamental UV theory there
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1We take m2
h ¼ 2m2

H ¼ λhv2=2 with hHi ¼ v=
ffiffiffi
2

p ¼ 174 GeV,
which corresponds to a potential

V ¼ −m2
HjHj2 þ λh

4
jHj4:
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can in principle exist larger corrections to m2
h which are not

captured by Eq. (1.1). In particular, in the minimal super-
symmetric SM (MSSM) with high-scale mediation of the
soft terms, δm2

h in Eq. (1.1) is logarithmically enhanced by
RG evolution above the weak scale. In that case, Eq. (1.2) is
modified as follows:

Λ2
NP ∼

2π2

3y2t
×

1

lnΛUV=ΛNP
×
m2

h

ϵ
; ð1:3Þ

where ΛNP corresponds to the overall mass of the stops and
ΛUV ≫ ΛNP is the scale of mediation of the soft terms.
However, for generic composite Higgs (CH) models, as
well as for supersymmetric models with low-scale media-
tion, Eq. (1.2) provides a fair estimate of the relation
between the scale of new physics and the amount of tuning,
the Higgs mass being fully generated by quantum correc-
tions at around the weak scale. If the origin of mh is
normally termed soft in the MSMM with large ΛUV
[Eq. (1.3)], it should then be termed supersoft in models
respecting Eq. (1.2). As is well known, and shown by
Eq. (1.3), the natural expectation in the MSSM for ΛUV ≳
100 TeV is ΛNP ∼mZ ∼mh. In view of this, soft scenarios
were already somewhat constrained by direct searches at
LEP and Tevatron, whereas the natural range of the scale of
supersoft models is only now being probed at the LHC.
Equation (1.2) sets an absolute upper bound onΛNP for a

given fine tuning ϵ, but does not give any information on its
nature. In particular it does not specify the quantum
numbers of the new states that enter the theory at or below
this scale. Indeed, the most relevant states associated with
the top sector, the so-called top partners, are bosonic in
standard supersymmetric models and fermionic in CH
models. Nonetheless, one common feature of these stan-
dard scenarios is that the top partners carry SM quantum
numbers, color in particular. They are thus copiously
produced in hadronic collisions, making the LHC a good
probe of these scenarios. Yet there remains the logical
possibility that the states that are primarily responsible for
the origin of the Higgs mass at or below ΛNP are not
charged under the SM, and thus much harder to produce
and detect at the LHC. The twin Higgs (TH) is probably the
most interesting of the (few) ideas that take this approach
[1–22]. This is primarily because the TH mechanism can, at
least in principle, be implemented in a SM extension valid
up to ultrahigh scales. The structure of TH models is such
that the states at the threshold ΛNP in Eq. (1.2) carry
quantum numbers under the gauge group of a copy, a twin,
of the SM, but are neutral under the SM gauge group. These
twin states, of which the twin tops are particularly relevant,
are thus poorly produced at the LHC. The theory must also
contain states with SM quantum numbers, but their mass
m� is boosted with respect to ΛNP roughly by a factor
g�=gSM, where g� describes the coupling strength of the
new dynamics, while gSM represents a generic SM

coupling. As discussed in the next section, depending on
the structure of the model, gSM can be either the top Yukawa
or the square root of the Higgs quartic. As a result, given the
tuning ϵ, the squared mass of the new colored and charged
states is roughly given by

m2� ∼
4π2

3y2t
×
m2

h

ϵ
×
�

g�
gSM

�
2

: ð1:4Þ

For g� > gSM, we could define these model as effectively
hypersoft, in that, for fixed fine tuning, the gap between the
SM-charged states and the weak scale is even larger than
that in supersoft models. In practice the above equation
implies that, for strong g�, the new states are out of reach of
the LHC even for mild tuning (see Sec. II A for a more
precise statement). Equation (1.4) synthesizes the potential
relevance of the TH mechanism, and makes it clear that the
new dynamics must be rather strong for the mechanism to
work. Given the hierarchy problem, it then seems almost
inevitable to make the TH a composite TH (although it
could also be a supersymmetric composite TH). Realizations
of the TH mechanism within the paradigm of CH models
with fermion partial compositeness [23] have already been
proposed, both in the holographic and effective theory
setups [6,9,13,14].
It is important to recognize that the factor that boosts the

mass of the states with SM gauge quantum numbers in
Eq. (1.4) is the coupling g� itself. Because of this, strong-
dynamics effects in the Higgs sector, which are described
in the low-energy theory by nonrenormalizable operators
with coefficients proportional to powers of g�=m�, do not
“decouple”when these states are made heavier, at fixed fine
tuning ϵ. In the standard parametrics of the CH,m�=g� is of
the order of f, the decay constant of the σ-model within
which the Higgs doublet emerges as a pseudo-Nambu-
Goldstone boson (pNGB). Then ξ≡ v2=f2, as well as
being a measure of the fine tuning through ϵ ¼ 2ξ, also
measures the relative deviation of the Higgs couplings from
the SM ones, in the TH like in any CH model.2 Recent
Higgs coupling measurements roughly constrain ξ≲
10–20% [24], and a sensitivity of order 5% is expected
in the high-luminosity phase of the LHC [25]. However
Higgs loop effects in precision Z-pole observables mea-
sured at LEP already limit ξ≲ 5% [26,27]. Having to live
with this few-percent tuning would somewhat undermine
the motivation for the clever TH construction. In ordinary
CH models this strong constraint on ξ can in principle be
relaxed thanks to compensating corrections to the T̂
parameter coming from the top partners. In the most natural
models, these are proportional to y4t v2=m2� and thus, unlike
the Higgs-sector contribution, decouple when m� is

2The factor of two difference between the fine tuning ϵ and ξ is
due to the Z2 symmetry of the Higgs potential in the TH models,
as shown in Sec. II A [7].
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increased. This makes it hard to realize such a compensa-
tory effect in the most distinctive range of parameters for
TH models, where m� ∼ 5–10 TeV. Alternatively one
could consider including custodial-breaking couplings
larger than yt in the top-partner sector. Unfortunately these
give rise to equally-enhanced contributions to the Higgs
potential, which would in turn require further ad-hoc
cancellations.
As already observed in the literature [13,14] another

important aspect of TH models is that calculable IR-
dominated contributions to the Higgs quartic coupling
almost saturate its observed value. Though a welcome
property in principle, this sets even stronger constraints on
additional UV contributions, such as those induced by extra
sources of custodial breaking. In this paper we study the
correlation between these effects, in order to better assess
the relevance of the TH construction as a valid alternative to
more standard ideas about EW-scale physics. Several such
studies already exist for standard composite Higgs scenar-
ios [28–30]. In extending these to the TH we shall
encounter an additional obstacle to gaining full benefit
from the TH boost in Eq. (1.4): the model structure requires
rather “big” multiplets, implying a large number of degrees
of freedom. This results in an upper bound for the coupling
that is parametrically smaller than 4π by naive dimensional
analysis (NDA); hence the boost factor is similarly
depressed. We shall discuss in detail how serious and
unavoidable a limitation this is.
The paper is organized as follows: in Sec. II we discuss

the general structure and parametrics of TH models,
followed by Sec. III where we discuss the more specific
class of composite TH models we focus on for the purpose
of our study. In Secs. IVand V we present our computations
of the basic physical quantities: the Higgs potential and
precision electroweak parameters (Ŝ; T̂; δgLb). Section VI is
devoted to a discussion of the resulting constraints on the
model and an appraisal of the whole TH scenario. Our
conclusions are presented in Sec. VII.

II. THE TWIN HIGGS SCENARIO

A. Structure and parametrics

In this section we outline the essential aspects of the TH
mechanism. Up to details and variants which are not crucial
for the present discussion, the TH scenario involves an
exact duplicate, gSM, of the SM fields and interactions,
underpinned by a Z2 symmetry. In practice this Z2 must be
explicitly broken in order to obtain a realistic phenom-
enology, and perhaps more importantly, a realistic cosmol-
ogy [19–21]. However the sources of Z2 breaking can have
a structure and size that makes them irrelevant in the
discussion of naturalness in electroweak symmetry break-
ing, which is the main goal of this section.
Our basic assumption is that the SM and its twin emerge

from a more fundamental Z2-symmetric theory at the scale

m�, at which new states with SM quantum numbers, color
in particular, first appear. In order to get a feel for the
mechanism and its parametrics, it is sufficient to focus on
the most general potential for two Higgs doubletsH and ~H,
invariant under the gauge group GSM × ~GSM, with
GSM ¼ SUð3Þc × SUð2ÞL × Uð1ÞY , as well as a Z2:

VðH; ~HÞ ¼ −m2
HðjHj2 þ j ~Hj2Þ þ λH

4
ðjHj2 þ j ~Hj2Þ2

þ λ̂h
8
ðjHj4 þ j ~Hj4Þ: ð2:1Þ

Strictly speaking, the above potential does not have minima
with realistic “tunable” hHi. This goal can be achieved by
the simple addition of a naturally small Z2-breaking mass
term which, while changing the vacuum expectation value,
does not affect the estimates of fine tuning, and hence will
be neglected for the purposes of this discussion. Like for
the SM Higgs, the most general potential is accidentally
invariant under a custodial SOð4Þ × fSOð4Þ. Notice how-
ever that in the limit λ̂h → 0, the additional Z2 enhances the
custodial symmetry to SOð8Þ, where H≡H ⊕ ~H ≡ 8. In
this exact limit, if ~H acquired an expectation value
h ~Hi≡ f=

ffiffiffi
2

p
, all 4 components of the ordinary Higgs H

would remain exactly massless NGBs. Of course the SM
and gSM gauge and Yukawa couplings, along with λ̂h,
explicitly break the SOð8Þ symmetry that protects the
Higgs. Consider however the scenario where these other
couplings, which are known to be weak, can be treated as
small SOð8Þ-breaking perturbations of a stronger SOð8Þ-
preserving underlying dynamics, of which the quartic
coupling λH is a manifestation. In this situation we can
reassess the relation between the SM Higgs mass, the
amount of tuning and the scale m� where new states
charged under the SM are first encountered, treating λ̂h
as a small perturbation of λH. At zeroth order, i.e.,
neglecting λ̂h, we can expand around the vacuum
h ~Hi2 ¼ 2m2

H=λH ≡ f2=2, hHi ¼ 0. The spectrum consists
of a heavy scalar σ, with mass mσ ¼

ffiffiffi
2

p
mH ¼ ffiffiffiffiffiffi

λH
p

f=
ffiffiffi
2

p
,

corresponding to the radial mode, 3 NGBs eaten by the
twin gauge bosons, which get masses ∼gf=2 and the
massless H. When turning on λ̂h, SOð8Þ is broken
explicitly and H acquires a potential. At leading order in
a λ̂h=λH expansion the result is simply given by substituting
j ~Hj2 ¼ f2=2 − jHj2 in Eq. (2.1).3 The quartic coupling and
the correction to the squared mass are then given by

λh ≃ λ̂h δm2
H ∼ λ̂hf2=8≃ ðλh=2λHÞm2

H: ð2:2Þ

3Notice that the effective Higgs quartic receives approximately
equal contributions from jHj4 and j ~Hj4. This is a well-known and
interesting property of the TH, see for instance Ref. [7].
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As mentioned above, we assume that m2
H also receives an

independent contribution from a Z2-breaking mass term,
which can be ignored in the estimates of tuning. Note that
in terms of the physical masses of the Higgs, mh, and of its
heavy twin, mσ, we have precisely the same numerical
relation δm2

h ¼ ðλh=2λHÞm2
σ. The amount of tuning ϵ,

defined as m2
h=δm

2
h, is given by ϵ ¼ 2ξ ¼ 2v2=f2.

Our estimate of δm2
H in Eq. (2.2) is based on a

simplifying approximation where the SOð8Þ-breaking
quartic is taken Z2-symmetric. In general we could allow
different couplings λ̂h and λ̂ ~h for jHj4 and j ~Hj4 respectively,
constrained by the requirement λ̂h þ λ̂ ~h ≃ 2λh. As the
estimate of δm2

H in Eq. (2.2) is determined by the j ~Hj4
term, it is clear that a reduction of λ̂ ~h, with λh fixed, would
improve the tuning, as emphasized in Ref. [22]. As
discussed in Sec. IV, however, a significant fraction of
the contribution to λ̂h and λ̂ ~h is coming from RG evolution
due to the top and twin top. According to our analysis,
λ̂h=λ̂ ~h varies between 1.5 in the simplest models to 3 in
models where λ̂ ~h is purely IR-dominated as in Ref. [22].
Though interesting, this gain does not change our para-
metric estimates.
The ratio λh=λH is the crucial parameter in the game.

Indeed it is through Eq. (2.2) that mH is sensitive to
quantum corrections to the Lagrangian mass parametermH,
or, equivalently, that the physical Higgs mass mh is
sensitive to the physical mass of the radial mode mσ . In
particular, what matters is the correlation ofmσ with, and its
sensitivity to, m�, where new states with SM quantum
numbers appear. One can think of three basic scenarios for
that relation, which we now illustrate, ordering them by
increasing level of model-building ingenuity. Beyond these
scenarios there is the option of tadpole-dominated electro-
weak symmetry breaking, which we shall briefly discuss at
the end.

1. Subhypersoft scenario

The simplest option is given by models with mσ ∼m�.
Supersymmetric TH models with medium- to high-scale
soft-term mediation belong to this class [7], with m�
representing the soft mass of the squarks. Like in the
MSSM, mH, and therefore mσ , is generated via RG
evolution: two decades of running are sufficient to obtain
mσ ∼m�. Another example is composite TH models
[13,14]. In their simplest incarnation they are characterized
by one overall mass scale m� and coupling g� [31], so that
by construction one has mσ ∼m� and λH ∼ g2�. As dis-
cussed below Eq. (2.2), in both these scenarios one then
expects δm2

h ∼ ðλh=2λHÞm2�. It is interesting to compare this
result to the leading top-sector contribution in Eq. (1.1). For
that purpose it is worth noticing that, as discussed in
Sec. IV, in TH models the RG-induced contribution to the
Higgs quartic coupling ΔλhjRG ∼ ð3y4t =π2Þ lnm�=mt (more

than) saturates its experimental value λh ∼ 0.5 for
m� ∼ 3–10 TeV.4 We can thus write

δm2
h ∼ ðλh=2λHÞm2� ∼

3y4t
2π2

1

λH
lnðm�=mtÞm2�

≡ 3y2t
2π2

×
y2t
g2�

× lnðm�=mtÞ ×m2� ð2:3Þ

which should be compared to the first term on the right-
hand side of Eq. (1.1). Accounting for the possibility of
tuning we then have

m� ∼ 0.45 ×
g�ffiffiffi
2

p
yt
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

lnðm�=mtÞ

s
×

ffiffiffi
1

ϵ

r
TeV: ð2:4Þ

Compared to Eq. (1.2), the mass of colored states is on one
hand parametrically boosted by the ratio g�=ð

ffiffiffi
2

p
ytÞ, and on

the other it is mildly decreased by the logarithm. The
motivation for, and gain in, the ongoing work on the
simplest realization of the TH idea pivot upon the above
g�=yt. The basic question is how high g� can be pushed
without leading to a breakdown of the effective description.
One goal of this paper is to investigate to what extent one
can realistically gain from this parameter in more explicit
CH realizations. Applying naive dimensional analysis
(NDA) one would be tempted to say that g� as big as
∼4π makes sense, in which case m� ∼ 10 TeV would only
cost a mild ϵ ∼ 0.1 tuning. However such an estimate seems
quantitatively too naive. For instance, by focusing on the
simple toy model whose potential is given by Eq. (2.1), we
can associate the upper bound on λH ≡ g2�, to the point
where perturbation theory breaks down. One possible way
to proceed is to consider the one loop beta function

μ
dλH
dμ

¼ N þ 8

32π2
λ2H; ð2:5Þ

and to estimate the maximum value of the coupling λH as
that for which ΔλH=λH ∼Oð1Þ through one e-folding of
RG evolution. We find

λH ¼ 2m2
σ

f2
≲ 32π2

N þ 8
⇒

mσ

f
≲ π; for N ¼ 8; ð2:6Þ

which also gives g� ∼
ffiffiffiffiffiffi
λH

p ≲ ffiffiffi
2

p
π, corresponding to a

significantly smaller maximal gain in Eq. (2.4) with respect
to the NDA estimate. In Sec. III B we shall perform
alternative estimates in more specific CH constructions,
obtaining similar results.

4For this naive estimate we have taken the twin-top contribu-
tion equal to the top one, so that the result is just twice the SM
one. For a more precise statement see Sec. IV.
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It is perhaps too narrow-minded to stick rigidly to such
estimates to determine the boost that g�=ð

ffiffiffi
2

p
ytÞ can give to

m�. Although it is parametrically true that the stronger the
coupling g�, the heavier the colored partners can be at fixed
tuning, the above debate over factors of a few make it
difficult to be more specific in our estimates. In any case the
gain permitted by Eq. (2.4) is probably less than one might
naively have hoped, making it fair to question the moti-
vation for the TH, at least in its “subhypersoft” realization.
With this reservation in mind, we continue our exploration
of the TH in the belief that the connection between
naturalness and LHC signatures is so crucial that it must
be analyzed in all its possible guises.
Concerning in particular composite TH scenarios one

last important model building issue concerns the origin of
the Higgs quartic λh. In generic CH it is known that the
contribution to λh that arises atOðy2t Þ is too large when g� is
strong. Given that the TH mechanism demands g� as strong
as possible then composite TH models must ensure that the
leading Oðy2t Þ contribution is absent so that λh arises at
Oðy4t Þ. As discussed in Ref. [13], this property is not
guaranteed but it can be easily ensured provided the
couplings that give rise to yt via partial compositeness
respect specific selection rules.

2. Hypersoft scenario

The second option corresponds to the structurally robust
situation where m2

σ is one loop factor smaller than m2�. This
is for instance achieved ifH is a PNG-boson octet multiplet
associated to the spontaneous breaking SOð9Þ → SOð8Þ in
a model with fundamental scale m�. Another option would
be to have a supersymmetric model where supersymmetric
masses of order m� are mediated to the stops at the very
scale m� at which H is massless. Of course in both cases a
precise computation of m2

σ would require the full theory.
However a parametrically correct estimate can be given by
considering the quadratically divergent 1-loop corrections
in the low energy theory, in the same spirit of Eq. (1.1). As
yt and λH are expected to be the dominant couplings the
analogue of Eqs. (1.1) and (2.2) imply

δm2
h ∼

λh
2λH

�
3y2t
4π2

þ 5λH
16π2

�
m2� ¼

�
y2t
λH

þ 5

12

�
3λh
8π2

m2�:

ð2:7Þ

Very roughly, for λH ≳ y2t , top effects become subdominant
and the natural value for mh becomes controlled by λh, like
the term induced by the Higgs quartic in Eq. (1.1). In the
absence of tuning this roughly corresponds to the techni-
color limit m� ∼ 4πv, while allowing for fine tuning we
have

m� ∼ 1.4 ×

ffiffiffi
1

ϵ

r
TeV: ð2:8Þ

It should be said that in this scenario there is no extra boost
of m� at fixed tuning by taking λH > y2t . Indeed the choice
λH ∼ y2t is preferable as concerns electroweak precision
tests (EWPT). It is well known that RG evolution in the
effective theory below mσ gives rise to corrections to the Ŝ
and T̂ parameters as discussed in Sec. V [32]. In view of the
relation ϵ ¼ 2v2=f2 this gives a direct connection between
fine-tuning electroweak precision data, and the mass of the
twin Higgs mσ. At fixed v2=f2, EWPT then favor the
smallest possible mσ ¼

ffiffiffi
λ

p
Hf=

ffiffiffi
2

p
, that is the smallest

λH ∼ y2t . The most plausible spectrum in this class of
models is roughly the following: the twin scalar σ and
the twin tops appear around the same scale ∼ytf=

ffiffiffi
2

p
,

below the colored partners who live at m�. The presence of
the somewhat light scalar σ is one of interesting features of
this class of models.

3. Superhypersoft scenario

This option is a clever variant of the previous one, where
below the scalem� approximate supersymmetry survives in
the Higgs sector in such a way that the leading contribution
to δm2

H proportional to λH is purely due to the top sector
[7]. In that way Eq. (2.7) reduces to

δm2
h ∼

λh
2λH

�
3y2t
4π2

�
m2� ¼

y2t
λH

×
3λh
8π2

m2�: ð2:9Þ

so that by choosing g� > yt one can push the scale m�
further up with fixed fine tuning ϵ

m� ∼ 1.4 ×
g�ffiffiffi
2

p
yt
×

ffiffiffi
1

ϵ

r
TeV: ð2:10Þ

In principle even under the conservative assumption that
g� ∼

ffiffiffi
2

p
π is the maximal allowed value, this scenario

seemingly allows m� ∼ 14 TeV with a mild ϵ ∼ 0.1 tuning.
It should be said that in order to realize this scenario one

would need to complete H into a pair of chiral superfield
octetsHu andHd, along the lines of Ref. [7], as well as add
a singlet superfield S in order to generate the Higgs quartic
via the superpotential trilinear g�SHuHd. Obviously this is
a very far-fetched scenario combining all possible ideas to
explain the smallness of the weak scale: supersymmetry,
compositeness, and the twin Higgs mechanism.

4. Alternative vacuum dynamics: Tadpole induced EWSB

In all the scenarios discussed so far the tuning of the
Higgs vacuum expectation value (VEV) and that of the
Higgs mass coincided: ϵ, which controls the tuning of m2

h
according to Eqs. (2.4), (2.8), and (2.10), is equal to
2v2=f2, which measures the tuning of the VEV. This was
because the only tuning in the Higgs potential was
associated with the small quadratic term, while the quartic
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was assumed to be of the right size without the need for
further cancellations (see, e.g., the discussion in Ref. [33]).
Experimentally however, one can distinguish between the
need for tuning that originates from measurements of Higgs
and electroweak observables, which are controlled by
v2=f2, and that coming from direct searches for top
partners. Currently, with bounds on colored top partners
at just around 1 TeV [34,35], but with Higgs couplings
already bounded to lie within 10%–20% of their SM value
[24], the only reason for tuning in all TH scenarios is to
achieve a small v2=f2. It is then fair to consider options that
reduce or eliminate only the tuning of v2=f2. As argued in
Ref. [18], this can be achieved by modifying the H scalar
vacuum dynamics, and having its VEV induced instead by a
tadpole mixing with an additional electroweak-breaking
technicolor (TC) sector [36–38]. In order to preserve the Z2

symmetry one adds two twin TC sectors, both characterized
by a mass scale mTC and a decay constant fTC ∼mTC=4π
(i.e., it is parametrically convenient to assume gTC ∼ 4π).
Below the TC scale the dynamics in the visible and twin
sectors is complemented by Goldstone triplets πa and ~πa
which can be embedded into doublet fields according to

Σ ¼ fTCeiπaσa
�
0

1

�
; ~Σ ¼ fTCei ~πaσa

�
0

1

�
; ð2:11Þ

and are assumed to mix with H and ~H via the effective
potential terms

V tadpole ¼ M2ðH†Σþ ~H† ~ΣÞ þ H:c: ð2:12Þ

Assuming mTC ≪ mH the ~H vacuum dynamics is not
significantly modified, but, for mTC > mh, V tadpole acts
like a rigid tadpole term forH. The expectation value hHi is
thus determined by balancing such a tadpole against the
gauge-invariant jHj2 mass term; the latter will then roughly
coincide with m2

h. In order for this to work, by Eq. (2.2) the
SOð8Þ-breaking quartic λ̂h should be negative, resulting in
v ∼ ðM2=m2

hÞfTC. It is easy to convince oneself that the
corrections to Higgs couplings are Oðf2TC=v2Þ: present
bounds can then be satisfied for fTC ∼ v=

ffiffiffiffiffi
10

p ≃ 80 GeV.
In turn, the value of v=f is controlled by f and can thus be
naturally small. The TC scale is roughly mTC ∼ 4πfTC ∼
600–800 GeV, while the noneaten pNGB π in Eq. (2.11)
have a mass m2

π ∼M2v=fTC ∼m2
hðv=fTCÞ2 ∼ 400 GeV.

The latter value, although rather low, is probably large
enough to satisfy constraints from direct searches. In our
opinion, what may be more problematic are EWPT, in view
of the effects from the TC sector, which shares some of the
vices of ordinary TC. The IR contributions to Ŝ and T̂,
associated with the splitting mπa < mTC, are here smaller
than the analogues of ordinary technicolor (there associated
with the splitting mW ≪ mTC). However the UV contribu-
tion to Ŝ is parametrically the same as in ordinary TC, in

particular it is enhanced at large NTC. Even at NTC ¼ 2,
staying within the allowed ðŜ; T̂Þ ellipse still requires a
correlated contribution from ΔT̂, which in principle should
also be counted as tuning. In spite of this, models with
tadpole-induced EWSB represent a clever variant where,
technically, the dynamics of EWSB does not currently
appear tuned. A thorough analysis of the constraints is
certainly warranted.

III. THE COMPOSITE TWIN HIGGS

In this section and in the remainder of the paper, we will
focus on the CH realization of the TH, which belongs to the
subhypersoft class of models. In this simple and well-
motivated context we shall discuss EWPT, fine tuning, and
structural consistency of the model.
Our basic structural assumption is that at a generic UV

scale ΛUV ≫ m�, our theory can be decomposed into two
sectors: a strongly-interacting composite sector and a
weakly-interacting elementary sector. The composite
sector is assumed to be endowed with the global symmetry
G ¼ SOð8Þ × Uð1ÞX × Z2 and to be approximately scale-
(conformal) invariant down to the scale m�, at which it
develops a mass gap. We assume the overall interaction
strength at the resonance mass scale m� to be roughly
described by one parameter g� [31]. The large separation
of mass scales ΛUV ≫ m� is assumed to arise naturally, in
that the occurrence of the mass gap m� is controlled by
either a marginally relevant deformation, or by a relevant
deformation whose smallness is controlled by some global
symmetry. At the scale m�, SOð8Þ ×Uð1ÞX × Z2 is sponta-
neously broken to the subgroup H ¼ SOð7Þ ×Uð1ÞX,
giving rise to seven NGBs in the 7 of SOð7Þ with decay
constant f ∼m�=g�. The subgroup Uð1ÞX does not par-
ticipate to the spontaneous breaking, but its presence is
needed to reproduce the hypercharges of the SM fermions,
similarly to CH models. The elementary sector consists in
turn of two separate weakly interacting sectors: one
containing the visible SM fermions and gauge bosons,
corresponding to the SM gauge group GSM ¼ SUð3Þc×
SUð2ÞL ×Uð1ÞY ; the other containing the twin SM
with the same fermion content and a gSM gauge group
~GSM ¼ fSUð3Þc × fSUð2ÞL. The external Z2 symmetry, or
twin parity, interchanges these two copies. For simplicity,
and following [13], we choose not to introduce a mirror
hypercharge field. This is our only source of explicit twin-
parity breaking, and affects neither our discussion of fine
tuning, nor that of precision electroweak measurements.
The elementary and composite sectors are coupled

according to the paradigm of partial compositeness [23].
The elementary EW gauge bosons couple to the strong
dynamics as a result of the weak gauging of the SUð2ÞL ×
Uð1ÞY × fSUð2ÞL subgroup of the global SOð8Þ ×Uð1ÞX.
A linear mixing with the global conserved currents is thus
induced:
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LV
mix ⊃ g2Wα

μJ
μ
α þ g1BμJ

μ
B þ ~g2 ~W

α
μ
~Jμα; ð3:1Þ

where g1;2 and ~g2 denote the SM and twin weak gauge
couplings, JμB ≡ Jμ3R þ JμX and Jμ, ~Jμ and JμX are the

currents associated respectively to the SUð2ÞL, fSUð2ÞL
and Uð1ÞX generators. The elementary fermions mix
analogously with various operators transforming as linear
representations of SOð8Þ that are generated in the far
UV by the strongly interacting dynamics. The mixing
Lagrangian takes the schematic form:

LF
mix ⊃ q̄αLΔαAOA

R þ t̄RΘAOA
L þ ~̄qαL ~ΔαA

~OA
R

þ t̄R ~ΘA
~OA
L þ H:c:; ð3:2Þ

where, following, e.g., Ref. [39], we introduced spurions
ΔαA, ~ΔαA, ΘA, and ~ΘA in order to uplift the elementary
fields to linear representations of SOð8Þ, and match the
quantum numbers of the composite operators. The left-
handed mixingsΔαA, ~ΔαA necessarily break SOð8Þ since qL
only partially fills a multiplet of SOð8Þ. The right-handed
mixings, instead, may or may not break SOð8Þ. The
breaking of SOð8Þ gives rise to a potential for the NGBs
at one loop and the physical Higgs is turned into a pNGB.
We conclude by noticing that g1;2 and ~g2 correspond to
quasimarginal couplings which start off weak in the UV,
and remain weak down to m�. The fermion mixings could
be either relevant or marginal, and it is possible that some
may correspond to interactions that grow as strong as g� at
the IR scalem� [40]. In particular, as is well known, there is
some advantage as regards tuning in considering the right
mixings ΘA and ~ΘA to be strong. In that case one may even
imagine the IR scale to be precisely generated by the
corresponding deformation of the fixed point. While this
latter option may be interesting from a top-down perspec-
tive, it would play no appreciable role in our low-energy
phenomenological discussion.

A. A simplified model

In order to proceed we now consider a specific realiza-
tion of the composite TH and introduce a concrete
simplified effective Lagrangian description of its dynamics.
Our model captures the most important features of this class
of theories, like the pNGB nature of the Higgs field, and
provides at the same time a simple framework for the
interactions between the elementary fields and the
composite states, vectors and fermions. We make use of
this effective model as an example of a specific scenario in
which we can compute EW observables, and study the
feasibility of the TH idea as a new paradigm for physics at
the EW scale.
We write down an effective Lagrangian for the com-

posite TH model using the Callan-Coleman-Wess-Zumino
(CCWZ) construction [41,42], and generalizing the simpler

case of a two-site model developed in Ref. [13]. According
to the CCWZ technique, a Lagrangian invariant under the
global SOð8Þ group can be written following the rules of a
local SOð7Þ symmetry. The basic building blocks are the
Goldstone matrix ΣðΠÞ, which encodes the seven NGBs,
Π, present in the theory, and the operators dμðΠÞ and
EμðΠÞ resulting from the Maurer-Cartan form constructed
with the Goldstone matrix. An externalUð1ÞX group is also
added to the global invariance in order to reproduce the
correct fermion hypercharges [13]. The CCWZ approach is
reviewed and applied to the SOð8Þ=SOð7Þ coset in
Appendix A.
Before proceeding, we would like to recall the simplified

model philosophy of Ref. [43], which we essentially
employ. In a generic composite theory, the mass scale
m� would control both the cutoff of the low energy σ-model
and the mass of the resonances. In that case no effective
Lagrangian method is expected to be applicable to describe
the resonances. So, in order to produce a manageable
effective Lagrangian we thus consider a Lagrangian for
resonances that can, at least in principle, be made lighter
that m�. One more structured way to proceed could be to
consider a deconstructed extra-dimension where the mass
of the lightest resonances, corresponding to the inverse
compactification length, is parametrically separated from
the 5D cut-off, interpreted asm�. Here we do not go that far
and simply consider a set of resonances that happen to be a
bit lighter than m�. We do so to give a structural dignity to
our effective Lagrangian, though at the end, for our
numerical analysis, we just take the resonances a factor
of 2 below m�. We believe that is a fair procedure given our
purpose of estimating the parametric consistency of the
general TH scenario.
We start our analysis of the effective Lagrangian with the

bosonic sector. Together with the elementary SM gauge
bosons, the W’s and B, we introduce the twin partners ~W
to gauge the fSUð2ÞL group. As representative of the
composite dynamics, we restrict our interest to the heavy
spin-1 resonances transforming under the adjoint of SOð7Þ
and to a vector singlet. We therefore introduce a set of
vectors ρaμ which form a 21 of SOð7Þ and the gauge vector
associated with the external Uð1ÞX, which we call ρXμ . The
Lagrangian for the bosonic sector can be written as

Lbosonic ¼ Lπ þ LV
comp þ LV

elem þ LV
mix: ð3:3Þ

The first term describes the elementary gauge bosons
masses and the NGBs dynamics and is given by

Lπ ¼
f2

4
Tr½dμdμ�: ð3:4Þ

The second term, LV
comp, is a purely composite term,

generated at the scale m� after confinement; it reduces
to the kinetic terms for the ρ vectors, namely:
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LV
comp ¼ −

1

4g2ρ
ρaμνρ

μνa −
1

4g2
ρX
ρXμνρ

Xμν; ð3:5Þ

where ρaμν ¼ ∂μρ
a
ν − ∂νρ

a
μ − fabcρbμρcν, ρXμν ¼ ∂μρ

X
ν − ∂νρ

X
μ ,

and gρ and gρX are the coupling strengths for the composite
spin-1 bosons. The third term in Eq. (3.3), LV

elem, is a purely
elementary interaction, produced at the scale ΛUV where
the elementary fields are formally introduced. Also this
Lagrangian can contain only the kinetic terms for the
elementary fields:

LV
elem ¼ −

1

4g21
BμνBμν −

1

4g22
Wa

μνWaμν −
1

4~g22
~Wa
μν

~Waμν;

ð3:6Þ

where g1, g2, and ~g2 denote the weak gauge couplings. The
last term in the Lagrangian (3.3), LV

mix, is a mixing term
between the elementary and composite sectors originating
from partial compositeness. We have:5

LV
mix ¼

M2
ρ

2g2ρ
ðTr½ρaμT21

a − Eμ�Þ2 þ
M2

ρX

2g2
ρX
ðρXμ − BμÞ2; ð3:7Þ

where T21
a are the SOð8Þ generators in the adjoint of SOð7Þ

(see Appendix A).
We now introduce the Lagrangian for the fermionic

sector. This depends on the choice of quantum numbers
for the composite operators in Eq. (3.2). The minimal
option is to choose OR and ~OR to be in the fundamental
representation of SOð8Þ, whereas the operators OL and
~OL are singlets of the global group. Therefore, the
elementary SM doublet and its twin must be embedded
into fundamental representations of SOð8Þ, whereas
the tR and the ~tR are complete singlets under the
global SOð8Þ invariance. This choice is particularly
useful to generalize our discussion to the case of a
fully-composite right-handed top. From the low-energy
perspective, the linear mixing between composite oper-
ators and elementary fields translates into a linear
coupling between the latter and a layer of fermionic
resonances excited from the vacuum by the operators
in the fundamental and singlet representations of
the global group. Decomposing the 8 of SOð8Þ as
8 ¼ 7þ 1 under SOð7Þ, we introduce a set of fermionic
resonances filling a complete fundamental represen-
tation of SOð7Þ and another set consisting of just one

singlet.6 We denote with Ψ7 the fermionic resonances in
the septuplet and with Ψ1 the singlet, both charged
under SUð3Þc. Together with them, we must introduce
analogous composite states charged under fSUð3Þc; we
use the corresponding notation ~Ψ7 and ~Ψ1. We refer to
Ref. [13] for the complete expression of Ψ7 and ~Ψ7 in
terms of the constituent fermions.
The fermionic effective Lagrangian is split into three

parts, which have the same meaning as the analogous
distinctions we made for the bosonic sector of the theory:

Lfermionic ¼ LF
comp þ LF

elem þ LF
mix: ð3:8Þ

The fully composite term is given by:

LF
comp ¼ Ψ̄7ði=D7 −MΨÞΨ7 þ Ψ̄1ði=D1 −MSÞΨ1

þ ~̄Ψ7ði=∇ − ~MΨÞ ~Ψ7 þ ~̄Ψ1ði=∂ − ~MSÞ ~Ψ1

þ ðicLΨ̄i
7L

=diΨ1L þ icRΨ̄i
7R

=diΨ1R þ i~cL ~̄Ψ
i
7L=di ~Ψ1L

þ i~cR ~̄Ψi
7R=di ~Ψ1R þ H:c:Þ; ð3:9Þ

where D7μ ¼ ∇μ þ iXBμ, D1μ ¼ ∂μ þ iXBμ, and ∇μ ¼∂μ þ iEμ. We have introduced two sets of Oð1Þ coeffi-
cients, cL and cR and their twins, for the interactions
mediated by the dμ operator. Considering the elementary
part of the Lagrangian, it comprises just the kinetic terms
for the doublets and right-handed tops:

LF
elem ¼ q̄Li=DqL þ t̄Ri=DtR þ ~̄qLi=D ~qL þ ~̄tRi=∂~tR: ð3:10Þ

The final term in our classification is the elementary/
composite mixing that we write again following the
prescription of partial compositeness. With our choice of
quantum numbers for the composite operators, the spurions
in Eq. (3.2) can be matched to dimensionless couplings
according to

ΔαA ¼
�

0 0 iyL −yL 0 × 4

iyL yL 0 0 0 × 4

�
; ΘA ¼ yR;

ð3:11Þ

and

~ΔαA ¼
�
0 × 4 0 0 i~yL −~yL
0 × 4 i~yL ~yL 0 0

�
; ~ΘA ¼ ~yR;

ð3:12Þ
5Notice that in the Lagrangian (3.7), the parameters f, Mρ,

MρX , gρ, and gρX are all independent. It is common to define the
parameters aρ ¼ Mρ=ðgρfÞ and aρX ¼ MρX=ðgρXfÞ, which are
expected to be Oð1Þ. In our analysis we set aρ ¼ 1=

ffiffiffi
2

p
corresponding to the two-site model value (see the last paragraph
of this section) and aρX ¼ 1.

6Notice that in general we should introduce two different
singlets in our Lagrangian. One corresponds to a full SOð8Þ
singlet, while the other is the SOð7Þ singlet appearing in the
decomposition 8 ¼ 7þ 1 of the fundamental of SOð8Þ under the
SOð7Þ subgroup. We will further simplify our study identifying
the two singlets with just one composite particle.
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where we have introduced the elementary/composite mix-
ing parameters yL, yR and their twin counterparts. These
dimensionless y’s control the strength of the interaction
between the elementary and composite resonance fields,
according to the Lagrangian:

LF
mix ¼ fðq̄αLΔαAΣAiΨi

7þ q̄αLΔαAΣA8Ψ1þ yRt̄RΨ1þH:c:Þ
þfð ~̄qαL ~ΔαAΣAi

~Ψi
7þ ~̄qαL ~ΔαAΣA8

~Ψ1þ ~yR ~̄tR ~Ψ1þH:c:Þ:
ð3:13Þ

Depending on the UV boundary condition and the
relevance or marginality of the operators appearing in

Eq. (3.2), the y’s can vary from weak to Oðg�Þ.
Correspondingly the light fermions vary from being
completely elementary (for y weak) to effectively fully
composite (for y ∼ g�). For reasons that will become
clear, given yt ∼ yLyR=g�, it is convenient to take
yL ≃ ~yL ∼ yt, i.e., weak left mixing, and yR ≃ ~yR ∼ g�.
For such strong right-handed mixing the right-handed
tops can be practically considered part of the strong
sector.
The last term that we need to introduce in the effective

Lagrangian describes the interactions between the vector
and fermion resonances and originates completely in the
composite sector. We have:

LVF
comp ¼

X
i¼L;R

½αiΨ̄7ið=ρ − =EÞΨ7i þ α7iΨ̄7ið=ρX − =BÞΨ7i þ α1iΨ̄1ið=ρX − =BÞΨ1i

þ ~αi ~̄Ψ7ið=ρ − =EÞ ~Ψ7i þ ~α7i ~̄Ψ7ið=ρX − =BÞ ~Ψ7i þ ~α1i ~̄Ψ1ið=ρX − =BÞ ~Ψ1i�; ð3:14Þ

where all the coefficients αi appearing in the Lagrangian are
Oð1Þ parameters.
We conclude the discussion of our effective Lagrangian

by clarifying its two-site model limit [44] (see also
Ref. [45]). This is obtained by combining the singlet
and the septuplet into a complete representation of
SOð8Þ, so that the model enjoys an enhanced SOð8ÞL ×
SOð8ÞR global symmetry. This is achieved by setting cL ¼
cR ¼ ~cL ¼ ~cR ¼ 0 and all the αi equal to 1. Moreover, we
have to impose Mρ ¼ gρf=

ffiffiffi
2

p
, so that the heavy vector

resonances can be reinterpreted as gauge fields of SOð7Þ.
As shown in Ref. [44], with this choice of the free
parameters the Higgs potential becomes calculable up to
only a logarithmic divergence, that one can regulate by
imposing just one renormalization condition. In the sub-
sequent sections, we will extensively analyze the EW
precision constraints in the general case, as well as in
the two-site limit.

B. Perturbativity of the simplified model

In Sec. II A 1 it was noted that a TH construction
typically involves large multiplicities of states and, as a
consequence, the dynamics responsible for its UV com-
pletion cannot be maximally strongly coupled. This in turn
limits the improvement in fine tuning that can be achieved
compared to standard scenarios of EWSB. In our naive
estimates of Eqs. (2.3), (2.7), and (2.9) the interaction
strength of the UV theory was controlled by the σ-model
quartic coupling λH or, equivalently, by mσ=f. By consid-
ering the λH one-loop β-function [Eq. (2.5)] we estimated
the maximal value of λH as the one corresponding to an
Oð1Þ relative change through one e-folding of RG evolu-
tion. For an SOð8Þ=SOð7Þ σ-model this led to

ffiffiffiffiffiffi
λH

p ≲ ffiffiffi
2

p
π,

or, equivalently, mσ=f ≲ π.

Alternatively, the limit set by perturbativity on the UV
interaction strength may also be estimated in the effective
theory described by the nonlinear σ-model by determining
the energy scale at which tree-level scattering amplitudes
become nonperturbative. For concreteness, we considered
the following two types of scattering processes: ππ → ππ

and ππ → ψ̄ψ , where π are the NGBs and ψ ¼ fΨ7; ~Ψ7g
denotes a composite fermion transforming in the funda-
mental of SOð7Þ. Other processes can (and should) be
considered, with the actual bound being given by the
strongest of the constraints obtained in this way.
Requiring that the process ππ → ππ stay perturbative up

the cutoff scale m� gives the bound

Mρ

f
∼
MΨ

f
≲m�

f
<

4πffiffiffiffiffiffiffiffiffiffiffiffi
N − 2

p ≃ 5.1; ð3:15Þ

where the second inequality is valid in a generic
SOðNÞ=SOðN − 1Þ nonlinear σ-model, and we have set
N ¼ 8 in the last step. More details on how this result was
obtained can be found in Appendix G. Equation (3.15) in
fact corresponds to a limit on the interaction strength of
the UV theory, given that the couplings among fermion
and vector resonances are of order MΨ=f and Mρ=f,
respectively. Perturbativity of the scattering amplitude
for ππ → ψ̄ψ instead gives (see Appendix G for details)

Mρ

f
∼
MΨ

f
≲m�

f
<

ffiffiffiffiffiffiffiffiffiffiffiffi
12

ffiffiffi
2

pp
πffiffiffiffiffiffi

Nf
p ≃ 4πffiffiffiffiffiffi

Nf
p ; ð3:16Þ

where Nf is the multiplicity of composite fermions
(including the number of colors and families). Our sim-
plified model with one family of composite fermions has
Nf ¼ 6, which gives a limit similar to Eq. (3.15):
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MΨ=f ≲ 5.3. A model with three families of composite
quarks and leptons has instead Nf ¼ 24, from which
follows the stronger bound MΨ=f ≲ 2.6.
As a third alternative, one could analyze when 1-loop

corrections to a given observable become of the same order
as its tree-level value. We applied this criterion to our
simplified model by considering the Ŝ parameter, the new
physics contribution to which includes a tree-level correc-
tion from heavy vectors given by Eq. (5.6), and a one-loop
correction due to heavy fermions, which can be found in
Appendix E. By requiring that the one-loop term be smaller
than the tree-level correction, we obtain a bound on the
strong coupling constant gρ. As an illustration, we consider

the two-site model limit cL ¼ cR ¼ 0 and Mρ ¼ gρf=
ffiffiffi
2

p

and keep the dominant UV contribution to Ŝ in Eq. (E7)
which is logarithmically sensitive to the cutoff. By setting
m� ¼ 2MΨ, we find:

ΔŜ1−loop
ΔŜtree

< 1 ⇒
Mρ

f
¼ gρffiffiffi

2
p <

πffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log 2

p ≃ 2.7: ð3:17Þ

The perturbative limits obtained from Eqs. (3.15), (3.16),
and (3.17) are comparable to that on λH derived in Sec. II A 1.
As already discussed there, one could take any of these
results as indicative of the maximal interaction strength in the
underlying UV dynamics, though none of them should be
considered as a sharp exclusion condition. In our analysis of
EW observables we will make use of Eq. (3.15) with N ¼ 8
and of Eq. (3.16) with Nf ¼ 24 to highlight the regions of
parameter space where our perturbative calculation is less
reliable. We use both limits as a measure of the intrinsic
uncertainty which is inevitably associated with this type of
estimation.

IV. HIGGS EFFECTIVE POTENTIAL

As anticipated in the general discussion of Sec. II A,
a potential for the Higgs boson is generated at the scale m�
by loops of heavy states through the SOð8Þ-breaking
couplings of the elementary fields to the strong sector.
Once written in terms of the Higgs boson h (where
H†H¼ f2 sin2ðh=fÞ=2, ~H† ~H ¼ f2 cos2ðh=fÞ=2), at 1-loop
this UV threshold contribution has the form [13]:

Vðm�Þ
f4

¼ 3

32π2

�
1

16
g21g

2
ρL1 þ ðy2L − ~y2LÞg2ΨL2

�
sin2

h
f

þ 3y4L
64π2

F1

�
sin4

h
f
þ cos4

h
f

�
; ð4:1Þ

where gΨ ≡MΨ=f, L1, L2, F1 are Oð1Þ dimensionless
functions of the masses and couplings of the theory
and the explicit expression of the function F1 is
reported in Eq. (C1) of Appendix C. The first term
in the above equation originates from Z2-breaking

effects.7 The second term, generated by loops of
fermions, is Z2 symmetric and explicitly violates the
SOð8Þ invariance; it thus corresponds to the (UV part
of the) last term of Eq. (2.1). Upon electroweak
symmetry breaking, Eq. (4.1) contributes to the physi-
cal Higgs mass an amount equal to

δm2
hjUV ¼ 3y4L

4π2
F1f2ξð1 − ξÞ; ð4:2Þ

where ξ controls the degree of vacuum misalignment:

ξ≡ sin2
hhi
f

¼ v2

f2
: ð4:3Þ

Below the scale m� an important contribution to the
potential arises from loops of light states, in particular from
the top quark and from its twin. The bulk of this IR
contribution is captured by the RG evolution of the Higgs
potential from the scale m� down to the electroweak scale.
As noted in previous studies (see, e.g., Ref. [13]), for
sufficiently large m� this IR effect dominates over the UV
threshold correction and can reproduce the experimental
Higgs mass almost entirely. An analogous IR correction to
the Higgs quartic arises in SUSY theories with large stop
masses, from loops of top quarks. The distinctive feature of
any TH scenario, including our model, is the additional
twin top contribution.
The Higgs effective action, including the leading OðξÞ

corrections associated with operators of dimension 6, was
computed at 1-loop in Ref. [13]; the resulting IR contri-
bution to m2

h was found to be

δm2
hj1−loopIR ¼ 3y4t

8π2
f2ξð1 − ξÞ

�
log

m2�
m2

t
þ log

m2�
~m2
t

�
; ð4:4Þ

where yt denotes the top Yukawa coupling. The two single-
log terms in parentheses correspond to the IR contributions
to the effective Higgs quartic λh from the top quark and
twin top respectively. Leading-logarithmic corrections of
the form ðα logÞn, arising at higher loops have however an
important numerical impact.8 For example, ðα logÞ2 cor-
rections generated by 2-loop diagrams (mostly due to
the running of the top and twin top Yukawa couplings,
that are induced by respectively QCD and twin QCD) are
expected to give a ∼30% reduction in the Higgs mass
for m� ≃ 5 TeV.
We have computed the IR contribution to the Higgs mass

in a combined expansion in ξ and ðα logÞ. We have included
the LO electroweak contribution, all terms up to NLO in αt

7Subleading Z2-breaking terms have been neglected for sim-
plicity. The complete expressions are given in Ref. [13].

8Here α ¼ g2SM=4π, with gSM being any large SM coupling,
i.e., gS and yt.
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and αS, and some contributions, expected to be leading for
not too large m�, at NNLO in αS. We report the details in
Appendix C.
The value of ðδm2

hjIRÞ1=2 is shown in Fig. 1 as a function
of m� for ξ ¼ 0.1. The upper and lower curves represent
respectively the LO and NLO calculation in our combined
ðξ; α logÞ expansion. Numerically, the naive expectation is
confirmed, as the NLO correction decreases ðδm2

hjIRÞ1=2 by
∼35% for m� ¼ 5 TeV. The dotted curve, indicated as
NNLO�, includes NNLO contributions of order αtξ2 log,
αtαSξ log2, and αtα

2
S log

3 (see Appendix C). Additional
contributions of order α2t ξ log2, α2t αS log3 and α3t log3 are
not included. An attempt to include these contributions has
been made in Ref. [46]. However, the calculation presented
there misses some additional contributions from the twin
GB and does not represent the full NNLO calculation. The
picture that we get from our NNLO� calculation and the
incomplete result of Ref. [46], is that the NNLO� gives an
overestimate of the IR contribution to the Higgs mass as the
aforementioned neglected effects are expected to give a
reduction. Given the lack of a complete NNLO calculation,
we estimate our uncertainty on the IR Higgs mass as the
green shaded region lying between the LO and NLO results
in Fig. 1. In order to choose, within this uncertainty, a value
that is as close as possible to the full NNLO result, in the
rest of the paper we take as input value for the IR correction
to the Higgs mass the average of the LO and NLO results,
corresponding to the solid black line in the figure.
The plot of Fig. 1 illustrates one of the characteristic

features of TH models: the IR contribution to the Higgs
mass largely accounts for its experimental value and is
completely predicted by the theory in terms of the low-

energy particle content (SM plus twin states). In particular,
considering the aforementioned input value and choosing
as a benchmark values m� ¼ 5 TeV and ξ ¼ 0.1, we find
that the contributions of the SM and twin light degrees of
freedom account for around 50% and 40% of the Higgs
mass squared, respectively, so that almost the entire
experimental value of the Higgs mass can be due only
to the IR degrees of freedom. Threshold effects arising at
the UV matching scale, on the other hand, are model
dependent but give a subleading correction. An accurate
prediction of the Higgs mass and an assessment of the
plausibility of the model thus requires a precise determi-
nation of its IR contribution. Indeed the difference between
the IR contribution of Fig. 1 and the measured value mh ¼
125 GeV must be accounted for by the UV threshold
contribution in Eq. (4.2); for our previous benchmark
choice of m�, about 12% of the Higgs mass should be
generated by the UV physics. This translates into a generic
constraint on the size of yL, a parameter upon which
electroweak precision observables (EWPO) crucially
depend, thus creating a nontrivial correlation between
the Higgs mass, EWPO and naturalness.

V. ELECTROWEAK PRECISION OBSERVABLES

In this section we compute the contribution of the new
states described by our simplified model to the EWPO.
Although it neglects the effects of the heavier resonances,
our calculation is expected to give a fair assessment of the
size of the corrections due to the full strong dynamics, and
in particular to reproduce the correlations among different
observables.
It is well known that, under the assumption of quark and

lepton universality, short-distance corrections to the
electroweak observables due to heavy new physics can
be expressed in terms of four parameters, Ŝ, T̂, W, Y,
defined in Ref. [47] (see also Ref. [48] for an equivalent
analysis) as a generalization of the parametrization intro-
duced by Peskin and Takeuchi in Refs. [49,50]. Two
additional parameters, δgLb and δgRb, can be added to
account for the modified couplings of the Z boson to left-
and right-handed bottom quarks respectively.9 A naive
estimate shows that in CH theories, including our TH
model, W and Y are subdominant in an expansion in the
weak couplings [31] and can thus be neglected. The small
coupling of the right-handed bottom quark to the strong

FIG. 1. IR contribution to the Higgs mass as a function of the
scale m� for ξ ¼ 0.1. The dot-dashed (upper) and dashed (lower)
curves denote the LO and NLO result in a combined perturbative
expansion in ðα logÞ and ξ. The dotted curve contains the pure
QCD part of the NNLO correction (see Appendix C for details).
The shaded region represents the uncertainty in our estimate. The
central value of this band, given by the solid black line and
computed as the average of the LO and NLO results, is the value
that we use as our numerical estimate throughout the paper.

9We define δgLb and δgRb in terms of the following effective
Lagrangian in the unitary gauge:

Leff ⊃
g2
2cW

Zμb̄γμ½ðgSMLb þ δgLbÞð1 − γ5Þ

þ ðgSMRb þ δgRbÞð1þ γ5Þ�bþ � � � ð5:1Þ

where the dots stand for higher-derivative terms and
gSMLb ¼ −1=2þ s2W=3, g

SM
Rb ¼ s2W=3.
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dynamics makes also δgRb small and negligible in our
model. We thus focus on Ŝ, T̂, and δgLb, and compute them
by including effects from the exchange of vector and
fermion resonances, and from Higgs compositeness.
We work at the 1-loop level and at leading order in the

electroweak couplings and perform an expansion in inverse
powers of the new physics scale. In this limit, the twin
states do not affect the EWPO as a consequence of their
being neutral under the SM gauge group. Deviations from
the SM predictions arise only from heavy states with SM
quantum numbers and are parametrically the same as in
ordinary CH models with singlet tR. This can be easily
shown by means of naive dimensional analysis and
symmetries as follows. Twin tops interact with the SM
fields only through higher-dimensional operators. The
operators relevant for the EWPO are those involving either
a SM current or a derivative of the hypercharge field
strength:

OB~t ¼
g0

m2
W
∂μBμν~̄tγν~t; Oq~t ¼

1

v2
q̄LγμqL~̄tγμ~t;

OH~t ¼
i
v2

H†Dμ

↔
H~̄tγμ~t; ð5:2Þ

where ~t indicates either a right- or left-handed twin top.10

The first two operators of Eq. (5.2) are generated at the
scale m� by the tree-level exchange of the ρX. Their
coefficients (in a basis with canonical kinetic terms) are
respectively of order ðm2

W=m
2�Þð~y=g�Þ2 and ðy2Lv2=m2�Þ×

ð~y=g�Þ2, where ~y equals either ~yL or ~yR depending on the
chirality of ~t. The third operator breaks custodial isospin
and the only way it can be generated is via the exchange of
weakly coupled elementary fields at loop level. Given that
the contribution to EWPO is further suppressed by ~t loops,
the third operator can affect EWPO only at, at least, two
loops and is thus clearly negligible. By closing the ~t loops
the first two operators can give rise to effects that are
schematically of the form BB, Bq̄q, or ðq̄qÞ2. The formally
quadratically divergent piece of the loop integral renorm-
alizes the corresponding dimension-6 operators. For in-
stance the second structure gives

C
g0

16π2
y2L
m2�

�
~y
g�

�
4∂νBμνq̄LγμqL ð5:3Þ

with C an Oð1Þ coefficient which depends on the details of
the physics at the scale m�. Using the equations of motion
for B, the above operator gives rise to a correction to the
Zbb̄ vertex of relative size

δgLb
gLb

∼
g02

16π2
y2Lv

2

m2�

�
~y
g�

�
4

ð5:4Þ

which, even assuming ~y ∼ g�, is Oðg0=ytÞ2 suppressed with
respect to the leading visible sector effect we discuss below.
Aside the quadratically divergent piece there is also a
logarithmic divergent piece whose overall coefficient is
calculable. The result is further suppressed with respect to
the above contribution by a factor ðm2

~t =m
2�Þ lnðm2

~t =m
2�Þ.

An additional contribution could in principle come from
loops of the extra three “twin” NGBs contained in the coset
SOð8Þ=SOð7Þ. Simple inspection however shows that there
is no corresponding 1-loop diagram contributing to the
EWPO. In the end we conclude that the effect of twin loops
is negligible.
Since the effects from the twin sector can be neglected,

the corrections to Ŝ, T̂, and δgLb are parametrically the
same as in ordinary CH models. We now give a concise
review of the contributions to each of these quantities,
distinguishing between the threshold correction generated
at the scale m� and the contribution arising from the RG
evolution down to the electroweak scale. For recent
analyses of the EWPO in the context of SOð5Þ=SOð4Þ
CH models see for example Refs. [29,30,45].

A. Ŝ parameter

The leading contribution to the Ŝ parameter arises at tree
level from the exchange of spin-1 resonances. Since only
the (3,1) and (1,3) components of the spin-1 multiplet
contribute, its expression is the same as in SOð5Þ=SOð4Þ
composite-Higgs theories11:

ΔŜρ ¼
g22
2g2ρ

ξ: ð5:5Þ

In our numerical analysis presented in Sec. VI we use the
two-site model relation Mρ ¼ gρf=

ffiffiffi
2

p
to rewrite

ΔŜρ ¼
m2

W

M2
ρ
: ð5:6Þ

The 1-loop contribution from loops of spin-1 and fermion
resonances is subdominant (by a factor g2�=16π2) and will
be neglected for simplicity in the following. Nevertheless,
we explicitly computed the fermionic contribution (see
Appendix E) to monitor the validity of the perturbative
expansion and estimate the limit of strong coupling in our
model (a discussion on this aspect was given in Sec. III B).
An additional threshold correction to Ŝ, naively of the same
order as Eq. (5.6), arises from the exchange of cutoff modes

10Notice that OH~t can be rewritten in terms of the other two
operators by using the equations of motion, but it is still useful to
consider it in our discussion.

11We neglect for simplicity a contribution from the operator
Eμνρ

μν, which also arises at tree level. See for example the
discussion in Refs. [45,51].
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at m�. As already anticipated, we neglect this correction in
the following. In this respect our calculation is subject to an
Oð1Þ uncertainty and should rather be considered as an
estimate, possibly more refined than a naive one, which
takes the correlations among different observables into
account.
Besides the UV threshold effects described above, Ŝ gets

an IR contribution from RG evolution down to the
electroweak scale. The leading effect of this type comes
from the compositeness of the Higgs boson, and is the same
as in SOð5Þ=SOð4Þ CH models [32]:

ΔŜh ¼
g22

192π2
ξ log

m2�
m2

h

: ð5:7Þ

In the effective theory below m� this corresponds to the
evolution of the dimension-6 operators

OW ¼ ig
2m2

W
H†σiDμ

↔
HDνWi

μν;

OB ¼ ig0

2m2
W
H†Dμ

↔
H∂νBμν ð5:8Þ

induced by a 1-loop insertion of

OH ¼ 1

2v2
∂μðH†HÞ∂μðH†HÞ: ð5:9Þ

Denoting with c̄i the coefficients of the effective operators
and working at leading order in the SM couplings, the RG
evolution can be expressed as

c̄iðμÞ ¼
�
δij þ γij log

μ

M

�
c̄jðMÞ; ð5:10Þ

where γij is the anomalous dimension matrix (computed
at leading order in the SM couplings). The Ŝ parameter
gets a correction ΔŜ ¼ ðc̄WðmZÞ þ c̄BðmZÞÞξ, and one has
γW;H þ γB;H ¼ −g22=ð96π2Þ. An additional contribution to
the running arises from insertions of the current-current
operators

OHq ¼
i
v2

q̄LγμqLH†Dμ

↔
H;

O0
Hq ¼

i
v2

q̄LγμσiqLH†σiDμ

↔
H;

OHt ¼
i
v2

t̄RγμtRH†Dμ

↔
H ð5:11Þ

in a loop of top quarks. This is however suppressed by a
factor y2L=g

2� compared to Eq. (5.7) and will be neglected.
The suppression arises because the current-current oper-
ators are generated at the matching scale with coefficients
proportional to y2L.

The total correction to the Ŝ parameter in our model is
ΔŜ ¼ ΔŜρ þ ΔŜh, with the two contributions given by
Eqs. (5.6) and (5.7).

B. T̂ parameter

Tree-level contributions to the T̂ parameter are forbidden
in our model by the SOð3Þ custodial symmetry preserved
by the strong dynamics, and can only arise via loops
involving the elementary states. A non-vanishing effect
arises at the 1-loop level corresponding to a violation of
custodial isospin by two units. The leading contribution
comes from loops of fermions and is proportional to y4L,
given that the spurionic transformation rule of yL is that of a
doublet, while yR is a singlet. We find:

ΔT̂Ψ ¼ aUVNc
y2L
16π2

y2Lv
2

M2
Ψ

þ aIRNc
y2t

16π2
y2Lv

2

M2
Ψ
log

M2
1

m2
t
;

ð5:12Þ

where aUV;IR are Oð1Þ coefficients whose values are
reported in Appendix E and we have defined M1≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

S þ y2Rf
2

p
. The result is finite and does not depend

on the cutoff scalem�. The first term corresponds to the UV
threshold correction generated at the scale μ ¼ M1 ∼MΨ.
The second term instead encodes the IR running from the
threshold scale down to low energy, due to loops of top
quarks. In the effective theory below M1 it corresponds to
the RG evolution of the dimension-6 operator

OT ¼ 1

2v2
ðH†Dμ

↔
HÞ2 ð5:13Þ

due to insertions of the current-current operators of
Eq. (5.11). In particular, ΔT̂ ¼ ĉTðmZÞξ and one has
γT;Ht ¼ −γT;Hq ¼ 3y2t =4π2, γT;Hq0 ¼ 0. Notice that the
size of the second contribution with respect to the first
is O½ðyt=yLÞ2 logðM2

1=m
2
t Þ�: for yt ∼ yL, that is for fully

composite tR, the IR dominated contribution is formally
logarithmically enhanced and dominant.
Further contributions to T̂ come from loops of spin-1

resonances, the exchange of cutoff modes and Higgs
compositeness. The latter is due to the modified couplings
of the composite Higgs to vector bosons and reads [32]:

ΔT̂h ¼ −
3g21
64π2

ξ log
m2�
m2

h

: ð5:14Þ

In the effective theory it corresponds to the running of OT
due to the insertion of the operator OH in a loop with
hypercharge. The contribution is of the form of Eq. (5.10)
with γT;H ¼ 3g21=32π

2. The exchange of spin-1 resonances
gives a UV threshold correction which is also proportional
to g21 (as a spurion, the hypercharge coupling transforms as
an isospin triplet), but without any log enhancement. It is
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thus subleading compared to Eq. (5.14) and we will neglect
it for simplicity (see Ref. [45] for the corresponding
computation in the context of SOð5Þ=SOð4Þ models).
Finally, we also omit the effect of the cutoff modes because
it is incalculable, although naively this is of the same order
as the contribution from states included in our simplified
model. Our result is thus subject to an Oð1Þ uncertainty.
The total contribution to the T̂ parameter in our model is

therefore ΔT̂ ¼ ΔT̂h þ ΔT̂Ψ with the two contributions
given by Eqs. (5.12) and (5.14).

C. δgLb
In the limit of vanishing transferred momentum, tree-

level corrections to δgLb are forbidden by the PLR parity of
the strong dynamics that exchanges SUð2ÞL with SUð2ÞR
in the visible SOð4Þ and fSUð2ÞL with fSUð2ÞR in the twinfSOð4Þ (see Appendix A for details). This is a simple
extension of the PLR symmetry of CH models which
protects the Zbb̄ coupling from large corrections [52]. In
our case PLR is an element of the unbroken SOð7Þ and
keeps the vacuum unchanged. It is thus an exact invariance
of the strong dynamics, differently from SOð5Þ=SOð4Þ
models where it is accidental at Oðp2Þ. The gauge
couplings g1;2 and yL explicitly break it, while yR preserves
it. At finite external momentum δgLb gets a non-vanishing
tree-level contribution:

ðδgLbÞtree ¼
f2ξ
8M2

ρ
½g21ðαL þ α7LÞ − g22αL�

y2Lf
2

M2
Ψ þ y2Lf

2
:

ð5:15Þ

In the effective theory belowM1, this correction arises from
the dimension-6 operators

OBq ¼
g0

m2
W
∂μBμνq̄LγνqL; OWq ¼

g
m2

W
DμWa

μνq̄LγνσaqL; :

ð5:16Þ
It is of order ðy2L=g2�Þðg2=g2�Þξ, hence a factor g2=g2� smaller
than the naive expectation in absence of the PLR protection.
At the 1-loop level, corrections to δgLb arise from the

virtual exchange of heavy fermion and vector states.
The leading effect comes at Oðy4LÞ from loops of heavy
fermions (the corresponding diagrams are those of Figs. 4
and 5) and reads

ðδgLbÞΨ ¼ y2L
16π2

Nc
y2Lv

2

M2
Ψ

�
bUV þ cUV log

m2�
M2

Ψ

�
þ bIR

y2t
16π2

Nc
y2Lv

2

M2
Ψ
log

M2
1

m2
t
: ð5:17Þ

The expressions of theOð1Þ coefficients bUV;IR and cUV are
reported in Appendix E. The first term is logarithmically

divergent and encodes the UV threshold correction at the
matching scale. The divergence comes, in particular, from
diagrams where the fermion loop is connected to the b-
quark current through the exchange of a spin-1 resonance
[29]. A simple operator analysis shows that the threshold
contribution from the vector resonances in the adjoint of
SOð7Þ identically vanishes in our model (see Appendix D
for details). An additional UV threshold contribution to
δgLb arises from diagrams where the spin-1 resonances
circulate in the loop. For simplicity wewill not include such
effect in our analysis (see Ref. [30] for the corresponding
computation in the context of SOð5Þ=SOð4Þ models). It is
however easy to show that there is no possible diagram with
ρX circulating in the loop as a consequence of its quantum
numbers, while the corresponding contribution from vector
resonances in the adjoint of SOð7Þ is nonvanishing in
this case.
The second term in Eq. (5.17) accounts for the IR

running down to the electroweak scale. In the effec-
tive theory below M1 one has δgLb ¼ −ðc̄HqðmZÞ þ
c̄0HqðmZÞÞ=2, hence the IR correction arises from the
evolution of the operators OHq and O0

Hq due to loops of
top quarks. In this case the operators that contribute to the
running via their 1-loop insertion are those of Eq. (5.11) as
well as the following four-quark operators [53]:

OLR ¼ ðq̄LγμqLÞðt̄RγμtRÞ; OLL ¼ ðq̄LγμqLÞðq̄LγμqLÞ;
O0

LL ¼ ðq̄LσaγμqLÞðq̄LσaγμqLÞ: ð5:18Þ

In fact, the operators contributing at Oðy2Ly2t Þ to Eq. (5.10)
are only those generated at Oðy2LÞ at the matching scale;
these are OHt, the linear combination OHq −O0

Hq (even
under PLR), and OLR (generated via the exchange of ρX).

12

Notice finally that the relative size of the IR and UV
contributions to δgLb is O½ðyt=yLÞ2 logðM2

1=m
2
t Þ� precisely

like in the case of ΔT̂Ψ.
It is interesting that in our model the fermionic correc-

tions to δgLb and T̂ are parametrically of the same order and
their signs tend to be correlated. It is for example well
known that a heavy fermion with the quantum numbers of
tR gives a positive correction to both quantities [28,54–56].
We have verified that this is also the case in our model for
MS ≪ MΨ ∼Mρ (light singlet).

13 Conversely, a light septu-
plet (MΨ ≪ MS ∼Mρ) gives a negative contribution to
both δgLb and T̂.14 Although in general the expressions for
ΔT̂Ψ and ðδgLbÞΨ are uncorrelated, their signs tend to be the
same whenever the contribution from ρX to Eq. (5.17) is

12The operators OLL and O0
LL are generated at Oðy4LÞ by the

tree-level exchange of both ρX and ρ.
13In this limit one has ΔT̂Ψ ≃ 3ðδgLbÞΨ.14The existence of a similar sign correlation in the limit of a

light (2,2) has been pointed out in the context of SOð5Þ=SOð4Þ
CH models, see Ref. [29].
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subleading. The sign correlation can instead be broken if ρX
contributes significantly to δgLb [in particular, ðδgLbÞΨ can
be negative for αiL ¼ −αiR]. The importance of the above
considerations lies in the fact that EW precision data prefer
a positive T̂ and a negative δgLb. Situations when both
quantities have the same sign are thus experimentally
disfavored.
Considering that no additional correction to δgLb arises

from Higgs compositeness, and that we neglect as before
the incalculable effect due to cutoff states, the total
contribution in our model is δgLb ¼ ðδgLbÞtree þ ðδgLbÞΨ,
with the two contributions given by eqs. (5.15) and (5.17).

VI. RESULTS AND DISCUSSION

We are now ready to translate the prediction for the
Higgs mass and the EWPO into bounds on the parameter
space of our simplified model and for the composite TH in
general. We are interested in quantifying the degree of fine
tuning that our construction suffers when requiring the
mass scale of the heavy fermions to lie above the ultimate
experimental reach of the LHC. As discussed in Sec. II, this
scale receives the largest boost from the TH mechanism
(without a corresponding increase in the fine tuning of the
Higgs mass) in the regime of parameters corresponding to a
fully strongly coupled theory, where no quantitatively
precise EFT description is allowed. Our computations of
physical quantities in this most relevant regime should then
be interpreted as an educated naive dimensional analysis
(eNDA) estimate, where one hopes to capture the generic
size of effects beyond the naivest 4π counting, and
including factors of a few related to multiplet size, to spin,
and to numerical accidents. In the limit where Mρ=f and
MΨ=f are significantly below their perturbative upper
bounds our computations are well defined. eNDA then
corresponds to assuming that the results do not change by
more than Oð1Þ (i.e. less than Oð5Þ to be more explicit)
when extrapolating to a scenario where the resonance mass
scale sits at strong coupling. In practice we shall consider
the resonant masses up to their perturbativity bound and
vary the αi and ci parameters within an Oð1Þ range.15 In
view of the generous parameter space that we shall explore
our analysis should be viewed as conservative, in the sense
that a realistic TH model will never do better.
Let us now describe the various pieces of our analysis.

Consider first the Higgs potential, where the dependence on
physics at the resonance mass scale is encapsulated in the
function F1 [Eq. (4.2)] which controls the UV threshold
correction to the Higgs quartic. It is calculable in our
simplified model and the result is Oð1Þ [its expression is
reported in Eq. (C1)], but it can easily be made a bit smaller

at the price of some mild tuning by varying the field content
or the representations of the heavy fermions. In order to
account for these options and thus broaden the scope of our
analysis we will treat F1 as a free Oð1Þ parameter. The
value of F1 has a direct impact on the size of the left-
handed top mixing yL, since δm2

hjUV ∼ y4LF1, and hence
controls the interplay between the Higgs potential and
EWPO. Specifically, as we already stressed, a smaller F1

implies a larger value of yL, which in turn gives a larger
ΔT̂ ∝ y4Lv

2=M2
Ψ. This could help improve the compatibility

with EWPT even for large MΨ, at the cost of a small
additional tuning due to the need for a clever maneuver in
the Ŝ; T̂ plane to get back into the ellipse, as well as the fact
that F1 is generically expected to be Oð1Þ. In the following
we will thus treat F1 as an input parameter and use
Eqs. (4.2) and (B4) to fix yL and yR in terms of the
Higgs and top quark experimental masses. Our final results
will be shown for two different choices of F1, namely
F1 ¼ 1 and F1 ¼ 0.3, in order to illustrate how the bounds
are affected by changing the size of the UV threshold
correction to the Higgs potential.
The EWPO and the Higgs mass computed in the

previous sections depend on several parameters, in par-
ticular on the mass spectrum of resonances (see
Appendix B), the parameters ci, αi of Eqs. (3.9), (3.14),
and the parameter F1 discussed above. In order to focus
on the situation where resonances can escape detection at
the LHC, we will assume that their masses are all
comparable and that they lie at or just below the cutoff
scale. In order to simplify the numerical analysis we thus
set MΨ ¼ MS ¼ ~MΨ ¼ ~MS ¼ Mρ ¼ MρX ¼ m�=2. The
factor of two difference between MΨ and m� is chosen
to avoid setting all UV logarithms of the form logðm�=MΨÞ
to zero, while not making them artificially large. As a
further simplification we set cL ¼ cR ≡ c, α7L ¼ α1L, and
α7R ¼ α1R. The parameter αL appears only in the tree-level
contribution to δgLb, see Eq. (5.15), and we fix it equal to 1
for simplicity. Even though the above choices represent a
significant reduction of the whole available parameter
space, for the purpose of our analysis they represent a
sufficiently rich set where EWPT can be successfully
passed.
Let us now discuss the numerical bounds on the

parameter space of our simplified model. They have been
obtained by fixing the top and Higgs masses to their
experimental value and performing the numerical fit
described in Appendix F. As experimental inputs, we
use the PDG values of the top quark pole mass mt ¼
173.21� 0.51� 0.71 (see last paragraph of Appendix C),
and of the Higgs mass, mh ¼ 125.09� 0.24 GeV [57].
Figure 2 shows the results of the fit in the ðMΨ; ξÞ plane for
F1 ¼ 0.3 (left panel) and F1 ¼ 1 (right panel). In both
panels we have set c ¼ 0, which corresponds to the two-site
model limit of our simplified Lagrangian. The yellow
regions correspond to the points that pass the χ2 test at

15Notice indeed that ðα ¼ 1; c ¼ 0Þ and ðα ¼ 0; c ¼ 1=
ffiffiffi
2

p Þ
correspond to specific limits at weak coupling, namely the two-
site model and the linear sigma model respectively. This suggests
that their natural range is Oð1Þ.
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95% confidence level (CL), see Appendix F for details.
Solid black contours denote the regions for which
α1L ¼ −α1R ¼ 1, while dashed contours surround the
regions obtained with α1L ¼ α1R ¼ 1. The areas in blue
are theoretically inaccessible. The lower left region in dark
blue, in particular, corresponds to MΨ=f≡ gΨ < yL. The
upper dark- and light-blue regions correspond instead to
points violating the perturbative limits on gΨ given by
Eq. (3.15) with N ¼ 8, and Eq. (3.16) with Nf ¼ 24,
respectively (see Sec. III B for a discussion). The difference
between these two regions can be taken as an indication of
the uncertainty associated with the perturbative bound.16

In the left panel of Fig. 2 the allowed (lighter yellow)
region extends up to ξ≃ 0.2 for massesMΨ in the 2–3 TeV
range. Such large values of ξ are possible in this case
because the fermionic contribution to ΔT̂Ψ turns out to be
sufficiently large and positive to compensate for both the
negative ΔT̂h in Eq. (5.14) and the positive ΔŜρ and ΔŜh in
Eqs. (5.6), (5.7). For larger MΨ the fermionic contribution
ΔT̂Ψ becomes too small and this compensation no longer
occurs. In this case, however, the strongest bound comes
from the perturbativity limit (blue region), which makes
points with large MΨ at fixed ξ theoretically inaccessible.
Notice that large values of ξ become excluded if one
considers the choice α1L ¼ α1R ¼ 1 leading to the dashed
contour. The large difference between the solid and dashed
curves (i.e. lighter and darker yellow regions) depends on

the sign correlation between ΔT̂Ψ and δgLb. In the case of
the solid line, the signs are anticorrelated (e.g., positive
ΔT̂Ψ and negative δgLb), allowing for the compensation
effect by ΔT̂Ψ. In the case of the dashed line, instead, the
signs of the two parameters are correlated (both positive),
so that when ΔT̂Ψ is large, δgLb is also large and positive.
This makes it more difficult to pass the χ2 test, since data
prefer a negative δgLb.
In the right panel of Fig. 2, obtained with F1 ¼ 1, the

allowed yellow region shrinks because the larger value of
F1 implies a smaller yL hence a smaller ΔT̂Ψ. In this case
the χ2 test is passed only for ξ < 0.06, and the difference
between the solid and dashed lines is small since the large
and positive ΔŜ always dominates the fit. Masses MΨ
larger than∼5 TeV are excluded by the perturbative bound,
unless one considers smaller values of ξ.
The results of Fig. 2 can change significantly if the

parameter c is allowed to be different from zero. In
particular, as one can verify from our formulas in
Appendix E, positive values of c increase ΔT̂ and as a
result the allowed regions in Fig. 2 shift to the right toward
larger values of MΨ. In this case the perturbative bound
excludes a large portion of the region passing the χ2 test.
The effect of varying c is illustrated in Fig. 3, which shows
the 95% CL allowed regions in the plane ðc; αÞ for F1 ¼
0.3 (left panel) and F1 ¼ 1 (right panel). In both panels we
have set α≡ α1L ¼ −α1R (ensuring positive ΔT̂Ψ and
negative δgLb). The yellow, orange, and red regions
correspond, respectively, to ξ ¼ 0.05, ξ ¼ 0.1, and
ξ ¼ 0.15, with the masses of the resonances fixed at
their perturbative upper bound Mρ¼MΨ¼ 4πf=

ffiffiffiffiffiffiffiffiffiffiffi
N−2

p
(which for N ¼ 8 gives ∼6=4=3.2 TeV). Note that

FIG. 2. Allowed regions in the ðMΨ; ξÞ plane for F1 ¼ 0.3 (left panel) and F1 ¼ 1 (right panel). See the text for an explanation of the
different regions and of the choice of parameters.

16Notice that because of our choice m� ¼ 2MΨ, the scale m�
lies a factor of 2 above the pertubative cutoff. This is compatible
with the semiquantitative nature of our estimates. As we stated
previously we insisted in keepingm� ¼ 2MΨ because it implies a
more generic contribution to electroweak precision observables.
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increasing F1 (reducing yL) shifts the allowed region
toward positive values of c, since as mentioned above,
smaller yL requires a larger positive c to get a large
enough ΔT̂Ψ. Obviously, larger values of ξ correspond to
smaller allowed regions, as is clear from Fig. 2. Finally,
notice that the vertically symmetric structure of the
allowed regions is due to the quadratic dependence of
δgLb on α. From these plots, one can see that for
resonances conceivably out of direct reach of the LHC
and for ξ ∼ 0.1, corresponding to about 20% tuning of the
Higgs mass, both α and c are allowed to span a good
fraction of their expected Oð1Þ range. No dramatic extra
tuning in these parameters seems therefore necessary to
meet the constraints of EWPT. In particular, considering
the plot for F1 ¼ 1 (right panel), one notices that the
bulk of the allowed region is at positive c. For instance
by choosing c ∼ 0.2–0.5 the plot in the ðξ;MΨÞ plane for
F1 ¼ 1 becomes quite similar to the one at the left of
Fig. 3 valid for F1 ¼ 0.3: there exists a “peak” centered
at MΨ ∼ 2–4 TeV and extending up to ξ ∼ 0.2. The
specific choice c ¼ 0 is thus particularly restrictive for
F1 ¼ 1 (right panel of Fig. 2), but this restriction is lifted
for positive c. Overall we conclude that for ξ ∼ 0.1 and
for resonances just beyond the LHC reach, the correct
value of the Higgs quartic can be obtained and EWPT
passed with only a mild additional tuning associated with
a sign correlation α1L ¼ −α1R, and a correlation between
c and F1 (e.g. c > 0 for F1 ¼ 1). These correlations
allow the various contributions to T̂ and δgLb to com-
pensate for each other, achieving agreement with EWPT.
If forced to quantify the tuning inherent in these effects,
we could estimate it to be around 1=4 ¼ ð1=2Þ × ð1=2Þ,

given about 1=2 of the plausible choices for both αi and
ci are allowed.

VII. SUMMARY

In this paper we tried to assess how plausible a scenario
yielding no new particles at the LHC can be obtained using
the TH construction. We distinguished three possible
classes of models: the subhypersoft, the hypersoft and
the superhypersoft, with increasing degree of technical
complexity and decreasing (technical) fine tuning. We then
focused on the CH incarnation of the simplest option, the
subhypersoft scenario, where the boost factor for the mass
of colored partners [Eq. (2.4)] at fixed tuning is roughly
given by

g�ffiffiffi
2

p
yt
×

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðm�=mtÞ

p : ð7:1Þ

Here the gain derives entirely from the relative coupling
strength g�=

ffiffiffi
2

p
yt, making the marriage of twinning and

compositeness practically obligatory. We attempted a
more precise estimate of the upper limit on g�=

ffiffiffi
2

p
yt, as

compared with previous studies (e.g. Ref. [13]). We found
by independent but consistent estimates, that the bound
ranges from ∼3 in a toy sigma model [Eq. (2.6)] to ∼5 in a
simplified CH model [Eq. (3.15)], with both limits some-
what below the NDA estimate of 4π ∼ 12. Consequently
for a mild tuning ϵ ∼ 0.1 the upper bound on the mass of
the resonances with SM quantum numbers is closer to the
3–5 TeV range than it is to 10 TeV. This gain, despite

FIG. 3. Allowed regions in the ðc; αÞ plane, with c ¼ cL ¼ cR, for F1 ¼ 0.3 (left panel) and F1 ¼ 1 (right panel). The yellow, orange,
and red regions correspond to ξ ¼ 0.05, 0.1 and 0.15 respectively. See the text for an explanation of the choice of the other parameters.
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being less spectacular than naively expected, is still
sufficient to push these states out of direct reach of the
LHC, provided we resort to full strong coupling. In
practice this implies no real computational advantage
from considering holographic realizations of composite
TH constructions: since the boost factor is controlled by
the KK coupling, the 5D description breaks down in
precisely the most interesting regime, where the KK
coupling is strong. In this situation computations based
on an explicit 5D construction, such as the ones studied in
Refs. [9,16] for instance, are no better than numerical
estimates made in our simplified model. Indeed we have
checked that EWPT can be satisfied in a sizable portion of
the parameter space, given some interplay among the
various contributions. In particular the IR corrections to T̂
and Ŝ are enhanced by lnðm�=mhÞ, and for ξ > 0.1 the
compensating contribution to T̂, which decreases like
1=m2�, is necessary. Given that perturbativity limits m� to
be below 5 TeV for ξ > 0.1 (see the upper blue exclusion
region in Fig. 2) this compensation in EWPT can still
take place at the price of a moderate extra tuning. For ξ of
order a few percent on the other hand, EWPT would be
passed without any additional tuning, while the masses of
SM-charged resonances would be pushed up to the
10 TeV range, where nothing less than a 100 TeV collider
would be required to discover them, and that barely
so [58,59].
Although EWPT work similarly in the CH and

composite TH frameworks, the two are crucially different
when it comes to contributions to the Higgs quartic. In the
CH these are enhanced when g�, i.e. m�=f, is strong and,
as discussed for instance in Ref. [33], in order to avoid
additional tuning of the Higgs quartic g� cannot be too
large. According to the study in Refs. [60–63] the
corresponding upper bound on the mass of the colored
top partners in CH reads roughly m�=f ≲ 1.5; this should
be compared to the upper bound m�=f ≲ 5 from strong
coupling we found in Eq. (3.15). The Higgs quartic
protection afforded by the TH mechanism allows us to
take m�=f as large as possible, allowing the colored
partners to be heavier at fixed f, hence at fixed fine tuning
ξ. In the end the gain is about a factor of 5=1.5 ∼ 3, not
impressive, but sufficient to place the colored partners
outside of LHC reach for a mild tuning ξ ∼ 0.1.
Finally, we comment on the classes of models not

covered in this paper: the hypersoft and superhypersoft
scenarios. The latter requires combining supersymmetry
and compositeness with the TH mechanism, which,
while logically possible, does not correspond to any
existing construction. Such a construction would need to
be rather ingenious, and we currently do not feel
compelled to provide it, given the already rather
epicyclic nature of the TH scenario. The simpler hyper-
soft scenario, though also clever, can by contrast be
implemented in a straightforward manner, via, e.g., a

tumbling SOð9Þ → SOð8Þ → SOð7Þ pattern of symmetry
breaking. The advantage of this approach is that it
allows us to remain within the weakly-coupled domain,
due to the presence of a relatively light twin Higgs
scalar mode σ, whose mass can be parametrically close
to that of the twin tops, ∼ytf (around 1 TeV for
ξ ∼ 0.1). As well as giving rise to distinctive exper-
imental signatures due to mixing with the SM Higgs
[64], the mass of the light σ acts as a UV cutoff for the
IR contributions to Ŝ and T̂ in Eqs. (5.7) and (5.14)
[12]. For sufficiently light σ then, less or no interplay
between the various contributions is required in order to
pass EWPT. Together with calculability, this property
may well single out the hypersoft scenario as the most
plausible TH construction.
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APPENDIX A: SOð8Þ GENERATORS
AND CCWZ VARIABLES

In this Appendix we define the generators of the SOð8Þ
algebra and describe the SOð8Þ=SOð7Þ symmetry-breaking
pattern, introducing the CCWZ variables for our model. We
refer the reader to Refs. [41,42] for a detailed analysis of
this procedure and we closely follow the notation
of Ref. [13].
We start by listing the twenty-eight generators of SOð8Þ

and decomposing them into irreducible representations of
the unbroken subgroup SOð7Þ: 28 ¼ 7 ⊕ 21. They can be
compactly written as:

ðTijÞkl ¼
iffiffiffi
2

p ðδikδjl − δilδjkÞ; ðA1Þ

with i; j; k; l ¼ 1;…; 8. We choose to align the vacuum
expectation value responsible for the spontaneous
breaking of SOð8Þ to SOð7Þ along the 8th component:
ϕ0 ¼ fð0; 0; 0; 0; 0; 0; 0; 1Þt. With this choice, the broken
and unbroken generators, transforming, respectively, in the
7 and 21 of SOð7Þ, are
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ðT7
βÞγρ ¼

iffiffiffi
2

p ðδ8γδβρ − δ8ρδβγÞ;

ðT21
αβÞγρ ¼

iffiffiffi
2

p ðδαγδβρ − δαρδβγÞ; ðA2Þ

where α; β ¼ 1;…; 7 and γ; ρ ¼ 1;…; 8. It is useful to
identify the subgroups SOð4Þ ∼ SUð2ÞL × SUð2ÞR andfSOð4Þ ∼ fSUð2ÞL × fSUð2ÞR of SOð8Þ; they are generated
by:

ðTLÞα ¼
�
tαL 0

0 0

�
; ðTRÞα ¼

�
tαR 0

0 0

�
;

ð ~TLÞα ¼
�
0 0

0 tαL

�
; ð ~TRÞα ¼

�
0 0

0 tαR

�
; ðA3Þ

where tαL and tαR are 4 × 4 matrices defined as

ðtαL;RÞij ¼ −
i
2

�
1

2
ϵαβγðδβi δγj − δβjδ

γ
i Þ � ðδαi δ4j − δαjδ

4
i Þ
�
ðA4Þ

with α ¼ 1, 2, 3 and i; j ¼ 1;…; 4. The elementary SM and
twin vector bosons gauge, respectively, a subgroup
SUð2ÞL ×Uð1ÞY of SOð4Þ, with Uð1ÞY ≡ Uð1ÞR3, and
the subgroup fSUð2ÞL inside fSOð4Þ. This choice corre-
sponds to having zero vacuum misalignment at tree level.
The spontaneous breaking of SOð8Þ to SOð7Þ

delivers seven NGBs, that we collect in the vector
Π ¼ ðπ2; π1;−π3; π4; ~π2; ~π1;− ~π3Þt. The first four transform
as a fundamental of SOð4Þ and form the Higgs doublet; the
remaining three are singlets of SOð4Þ and are thus neutral
under the SM gauge group. All together they can be
arranged in the Goldstone matrix

ΣðΠÞ ¼ ei
ffiffi
2

p
f Π·T7

¼

264 I7 − ΠΠt

Πt·Π

�
1− cos

� ffiffiffiffiffiffiffiffi
Πt·Π

p
f

��
Πffiffiffiffiffiffiffiffi
Πt·Π

p sin
� ffiffiffiffiffiffiffiffi

Πt·Π
p

f

�
− Πffiffiffiffiffiffiffiffi

Πt·Π
p sin

� ffiffiffiffiffiffiffiffi
Πt·Π

p
f

�
cos

� ffiffiffiffiffiffiffiffi
Πt·Π

p
f

�
375:

ðA5Þ

The latter transforms nonlinearly under the action of an
SOð8Þ group element g, according to the standard relation:

ΣðΠÞ → g · ΣðΠÞ · h†ðΠ; gÞ; ðA6Þ

where hðΠ; gÞ ∈ SOð7Þ depends on g and ΠðxÞ. We
identify the Higgs boson with the NGB along the generator
T7
4; in the unitary gauge, all the remaining NGBs are

nonpropagating fields and the Π vector becomes

Πjunitary gauge ¼ ð0;…; π4 ¼ hhi þ hðxÞ;…; 0Þ; ðA7Þ

where ξ ¼ sin2ðhhi=fÞ ¼ v2=f2. In this case the Σ matrix
simplifies to:

ΣðΠÞjunitary gauge ¼ ei
ffiffi
2

p
f π4T

7
4 ¼

2666664
I3 0 0 0

0 cos π4f 0 sin π4
f

0 0 I3 0

0 − sin π4
f 0 cos π4f

3777775:
ðA8Þ

Given the above symmetry breaking pattern, it is
possible to define a LR parity,

PLR ¼ diagð−1;−1;−1;þ1;−1;−1;−1;þ1Þ; ðA9Þ

which exchanges SUð2ÞL with SUð2ÞR inside SOð4Þ andfSUð2ÞL with fSUð2ÞR inside fSOð4Þ. The corresponding
action on the fields is such that π4 is even, while all the
other NGBs are odd. As already noticed in Sec. V C, PLR is
an element of both SOð8Þ and SOð7Þ, which means that it is
an exact symmetry of the strong dynamics and acts linearly
on the physical spectrum of fields.
The CCWZ variables dμ and Eμ are defined as usual

through the Maurer-Cartan form,

Σ†ðΠÞDμΣðΠÞ≡ idiμðΠÞT7
i þ iEa

μðΠÞT21
a ; ðA10Þ

as the components along the broken and unbroken
generators of SOð8Þ respectively. The derivative Dμ is
covariant with respect to the external SM and twin gauge
fields:

Dμ ¼ ∂μ − iAA
μTA; with

AA
μTA ¼ g2Wα

μðTLÞα þ g1BμðTRÞ3 þ ~g2 ~W
α
μð ~TLÞα: ðA11Þ

Under the action of a global element g ∈ SOð8Þ,
dμ and Eμ transform with the rules of a local SOð7Þ
transformation:

dμ ≡ diμT7
i → hðΠ; gÞdμh†ðΠ; gÞ;

Eμ ≡ Ea
μT21

a → hðΠ; gÞðEμ − i∂μÞh†ðΠ; gÞ: ðA12Þ

It is straightforward to derive the explicit expressions of dμ
and Eμ from the Maurer-Cartan relation in Eq. (A10). They
are however lengthy and not very illuminating, so we do not
report them here. We can easily obtain the mass spectrum of
the gauge sector of our theory from the NGB kinetic term;
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in the unitary gauge and after rotating to the mass eigenstate
basis, we find:

Lmass ¼
f2

4
ðdiμÞ2 ⊃

g22
4
f2ξWþ

μ Wμ− þ ðg21 þ g22Þ
8

f2ξZμZμ

þ ~g22
8
f2ð1 − ξÞ

X3
i¼1

ð ~Wi
μÞ2: ðA13Þ

APPENDIX B: MASS MATRICES
AND SPECTRUM

In this Appendix, we briefly discuss the mass matrices of
the different charged sectors in the composite TH model
and the related particle spectrum. We refer to Ref. [13] for
the expressions of theΨ7 and ~Ψ7 multiplets in terms of their
component heavy fermions.
We start by considering the fields that do not have the

right quantum numbers to mix with the elementary SM and
twin quarks and whose mass is therefore independent of the
mixing parameters yL;R and ~yL;R. These are the composite
fermions X5=3, ~D1 and ~D−1, with charges 5=3, 1 and −1

respectively; their mass is exactly given by the Lagrangian
parametersMΨ (for the first one), and ~MΨ (for the last two).
The remaining sectors have charge −1=3, 0, and 2=3 and

because of the elementary/composite mixing the associated
mass matrices are in general nondiagonal and must be
diagonalized by a proper field rotation. The simplest case is
the ð−1=3Þ-charged sector, containing the bottom quark
and the heavy B field; the mass matrix in the fb; Bg basis is

M−1=3 ¼
�
0 fyL
0 −MΨ

�
: ðB1Þ

After rotation, we find a massless bottom quark (it has no
mass since we are not including the bR in the model), and a
massive B particle with m2

B ¼ M2
Ψ þ y2Lf

2.
As regards the sector of charge 2=3, it contains seven

different particles: the top quark, the toplike heavy states T
and X2=3 and four composite fermions that do not
participate in the SM weak interactions, S12=3; � � � S42=3. In
the ft; T; X2=3; S12=3;…; S42=3g basis, the mass matrix is
given by:

M2=3 ¼

0BBBBBB@
0 1

2
fyLð

ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p þ 1Þ − 1
2
fyLð

ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p
− 1Þ 0 − fyL

ffiffi
ξ

pffiffi
2

p

0 −MΨ 0 0 0

0 0 −MΨ 0 0

0 0 0 −MΨ × I3 0

fyR 0 0 0 −MS

1CCCCCCA: ðB2Þ

The states S12=3; S
2
2=3; S

3
2=3 completely decouple from the elementary sector and do not mix with the top quark. Their mass is

therefore exactly given by the Lagrangian parameter MΨ. The remaining 4 × 4 matrix is in general too complicated to be
analytically diagonalized, but one can easily find the spectrum in perturbation theory by expandingM2=3 for ξ ≪ 1, which is
in general a phenomenologically viable limit. The leading order expression for the masses is then:

m2
t ≃ f4

2

y2Ly
2
R

M2
S þ y2Rf

2
ξþOðξ2Þ;

m2
X2=3

¼ M2
Ψ;

m2
T ≃M2

Ψ þ y2Lf
2

�
1 −

ξ

2

�
þOðξ2Þ;

m2
S4
2=3

≃M2
S þ y2Rf

2 þ y2Lf
2M2

S

2ðM2
S þ y2Rf

2Þ ξþOðξ2Þ: ðB3Þ

The X2=3 fermion can be also decoupled and its mass is exactly equal to MΨ. On the contrary, the other three particles
mix with each other and their mass gets corrected after EWSB (as expected, the top mass is generated for nonzero values
of ξ).
Finally, we analyze the neutral sector of our model. It comprises eight fields, the twin top and bottom quarks, and six of

the composite fermions contained in the ~Ψ7 multiplet. Working in the field basis f~t; ~b; ~D1
0; ~D

2
0; ~U

1
0;…; ~U4

0g, the mass
matrix reads:
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M0 ¼

0BBBBBBBBBBBBBBBB@

0 0 − 1
2
f

ffiffiffi
ξ

p
~yL

1
2
f

ffiffiffi
ξ

p
~yL 0 0 − if ~yLffiffi

2
p − f

ffiffiffiffiffiffi
1−ξ

p
~yLffiffi

2
p

0 0 0 0 − if ~yLffiffi
2

p f ~yLffiffi
2

p 0 0

0 0 − ~MΨ 0 0 0 0 0

0 0 0 − ~MΨ 0 0 0 0

0 0 0 0 − ~MΨ 0 0 0

0 0 0 0 0 − ~MΨ 0 0

0 0 0 0 0 0 − ~MΨ 0

f ~yR 0 0 0 0 0 0 − ~MS

1CCCCCCCCCCCCCCCCA
: ðB4Þ

After diagonalization, we find one massless eigenvalue
corresponding to the twin bottom quark (it does not acquire
mass since we are not introducing the ~bR field). Four of the
neutral heavy fermions completely decouple and acquire
the following masses

m ~U1
0
¼ m ~U3

0
¼ m ~D2

0
¼ ~MΨ; m2

~U2
0

¼ ~M2
Ψ þ ~y2Lf

2: ðB5Þ

The elementary/composite mixing induces instead correc-
tions to the masses of the remaining neutral particles; at
leading order in ξ we find:

m2
~t ≃

f4

2

~y2L ~y
2
R

~M2
S þ ~y2Rf

2
ð1 − ξÞ þOðξ2Þ;

m2
~D1
0

≃ ~MΨ
2 þ 1

2
~yL2f2ð1þ ξÞ þOðξ2Þ;

m2
~U4
0

≃ ~MS
2 þ ~y2Rf

2 þ ~y2Lf
2 ~M2

S

2ð ~M2
S þ ~y2Rf

2Þ ð1 − ξÞ þOðξ2Þ:

ðB6Þ

We conclude by noticing that the masses of the
particles in different charged sectors are not unrelated
to each other, but must be connected according to the
action of the twin symmetry. In particular, it is obvious
that the two singlets S42=3 and ~U4

0 form an exact twin pair,
as it is the case for each SM quark and the corresponding
twin partner. The remaining pairs can be easily found
from the spectrum and correspond to the implementation
of the twin symmetry in the composite sector as defined
in [13].

APPENDIX C: RG IMPROVEMENT OF THE
HIGGS EFFECTIVE POTENTIAL

In this Appendix we describe the computation of the
Higgs effective potential and its RG improvement. First of
all, the UV threshold correction can be computed with
a standard Coleman-Weinberg (CW) procedure, from
which we can easily derive the function F1 of Eq. (4.2).
We find:

F1 ¼ −
1

4

�
1þ M4

S

ðM2
S þ f2y2RÞ2

−
M2

S þM2
Ψ − f2y2R

M2
S −M2

Ψ þ f2y2R
log

m2�
M2

Ψ

þM2
SðM2

SðM2
Ψ þ f2y2RÞ þ 2f2y2RM

2
Ψ þM4

SÞ
ðM2

S þ f2y2RÞ2ðM2
S −M2

Ψ þ f2y2RÞ
log

m2�
M2

S þ f2y2R

�
: ðC1Þ

The IR contribution to the Higgs mass can be organized using a joint expansion in ξ and ðαi logÞ, where αi ¼ g2i =ð4πÞ for
couplings gi. Schematically:

δm2
hjIR ¼ m2

t
αt
4π

t

�
a1 þ b1ξþ b2

αt
4π

tþ b3
αS
4π

tþ c1ξ2 þ c2ξ
αS
4π

tþ c3
α2S
16π2

t2

þ c4ξ
αt
4π

tþ c5
α2t
16π2

t2 þ c6
αt
4π

αS
4π

t2
�
− a2m2

W
αEW
4π

tþ twin; ðC2Þ
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where t ¼ logm2�=m2
t and all the couplings are evaluated at

the scale m�. Here ai, bi, ci are the Oð1Þ coefficients of the
LO, NLO, and NNLO terms respectively. The twin con-
tribution is obtained by substituting all αi, ai, bi, ci with the
corresponding tilded quantities and t with ~t ¼ logm2�=m2

~t .
The calculation of the LO and NLO terms is straightfor-
ward and all these contributions are included in our
calculation. The NNLO terms indicated in blue are also
simple to evaluate, and are included in our final result,
indicated as NNLO�. The calculation of the remaining
NNLO terms is more complicated, since it involves the
running of several higher dimensional operators involving
both the SM and twin fields. An attempt to compute the full
potential at NNLO has been presented in Ref. [46].
However, while that result includes the contribution of
the SM Goldstone bosons, additional contributions induced
by the twin Goldstones, which are expected to arise at
NNLO, are not included. Since the full calculation at
NNLO is beyond the scope of this paper, we limit ourselves
to only include the colored contributions in Eq. (C2).
Comparing with Ref. [46] suggests that our NNLO� result
gives an overestimate of the IR Higgs mass; that this is the
case at large m� is also evident from Fig. 1. For this reason
we consider the NNLO� curve only as an indication of the
importance of the NNLO correction, and use as final input
for our numerical analysis the average of the LO and NLO
results as described in Sec. IV.
We present now a procedure for computing the afore-

mentioned contributions to the Higgs mass based on the
approach of Ref. [46]. The RG improvement of the Higgs
effective potential can be obtained by solving the one-loop
β-function of the vacuum energy in the background of the
Higgs field. The fermion contribution to the vacuum energy
is given by

dVfðhc; tÞimpr

dt
¼ Nc

16π2
½Mtðhc; tÞ4 þM~tðhc; tÞ4�; ðC3Þ

whereas the leading gauge contribution is given by

Vgðhc; tÞ ¼
3

16π2
½2MWðhcÞ2 þMZðhcÞ2 þ 3M ~WðhcÞ2�t:

ðC4Þ

In order to compute the improved potential to NNLO�
accuracy, we must input the gauge boson masses at tree-
level and the renormalized top and twin top masses with
leading-log accuracy in the corresponding Yukawa cou-
plings and with next-to-leading-log accuracy in the strong
gauge couplings. After solving Eq. (C3) for the effective
potential, one must properly account for the Higgs wave
function renormalization before expanding around the
minimum of the potential in order to compute the physical
Higgs mass. We fill in the salient details below.

On integrating out the heavy degrees of freedom, the
composite twin Higgs model at the scale m� can be
represented by an effective Lagrangian that is invariant
under a global SUð3Þc × SUð2ÞL × Uð1ÞY symmetry, iden-
tified with the gauge group of the SM, as well as an

additional gSUð3Þc × gSUð2ÞLþR.
gSUð3Þc is the gauged twin

color and gSUð2ÞLþR is a global twin custodial group,
broken only by fermion interactions, under which the twin
gauge bosons ( ~W) and Goldstone bosons (GBs) transform
as triplets. We work in the gaugeless limit g ¼ g0 ¼ ~g ¼ 0,
since we are only interesting in capturing the leading
contributions to the Higgs potential that parametrically
depend on yt, ~yt, gS, and ~gS.
The relevant light degrees of freedom are the SM fermion

doublet, QL, and singlet, tR, and their twin counterparts ~tL
and ~tR, the gluons and their twins; the Higgs doublet
(including the massless GBs) and the twin GBs. For
economy of notation we define a twin Higgs doublet in
analogy with the SM one,

~H ¼ 1ffiffiffi
2

p
� ffiffiffi

2
p

~πþ

~hþ i ~π0

�
; with ~h ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2H†H þ ~π2

f2

s
;

ðC5Þ
making explicit the dependence on the twin Higgs which is
integrated out at tree-level, thus realizing the SOð8Þ
symmetry nonlinearly.
Since the background field calculation at leading-log

order requires corrections to the fermion masses and Higgs
wave function at only one loop, we can neglect in the
effective Lagrangian at the scale m�, any operator that has
vanishing coefficients at tree level. We also omit all
operators that cannot be predicted solely in terms of the
low-energy parameters of the theory (yt and ~yt) and f,
including products of Higgs and fermion currents that arise
from integrating out composite fermions.17 We make the
following field redefinition:

f
sinðjΠjf Þ
jΠj Πi → Πi; for jΠj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H†H þ ~π2

p
ðC6Þ

which allows the effective Lagrangian, containing a pure
scalar sector LS and a fermionic sector LF, to be expressed
in an especially compact form. The relevant operators in
each sector are given below:

LS ¼ DμH†DμH þ 1

2
∂μ ~π∂μ ~π þ cHOH þ cH ~πOH ~π þ c ~πO ~π

2f2

þ 2dH
H†H
f2

OH; ðC7Þ

17In any case, these do not contribute to the effective potential
at this order.
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and

LF ¼ ib̄L=∂bL þ ib̄R=∂bR þ it̄L=∂tL þ it̄R=∂tR
− yt½Q̄LHctR þ H:c:�
þ i ~̄bL=∂ ~bL þ i ~̄bR=∂ ~bR þ i~̄tL=∂~tL þ i~̄tR=∂~tR
− ~yt½ ~̄QL

~Hc~tR þ H:c:�: ðC8Þ

where

OH ¼ ∂μðH†HÞ∂μðH†HÞ;
O ~π ¼ ∂μ ~π

2∂μ ~π2;

OH ~π ¼ ∂μðH†HÞ∂μ ~π2: ðC9Þ

We have defined a twin fermion doublet ~QL ¼ ð~tL; ~bLÞT ,
transforming under the twin-sector symmetries, and the
Yukawa couplings are defined at tree-level as

ytðm�Þ ¼
yLyRfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

S þ y2Rf
2

p and ~ytðm�Þ ¼
y ~Ly ~Rfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~M2
S þ y2~Rf

2
q :

ðC10Þ

The Wilson coefficients at the scale m� have the
boundary values:

cHðm�Þ ¼ cH ~πðm�Þ ¼ c ~πðm�Þ ¼ dHðm�Þ ¼ 1; ðC11Þ

while the Z2 symmetry enforces

ytðm�Þ ¼ ~ytðm�Þ and αsðm�Þ ¼ eαsðm�Þ ðC12Þ

We now expand the effective Lagrangian in the back-
ground of the Higgs field h ¼ hc þ ĥ to obtain:

LS ¼ ZπðhcÞ
�
1

2
∂μπ

0∂μπ0 þ ∂μπ
þ∂μπ−

�
þ 1

2
ZĥðhcÞ∂μĥ∂μĥþ 1

2
Z ~πðhcÞ∂μ ~π∂μ ~π; ðC13Þ

where we defined

ZπðhcÞ ¼ 1; ZĥðhcÞ ¼ 1þ cH
h2c
f2

þ dH
h4c
f4

;

Z ~πðhcÞ ¼ 1; ðC14Þ

and

LF ¼
X
ψ

iZψðhcÞψ̄=∂ψ −mtðhcÞt̄t −mbðhcÞb̄b −m~tðhcÞ~̄t ~t−m ~bðhcÞ ~̄b ~b

−
ytðhcÞffiffiffi

2
p ĥ t̄ t −

iytðhcÞffiffiffi
2

p π0 t̄γ5t −
iytðhcÞ

2
π−b̄ð1þ γ5Þtþ iytðhcÞ

2
πþ t̄ð1 − γ5Þb

þ ~ytðhcÞffiffiffi
2

p ĥ ~̄t ~t−
iy ~π ~t ~tðhcÞffiffiffi

2
p ~π0~̄tγ5~t −

iy ~π ~t ~bðhcÞ
2

~π− ~̄bð1þ γ5Þ~tþ iy ~π ~t ~bðhcÞ
2

~πþ~̄tð1 − γ5Þ ~b: ðC15Þ

Here ψ runs over all the Weyl fermions ftL; tR; bL; bR; ~tL; ~tR; ~bL; ~bRg and we defined

ZψðhcÞ ¼ 1; ytðhcÞ ¼ yt; mtðhcÞ ¼
ythcffiffiffi

2
p ; mbðhcÞ ¼ 0;

y ~π ~t ~bðhcÞ ¼ ~yt; ~ytðhcÞ ¼
~ythc
f

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − h2c

f2

q ; m~tðhcÞ ¼
~ytfffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

h2c
f2

s
m ~bðhcÞ ¼ 0: ðC16Þ

We can now compute the running masses of the top and twin top in the background:

Mtðhc; tÞ ≈mtðhcÞ
�
1þ

�
g2S
4π2

−
3ytðhcÞ2

4ð4πÞ2ZĥðhcÞ
�
tþ 22g4S

ð4πÞ4 t
2

�
; ðC17aÞ

M~tðhc; tÞ ≈m~tðhcÞ
�
1þ

�
~g2S
4π2

−
3~ytðhcÞ2

4ð4πÞ2ZĥðhcÞ
�
tþ 22~g4S

ð4πÞ4 t
2

�
; ðC17bÞ

with t ¼ logðm2�=μ2Þ. The values of the parameters in the Higgs background are simply read off from the effective
Lagrangian at the scale m�. Notice that in the background, only yt and ~yt are scale-dependent, while hc is “frozen”; hence
the running of the quark mass is identical to that of the corresponding Yukawa coupling.
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We can now substitute Eqs. (C17) into the RG equation (C3), integrate the result and expand at the required order in hc=f
to get

Vfðhc; tÞimpr ¼ Nc

64π2

	�
y4t h4c þ ~y4t f4

�
1 −

h2c
f2

�
2
�
tþ y4t h4c

2

�
g2S
π2

−
3y2t
ð4πÞ2

�
t2

þ 23

96π4

�
g4Sy

4
t h4c þ ~g4S ~y

4
t f4

�
1 −

h2c
f2

�
2
�
t3

þ ~y4t f4

32π2

�
1 −

h2c
f2

�
2
�
16~g2S − 3~y2t

h2c
f2

�
1 − ð1þ cHÞ

h2c
f2

��
t2


: ðC18Þ

This is the improved effective potential written in terms of
parameters computed at the scale m�. We can now treat hc
as a quantum field, fluctuating around its minimum
hc ¼ hþ hhi. We then have to take into account that the
potential (C18) has been computed in a noncanonical basis
for hc, where its kinetic term coefficient, including only the
leading logarithmic running, is

ZhcðtÞ ¼ 1þ 3y2t
ð4πÞ2 t: ðC19Þ

Notice that only the top contributes to the one-loop running
of the hc wave function, since the twin top only couples
quadratically to hc, giving rise to a one-loop contribution

that is not logarithmically divergent. After normalizing hc
using Eq. (C19), including a Z2 breaking mass term
necessary to achieve a viable minimum and minimizing
the potential, hc acquires a vacuum expectation value
hc ¼ hþ hhi. This makes the wave function of h (the
Higgs field in the minimum) noncanonical again, due to the
presence of cH:

ZhðhhiÞ ¼ 1þ cH
hhi2
f2

: ðC20Þ

After normalizing h taking into account also this last effect,
and including the LO gauge contribution, the desired
contribution to the Higgs mass reads:

δm2
hjIR ¼ 3v2

8π2

	
ðy4t tþ y4~t ~tÞð1 − cHξþ ðc2H − dHÞξ2Þ −

1

16
½ð3g42 þ 2g21g

2
2 þ g41Þtþ 3~g42~t�

þ 1

32π2
ð16y4t g2St2 þ 16y4~t ~g

2
S~t

2Þð1 − cHξÞ

þ 1

32π2
ð−15y6t t2 − 12y2t ~y4t ~t2 þ 3y6~t ~t

2ð1þ cHÞÞ

þ 23

96π4
ðy4t g4St3 þ y4~t ~g

4
S~t

3Þ


; ðC21Þ

where we have highlighted the various contributions present in Eq. (C2) with the corresponding colors and set
t ¼ logm2�=m2

t , ~t ¼ logm2�=m2
~t . The Higgs vev has been defined by fixing the W mass according to

m2
W ¼ g2hhi2

4
; ⇒ hhi2 ¼ v2 ¼ 1ffiffiffi

2
p

GF

¼ 246 GeV: ðC22Þ

A numerical determination of the IR contribution δm2
hjIR can be obtained by making use of the experimental value of the

top quark mass to fix ytðm�Þ and ~ytðm�Þ. In fact, the 1-loop RG equation for yt is decoupled from the twin sector at the order
we are interested in and can be easily solved. Including only the orders required to match our calculation of the Higgs mass
squared in Eq. (C21) we get:

ytðm�Þ ¼ y~tðm�Þ ¼ ytðmtÞ
�
1 −

�
gSðmtÞ2
4π2

−
9ytðmtÞ2
64π2

�
log

m2�
m2

t
þ 22gSðmtÞ4

ð4πÞ4 log2
m2�
m2

t

�
;

gSðm�Þ ¼ ~gSðm�Þ ¼ gSðmtÞ
�
1 −

7gSðmtÞ2
32π2

log
m2�
m2

t

�
; ðC23Þ

ROBERTO CONTINO et al. PHYSICAL REVIEW D 96, 095036 (2017)

095036-24



which fixes ytðm�Þ in terms of ytðmtÞ. As an input to our
numerical analysis we use the PDG combination for the top
quark pole mass mt ¼ 173.21� 0.51� 0.71 GeV [57].
This is converted into the top Yukawa coupling in the

MS scheme yMS
t ðmtÞ ¼ 0.936� 0.005 by making use of

Eq. (62) of Ref. [65]. We then use ytðmtÞ ¼ yMS
t ðmtÞ. For

the strong interaction, we run the parameter measured at the
scale of the Z boson mass, gSðmZÞ ∼ 1.22, to the scalemt to
obtain gSðmtÞ.

APPENDIX D: OPERATOR ANALYSIS OF THE
HEAVY-VECTOR CONTRIBUTION TO δgLb

In this Appendix we discuss the UV threshold contri-
bution to δgLb generated by the tree-level exchange of the
composite vectors ρ [adjoint of SOð7Þ] and ρX [singlet of
SOð7Þ] at zero transferred momentum. This effect arises at
leading order from diagrams with a loop of heavy fermions,
as in Fig. 5. Our simple effective operator analysis will
show that the contribution of the ρ identically vanishes, in
agreement with the explicit calculation in the simpli-
fied model.
An adjoint of SOð7Þ decomposes under the custodial

SUð2ÞL × SUð2ÞR as:

21 ¼ ð3; 1Þ þ ð1; 3Þ þ 3 × ð2; 2Þ þ 3 × ð1; 1Þ: ðD1Þ

The first two representations contain the vector resonances
that are typically predicted by ordinary CH models, namely
ρL and ρR. They mix at tree-level with the Z boson and in
general contribute to δgLb. The remaining resonances do
not have the right quantum numbers to both mix with the Z
boson and couple to the left-handed bottom quark due to
isospin conservation. As a result, only the components ρL
and ρR inside the 21 can give a contribution to δgLb at the
1-loop level.
In order to analyze such effect, we make use of an

operator approach. We classify the operators that can
be generated at the scale m� by integrating out the
composite states, focusing on those which can modify
the Zbb̄ vertex at zero transferred momentum. In general,
since an exact PLR invariance implies vanishing correction
to gLb at zero transferred momentum, any δgLb must be
generated proportional to some spurionic coupling break-
ing this symmetry. In our model, the only coupling
breaking PLR in the fermion sector is yL, and a non-
vanishing δgLb arises at order y4L. The effective operators
can be constructed using the CCWZ formalism in terms of
the covariant spurion

χL ¼ Σ†Δ†ΔΣ; ðD2Þ

where Δ is defined in Eq. (3.11). By construction χL is a
Hermitian complex matrix. Under the action of an element
g ∈ SOð8Þ, it transforms as a 21a þ 27s þ 7þ 1þ 1 of

SOð7Þ (where the 7 is complex), and its formal trans-
formation rule is

χL → hðΠ; gÞχLh†ðΠ; gÞ; h ∈ SOð7Þ: ðD3Þ

As a second ingredient to build the effective operators, we
uplift the elementary doublet qL into a 7þ 1 representation
of SOð7Þ by dressing it with NGBs:

QL ¼ ðΣ†Δ†qLÞ: ðD4Þ

Wewill denote withQð7Þ
L andQð1Þ

L respectively the septuplet

and singlet components of QL. Since Q
ð1Þ
L does not contain

bL (it depends only on tL), only Qð7Þ
L is of interest for the

present analysis. Under a SOð8Þ transformation

Qð7Þ
L → hðΠ; gÞQð7Þ

L : ðD5Þ

The effective operators contributing to δgLb can be thus

constructed in terms of χL, dμ, and Qð7Þ
L . We find that the

exchange of ρμ in the diagram of Fig. 5 can generate two
independent operators,

O21 ¼ Q̄ð7Þ
L γμTaQð7Þ

L TrðdμχLTaÞ;
O0

21 ¼ Q̄ð7Þ
L γμTaQð7Þ

L ðdμTaχLÞ88; ðD6Þ

where Ta is an SOð8Þ generator in the adjoint of SOð7Þ; the
exchange of ρXμ gives rise to other two18:

O1 ¼ Q̄ð7Þ
L γμQð7Þ

L TrðdμχLÞ; O0
1 ¼ Q̄ð7Þ

L γμQð7Þ
L ðdμχLÞ88:

ðD7Þ

Simple inspection reveals that only the septuplet compo-
nent of χL contributes in the above equations. One can
easily check that the operators of Eq. (D6) give a vanishing
contribution to δgLb. In particular, the terms generated by
the exchange of the (2,2) and (1,1) components of the ρ
give (as expected) an identically vanishing contribution.
Those arising from ρL and ρR [obtained by setting Ta in
Eq. (D6) equal to respectively one of the (3,1) and (1,3)
generators] give instead an equal and opposite correction to
gLb. This is in agreement with the results of a direct
calculation in the simplified model, from which one finds

18Additional structures constructed in terms of dμ and χL
can be rewritten in terms of those appearing in Eqs. (D6) and
(D7), hence they do not generate new linearly independent opera-
tors. Notice that TrðdμχLTaÞ ∝ faâ b̂dâμðχð7ÞL Þb̂, ðdμTaχLÞ88∝
faâb̂dâμðχð7Þ�L Þb̂, ðdμχLÞ88 ¼−dâμðχð7ÞL Þâ, TrðdμχLÞ¼−dâμðχð7ÞL Þâþ
dâμðχð7Þ�L Þâ, where χð7ÞL denotes the component of χL transforming
as a (complex) fundamental of SOð7Þ. A similar classification in
the context of SOð5Þ=SOð4Þ models in Ref. [29] found only one
operator, corresponding to the linear combination O0

1 −O1.
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that the contributions from ρL and ρR cancel each other.
Finally, a nonvanishing δgLb arises from the operators of
Eq. (D7) generated by the exchange of ρX. Upon expanding
in powers of the Higgs doublet, O1 and O0

1 both match the
dimension-6 operator OHq of Eq. (5.11) and differ only by
higher-order terms.

APPENDIX E: EXPLICIT FORMULAS
FOR THE EWPO

In this Appendix we report the results of our calculation
of the electroweak precision observables, in particular we
collect here the explicit expression of the coefficients aUV,
aIR of Eq. (5.12) and bUV, cUV, bIR of Eq. (5.17).

Let us start considering the T̂ parameter. For conven-
ience, we split the UV contribution into two parts,
redefining aUV as:

aUV ¼ aFinUV þ aLogUV log

�
M2

Ψ
M2

S þ f2y2R

�
: ðE1Þ

The coefficients aFinUV and aLogUV are obtained through a
straightforward calculation, but their expressions are
complicated functions of the Lagrangian parameters. We
thus show them only in the limit cL ¼ cR ≡ c and
MΨ ¼ MS ≡M, for simplicity. For aIR we give instead
the complete expression. We find:

aFinUV ¼ 1

12

�
−
12M4

f4y4R
þ 6f2M2y2R
ðf2y2R þM2Þ2 þ

9M6

ðf2y2R þM2Þ3 − 8

�
þ cð−5f8y8R − 2f6M2y6R þ 7f4M4y4R þ 12f2M6y2R þ 4M8Þffiffiffi

2
p

f4y4Rðf2y2R þM2Þ2

þ c2ðf2y2R þ 2M2Þ2ð3f2y2R − 5M2Þ
2f4y4Rðf2y2R þM2Þ ;

aLogUV ¼ f6y6R − f4M2y4R − f2M4y2R − 2M6

2f6y6R

þ
ffiffiffi
2

p
cð2f6y6R − 3f4M2y4R þ 3f2M4y2R þ 2M6Þ

f6y6R
þ c2ðf2M4y2R − 10M6Þ

f6y6R
;

aIR ¼ 1

2
þ M2

SM
2
Ψ

2ðM2
S þ f2y2RÞ2

þ
ffiffiffi
2

p cLMSMΨ þ 2cRf2y2R
M2

S þ f2y2R
: ðE2Þ

The derivation of δgbL at 1-loop level is more
involved and requires the computation of a series of
diagrams. As explained in the text, we focus on those
featuring a loop of fermions and NGBs (see Fig. 4),
and that one with a loop of fermion and the tree-level
exchange of a heavy vector (see Fig. 5). The coef-
ficients cUV is generated only by the latter diagram;
we find:

cUV ¼ α7Lðα1R þ α7RÞð1þ
ffiffiffi
2

p
cRÞ

g2
ρX
f2

M2
ρX

M2
Ψ

2ðM2
Ψ þ y2Lf

2Þ :

ðE3Þ

We remind the reader that in our numerical analysis we
use MρX=ðgρXfÞ ¼ 1, see footnote 5. We redefine the
other two coefficients as

FIG. 4. Diagrams with a loop of fermions and NGBs contributing to the ZbLb̄L vertex. Here fi indicates any fermion (both heavy and
light) in our simplified model; π� are the charged NGBs.
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bIR ¼ δIR þ δ̄IR

bUV ¼ ðδFinUV þ δ̄FinUVÞ þ ðδLogUV þ δ̄LogUV Þ log
�

M2
Ψ

M2
S þ f2y2R

�
;

ðE4Þ
where δIR, δFinUV, and δLogUV are generated by the diagrams in
Fig. 4 only, whereas δ̄IR, δ̄FinUV, and δ̄LogUV parametrize the
correction due to the tree-level exchange of a heavy spin-1
singlet in Fig. 5. As before, we report the expression of the
UV parameters in the limit cL ¼ cR ≡ c, MΨ ¼ MS ≡M,
for simplicity; in the case of the coefficients with a bar,
generated by the diagram of Fig. 5, we further set α7L ¼
α1L and α7R ¼ α1R. We find:

δFinUV ¼ −2f6y6R − 4f4M2y4R − 4f2M4y2R þM6

12ðf2y2R þM2Þ3 −
cðf6y6R þ 4f4M2y4R − 2f2M4y2R þM6Þ

6
ffiffiffi
2

p
f2y2Rðf2y2R þM2Þ2

þ 1

6
c2M2

�
3

f2y2R þM2
−

2

f2y2R

�
−

c3M2

3
ffiffiffi
2

p
f2y2R

;

δLogUV ¼ 1

6
−

M2

6f2y2R
−

c3M4

3
ffiffiffi
2

p
f4y4R

−
c2M4

3f4y4R
−
cð−f4y4R þ 2f2M2y2R þM4Þ

6
ffiffiffi
2

p
f4y4R

;

δ̄FinUV ¼
f2M2α1Lg2ρXðf4y4Rðα1L þ 2α1RÞ þ f2M2y2Rð3α1L þ 8α1RÞ þ 2M4ðα1L þ α1RÞÞ

4M2
ρX
ðf2y2L þM2Þðf2y2R þM2Þ2

þ
cf2M2α1Lg2ρXðf2y2Rð2α1L þ α1RÞ þ 2M2α1LÞffiffiffi

2
p

M2
ρX
ðf2y2L þM2Þðf2y2R þM2Þ ;

δ̄LogUV ¼
cM4α1Lg2ρXðα1L − α1RÞffiffiffi
2

p
y2RM

2
ρX
ðf2y2L þM2Þ þ

f2M2α1Lα1Rg2ρX

2M2
ρX
ðf2y2L þM2Þ : ðE5Þ

For the IR coefficients we give instead the full expressions. We find:

δIR ¼ 1

6
þ M2

SM
2
Ψ

6ðM2
S þ f2y2RÞ2

þ
ffiffiffi
2

p cLMSMΨ

3ðM2
S þ f2y2RÞ

þ
ffiffiffi
2

p cRf2y2R
12ðM2

S þ f2y2RÞ
;

δ̄IR ¼ α7Lα1R
g2
ρX

M2
ρX

f4M2
Ψy

2
R

2ðf2y2L þM2
ΨÞðf2y2R þM2

SÞ
: ðE6Þ

Notice that the IR corrections aIR and bIR are related to each other and parametrize the running of the effective coefficients
c̄Hq, c̄0Hq, and c̄Ht, as explained in the main text.

Finally, we report the contribution to Ŝ generated in our simplified model by loops of heavy fermions.We do not include this
correction in our electroweak fit, because in the perturbative region of the parameter space it is subdominant with respect to the
tree-level shift of Eq. (5.6). Rather, we use this computation as an additional way to estimate the perturbativity bound, as
discussed in Sec. III B. Analogously to what we did for T̂ and δgLb, we parametrize the fermionic contribution to Ŝ as:

ΔŜΨ ¼ g22
8π2

ξ

�
ð1 − c2L − c2RÞ log

m2�
M2

Ψ
þ ð1 − ~c2L − ~c2RÞ log

m2�
~M2
Ψ

�
þ g22
16π2

ξ

�
sFinUV þ sLogUV log

�
M2

Ψ
M2

S þ f2y2R

�
þ ~sFinUV þ ~sLogUV log

�
~M2
Ψ

~M2
S þ f2 ~y2R

��
þ g22
16π2

ξsIR
y2Lf

2

M2
Ψ
log

M2
1

m2
t
: ðE7Þ

FIG. 5. The diagram contributing to ZbLb̄L with a loop of
fermions and tree-level exchange of a heavy vector. Here fi and
fj denote generic fermions in the theory, both heavy and light,
whereas ρν indicates the heavy vector.

PRECISION TESTS AND FINE TUNING IN TWIN HIGGS … PHYSICAL REVIEW D 96, 095036 (2017)

095036-27



Terms in the first line are logarithmically sensitive to the UV cutoff, the second line contains the UV threshold corrections,
while the IR running appears in the third line. The UV thresholds include a contribution from the twin composites ~Ψ7 and ~Ψ1,
parametrized by ~sFinUV and ~sLogUV . At leading order in yL, by virtue of the twin parity invariance of the strong sector, such a
contribution can be obtained from that ofΨ7 andΨ1 (i.e. from sFinUV and sLogUV ) by simply interchanging the tilded quantities with
the untilded ones. Higher orders in yL break this symmetry and generate different corrections in the two sectors. We performed
the computation of the UV coefficients for yL ¼ 0, whereas sIR is derived up to order y2L. We find:

sFinUV ¼ 1

2
−
6cLcRMSMΨðf2y2R þM2

S þM2
ΨÞ

ðf2y2R þM2
S −M2

ΨÞ2
þ ðc2R þ c2LÞ

6

�
24M2

SM
2
Ψ

ðf2y2R þM2
S −M2

ΨÞ2
− 7

�
;

sLogUV ¼ −
2ðM2

S þ f2y2RÞ
ðM2

S −M2
Ψ þ f2y2RÞ3

½6cLcRMSM3
Ψ þ c2RM

2
Sðf2y2R þM2

S − 3M2
ΨÞ

þ c2Lðf2y2R þM2
SÞðf2y2R þM2

S − 3M2
ΨÞ�;

sIR ¼ M2
SM

4
Ψ − f2y2Lððf2y2R þM2

SÞðM2
S − f2y2RÞ þM2

SM
2
ΨÞ þM2

Ψðf2y2R þM2
SÞ2

6M2
Ψðf2y2R þM2

SÞ2

− cR
2

ffiffiffi
2

p
f2y2RðM2

Ψ − f2y2LÞ
3M2

Ψðf2y2R þM2
SÞ

− cL

ffiffiffi
2

p
MSðM2

Ψ − f2y2LÞ
3MΨðf2y2R þM2

SÞ
: ðE8Þ

APPENDIX F: THE EW FIT

For our analysis of the electroweak observables we make use of the fit to the parameters ϵ1;2;3;b [66–68] performed in
Ref. [69] (see also Ref. [26]). The central values there obtained for the shifts Δϵi ≡ ϵi − ϵSMi and the corresponding
correlation matrix are

Δϵ1 ¼ 0.0007� 0.0010

Δϵ2 ¼ −0.0001� 0.0009

Δϵ3 ¼ 0.0006� 0.0009

Δϵb ¼ 0.0003� 0.0013

ρ ¼

0BBB@
1 0.8 0.86 −0.33
0.8 1 0.51 −0.32
0.86 0.51 1 −0.22
−0.33 −0.32 −0.22 1

1CCCA: ðF1Þ

We can directly relate Δϵ1 to ΔT̂ and Δϵ3 to ΔŜ by using
the results of Refs. [45,47], and furthermore Δϵb ¼−2δgbL .
We set Δϵ2 ¼ 0 in our study, since its effect is subdominant
in our model as well as in CH models [47]. We thus make
use of Eq. (F1) to perform a χ2 test of the compatibility of
our predictions with the experimental constraints. The χ2

function is defined as usual:

χ2 ¼
X
ij

ðΔϵi − μiÞðσ2Þ−1ij ðΔϵj − μjÞ; ðσÞ2ij ¼ σiρijσj;

ðF2Þ
where μi and σi denote respectively the mean values and the
standard deviations of Eq. (F1), while Δϵi indicates the
theoretical prediction for each EW observable computed
in terms of the Lagrangian parameters. After deriving
the χ2, we perform a fit by scanning over the points in
our parameter space keeping only those for which
Δχ2 ≡ χ2 − χ2min < 7.82, the latter condition corresponding
to the 95% confidence level with 3 degrees of freedom.
Using this procedure, we convert the experimental con-
straints into bounds over the plane ðMΨ; ξÞ.

APPENDIX G: ESTIMATES OF THE
PERTURBATIVITY BOUND

This Appendix contains details on the derivation of
the perturbative limits discussed in Sec. III B. As explained
there, we consider the processes πaπb → πcπd and πaπb →

ψ̄cψd, where ψ ¼ fΨ7; ~Ψ7g and all indices transform
under the fundamental representation of the unbroken
SOð7Þ. In order to better monitor how the results depend
on the multiplicity of NGBs and fermions, we perform the
calculation for a generic SOðNÞ=SOðN − 1Þ coset with Nf

composite fermions ψ in the fundamental of SOðN − 1Þ.
Taking N ¼ 8 and Nf ¼ 2 × 3 ¼ 6 thus reproduces the
simplified model of Sec. III A.
The perturbative limits are obtained by first express-

ing the scattering amplitudes in terms of components
with definite SOðN − 1Þ quantum numbers. In the case
of SOð7Þ the product of two fundamentals decomposes
as 7 ⊗ 7 ¼ 1 ⊕ 21a ⊕ 27s, where the indices a and s
label respectively the antisymmetric and symmetric
two-index representations. A completely analogous
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decomposition holds in the general case of
SOðNÞ=SOðN − 1Þ,19 but for simplicity we will use
the SOð7Þ notation in the following to label the various
components. The leading tree-level contributions to the
scattering amplitudes arise from the contact interaction
generated by the expansion of the NGB kinetic term of
Eq. (3.4) and from the NGB-fermion interactions of
Eq. (3.9). The structure of the corresponding vertices
implies that the four-NGB amplitude has components in
all three irreducible representations of SOðN − 1Þ and
contains all partial waves. The amplitude with two
NGBs and two fermions, instead, has only the anti-
symmetric component of SOðN − 1Þ and starts with the

p-wave. At energies much larger than all masses the
amplitudes read

Mðπaπb → πcπdÞ ¼ s
f2

δabδcd þ t
f2

δacδbd þ u
f2

δadδbc;

Mðπaπb → Ψ̄c
7L
Ψd

7L
Þ ¼ s

2f2
sin θðδacδbd − δadδbcÞ;

Mðπaπb → Ψ̄c
7R
Ψd

7R
Þ ¼ s

2f2
sin θðδacδbd − δadδbcÞ:

ðG1Þ
They decompose into irreducible representations of
SOðN − 1Þ as follows:

Mð1Þðπaπb → πcπdÞ ¼ ðN − 2Þ s
f2 ;

Mð21Þðπaπb → Ψ̄c
7L
Ψd

7L
Þ ¼ s

2f2 sin θ;

Mð21Þðπaπb → πcπdÞ ¼ s
f2 cos θ;

Mð21Þðπaπb → Ψ̄c
7R
Ψd

7R
Þ ¼ s

2f2 sin θ:

Mð27Þðπaπb → πcπdÞ ¼ − s
f2 ;

ðG2Þ

Performing a partial wave decomposition we get

MðrÞ ¼
X
λi;λf

MðrÞ
λi;λf

¼ 16πkðiÞkðfÞ
X∞
j¼0

aðrÞj ð2jþ 1Þ

×
X
λi;λf

Dj
λi;λf

ðθÞ; ðG3Þ

where λi, λf are the initial and final state total helicities, and
kðiÞðkðfÞÞ is equal to either 1 or

ffiffiffi
2

p
depending on whether

the two particles in the initial (final) state are distinguish-
able or identical respectively. In the above equation MðrÞ
should be considered as a matrix acting on the space of

different channels. The coefficients aðrÞj are given by

aðrÞj ¼ 1

32πkðiÞkðfÞ

Z
π

0

dθ
X
λi;λf

Dj
λi;λf

ðθÞMðrÞ
λi;λf

: ðG4Þ

and act as matrices on the space of (elastic and inelastic)
channels with total angular momentum j and SOðN − 1Þ
irreducible representations r. They can be rewritten as a
function of the scattering phase as

aðrÞj ¼ e2iδ
ðrÞ
j − 1

2i
∼ δðrÞj : ðG5Þ

Our NDA estimate of the perturbativity bound is derived by
requiring this phase to be smaller than maximal:

jδðrÞj j < π

2
⇒ jaðrÞj j < π

2
ðG6Þ

Let us consider first the case r ¼ 1, corresponding to the
amplitude singlet of SOðN − 1Þ. The only contribution
comes from the four-NGB channel. Since the helicities of
the initial and final states are all zeros, in this particular case
the Wigner functions Dj

λi;λf
ðθÞ reduce to the Legendre

polynomials:

að1Þj ¼ 1

64π

Z
π

0

dθPjðcos θÞMð1Þ: ðG7Þ

The first and strongest perturbativity constraint comes from
the s-wave amplitude, which corresponds to j ¼ 0. We find:

að1Þ0 ¼ N − 2

32π

s
f2

; ðG8Þ

where N ¼ 8 in our case. From Eqs. (G6) and (G8), one
obtains the constraint of Eq. (3.15).
We analyze now the constraint from the scattering in the

antisymmetric representation, r ¼ 21. In this case, both the
NGB and the fermion channels contribute; the process
ππ → ππ is however independent of the fermion and
Goldstone multiplicities and can be neglected in the
limit of N and Nf. The process involving fermions is a
function of Nf and generates a perturbative limit which
is comparable and complementary to the previous one.
We have:19One has N⊗N¼ 1⊕ ½NðN−1Þ=2�a ⊕ ½NðNþ1Þ=2−1�s.
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að21Þj ¼
X
λf¼�1

1

32π

Z
π

0

dθDj
0;λf

ðθÞMð21Þ
0;λf

: ðG9Þ

As anticipated, this equation vanishes for j ¼ 0, so that the
strongest constraint is now derived for p-wave scattering,
with j ¼ 1. We have

að21Þ1 ¼ Nf

24
ffiffiffi
2

p
π

s
f2

: ðG10Þ

From Eqs. (G6) and (G10) follows the constraint
of Eq. (3.16).
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