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Chapter 1

Introduction

Asset allocation and investment decision are two of the main studied topics

in finance and financial mathematics. In this thesis, I tackle some of the

problems associated with the three main ingredients of portfolio allocation

theory, i.e. conditional expected returns, conditional variance, and the risk-

free asset from three different perspectives. The first ingredient is crucial

in investment decisions since the conditional expected returns represent the

expected profits coming from an investment, however, they are extremely

difficult to predict and the shorter the investment horizon the harder is the

prediction of future returns. Chapter 3 presents a new decomposition of

the sentiment series to enrich the investors’ information set and improve

the forecasts of daily returns. The second ingredient represents one of the

measures of risk used by investors to make their investment decisions. In

addition, the conditional variance may be useful to compute more complex

measures of risk as to the Value at Risk and the Expected Shortfall. Chapter

4 presents a new class of models to better forecast conditional covariance

matrices of financial assets The third and last ingredient is used by investors

to compare the performance of their investments with an investment free

1



CHAPTER 1. INTRODUCTION 2

of risk. The risk-free asset is an investment where the payoff is known

in advance and it is not subject to any source of risk. This ingredient is

exogenous to investors and strongly depends on the central bank monetary

policy. This link is explained in Chapter 5 of the thesis and we show how

the central bank monetary policy may affect the investors’ decisions.

The first example of a quantitative investment approach that uses the

mentioned three ingredients is the Mean-Variance portfolio allocation of

Markowitz (1952), Sharpe (1966) and Merton (1972a). This one-period

investment framework can be generalised in a multi-period framework by

solving a sequence of single-period problems, where the optimal weights for

any given time t are chosen such that the conditional expected return of

the portfolio is maximized for a given level of conditional variance (Fama,

1970; Hakansson, 1971).

Sentiment analysis and asset returns.

Since the beginning of the financial markets, investors used public and

private information to invest or disinvest in a specific stock. News, defined

as the difference of the expectations in two subsequent times, was indicated

as the main drivers in the changes in stock prices and volatilities. Campbell

and Shiller (1988b) and Campbell and Shiller (1988a) theoretically showed

how unexpected returns are a combination of news on dividends and future

returns. Campbell and Hentschel (1992) and Engle and Ng (1993) showed

how the volatility reacts asymmetrically to news.

In recent years, with the advent of big data and the increment of compu-

tational capacity, alternative datasets have been explored to assess if they

contain market sensible information. In addition, the introduction of a new

brand of machine learning techniques, called Natural Language Processing,
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helped researchers and investors to categorize the sentiment of news, i.e.

the polarity of information contained in a message. This approach allows us

to analyze a huge number of newspapers and social media and automatically

extract the mood of the investors.

Using these new datasets, researchers explore the value added by the

information flow in the investor’s information set. If the article in today’s

Financial Times affects the investor’s behaviour, we should expect that the

content of the article can affect today’s realized return. More interestingly,

if the market does not digest the news immediately, we can use today’s

information flow to predict future market movements. This lead-lag effect

may be present in the market but it is not easy to exploit. Indeed the

flow of news arrival is not homogeneous in time and we may not observe

news for a given company for hours or days. The higher is the frequency

considered, the stronger is the lead-lag effect but the higher is the number

of missing observations in the sentiment time series. On the opposite, if

a lower time scale is used, the sentiment time series is more tractable but

the lead-lag effect between sentiment and return is weaker. Antweiler and

Frank (2004) showed that the information contained in the messages posted

online aggregated at a daily level is useful to statistically predict future

returns, volatilities and volumes. Allen et al. (2015) and Audrino et al.

(2020) showed that the sentiment and volumes of newspaper articles and

tweets are important to predict market volatility. Tetlock (2007) and Garcia

(2013) showed that the Dow Jones returns can be predicted using sentiment

variables and that the forecasting power is stronger during a crisis.

In the economics and financial literature using sentiment analysis, the

textual data used depends on two choices of the authors. The first choice

is the definition of the interested sentiment variable and what is the metric
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used to classify textual data, where the appropriate quantitative technique

depends on the context. For instance, Antweiler and Frank (2004) and

Picault and Renault (2017) use the same classification technique but they

target different sentiment variables. The first paper classifies the sentiment

data as bullish and bearish as it is referred to the stock market, while the

second paper denotes the sentiment variable as dovish and hawkish as they

study the ECB communications. The classification technique used in these

two papers is based on the count of positive or negative words, but the

definition of positive and negative words changes according to the context.

The second choice is the sources of news that the authors want to an-

alyze. For instance, Tetlock (2007) uses only the articles from “Abreast

of the Market” column in the Wall Street Journal while Peterson (2016)

uses a very broad and diverse number of sources, ranging from the Finan-

cial Times to Twitter. When a low number of homogeneous sources are

used, the sentiment signal represents the view of a small sample of indi-

viduals and it may be not representative of the population. At the same

time, homogeneous sources tend to reflect the same opinions and there is

a small dispersion in their views. This case represents a high-bias low-

variance measure of sentiment. On the contrary, when a high number of

heterogeneous sources are used, the signal is more representative of the

view of the population. However different groups may have very different

views on the same news, for this reason, the dispersion around the mean

is higher than in the previous case. In this scenario, we have a low bias

high variance measure of sentiment. The number and diversity of the used

sources present a bias-variance tradeoff. When the number of sources is

high and the sentiment series are affected by noise, econometric techniques

have been proposed to filter the noise. Peterson (2016) uses the Moving
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Average Convergence-Divergence methodology proposed in Appel (2003)

and Borovkova and Mahakena (2015) Audrino and Tetereva (2019) and

Borovkova and Lammers (2017) introduce the Local News Sentiment Level

model (LNSL), a univariate method which takes inspiration from the Lo-

cal Level model of Durbin and Koopman (2012). However, there is not a

clear consensus of which technique should be used and how these filtering

approaches can be interpreted.

Chapter 3 presents the first original work of the thesis. We contribute

to the literature by proposing a new econometric technique to filter the

noise from the sentiment data and we investigate the relationship between

the sentiment series and market returns. In the first part of chapter 3,

we model the noisy sentiment series as a composition of three components,

one noisy component and two sentiment signals. The first sentiment signal,

named long-term sentiment, captures the permanent shocks in the investor’s

mood caused by certain news. In Borovkova et al. (2017) and Audrino and

Tetereva (2019), the long-term sentiment is the only relevant sentiment

component. The second sentiment signal, named short-term sentiment,

captures the short-lived trends in the investor’s mood. This component is

inspired by Gerber et al. (2011) who shows how these fast trends in the

investor’s preferences have strong impacts on the investor’s behaviour. The

second novelty of our approach is the multivariate nature of the model.

While Audrino and Tetereva (2019) uses a univariate specification to filter

the noise from the sentiment series, we propose a multivariate approach that

exploits the cross-sectional information of the sentiment. In the empirical

analysis, we see that the cross-correlation among the short-term sentiment

component has the same structure as the cross-correlation component of

asset returns and residuals. The Multivariate Long Short Sentiment model
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(MLSS) reads

St = ΛFt + Ψt + εt, εt
d∼ N (0, R) ,

Ψt = ΦΨt−1 + ut, ut
d∼ N (0, Qshort) ,

Ft = Ft−1 + vt, vt
d∼ N (0, Qlong) ,

(1.1)

where R ∈ RK×K is the diagonal covariance matrix of the observation

noise εt, Φ ∈ RK×K is the diagonal matrix of autoregressive coefficients,

Qshort ∈ RK×K is the covariance matrix of the short-term sentiment inno-

vations, and Qlong ∈ Rq×q is the covariance matrix of the long-term senti-

ment innovations. In equation (1.1), Ft and Ψt are the latent processes of

the long-term sentiment and short-term sentiment respectively. It’s worth

noticing that the long-term sentiment is weighted for a factor loading ma-

trix Λ ∈ Rq×K where q 6 K. The intuition behind the factor structure

of the long-term sentiment is that the permanent shocks in sentiment are

common across set of assets. Empirically, the significance of Λ can be sta-

tistically tested and the selection of the number q of common factors can

be performed by means of AIC and BIC criteria. We show that the optimal

number of common long-term sentiment series is 2.

We decompose and identify this three components using a combination

of Kalman filter and Expectation Maximization as in Shumway and Stoffer

(1982), Banbura and Modugno (2014) and Jungbacker and Koopman (2008)

that allows us to jointly filter the sentiment components and estimate the

parameters of model (1.1).

In the second part of the Chapter, we show that this new decomposi-

tion is of practical use to shed light on the relationship between sentiment

and market returns. We use sentiment and market daily data from Jan-

uary 2006 to December 2017 on a subset of the Dow Jones Industrial Index

and perform a series of quantile regressions with different filtering tech-
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niques. We consider the MLSS model in (1.1), the univariate version of

MLSS model (LSS), the Local News Sentiment Level (LNSL) of Audrino

and Tetereva (2019) and Borovkova et al. (2017) and the multivariate ver-

sion of the LNSL model (MLNSL). As a point of comparison, we consider

also the case, denoted as Obs, where no filtering is applied to the data.

The goal of the analysis is twofold. First, we analyse the relationship be-

tween the sentiment and asset returns distribution. Second, we investigate

if the different filtering techniques affect the results. We show that news

affects and predict better extreme returns, i.e. returns over the 95th or

below the 5th quantiles, rather than returns in the centre of the distribu-

tion. In particular, we show that the explanatory and predictable power is

mainly given by the novel short-term sentiment. Indeed when the LNSL

and MLNSL filtering models are considered, which are the models which do

not take into account the short-term sentiment, the statistical effect disap-

pears. These results confirm the initial intuition that fast trends affect the

future performances of an asset more than long-lasting trends, which is in

line with Gerber et al. (2011). To conclude the second part of the chapter,

we investigate the inverse relation between returns and future sentiment.

Using again a quantile regression analysis, we see that the effect of present

returns and the future sentiment is significant for extreme events, both pos-

itive and negative. Intuitively, the result shows that newspaper and social

media slowly digests days of extreme returns, where the significance lasts

for up to one week. The effect is stronger for extreme negative returns than

for extreme positive returns. These findings suggest that the relationship

between sentiment and market returns is on both time directions and non-

linear, where only extreme parts of the return distribution are affected by

the news.
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Measures BH MLSS LSS MLNSL LNSL Obs
A. Sharpe ratio 0.469 0.519 0.385 0.495 0.419 0.35
A. Sortino ratio 0.578 0.671 0.487 0.614 0.53 0.435

Number of trades 1 553 161 81 73 93
Transaction costs ($) 50 37974 14866 5565 4085 7544

Table 1.1: Performances of the six strategies with transaction cost for the
period February 2007 - June 2017. In bold, the best performance per row.
BH is the buy-and-hold portfolio, while MLSS, LSS, MLNSL, LSNSL, and
Obs correspond to portfolios built from the corresponding model for the
sentiment time series.

In the third and last part of the chapter, we exploit the non-linear rela-

tion between extreme negative returns and long and short-term sentiment.

We use a logistic regression model to predict abnormal negative returns, i.e.

those returns which are negative of more than one standard deviation. The

investment strategy consists of a long signal, i.e. a signal to buy or keep the

asset, when the logistic regression does not predict an abnormal negative

return and a short signal, i.e. a signal to buy or keep a short position in the

asset when the logistic regression predicts an abnormal negative return. For

each filtering technique, we estimate a different logistic regression using the

sentiment series as exogenous variables. The performances of the portfolios

are compared for all the different filtering techniques and are also compared

with a simple Buy and Hold strategy (BH). Finally, transaction costs are

considered. Table 1.1 reports the performances of the different strategies

according to the Annual Sharpe ratio and the Annual Sortino ratio. We

see that the only sentiment-based strategy which significantly outperforms

the Buy and Hold is the strategy based on the Long and Short-sentiment

decomposition. In the final part of the Chapter, we show the significance of

the results and propose a simple technique to reduce the number of trades

in the MLSS strategy which reduces the transaction costs and improves the
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performance.

Forecasting the asset covariance matrix. A

score-driven approach

The main point raised by Markowitz (1952) is the role of diversification in

portfolio selection. Markowitz seminal paper opened the avenues for the

studies of the second moment of asset returns. Volatilities and correlations,

however, are not directly observable in the market and are considered latent.

For these reasons, two streams of literature emerge in this context. The

first stream explores the different modelling features and the techniques to

effectively forecast the covariance matrix. The second stream studies the

different estimators for the latent covariance matrix.

Concerning the modelling part, as for the mean of the asset returns,

also the variance has been widely studied and exhibits well known stylized

facts, see Cont (2001). Three key stylized facts of financial returns are

the conditional and unconditional fat tails, i.e. extreme events occur much

more often than as predicted by Gaussian’s distribution both condition-

ally and unconditionally, the volatility clustering, i.e. high volatility events

tend to follow high volatility events, and the slow decay of autocorrelation

in volatility, i.e. volatility shows a very long-memory. On the volatility

clustering property of financial returns, Engle (1982) and Bollerslev (1986)

propose the first discrete-time model of financial returns where the variance

is time-varying and capture the volatility clustering behaviour. ARCH and

GARCH models reproduce the unconditional fat tails and the volatility clus-

tering properties but they do not address the conditional non-normality and

the long-memory. The conditional fat tail of asset returns is easily solved

in Bollerslev (1987) who introduced the t-student distribution to model the
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residuals of the ARCH-GARCH models. The problem of the long-memory

property has been tackled by several researchers. The most popular long

memory models are inspired by the ARFIMA(p, d, q), as the FIGARCH of

where FI stands for Fractionally Integrated of Baillie et al. (1996). However,

fractionally integrated models are hard to interpret economically and are

hard to be extended in higher dimensions. Corsi (2009) proposed a simple

model where he approximates the slowly decaying memory process with a

restricted AR(22) which perfectly reproduces the long-memory behaviour

of volatility with a short memory process.

Covariance modelling introduces several extra technical challenges that

are not present in the univariate case. The first one is the curse of di-

mensionality. Indeed, in practical asset allocation problems, the number

of considered assets is very high and most of the models have the num-

ber of parameters that scale with the number of assets and it can lead to

poorly estimated parameters. The second problem is the need to guarantee

positive-definite matrices for any time. This condition can be hard to be

guaranteed in many models. The first notable example of a model which

addresses both problems is the DCC model of Engle (2002b).

Concerning the estimators for the covariance matrix, after the seminal

paper Andersen and Bollerslev (1998), the use of high-frequency data be-

came a standard in the financial literature. The realized measures have been

proved to produce better models with higher forecasting performances. En-

gle and Gallo (2006), Corsi (2009) and Hansen et al. (2012) are notable

examples of univariate models which exploit the daily realized variance

measure to improve the forecasts of daily volatility. In the multivariate

framework, Bauwens et al. (2012) improves the DCC model presented in

Engle (2002b) to account for realized covariance measures. However, most
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of the models which use the realized measures do not consider the estimation

error of the realized measures or, if they do, they start from the Gaussian

assumption which contradicts one of the previously presented stylized facts.

Chapter 4 presents the second original contribution of the thesis. We

use a recent class of observation-driven models, named score-driven models

introduced in Creal et al. (2013) and Harvey (2013), to model and forecast

high dimensional covariance matrices. This procedure allows us to create

a dynamic model with possibly any distribution. Gorgi et al. (2018) and

Opschoor et al. (2017) use this technique to model high dimensional covari-

ance matrix with a score-driven dynamic, where they produce two different

models. The Realized Wishart GARCH (RWG) of Gorgi et al. (2018) and

the GAS-F model of Opschoor et al. (2017). However, the parametrization

used in these models is often too restrictive to capture the whole dynamics

of the covariances.

In the first part of the Chapter, we take inspiration from the DCC model

of Engle (2002b) to create a two-step procedure that is more flexible. We

start from a series of positive-definite unbiased measures {Xt}Tt=1 of the

latent covariance matrices {Vt}Tt=1 and we assume that

Xt|Ft−1 ∼ Gk (Vt) (1.2)

where Gk is a matrix-variate distribution with expected value Vt ∈ Rk×k.

We separately estimate variances and correlations and, considering a given

specification for the return’s distribution, we include the estimations of

the volatilities to improve the estimation of the correlations’ dynamics.

The main idea for the decomposition is based on the variance-correlation

decomposition Vt = DtRtDt. Dt is the k × k standard deviation matrix

for any time t with the standard deviations in the diagonal elements and 0

off-diagonal while Rt is the correlation matrix for any time t. In the first
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step, we use the conditional distributions of the diagonal elements x
(i)
t of the

Realized measure Xt, i.e. x
(i)
t |Ft−1 ∼ g(v

(i)
t ). For any asset i, we estimate

the following model

Dt(i, i) =

√
v

(i)
t

v
(i)
t = eλ

(i)
t

λ
(i)
t+1 = ωi + αis

(i)
t + β

(d)
i λ

(i)
t + β

(w)
i λ

(i)
t−1|t−5 + β

(m)
i λ

(i)
t−6|t−22,

(1.3)

where λ
(i)
t−m|t−n = 1

n−m+1

∑t−m
j=t−n λ

(i)
j and s

(i)
t denotes the scaled score of the

i-th univariate density. s
(i)
t is the update given by the score-driven models

(Creal et al., 2013) and depends on the choice of the probability density

function g.

In the second step, we use the estimation of the matrix Dt given by (1.3)

to estimate the dynamics of the correlation matrix as

Rt = ∆−1
t Qt∆−1t

vech(Qt+1) = Ω + Ast +Bvech(Qt),
(1.4)

where ∆t = diag (Qt)
1/2 and vech(·) is the half-vectorization operator. As

in the univariate case, the score driven update st depends on the density

function Gk in (1.2).

Two possible parametrizations of Gk are proposed. The first one as-

sumes a Gaussian density for the asset returns which leads to a Wishart

distribution for the Realized Covariance matrix. The score-driven specifica-

tion, in this case, reduces to the Realized DCC model presented in Bauwens

et al. (2012). The second specification assumes a student-t distribution for

the asset returns, which leads to a matrix-F distribution for the realized

covariance matrix. In this case, we obtain a different and novel update

rule. We name the models as 2-step W and 2-step F when the Wishart and

matrix-F parametrizations are assumed respectively. We prove the positive
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definiteness of the covariance matrices estimated with both models which

also are not severely affected by the curse of dimensionality. In addition

we show that the 2-step W is a special case of the 2-step F under some

parameter restrictions.

The proposed models satisfy the stylized facts presented above, the only

exception is that the Wishart specification does not account for the con-

ditional fat tails while the matrix-F distribution does. This characteristic

allows us to test whether and to which extent the conditional fat tailless

affects the fit and forecast. In addition, both the specifications account for

possible estimation errors of the realized covariance matrix.

The two new models present potential advantages with respect to the ex-

isting ones. The 2-step W (F ) has a more flexible parameterization with

respect to the score-driven models of Gorgi et al. (2018) and Opschoor et al.

(2017). Indeed the 2-step W (F ) approximate the long-term memory using

a restricted AR(29) inspired by Corsi (2009) and capture the non-linearity

of the volatility processes using an exponential link function. In compari-

son with the other multivariate models inspired by theDRD decomposition,

the score-driven dynamics of the 2-step W (F ) create a consistency between

the univariate and multivariate distributions, where the univariate models

follow the marginal distribution of the multivariate specification.

In the second part of the Chapter, we perform an extensive Monte Carlo

exercise where we show three important features of the models. i) The

maximum-likelihood estimator of the two-step routine has an increasing

power with the cross-asset dimension and with the number of observa-

tions. In addition, the parameters can be accurately estimated even in

low-dimension and/or with few data points. The finite-sample properties

of the estimators are crucial to understanding the behaviour of the models
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for different dimensions of the time series. ii) Both models can accurately

capture the correlation dynamic also when the Data Generating Process is

misspecified. This feature is crucial to understand whether the models are

flexible enough to capture the correlation dynamics of real financial data.

iii) We compare the performances of the 2-step model with respect to the

joint models of Gorgi et al. (2018) and Opschoor et al. (2017) according

to the Root Mean Square Error (RMSE) and the Quasi-Likelihood (Qlike)

measures. The Diebold-Mariano test shows that the 2-step estimation mod-

els significantly outperform the joint estimation models both in and out of

sample.

In the third and last part of the Chapter, we report the empirical exercise

using 5 different portfolios from the NYSE (with 5, 10, 25, 50 and 100 assets)

and 5 different portfolios from the Russel 3000 (again with 5, 10, 25, 50 and

100 assets). Firstly, we perform an in-sample exercise where we compare the

2-step models with the RWG and GAS-F models of Gorgi et al. (2018) and

Opschoor et al. (2017). We show that the 2-step F model is the best one in

terms of AIC and BIC. In addition, the choice of the matrix-F distribution

is more important, in terms of performance, than the flexibility given by

the 2-step estimator. Secondly, an out of sample exercise is performed

to compare the 2-step estimators with the joint estimators and the HAR-

DRD model of Oh and Patton (2018) which is a well-accepted benchmark

in the literature. The HAR-DRD model is a two-step estimation model

which does not take into account the measurement error of the realized

covariance matrix. The 2-step F model outperforms all the models and the

difference with the other models increase with the dimension. Finally, using

an economical experiment inspired by the Markowitz (1952) framework and

introduced in Fleming et al. (2001), we prove that our matrix-F model
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generates economical gain over the other competing models.

Central Bank monetary policy and the Portfolio

Instability

The primary goal of modern central banks is to keep the price of goods

stable. For the European Central Bank, the practical definition of price

stability is the year on year inflation: “Price stability is defined as a year-

on-year increase in the Harmonised Index of Consumer Prices (HICP) for

the euro area of below, but close to, 2% over the medium term”1. The main

tool that the European Central Bank, as most of the other central banks,

uses to keep prices stable is the short-term interest rate, or deposit facility.

The deposit facility is the rate at which banks make overnight deposits with

the Eurosystem. In recent years, due to a prolonged period of low inflation,

several advanced economies such as Europe, Japan and the US lived in a

prolonged period of low interest rates. In addition, the current state of the

economic cycle and the recent inflation forecasts suggest that the low-rate

period, which is now called Low for Long, will be prolonged even in the

medium-term future.

The implications and side effects of the Low for Long for bonds (Lemke

and Vladu, 2017) and banks (Altavilla et al., 2018; Brunnermeier and Koby,

2018) have been studied. The deposit facility rate is the main driver of the

different proxies of risk-free rate used in the market, such as AAA short-

term government bonds or the EURIBOR. A low level of interest rate de-

creases the yields of government bonds and other safe assets, which are

strictly related to the interest rate, and pushes the investor to move into

1This is the quantitative definition of price stability of the ECB given in 2003 from
the Governing Council
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riskier asset classes. This mechanism is called Risk-taking channel of mon-

etary policy (Borio and Zhu, 2012) and it is a desired effect of the monetary

policy. The ways in which low rates can influence risk-taking are mainly

two. Firstly, a reduction in the policy rate decreases the discount rate

and increases stock valuations (Campbell and Shiller, 1988b). In addition,

it increases the value of the collateral reducing the borrowing constraints

for the firms. Secondly, low interest rates lower the expected returns for

safe assets, creating the ”search for yield” environment described by Ra-

jan (2005), where economic agents move to higher risk assets to search for

better performances. The risk-taking channel has been widely studied for

banks, as they are the main liquidity providers. Altunbas et al. (2014) and

Neuenkirch and Nöckel (2018) empirically show the effect of the risk-taking

channel in the Euro Area Banks. Drechsler et al. (2014) theoretically and

empirically shows the impact of low rates in the risk premium. In this

thesis, we use the investors’ perspective to show possible side effects of the

risk-taking behaviour induced by low rates.

Chapter 5 presents the third and last contribution of the thesis. The

main purpose of the chapter is to analyze possible undesired effects of the

low rates environment for financial stability. Initially, we investigate this

topic using a Mean-Variance framework, where the investor’s portfolio is

affected by the market conditions, i.e. market returns, variances and his/her

risk-aversion, and the risk-free rate level. In this framework, the interest

rate fixed by the central bank determines the risk-free rate level that affects

the market conditions. The intuition is that a low level of risk-free rate

forces the investor to move towards riskier assets. The market conditions

together with the risk-free rate level define an equilibrium with high weights

on the riskier assets. However, this equilibrium is mainly supported by a
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small interest rate level. For this reason, a deterioration of the market

conditions due to exogenous shocks can dramatically change the optimal

portfolio weights and the transition can create market frictions and liquidity

issues. In Chapter 5 we claim that the lower the interest rate level, the

higher is the rebalancing movement created by an exogenous shock on the

market conditions.

In the first part of the Chapter, we introduce a measure of Portfolio In-

stability which captures the rebalancing volumes that follow an exogenous

shock in the market conditions. If we define as θ the vector representing all

the relevant market conditions, for instance expected returns, expected vari-

ances and investor’s risk aversion, as ω(θ) the optimal portfolio according

to the market condition vector θ and as v an exogenous shock in the vector

θ, the Portfolio Instability measure is defined as the directional derivative

of the portfolio ω(θ) with respect to the shock v. In other words

PIv(θ) = Dvω(θ) = lim
h→0

ω(θ + hv)− ω(θ)

h
∈ RK (1.5)

where K is the number of the considered assets in the portfolio. PIv(θ) is a

vector where the i-th entry quantifies the rebalancing volume of asset i after

the shock v. In order to quantify the combined volumes of rebalancing after

the shock, we introduce the Total Portfolio Instability measure (TPIv(θ))

as the Euclidean norm of the vector PIv(θ). This measure helps us to

summarize the distance between the optimal portfolio pre-shock and the

optimal portfolio post-shock.

In the second part of the chapter, we mathematically show that in a

mean-variance framework under very broad assumptions, there exists an

inverse relationship between the risk-free rate level and the Total Portfolio

Instability measure. Given that we are interested in the relation between

the risky portfolio, i.e. the market portfolio, and the risk-free asset, we
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restrict our computations in a two assets environment. This restriction

is supported by the mutual fund separation theorem of Merton (1972a)

which shows that the optimal portfolio is composed of two assets. The first

asset represents the market portfolio, while the second asset is the risk-free

asset. The sensitivity of the Total Portfolio Instability to the risk-free rate

is negative, where a lower level of the interest rate level generates higher

portfolio instability. In addition, the relation between the two quantities

is non-linear and convex, and a decrease of the risk-free rate to lower and

lower level generates an explosive dynamic in the Portfolio Instability. The

non-linear behaviour is a warning to highlight that, while a low level of

interest rate is maybe crucial to sustaining the financial market conditions,

during crises these benefits may be reversed and create financial stability

problems.

In our empirical analysis, we use European market data from January

1999 to October 2020 with a weekly frequency. The equity market proxy

is the EUROSTOXX600 while the 1 week EONIA rate is the proxy for the

risk-free rate. We consider an ICAPM framework introduced in Merton

(1973), to model the dynamics of variances and returns. In particular, we

rely on the results of Campbell (1987), Glosten et al. (1993) and Scruggs

(1998) to include the impact of the risk-free rate level in the variance and

return dynamic. The results statistically validate the negative sensitivity

of the Total Portfolio Instability to the risk-free rate.

We test the economic significance of a low level of the risk-free rate in the

market sell-off during crises with a semi-natural experiment. During the

Covid-19 pandemic, the market conditions deteriorated rapidly with huge

outflows from investment funds. This extreme condition created several

instabilities in the market liquidity and potential financial stability issues.
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Figure 1.1: Observed sell-off (in blue) and counterfactual sell-off (in orange
with 0.5% and yellow with 1%). The weights are rescaled to 0 at January
2020.

We use the CAPM framework to create a counterfactual analysis in mean-

variance portfolio weights during the recent Covid-19 pandemic to test the

economic impact of the risk-free rate in the market sell-off. Figure 1.1 shows

the results of the counterfactual analysis. In blue we report the market sell-

off, defined as the portfolio weight of the risky asset, for a mean-variance

investor during the pandemic. The difference between the peak and the

minimum reached 25% in April and started to recover straight after. In

orange and yellow we report the counterfactual dynamic of the weights as-

suming the baseline EONIA +0.5% and in yellow the counterfactual weights

assuming the baseline EONIA +1%. We see that the difference is econom-

ically relevant and, in the yellow line, the sell-off reduces to 10% less than

the observed scenario.

Michaud (1989) and Chopra and Ziemba (1993) among others show

that the mean-variance portfolio optimization suffers from extreme sensi-
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tivity to the input parameters in practical use. For this reason, in the

third part of the chapter, we assess whether the results are observed only

in a Markowitz framework. We use the recent Risk Parity optimal portfolio

(Maillard et al., 2010) with volatility targeting identification which presents

a good robustness check for two reasons. From a modellistic perspective,

we check whether the results obtained in the first two parts of the chap-

ter depend on the Markowitz optimal portfolio. From a financial stability

perspective, before the Covid-19 crisis around USD 2 trillion was invested

in some form of volatility strategies among which USD 300 billion in risk-

parity funds. The size of this market segment is macro-critical and possible

flows induced by external shocks may thus be able to amplify the initial

shock. In addition, we enrich the analysis using a different composition of

the risky portfolio, which is now composed of equity, sovereign and cor-

porate bonds. We use a DCC model to capture the correlation dynamics

among these asset classes. The results are in line with the Mean-Variance

investors and the Portfolio Instability dynamics are the same. In addition,

we observe that the equity and corporate bonds asset classes are the most

impacted during the Covid-19 crisis and that this impact partly depends

on the low level of the interest rate. Finally, we check the robustness of our

results using different market proxies and using US market data. The US

universe offers a longer and well-studied time series. The results are in line

with the findings of the previous parts of the chapter, where the analyses

of longer time series confirm that the portfolio instability dependence on

the interest rate level is not a new feature of the current macroeconomic

situation but it is also present in other periods.



Chapter 2

Score-driven models and

Kalman Expectation

Maximization

In Chapter 3 and 4 of the thesis, two classes of econometric models are

used. In this chapter, we focus on the historical and theoretical foundation

of these two classes of models to assess similarities and differences.

Consider an n-dimensional latent variable of interest X which evolves

through time and which is not directly observed. The variable X is linked

with the observed k-dimensional variable Y via a link function g. In ad-

dition, assume that the latent variable may be expressed in a VAR form.

The state space model reads

Yt ∼ g(Yt|Xt; θ
Y ),

Xt+1 = c+DXt + νt,
(2.1)

where θY is the set of (possibly unknown) static parameters which specifies

the density function g, c is an n vector of mean values, D is the autoregres-

sive n× n matrix and νt is a multivariate zero-mean noise of dimension n.

21
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The innovation terms vt are usually supposed to be independent.

In Chapter 3 of the thesis, the sentiment time series is modeled as a linear

Gaussian state space model. In other words, the function g can be expressed

as g(Yt|Xt; θ
Y ) = AXt + εt and both the error terms νt and εt are assumed

to be normal, serially uncorrelated, and mutually independent. The pa-

rameters of the state space model are estimated using a combination of

Kalman Filter and the expectation-maximization algorithm. The Kalman

filter is used to extract the latent variable from the observed data and the

expectation-maximization procedure is used to estimate the parameters.

In chapter 4, I use a recently introduced class of observation driven

models know as Generalized Autoregressive Score (GAS) or Dynamic Con-

ditional Score (DCS) model introduced in Creal et al. (2013) and Harvey

(2013). In this type of models, even if the parameters are stochastic, they

are perfectly predictable given the past information. Therefore the model

reads

Yt ∼ g(Yt|ft; θY ),

ft+1 = ω +

p∑
i=1

Aist−i+1 +

q∑
i=1

Bift−i+1,
(2.2)

where ω is a vector of constants, coefficient matrices Ai and Bi relate the

parameters ft+1 with the past values and observations. The scaled score

update st is proportional to the score of the likelihood function g, then it

depends on the measurement equation Yt. The scaled score st is defined as

st = St∇t, ∇t =
∂ ln g(Yt|ft; θY )

∂ft
, St = S(t, ft; θ), (2.3)

where S(·) is a matrix function.

Cox (1981) classifies the time series models with time-varying parame-

ters into two broad classes, the parameter-driven models and the observation-

driven models. The state space equation in (2.1) belongs to the class of
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parameter-driven model. The state variable Xt+1 is a stochastic process

with its source of error, but it does not directly depend on past observa-

tions Yt. In most cases, the estimation of these types of models requires

Monte-Carlo simulations and it is typically unfeasible in high dimensions.

One exception is the linear Gaussian state space model where the likelihood

can be evaluated more easily. The score-driven models in (2.2) are in the

class of observation-driven models, where the future’s value of the param-

eter ft+1 is perfectly predictable given the present and the past, but the

state variable is directly affected by past observations via the scaled score

st.

In this chapter, I introduce the two classes of models as separated.

However, recently Buccheri et al. (2018) have studied the properties of the

score-driven models as approximate filters for state-space models, creating

a bridge between the two approaches.

2.1 Kalman filter and Expectation

Maximization

Consider a Gaussian linear version of the model (2.1), where the observed

quantity Yt ∈ Rk is a linear transformation of the unobserved variable of

interest Xt ∈ Rn where t = 1, . . . , T

Yt = BXt + εt, εt ∼ N (0, R)

Xt+1 = DXt + νt, νt ∼ N (0, Q) ,
(2.4)

where B is a k × n matrix which expresses the relation between the mea-

surement and the latent variable and D is the n×n matrix of autoregressive

coefficients. In addition, we suppose that the initial value X0 is normally



CHAPTER 2. SCORE-DRIVEN MODELS AND KALMAN
EXPECTATION MAXIMIZATION 24

distributed with mean µ and variance Σ. Recall that both the error terms

εt and νt are Gaussian, serially uncorrelated and independent processes.

If the parameters of the model (2.4) are known, then the Kalman filter

presented in Kalman (1960) provides the forecasts, filtering and smoother

equations for the state variable and its variance. Denote with X̂k|m =

E [Xk|Y1, . . . , Ym] and with Pk|m = E

[(
Xk − X̂k|m

)(
Xk − X̂k|m

)′
|Y1, . . . , Ym

]
the covariance matrix of X̂k|m. We define X̂k|k−1 as prediction of the state

variable at time k, X̂k|k as filter of the state variable at time k and X̂k|T as

smoother of the state variable at time k. Following Shumway and Stoffer

(1982) the Kalman filter can be recursively evaluated. In particular, we

divide the evaluation in prediction, filtering and smoothing. The prediction

part is evaluated as

X̂t|t−1 = DX̂t−1|t−1

Pt|t−1 = DPt−1|t−1D
′ +Q,

(2.5)

where X̂t−1|t−1 and Pt−1|t−1 are evaluated in the filtering part as

Kt = Pt|t−1B
′ (BPt|t−1B

′ +R
)−1

X̂t|t = X̂t|t−1 +Kt

(
Yt −BX̂t|t−1

)
Pt|t = Pt|t−1 −KtBPt|t−1,

(2.6)

where we take X̂0|0 = µ and P0|0 = Σ. Notice that also the filtering recursion

depends on the results of the previous predictions. For this reason, the two

steps should be evaluated contemporaneously.

Now, using backward recursions t = T, . . . , 1 we derive the smoothing part
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as

Jt−1 = Pt−1|t−1D
′ (Pt|t−1

)−1

X̂t−1|T = X̂t−1|t−1 + Jt−1

(
X̂t|T −DX̂t−1|t−1

)
Pt−1|T = Pt−1|t−1 + Jt−1

(
Pt|T − Pt|t−1

)
J ′t−1

Pt−1,t−2|T = Pt−1|t−1J
′
t−2 + Jt−1

(
Pt,t−1|T −DPt−1|t−1

)
J ′t−2

(2.7)

where PT,T−1|T = (I −KTB)DPT−1|T−1.

Equations (2.5), (2.6) and (2.7) represent the three stages and refine-

ment of the use of a Kalman filter. In the first stage, we use the prediction

step (2.6) to estimate the likely future observation X̂t|t−1 of the latent vari-

able. Once we make the observation, we update the predicted value using

the new available observation Yt. From equation (2.6), we get that the fil-

tered value X̂t|t depends on the Kalman gain Kt and on the prediction error

Yt−BX̂t|t−1. In particular, the Kalman gain is inversely proportional to the

observation error matrix R. The higher is the variance of the observation

equation Y , the lower is the adjustment of the Kalman filter. This result is

intuitive if we think of the filtering procedure as an updating with respect

to the previous forecast. The forecast is adjusted proportionally to the pre-

diction error and the reliability of the observation Yt. The same reasoning

holds for the covariance matrices Pt|t−1 and Pt|t. The higher the value of

the Kalman gain, the lower is the update of the mean square error Pt|t. In

other words, the Kalman gain matrix measures the information added by

the extra observation Yt on the identification of the latent variable Xt.

Once the prediction and filtering procedure is over at time T , equation (2.7)

shows how to update the full path of the latent variable given all history of

the process. In equation (2.7) we see that the smoothing update depends, at

every observation, on the updating matrix Jt−1 which is proportional to the

inverse of the information added by the future observation Pt|t+1 relative to
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the present Pt|t. This matrix represents the equivalent of the Kalman gain

matrix Kt in the updating procedure and the interpretation is analogous.

In most of the applications, the parameters B, D, R, Q, µ and Σ

are unknown and need to be estimated. The maximum likelihood esti-

mation is often unfeasible in high dimension as the number of parameters

increases dramatically as the dimension increases. Dempster et al. (1977)

and Shumway and Stoffer (1982) introduced a two step approach named

Expectation Maximization (EM) to evaluate and maximize the likelihood

using closed-form equations. Under the normality assumptions of the error

terms and denoting with θ the set of parameters µ,Σ, B,D,R and Q , the

log-likelihood may be written as

l (Y,X; θ) = log f(X0) +
T∑
t=1

log f(Xt|Yt−1) +
T∑
t=1

log f(Yt|Xt)

=− 1

2
log |Σ| − 1

2
(X0 − µ) Σ−1 (X0 − µ)′

− T

2
log |Q| − 1

2

T∑
t=1

(Xt −DXt−1)Q−1 (Xt −DXt−1)′

− T

2
log |R| − 1

2

T∑
t=1

(Yt −BXt)R
−1 (Yt −BXt)

′ .

(2.8)

Given that the likelihood strictly depends on the latent process X, an

expectation-maximization approach is applied on the likelihood function

(2.8). The maximization recursive routine is divided into two parts. Con-

sider a general j step.

Expectation step

Consider θj as the vector of estimated parameters at step j, then we consider

the expected log-likelihood

G(θj) = E [l (Y,X; θj) |Y1, . . . , YT ] . (2.9)
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The quadratic form of the likelihood (2.8) allows us to use the Kalman

smoother (2.7) in the formula and the expected likelihood function is

G(θ) =− 1

2
log |Σ| − 1

2
tr{Σ−1

[
P0|T + (X0 − µ) (X0 − µ)′

]
}

− T

2
log |Q| − 1

2
tr{Q−1 (A3 − A2D

′ −DA′2 +DA1D
′)}

− T

2
log |R| − 1

2
tr{R−1 (E3 −BE ′2 − E2B

′ +BE1B
′)},

(2.10)

where

A1 =
T∑
t=1

(
Xt−1|TX

′
t−1|T + Pt−1|T

)
,

A2 =
T∑
t=1

(
Xt|TX

′
t−1|T + Pt,t−1|T

)
,

A3 =
T∑
t=1

(
Xt|TX

′
t|T + Pt|T

)
,

E1 =
T∑
t=1

Pt|T +Xt|TX
′
t|T ,

E2 =
T∑
t=1

YtX
′
t|T ,

E3 =
T∑
t=1

YtY
′
t .

(2.11)

Maximization step

The expected likelihood (2.10) is function of the parameters only and the

latent process X in equation (2.8) has been substituted by the Kalman

smoother. The maximization step uses the likelihood function (2.10) to
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update the vector of parameters θj+1 in closed form as

B(m+ 1) = E2E
−1
1

D(m+ 1) = A2A
−1
1

Q(m+ 1) =
1

T

(
A3 − A2D (m+ 1)′ −D (m+ 1)A′2 +D (m+ 1)A1D (m+ 1)′

)
R(m+ 1) =

1

T
(E3 −B(m+ 1)E ′2 − E2B(m+ 1)′ +B(m+ 1)E1B(m+ 1)′)

a(m+ 1) = X0|T

Σ(m+ 1) = P0|T .

(2.12)

Dempster et al. (1977) show that the likelihood is non-decreasing following

this routine. The procedure stops after a converging criterion is satisfied.

Imposing parameter restrictions

In many applications, including the model presented in Chapter 3, the ma-

trices B, D, Q and R may be not full matrices. For instance, in many

applications in physics where the observed equation is a measure of a un-

observed quantity, researchers assume that the errors are cross-sectionally

independent, then the matrix R should be diagonal. It is not trival how to

optimally restrict the parameters estimated in the Maximization step. Wu

et al. (1996) and Bork (2009) find a close form solution to optimally restrict

the parameter matrices. Define as vec the vectorization operator and as ⊗

the Kronecker product. Consider a number of f restrictions kD for the ma-

trix D and s restrictions kB for the matrix B. If the restrictions are linear

and may be expressed in matrix form as Mvec(D) = kD and Gvec(B) = kB

with restriction matrices M ∈ Rf×n2
and G ∈ Rs×nk. In addition, denote
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as Br, Dr, Rr and Qr as the restricted parameter matrices, we get that

vec(Dr) = vec(D) +
(
A−1

1 ⊗Q
)
M ′(M(A−1

1 ⊗Q)M ′)−1(kD −Mvec(D))

(2.13)

where A1 is defined in (2.11).

Equivalently, for the restricted Br:

vec(Br) = vec(B)+
(
E−1

1 ⊗R
)
G′(G(E−1

1 ⊗R)G′)−1(kB−Gvec(B)) (2.14)

where E1 is defined in (2.11).

The matrices Qr and Rr may be restricted element-wise.

In Chapter 5 of the thesis, the Kalman Expectation-Maximization rou-

tine is exploited to extract the short-term sentiment and the long-term

sentiment components from the observed sentiment.

2.2 Score-driven models

The score-driven models are a recently introduced class of observation-

driven models where the update mechanism depends on the scaled score

of the likelihood (Creal et al., 2013; Harvey, 2013). In these papers, the

authors show that several observation-driven models are included in this

general class, for instance, the ARCH and GARCH models of Engle (1982)

and Bollerslev (1986), the dynamic copula model of Patton (2006) and Pois-

son count models of Davis et al. (2003). Starting from the general equation

(2.2), Creal et al. (2013) suggest an update of ft+1 which depends on the

observation density g for a given level of the variable ft. Doing so, the

update rule depends on the observation Yt as defined in equation (2.3). In

most of the applications, it is natural to consider the scale matrix S as the



CHAPTER 2. SCORE-DRIVEN MODELS AND KALMAN
EXPECTATION MAXIMIZATION 30

inverse of the covariance matrix or its square root, then the matrix S reads

St = I−1
t|t−1 or St = I−1/2

t|t−1 , with It|t−1 = Et−1 [∇t∇′t] . (2.15)

Notice that, if the model is well-specified, the scaled score st has a zero

conditional mean by construction.

The main advantage of using this class of models is threefold. Firstly,

as in the other observation driven models, the estimation problem can be

solved using likelihood-based estimators. Secondly, the update rule directly

comes from the density function of the observation equation. Indeed, the

score-driven models define the scaled score as the update for the latent

process. Thirdly, the update suggested by the scaled score is the optimal

information-theoretic update (Blasques et al., 2015). Therefore the score-

driven model, even if the model is severely misspecified, is conditionally

Kullback–Leibler optimal.

The order of autoregressive lags q and innovation lags p are denoted as

GAS(p,q).

Example: GARCH, GARCH-t and t-GAS

Score-driven models give an update that depends on the score of the ob-

servation density function. For this reason, it is interesting to compare

the GARCH update rule, which does not directly depends on the observa-

tion density function, with the GAS update implied by equations (2.3) and

(2.15). Consider the univariate model for demeaned asset returns rt = σtεt,

where εt is random process with conditional mean equal to 0 and conditional

variance equal to 1. Bollerslev (1986) assumes a Gaussian conditional dis-

tribution for the asset returns with a linear updating rule for the parameter
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σ2
t . The GARCH model reads

rt = σtεt εt ∼ N (0, 1),

σ2
t+1 = ω + α(r2

t − σ2
t ) + βσ2

t .
(2.16)

However, as we observed in the introduction of the thesis, the conditional

asset returns show a non-gaussian behaviour. For this reason, Bollerslev

(1987) assumes a Student’s t density for the conditional asset distributions.

Then the GARCH-t model reads

rt = σtεt εt ∼ tν(0, 1),

σ2
t+1 = ω + α(r2

t − σ2
t ) + βσ2

t ,
(2.17)

where tν is a Student’s t distribution with mean 0, variance 1 and tail

parameter ν. The static parameters of the two models are estimated using

maximum likelihood estimators. The update equations on models (2.16)

and (2.17) are identical and intuitive. The update of the latent variable

σ2
t+1 has a 1-lag autoregressive component and depends on a zero mean

observation driven component r2
t − σ2

t .

We now investigate if the update rules given in (2.16) and (2.17) coin-

cides with the update rule implied by the score-driven dynamic. In order

to check whether it is the case or not, we denote with ft = σ2
t and with

rt ∼ N (0, σ2
t ) for the GARCH and with rt ∼ tν(0, σ

2
t ) for the GARCH-t.

In the Gaussian case, the log-likelihood function is

log g(rt|σ2
t ) = −1

2

[
log(2πσ2

t )−
r2
t

σ2
t

]
(2.18)

Evaluating the score w.r.t. σ2
t and the Information matrix from (2.18), we

obtain

∇t =
r2
t

2(σ2
t )

2
− 1

2σ2
t

It|t−1 = Et−1 [∇t∇′t] =
1

2(σ2
t )

2

st = ∇tI−1
t|t−1 = r2

t − σ2
t .

(2.19)
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The update equation implied by the score-driven dynamic in (2.19) coincides

with the update rule imposed by Engle (1982) in (2.16).

The second case is the conditionally t-distributed returns with a tail

parameters ν. The density function for the Student’s t distribution is given

by

log g(rt|σ2
t , ν) = log Γ

(
ν + 1

2

)
− log Γ

(
ν + 1

2

)
− 1

2
log(π)− 1

2
log(ν − 2)

− 1

2
log(σ2

t )−
ν + 1

2
log

(
1 +

r2
t

(ν − 2)σ2
t

)
,

(2.20)

If we evaluate the score w.r.t. σ2
t and the Information matrix from (2.20)

we get

∇t =
(ν + 1)r2

t

2(ν − 2)σ4
t

(
1 +

r2
t

(ν − 2)σ2
t

)−1

− 1

2σ2
t

It|t−1 = −Et−1

[
∂2 log g

∂(σ2
t )

2

]
=

ν

2(σ2
t )

2(ν + 3)

st = ∇tI−1
t|t−1 =

ν + 3

ν

((
1 +

r2
t

(ν − 2)σ2
t

)−1
(ν + 1)

(ν − 2)
r2
t − σ2

t

)
.

(2.21)

Firstly, equation (2.21) shows that the update from the score-driven spec-

ification is different from the update introduced in Bollerslev (1987). Sec-

ondly, if we define as at =
(

1 +
r2t

(ν−2)σ2
t

)−1
(ν+1)
(ν−2)

the score-driven dynamic

becomes

σ2
t = ω + α

ν + 3

ν
(atr

2
t − σ2

t ) + βσ2
t (2.22)

where at is the weight that the current observation r2
t has on the update of

the latent variable σ2
t . The interpretation is quite simple. The smaller the

value of ν, the higher the importance of the fat-tail and the smaller is the

weight of at if an extreme observation occurs. Figure 2.1 shows the shape

of the score for different values of the parameter ν. While the scores are

similar for values of rt close to 0, the values of the scores in the tails are
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Figure 2.1: Score of GARCH-t for different values of the tail parameter ν.
The definition of the score is reported in equation (2.21).

very different. For ν → ∞, the Student’s t distribution collapses to the

Gaussian distribution and the weight at → 1. Creal et al. (2013) denotes

this model as t-GAS.

Now, a legitimate question is whether the more complicated update

rule introduced by the t-GAS model is better than the update rule of the

GARCH-t, and according to what measure the two models should be com-

pared. Blasques et al. (2015) shows that the score-driven update is optimal

under a Kullback-Leibler (KL) divergence criterion. In particular, the au-

thors show that if the data generating process has a density function p(yt|ft)

and the considered models have a misspecified density function g(yt|f̃t; θ),

then the score-driven update reduces the KL divergence in expectation at

every step. In addition, the score-driven updates are the only which can

guarantee this property. In Blasques et al. (2015), the authors compare

the GARCH-t and the t-GAS in equations (2.17) and (2.22) in a simula-

tion exercise. The Data Generating Process is simulated using a fat-tail
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stochastic volatility model and the two models are compared according to

the KL-divergence measure and the Mean Square Error. The t-GAS per-

forms better according to both measures.

In Chapter 4 of the thesis, two multivariate score-driven models are pre-

sented to forecast asset returns covariance matrices. The first score-driven

model denoted as 2-step-W, assumes a Wishart conditional density function

for the Realized covariance matrix. This distribution models the Realized

covariance obtained from Gaussian distributed random vectors, which is

in line with the normality assumption of conditional asset returns. The

second score-driven model, denoted as 2-step-F, assumes a matrix-F condi-

tional density function for the Realized covariance matrix. This distribu-

tion models the Realized covariance obtained from Student’s t distributed

random vectors, which is in line with the Student’s t assumption of the

conditional asset returns. However, the multivariate specification presents

technical issues as the positive definiteness and the curse of dimensionality.

Using the score-driven specification, we denote as Xt a measure of the co-

variance matrix of a K vector asset returns rt. Xt may be the close to close

covariance matrix, Xt = rtr
′
t ∈ RK×K obtained using daily prices, or it

may be another realized measures of the covariance matrix obtained from

intraday returns. The score-driven model reads

Xt|Ft−1 ∼ G
(
Vt; θ

X
)

Vt = Ω + A′stA+B′VtB.
(2.23)

The model produces positive definite matrices Vt if the score matrix st is

positive definite. However, the number of parameters of the matrices A,

B and Ω increases as O(K2). While the dimensionality of A and B can

be controlled using parametric restrictions on the matrices, it is not easy

to control the dimensionality of Ω as it captures the long-term average of
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the covariance structure. The easiest way to solve this problem for high

dimensions, K � 1, is to perform a two-step estimation procedure. In the

first step, we ensure a reasonable value of the model-implied unconditional

covariance matrix, which also helps to reduce the number of parameters in

the maximization of the likelihood function, which will be performed in the

second step.

However, in some cases where the matrix Ω has a specific structure,

the targeting procedure cannot be applied. For instance, if the researcher

is interested in modelling the correlation matrix, the targeting procedure

cannot be directly applied. The Hypersphere Decomposition of Rebonato

and Jäckel (2011) and the DCC decomposition of Engle (2002b) are two ex-

amples of methodologies to identify and estimate the matrix Ω. In Chapter

4 of this thesis, we use the DCC approach to target the matrix Ω and solve

the problem of dimensionality in the likelihood-based estimation.



Chapter 3

Disentangling short-run and

long-run components in

sentiment dynamics

The contents of this chapter are the result of a joint work with Prof. Gia-

como Bormetti and Prof. Fabrizio Lillo, also available as an online preprint

in Vassallo et al. (2019). This paper is currently under revision in Quanti-

tative Finance.

3.1 Introduction

Nowadays, as Ignacio Ramonet wrote in The Tyranny of Communication,

“a single copy of the Sunday edition of the New York Times contains more

information than an educated person in the eighteenth century would con-

sume in a lifetime”. This huge amount of information cannot be read by

a single person. Recent developments in machine learning algorithms for

sentiment analysis help us to categorise and extract signals from text data

36
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and pave the way for a new area of research. The use of these new sources

of textual data has become popular to analyse the relationship between sen-

timent and other economic variables using econometric techniques. Algaba

et al. (2020) refer to this new strand of literature as Sentometrics. For in-

stance, Groß-Klußman and Hautsch (2011) study the impact of unexpected

news on the displayed quotes in a limit order book, Sun et al. (2016) show

that intraday S&P 500 index returns are predictable using lagged half-hour

investor sentiment, Antweiler and Frank (2004); Borovkova and Mahakena

(2015); Allen et al. (2015); Smales (2015) study the impact of sentiment

on volatility, Peterson (2016) investigates the trading strategies based on

sentiment, Tetlock (2007); Garcia (2013) consider the Dow Jones Indus-

trial Average (DJIA) index predictability using sentiment, Calomiris and

Mamaysky (2019) show how the predictability can be exploited in different

markets around the world, Ranco et al. (2015) analyse the impact of social

media attention on market dynamics, Borovkova (2015) develops risk mea-

sures based on sentiment index, and Lillo et al. (2015) show that different

types of investors react differently to news sentiment.

The approaches to sentiment analysis can be broadly classified into three

categories. The first class is based on (mostly supervised) Machine Learning

techniques. Three steps are typically considered. The first one is to collect

textual data forming the training dataset. The second one is to select

the text features for classification and to pre-process the data according to

the selection. The final step is to apply a classification algorithm to the

textual data. As an example, Pang et al. (2002) compare the performance

of Naive Bayes, support vector machines, and maximum entropy algorithm

to classify positive or negative movie reviews. The second category is the

lexicon-based approach. It also typically consists of three steps. The first
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step is the selection of a dictionary of N words which could be relevant for a

specific topic (e.g. the word great is considered as a positive word to review

a movie). The second one consists in tokenizing the textual data and, for

each word in the dictionary, counting how many times it appears in the

text. This process can be visualized with a vector of length N where the

i-th element represents the number of times the i-th word of the dictionary

is mentioned in the text. Finally, a measure takes the vector of length N

as an input and gives a quantitative score as an output. One can refer

to Loughran and McDonald (2011) for a relevant example in the financial

literature. The third and last approach is a combination of methodologies

coming from the first and second approaches. For an overview of textual

data treatments and computational techniques, we refer to the review paper

Vohra and Teraiya (2013) and the book Liu (2015).

However, as observed by Zygmunt Bauman in Consuming Life, as the

amount of information increases also the amount of useless information in-

creases, and the noise becomes predominant. Two different non-exclusive

methods have been explored in the literature to remove or, at least, miti-

gate the impact of useless information. In the first case, a general-to-specific

approach is used directly on the textual data. The amount of information

can be reduced by selecting only verified news (i.e. eliminating fake news),

considering only the words which are closely related to the topic of interest,

considering the importance of any news (e.g. Da et al. 2011), selecting only

news which appear for the first time (e.g. Thomson Reuters News Analytics

engine uses the novelty variable, see Borovkova et al. 2017 ), or weighting

news employing a measure of attention (e.g. with the number of clicks it

receives when published in a news portal Ranco et al. 2016). Obviously, the

selection of the relevant data is application-specific. For instance, fake news
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may be irrelevant to forecast the GDP of a country but may be crucial to

forecast the results of an election (e.g. Allcott and Gentzkow 2017).

In the second case, sentiment time series are directly considered, rather

than the text source they are built from. The observed sentiment is noisy

and various approaches have been proposed to filter it and to recover the

latent signal. (Thorsrud, 2018) applies a 60-day moving average, (Peterson,

2016) uses the Moving Average Convergence-Divergence methodology pro-

posed in (Appel, 2003) and (Borovkova and Mahakena, 2015; Audrino and

Tetereva, 2019; Borovkova et al., 2017) introduce the Local News Sentiment

Level model (LNSL), a univariate method which takes inspiration from the

Local Level model of (Durbin and Koopman, 2012). In spite of its con-

venience from a practical perspective, the moving average approach is not

statistically sound and the window length is usually chosen following rules

of thumb, which have been tested empirically but lack a clear theoretical

motivation. The methods based on the Kalman-Filter techniques present a

natural and computationally simple choice to extract the informative sig-

nal. Unfortunately, when multiple assets are considered in the analysis, the

LNSL model does not exploit the multivariate nature of the data. One goal

of this chapter is to show that the covariance structure is very informative

in sentiment time series analysis.

The first contribution of this chapter is to extend the existing time series

methods in the latter stream of literature. We propose to model noisy sen-

timent disentangling two different sentiment signals. In our approach, the

observed sentiment follows a linear Gaussian state-space model with three

relevant components. The first component, named long-term sentiment is

modeled as a random walk, the second component is termed short-term

sentiment and follows a VAR(1) process, and the last component is an
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i.i.d Gaussian observation noise process. We name the novel sentiment

state-space model Multivariate Long Short Sentiment (MLSS). We empir-

ically show that the decomposition provides a better insight on the nature

of sentiment time series, linking the long-term sentiment to the long-term

evolution of the market – proxied by the market factor – while the short-

term sentiments reflect transient swing of the market mood and are more

related to the market idiosyncratic components. Specifically, we find that i)

the long-term sentiment cointegrates with the first market factor extracted

via PCA; ii) the correlation structure of the short-term sentiment explains a

significant and sizable fraction of correlation of return residuals of a CAPM

model. Finally, we show that the multivariate local level model provides

the best description of the data with respect to alternative models, such as

the LNSL.

The second contribution of the chapter is to unravel the relation between

news and market returns conditionally on quantile levels. We perform vari-

ous quantile regressions showing that sentiment has good explanatory power

of returns. When contemporaneous effects are considered, the result is ex-

pected and holds for all models at intermediate quantile levels. However,

when the analysis is focused on abnormal days – i.e. days for which re-

turns belong to the 1% and 99% quantiles – neither the noisy sentiment

nor the filtered sentiment from an LNSL model explains the observed mar-

ket returns. The only model achieving statistical significance is the MLSS.

This result shows that it is essential to filter the noisy sentiment according

to the MLSS, which exploits both the multivariate structure of the data

and disentangles the long- and short-term components. Moreover, a test

performed on the single components confirms the intuition that the short-

term sentiment is the one responsible for the contemporaneous explanatory
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power. The empirical evidence in favour of the MLSS becomes even more

compelling when lagged relations are tested. When a single day lag is con-

sidered, i.e. one tests whether yesterday sentiment explains today returns,

the significance of all models, but MLSS, drops to zero. This result holds

across all quantile levels. Instead, for quantiles smaller than 10% and larger

than 90%, the predictability of the returns for the MLSS model is highly

significant. As before, the decomposition in two time scales is essential and

the short-term component is the one responsible for the effect. The analysis

extended including lagged sentiment – up to five days – confirms previous

findings by (Garcia, 2013) that past sentiment contributes to predicting

present returns. Interestingly, this is true for quantiles between 5% and

10%, both negative and positive, but neither in the median region nor for

extreme days. In light of these findings, we finally investigated whether

media and social news immediately digest market returns and whether this

relation depends on the sign of returns. Our results provide a clear picture

showing that i) the impact of market returns on sentiment is significant up

to five days in the future when negative extreme returns – i.e. belonging

to quantiles from 1% to 10% – are considered, ii) when positive returns are

considered the impact rapidly fades out and is significant only for quantiles

smaller than 5%, iii) previous findings become not significant if the MLSS

sentiment is replaced by the observed noisy sentiment. Consistently with

the intuition provided by these results, we test whether the predictability

of the returns of the MLSS model can be exploited in a portfolio allocation

exercise. We show that the portfolios generated with the MLSS sentiment

series have a higher Sharpe ratio and lower risk than similar portfolios

constructed with raw sentiment or sentiment filtered with the univariate

LNSL model. Our model outperforms also the benchmark constituted by
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the buy-and-hold equally weighted portfolio. This result remains true when

transaction costs are included.

The rest of the chapter is organized as follows. In section 3.2, we de-

velop the multivariate model for the sentiment and discuss the estimation

technique. In section 3.3, we introduce the TRMI sentiment index and de-

scribe the data used in the analysis. In section 3.4, we report the empirical

findings and discuss the advantages of the multivariate approach. In sec-

tion 3.5, we compare the various techniques and report the performances

of the long-short sentiment decomposition in explaining daily returns. Sec-

tion 3.6 describes the portfolio allocation strategies using different filtering

techniques and assesses the superiority of the MLSS filter among the oth-

ers. Section 3.7 draws the relevant conclusions and sketch possible future

research directions.

3.2 The Model

Consider K assets and the corresponding K observed daily sentiment se-

ries Sit where i = 1, . . . , K. The observed daily sentiment Sit quantifies the

opinions of investors and consumers about company i. In most cases, the

observed sentiment is a continuous number in a compact set.

The Local News Sentiment Level model (LNSL), presented in (Borovkova

and Mahakena, 2015) and subsequently used in (Audrino and Tetereva,

2019), reads as follows

Sit = F i
t + εt, εt

d∼ N
(
0, σiε

)
,

F i
t = F i

t−1 + vt, vt
d∼ N

(
0, σiv

)
.

(3.1)

for every i = 1, . . . , K. This model is a univariate specification of the Local

Level model of (Durbin and Koopman, 2012). The latent sentiment series
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F i
t are considered as slowly changing components, modeled as independent

random walks and the parameters σiε and σiv are estimated via maximum

likelihood (MLE).

Since the LNSL model does not consider the correlations of the innova-

tions among the K assets, we can easily derive its multivariate version as

St = Ft + εt, εt
d∼ N (0, R) ,

Ft = Ft−1 + vt, vt
d∼ N (0, Q) .

(3.2)

where St =
[
S1
t , . . . , S

K
t

]′
and Ft =

[
F 1
t , . . . , F

K
t

]′
are K dimensional vec-

tors, Q is a K ×K symmetric matrix and R is a K ×K diagonal matrix.

We refer to the multidimensional LNSL model as MLNSL. The synchronous

correlation among the innovations of the latent sentiment is described by the

covariance matrix Q, while the correlations among the observation noises

are assumed to be 0. Clearly, the LNSL model is a special case of the

MLNSL model when the matrix Q is diagonal. Since the number of pa-

rameters for this model scales as K2, the MLE of the MLNSL model is

computationally demanding. For this reason, we use the Kalman-EM ap-

proach described in (Corsi et al., 2015).

The idea of the LNSL and MLNSL models is that the latent sentiment

is a slowly changing component with a Gaussian disturbance. In their em-

pirical studies, (Audrino and Tetereva, 2019) observe that the signal to

noise ratio σ2
v

σ2
ε
, obtained using the LNSL filter, is very small. This finding

indicates that the majority of the daily changes in the sentiment series can

be considered as noise. One possible explanation of this result is that the

Local Level specification of these models is not sufficiently rich to capture

all the signals from the observed sentiment. Indeed, in newspapers and

social media, there is a consistent amount of articles and opinions which

represent fast trends or rapidly changing consumer preferences. Following
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the recent strand of literature on persuasion (Gerber et al., 2011; Hill et al.,

2013), these fast trends have strong but short-lived effects on consumer

preferences. Since the (M)LNSL model interprets the latent sentiment as

an integrated series, these signals are considered as noise.

The main contribution of this chapter is to define a new model which

disentangles the slowly changing sentiment from a rapidly changing senti-

ment, that we name short-term sentiment, and the observation noise. In

addition, it is reasonable to think that the slowly changing components of

a set of firms with common characteristics, for instance, belonging to the

same sector, market, or country, should be affected by the same trends

and shocks. For this reason, in our model we consider a number q 6 K

of common factors driving the slow component of the sentiment dynamics.

We name these common factors as long-term sentiment. We do not fix the

number q a priori, but we select it by means of an information criterion.

To provide a more quantitative intuition behind our modeling specifica-

tion, let us consider the true, but unobserved, daily investor’s mood M i
t of

asset i. We hypothesize today’s daily mood can be written as

Moodit = Long-term Moodit + Short-term Moodit. (3.3)

The Long-term Mood is composed by yesterday’s Long-term Mood plus a

shock si, long
t , which is usually small but permanent, i.e.

Long-term Moodit = Long-term Moodit−1 + si, long
t .

On the contrary, the Short-term Mood is short-lived, but with a strong and

highly influential impact. In particular, the Short-term Mood is composed

by a residual part of the yesterday Short-term Mood plus a shock si, short,

i.e.

Short-term Moodit = φiShort-term Moodit−1 + si, short
t .
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In this framework, the long-term shocks permanently change the investor’s

mood while the short-term shocks has an exponentially decaying persistence

in the investor’s mood. Equation (3.3) can be rewritten as

Moodit = Long-term Moodit−1 + si, long
t + φiShort-term Moodit−1 + si, short

t .

(3.4)

Considering the whole story and the dynamic of the two sentiments shocks,

we can rewrite equation (3.4) as

Moodit =
t∑

k=−∞

(φi)
t−ksi, short

k︸ ︷︷ ︸
Short-term Moodit

+
t+1∑

k=−∞

si, long
k︸ ︷︷ ︸

Long-term Moodit

,

where we assumed Moodi−∞ to be negligible and equal to zero. In full

generality, the multivariate version of model (3.3) can be formulated as

follows

Moodt = A × Long-term Moodt +B × Short-term Moodt ,

with A and B being K ×K matrices. However, in light of the considera-

tions in the previous paragraph, we restrict the matrix B to be the identity

matrix. In this way, the Short-term Mood is purely company-specific. We

replace ALong-term Moodt with the product between a factor loading ma-

trix and a limited number of long-term and common factors, that is we

rewrite the previous equation as

Moodt = Λ Long-term Factor Moodt + Short-term Moodt, (3.5)

where Λ belongs to RK×q with q ≤ K. It is important to notice that the

significance of Λ can be statistically tested and the selection of the number

q of common factors can be performed by means of AIC and BIC crite-

ria. Following Audrino and Tetereva (2019), we assume that the observed
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sentiment St is a noisy observation of the investors Moodt, and we for-

mulate a state-space model for St consistent with the intuition provided by

model (3.5). The Multivariate Long Short Sentiment model (MLSS) for the

observed sentiment model, assuming a Gaussian specification for the short-

term sentiment shock, long-term sentiment shock and the observation noise,

reads
St = ΛFt + Ψt + εt, εt

d∼ N (0, R) ,

Ψt = ΦΨt−1 + ut, ut
d∼ N (0, Qshort) ,

Ft = Ft−1 + vt, vt
d∼ N (0, Qlong) ,

(3.6)

where R ∈ RK×K is the diagonal covariance matrix of the observation noise

εt, Φ ∈ RK×K is the matrix of autoregressive coefficients, Qshort ∈ RK×K is

the covariance matrix of the short-term sentiment innovations, and Qlong ∈

Rq×q is the covariance matrix of the random walk innovations. In equation

(3.6), Ft and Ψt are the latent processes which proxy the Long-term Factor

Mood and Short-term Mood in (3.5), respectively. Please notice that the

essential difference between equation (3.5) and equation (3.6) is that the

observed sentiment, and its components, are noisy versions of the investors’

mood and its long and short components. Finally, in this chapter, we force

a diagonal structure on the matrix Φ, thus neglecting the possible lead-lag

effects among sentiments. This restriction is introduced to limit the curse

of dimensionality of the model.

It is worth noticing that, if the observed sentiment St lies in a compact

set, the LNSL, MLNSL and MLSS models, in their current specification, do

not consider the upper and lower bounds. This issue can be accounted for

with a non-linear transformation of the data, e.g. by Fisher transforming

the data, which maps them on the whole real line as commonly done for

correlation time series. In this chapter, we do not apply any non-linear

transformation since most of the daily sentiment observations are far from
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the bounds and, as we verified, the Fisher transform mildly affects our

analysis. In addition, the definition of unit root processes in presence of

bounds is non standard but studied in the literature and it can be tested

using ad-hoc unit root tests (Cavaliere and Xu, 2014).

The estimation of the unknown parameters is based on a combination of

the Kalman filter with Expectation Maximization (Kalman, 1960; Shumway

and Stoffer, 1982; Wu et al., 1996; Harvey, 1990; Banbura and Modugno,

2014; Jungbacker and Koopman, 2008). Given that model (3.2) is a special

case of model (3.6), in the next session we only consider the estimation

procedure of model (3.6).

Estimation procedure

The estimation of model (3.6) is performed using the Kalman filter (Kalman,

1960) and the Expectation Maximization (EM) method in (Dempster et al.,

1977) and (Shumway and Stoffer, 1982) which was proposed to deal with

incomplete or latent data and intractable likelihood. The EM algorithm

is a two-step estimator. In the first step, we write the expectation of the

likelihood considering the latent process as observed. In the second step,

we re-estimate the static parameters maximizing the expectation obtained

in the first step. This routine is repeated until some convergence criterion is

satisfied. To cast (3.6) in a standard state-space representation, we use the

same procedure of (Banbura and Modugno, 2014) and define the augmented

states Λ̃, F̃ , Φ̃ and Q̃ s.t.

St = Λ̃F̃t + εt, εt ∼ N (0, R) ,

F̃t = Φ̃F̃t−1 + vt, vt ∼ N
(

0, Q̃
)
, (3.7)
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where

Λ̃ =
[
Λ IK

]
∈ RK×(q+K) , F̃t =

Ft
Ψt

 ∈ R(q+K)×1 , Φ̃ =

Iq 0

0 Φ

 ∈ R(q+K)×(q+K) ,

Q̃ =

Qlong 0

0 Qshort

 ∈ R(q+K)×(q+K) . (3.8)

The EM renders the approach feasible in high dimensions. Indeed, while

a direct numerical maximization of the likelihood is computationally de-

manding, the EM algorithm, thanks to the Kalman filtering and smoothing

recursions, can be formulated using the closed-form equations reported in

Section 2.1. In particular, it allows disentangling the long-term sentiment

Ft and the short-term sentiment Ψt. To derive the EM steps we consider

the log-likelihood l
(
St, F̃t, θ

)
where θ denotes the set of static parameters

Λ̃, Φ̃, Q̃ and R. The EM proceeds in a sequence of steps:

1. E-step: it evaluates the expectation of the log-likelihood using the

estimated parameters from the previous iteration θ (j):

G
(

Λ̃ (j) , Φ̃ (j) , Q̃ (j) , R (j)
)

= E
[
l
(
St, F̃t, θ (j)

)
|S1, . . . , ST

]
.

The details of the E-step are explained in Chapter 2 Section 2.1.

2. M-step: the parameters are estimated again maximizing the expected

log-likelihood with respect to θ:

θ (j + 1) = arg max
θ
G
(

Λ̃ (j) , Φ̃ (j) , Q̃ (j) , R (j)
)
.

The details of the M-step are explained in Chapter 2 Section 2.1.

We initialize the parameters θ (0) and repeat steps 1 and 2 until we reach

the convergence criterion

|l
(
St, F̃t, θ (j)

)
− l
(
St, F̃t, θ (j − 1)

)
|

|l
(
St, F̃t, θ (j)

)
+ l
(
St, F̃t, θ (j − 1)

)
|
<
ε

2
.
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We set ε = 10−3. As observed in (Harvey, 1990), the dynamic factor model

(3.7) is not identifiable. Indeed, if we consider a non singular invertible ma-

trix M , then the parameters θ1 = {Λ, R,Q} and θ2 = {ΛM−1, R,MQM ′}

are observationally equivalent, then starting from St we cannot distinguish

θ1 from θ2. We solve this identification problem using the approach pro-

posed by (Harvey, 1990), imposing the following restrictions

Q̃ =

Iq 0

0 Qshort

 , Λ =



λ11 0 0 . . . 0

λ21 λ22 0 . . . 0
...

...
...

. . .
...

...
...

...
... 0

...
...

...
...

...

λK1 λK2 λK3 . . . λKq


(3.9)

where Λ is the K × q sub-matrix in (3.8).

The specifications of Λ̃, Φ̃, Q̃ and R in (3.8), together with (3.9), im-

pose several constraints to the estimation. The EM procedure allows us

to impose restrictions on the parameters in a closed-form. The optimal

restrictions are studied in (Wu et al., 1996) and (Bork, 2009). The details

are reported in Section 2.1.

The final estimation scheme reads as follows:

1. Initialize Λ̃ (0), Φ̃ (0), Q̃ (0) and R (0)

2. Perform the E-step using the estimations Λ̃ (j), Φ̃ (j), Q̃ (j) and R (j)

and the Kalman Smoother (2.7).

3. Perform the M-step and evaluate the new estimators Λ̃ (j + 1), Φ̃ (j + 1),

Q̃ (j + 1) and R (j + 1) using equations (2.12).

4. Use the unrestricted estimations and (2.13) and (2.14) to obtain the

restricted ones.
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5. Repeat 2, 3 and 4 above until the estimates and the log-likelihood

reach convergence.

Finally, we select the number of long-term sentiment q using the AIC and

BIC indicators.

3.3 Data

The TRMI sentiment index is constructed using over 700 primary sources,

divided into news and social media, and collects more than two million

articles per day. For every article, a “bag-of-words” technique is used to

create a sentiment score, which lies between −1 and +1, a buzz variable1,

and one or more asset codes, which in our case refer to companies. The

time resolution of the sentiment data is one minute.

For any asset a, minute s, and day t we denote as Sat,s the sentiment

score and as Buzzat,s the buzz variable. Since the following empirical analysis

are performed using daily data, we need to aggregate the TRMI series on

a daily basis. TRMI user guide suggests to use the following equation

Sat =

∑4:00 PMt

s=4:00 PMt−1 Buzzat,sS
a
t,s∑4:00 PMt

s=4:00 PMt−1 Buzzat,s
∈ [−1, 1] , (3.10)

where Sat refers to the daily sentiment at day t, evaluated on a 24-hour win-

dow between the 4:00 PM of day t−1 (4:00 PMt−1) and the 4:00 PM of day

t (4:00 PMt). Note that the TRMI server provides a daily frequency senti-

ment, where they use equation (3.10) with a 24-hours window from 3:30 PM

1“The buzz field represents a sum of entity-specific words and phrases used in TRMI
computations. It can be non-integer when any of the words/phrases are described with
a minimizer, which reduces the intensity of the primary word or phrase. For example,
in the phrase “less concerned” the score of the word “concerned is” mitigated by “less”.
Additionally, common words such as “new” may have a minor but significant contribution
to the Innovation TRMI. As a result, the scores of common words/phrases with minor
TRMI contributions can be minimized.” See TRMI user guide.
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to 3:30 PM of the day after. However, since we want to relate the sentiment

series with close to close returns, we construct the daily sentiment series

aggregating the high-frequency sentiment according to the trading closing

hour of the NYSE (4:00 PM). For more details, please refer to (Peterson,

2016).

For the empirical analysis, we consider the TRMI sentiment index of

27 out of 30 stocks2 of the Dow Jones Industrial Average (DJIA) over the

period 03/01/2006 – 29/12/2017. Since the TRMI index divides the news

sentiment from the social sentiment, we have a total of 54 time series. A

description of tickers and sectors is available in Appendix A.1. Finally, the

MLSS model, in its current specification, does not manage missing values in

data, while some of the sentiment time series present missing observations.

The EM algorithm is naturally designed to handle missing observations.

However, since the number of missing values is small3, we fill them using

the rolling mean over the last 5 days.

3.4 Empirical analysis

In this section, we present the results of the estimation of the MLSS model

for the investigated stocks, providing an economic interpretation for the

long- and short-term component of the sentiment. In the analyses, we

consider separately the case of news and social sentiment indicators.

The first quantity to fix is the number q of long-term sentiment fac-

tors. Using the Bayesian information criteria (BIC) we select qnews = 2 and

qsocial = 2.

2We only consider 27 assets because one is missing in the Thomson Reuters dataset
and two have a high ratio of missing values at the beginning of the sample.

347 out of 54 sentiment series have less than 1% of missing observations. All the
series have a percentage of missing which is smaller than 7.5%
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Table 3.1 reports the values of Φ and Λ with the estimation errors4. Bold

values indicate parameters that are significantly different from 0 with a p-

value smaller than 0.05. We notice that most of the estimated parameters

are statistically significant.

As an illustrative example, Figure 3.2 shows how the filter works for the

Goldman Sachs news sentiment series. We observe that a high fraction of

the sentiment daily variation is captured by the filter. In Appendix A.2

we quantify more in detail the signal-to-noise ratio of the proposed filter.

We find that the MLSS model has a signal-to-noise ratio approximately

twenty times larger than the MLNSL. Moreover, the noise in social media

is generally higher than the noise in newspapers.

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
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Figure 3.1: Co-integration between Dow 27, in blue, and the second factor of
the news long-term sentiment, in orange. Time series are scaled. The Dow 27 is
the first market factor built using log-prices.

The MLSS approach considers two new quantities extracted from the

observed sentiment. The first novelty is the long-term sentiment which, by

construction, represents the series of common trends in a particular basket

4Note that the Λ matrices, as discussed in the supplementary material, have the
upper triangular submatrix equal to zero.
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Tickers Φnews Λnews Signal to noise
MLSS MLNSL

AXP 0.464 1.177 0.623 0.010
(0.029) (0.050)

JPM 0.732 −0.169 0.711 0.326 0.023
(0.016) (0.035) (0.058)

VZ 0.682 0.545 −0.080 0.431 0.029
(0.019) (0.038) (0.063)

CVX 0.545 0.103 0.894 0.610 0.022
(0.024) (0.042) (0.071)

GS 0.773 −0.239 0.718 0.336 0.029
(0.014) (0.036) (0.060)

JNJ 0.407 0.851 0.834 0.788 0.010
(0.030) (0.039) (0.065)

MRK 0.336 0.811 0.885 0.832 0.008
(0.033) (0.036) (0.059)

PFE 0.299 0.530 1.021 1.185 0.007
(0.029) (0.031) (0.052)

UNH 0.374 1.177 0.530 0.574 0.009
(0.037) (0.056) (0.093)

BA 0.585 0.376 0.742 0.896 0.033
(0.021) (0.036) (0.059)

CAT 0.633 0.309 0.045 0.423 0.017
(0.021) (0.064) (0.108)

GE 0.581 1.083 −0.196 0.587 0.022
(0.023) (0.035) (0.058)

MMM 0.295 0.958 0.072 0.788 0.009
(0.034) (0.038) (0.064)

UTX 0.331 0.422 −0.413 0.690 0.011
(0.035) (0.057) (0.094)

XOM 0.591 −0.058 1.025 0.725 0.031
(0.021) (0.039) (0.065)

KO 0.486 0.476 0.245 0.620 0.015
(0.028) (0.033) (0.055)

PG 0.337 0.838 −0.623 0.929 0.008
(0.031) (0.041) (0.068)

AAPL 0.593 0.221 0.160 1.736 0.096
(0.018) (0.026) (0.043)

CSCO 0.714 1.063 −1.094 0.441 0.046
(0.017) (0.043) (0.071)

IBM 0.603 0.754 −1.269 0.853 0.040
(0.020) (0.038) (0.063)

INTC 0.641 0.641 −0.299 0.865 0.066
(0.018) (0.039) (0.065)

MSFT 0.651 0.858 −0.007 0.668 0.053
(0.019) (0.026) (0.043)

DIS 0.439 0.454 −0.198 1.074 0.013
(0.025) (0.028) (0.046)

HD 0.611 1.137 0.232 0.473 0.021
(0.024) (0.058) (0.098)

MCD 0.404 −0.291 0.020 1.401 0.013
(0.024) (0.034) (0.057)

NKE 0.368 0.664 −0.285 0.783 0.010
(0.032) (0.046) (0.076)

WMT 0.516 0.147 0.619 0.854 0.022
(0.023) (0.031) (0.052)

Table 3.1: Static parameters of model (3.6) for news sentiment. Values and
standard errors of estimated Λ are multiplied by 103. In parenthesis we show
the standard error of the estimated parameter. The last two columns show the
signal to noise ratio for two competing models.
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of sentiment time series. The second novelty is the multivariate structure

of sentiment, extracted using the symmetric matrix Qshort. In the next

sections, we separately analyse the relationship between these two quantities

and the stock market prices. To this end, we extract the market factors from

the stock prices of these assets. Denote as rt ∈ R27 the vector of demeaned

close-to-close log-returns and evaluate the unconditional covariance matrix

Qret and the unconditional correlation matrix Cret. We extract the factor

loading matrix Λmrk ∈ Rqmrk×27 using the PCA on the matrix Cret and define

the return factors Rt = Λmrkrt ∈ Rqmrk . We also define the market factors as

Mmrk
t = Λmrkpt, where pt ∈ R27 is the vector of log-prices. In the following

analysis, we consider qmrk = 1 and name the first market factor Dow 27.

Long-term Sentiment

We first investigate the economic meaning of the long-term sentiment. Us-

ing the Engle-Granger test (Engle and Granger, 1987), we observe that

one of the factors of the long-term sentiment is cointegrated with the Dow

27. Figure 3.1 shows the cointegration relation, pointing out that the main

driver of the prices and the driver of the sentiment time series reflect the

same common information. This result per se is not surprising. However,

Figure 3.3 shows the standardized weights of the cointegrated factors. The

weights of the market factor are very homogeneous across assets, as shown

in the top panel, while the weights of the cointegrated factor of the long-

term sentiment are very heterogeneous, as shown in the bottom panel. The

values of the elements of the factor loading matrix Λnews reported in Table

3.1 are either positive or negative 5. Then, some firms’ sentiment positively

affects the common sentiment factors, while some other firms’ sentiment

5The elements of the factor loading matrix Λsocial are available upon request.
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Figure 3.2: Goldman Sachs sentiment series. In blue the observed sentiment, in
orange the filtered sentiment including both long-term and short-term compo-
nent.
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Figure 3.3: Values of the standardized factor loadings of the cointegrated series.
Top panel: loadings of the Dow 27 index. Bottom panel: loadings of the second
factor of the news long-term sentiment.
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negatively affects them. We checked whether the heterogeneity of weights

was related to the number of news of a given asset, or with the buzz index,

but we found no significant evidence. Unravelling the origin of the detected

heterogeneity is an interesting research question, that could be probably

answered by looking at the contents of the articles from which the senti-

ment was computed. Unfortunately, we do not have access to this kind of

information.

Short-term Sentiment

The second novelty of the MLSS model is the multivariate structure of

the short-term sentiment series. The question we want to address in this

section is whether the correlation structure of the short-term sentiment

is (linearly) related to the correlation structure of the daily returns. In

the previous section, we observed that one of the factors of the long-term

sentiment is cointegrated with the first market factor. We, therefore, expect

the short-term sentiment to capture asset-specific features, i.e. we expect

a close relationship with the idiosyncratic dynamic of the returns6. To test

this intuition for the correlation structure, we compare the results of the

MLSS model with the results of the MLNSL model which, by construction,

does not disentangle the factors from the sentiment series. If the intuition is

correct, the correlation matrix of the sentiment extracted using the MLSS

model should be linearly related with the return correlations and with the

idiosyncratic return correlations. On the contrary, the correlation matrix

of the sentiment extracted using the MLNSL model, which only captures

the slowly changing dynamics of the sentiment series, and thus of the first

6We define idiosyncratic returns as the market returns where the first market factor
is removed using the factor model (3.12)
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market factor, should be linearly related with the returns correlation but

mildly correlated with the idiosyncratic returns correlations. Finally, to

test whether the filtering procedure is a crucial step in our approach, the

correlation matrix of the observed sentiment is also considered.

We define Cshort as the correlation matrix associated with the covariance

matrix Qshort, CMLNSL the correlation matrix associated with the covariance

matrix Q of equation (3.2), CObs = Corr (∆St) the unconditional correlation

of the first difference of the observed sentiment, and Cret the unconditional

correlations matrix of the stock returns. We search for a linear element-wise

relation between Cret and Cmodel, where model is one of short, MLNSL, or

Obs. The results are reported for the news case only, but the conclusions

are similar for the social sentiment.

We perform a standard ordinary least squares estimation on the model

vechl(Cret) = α + βmodelvechl(Cmodel), (3.11)

where vechl(X) is the operator which collects the lower triangular elements

of matrix X in a column vector. We compare the results obtained using the

MLSS model (Cmodel = Cshort), with the results obtained using the MLNSL

model (Cmodel = CMLNSL) and using the Observed sentiment (Cmodel =

CObs). In addition, since the unconditional correlation between two assets

is higher when they belong to the same sector, we separately consider two

cases. In the first case, we estimate model (3.11) considering all the pairs

of assets. In the second case, we estimate model (3.11) considering only the

pairs of assets belonging to the same economic sector according to Table

A.1.

The top left panel of Table 3.2 shows the results with all the correlation

pairs. In the first column, we report the R2 of the regression, in the second

column we report the F-statistic and the relative p-value is reported in the
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third column. The regressions with Cshort and CMLNSL have high and sig-

nificant p-values, while the regression with Cobs is not statistically different

from the model with the intercept only. This finding has two implications.

The first one is that the sentiment innovations have a similar correlation

structure as that of the returns innovations. In particular, if the returns

of two assets are relatively highly correlated, then also the increment of

the filtered sentiment of the news about these assets are relatively highly

correlated. The second implication is that, if a filtering procedure is not

applied to the observed sentiment data, the noise is too large to find signifi-

cant results. In the top right panel of Table 3.2 we report the results of the

model (3.11) applied to the pairs of assets belonging to the same sector. We

observe that the R2 increases for all models. This result is expected since

it is well known that the return correlation is higher and more significant

between two assets of the same sector. However, even if the R2 increases,

the number of pairs decreases. For this reason, the increment in the R2

does not lead to an increment in the F -statistic, which fails to reject the

null hypothesis for the Cobs. This result confirms that the Cobs matrix is

not a significant regressor for Cret.

Comparing the top panels of Table 3.2, we note that the increment in the

R2 is higher for the MLSS model rather than the MLNSL model. This evi-

dence is consistent with the intuition that the short-term sentiment series,

extracted using the MLSS model, are more related with the idiosyncratic

returns. Indeed the correlation induced by the market factor is predomi-

nant in the first case, reported in the top left panel, where all the assets

are considered, rather than the second case, reported in the top right panel,

where the co-movements are not only driven by the first market factor, but

they are also driven by sector-specific factors.
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Models
All assets Same sector

R2 F -statistic p-value R2 F -statistic p-value

MLSS 13.77 % 55.713 0.0000 37.89 % 23.182 0.0000
MLNSL 15.63 % 64.669 0.0000 28.78 % 15.359 0.0004

Obs 0.95 % 3.330 0.0689 4.19 % 1.662 0.2052

MLSS 11.34 % 44.659 0.0000 30.91 % 17.001 0.0002
MLNSL 4.31 % 15.700 0.0001 7.50 % 3.081 0.0873

Obs 1.01 % 3.554 0.0602 4.88 % 1.950 0.1707

Table 3.2: Top rows: Results from the linear regression (3.11). Bottom rows:
Results from the linear regression (3.13). Left columns: OLS estimates when all
the assets are considered; right columns: OLS estimates when only the corre-
lations between stocks belonging to the same sector are considered. Obs rows:
estimation based on the observed sentiment.

Now we extract the Dow 27 return from the asset returns using a one-

factor model. We repeat the analysis comparing the matrices Cshort, CMLNSL

and CObs with the unconditional correlation of the idiosyncratic returns. We

extract the market factor Rt from the returns using the factor model

rit = αi + βiRt + zit, ∀i = 1, . . . , 27 (3.12)

where zit ∼ N(0, Q̃ret). We then compute the cross-correlation matrix C̃ret

from the covariance matrix Q̃ret and estimate the following model

vechl(C̃ret) = α + βmodelvechl(Cmodel). (3.13)

The bottom panels of Table 3.2 report the results. In the bottom left

panel, we show the results for the model (3.13) where all the correlation

pairs are considered. The first evidence is that the MLNSL R2 dramati-

cally decreases, while the MLSS R2 remains almost the same. This finding

suggests that almost all the return correlations explained by the CMLNSL

matrix are associated with the market factor Rt, while the matrix Cshort,

which represents the fast trends on the sentiment data, also captures dif-

ferent dynamics.

In the bottom right panel, we show the results for the model (3.13) where
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we consider only the correlation pairs for assets belonging to the same sec-

tor. In this case, the differences between the MLSS and MLNSL are more

severe. Indeed, the MLSS model still has a high and highly significant

R2, while the F -statistic for the MLNSL model fails to reject the null that

βMLNSL, defined in equation (3.13), is equal to 0. Again, the model with

the observed sentiment has no significant p-values.

As a last observation, we see the different behavior of the sectors in this

regression exercise. Figure 3.4 reports the scatter plot of the elements of

Cshort versus the corresponding values of Cret when the two stocks belong

to the same economic sector, characterized by a specific marker. We also

superimpose the regression line obtained from equation (3.11). Note that
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Figure 3.4: Scatter plot of the news short-term sentiment correlations and the
return correlations for pairs of assets in the same sector. The line corresponds
to the regression (3.11).

the behavior is different among sectors. The financial sector, marked with

blue dots, is the one with the highest linear relation and the three assets

belonging to this sector have all high returns and sentiment correlations. On

the contrary, the consumer cyclical sector, marked with garnet-red triangles,
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has a high dispersion among the correlations of the 5 assets.

In summary, Sections 3.4 and 3.4 support the intuition behind the MLSS

model. Indeed, the slowly changing components of the sentiment are effec-

tively captured by the long-term sentiment. We successfully confirmed this

hypothesis in Section 3.4. At the same time, the short-term sentiment effec-

tively describes the firm-specific behavior of the returns. Section 3.4 shows

that the MLSS model can capture different features of the returns, while

the MLNSL mainly captures the sentiment component associated with the

market.

3.5 Contemporaneous and lagged relations

The goal of this section is to assess the explanatory power of the sentiment

with respect to the market returns using the different filters presented in

the previous sections. In particular, we show that both the extraction

of long-term and short-term sentiment components and the multivariate

specification of the model are crucial ingredients to capture the synchronous

and lagged effects.

We consider the asset prices P i
t of the 27 stocks of the Dow 30 and

construct the equally weighted portfolio

Mt =
1

27

27∑
i=1

P i
t (3.14)

as a representative portfolio and denote with rmt its log-returns. We con-

sider a representative portfolio for two reasons. Firstly, (Beckers, 2018)

shows that the returns predictability using sentiment indicators is higher

when using market indexes rather than single stocks. Secondly, using a

representative portfolio we can compare different filtering techniques which
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do or do not consider the multivariate structure.

We define S̄news
t = 1

27

∑27
i=1 S

i,news
t and S̄social

t = 1
27

∑27
i=1 S

i,social
t as the sen-

timent associated to the representative portfolio. We consider five different

filtering techniques defined as follow:

1. SMLSS
t is the filtered signal obtained using the MLSS model in equa-

tion (3.6). The resulting filtered quantities are 4 long-term sentiment

factors FMLSS
t , 2 for the news and 2 for the social sentiment, and

54 short-term sentiment series ΨMLSS
t , 27 for the news and 27 for

the social sentiment. We compute the cross-sectional average for the

news short-term sentiment Ψ̄MLSS,news
t and social short-term senti-

ment Ψ̄MLSS,social
t . As a final result, we define

SMLSS
t =

[
∆FMLSS,news

t ,∆FMLSS,social
t , Ψ̄MLSS,news

t , Ψ̄MLSS,social
t

]′
∈ R6.

2. SLSSt is the filtered signal obtained applying the MLSS model directly

to the univariate series S̄news
t and S̄social

t . For identifiability reasons,

the number of common factors is one. The motivation behind this

model is to test whether a simple cross-sectional average of sentiment

time series can be an effective proxy of the sentiment of the repre-

sentative asset. This approach intentionally neglects the multivariate

structure of the sentiment and treats it as a non-relevant feature. Sim-

ilar reasoning has been used in (Borovkova et al., 2017). The resulting

filtered quantities are 2 long-term sentiment factors FLSS
t , one for the

news and one for the social sentiment, and 2 short-term sentiment

series Ψ̄LSS
t , one for the news and one for the social sentiment. The

final model reads

SLSSt =
[
∆FLSS,news

t ,∆FLSS,social
t , Ψ̄LSS,news

t , Ψ̄LSS,social
t

]′
∈ R4.
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3. SMLNSL
t is the filtered signal obtained using the MLNSL model in

equation (3.2) from the 54 observed sentiment time series. The re-

sulting filtered quantities are 54 filtered sentiment series FMLNSL
t ,

27 for the news and 27 for the social sentiment. We compute the

cross-sectional average for the news sentiment F̄MLNSL,news
t and so-

cial sentiment F̄MLNSL,social
t . As a final result, we define

SMLNSL
t =

[
∆F̄MLNSL,news

t ,∆F̄MLNSL,social
t

]′
∈ R2.

4. SLNSLt is the filtered signal obtained applying the LNSL model, intro-

duced by (Borovkova and Mahakena, 2015) and presented in equation

(3.1), to S̄news
t and S̄social

t . As for the LSS model, the motivation be-

hind this choice is to test whether the multivariate structure of sen-

timent is a relevant feature or not. We obtain two filtered sentiment

series F̄LNSL
t , one for the news and one for the social sentiment. We

then define

SLNSLt =
[
∆F̄LNSL,news

t ,∆F̄LNSL,social
t

]′
∈ R2.

5. Sobst only considers the observed sentiment S̄news
t and S̄social

t

SObst =
[
∆S̄news

t ,∆S̄social
t

]′ ∈ R2.

In summary, the five models allow us to separate the effect of the differ-

ent components. The MLSS model exploits all the possible information

from the multivariate time series and all the relevant common factors are

considered. The average across assets is computed at a later stage on the

short-term sentiment. For this reason, it does not affect the long-term com-

ponents. The LSS model computes the cross-sectional average as a first step

and does not exploit the multivariate structure. Then, both the short-term
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and long-term components are different from the one of the MLSS model.

The MLNSL and LNSL models differ only on the step of the aggregation.

The first model applies the filter on the multivariate time series, while the

second model applies the filter on the aggregated time series. Finally, the

Obs model works as a benchmark.

Quantile regression

In this section, we investigate the lagged relation between sentiment and

market returns. The recent literature for the DJIA (Garcia, 2013) and for

the gold futures (Smales, 2014) found that the reaction to the news is more

pronounced during recessions. For this reason, we use the quantile regres-

sion in place of a simple linear regression to obtain a more comprehensive

analysis of the relationship between variables. In Appendix A.3 we report

the investigation on the contemporaneous relation between sentiment and

returns.

Lagged relations

We consider the following quantile regression

rm(τ) = α (τ) + βmodel (τ)Smodel
t−h ,

where model denotes one of the five filtering models presented above. Ac-

cording to (Koenker and Machado, 1999), we can compare the explanatory

power of a selected model according to the R1 measure. In particular, if we

consider the functional expression for the quantile regression

V̂ (τ) = min
(α,β)

T∑
t=1

ρτ (rmt − α− βSt−h) , (3.15)
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where ρτ (u) = u(τ − Iu<0), we can define the quantile R1 measure as

R1 (τ) = 1− V̂ (τ)

Ṽ (τ)
,

where Ṽ (τ) is evaluated restricting equation (3.15) with the intercept pa-

rameter only. In contrast with the R2 measure of the linear models, R1(τ)

is a local measure of goodness of fit and only applies to a particular quan-

tile. In addition, (Koenker and Machado, 1999) show that using V̂ we

can test the significance of the βmodel parameters. However, the likelihood

ratio test introduced in (Koenker and Machado, 1999) assumes that the

residuals of the quantile regression are i.i.d. while the observed residuals

show heteroskedasicity. For this reason, we perform a multivariate Wald

test where the covariance structure of the estimators is estimated using a

block bootstrap. For an introduction of confidence intervals estimations

with bootstrap methods refer to MacKinnon (2006). To maintain the au-

tocorrelation structure of the data, the block bootstrap length is set to 22

days (one month in financial time).

As a first step, we consider the lag h = 1. We evaluate the R1(τ)

statistic and test the significance using the χ2 Wald-test. Table 3.3 re-

ports the values and significance of the R1 measure. A finding is common

among all models: the values of R1 are higher in the tails and lower close

to the median. In addition, what we observe is extremely promising for

the Long-Short modeling approach. The significance of the noisy sentiment

is zero for almost all quantile levels. Filtering the time series is essential

to recover predictability. However, filtering alone is not sufficient. Indeed,

neither the predictability of the LSNL model nor of the multivariate exten-

sion MLSNL is statistically significant except for some cases. Significance is

recovered only when the filtered sentiment is decomposed into the short-run
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τ quantiles
R1(τ) measure

MLSS LSS MLNSL LNSL Obs

0.01 12.7∗∗∗% 4.5∗∗% 0.3% 0.2% 0.1%
0.05 3.2∗∗% 1.3% 0.1% 0.0% 0.1%
0.10 1.7∗∗% 1.2∗∗% 0.0% 0.0% 0.1%
0.33 0.2% 0.1% 0.0% 0.0% 0.0%
0.50 0.2∗∗% 0.1∗∗% 0.1∗∗% 0.1∗∗% 0.0%
0.66 0.4∗∗∗% 0.2∗∗% 0.1∗% 0.1∗% 0.0%
0.90 2.8∗∗∗% 1.0∗∗% 0.2∗∗∗% 0.1% 0.1%
0.95 5.3∗∗∗% 1.6∗∗% 0.3∗% 0.1% 0.2%
0.99 11.9∗∗∗% 3.4∗∗% 0.0% 0.5% 1.0∗∗%

Table 3.3: The R1 measure across the value τ for the one-lag quantile regression.
We denote with ∗∗∗ the significance at 1%, ∗∗ the significance at 5% and ∗ the
significance at 10%

and long-run components. This is true for extreme returns, both positive

and negative. The result is stronger when the LSS model is replaced by

the MLSS, meaning that the cross-sectional dependence is an important

ingredient to enhance predictability. It is worth noticing that the values of

R1 presented in Table 3.3 come from models with a different number of

regressors, therefore an adjustment with respect to the number of regressors

should be applied. However, given that the number of observations used to

evaluate the measures is T = 3020, a correction in the spirit of the adjusted

R2 would be of order 0.2% and would not affect the results.

A further advantage of the long-short decomposition is that we can prop-

erly assess the relative contribution of the two components. In particular,

we use a bootstrap Wald test to assess the significance of the parameters

in the MLSS model. Considering the SMLSS =
[
∆FMLSS

t , Ψ̄MLSS
t

]
, the

significance of the parameter βLT ∈ R4 and βST ∈ R2 can be tested using

Ṽ LT (τ) = min
(α,βLT )

T∑
t=1

ρτ
(
rmt − α− βLT∆FMLSS

t−h
)
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τ quantiles
p-values

LSTt−1 LLTt−1

0.01 0.000∗∗∗% 0.019∗∗∗%
0.05 0.251∗∗∗% 35.900%
0.10 0.170∗∗∗% 5.700∗%
0.33 3.300∗∗% 28.500%
0.50 0.169∗∗∗% 2.100∗∗%
0.66 2.000∗∗% 0.195∗∗∗%
0.90 0.404∗∗∗% 0.021∗∗∗%
0.95 0.001∗∗∗% 25.200%
0.99 0.003∗∗∗% 20.800%

Table 3.4: p-values for the Wald test statistics. The statistics are asymptotically
χ2 with degrees of freedoms equal to the number of tested parameters.

and

Ṽ ST (τ) = min
(α,βST )

T∑
t=1

ρτ
(
rmt − α− βST Ψ̄MLSS

t−h
)
,

As before, we use a Wald test based on block bootstrap resampling to assess

the significance of βST and βLT .

We report the p-values of the Wald test statistics in Table 3.4. The

contribution given by the short-term sentiment is strongly significant, in

particular for extreme quantiles. On the contrary, the long-term sentiment

is not significant in 6 out of 9 quantiles. The results support the intuition

that, if today a very high or very low return appears, it can be partially

explained by the yesterday’s rapidly changing mood, while the permanent

trend in the sentiment series have almost no impact.

The experiments performed in the contemporaneous (see Appendix A.3)

and one-lag cases show that the MLSS model is the best model to capture

the return variations. For this reason, for the multi-period analysis we will

only consider the MLSS model.

Considering a general h, we wonder if extra lags can add explanatory power
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τ h = 2 h = 3 h = 4 h = 5

0.01 18.133% 29.136% 57.652% 72.784%
0.05 0.618%∗ 0.946%∗ 4.317%∗ 3.009%∗

0.10 0.907%∗ 0.773%∗ 4.341%∗ 1.968%∗

0.33 65.530% 47.389% 74.932% 74.071%
0.50 62.489% 70.078% 80.725% 90.581%
0.66 43.722% 53.518% 52.853% 74.962%
0.90 4.831%∗ 0.662%∗ 0.063%∗ 0.208%∗

0.95 12.800% 2.504%∗ 0.628%∗ 2.468%∗

0.99 38.580% 71.448% 81.945% 87.196%

Table 3.5: p-values for the Wald statistics for different values of h. We denote
with ∗ the values where β2 is significantly different from zero.

to the regression exercise. Using the functional form

V̂ h,MLSS (τ) = min
Θ

T∑
t=h+1

ρτ
(
rmt − α0 − α1rmt−1 − β1SMLSS

t−1 − β2Lh−1(SMLSS
t−1 )

)
,

we separate the contributions given by the first and higher order lags. The

vector Θ = (α0, α1, β1, β2). The bootstrap Wald test can be used to assess

the null hypothesis that β2 = 0.

Following (Tetlock, 2007; Garcia, 2013), we fix a maximum number of

h = 5 and Table 3.5 reports the p-values for the different values of h. The

h-lagged sentiment series are uninformative in the median region, where the

one lag sentiment have less explanatory power too. However, in agreement

with (Garcia, 2013), the lagged sentiment remains informative for a few

days and, in our case, this is true for the 5%, 10%, 90%, and 95% quantile

levels. It is worth noticing that the 1% and 99% quantiles are unaffected

by higher-order lags. This shows that, in the case of very good or very bad

days, the returns are strongly driven by very fresh news (h = 1) while the

older news has no informative power.
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3.6 Portfolio allocation with sentiment data

This section details an economic application of the MLSS model in port-

folio selection and benchmarks the results against a buy-and-hold strategy.

We consider the equally weighted portfolio in equation (3.14) and the five

filtered signals SMLSS
t , SLSSt , SMLNSL

t , SLNSLt and SObst introduced in the

previous section. It is worth noticing that (Beckers, 2018) and (Garcia,

2013) showed that the predictability power of the sentiment series declined

after 2007. For this reason, we want to challenge the filtering techniques to

predict the future daily returns in the time window 2007-2019.

In the first part of this section, we use the sentiment signals as exogenous

variables to build a simple classifier and we introduce five trading strategies

based on the five sentiment time series. Then, we test these strategies on

the February 2007 - June 2017 window. This period offers a large series

with different economic conditions. The sentiment models are estimated

in the same time window. The estimation of multivariate models (MLSS

and MLNLS) employs a backwards-looking technique based on smoothing

recursions. Then, one may argue that for the multivariate case the estima-

tion technique may introduce some sort of forward-looking bias. We test

that this bias, if any, is not likely to be the dominant effect. We perform

a robustness check where we use the parameter values from February 2007

- June 2017 period to filter the TRMI sentiment series from July 2017 to

December 2019. In this way, the trading signals cannot be affected by any

forward-looking bias. The results in the out-of-sample period confirm those

from February 2007 - June 2017, showing that the trading strategies built

on the MLSS model are the best performers. The details of the robustness

check can be found in Appendix A.6.
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Trading strategies

In the financial literature, several papers support the strong out-of-sample

performance of the equally weighted portfolio (e.g. DeMiguel et al. 2009b).

The 1/n portfolio without rebalancing is used as a baseline for our trading

strategies and the long passive position in this portfolio is called buy-and-

hold strategy. Given that the buy-and-hold portfolio offers good out-of-

sample performance, we assume an investor who only deviates from the

baseline strategy if a strong signal which predicts a negative return arrives

from the sentiment series. For this reason, the criterion variable needs to

capture the behavior of the left tail of returns distribution. We define the

criterion binary variable as

Yt =

 1, for r̃mt < z1/3

0, otherwise

where z1/3 is the 1/3 Gaussian quantile and r̃mt = rmt /
√
RVt are the stan-

dardized market returns with the realized variance, RVt, evaluated by means

of 5-minute intraday returns. The standardization of the returns is crucial

to eliminate possible effects due to the persistence of volatility. The choice

of the 33% quantile is consistent with the findings of Section 3.5. Moreover,

it is a balance between a more conservative choice – a smaller quantile only

sensitive to more extreme and predictive events – and a larger quantile,

which provides a larger number of selling signals but less predictive power.

Since the goal of this chapter is to show that the choice of the filter-

ing procedure is essential, a simple classification technique is used. As a

classifier, we consider the following conditional logit model

P (Yt+1 = 1|Xt) = logit
(
Xmod
t θ

)
, (3.16)
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where logit(Xtθ) = eXtθ

1+eXtθ
and Xmod

t =
[
1, r̃mt , S

mod
t

]
. We recall that Smod

t

is a vector whose dimension depends on the filtering model. For further

details see the first part of Section 3.5.

The predicted binary value is defined as

Ŷ mod
t+1 =

 1, for logit(Xmod
t θ) > 0.5

0, otherwise .
(3.17)

The main advantages of the conditional logit model are twofold. On one

hand, the conditional logit model can be easily estimated using MLE. On

the other hand, we can easily assess the fitness of the model on the data

using the Mc Fadden’s R2 measure defined in (McFadden et al., 1974) as

R2 = 1− log(Lm)

log(L0)
∈ [0, 1] .

Lm represents the maximum likelihood of the complete model (3.16) and L0

is the maximum likelihood of the bare model based only on the intercept.

The models are estimated using overlapping rolling windows of 6 months

(126 observations). We verified that this choice is sufficient to capture the

time-varying nature of the explanatory power of the sentiment series. Figure

3.5 shows the value of R2 over the February 2007 - June 2017 period. The

MLSS model has the highest R2 w.r.t the other models, which typically

translates in a higher predictive power. In addition, the MLSS R2 has

high variability, suggesting that the predictive power changes over time.

This latter finding suggests that the sentiment signal can be a good returns

predictor in certain periods and a poor predictor in others. This intuition

will be exploited later to generate trading strategies based on the R2.

The estimated Ȳ mod
t defined in (3.17) translates in the trading signal

smod
t+1 =

 1, if Ŷ mod
t+1 = 0

−1, if Ŷ mod
t+1 = 1

(3.18)
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Figure 3.5: McFadden’s R2 for the different filtering methods using negative
abnormal returns.

where smod
t+1 = 1 (smod

t+1 = −1) represents a buy (sell) signal in the equally

weighted portfolio (3.14). At any day t, at the closing time of the trad-

ing day, the investor uses the sentiment signal Smod
t and the standardized

realized daily returns r̃mt to forecast the binary variable Ŷ mod
t+1 and the rela-

tive trading signal. Naming c0 the number of shares bought or sold in any

transaction, there are three possible scenarios

1. smod
t = smod

t+1 : In this case the prediction on the future realization

does not change and the investor does not re-balance the portfolio.

2. smod
t = +1 and smod

t+1 = −1 : The investor had a long position in

the equally weighted portfolio at time t but the prediction changed.

She sells the current position and short sells c0 shares of the same

portfolio.

3. smod
t = −1 and smod

t+1 = +1 : The investor had a short position in the

equally weighted portfolio at time t but the prediction changed. She

buys 2c0 shares of the portfolio.
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Please notice that the only exception is for smod
1 because we initialized

smod
0 = 0. In this case, the equally weighted portfolio is bought when

smod
1 = 1 and it is short sold when smod

1 = −1. The investor’s portfolio is

then built asP
mod
t+1 = smod

t+1 c0Mt+1 + casht+1,

casht+1 = casht − (smod
t+1 − smod

t )c0Mt+1 − |smod
t+1 − smod

t |c0Mt+1
cost

2
,

(3.19)

where cost is the percentage trading cost and Mt is defined in (3.14). The

first equation in (3.19) shows that the value of the portfolio is composed

by the value of the invested amount smod
t+1 c0Mt+1 plus the cash position.

The latter increases when smod
t+1 < smod

t , meaning that the investor sells

the portfolio and receives cash, and decreases when smod
t+1 > smod

t , meaning

that the investor buys and erodes the cash position. The second equation

includes the impact of the transaction costs. Specifically, every time that

a transaction happens, i.e. smod
t+1 6= smod

t , the investor pays an extra cost

proportional to the current value of the equally weighted portfolio Mt+1.

We fix the starting point smod
0 = 0, cash0 = 100, 000$ and the parameter

c0 = 100, 000$/M0. In the chapter we only report the results for the case

with trading costs, while the results with zero trading costs are reported in

Appendix A.5. From now on, we refer to without trading costs when the

portfolio in equation (3.19) is evaluated with cost = 0 and to with trading

costs when costs = 0.1% as in (Gilli and Schumann, 2009) and (Avellaneda

and Lee, 2010). In the following sections, the number of transactions is

evaluated as Trmod =
∑T−1

i=0 |smod
i+1 − smod

i | and the transaction costs are

evaluated as Tcmod =
∑T−1

i=0 |smod
i+1 − smod

i |c0Mi+1
cost

2
. It is worth noticing

that the change of signal effectively produces two transactions. For instance,

if the signal moves from st = 1 to st+1 = −1, the first transaction is the



CHAPTER 3. DISENTANGLING SHORT-RUN AND LONG-RUN
COMPONENTS IN SENTIMENT DYNAMICS 74

liquidation of the long position and the second transaction is the short

position on the asset. In addition, most of the time the selling signal appears

for only one day and disappears the day after. Then, the typical path of a

selling signal is given by st = 1, st+1 = −1 and st+2 = 1 producing a total

of four transactions.

The transaction costs can strongly depress the overall performance of the

portfolio. To partially mitigate this drawback, we can decrease the number

of transactions using the McFadden’s R2 as a measure of the reliability

of the signal Ŷ mod
t . We compute the empirical quantile z1,t

α (R2) of the

McFadden R2 over the time window (1, · · · , t). The quantile z1,t
α (R2) is Ft-

measurable and does not introduce a forward looking bias. We can reduce

the number of trades conditioning the selling signal at time t on the level of

the McFadden’s R2 evaluated in the previous 6 months. The R2 adjusted

trading signal is then defined as follows

s̄mod
t =

 −1, if Ŷ mod
t+1 = 1 and R2,mod

t > z1,t
α

(
R2,mod

)
1, otherwise .

(3.20)

The value α determines the reduction in the number of trades. The higher

α is, the smaller is the number of transactions. The parameter α should be

considered as a subjective transaction cost of the investor. The five strate-

gies, together with the buy-and-hold strategy itself, are evaluated according

to six measures, the annual return, the annual volatility, the annual negative

volatility, the Sharpe ratio, the Sortino ratio, and the maximum drawdown

(MDD). In the next section, in the first step, the portfolios with the trading

signals (3.18) with and without trading cost are analysed. Then, we assess

the impact and the performance of the trade reduction strategy based on

(3.20).
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Empirical application: February 2007 - June 2017

The 2007-2009 crisis and the 2009-2017 bull market are good backtesting

periods for the sentiment portfolios because we can test the return pre-

dictability during different market conditions.

Table 3.6 reports the performances of the five sentiment strategies to-

gether with the buy-and-hold portfolio with trading costs. The sentiment-

based strategies have, excluding the LNSL and the Obs, smaller volatility

and MDD than the buy-and-hold portfolio. In addition, the MLSS port-

folio produces returns similar to the buy-and-hold strategy, lower negative

volatility, and consequently higher Sharpe and Sortino ratios than all the

other strategies. The lower performance for the annual returns is due to the

higher transaction costs. Indeed in Appendix A.5 we show that, when the

trading costs are not considered, the MLSS strategy produces higher annual

returns than all the other strategies. In addition, when we compare without

trading costs experiment with the with trading costs experiment, the exces-

sive number of transactions for the MLSS strategy reduces the Sharpe ratio

gain with respect to the buy-and-hold portfolio from 40% to 10% and the

Sortino ratio gain from 48% to 16%. In Appendix B.1 we show that the

selling signal generated by the MLSS sentiment series corresponds to statis-

tically significant returns predictability. The transaction costs incurred by

the MLSS portfolio throughout the nine years amount in total to 38% of the

starting capital. For this reason, we employ the trading signal s̄MLSS defined

in equation (3.20), which penalizes signals with moderate McFadden’s R2.

Table 3.7 reports the performances of the strategies based on the penalized

signal for different values of α. As expected, the higher the value of α and

the lower the number of transactions is. In addition, the R2-based signal

produces a higher quality signal and effectively increases the performance
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Measures BH MLSS LSS MLNSL LNSL Obs

A. return (%) 8.975 7.891 6.977 8.882 8.143 6.986
A. volatility (%) 19.132 15.209 18.136 17.952 19.431 19.955

A. neg. volatility (%) 15.523 11.767 14.339 14.474 15.374 16.055
A. Sharpe ratio 0.469 0.519 0.385 0.495 0.419 0.35
A. Sortino ratio 0.578 0.671 0.487 0.614 0.53 0.435

MDD ($) 59377 57235 50335 49773 63595 62785
Number of trades 1 553 161 81 73 93

Transaction costs ($) 50 37974 14866 5565 4085 7544

Table 3.6: Performances of the six strategies with transaction cost for the period
February 2007 - June 2017. In bold, the best performance per row. BH is the
buy-and-hold portfolio, while MLSS, LSS, MLNSL, LSNSL, and Obs correspond
to portfolios built from the corresponding model for the sentiment time series.

Measures BH α = 0% α = 20% α = 35% α = 50% α = 65% α = 80%
A. return (%) 8.975 7.891 8.225 9.575 9.84 10.248 9.184

A. volatility (%) 19.132 15.209 15.679 14.083 13.601 13.538 17.201
A. neg. volatility (%) 13.601 10.888 11.196 9.901 9.511 9.443 12.216

A. Sharpe ratio 0.469 0.519 0.525 0.680 0.723 0.757 0.534
A. Sortino ratio 0.660 0.725 0.735 0.967 1.035 1.085 0.752

MDD ($) 59377 57235 63522 49160 33264 35600 59486
Number of trades 1 553 437 349 273 169 57

Transaction costs ($) 50 37974 30626 25283 20074 12007 4127

Table 3.7: Performances of the MLSS based strategies built from equation (3.20)
for different values of α ×100. BH is the buy-and-hold portfolio. In bold, the
best performance per row.

of the portfolios. The number of transactions decreases almost linearly but

the Sharpe and Sortino ratios strongly increase. They reach a maximum

value when α = 0.65. These findings further corroborate the intuition that

the MLSS sentiment strongly anticipates future returns during the financial

crisis, given that the R2 values in figure 3.5 are higher than the uncondi-

tional average during the 2007− 2009 period. Again this feature is peculiar

for the MLSS filter while no evidence of return predictability is reported

for the other filtering techniques. Again, the statistical significance of these

strategies is reported in Appendix B.1.
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3.7 Conclusions

In this chapter, we presented a novel way to filter multivariate sentiment

time series. The approach is very general and encompasses previous mod-

els discussed in the literature. Using a dynamic factor model, we were

able to identify two different sentiment components. The first one, named

long-term sentiment and modeled as a random walk, captures the com-

mon trends which drive the long-term dynamics. The second component,

dubbed short-term sentiment and modeled as a VAR(1) process, captures

short-term swings of market mood. An extensive empirical section inves-

tigates the different features of the two sentiment components. In a first

analysis, we pointed out that one of the long-term sentiment factors co-

integrates with the first principal component of the market. Quite surpris-

ingly, the structure of the sentiment factor loadings does not mimic the

typical uniform profile of the market factor. Some assets are over-expressed

and contribute to the factor with a positive or negative sign, while others

are under-expressed. Concerning the short-term sentiment, its multivariate

dependence structure explains a sizable fraction of the residual covariance

in a single factor market model. This result suggests that the short-term

component captures transient and rapidly changing trends associated with

the idiosyncratic components of the market. In a second analysis, based on

quantile regression, we showed that the Multivariate Long-Short Sentiment

model provides the highest explanatory power of lagged and contemporane-

ous returns. Essential to achieve statistical significance is the multivariate

nature of the approach and the separation of the sentiment signal in a long

and a short components. In particular, disentangling the short-term sen-

timent is crucial to capture the behavior of extreme returns. In a further

analysis, we observed that newspapers and social media differently react
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to negative and positive returns. Specifically, they can effectively explain

abnormal returns from one to five days in advance, but they almost im-

mediately digest the positive market realizations while they echo negative

realizations for several days to come.

It is worth noting that (Tetlock, 2007) and (Garcia, 2013) reported results

similar to ours for the unfiltered sentiment focusing on the period before

2007. Using the TRMI dataset, (Beckers, 2018) showed that the forecasting

power on returns of the sentiment dropped dramatically after 2007. Our

results suggest that the filtering procedures are more important nowadays

than in the past. Consistently, in a final investigation, we performed an as-

set allocation exercise where the selling signals are based on the sentiment

series. In line with results from the quantile regression, the portfolio based

on the MLSS filter significantly outperforms the benchmark buy-and-hold

strategy and the other strategies based on different filtering techniques.

Supplementary materials

The supplementary materials include additional analysis to support the

evidences found in the chapter. Section A.1 provides an overview of the

stocks used in the empirical analysis. Section A.2 compares the different

signal-to-noise ratios filtered by the MLSS and MLNSL model. Section

A.3 investigates the contemporaneous relation between the sentiment and

return series. Appendices A.5, A.6, and B.1 report the without trading

costs analysis, the robustness check, and the statistical significance of the

portfolio allocation exercise, respectively.



Chapter 4

Modeling Realized Covariance

with score-driven dynamics

The contents of this chapter are the result of a joint work with Giusep-

per Buccheri and Prof. Fulvio Corsi, also available as published article in

Vassallo et al. (2021).

4.1 Introduction

Covariance modeling and forecasting is a prominent topic in many financial

applications. Since the seminal work of Andersen and Bollerslev (1998),

the use of realized measures computed from intraday data has emerged as

a preferential tool to forecast volatilities and correlations. Several univari-

ate specifications for realized volatility have appeared in the econometric

literature; see, among others, Engle and Gallo 2006, Corsi 2009, Shephard

and Sheppard 2010, Hansen et al. 2012. More recently, a parallel interest

arose towards multivariate models. Notably examples are given by Chiriac

and Voev 2011, Bauer and Vorkink 2011, Bonato et al. 2012, Bauwens et al.

79
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2012, Callot et al. 2017, Gorgi et al. 2018, Opschoor et al. 2017. The dy-

namic modeling of realized covariance poses a number of challenges that

are absent in a univariate framework. The curse of dimensionality, i.e. the

fact that the number of parameters rapidly increases with the cross-section

dimension, might significantly affect the statistical efficiency of the esti-

mation. Another complication is the need to guarantee positive-definite

estimates, which is relevant in financial applications. Furthermore, esti-

mation errors on realized measures play a crucial role in a multivariate

framework, as they can lead to unstable solutions in portfolio optimization

(Jagannathan and Ma 2003).

In this chapter, we introduce a methodology aimed at addressing the

above mentioned difficulties. Inspired by the DCC model of Engle (2002a),

we apply a two-step estimation procedure to a class of score-driven realized

covariance models based on Wishart and matrix-F distributions. In the new

models, the dynamics of correlations are driven by the score of the condi-

tional density. Volatilities are instead estimated in a previous step through

a sequence of univariate models. Such an approach inherits the main advan-

tages of the DCC. In particular, it allows modeling separately volatilities

and correlations, which possess different dynamics and leave more flexibility

in the estimation of the model. Each univariate specification is estimated

independently from the others, and it is therefore characterized by different

parameters. In a similar fashion to the DCC, in the second step of the

estimation, a set of restrictions on the parameter space can be imposed in

such a way that the number of parameters scales well with the cross-section

dimension. The new models are thus less affected by the typical curse of

dimensionality problem of multivariate realized covariance models. Condi-

tions guaranteeing positive-definite covariance estimates are easily derived.
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Bauwens et al. (2012)1 introduce a related DCC approach to realized

covariance modeling based on the Wishart density. The proposed approach

differs in the method used to update the time-varying parameters. In our

framework, the update rule is determined by the score of the conditional

density (Creal et al. 2013, Harvey 2013). In the case of the Wishart density,

if the score is scaled through the inverse of the Fisher information matrix,

our method leads to the same update rule of Bauwens et al. (2012). If a

matrix-F density is instead used, we obtain a different update rule, which

is robust to outliers. In our empirical application, we show that the model

based on matrix-F density provides a better fit to the data and is superior

in terms of out-of-sample forecast performance. It is worth noticing that

the score of the conditional likelihood is by construction a martingale dif-

ference. For this reason, the score-driven update automatically provides a

correction to the DCC model analogous to that introduced by Aielli (2013).

In particular, it turns out that the specific correction of Aielli (2013) is re-

covered in the case of the Wishart density, whereas if the matrix-F density

is used, the correction assumes a different form.

Score-driven models are a large class of observation-driven models (Cox

1981) where the time-varying parameters are driven by the score of the con-

ditional density. They have been successfully applied in the recent econo-

metric literature. Notably examples are given by Creal et al. (2011), Creal

et al. (2014) and Oh and Patton (2018). Gorgi et al. (2018) and Opschoor

et al. (2017) introduce a score-driven specification for realized covariances

based on Wishart and matrix-F distributions, respectively. In both cases,

variances and correlations are estimated in a single step. In contrast, we

estimate such models using the above mentioned two-step procedure. We

1See also their extensions in Bauwens et al. (2016) and Bauwens et al. (2017).
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show that this leads to significant forecast gains in common empirical appli-

cations as a result of the higher level of flexibility in parameter estimation.

The choice of the score-driven approach as a starting point of our work is

motivated by three main reasons. First, score-driven models provide a gen-

eral methodology to update the time-varying parameters based on the full

shape of the conditional density function. We thus obtain an update mech-

anism for volatilities and correlations which is consistent with the choice

of the observation density. Second, this approach acknowledges the exis-

tence of measurement errors on realized covariance estimates. The latters

are indeed modeled as noisy observations of the true latent covariances.

The relevance of measurement errors on forecasting with realized measures

has been underlined by Bollerslev et al. (2016), Bollerslev et al. (2018),

Bekierman and Manner (2018) and Buccheri and Corsi (2019). In the em-

pirical application, we compare our methodology to alternative methods

that ignore estimation errors and show the resulting advantages in forecast-

ing. Finally, in a score-driven framework, the likelihood can be written in

closed form and can be optimized numerically. Estimation is thus feasi-

ble even when dealing with high dimensional matrices. General state-space

models with latent covariances can only be estimated by simulation-based

techniques, which become infeasible at high dimensions.

Our Monte-Carlo study has three main objectives. First, we investigate

the finite sample properties of the maximum likelihood estimator that is

employed in the second step of our procedure. We find that, as the number

of observations increases, the estimator becomes unbiased and its distri-

bution concentrates around the true parameters. Second, we simulate the

covariances through a misspecified DGP and, according to the empirical

evidence that realized covariances have fat-tails, we generate observations
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from a matrix-F distribution. We thus misspecify the measurement density

of the score-driven Wishart model. We find that both models can capture

the misspecified dynamics of the covariances. However, the relative per-

formance of the matrix-F model is superior, as it is robust to the outliers

generated by the fat-tailed measurement density. As a final experiment, we

compare the two-step estimated covariances with those resulting from joint

estimation. To mimic a realistic setting, variances are generated based on

realized measures computed from real data. We clearly find, both in-sample

and out-of-sample, that the two-step procedure provides significantly lower

loss measures.

We illustrate the advantages of the proposed method in an empirical

study involving two different datasets. The first dataset includes 1-second

resolution transactions of 100 NYSE stocks. The second includes 1-minute

transaction data of 2767 stocks belonging to the Russell 3000 index. Score-

driven realized covariance models are typically estimated by restricting the

volatility persistences to be the same across assets. We first motivate the

newly introduced class of models by performing several empirical tests which

show that such assumption is too restrictive on real data. We then exam-

ine the in-sample and out-of-sample forecast performance of the two-step

models and compare them to models based on joint estimation and to other

benchmarks. We select groups of 5, 10, 25, 50, 100 assets. The proposed

two-step procedure provides significant in-sample and out-of-sample fore-

cast gains compared to models based on joint estimation. In particular, the

Model Confidence Set of Hansen et al. (2011) is effective in selecting the

two-step Wishart and matrix-F models and excluding the remaining alter-

natives. Notably, forecast gains over joint estimation based models become

more significant as the cross-section dimension increases, given the higher
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level of heterogeneity in the persistences of realized variances. Such results

confirm that the additional flexibility provided by the two-step procedure

translates into better forecasts. We also find that, in the vast majority of

the scenarios examined in the analysis, the model based on the matrix-F

density performs better than that based on the Wishart density. We thus

confirm the result of Opschoor et al. (2017) that the matrix-F density is

more suited to model time-series of realized covariances. Two additional

empirical experiments are performed in order to assess the advantages of

the two-step approach. In the first experiment, we show the behaviour of

the methodology as estimation errors on realized covariance measures be-

come more severe. We find that the model forecasts are significantly less

affected by the noise compared to alternative methods which ignore esti-

mation errors. As a second test, we assess the economic gains of switching

from joint estimation based models to the proposed two-step models. By

adopting a utility-based framework similar to that of Fleming et al. (2001),

Fleming et al. (2003) and Bollerslev et al. (2018), we show that a risk-

averse investor is willing to pay a positive annual amount to employ the

forecasts of the two-step models in constructing her portfolio. Essentially,

these economic gains are imputable to the lower ex-post risk featured by

the portfolios constructed with the proposed methodology.

The rest of this chapter is organized as follows: Section (4.2) introduces

the two-step estimation procedure and reports the main results; Section

(4.3) shows the results obtained through the Monte-Carlo analysis; Sec-

tion (4.4) describes the empirical application and reports the main results;

Section (4.5) concludes.
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4.2 Framework

Score-driven models for realized covariance

Let {Xt}Tt=1 denote a sequence of k× k positive-definite realized covariance

matrices and let Ft = σ (Xs : s 6 t) be the σ-field generated by past obser-

vations of Xt. We assume that the conditional distribution function of Xt

is given by:

Xt|Ft−1 ∼ Gk (Vt) (4.1)

where Gk is a matrix-variate distribution and Vt ∈ Rk×k is a latent covari-

ance matrix. Let us define q = k(k+1)
2

and let ft = vech (Vt) ∈ Rq collect the

diagonal and upper diagonal elements of Vt. In the score-driven framework

of Creal et al. (2013) and Harvey (2013), ft is modeled as:

ft+1 = ω + Ast +Bft, (4.2)

where:

st = (It|t−1)−1∇t, ∇t =
∂ log pGk(Xt, ft)

∂ft
, It|t−1 = Et−1[∇t∇′t] (4.3)

Here, A and B are q×q matrices, pGk(Xt, ft) denotes the conditional density

function associated with Gk, ∇t is the score computed with respect to ft

and It|t−1 is the Fisher information matrix. The score-driven framework

provides two main advantages. First, the parameters in ft evolve based

on the full shape of the conditional density function. Different choices of

pGk(Xt, ft) thus determine different update rules. Second, the likelihood

can be written in closed form and estimation can be performed by standard

numerical optimization.

Two different specifications for the conditional density Gk have been

proposed in the literature. Gorgi et al. (2018) set:

Xt|Ft−1 ∼ Wk (Vt/ν, ν) (4.4)
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where Wk (Vt/ν, ν) is the k-variate Wishart distribution with ν ≥ k degrees

of freedom. The corresponding density function is given by:

pWk
(Xt;Vt/ν, ν) =

|Xt|
ν−k−1

2

2νk/2ν−(νk)/2|Vt|ν/2Γk
(
ν
2

) exp
[
−ν

2
tr
(
V −1
t Xt

)]
, (4.5)

where Γk(·) denotes the k-variate Gamma function. In this parameteriza-

tion, the conditional mean is given by Et−1[Xt] = Vt. A similar density is

employed by Golosnoy et al. (2012), Gourieroux et al. (2009) and Bonato

et al. (2012), who introduce autoregressive processes for realized covariances

based on the Wishart distribution.

The dynamics of realized covariances are often characterized by fat-tails

and jumps. The Wishart distribution is not able to reproduce such features

and, as a consequence, covariance estimates might be too sensitive to large

movements. To obtain robust estimates, Opschoor et al. (2017) propose to

model Xt through the matrix-F distribution:

Xt|Ft−1 ∼ Fk (Vt, ν1, ν2) , (4.6)

where ν1, ν2 ≥ k are degrees of freedom. The density function of the matrix-

F distribution is given by:

pFk(Xt;Vt, ν1, ν2) = K(ν1, ν2)

∣∣∣ ν1
ν2−k−1

V −1
t

∣∣∣ν1/2 |Xt|
ν1−k−1

2∣∣∣Ik + ν1
ν2−k−1

V −1
t Xt

∣∣∣ ν1+ν22

(4.7)

where Ik denotes the k × k identity matrix and:

K(ν1, ν2) =
Γk
(
ν1+ν2

2

)
Γk
(
ν1
2

)
Γk
(
ν2
2

) (4.8)

The k×k positive-definite matrix Vt turns out to be the conditional mean of

the matrix-F distribution. The Wishart distribution can be obtained as a

limit from the matrix-F when ν2 goes to infinity. If ν2 is finite, the matrix-F
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distribution exhibits fat-tail behavior and it is thus more suited to describe

the dynamics of realized measures. Indeed, the score computed from the

matrix-F density exhibits a nonlinear structure which underweights the

impact of outliers on the dynamics of the covariances (see also discussions

in Opschoor et al. 2017).

The main shortcoming of such modeling approach is that the dimension

of ft grows quadratically with k. Estimation is thus feasible only by impos-

ing strong restrictions on the structure of the matrices A, B. For instance,

Gorgi et al. (2018) and Opschoor et al. (2017) impose a scalar structure,

namely they set A = αIq and B = βIq, with α, β ∈ R. Another drawback

is that long-memory effects are not directly taken into account. To this

end, Opschoor et al. (2017) impose a HAR specification in the dynamic

in Eq. (4.2). However, the additional parameters are estimated under the

same scalar restrictions. Our objective is to relax such restrictions while

maintaining the model computationally simple to estimate.

DCC-type score-driven models for realized covariance

Inspired by Engle (2002a), we write the covariance matrix Vt as:

Vt = DtRtDt (4.9)

where Dt is a diagonal matrix of standard deviations and Rt is a correlation

matrix. We propose to estimate Dt and Rt in two steps. In the first step, the

individual standard deviations are separately estimated by a sequence of k

realized volatility models. We allow for complete flexibility in the choice of

the univariate specification. In our applications, we choose the univariate

distribution as the marginal density function for the diagonal elements in

Eq. (4.5) and (4.7). In the case of the Wishart density, we obtain, for
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i = 1, . . . , k:

x
(i)
t |Ft−1 ∼ W1

(
v

(i)
t

ν(i)
, ν(i)

)
∼ v

(i)
t

ν(i)
χ2
ν(i) (4.10)

where x
(i)
t and v

(i)
t denote the i-th diagonal element of Xt and Vt, respec-

tively, and χ2
ν(i)

is a chi-squared distribution with ν(i) degrees of freedom.

In the case of the matrix-F density, we obtain, for i = 1, . . . , k:

x
(i)
t |Ft−1 ∼ F1

(
v

(i)
t , ν

(i)
1 , ν

(i)
2

)
∼ ν

(i)
2 − 2

ν
(i)
2

v
(i)
t Fν(i)1 ,ν

(i)
2

(4.11)

where F
ν
(i)
1 ,ν

(i)
2

denotes the scalar F density with degrees of freedom ν
(i)
1 and

ν
(i)
2 . To guarantee positive variance estimates, we set:

v
(i)
t = eλ

(i)
t (4.12)

and model the log-variance λ
(i)
t through the score of the conditional likeli-

hood. Specifically, the dynamic of λ
(i)
t is given by:

λ
(i)
t+1 = ωi + αis

(i)
t + β

(d)
i λ

(i)
t + β

(w)
i λ

(i)
t−1|t−5 + β

(m)
i λ

(i)
t−6|t−22 (4.13)

where λ
(i)
t−m|t−n = 1

n−m+1

∑t−m
j=t−n λ

(i)
j and s

(i)
t denotes the scaled score of

the i-th univariate density. The expression of s
(i)
t depends on the choice

of the probability density function and is computed in Appendix B.2. The

HAR-like structure allows to parsimoniously capture the strong persistence

observed on realized variance. After estimating the k univariate models, we

compute the diagonal elements of the matrix Dt as:

D
(i)
t = exp

[
λ

(i)
t

2

]
(4.14)

Thus, in the first step, k univariate score-driven models are indepen-

dently estimated and their forecasts are used to build the matrix Dt of
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standard deviations. This operation is extremely simple from a computa-

tional viewpoint, and at the same time allows to have different parameters

ωi, β
(d)
i , β

(w)
i , β

(m)
i , ν(i), ν

(i)
1 , ν

(i)
2 for different assets.

To model the correlations, as in Engle (2002a), we introduce the matrix

Qt such that:

Rt = ∆−1
t Qt∆

−1
t (4.15)

where ∆t = diag (Qt)
1/2. We then model dynamically ft = vech(Qt) based

on the score of the conditional density:

ft+1 = ω + Ast +Bft (4.16)

where the scaled score st is computed by assuming Dt known and given by

Eq. (4.14). In the next two subsections, we compute the expression of st

for both the Wishart and the matrix-F densities.

Wishart

The log-density function associated with the density in Eq. (4.5) is:

log pWk
(Xt;Vt, ν) =

1

2
dX (k, ν)+

ν − k − 1

2
log |Xt|−

ν

2
log |Vt|−

ν

2
tr
(
V −1
t Xt

)
(4.17)

where dX (k, ν) = νk log (ν/2) − 2 log Γk (ν/2). In Appendix B.3, B.4 we

prove the following two results:

Proposition 1. For the density in Eq. (4.17), the score∇W
t =

∂ log pWk (Xt;ft,ν)

∂ft

is given by:

∇W
t =

ν

2
D′kΨ′t

(
D−1
t ∆tQ

−1
t ⊗D−1

t ∆tQ
−1
t

)
[vec (Xt)− vec (Vt)] (4.18)

where Dk denotes the duplication2 matrix, Ψt = Ik2−
(
∆−1
t Qt ⊗ Ik + Ik ⊗∆−1

t Qt

)
WQ

and WQ is a sparse k2 × k2 diagonal matrix defined in Appendix B.3.

2The duplication matrix Dk is the unique k2 × k(k+1)
2 matrix such that, for any

symmetric matrix A, Dkvech (A) = vec (A)
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Proposition 2. For the density in Eq. (4.17), the Fisher information

matrix IWt|t−1 = Et−1[∇W
t ∇W ′

t ] is given by:

IWt|t−1 =
ν

2
Dk ′Ψ′t

(
H−1
t Q−1

t Ht ⊗H−1
t Q−1

t Ht

)
DkDk+ΨtDk (4.19)

where D+
k denotes the elimination3 matrix and Ht = Dt∆

−1
t .

Taking the inverse of IWt|t−1, as required by Eq. (4.2), poses two problems.

First, IWt|t−1 is singular, as ft includes k(k + 1)/2 time-varying parameters

whereas the number of time-varying parameters in Rt is k(k−1)/2. Second,

for k � 1, matrix pseudo-inversion is computationally cumbersome and can

lead to numerical instabilities. We solve both problems by setting IWt =

ν
2
Dk ′Ψ′t

(
H−1
t Q−1

t Ht ⊗H−1
t Q−1

t Ht

)
Dk. This is equivalent to approximate

the second Ψt factor appearing in Eq. (4.19) as Ψt ≈ Ik2 (note that D+
k Dk =

Ik), thus neglecting the term
(
∆−1
t Qt ⊗ Ik + Ik ⊗∆−1

t Qt

)
WQ. The latter

has indeed a tiny influence on Ψt, as WQ is a very sparse k2 × k2 matrix

with only k nonzero elements on the main diagonal. By assuming4 such

expression for IWt|t−1, not only the latter becomes non-singular, but one can

also compute in closed form the product (IWt|t−1)−1∇W
t appearing in Eq.

(4.2). In particular, in Appendix B.5 we prove the following:

Proposition 3. For the density in Eq. (4.17), the scaled score vector sWt =

(IWt|t−1)−1∇W
t is given by:

sWt = vech(H−1
t XtH

−1
t )− vech (Qt) (4.20)

3The elimination matrix D+
k is s k(k+1)

2 × k2 matrix such that, for any matrix A,

D+
k vec (A) = vech (A)

4Such approximation is harmless from a dynamic modeling perspective. Indeed, the
scaling matrix in score-driven models is typically related to the inverse of the Fisher in-
formation matrix but is not necessarily equal to the latter. For instance, different powers
of the inverse can be chosen. In this case, our approximating expression turns out to
be very close to the full Information matrix and very similar results are obtained by ex-
plicitly computing the pseudo-inverse. However, the latter operation is computationally
unstable and becomes infeasible in large dimensions.



CHAPTER 4. MODELING REALIZED COVARIANCE WITH
SCORE-DRIVEN DYNAMICS 91

This means that, in order to update the time-varying parameter ft,

one only needs to compute the scaled score st, which is a q-dimensional

vector having the simple expression given by Eq. (4.20). Correlations are

obtained by updating the time-varying parameter ft using Eq. (4.16) and

then constructing the matrix Rt through Eq. (4.15). Note that imposing

a scalar structure on parameters A, B, namely A = αIq, B = βIq is now

less restrictive, as variances are estimated independently and have different

persistences. The correlation matrix Rt is positive-definite if and only if Qt

is positive-definite. If a scalar structure is imposed, one has:

vech (Qt+1) =ω + βvech (Qt) + αvech(H−1
t XtH

−1
t )− αvech (Qt) (4.21)

=ω + (β − α) vech (Qt) + αvech(H−1
t XtH

−1
t ), (4.22)

which is positive-definite for all t’s if ω is positive-definite and if α > 0,

β − α > 0. Note that the update rule in Eq. (4.22) coincides with the Re-

cDCC specification of Bauwens et al. (2012) which adopt the Aielli (2013)

correction in the context of a DCC model with realized covariance.

Matrix-F

The log-density function in Eq. (4.7) is given by:

log pFk (Xt;Vt, ν1, ν2) = d(ν1, ν2)+
ν1 − k − 1

2
log |Xt|−

ν1

2
log |Vt|−

ν1 + ν2

2
log |W̃t|

(4.23)

where:

W̃t = Ik +
ν1

ν2 − k − 1
V −1
t Xt (4.24)

d(ν1, ν2) =
ν1

2
log

(
ν1

ν2 − k − 1

)
+ log Γk

(
ν1 + ν2

2

)
− log Γk

(ν1

2

)
− log Γk

(ν2

2

)
(4.25)
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For more details on the Matrix-F distribution see Gupta and Nagar (1999).

In Appendix B.6, we prove the following:

Proposition 4. For the density in Eq. (4.23), the score∇F
t =

∂ log pFk (Xt;ft,ν1,ν2)

∂ft

is given by

∇F
t =

ν1

2
D′kΨ′t

(
H−1
t Q−1

t ⊗H−1
t Q−1

t

) [ ν1 + ν2

ν2 − k − 1
vec
(
XtW̃

−1
t

)
− vec (Vt)

]
(4.26)

As in Opschoor et al. (2017), to take into account the curvature of the

log-density, we scale the score through the inverse of the Fisher informa-

tion matrix of the Wishart density. This has two main advantages. First,

it avoids the numerical computation of the Fisher information matrix of

the matrix-F distribution, which is not available in closed form. Second,

as in the Wishart density, we can compute in closed form the product

(IWt|t−1)−1∇F
t . Indeed, in Appendix B.7 we prove the following:

Proposition 5. The scaled score vector sFt = (IWt|t−1)−1∇F
t is given by:

sFt =
ν1 + ν2

ν2 − k − 1
vech

(
H−1
t XtW̃

−1
t H−1

t

)
− vech (Qt) (4.27)

As in the Wishart density, the dynamic modeling of ft solely requires the

computation of the scaled score st, which is a q-dimensional vector given by

Eq. (4.27). By imposing a scalar structure on parameters A, B, we have:

vech (Qt+1) =ω + βvech (Qt) + αst (4.28)

=ω + βvech (Qt) + α
ν1 + ν2

ν2 − k − 1
vech

(
H−1
t XtW̃

−1
t H−1

t

)
− αvech (Qt)

(4.29)

=ω + (β − α) vech (Qt) + α
ν1 + ν2

ν2 − k − 1
vech

(
H−1
t XtW̃

−1
t H−1

t

)
,

(4.30)
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which is positive-definite for all t’s if ω is positive-definite and if α > 0,

β − α > 0. As in the previous case, the score-driven update mechanism

includes by construction a correction based on the matrix Ht. Note that,

with this choice for the scaling matrix, the scaled score of the matrix-F

density converges to the scaled score of the Wishart density as ν2 →∞:

Proposition 6. When ν2 →∞, we get sFt = sWt

The proof is in Appendix B.8.

In principle, a HAR structure similar to that in Eq. (4.13) might be im-

posed even in the update rule for the correlations. As it will be extensively

discussed in the empirical application in Section (4.4), a similar structure

does not lead to any out-of-sample forecast gain. We thus maintain the

current specification with a HAR structure in the variances and a simple

AR(1) score-driven update for the correlations.

We conclude this section by noticing that both Gorgi et al. (2018) and

Opschoor et al. (2017) consider a larger filtration also including daily re-

turns. Under the assumption of conditional independence between realized

covariances and daily returns, this translates into an additional term in the

score of the two models. Our DCC-type approach is readily generalizable

to include the effect of daily returns. However, as the latter has less ex-

planatory power, and given that the aim of the present work is to highlight

the advantages of the two-step approach, we neglect them for simplicity.

Estimation

The two-step procedure can be summarized as follows:

1. Maximum likelihood estimation of the k univariate models described

in Section (4.2) (or alternative univariate specifications), from which
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the matrices Dt are built

2. Maximum likelihood estimation of the Wishart log-density in Eq.

(4.17) or the matrix-F log-density in Eq. (4.23) assuming Dt known

and ft evolving according to Eq. (4.16)

In a similar fashion to the DCC model, the static parameters A, B governing

the dynamics of correlations are estimated under the scalar restrictions

A = αIq, B = βIq. In contrast, ω is a q-dimensional vector with different

elements. We estimate it through (co)variance targeting, i.e. we set:

ω = (Iq −B) vech(R) (4.31)

where R is the correlation matrix computed from the sample mean of real-

ized covariances, namely Q = 1
T

∑T
t=1Xt.

4.3 Monte-Carlo analysis

Finite sample properties

In this section, we study the finite sample properties of the two-step estima-

tor via Monte-Carlo simulations. We consider both the two-step Wishart

and the two-step matrix-F models. For ease of notation, we indicate the

two models by “2-step-W” and “2-step-F”. We set Dt = Ik for every t, i.e.

we assume constant variances. Similar results are recovered when employ-

ing dynamic variances. We choose different values of k and T to test the

properties of the estimator on a variety of different scenarios. Specifically,

we set k = {2, 5, 10} and T = {250, 500, 1000}. For each scenario, the

model is simulated and estimated 1000 times. The two-step procedure is

applied as described in Section (4.2). The initial parameter f1 is set equal
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to the correlation matrix computed from the sample mean of the simulated

covariances.

We consider a specification for the Wishart model given by:

α = 0.3, β = 0.97, ω = (1− β)vech [C(ρ)] , ν = k + 10.

where C(ρ) denotes the equi-correlation matrix with correlation parameter

equal to ρ. We consider two different values for the correlation, namely

ρ = 0.5 and ρ = 0.9. Figures (4.1), (4.2) show kernel density estimates

of the probability density function of parameters in each scenario. The

distribution concentrates around the true values as the time-series length

T and/or the cross-section dimension k increase. This is due to the scalar

specification adopted for the correlations. The distribution of α and ν is

symmetric, whereas the distribution of β is slightly skewed at T = 250

and exhibits a bias. However, note that for T = 500 and T = 1000 all

parameters are estimated accurately.

We perform the same analysis for the two-step model based on matrix-F

distribution. Parameters are set as follows:

α = 0.3, β = 0.97, ω = (1− β)vech [C(ρ)] , ν1 = 22, ν2 = 35.

where ρ = {0.5, 0.9}. Figures (4.3), (4.4) show the results. We find again

that parameters are accurately estimated in small samples and tend to

concentrate around the true values as the time-series length T and/or the

cross-section dimension k increase.

Analysis based on a misspecified DGP

We test the performance of the two-step procedure under a misspecified

data generating process for volatilities and correlations. For simplicity, we
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Figure 4.1: Kernel density estimates of maximum-likelihood estimates
based on N = 1000 simulations of the two-step Wishart model with equi-
correlation parameter ρ = 0.5.
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Figure 4.2: Kernel density estimates of maximum-likelihood estimates
based on N = 1000 simulations of the two-step Wishart model with equi-
correlation parameter ρ = 0.9.
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Figure 4.3: Kernel density estimates of maximum-likelihood estimates
based on N = 1000 simulations of the two-step matrix-F model with equi-
correlation parameter ρ = 0.5.
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Figure 4.4: Kernel density estimates of maximum-likelihood estimates
based on N = 1000 simulations of the two-step matrix-F model with equi-
correlation parameter ρ = 0.9.



CHAPTER 4. MODELING REALIZED COVARIANCE WITH
SCORE-DRIVEN DYNAMICS 98

consider a bivariate model, in a similar fashion to Engle (2002a) and Creal

et al. (2011). In Section (4.4), we show that the matrix-F distribution pro-

vides a better fit to empirical data. We, therefore, employ it as a conditional

density to generate observations:

Xt|Ft−1 ∼ F2(Vt, ν1, ν2) (4.32)

where we set ν1 = 20 and ν2 = 8. The latent covariance matrix Vt is written

as:

Vt =

 c2
1 c1c2ρt

c1c2ρt c2
2


The misspecified volatilities c1 and c2 are modeled as:

ci,t = exp[0.97 log(ci,t−1) + ε
(i)
t ]

where ε
(i)
t ∼ N (0, 0.1), i = 1, 2. The correlation ρt evolves over time based

on different dynamic patterns. They are given by:

Sine: ρ
(1)
t = 0.5 + 0.4 sin (2πt/500) (4.33)

Fast sine: ρ
(2)
t = 0.5 + 0.4 sin (2πt/125) (4.34)

Step: ρ
(3)
t = 0.9− 0.4H

(
t− T

4

)
+ 0.4H

(
t− T

2

)
− 0.4H

(
t− 3T

4

)
(4.35)

Ramp: ρ
(4)
t =

3∑
i=0

(
4× 0.9

T
t− 0.9i

)[
H

(
t− iT

4

)
−H

(
t− (i+ 1)T

4

)]
(4.36)

where T = 2000 and H is the Heaviside step function. For each dynamic

pattern, we generate N = 1000 time-series of realized covariances through

the observation density in Eq. (4.32). We estimate both the 2-step-W and

2-step-F on the subsample comprising the first 1000 observations. In-sample
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loss measures are computed in this subsample. We then use the recovered

parameter estimates to filter the covariances in the subsample comprising

the last 1000 observations. Figures (B.1)-(B.4), reported in Appendix B.9,

show the simulated patterns and the average filtered correlations of 2-step-

W and 2-step-F. Both models are able to capture the pattern of correlations

accurately. Note that the confidence bands of 2-step-W filtered estimates

are slightly larger than those of the 2-step-F model. The motivation is

that the 2-step-W is not robust to the outliers generated by the matrix-F

density.

Pattern
In-sample Out-of-sample

2-step-W 2-step-F 2-step-W 2-step-F

Sine 1.000 0.736 1.000 0.718

Fast sine 1.000 0.846 1.000 0.807

Step 1.000 0.933 1.000 0.891

Ramp 1.000 0.937 1.000 0.937

Table 4.1: Relative in-sample and out-of-sample RMSE of two-step-W and
two-step-F for the all the correlation patterns.

Table (4.1) reports relative in-sample and out-of-sample average Frobe-

nius norms, defined as:

Frob
(
V̂t, Vt

)
=

√
Tr[(Vt − V̂t)(Vt − V̂t)′] (4.37)

Hereafter, we refer to the Frobenius norm as RMSE, as it coincides with

the square root of the sum of the MSE’s of the entries of V̂t. The 2-step-F

provides much lower in-sample and out-of-sample RMSE in patterns “sine”

and “fast sine”. In patterns “step” and “ramp”, the 2-step-F performs bet-

ter, though with a lower relative difference. This is due to the discontinuity

in the correlation pattern, which is treated as an outlier by the 2-step-F
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model. As a consequence, it adapts more slowly to the abrupt change of

correlation.

Comparison with joint estimation

We compare now the performance of the two-step procedure to that of

standard joint estimation. In order to generate variance paths that have the

same dynamic behavior of real data, we construct the matricesDt based on a

dataset of 100 realized variance time-series computed from stocks traded on

the NYSE. The dataset is described in more detail in Section (4.4). In each

simulation, the matrices Dt are generated by randomly selecting k realized

variance series from the dataset and replacing each diagonal element5 D
(i)
t

with the true realized volatility (X
(i)
t )1/2:

Dt =


(X

(1)
t )1/2 0

. . .

0 (X
(k)
t )1/2


To simulate the correlation matrix Rt, we use the equicorrelation model

of Engle and Kelly (2012). It has the form:

Rt = ρtIk + [1− ρt] Jk,k (4.38)

where Jk,k ∈ Rk×k is a matrix of ones. The correlation parameter ρt evolves

based on the following process:

ρt = 1− 1

k − 1
[1− tanh (θt)] (4.39)

θt+1 = φθt + εt, εt ∼ N
(
0, σ2

)
(4.40)

5As Dt is the matrix of latent standard deviations, we apply an EWMA smoothing
scheme to clean the real time-series from measurement error effects.
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where we set σ2 = 0.25. We then compute the covariance matrix as Vt =

DtRtDt and generate realized covariances through both the Wishart and

the matrix-F density:

XW
t ∼ Wk (Vt/ν, ν) (4.41)

XF
t ∼ Fk (Vt, ν1, ν2) (4.42)

with ν = k + 10, ν1 = 140 and ν2 = 120. These values are similar to those

estimated on real data.

We set k = 10 and perform N = 500 simulations of realized covari-

ance series {XW
t }, {XF

t } of T = 2000 observations. As in the previous

simulation study, in-sample loss measures are computed in the subsample

comprising the first 1000 observations. Out-of-sample loss-measures are

instead computed in the remaining subsample of 1000 observations based

on the parameters estimated in the first subsample. As loss measures, we

consider the RMSE and the Quasi-likelihood (Qlike). The latter is defined

as:

Qlike
(
V̂t, Vt

)
= − log |V̂ −1

t Vt|+ Tr
(
V̂ −1
t Vt

)
− k (4.43)

Table (4.2) compares in-sample and out-of-sample loss measures of two-

step and joint estimation for both Wishart and matrix-F models. The joint

estimation approach coincides with the models of Gorgi et al. (2018) and

Opschoor et al. (2017). In both in-sample and out-of-sample, the two-step

estimator performs significantly better than the joint estimator, according

to both loss measures. To test the significance of our results, we perform

the Diebold-Mariano test (Diebold and Mariano 2002) at 5% significance

level for each simulation. We report in the table the number of times each

loss measure is judged as significantly smaller by the Diebold-Mariano test.

It clearly emerges that, as a result of the higher flexibility provided by the
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Loss Model Wishart matrix-F

In-sample Out-of-sample In-sample Out-of-sample

RMSE

two-step
1.000 1.000 1.000 1.000

(420) (395) (475) (500)

joint
1.118 1.092 1.154 1.189

(15) (20) (0) (0)

Qlike two-step
1.000 1.000 1.000 1.000

(460) (430) (400) (400)

joint
1.096 1.086 1.213 1.141

(15) (20) (0) (0)

Table 4.2: Relative in-sample and out-of-sample RMSE and Qlike of two-
step models compared with joint estimation models. We report in paren-
thesis the number of times the corresponding loss measure is judged as
significantly smaller by the Diebold-Mariano test.

two-step models, the latter provide significantly smaller loss measures in

most of the N = 500 simulations.

4.4 Empirical evidence

Dataset

The empirical analysis is performed on two different datasets. The first

dataset consists of transactions of 100 assets traded on the NYSE. The

time resolution is 1-second. Data are available from 03-01-2006 to 31-12-

2014, corresponding to 2265 business days. The second dataset consists of

transactions of 2767 assets belonging to the Russell 3000 index. The time

resolution is 1-minute and data are available from 03-01-2006 to 27-09-2013,

corresponding to 1948 business days. As a realized covariance estimator,

we use the multivariate Realized Kernel of Barndorff-Nielsen et al. (2011).
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Before computing it, we perform the standard cleaning procedures described

by Barndorff-Nielsen et al. (2009).

Preliminary analysis

The main advantage of the proposed models is the higher flexibility in

the estimation of the static parameters. Gorgi et al. (2018) and Opschoor

et al. (2017) use the scalar restrictions A = αIq and B = βIq, i.e. they

assume the same persistence for the volatilities and correlations of all the

assets. In contrast, we find empirical evidence supporting the hypothesis of

a high level of heterogeneity among the persistences of volatilities. Such a

hypothesis is tested by means of two different experiments.

The first experiment is performed using the dataset of 2767 assets of the

Russell 3000 index. The results, presented in Figures (4.5), (4.6), (4.7), pro-

vide a first evidence that the persistences of volatilities can vary a lot among

assets. The blue lines represent the (sorted) 2767 maximum likelihood es-

timates of the coefficients β(d), β(w) and β(m) appearing in Eq. (4.13). The

red lines represent 2767 (sorted) realizations of β(d), β(w) and β(m) given

the null hypothesis that the different assets have the same HAR coeffi-

cients. They are built using the following method: we simulate 2767×1000

random variables distributed as N
(
β̄(j), σ̄2(j)

)
, j = d, w,m, where β̄(j) rep-

resents the sample mean of the estimated β(j) coefficient across the 2767

assets, and σ̄2(j)
represents the sample mean of the estimation error vari-

ances of the β(j) coefficient (computed as the inverse of the hessian at the

maximum). We compute the blue line by averaging the sorted 2767 realiza-

tions over the 1000 replications. The 95% confidence bands are computed

as empirical quantiles of the simulated distribution. They show that the

real estimated coefficients are incompatible with the null assumption that
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volatility persistences are equal.

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

Est. daily HAR coefficient
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95% conf. bands

Figure 4.5: We report in blue the sorted maximum likelihood estimates
of the β(d) coefficient corresponding to the 2767 assets in the Russell 3000
dataset. The red line and the 95% confidence bands are computed under
the null hypothesis that the 2767 assets have the same β(d) coefficient.

In the second experiment, we formally test on real data the scalar re-

striction assumed by Gorgi et al. (2018). We consider 100 portfolios each

composed by k randomly selected assets from the NYSE dataset. We es-

timate the Wishart model of Gorgi et al. (2018) by imposing two different

restrictions on the matrix B. In the first case, we assume a scalar restric-

tion, whereas in the second case we assume a diagonal restriction (i.e. the

diagonal elements are not required to be equal among each other). In both

cases, the matrix A is assumed to have a scalar structure. Under the diag-

onal restriction, the number of parameters scales as k2. We thus set k = 5

in order to avoid the curse of dimensionality.

We compare the fitting ability of the two different restrictions using the
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Figure 4.6: We report in blue the sorted maximum likelihood estimates of
the β(w) coefficient corresponding to the 2767 assets in the Russell 3000
dataset. The red line and the 95% confidence bands are computed under
the null hypothesis that the 2767 assets have the same β(w) coefficient.
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Figure 4.7: We report in blue the sorted maximum likelihood estimates of
the β(m) coefficient corresponding to the 2767 assets in the Russell 3000
dataset. The red line and the 95% confidence bands are computed under
the null hypothesis that the 2767 assets have the same β(m) coefficient.
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likelihood ratio test. In particular, we test the null hypothesis

H0 : B = βI (4.44)

against the alternative hypothesis

H1 : B =


β1 0 0
...

. . .
...

0 0 β15

 , where β1, . . . , β15 are not all equal. (4.45)

To compute the p-values, we use a χ2 distribution for the test statistics, since

the model with a scalar restriction is nested into the model with a diagonal

restriction. The test rejects the null hypothesis with p-values smaller than

0.01 for all the 100 portfolios. We obtain the same results when testing the

model based on matrix-F density.

The results of these two tests suggest that the scalar assumption of

Gorgi et al. (2018) and Opschoor et al. (2017) might be too restrictive and

warrant for a more flexible specification. In the next sections, we show the

advantages of the proposed two-step estimation procedure over standard

joint estimation.

Analysis settings and benchmark models

We perform the analysis at different cross-section dimensions and with dif-

ferent portfolios. In the NYSE dataset, which contains 1-second data, we

set k = 5, 10, 25, 50, 100. The assets belonging to each group are randomly

selected, except for the group of k = 100 stocks, which includes all the assets

in the dataset. In the Russell 3000 dataset, the time resolution is 1-minute

and the number of time-stamps per day is much smaller compared to the

NYSE dataset. To avoid ill-conditioned realized covariance estimates, we
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limit the maximum cross-section to 50 assets, i.e. we set k = 5, 10, 25, 50.

Even in this case, the assets in each portfolio are randomly selected.

In the in-sample analysis, we estimate the models in the entire NYSE

(Russell 3000) dataset of 2265 (1948) business days. In the out-of-sample

analysis, the models are estimated in the subsample comprising the first

1000 business days. The estimated parameters are then used to forecast

the covariances of the last 1265 (948) observations, from 22-12-2009 to 31-

12-2014 (27-09-2013). As a loss measure, we follow Patton (2011) and use

the RMSE and the Qlike. We assess whether loss differences are significant

through the Model Confidence Set (MCS) of Hansen et al. (2011).

The 2-step-W and 2-step-F are compared with the following benchmark

models:

1. RWG: the Realized Wishart GARCH model of Gorgi et al. (2018)

based on the Wishart density in Eq. (4.5)

2. RWG-HAR: the RWG model equipped with a HAR-like structure in

the dynamic equation for the covariances:

ft+1 = ω +B1ft +B2ft−1|t−5 +B3ft−6|t−22 + Ast

where ft = vech(Vt).

3. GAS-F: the model of Opschoor et al. (2017) based on the matrix-F

density in Eq. (4.7)

4. GAS-F-HAR: the GAS-F model is equipped with a HAR-like struc-

ture on static parameters similar to that of the RWG-HAR

5. HAR-DRD: the model of Oh and Patton (2018), combining univari-

ate HAR models with a panel HAR specification for the correlations.
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Similarly to our approach, the estimation is made in two steps. In the

first step, the volatilities are estimated using k distinct HAR models.

In the second step, a multivariate HAR-like specification is fitted on

the time-series of realized correlations. Covariance forecasts are then

computed by combining volatility and correlation forecasts through

the DRD decomposition in Eq. (4.9).

6. DCC: the standard Dynamic Conditional Correlation model Engle

(2002a) for daily returns estimated through the two-step procedure.

We include the RWG-HAR and the GAS-F-HAR in the set of benchmark

models in order to exclude that forecast gains provided by our two-step pro-

cedure are merely due to long memory effects captured by the univariate

models, which have a similar HAR-like structure, see Eq. (4.13). In prin-

ciple, we might impose the same structure in our correlation model. We

verified that such an assumption does not provide significant forecast gains.

We thus maintain a parsimonious specification with a HAR-like structure

in the univariate models and a standard AR(1) score-driven specification

for the correlations.

All the realized covariance models are estimated by assuming a scalar

specification for the matrix parameters appearing in the score-driven update

equation. These include the two matrices A, B in the RWG and GAS-F

models, which are constrained as A = αIq, B = βIq, and the matrices

B1, B2, B3 in the RWG-HAR and GAS-F-HAR, which are constrained as

B1 = β1Iq, B2 = β2Iq, B3 = β3Iq.
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In-Sample results

Table (4.3) reports the maximum likelihood estimates, obtained in the

NYSE dataset, of the parameters of the models described in the previ-

ous section. They are estimated in the entire dataset of 2265 business days

and for each cross-section dimension k = 5, 10, 25, 50, 100. Note that the

parameter ν in the RWG model and the parameters ν1, ν2 in the GAS-F

model is significantly different from the corresponding estimates in the 2-

step-W and 2-step-F models. In particular, ν is lower in the RWG model,

ν1 is generally lower in the GAS-F model and ν2 is lower in the 2-step-F

model for k = 5, 10, 25 and larger for k = 50, 100. Such differences indicate

that the fat-tail behavior of covariances is significantly different from that

of correlations, and it is a further motivation for the introduction of the

proposed two-step approach.

Table (4.4) shows average in-sample loss measures computed in both

datasets. We note that score-driven models based on the two-step pro-

cedure (2-step-W and 2-step-F) fit the data better than those based on

joint estimation (RWG, RWG-HAR, GAS-F, GAS-F-HAR). The relative

performance between the two classes of models tends to increase with the

cross-section dimension, as can be seen from the RMSE and Qlike gains

at k = 50, 100, which are both large and highly significant. This result is

due to the fact that large portfolios are more likely to include assets with

different volatility persistences, which are better captured by the two-step

models. We also see that the 2-step-F often provides lower loss measures

compared to the 2-step-W, as a result of being robust to the outliers that

are typically observed on real-time series. In the vast majority of the cases,

the 2-step-F has significantly lower loss measures, whereas in a few cases

the performances of the two models are statistically indistinguishable. The
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RWG-HAR and GAS-F-HAR tend to perform better than the RWG and

GAS-F because of the long-memory captured by the HAR specification.

We finally note that the HAR-DRD often provides a lower RMSE. This is

natural when looking at in-sample results, as the HAR-DRD is estimated

based on the same RMSE criterion.

We report in Table (4.5) the AIC and BIC statistics computed in the

NYSE dataset. As can be seen, the 2-step-F has the lowest AIC and BIC for

all the cross-section dimensions. We also note that the 2-step-W has lower

AIC and BIC compared to both the RWG and the RWG-HAR. In order to

further examine the in-sample performance of the proposed methodology,

we carry out the likelihood based model selection test of Rivers and Vuong

(2002), which is applicable to non-nested, possibly misspecified nonlinear

dynamic models. In particular, we test 2-step and joint estimation based

models (2-step-W vs RWG-HAR and 2-step-F vs GAS-F-HAR) on the one

hand, and matrix-F and Wishart based models (2-step-F vs 2-step-W and

GAS-F-HAR vs RWG-HAR) on the other hand. The first test compares

the likelihood of 2-step models to that of joint estimation based models,

whereas the second test compares the likelihood of matrix-F models to

that of Wishart models. Table (4.6) shows the test statistics of Rivers and

Vuong (2002), computed as the difference between the log-likelihoods of

the two models indicated in the first line, divided by the square root of

its asymptotic variance. The latter is computed through the Newey-West

estimator. Under the null that the likelihoods of the two models are equal,

the test statistics are asymptotically distributed as a standard normal. We

see that the null is strongly rejected in all the cases, implying that 2-step

models outperform joint estimation based models and matrix-F models

outperform Wishart models.
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Model AIC

k = 5 k = 10 k = 25 k = 50 k = 100

(×105) (×106) (×107) (×107) (×108)
2-step-W −6.8400 −2.4546 −1.4677 −5.7651 −2.3129
2-step-F −7.1643 −2.6124 −1.5617 −6.0493 −2.4197

RWG −5.8542 −2.2686 −1.4190 −5.6213 −2.2535
GAS-F −6.1604 −2.4064 −1.5091 −5.9459 −2.3749

RWG-HAR −5.7970 −2.2475 −1.4059 −5.5688 −2.2318
GAS-F-HAR −6.0981 −2.3833 −0.0028 −5.8736 −2.3432

Model BIC

k = 5 k = 10 k = 25 k = 50 k = 100

(×105) (×106) (×107) (×107) (×108)
2-step-W −6.8381 −2.4542 −1.4676 −5.7649 −2.3129
2-step-F −7.1621 −2.6119 −1.5616 −6.0491 −2.4196

RWG −5.8541 −2.2686 −1.4190 −5.6213 −2.2535
GAS-F −6.1602 −2.4064 −1.5091 −5.9459 −2.3749

RWG-HAR −5.7967 −2.2475 −1.4059 −5.5688 −2.2318
GAS-F-HAR −6.0978 −2.3832 −0.0028 −5.8736 −2.3432

Table 4.5: AIC and BIC statistics of all the considered models computed
in the NYSE dataset.

2-step vs joint Matrix-F vs Wishart

Cross-section
2-step-W 2-step-F 2-step-F GAS-F-HAR

vs vs vs vs
RWG-HAR GAS-F-HAR 2-step-W RWG-HAR

k = 5 69.79 85.25 23.14 31.64
k = 10 67.18 94.15 28.24 30.73
k = 25 49.34 98.24 28.27 33.29
k = 50 37.49 57.35 39.69 43.84
k = 100 16.31 16.56 42.51 47.88

Table 4.6: Test statistics of the Rivers and Vuong (2002) test. In each
column, we report the results of the test for the two models indicated in
the first line. The test statistics are computed as the difference between
the log-likelihoods of the two models divided by its asymptotic standard
deviation. The latter is estimated through the Newey-West estimator.
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Out-of-Sample results

We now check whether the in-sample gains found in the previous analysis

translate into out-of-sample forecast gains. In Table (4.7), we report the

average out-of-sample loss measures of all the models considered above.

Forecasts are computed in the NYSE (Russell 3000) subsample including

the last 1265 (948) business days and are based on parameter estimates

obtained in the subsample comprising the first 1000 business days. We

immediately notice that, with only a few exceptions, the 2-step-F model is

the best performing model and it is included in the model confidence set.

Similarly to the in-sample analysis, the relative performance of the 2-step-

W and 2-step-F over joint estimation based models increases as the cross-

section dimension increases. This confirms the intuition that the flexibility

provided by the two-step procedure leads to better covariance forecasts.

The results in the table also confirm that the matrix-F density is more

suited than the Wishart density to capture the fat-tails of covariances and

correlations.

The performance of the HAR-DRD is comparable to that of the 2-step-F

model when we look at the RMSE loss. When we instead consider the Qlike

loss, the relative performance of the HAR-DRD rapidly deteriorates when

k increases. The comparison of our methodology with the HAR-DRD is

examined further in the next section, where we study the behavior of both

models in relation to measurement errors on covariance estimates.

One may argue that additional forecast gains might be recovered by

imposing a HAR structure on the score-driven dynamic equation for the

correlations in the 2-step-W and 2-step-F models. As outlined in Section

(4.4), this is not the case, as we verified by performing similar experiments.

Most of the benefits provided by modeling long-memory come from the uni-
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variate HAR models, whereas a similar HAR structure on correlations does

not lead to significant out-of-sample improvements. This is confirmed by

the fact that the RWG-HAR and GAS-F-HAR, which have a HAR struc-

ture in both volatilities and correlations, have a performance which in some

cases is sub-optimal with respect to the RWG and the GAS-F. In this sense,

our proposed two-step approach provides a further advantage, as it easily

allows for different modeling strategies for volatilities and correlations.

Robustness to noise

As underlined in the introduction, one of the advantages of the proposed

approach is that it allows taking into account the unavoidable estimation

error that affects realized covariance estimates. The latter is indeed mod-

eled as noisy observations of a latent matrix process representing the true

integrated covariance of the intraday log-prices. In this sense, our method-

ology is in sharp contrast with the HAR-DRD, where realized covariances

are modeled as if they were the true covariances. We refer the reader to

Bollerslev et al. (2016), Bollerslev et al. (2018) and Buccheri and Corsi

(2019) for a more detailed discussion on the impact of estimation errors on

forecasting with realized measures.

In this section, we assess the effect of different levels of noise on covari-

ance forecasts by comparing our methodology, which accounts for noise, to

the HAR-DRD, which does not possess such ability. To increase the level of

noise, we sample the log-prices at the frequency of 5-minutes. The number

of sampled log-prices at this frequency is considerably smaller than that at

1-second (NYSE dataset) and 1-minute (Russell 3000 dataset). As a conse-

quence, the multivariate realized kernel estimator of Barndorff-Nielsen et al.
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(2011) used in our analysis will be subject to larger estimation errors.

Table (4.8) shows the out-of-sample average loss measures of the HAR-

DRD with respect to the 2-step-F model at different sampling frequencies.

Specifically, on the first line of each box, we show the result of Table (4.7)

corresponding to the original frequencies ∆ = 1-second (NYSE dataset)

and ∆ = 1-minute (Russell 3000 dataset). On the second line, we report

the results obtained by sampling the log-prices at ∆ = 5-minutes. With

5-minutes data, the maximum number of time-stamps per day is 78, and

thus for k = 100 the realized covariance estimator is ill-conditioned. We

thus report the results for k = 5, 10, 25, 50. We immediately note that the

forecast gains of the 2-step-F are larger and more significant for ∆ = 5-

minutes. Of course, such effect is more pronounced in the NYSE dataset,

since the new sampling at 5-minutes implies huge data reduction compared

to the original 1-second sampling frequency. We also see that the statistical

significance of the forecast gains improves considerably at 5-minutes, as

shown by the model confidence set test, which always excludes the HAR-

DRD from the 90% MCS.

The above results are a consequence of the score-driven filtering mech-

anism, which smooths out the noise and guarantees more robust estimates

compared to the HAR-DRD. The fact that we can successfully test for such

effect in the absence of observations of the true latent covariance is due to

the use of loss measures that are robust to estimation errors (see Patton

and Sheppard (2009) and Patton 2011). Finally, note that the use of lower

frequencies is common in financial applications, as it may be dictated by

liquidity or data source restrictions.
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Model MSE Qlike

NYSE k = 5 k = 10 k = 25 k = 50 k = 5 k = 10 k = 25 k = 50

∆ = 1-second
2-step-F 1.0000 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗

HAR-DRD 0.9840∗ 1.0007∗ 1.0051∗ 1.0091 1.0091∗ 1.0196 1.0271 1.0433
∆ = 5-minutes

2-step-F 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗

HAR-DRD 1.0833 1.0807 1.0915 1.0963 1.2760 1.2196 1.1189 1.0875

Russell k = 5 k = 10 k = 25 k = 50 k = 5 k = 10 k = 25 k = 50

∆ = 1-minute
2-step-F 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗

HAR-DRD 1.0084 1.0099 1.0083 1.0027∗ 1.0020∗ 1.0183 1.0263 1.0277
∆ = 5-minutes

2-step-F 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗

HAR-DRD 1.0247 1.0205 1.0131 1.0103 1.0192 1.0208 1.0256 1.0251

Table 4.8: Relative Out-of-sample average loss measures of HAR-DRD with
respect to the 2-step-F model at different sampling frequencies. Bold num-
bers denote the models having lowest loss measures. Asterisks denote the
models that are part of the 90% model confidence set (MCS).

Portfolio analysis

In this section, we use a framework similar to that of Fleming et al. (2001),

Fleming et al. (2003) and Bollerslev et al. (2018) to provide a quantitative

assessment of the economic gains of switching from joint estimation based

models (RWG, RWG-HAR, GAS-F, GAS-F-HAR) to the proposed two-step

estimation based models (2-step-W, 2-step-F). Let us consider an investor

who allocates her funds into k risky assets by pursuing a volatility timing

strategy in the period of time from day 1 to day T . On day t−1, 1 < t ≤ T ,

the investor solves the Global Minimum Variance (GMV) problem:

minω′tΣt|t−1ωt,

subject to ω′t1 = 1
(4.46)
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where ωt is a k × 1 vector of portfolio weights and Σt|t−1 is the covariance

matrix of asset returns at time t computed based on information available

up to time t − 1. We assume that the investor faces transaction costs

proportional to the portfolio turnover. The latter is defined as in DeMiguel

et al. (2014), namely:

TOt−1 =
k∑
i=1

∣∣∣∣∣ω(i)
t − ω

(i)
t−1

1 + r
(i)
t−1

1 + ω′t−1rt−1

∣∣∣∣∣ (4.47)

where ω
(i)
t , r

(i)
t denote the i-th component of the vector of weights ωt and the

returns vector rt, respectively. The portfolio return in excess of transaction

costs is computed as:

rp,t = ω′trt − cTOt (4.48)

where c is constant. We finally assume that the investor has a quadratic

utility function:

U(rp,t, γ) = (1 + rp,t)−
γ

2(1 + γ)
(1 + rp,t)

2 (4.49)

where γ > 0 is the coefficient of risk aversion.

The economic gain of switching from a covariance model “s” to another

covariance model “l” is defined as the quantity ∆γ such that:

T∑
t=1

U(r
(s)
p,t , γ) =

T∑
t=1

U(r
(l)
p,t −∆γ, γ) (4.50)

where r
(s)
p,t and r

(l)
p,t are the returns of the portfolios constructed with the

covariance forecasts of model s and l, respectively. In other words, ∆γ

represents the return an investor with risk aversion γ would be willing

to sacrifice in order to use the forecasts of model l in place of those of
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model s in solving the GMV problem6. Table (4.9) reports the values of

∆γ computed for γ = 1 and γ = 10. For sake of clarity, we report in the

table the results obtained with the group of k = 25 assets belonging to

the NYSE dataset. However, similar results are obtained when considering

other portfolio dimensions. The setting of the analysis is the same as in

the out-of-sample test of Section (4.4): the models are estimated in the

sub-sample comprising the first 1000 business days, and the out-of-sample

portfolios are computed for the remaining 1265 business days.

The values of ∆γ reported under the columns entitled RWG and RWG-

HAR represent the economic gains in annual basis points of switching from

the latter two models to the 2-step-W. Similarly, those reported under the

columns entitled GAS-F and GAS-F-HAR represent the economic gains of

switching from the latter two models to the 2-step-F. We also show in the

first column the economic gains of switching from 2-step-W to 2-step-F.

Significance levels on ∆γ are assessed through the Reality Check of White

(2000), using the stationary bootstrap of Politis and Romano (1994). In

addition, we report in the table the turnover, computed as in Eq. (4.47),

the ex-post portfolio volatility, the average portfolio return and the Sharpe

ratio. The constant c multiplying the turnover is set as c = 0%, 1%, 2%, as

in Fleming et al. (2003) and Bollerslev et al. (2018).

We first note that all the economic gains are positive, meaning that

the investor would be willing to pay a positive annual amount in order to

switch to the proposed two-step estimation based models. In particular,

6In principle, the investor might solve a general mean-variance problem instead of
the GMV problem considered here. As discussed by Jagannathan and Ma (2003) and
DeMiguel et al. (2009a), mean-variance problems rely on forecasts of expected returns,
which are notoriously subject to large estimation errors and tend to distort the optimal
portfolio solution. As we are interested in examining covariance forecasts, we focus on
the GMV problem, in a similar fashion to Bollerslev et al. (2018).
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2-step-W 2-step-F RWG RWG-HAR GAS-F GAS-F-HAR
Turnover 0.239 0.263 0.205 0.241 0.246 0.323

Average return (%) 9.847 10.427 9.371 9.273 9.644 8.473
Ex-post volatility (%) 7.887 7.875∗ 7.887 7.912 7.893 8.202

c = 0%
Sharpe ratio 1.138 1.209 1.084 1.069 1.116 0.941

∆1 59.3 47.6 57.4 78.6∗ 198.7∗

∆10 70.9 46.9 58.0 81.3∗ 228.1∗

c = 1%
Sharpe ratio 1.069 1.132 1.024 0.999 1.045 0.851

∆1 53.3 39.0 57.9 74.2∗ 213.8∗

∆10 65.0 38.4 58.4 76.8∗ 243.2∗

c = 2%
Sharpe ratio 0.999 1.055 0.964 0.929 0.973 0.760

∆1 47.2 30.5 58.3 69.8∗ 228.9∗

∆10 59.2 29.9 58.9 72.3∗ 258.3∗

Table 4.9: For each covariance model, we report the portfolio transaction
costs computed as in Eq. (4.47), the average portfolio return, the ex-post
portfolio volatility and the Sharpe ratio. All quantities are annualized.
We also report, for c = 0%, 1%, 2%, the economic gains ∆γ in annual ba-
sis points of switching from joint estimation based models with Wishart
(matrix-F ) density to the 2-step-W (2-step-F), for γ = 1, 10. Similarly, we
report the economic gains of switching from the 2-step-W to the 2-step-
F. The asterisks in portfolio volatilities indicate the models that belong
to the 90% MCS of lowest ex-post volatilities. Significance levels on eco-
nomic gains are instead computed based on the Reality Check of White
(2000). The asterisks indicate the economic gains that are significantly dif-
ferent from zero at the 5% confidence level. Bold quantities denote the best
performing model according to the measure specified in the first column.

the economic gains of switching from GAS-F and GAS-F-HAR to 2-step-F

are highly significant. These gains are mainly imputable to the variance

reduction featured by the 2-step-F model. On the one side, the flexibility

provided by the proposed approach leads to better out-of-sample forecasts,

which translate into lower ex-post portfolio volatility (see Engle and Colac-

ito 2006 and Patton and Sheppard 2009). On the other side, the two-step

procedure naturally leads to a loss of statistical efficiency, which in turn de-

termines more erratic portfolio weights and a larger turnover. Our results
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clearly indicate that the first effect, namely the superior forecasting ability,

significantly dominates the loss of statistical efficiency in the context of a

risk-averse investor maximizing a quadratic utility function. In the case of

models based on the Wishart density, the ex-post volatility of the 2-step-W

portfolio is statistically indistinguishable from that of the RWG portfo-

lio. Accordingly, we find that the corresponding economic gains are not

statistically significant. However, they are still positive due to the larger

average return featured by the 2-step-W portfolio. We finally note that

the economic gains of switching from the 2-step-W to the 2-step-F are also

positive, confirming the result that the matrix-F density provides a better

description of realized covariance time-series.

4.5 Conclusions

We have introduced a two-step estimation procedure for score-driven re-

alized covariance models based on Wishart and matrix-F densities. By

employing the score, which is a martingale difference by construction, the

proposed models automatically include a correction in the spirit of Aielli

(2013). In the case of the Wishart density, our class of models reduces to

the model proposed by Bauwens et al. (2012). In the case of the matrix-F

density, we obtain a new realized covariance model that can be estimated

in two steps and that accounts for the fat-tails of realized covariance time-

series. More specifically, the main advantage of the method is that it has a

higher degree of flexibility in the estimation of volatilities. In the first step,

the latter are indeed separately estimated by univariate realized volatility

models with different parameters. The model is therefore easy to estimate

in large dimensions and, compared to joint estimation, is less affected by
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the curse of dimensionality.

Through a Monte-Carlo study, we have examined the finite sample prop-

erties of the two-step estimator and shown that it recovers accurate esti-

mates of the parameters. We have also examined the ability of the model

to capture misspecified correlation dynamics. The comparison between the

two-step procedure and standard joint estimation has been studied exten-

sively through both Monte-Carlo simulations and empirical data. We have

found that the additional flexibility of the two-step procedure translates

into in-sample and out-of-sample forecast gains. The latters are found to

be more significant in portfolios characterized by different levels of hetero-

geneity in the persistence of the volatilities. In particular, we have found

statistically significant evidence of superior forecast ability in portfolios of

high-dimensions, where volatilities are more likely to exhibit different per-

sistences.

We have also examined the performance of the methodology under very

noisy estimates of the underlying matrix-variate process. It is obtained

that the score-driven filtering mechanism leads to increasingly better fore-

casts compared to methods not accounting for estimation errors. As a final

experiment, we have assessed the economic gains of switching from stan-

dard joint estimation to the proposed two-step approach. It is found that

a risk-averse investor would be willing to pay a positive amount to adopt

the forecasts of the two-step models in constructing her portfolio.



Chapter 5

Asset allocation and Portfolio

Instability in the Low for Long

environment

The contents of this chapter are the result of a joint work with Thomas

Kostka and Lieven Hermans at the European Central Bank. This paper is

currently under revision to the ECB Working Paper Series.

5.1 Introduction

Monetary policy has desired and undesired effects on financial assets’ risk

premia and financial intermediaries’ balance sheets and ultimately on finan-

cial stability. The risk-taking channel (RTC) of monetary policy established

this link, originally for the banking sector (Borio and Zhu, 2012), and later

extended to non-banks (Adrian and Song Shin, 2010): Low interest rates

prolonged for an extended period (Low for Long in financial jargon) invite

expanding the leverage on financial institutions balance sheets and increased

124
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investment in riskier financial assets, thereby lowering their risk premia and

reducing their volatility (Drechsler et al., 2018). But, as investors reach for

yield during spells of low rates, their portfolios are increasingly prone to

shocks as volatility spikes. As investors de-leverage and reduce their riskier

positions - that is, as they run for the exit - they exacerbate the asset price

deflation and inflict even higher volatility on their portfolios.

This chapter provides evidence that a simple Markowitz portfolio (Markowitz,

1952) is able to replicate this very mechanism. In doing so, it proposes a

simple indicator of portfolio instability - measuring the variability of opti-

mal portfolio shares in response to external shocks - which turns out to be

higher in low rate environments. We show empirically that low rates boost

excess returns but also reduce asset price volatility, thereby raising optimal

leverage ratios and risky asset shares in the portfolio. As a result, these

portfolios are noticeably more sensitive to changes in the model parameters

(expected mean return and variance). Moreover, we provide a real-world

example of our model prediction showing how portfolio shares were affected

by the Covid shock as opposed to a counterfactual scenario in which the

initial interest rate level was higher: Initial levels of portfolio leverage was

higher and thus the decline in risky asset portfolio shares more rapid as

relative to a higher rate environment. Hence, the low rate environment

has arguably amplified the financial market turmoil in spring 2020. Figure

5.1 documents this noticeable drop in riskier positions held by euro area

based investors. Finally, we extend our analysis to Risk-Parity portfolios

introduced in Maillard et al. (2010), an increasingly popular approach to

risk diversification in the portfolio selection. This approach is more robust

to estimation errors in multi-asset portfolios (Cesarone et al., 2020). The

results suggest that the interest rate level impact on portfolio instability
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Figure 5.1: Quarterly aggregate evolution of Fund shares and Long-term
debt in the Euro Area investors’ portfolios. Amounts are in billions of
euros. The data are taken from Security and Holdings Statistics Sector
(SHSS) database.

is not specific for the mean-variance portfolio, but it is important also for

investors who engage in volatility targeting. In the appendix, we show that

the results are robust across different regions.

5.2 Framework

We consider a universe of K assets and an investor who allocates his/her

portfolio solving, at any time t, the asset allocation problem ω∗t = f(θt). θt

is the conditioning information set available to the investor at time t and ω∗t

portfolio weights of K asset portfolio. From now on, where possible, we use

θ instead of θt for simplicity of notation. In the seminal paper of Markowitz

(1952), the mean variance investors is introduced under the assumption
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that returns are normally distributed,

ω∗ = arg min
ω∈RK

1

2
ω′Σω − γ

[
ω′µ̃+ (1− ω′1)rf

]
(5.1)

where 1 is the K-vector of all ones, rft is the risk-free rate, µ̃ is the K vector

of expected returns and Σ is the K × K matrix of expected covariance

matrix. γ is known as risk-aversion parameter. The higher γ, the higher

is the investor’s risk tolerance and the higher is the risk of the optimal

portfolio. The optimization problem (5.1) has a closed form solution given

by

ω∗t = γΣ−1µ (5.2)

where µ = µ̃ − rf is the vector of expected excess return. The portfolio in

equation (5.2) is known as tangency portfolio. The mutual fund theorem

of Merton (1972b) shows that the optimal portfolio is a linear combination

of the tangency portfolio (5.2) and the risk-free asset.

In the Markowitz portfolio, the vector of relevant information needed to

build the optimal portfolio is θ = (µ, vech(Σt), γ)′1.

Portfolio Instability

Subsequently, we study the instability of investors portfolios with respect

to changes in the input variables θ. We define the Portfolio Instability (PI)

as a measure to evaluate the amount needed to re-balance the portfolio in

the face of a shock. When expectations change, the investor needs to re-

balance his/her portfolio and may thereby also amplify market turbulence or

liquidity shortages. Let us consider θpre as the vector of relevant information

before the advent of a shock and θpost as the vector of relevant information

1The half-vectorization operator vech converts a matrix into a column vector. Specif-
ically, the half-vectorization of a symmetric K×K matrix A is the K(K+1)/2×1 column
vector obtained by vectorizing only the lower triangular part of A
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after the shock. Hence, by definition the external shock to the information

vector is given by v = θpost − θpre. Portfolio instability is then defined as

the directional derivative of the optimal portfolio ω∗(θpre) with respect to

the shock v;

PIv(θ
pre) = Dvω(θpre) = lim

h→0

ω(θpre + hv)− ω(θpre)

h
=∗ Dω(θpre) · v ∈ RK

(5.3)

where Dω(θ) is the Jacobian and ∗ holds when the solution ω(θ) is differen-

tiable. It’s worth noticing that Dvω(θpre) is a K dimensional vector where

the entry i represents the volume of the portfolio reallocation in the asset i.

The higher the absolute value of the element i, the higher is the instability

of the portfolio weight ω∗i to the shock v. The element of v bears a positive

(negative) sign for buy (sell) transactions. We define the Total portfolio

Instability (TPI) as the `2-norm of the vector PIv(θ)

TPIv(θ) = ||PIv(θ)||2 =

√√√√ K∑
i=1

(PIv(θ)(i))2. (5.4)

The higher the value of TPIv(θ), the higher the turnover induced by the

shock v and the higher is the possible instability that the shock v will cause

in the investor’s portfolio.

Example of portfolio instability with two risky assets.

The following example provides some economic intuition behind the frame-

work. Consider a market with two risky assets A and B where the expected

annual variance of asset A is 4%, the expected annual variance of asset B

is 1% and the expected correlation between the two assets is 0.2, which

leads to an expected covariance of 0.4%. Let us consider that the initial

expectation for the annual returns is initially 6.5% for asset A and 4% for
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asset B. An investor allocates his/her portfolio by solving the Markowitz

problem (5.1) with γ = 0.2. The investor finds that the optimal portfolio is

composed by investing 26% of the portfolio in asset A and the 74% in asset

B. After an external shock, the investor revises down the expected returns

to 4.5% for asset A and 3% for asset B. Overall, the initial value of θ was

θpre-shock =
[
µ, σ2

A, σ
2
B, σA,B, γ

]
= [6.5%, 4%, 4%, 0.4%, 1%, 0.2]

and after a shock in the expectations with

vshock = [−0.02,−0.01, 0, 0, 0, 0]

the investor finds itself in a new state of the world which is characterised

by

θpost-shock = θpre-shock + vshock = [4.5%, 3%, 4%, 0.4%, 1%, 0.2] .

In the new state of the world θpost-shock, the optimal asset allocation is

given by investing the 21% of the portfolio into asset A and the 79% in

asset B. That corresponds to a reduction of 5 percentage points in asset

A which are being reinvested in asset B. Figure 5.2 shows the optimal

allocation surface which represents the investment in asset A for different

values of expected returns. The red dot shows the optimal allocation in the

θpre-shock environment while the blue dot shows the new optimal allocation

in the state of the world θpost-shock. The blue line which connects the two

dots is the line generated by the directional derivative. The total portfolio

instability is the length of the segment between the two dots. The length

of the segment depends on the shape of the optimal allocation surface. In

this example, TPIvshock(θpre-shock) = 0.067.
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Figure 5.2: Directional derivative. In the z-axis we report the weights of
the riskier asset A according to the expected returns of the two assets.
The x-axis and y-axis show the expected returns of asset B and asset A
respectively.

5.3 The role of monetary policy in the

portfolio instability

In this section, we consider the Markowitz portfolio in equation (5.1) and we

study the sensitivity of portfolio weights and the Total Portfolio Instability

metric with respect to changes in the risk-free short rate. Thanks to the

mutual fund theorem, we may restrict our analysis to two assets; one risky

asset and one risk-free asset. We denote with σ2
t and rt the variance and

the expected returns of the risky asset and with rft the risk-free rate with

rt > rft . In this framework, the effect of the interest rate change can be

transmitted using three channels: i) the direct impact of the risk-free rate

on the volatility, ii) the direct impact of the risk-free rate on the excess

returns and iii) the indirect impact of the risk-free rate on the excess returns

through the volatility. We denote the key relations, with assumptions on
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the signs, as follow
∂σ2

t

∂rft
= λt > 0

∂(rt − rft )

∂rft
= ψt.

∂(rt − rft )

∂σ2
t

= µM > 0.

(5.5)

The first line of equation (5.5) denotes the relation between the expected

conditional variance of the risky asset and the risk-free rate. According to

Campbell (1987), Glosten et al. (1993) and Scruggs (1998) the variance is

positively related with the risk-free rate. The third line refers to the risk

premium. Even if hard to evaluate, the risk premium is strictly positive for

any risk-averse investor. The second line is the more interesting. Mechan-

ically, a lower risk-free rate augments the excess return of the risky asset

(ψt < 0). However, a lower risk-free rate may also lower the excess return

(ψt > 0) through its dampening effect on volatility, or the quantity of risk,

(λt > 0) which in turn lowers the risk premium (µM > 0 ). Given that both

the alternative are plausible, we do not make any assumption on the sign

of ψt.

The investor optimal portfolio (5.2) with only one risky asset reduces to

ω1
t =

γ(rt − rft )

σ2
t

ω2
t = 1− ω1

t ,

(5.6)

where ω1
t and ω2

t are the portfolio share of the risky asset and the risk-

free asset, respectively. The time index t will henceforth be omitted for

simplicity of notation.

The first quantity of interest is the Risk-taking channel, i.e. the sensi-

tivity of the risky asset’s portfolio weight ( ω1) with respect to the risk-free
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rate level. In principle, a lower interest rate level should increase the at-

tractiveness and hence the portfolio weight of the risky asset.

Proposition 1. The Risk-taking channel of Monetary Policy exists in the

Markowitz framework if and only if the relative weight of the risky asset is

above a certain threshold. In other words

dω1

drf
< 0 ⇐⇒ ω1 >

γψ

λ
. (5.7)

The proof is in Appendix C.1. A sufficient condition for (5.7) to hold is

λ > 0 and ψ < 0, that is that risky asset volatility declines and their excess

return rises as the risk-free is lowered, thus making the risky asset more

attractive from both a risk and return perspective. Central banks exploit

this mechanism in the context of the Risk-taking channel of monetary policy

Borio and Zhu (2012).

The second quantity we are interested in is the sensitivity of the port-

folio instability with respect to the risk-free rate level. For simplicity we

separate the analysis for exogenous changes in the different parameters of

θ =
[
r − rf , σ2, γ

]
.

Proposition 2. The sensitivities of the Total Portfolio Instability measures

(5.4) for the different type of exogenous shock with respect to the interest

rate are
dTPI[vret,0,0]

drf
= −
√

2
γλ|vret|
(σ2)2

. (5.8)

dTPI[0,vvar,0]

drf
=


√

2
dω1

drf
σ2−λ(ω1−γµM )

(σ2)2
|vvar|, if ω1 > γµM ,

√
2
− dω1

drf
σ2−λ(γµM−ω1)

(σ2)2
|vvar|, if ω1 < γµM ,

(5.9)

dTPI[0,0,vγ ]

drf
=
√

2
dω1

drf

γ
|vγ|. (5.10)
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The proof of the proposition can be found in Appendix C.1. The signs of

derivatives (5.8), (5.9) and (5.10) denotes the type of relation between the

Total Portfolio Fragility and the interest rate. If the sign of the derivatives

are positive, then a low level of interest rate generates, ceteris paribus, a

lower selling or buying pressure following a shock and the optimal portfolios

are more robust. If the signs are negative, then the optimal portfolio in a

low rate environment is, ceteris paribus, more fragile to exogenous shocks.

In the latter scenario, stability risks may arise as an unexpected event

generates bigger rebalancing pressures and may exacerbate the liquidity

and financial conditions.

The sign of the derivative (5.8) is negative under the first assumption

in (5.5) supported by Campbell (1987), Glosten et al. (1993) and Scruggs

(1998). The sign of the third derivative strictly depends on the sign of

the right-hand side of equation (5.7), i.e. if the Risk-taking channel exists

then the sensitivity Total Portfolio Instability sensitivity to the interest

rate is negative. The second equation is the more complicated however,

in the applications the first case (ω1 > γµM) holds as we show in 5.3. In

this scenario, again the sign of the Total Portfolio Fragility depends on

the risk-taking channel; if the risk-taking channel exists, then a shock in

the variance creates bigger market movements in the low rate environment.

These findings posit that when the central bank decreases the interest rate,

investors react by increasing the weight in the risky asset and decreasing

the portfolio weight in the risk-free asset. While this may be intended by

the central bank, the increasing weight in the risky asset creates instability

in the investor’s portfolio with respect to exogenous shocks in any of the

model parameters. It’s worth noticing that these results do not depend on

the model used to evaluate the excess returns and volatility but they are
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intrinsic in the mean-variance optimization. In the next section we test the

assumptions in (5.5) using parametric models inspired by Scruggs (1998).

Econometric model

We deploy the econometric model developed in Glosten et al. (1993) and

Scruggs (1998) to test the hypotheses put forth in the previous section. In

particular, we explore different model specifications in which we estimate

the parameters from equations (5.7), (5.8), (5.9) and (5.10).

Tests are based on weekly European market data spanning from January

1999 to October 2020. For the risk-free asset, we use the 1 week EONIA

rate and the market portfolio is proxied by the broad EuroStoxx 600. The

in-sample period spans from January 1999 to December 2019. The Covid-

19 crisis period serves as the out-of-sample period. In Appendix C.2 we

present a similar study for the US and a longer time span (January 1952

to December 2019), showing that our main findings are robust across time

and regions.

We start from the conditional one-factor model derived which takes the

theoretical ground from the ICAPM model (henceforth model 1.A). This

model assumes the existence of a risk-averse representative agent with the

wealth function J (W (t), X(t), t), where W (t) is wealth and X(t) is the

state variable. The expected excess return of the one risky asset is given by

Et−1[rt − rft ] =

[
−JWWW

JW

]
σ2
t +

[
−JWX

JW

]
σMX,t. (5.11)

where σMF,t is the expected covariance of the risky asset with the state

variable X, given the filtration at time t − 1. Since JW > 0 and JWW <

0, −JWWW
JW

is greater than zero while we assume, for simplicity, that the

marginal utility of wealth is state-independent (JMX = 0), thereby following
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Merton (1980), Campbell (1987) and Glosten et al. (1993). The expected

excess return is therefore given by

rt − rft = µ0 + µMσ
2
t + εt,

σ2
t = V art−1(εt)

σ2
t = ω + αε2t−1 + βσ2

t−1.

(5.12)

Model in equation (5.12) is the baseline model where the risk-free rate

does neither affect the market excess return nor the conditional variance.

Empirically, the sign of µM is not clear in the financial literature. On

the first hand, several results show significant positive risk-return relation

(e.g. Scruggs 1998; Bali and Peng 2006; Chiang et al. 2015). On the

other hand, negative risk-return relation is also found in the literature (e.g.

Campbell 1987; Brandt and Kang 2004; Ang et al. 2009). Other papers find

contradictory results. For instance, Glosten et al. (1993) finds a positive

sign of µM which becomes negative when the federal rate is included in the

GARCH equation. Glosten et al. (1993) introduce the empirical setting to

test the risk-return relationship with a GARCH-M model with the interest

rate as an exogenous variable (henceforth model 1.B).

rt − rft = µ0 + µMσ
2
t + εt,

σ2
t = V art−1(εt)

σ2
t = ω + αε2t−1 + βσ2

t−1 + λ̃rft .

(5.13)

In (5.13) the risk-free rate indirectly affects excess return via its effect on

the conditional variance (µM λ̃.) We find a positive relationship between

the risk-free rate and the conditional variance (λ̃ > 0) 2. According to the

2Glosten et al. (1993) finds an intuitive explanation behind this relationship: “The
use of nominal interest rates in conditional variance models has some intuitive appeal.
It has been well known since Fischer et al. (1981) that the variance of inflation increases
with its level. To the extent that short-term nominal interest rates embody expectations
about inflation, they could be a good predictor for future volatility in excess returns.”
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ICAPM of Merton (1973) there exists a positive relationship between the

conditional variance and the excess return reflecting investors’ risk aversion

(µM > 0). These two findings imply that model 1.B exhibits a positive

relationship between the risk-free rate and the excess return3.

Finally, we are aiming for more clarity about the role of the risk-free

rate by allowing it to directly affect excess returns in model 1.C.

rt − rft = µ0 + µMσ
2
t + µfr

f
t + εt,

σ2
t = V art−1(εt)

σ2
t = ω + αε2t−1 + βσ2

t−1 + λ̃rft .

(5.14)

To summarise, models 1.A, B and C relate to assumptions (5.5) as follow:

model 1.A
∂σ2

t

∂rft
= λ = 0

∂(r − rft )

∂rft
= ψ = 0

∂(rt − rft )

∂σ2
t

= µM

.model 1.B
∂σ2

t

∂rft
= λ = λ̃

∂(r − rft )

∂rft
= ψ = µM λ̃

∂(rt − rft )

∂σ2
t

= µM

.model 1.C
∂σ2

t

∂rft
= λ = λ̃

∂(r − rft )

∂rft
= ψ = µM λ̃+ µf

∂(rt − rft )

∂σ2
t

= µM

.

(5.15)

3In turn,Laine (2020) finds an opposite sign for Europe during the Covid-19 crisis
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where λ̃ is estimated in model 1.A, B and C, µM is estimated in model

1.B and C and µf is estimated in model 1.C. Table 5.1 reports the corre-

sponding econometric estimates of the parameters of models 1.A, 1.B and

1.C. We refer to slightly significant when the p-value of the two-tailed t-test

is between 0.05 and 0.1, to significant when the p-value of the two-tailed

t-test is smaller than 0.05. In model 1.A the relationship between the con-

ditional variance and the excess return is positive and slightly significant

(µM = 0.045, t-stat = 1.696). In model 1.B, the risk-free rate is found to

have a positive and slightly significant impact on the conditional variance

(λ̃ = 1.770 t-stat 1.668) as the impact of the conditional variance on the

excess return becomes non-significant. As we explained, this behaviour may

be due to the indirect impact of the interest rate in the excess return and

it was previously observed in Glosten et al. (1993) and Scruggs (1998). In

model 1.C where we separately consider the impact of the risk-free rate in

the conditional variance and the expected return, λ̃ remains positive and

marginally significant. The direct impact of the risk-free rate on the ex-

cess return is negative and non-significant (µf = −3.756 and t-stat −1.484)

but the relationship between the conditional variance and the risk-free rate

becomes significant (µM = 0.059 and t-stat 1.992).

Considering the lower part of the table, model 1.B and 1.C are in line

with our assumption on the negative sign of the quantities (5.7), (5.8), (5.9)

and (5.10). In model 1.C the sufficient condition for a negative relationship

between the risk-free rate on the risky asset portfolio weight (ψ < 0) is

satisfied since ψ is negative and λ̃ is positive. Model 1.B has a positive

ψ and the sufficient condition is not satisfied. Yet, when evaluating (5.7),

(5.8), (5.9) and (5.10) at each point in time, it is found that total portfolio

instability tends to rise with declining levels in the risk-free rate.
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In the last row of the table we show the AIC (Aikake Information Cri-

terion). Model 1.A is the worst to capture the dynamic of the data, model

1.B ranks second while model 1.C is the best performing.

The difference in terms of fit from model 1.B and model 1.C is very small.

If we consider the AIC, model 1.C is preferred over model 1.B, however, the

Likelihood Ratio Test does not reject the null of model 1.B with a p-value

of 0.06. For this reason, the results of both model 1.B and model 1.C are

examined. We evaluate the Total Portfolio Instability of investor (5.1) over

the horizon from January 1999-December 2019. We assume an investor

with a risk aversion parameter of γ = 1%, and set the exogenous shocks

to vret = −5% (i.e. a decrease in the excess return by 5 percentage points

per annum), vvar = 30% (i.e. an increase in the annualised volatility by

30 percentage points) and vγ = −0.2% (i.e. a decline in the risk aversion

parameter by 0.2 percentage points which, in our case, means that the

investors become more risk-averse) . Figure 5.3 shows the evolution of the

Total Portfolio Instability with respect to the two models. The results are

filtered with a year rolling window average. Using both models, we record

a steady increase in portfolio instability in recent years. At the face of the

results of the previous section, the secular decline in both the risk-free rates

and in market volatility have set the conditions for total portfolio instability

to rise to the highest level ever recorded.

Non-linear behaviour of the Total Portfolio Instability

In the previous two sections, we showed mathematically and empirically

that portfolio shifts in reactions to shocks are more pronounced in the pres-

ence of low (vs. high) rates. Indeed, owing to the non-linear properties of

the TPI function, this relationship is convex with disproportionately high



CHAPTER 5. ASSET ALLOCATION AND PORTFOLIO
INSTABILITY IN THE LOW FOR LONG ENVIRONMENT 139

Parameters model 1.A model 1.B model 1.C
µ0 0.049 0.056 0.086

(1.106) (1.281) (1.939)

µM 0.045 0.039 0.059
(1.696) (1.282) (1.992)

µf −3.756
(-1.484)

ω 0.072 0.048 0.051
(2.592) (1.960) (1.983)

α 0.193 0.182 0.183
(2.842) (2.936) (3.071)

β 0.779 0.773 0.768
(14.868) (14.040) (14.515)

λ̃ 1.770 1.886
(1.668) (1.714)

ψ 0.068 −3.645
(0.969) (-1.454)

dω1

drf
< 0 < 0

dTPI[vret,0,0]
drf

< 0 < 0

dTPI[0,vvar,0]
drf

< 0 < 0

dTPI[0,0,vγ ]
drf

< 0 < 0

AIC 3403.3 3397.3 3395.9

Table 5.1: Estimation of models 1.A, 1.B and 1.C in equations (5.13) and
(5.14) and model implied sensitivities to the interest rate. In the first sec-
tion we report the estimates and the Robust t ratios in parenthesis. The
estimates ψ is evaluated according to (5.5) and the Robust t-statistic is
evaluated with the delta method. In the second section we report the dif-
ferent quantities in equations (5.7), (5.8), (5.9) and (5.10). When the sign
is < 0 the partial derivative is negative in the whole sample, when the sign
is > 0 the partial derivative is positive and when the sign is ± the partial
derivative can be both positive and negative. In the last row we show the
AIC and the best performing model according to this measure is bolded.
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Figure 5.3: Total Portfolio Instability evaluated from model 1.B (5.13) and
model 1.C (5.14). The measures are filtered using a 1-year moving window
and assuming an impact of 30% in the variance and −5% in the expected
excess return.

levels of portfolio instability for rates around or even below zero. Figure

5.4 depicts this non-linearity for the estimated parameters in table 5.1 for

models 1.B and 1.C.

This property is particularly warning for policymakers as a decrease in

the interest rate has non-linear effects. Cutting the interest rate when the

levels are high may have a small effect on portfolio instability. However,

this effect becomes more and more relevant for low levels of interest rate.

In the next section, we provide a quantification of the implications of this

property.
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Figure 5.4: Total Portfolio Instability sensitivity evaluated from model 1.B
(5.13) and model 1.C (5.14) for different values of the risk-free rate. For
the calculations, we use the unconditional levels of σ2 and r − rf given by
models (5.13) and (5.14) for different levels of rf .

Covid-19 crisis and the Markowitz investor. A

counterfactual analysis

In this section, we deploy the estimated parameters from Section 5.3 to

characterise the role of the low rates in the recent Covid-19 crisis. Our

findings suggest that the pre-crisis low interest rate level have likely ampli-

fied the market turmoil in March 2020. We quantify by how much portfolio

weights would have moved in models in the presence of higher interest rates

in the framework presented by model 1.B (5.13) and model 1.C (5.14). We

assume an investor solving the Markowitz problem in (5.6) as news about

the risk-adjusted return of risky assets arrive (εt/
√
σ2
t ). We do not consider

the risk-free as a source of the shock but rather as a model parameter affect-

ing the portfolio choices in real-time. As a first step, we use the observed

EONIA rate to model a baseline scenario in which investors optimise their
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portfolios in response to changes in the expected return and variance profile

of the various asset classes induced by the Covid-19 pandemic.

Using model (5.13) and (5.14) we forecast the expected excess return

and variance and, as a residual we get the out of sample residuals εout
t . In

a second step, we create a counterfactual, augmented EONIA path. We

denote with rf,CF
t as the counterfactual risk-free rate and calculate the cor-

responding expected excess return and variance as

Et−1

[
(rt − rft )CF

]
= µ0 + µMσ

2,CF
t + µfr

f,CF
t

σ2,CF
t = ω + α

(
εOOS
t−1

)2
+ βσ2

t−1 + λ̃rf,CF
t ,

(5.16)

which brings to the portfolio weights ωCF using the explicit portfolio so-

lution (5.6). Note that µf = 0 for model 1.B. As counterfactual we use

a risk-free rate that is 1 percentage point higher than the actual EONIA

rate. In our comparative analysis, we scale the portfolio weights to 0 at the

beginning of January 2020 so that we can compare the relative portfolio

shifts in the course of 2020.

Figure 5.5 shows the evolution of weights under model 1.B, while figure

5.6 shows the evolution under model 1.C. Their dynamics are very similar.

The reduction in the equity share during March was in the order of 15% of

the portfolio size prevailing in January 2020, with a higher risk-free rate,

the reduction of the equity could have been reduced from −15% to −12.5%

if the risk-free rate had been 50 basis points higher risk-free rate and to

−10% in the presence of 100 basis point higher risk-free rate. As expected,

these counterfactual scenarios show that monetary policy could have played

a role to alleviate, but not deleting, the rebalancing pressure induced by

the Covid-19 shock.
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Figure 5.5: Change in the portfolio share since January 2020 given actual
risk-free rates (in blue) and counterfactual risk-free rates (orange: EONIA
+ 0.5%, yellow: EONIA + 1%) in model 1.B (5.13). The measures are
filtered using a 1-month moving window.

Figure 5.6: Observed sell-off (in blue) and counterfactual sell-off (in orange
with 0.5% and yellow with 1%) evaluated from model 1.C (5.14). The
measures are filtered using a 1-month moving window.
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5.4 Risk Parity Investor

In the previous section, we analyze the behaviour of a Markowitz investor

during the Covid-19 crisis and the increment of the Total Portfolio Insta-

bility in the last years of low rates. However, the Markowitz portfolio has

two drawbacks. First, optimal Markowitz multi-asset portfolios typically

allocate most of the value to only a few assets. Second, Markowitz weights

are very sensitive to estimation errors, where small changes in the expected

returns and variance estimation lead to very different optimal portfolios as

documented in Best and Grauer (1991) and Chopra and Ziemba (1993).

To avoid these drawbacks, a new strand of models which rely only on the

risk measure is considered. Cesarone et al. (2020) shows that portfolios

built using risk diversification strategies are the most robust to noise. In

particular, they find that Risk Parity Portfolios, introduced by Maillard

et al. (2010), are more stable with respect to estimation errors. Prior to

the Covid-19 crisis, an estimated USD 300 billion invested was invested in

funds following risk-parity strategies. The mere size of this market segment

may render the portfolio flows induced by external shocks macro-critical

and may thus be able to amplify the initial shock, e.g. by putting further

downward pressure on the prices of riskier assets and/or raising market

volatility. In this section, we replicate the Risk Parity portfolio to robustify

the results presented in Section 5.3.

The Risk Parity Portfolio (RP) aims to spread the risk among all assets

equally and each asset contributes to the total portfolio volatility, denoted

as σ(ωt), equally. More precisely, the volatility contribution of asset i should

be equal to the volatility contribution of asset j, ωit
∂σ(ωt)

∂ωit
= ωjt

∂σ(ωt)

∂ωjt
for any
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asset i and j and any time t. That is,

ωit
∂σ(ωt)

∂ωit
= ωit

(Σtωt)i
σ(ωt)

. (5.17)

At time t − 1, the RP investor with a covariance matrix expectation Σ̂t,

re-balances his/her portfolio weights ωt solving the optimization problem:

ωt = arg min
ω

K∑
i=i

[
σ(ω)

K
− ωi (Σtω)i

σ(ω)

]2

(5.18)

The portfolio obtained minimizing (5.18) is not well identified, indeed it

has infinite solutions. As per the Markowitz portfolio (5.1) we can identify

the optimal portfolio imposing that 1ω = 1. However, we impose the

volatility targeting constraint σ(ω) = ω∗. A key advantage of the volatility

targeting constraint is that we can explore another dimension of the investor

behaviour, where he/she increases leverage during low volatility periods and

decreases the leverage during high volatility periods. The final optimization

problem then reads

ωt = arg min
ω

K∑
i=i

[
σ(ω)

K
− ωi

(Σtω)i
σ(ω)

]2

subject to σ(ω) = σ∗

(5.19)

There is no closed-form solution for the risk parity portfolio, for this rea-

son, there is no a priori mathematical relationship between the behaviour of

the portfolio weights and the risk-free interest rate. In the following empir-

ical exercise, we estimate the portfolio weights and the Portfolio Instability

by means of numerical optimization and derivation.

Econometric model and Portfolio Instability

We consider a risk-parity investor with a target of 8% annual volatility

and a universe of 3 risky assets, namely the equity (EUROSTOXX 600),
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the long-term government bond (Markit iBoxx Sovereigns Eurozone Index)

and the Corporate bond (Bloomberg Barclays Euro Aggregate Corporate

Total Return Index).

Portfolio weights in a risk parity portfolio are set as to equalise the

contribution of each asset (class) to overall portfolio volatility. Hence, the

optimal weights depend on the level of the target volatility. We assume that

the risk-parity investor allocates 50% of his/her risk in the Equity asset

class and the 50% in the fixed income. Of the latter, 25% is allocated in the

Government bond and the 25% is allocated in the corporate bonds. The

investor forecasts the future covariance matrix using a Dynamic Conditional

Correlation model (Engle, 2002b)

ri,t − rft = µi + εi,t

εi,t = σi,tzt, E[zt] = 0, E[z2
t ] = 1

σ2
i,t = ωi + αiε

2
i,t−1 + βiσ

2
i,t−1

Vt = DtRtDt

Rt = ∆−1
t Qt∆

−1
t

Qt = Q̄(1− αDCC − βDCC) + αDCC(εtε
′
t) + βDCCQt−1.

(5.20)

where Q̄ is the unconditional mean of the pseudo-correlation matrix Q, Dt

is the diagnoal matrix of conditional volatilities, and ∆t = diag(Qt) is the

matrix with only the diagonal elements of the pseudo-correlation matrix.

From now on we refer to model (5.20) as Model 2.A.

In the spirit of Section 5.3, we allow the risk-free rate to affect the
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volatility dynamics. For this reason, we propose an alternative model

ri,t − rft = µi + εi,t

εi,t = σi,tzt, E[zt] = 0, E[z2
t ] = 1

σ2
i,t = ωi + αiε

2
i,t−1 + βiσ

2
i,t−1 + λir

f
t

Vt = DtRtDt

Rt = ∆−1
t Qt∆

−1
t

Qt = Q̄(1− αDCC − βDCC) + αDCC(εtε
′
t) + βDCCQt−1,

(5.21)

where λi captures the dependency between the risk-free rate and the volatil-

ity level. We denote this model as Model 2.B.

Table 5.2 shows the estimated parameters from model (5.20) and (5.21).

The AIC shows that model 2.B provides the best fit. In addition, the

likelihood ratio test rejects the null hypothesis of model 2.A with a p-

value of 10−9. The sensitivity of the volatility with respect to the risk-free

level is positive and marginally significant for the equity and the corporate

bonds, while it is negative and non-significant for the Government bond. In

economic terms, low interest rates tend to mute the volatility in so-called

risky asset classes (including equity and corporate bonds) but increase the

volatility levels of benchmark bonds consistent with the notion of convexity

in bond pricing. As in Section 5.3, we evaluate the behaviour of the total

portfolio instability with respect to the risk-free rate. We define a range of

possible risk-free rate levels ranging from −0.5% to 4.5%. In the GARCH-

DCC-type model (5.21) the unconditional expected values are defined as

σ̄2
i (r
∗
f ) =

ωi + λir
∗
f

1− αi − βi
V̄ = D̄R̄D̄,

(5.22)

where D̄ is the diagonal matrix with the σ̄i element on the i-th diagonal.
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Parameters
Model 2.A Model 2.B

Equity Gov. Bond Corp. Bond Equity Gov. Bond Corp. Bond
ω 0.066 0.005 0.001 0.043 0.005 0.000

(2.547) (2.819) (1.755) (1.868) (2.493) (1.357)
α 0.176 0.092 0.091 0.165 0.093 0.082

(3.060) (3.634) (3.700) (3.242) (3.681) (3.345)
β 0.797 0.844 0.897 0.791 0.843 0.895

(18.245) (22.715) (41.963) (17.074) (22.854) (37.262)
λ 1.765 −0.012 0.024

(1.707) (-0.421) (1.980)
αDCC 0.039 0.038

(10.049) (10.003)
βDCC 0.959 0.961

(240.477) (252.157)
AIC 1668.9 1630.1

Table 5.2: Estimation of models 2.A and 2.B in equations (5.20) and (5.21).
Any column represents a different asset class. In parenthesis we report the
t-statistics In the last row we show the AIC and the best performing model
according to this measure is bolded.

Using equation (5.22), we can study (T)PI of the risk-parity portfolio for

varying levels of the risk-free rate. We study the portfolio shifts induced by

a 20 percentage point volatility increase in all the asset classes and a parallel

increase in all correlation coefficients by 10 percentage points. Figure 5.7

reports the results. The behaviour of the Total Portfolio Instability is qual-

itatively identical to the Total Portfolio Instability in figure 5.3. Portfolio

Instability increases dis-proportionately as interest rates decline. Concern-

ing the Portfolio Instability, the most susceptible asset class are corporate

bonds whereas the share in government bonds is almost indifferent with

respect to the interest rate level (as suggested by the estimated parameter

λ in table 5.2). In addition, we see that the investor is susceptible to higher

flight-to-safety behaviour for the low level of the risk-free rate. The results

confirm the behaviour of the Total Portfolio Instability of the Markowitz

investor, suggesting that our findings do not depend on the investors’ utility

optimization functions.
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Figure 5.7: Total portfolio instability of the risk parity portfolio given dif-
ferent levels of the interest rate. In blue we report the TPI for the volatility
shock scenario, in orange we report the TPI for the correlation shock sce-
nario

Covid-19 crisis and the Risk parity investor. A

counterfactual analysis

In this section, we perform the same analysis as in Section 5.3. The coun-

terfactual analysis is based on the counterfactual rates rf,counter
t of 0.5 and

1% higher than the one observed in the EONIA rate. Figure 5.8 shows the

results for a risk-parity investor during the Covid-19 crisis, with a volatil-

ity target of 8% annualized. Again, to make the result more realistic, we

filter the weekly weights with a 4-period rolling window. The qualitative

result confirms what we observe in figure 5.5 and 5.6, while the quantita-

tive results differ a lot. The risk-parity investor with an 8% volatility target

strongly uses the leverage in a period of low volatility, like the one before

the Covid-19 pandemic. This high level of leverage translates into high

portfolio rebalancing volumes during crises. In the baseline scenario, the
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Figure 5.8: Observed sell-off (in blue) and counterfactual sell-off (in orange
with 0.5% and yellow with 1%) evaluated from model 2.B (5.21). The
measures are filtered using a 1-month moving window.

investor sells almost the 200% of the portfolio value of risky assets. This

number would decrease to 170% and 150% in the Counterfactual scenario

with a higher EONIA rate. For more information see Vassallo et al. (2020).

Given that the risky portfolio is composed of 3 asset classes, we can assess

the selling pressure on every component. Figure 5.9 shows the sell-off de-

composed into the different components. In all three asset classes, a higher

risk-free rate produces a smaller sell-off. The higher relative impact is on

the Equity and the Corporate bond, which are the asset classes with a pos-

itive relation between variance and the risk-free rate. On the opposite, the

government bond asset class shows to be more robust to differences in the

risk-free level, as expected by the estimated parameter λ in table 5.2.
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Figure 5.9: Observed sell-off (in blue) and counterfactual sell-off (in orange
with 0.5% and yellow with 1%) evaluated from model 1.C (5.14). The
measures are filtered using a 1-month moving window.

5.5 Conclusions

This chapter investigates the role of the low interest rate environment on

portfolio reallocation following external shocks. A low level of interest rate

increases exposures to risky assets. This effect is defined as Risk-taking

channel of monetary policy and is crucial for the monetary policy transmis-

sion mechanism. The risk-taking behaviour of investors creates a poten-

tial financial stability vulnerability that we measure as Portfolio Instability

which reflects the amount needed to rebalance the portfolio when a shock

arrives. We show that in recent years the Total Portfolio Instability mea-

sure reached the maximum levels in recent history which can lead to severe

financial stability issues following significant portfolio reallocations. Using

both a mean-variance investor and a Risk Parity investor, we show that

the portfolio rebalancing in the prevailing low rate environment during the

Covid-19 crisis was significantly higher than would have occurred in a higher
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rate environment.



Chapter 6

Conclusive remarks

The objective of this thesis is manifold.

In Chapter 3, we developed a filtering and modeling technique, named

MLSS, to better extract information from multivariate sentiment time se-

ries. The filtered sentiment is decomposed into two components. The long-

term sentiment captures the common trends and the long-term dynamics

of the sentiment series, the short-term sentiment captures the fast trends of

the investors’ mood. Empirically, the extracted sentiment from the MLSS

better explains contemporaneous and lagged returns with respect to other

filtering techniques.

In Chapter 4, we proposed two score-driven realized covariance models.

The first model is based on the Wishart distribution and the second one is

based on the matrix-F distribution. The estimation procedure relies on two

steps. In the first step, we estimate the volatility components, in the second

step, we estimate the correlation dynamics. This two-step approach is more

flexible to capture the different dynamics of the univariate and multivariate

components. Using an out of sample exercise, we showed that the matrix-F

distribution is more robust to outliers and brings to statistically significant
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better forecasts. Finally, we showed that the 2-step methodology brings

significant economic gains, where risk-averse investors are willing to switch

from standard joint estimations to the proposed two-step approach in the

portfolio construction.

In Chapter 5, we have studied the sensitivity of portfolio weights ac-

cording to the risk-free rate level. We showed that low level of the risk-free

rate brings to riskier portfolios. In addition, we introduced a measure of

Portfolio Instability, where we showed that low level of the risk-free rate is

associated with higher portfolio turnover following an exogenous shock. The

recent Covid-19 crisis is used as a quasi-experiment to assess the economic

impact of a low risk-free rate level on the market sell-off.
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Appendix A

Appendix of Chapter 3

A.1 List of stocks

Table A.1 reports names and sectors of the 27 stocks considered in the

empirical analysis.
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Tickers Name Sector ticker Sector name

VZ Verizon COM Communication Services
CVX Chevron ENE Energy
AXP American Express Company FIN Financial
GS Goldman Sachs FIN Financial

JPM JPMorgan Chase FIN Financial
JNJ Johnson & Johnson HLC Health Care

MRK Merck HLC Health Care
PFE Pfizer HLC Health Care
UNH UnitedHealth HLC Health Care
BA Boeing IND Industrials

CAT Caterpillar IND Industrials
GE General Electric IND Industrials

MMM 3M Co IND Industrials
UTX United Technologies IND Industrials
XOM XOMA Corp MAT Basic Materials
KO Coca-Cola NCY Consumer Goods
PG Procter & Gamble NCY Consumer Goods

AAPL Apple TEC Technology
CSCO Cisco TEC Technology
IBM IBM TEC Technology

INTC Intel TEC Technology
MSFT Microsoft TEC Technology

DIS Disney YCY Consumer Cyclical
HD Home Depot YCY Consumer Cyclical

MCD McDonalds YCY Consumer Cyclical
NKE Nike YCY Consumer Cyclical
WMT Wal-Mart YCY Consumer Cyclical

Table A.1: List of investigated stocks, their ticker, and the economic sector
according to the classification of Yahoo Finance.
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A.2 Signal-to-noise ratio and comparison

with MLNSL

We compare how well the MLSS model fits the data with respect to the

MLNSL model using the likelihood ratio test. Since the MLNSL model is

nested into the MLSS model, we use the χ2 distribution to test the null

hypothesis (the MLSS model does not fit the data better than the MLNSL)

against the alternative hypothesis (the MLSS model fits the data better

than the MLNSL). The null hypothesis is rejected with a p-value smaller

than 0.01 for both news and social sentiment.

In the last columns of Table 3.1 in the paper we report the signal-to-noise

ratio for each asset obtained using the MLSS model and the signal-to-noise

ratio obtained using the MLNSL model. The signal-to-noise ratio for the

MLSS model, using the same notation of equation (3.6), is evaluated as

stn(i)MLSS =
Var (Λ(i, ·)vt) + Var (uit)

Var (εit)
=

∑q
j=1(Λ(i, j))2 +Qshort(i, i)

R(i, i)
(A.1)

while the signal to noise ratio for the MLNSL model, using the notation of

equation (3.2), is evaluated as

stn(i)MLNSL =
Var (vit)

Var (εit)
=
Q(i, i)

R(i, i)
(A.2)

When the MLSS model is estimated, the signal to noise ratio is on aver-

age around 0.8 for the news sentiment, while when the MLNSL model is

estimated, the signal to noise ratio decreases to an average of 0.03.

Thus our proposed MLSS model has a signal-to-noise ratio approxi-

mately twenty times larger than the MLNSL. Our result also points out

that the noise in social media is generally higher than the noise in newspa-

pers.
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A.3 Quantile regression: Contemporaneous

effects

In this appendix we perform the same tests of Section 3.5 in the paper

with contemporaneous return and sentiment. In particular, we compute

the quantile regression (3.15) with h = 0, Table A.2 shows the values of

τ quantiles
R1(τ) measure

MLSS LSS MLNSL LNSL Obs

0.01 16.2%∗∗∗ 6.1%∗∗ 1.4% 1.6% 0.6%
0.05 9.2%∗∗∗ 4.0%∗∗∗ 2.8%∗∗∗ 2.7%∗∗∗ 1.7%∗∗∗

0.10 7.1%∗∗∗ 4.3%∗∗∗ 3.5%∗∗∗ 3.2%∗∗∗ 2.5%∗∗∗

0.33 2.2%∗∗∗ 1.8%∗∗∗ 1.9%∗∗∗ 1.7%∗∗∗ 1.0%∗∗∗

0.50 1.1%∗∗∗ 1.1%∗∗∗ 1.2%∗∗∗ 1.0%∗∗∗ 0.7%∗∗∗

0.66 0.5%∗∗∗ 0.9%∗∗∗ 1.3%∗∗∗ 0.8%∗∗∗ 0.7%∗∗∗

0.90 1.2%∗∗∗ 1.7%∗∗∗ 1.5%∗∗∗ 0.8%∗∗∗ 0.8%∗∗∗

0.95 2.9%∗∗∗ 2.3%∗∗∗ 1.9%∗∗∗ 1.0%∗∗∗ 1.0%∗∗∗

0.99 10.2%∗∗∗ 4.6%∗∗ 0.9% 0.6% 1.5%

Table A.2: The R1 measure across the value τ . We denote with ∗∗∗ the signifi-
cance at 1%, ∗∗ the significance at 5% and ∗ the significance at 10%

the R1(τ) measure for different values of τ . It is worth to notice that the

quantile regressions are highly significant for every model, except for the

0.01 and 0.99 quantiles, where they are only significant for the MLSS and

LSS models. There are three important findings. The first one is that, as

in the lagged relation, for any model, the values of R1 are higher in the tails

and lower close to the median. The results are not symmetric around the

median. The lower quantiles, which correspond to negative returns, have

higher R1 than the corresponding R1 in the higher quantiles. This sug-

gests that the sentiment series are powerful explanatory variables in bad

times. This conclusion is in accordance with the results in (Garcia, 2013),

which shows that investors’ sensitivity to news is most pronounced going

through hard times. The second result is that the models which exploit the
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τ quantiles
p-values

LSTt LLTt
0.01 0.005% 76.313%
0.05 0.000% 2.052%
0.10 0.000% 3.381%
0.33 0.000% 3.257%
0.50 0.000% 7.668%
0.66 1.487% 20.078%
0.90 0.189% 0.309%
0.95 0.007% 0.922%
0.99 0.006% 22.903%

Table A.3: p-values for the Wald test.

multivariate structure (MLSS and MLNSL) produce higher R1 measures

than the corresponding models which apply the cross-sectional averaging

procedure on the sentiment series (LSS and LNSL models, respectively).

This result confirms that the cross-sectional dependence structure is help-

ful in extracting a sensible signal. The last result is that the MLSS and

LSS models, excluding few values around the median, have higher R1(τ)

values than other models. This suggests that disentangling the long-term

and short-term sentiment components is the most important step to cap-

ture the contemporaneous relation with market returns. In particular, the

MLSS model, which exploits both the separation in two components and the

multivariate structure, strongly outperforms the benchmark model, which

solely uses the observed noisy sentiment.

If we look at the contribution of the short and long-term sentiment sep-

arately, we again observe similar results with the one observed in Section

3.5 of the paper. Table A.3 reports the p-values of the Wald statistics ex-

tracted using a block bootstrap procedure and shows that the short-term

sentiment is highly significant at any level of τ , while the long-term sen-

timent has lower p-values. In particular, the short-term sentiment, which
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captures rapidly changing trends, is significant for extreme returns (τ = 0.01

or τ = 0.99) while the long-term sentiment is not. This result suggests that

extreme market swings can be explained by unexpected and short-lasting

news. Moreover, it further supports the importance of disentangling senti-

ment components which are sensitive to different time scales.

These findings show very strong contemporaneous relation between sen-

timent and market returns. We look at these results as a sanity check of our

approach. Indeed, since we are not claiming that sentiment causes returns

or viceversa, then it is reasonable to expect a significant contemporaneous

relation at daily time scale. The sentiment explains returns and this could

be due to the fact that the news, from which sentiment is computed, report

and comment about the market performance. What is more promising is

that the R1 measure increases with the complexity of the model, and this is

especially true for extreme market events – where the observed sentiment

is not significant. Then, we conclude that an essential ingredient of the

analysis is the combination of a multivariate model with the separation of

sentiment in two components, the stochastic long-run trend (long-term sen-

timent) common to all assets and a fast changing and asset-specific trend

(short-term sentiment).

A.4 Market absortion of news

The 1-lag and the h-lag sentiment series contain useful information to ex-

plain future returns. The market does not immediately digest all the news

in the newspapers and social media but it takes few days to do it. It is

worth to investigate whether, at the same time, the opposite relation may

hold. In particular, do media and social networks immediately digest re-
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turns that occurred in the previous days? Is this reaction dependent on the

sign of returns? In order to answer these questions, we define the non-causal

quantile regression

V̂ h,MLSS (τ) = min
(α0,α1β1∈R6)

T∑
t=1

ρτ
(
rmt − α0 − β1SMLSS

t−h
)
, (A.3)

where h can assume positive and negative values. From the R1(τ) of this

model, we can unravel the interplay among professional and social media

news, and returns in the financial market. For h > 0, we measure the

impact of the news on future returns, while for h < 0, we assess how fast

past returns are digested in newspapers and social media. When h = 0,

we evaluate to the immediate impact of the news on daily returns. The

two cases h = 0 and h = 1 have been studied in the previous sections. In

figure A.1, we show the evolution of R1(τ) compared to the evolution of

R1(1 − τ). In this manner, we observe how the market predicts or digests

returns of comparable absolute value but opposite sign. We shrink to zero

all values of R1(τ) which are not significant with a p-value smaller than

0.05. For h > 0, the R1 measures are statistically significantly and slightly

increase as they approach h = 1. At this stage, the behavior of R1(τ) is

not different for values of τ < 1/2 and τ > 1/2. However, for h ≤ 0,

when a return appears, the response to a positive or a negative value is

very different. For h = 0, R1(τ) increases when the return is negative,

confirming that, as reported in Table A.2, the current news have an higher

explanatory power on the negative rather then positive returns. However,

as mentioned previously, it is not possible to assess the causal relation

among news and returns. Then, the R1(τ) measure reaches its maximum

when h = −1, suggesting that newspapers and social media keep talking

about the previous day market performance. This is especially true when



APPENDIX A. APPENDIX OF CHAPTER 3 180

the previous day return is negative. The impact of negative returns on

sentiment slowly decreases but remains significant. On the contrary, when

the return is positive, the effect is milder. This general picture is stronger

for extreme quantile levels, e.g. τ = 0.01 and 0.05, and becomes negligible

when we move to the median region of returns.

Summarizing, positive returns are rapidly digested from newspaper and

social media, while the echo of negative market performances persist for

few days. As a final test of reliability of our approach, we perform the
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Figure A.1: R1 measure of model (A.3) for different h and τ . Top left
panel: R1(0.99) in orange and R1(0.01) in blue. Top right panel: R1(0.95)
in orange and R1(0.05) in blue. Bottom left panel: R1(0.9) in orange and
R1(0.1) in blue. Bottom right panel: R1(0.66) in orange and R1(0.33) in
blue. The x-axis labeling in terms of d = −h allows to have past sentiment
on the left and future sentiment on the right.

same analysis using the noisy sentiment SObs instead of the filtered signal

SMLSS. Figure A.2 reports the results. No clear patterns arise and the h-lag

observed sentiment has no statistical significance in explaining contempo-

raneous and future returns. Again, the proper filtering of sentiment time

series appears essential to extract some meaningful information from the
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mood of the market.
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Figure A.2: Same analyses as in Figure A.1 but the filtered sentiment signal
SMLSS is replaced by the noisy sentiment SObs.
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A.5 Portfolio allocation on February

2007-June 2017 without trading costs

Table A.4 reports the performances of the five sentiment strategies together

with the buy-and-hold portfolio without trading costs. We notice that the

qualitative results do not change. Given that the MLSS portfolio produces

the higher number of trades, the performance gap with respect to the other

strategies increase in size in terms of returns, Sharpe and Sortino ratios.

Figure A.3 shows the evolution of the sentiment-based portfolios without

trading costs. The MLSS portfolio, contrary to all the other portfolios,

performs very well during the financial crisis and strongly outperforms the

other sentiment-based portfolios and the 1/n portfolio. However, the gain

reduces during the 2009 − 2017 bull market period. Nonetheless, even if

the absolute return reduces, the volatility is consistently lower during the

whole period and the Sharpe and Sortino ratios are respectively 40% and

49% higher in the MLSS portfolio rather than the buy-and-hold portfolio.

Measures BH MLSS LSS MLNSL LNSL Obs

A. return (%) 8.972 9.393 7.650 9.091 8.308 7.33
A. volatility (%) 19.122 14.080 17.996 17.797 19.113 19.765

A. neg. volatility (%) 15.514 10.932 14.294 14.368 15.125 15.928
A. Sharpe ratio 0.469 0.667 0.425 0.511 0.435 0.371
A. Sortino ratio 0.578 0.859 0.535 0.633 0.549 0.46

MDD ($) 59377 54938 50182 49397 61921 61982

Table A.4: Performances of the six strategies without trading cost for the period
February 2007 - June 2017. In bold, the best performance per row. BH is the
buy-and-hold portfolio, while MLSS, LSS, MLNSL, LSNSL, and Obs correspond
to portfolios built from the corresponding model for the sentiment time series.
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Figure A.3: Portfolio evolution of the sentiment based strategies built using
equation (3.19) together with the buy-and-hold equally weighted portfolio in
blue.

A.6 Robustness check: Portfolio allocation

on July 2017 - December 2019

In this appendix, we use the parameter values estimated from the TRMI

sentiment time series over the February 2007 - June 2017 to filter the sen-

timent signal in the July 2017 - December 2019 period. This procedure

ensures that the filtered signals do not suffer from any forward-looking

bias.

Table A.5 shows that the qualitative results do not change from the Sec-

tion 3.6. The MLSS model outperforms the buy-and-hold portfolio with a

relative gain of 14% in both Sharpe and Sortino ratio. Two main differences

are visible from the February 2007 - June 2017 period. The LSS model

slightly outperforms the buy-and-hold portfolio and it is the second best

performing model, while in the previous case the second best performing

model was the MLNSL. The Obs portfolio produces the same performance
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Measures BH MLSS LSS MLNSL LNSL Obs

A. return (%) 13.56 15.28 14.316 12.584 9.72 13.56
A. volatility (%) 14.477 14.311 14.257 14.672 15.053 14.477

A. neg. volatility (%) 10.673 10.552 10.489 10.841 11.521 10.673
A. Sharpe ratio 0.937 1.068 1.004 0.858 0.646 0.937
A. Sortino ratio 1.27 1.448 1.365 1.161 0.844 1.27

MDD ($) 23489 18871 19631 26639 31207 23489

Table A.5: Performances of the six strategies without trading cost for the
period July 2017 - December 2019. In bold, the best performance per row.
BH is the buy-and-hold portfolio, while MLSS, LSS, MLNSL, LSNSL, and
Obs correspond to portfolios built from the corresponding model for the
sentiment time series.

Measures BH MLSS LSS MLNSL LNSL Obs

A. return (%) 13.566 14.571 13.907 12.518 9.492 13.566
A. volatility (%) 14.483 14.394 14.328 14.7 15.122 14.483

A. neg. volatility (%) 10.678 10.641 10.564 10.865 11.589 10.678
A. Sharpe ratio 0.937 1.012 0.971 0.852 0.628 0.937
A. Sortino ratio 1.27 1.369 1.317 1.152 0.819 1.27

MDD ($) 23489 19319 20330 26868 31898 23489
Number of trades 1 41 25 5 13 1

Transaction costs ($) 50 2460 1421 279 741 50

Table A.6: Performances of the six strategies with trading cost for the
period July 2017 - December 2019. In bold, the best performance per row.
BH is the buy-and-hold portfolio, while MLSS, LSS, MLNSL, LSNSL, and
Obs correspond to portfolios built from the corresponding model for the
sentiment time series.

of the buy-and-hold portfolio and the reason is that the selling signal from

sObs is always negative. Then, the number of transaction is equal to 1. In

table A.6, we see that the transaction costs do not change the qualitative

results and again, the MLSS strategy is the one which produces the higher

number of trades and, as a consequence, the higher transaction costs. As

done in the main text, the performance of the MLSS strategy from table

A.6 can be further improved by applying the penalization of the selling

signal based on the Mc Fadden’s R2.
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Appendix of Chapter 4

B.1 Statistical significance of the sentiment

portfolios

Here, we assess the significance of the trades produced by the strategy

(3.18) for the different sentiment filters. We design a Monte Carlo exper-

iment where a trader follow a random selling signal. The selling signal is

given by sshuffled, mod
t , which is nothing more than a shuffled realization of

smod
t . The number of random selling signals corresponds by construction to

the number of selling signals produced by smod, which is reported in table

3.6 of the paper. We repeat the experiment 10, 000 times. The correspond-

ing portfolios are then sorted according to their Sharpe and Sortino ratios

and the p-value of each strategy is computed by comparison with the quan-

tiles from the Monte Carlo experiment. Table B.1 shows the results over

the period February 2007 - June 2017. The MLSS strategy significantly

outperforms the random strategy with a p-value smaller than 5%. All the

other strategies are not statistically different from a random strategy.

185
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Strategies Annual Sharpe ratio Annual Sortino ratio
MLSS 0.519(96.9%) 0.725(96.4%)

best 5% 0.485 0.69
best 10% 0.431 0.611
best 25% 0.349 0.491
median 0.26 0.364

LSS 0.385(36.7%) 0.542(37.4%)
best 5% 0.529 0.749
best 10% 0.502 0.709
best 25% 0.457 0.644
median 0.409 0.574
MLNSL 0.495(86.2%) 0.7(86.9%)
best 5% 0.523 0.739
best 10% 0.504 0.711
best 25% 0.474 0.667
median 0.443 0.622
LNSL 0.419(27.0%) 0.59(27.6%)

best 5% 0.524 0.741
best 10% 0.505 0.713
best 25% 0.475 0.669
median 0.446 0.627

Table B.1: Performances of the sentiment strategies compared with the
95%, 90%, 75% and 50% quantiles from the shuffled strategy. Values in
brackets are the percentages of randomly generated portfolios which per-
form worse than the sentiment-based strategy for the period February 2007
- June 2017.

The p-values of the MLSS trading strategy are even lower when the

R2-penalized trading strategy (3.20) is implemented. Table B.2 shows the

p-values. When the number (100%) is reported, all the 10, 000 random

strategies perform worse than the MLSS α strategy. The number of selling

signals for the MLSS with α = 0.80 is too small and the result may be not

reliable.
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Strategies Annual Sharpe ratio Annual Sortino ratio
MLSS(00) 0.519(96.9%) 0.725(96.4%)
best 5% 0.485 0.69
best 10% 0.431 0.611
best 25% 0.349 0.491
median 0.26 0.364

MLSS(20) 0.525(96.5%) 0.735(96.1%)
best 5% 0.502 0.712
best 10% 0.457 0.648
best 25% 0.383 0.539
median 0.306 0.428

MLSS(35) 0.68(99.9%) 0.967(99.8%)
best 5% 0.512 0.727
best 10% 0.473 0.67
best 25% 0.409 0.576
median 0.339 0.475

MLSS(50) 0.723(100.0%) 1.03(100.0%)
best 5% 0.531 0.752
best 10% 0.495 0.7
best 25% 0.436 0.615
median 0.373 0.523

MLSS(65) 0.757(100.0%) 1.09(100.0%)
best 5% 0.534 0.757
best 10% 0.504 0.711
best 25% 0.459 0.647
median 0.415 0.583

MLSS(80) 0.534(97.3%) 0.752(97.2%)
best 5% 0.519 0.733
best 10% 0.501 0.707
best 25% 0.477 0.671
median 0.45 0.634

Table B.2: Performances of the R2 adjusted MLSS strategies for different
values of α compared with the 95%, 90%, 75% and 50% quantiles from the
random strategy for the period February 2007 - June 2017. The sentiment
strategies are referred to as MLSS(α × 100). Values in brackets are the
percentages of randomly generated portfolios which perform worse than
the sentiment-based strategy.
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B.2 Computation of the scaled score in the

univariate models

χ2 density

We compute the scaled score appearing in the dynamic of the log-variance

λ
(i)
t in Eq. (4.13) in the case of the χ2 density. To simplify the notation,

we suppress the subscript i. The conditional log-likelihood is:

log pW1 (xt; vt, ν) =
1

2
c (ν) +

(ν
2
− 1
)

log (xt)−
ν

2
log (vt)−

ν

2

(
xt
vt

)
(B.1)

where c (ν) = ν log (ν/2)− 2 log Γ (ν/2). We now prove the following result

(recall that vt = eλt):

Proposition 7. For the density in Eq. (B.1), the score∇W1
t =

∂ log pW1
(xt;λt,ν)

∂λt

is given by:

∇W1
t =

ν

2eλt

[
xt − eλt

]
(B.2)

Proof.

∇W1
t =

∂ log pW1(xt;λt, ν)

∂λt
=
∂ log pW1(xt;λt, ν)

∂vt
× ∂vt
∂λt

=
ν

2v2
t

[xt − vt]× vt

=
ν

2eλt

[
xt − eλt

]

Then, we compute the information quantity:

Proposition 8. For the density in Eq. (B.1), the Fisher information

IW1

t|t−1 = Et|t−1[∇2
t ] is given by:

IW1

t|t−1 =
ν

2
(B.3)
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Proof.

IW1

t|t−1 = Et−1

[
(∇W1

t )2
]

= Et−1

[
ν2

4e2λt
(xt − eλt)2

]
=

ν2

4e2λt
V ar [xt] =∗

ν2

4e2λt

2e2λt

ν
=
ν

2

where (∗) follows from V ar [x] = V ar [(vt/ν)kν ] = 2 (vt)2

ν
if kν is distributed

as a χ2
ν .

Finally, it is immediate to compute the scaled score:

Proposition 9. For the density in Eq. (B.1), the scaled score sW1
t =

(IW1

t|t−1)−1∇W1
t is given by:

sW1
t =

1

eλt

[
xt − eλt

]
(B.4)

F density

In the case of the univariate F density, the conditional log-likelihood is:

log pF (xt; vt, ν1, ν2) = d(ν1, ν2)−ν1

2
log(vt)+

(ν1

2
− 1
)

log(xt)−
ν1 + ν2

2
log (w̃t)

(B.5)

where:

w̃t = 1 +
ν1xt

(ν2 − 2)vt
(B.6)

d(ν1, ν2) =
ν1

2
log

(
ν1

ν2 − 2

)
+ log Γ

(
ν1 + ν2

2

)
− log Γ

(ν1

2

)
− log Γ

(ν2

2

)
(B.7)

We compute now the score of the conditional log-likelihood.

Proposition 10. For the density in Eq. (B.5), the score∇F
t = ∂ log pF (xt;vt,ν1,ν2)

∂λt

is given by:

∇F
t =

ν1

2eλt

[
ν1 + ν2

ν2 − 2

xt
w̃t
− eλt

]
(B.8)
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Proof.

∇F
t =

∂ log pF (xt; vt, ν1, ν2)

∂λt
=
∂ log pF (xt; vt, ν1, ν2)

∂vt
× ∂vt
∂λt

= − ν1

2vt
+
ν1 + ν2

2

[
w̃t

ν1xt
(ν2 − 2)(vt)2

]
× vt

=
ν1

2e2λt

[
ν1 + ν2

ν2 − 2

xt
w̃t
− eλt

]
× eλt

=
ν1

2eλt

[
ν1 + ν2

ν2 − 2

xt
w̃t
− eλt

]

As in the correlation model (cf. Section 4.2), we scale the score by the

inverse of the Fisher information of the χ2 density. Thus, we get:

Proposition 11. For the density in Eq. (B.5), the scaled score sFt =

(IW1

t|t−1)−1∇F
t is given by:

sFt =
1

eλt

[
ν1 + ν2

ν2 − 2

xt
w̃t
− eλt

]
(B.9)

B.3 Proposition 1

Proof. We need to compute ∂l(Xt)
∂f ′t

= ∂l(Xt)

∂vech(Qt)
′ , where l is given by Eq. (4.17)

l (Xt) =
1

2
dX(k, ν) +

ν − k − 1

2
log |Xt| −

ν

2
log |Vt| −

ν

2
tr
(
V −1
t Xt

)
.

Thanks to the chain rule, we can split our equation as:

∂l (Xt)

∂vech (Qt)
′ =

∂l (Xt)

∂vec (Vt)
′
∂vec (Vt)

∂vec (Rt)
′
∂vec (Rt)

∂vec (Qt)
′
∂vec (Qt)

∂vech (Qt)
′ .
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Then, starting with the first term and considering d log |X| = tr (X−1) dX

and d (X−1) = −X−1 (dX)X−1, see Magnus and Neudecker (1999),

∂l (Xt)

∂vec (Vt)
′ = −ν

2

[
vec
(
V −1
t

)′ − vec (Xt)
′ (V −1

t ⊗ V −1
t

)]
=
ν

2
[vec (Xt)− vec (Vt)]

′ (V −1
t ⊗ V −1

t

)
.

The second term is, thanks to the fact that vec (AXB) = (B′ ⊗ A) vec (X)

∂vec (Vt)

∂vec (Rt)
′ =

∂vec (DtRtDt)

∂vec (Rt)
′ = (Dt ⊗Dt) .

By definition of duplication matrix, see Abadir and Magnus (2005), we have

that
∂vec (Qt)

∂vech (Qt)
′ = Dk.

The third term is a little bit more complicated, indeed defining ∆t =(
diag(Qt)

1/2
)
,

dvec (Rt) =dvec
(
∆−1
t Qt∆

−1
t

)
=∆−1

t ⊗∆−1
t dvec (Qt) + vec

(
d
(
∆−1
t

)
Qt∆

−1
t

)
+ vec

(
∆−1
t Qtd

(
∆−1
t

))
=∆−1

t ⊗∆−1
t dvec (Qt) +

[(
∆−1
t Qt ⊗ I

)
+
(
I ⊗∆−1

t Qt

)]
dvec

(
∆−1
t

)
=∆−1

t ⊗∆−1
t dvec (Qt)−

[(
∆−1
t Qt ⊗ I

)
+
(
I ⊗∆−1

t Qt

)]
∆−1
t ⊗∆−1

t dvec (∆t)

=∆−1
t ⊗∆−1

t dvec (Qt)−
[(

∆−1
t Qt ⊗ I

)
+
(
I ⊗∆−1

t Qt

)]
∆−1
t ⊗∆−1

t WQdvec (Qt) ,

where qt = vec (∆t) and WQ is a diagonal matrix with its ith diagonal ele-

ments equal to 1/2

√
q

(i)
t if q

(i)
t 6= 0 and zero otherwise.

Given these four results combined with the fact that (Dt ⊗Dt) and
(
V −1
t ⊗ V −1

t

)
are symmetric , we get

∂l (Xt)

∂vec (Vt)
′ =

ν

2
[vec (Xt)− vec (Vt)]

′ (V −1
t ⊗ V −1

t

)
(Dt ⊗Dt)

(
∆−1
t ⊗∆−1

t

)
×
[
I −

(
Qt∆

−1
t ⊗ I

)
+
(
I ⊗Qt∆

−1
t

)]
WQDk

=
ν

2
[vec (Xt)− vec (Vt)]

′ (D−1
t ∆tQ

−1
t ⊗D−1

t ∆tQ
−1
t

)
ΨtDk,

where Ψt =
[
I −

[(
∆−1
t Qt ⊗ I

)
+
(
I ⊗∆−1

t Qt

)]
WQ

]
.
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B.4 Proposition 2

Proof. Starting with the definition of Fisher information matrix:

E
[
∇W
t ∇W ′

t |Ft−1

]
=E
[ν2

4
D′kΨ′t

(
D−1
t ∆tQ

−1
t ⊗D−1

t ∆tQ
−1
t

)
[vec (Xt)− vec (Vt)]

× [vec(Xt)− vec(Vt)]
′ (D−1

t ∆tQ
−1
t ⊗D−1

t ∆tQ
−1
t

)
ΨtDk|Ft−1

]
=
ν2

4
D′kΨ′t

(
D−1
t ∆tQ

−1
t ⊗D−1

t ∆tQ
−1
t

)
×

× V ar (vec(Xt)− vec(Vt)|Ft−1)
(
D−1
t ∆tQ

−1
t ⊗D−1

t ∆tQ
−1
t

)
ΨtDk

=∗
ν2

4
D′kΨ′t

(
D−1
t ∆tQ

−1
t ⊗D−1

t ∆tQ
−1
t

) 1

ν
(Ik2 +Kk)×

× (Vt ⊗ Vt)
(
D−1
t ∆tQ

−1
t ⊗D−1

t ∆tQ
−1
t

)
ΨtDk

=∗∗
ν

2
D′kΨ′t

(
D−1
t ∆tQ

−1
t Dt∆

−1
t ⊗D−1

t ∆tQ
−1
t Dt∆

−1
t

)
DkD+

k ΨtDk

where ∗ is thank to the vech formulation of the Wishart variance in Abadir

and Magnus (2005) and ∗∗ is given by 2DkD+
k = (Ik + Kk) (recall that

Vt =
(
Dt∆

−1
t Qt∆

−1
t Dt

)
)

A =
(
D−1
t ∆tQ

−1
t ⊗D−1

t ∆tQ
−1
t

)
(Vt ⊗ Vt)

(
D−1
t ∆tQ

−1
t ⊗D−1

t ∆tQ
−1
t

)
=
(
D−1
t ∆tQ

−1
t ⊗D−1

t ∆tQ
−1
t

) (
Dt∆

−1
t Qt∆

−1
t DtD

−1
t ∆tQ

−1
t ⊗Dt∆

−1
t Qt∆

−1
t DtD

−1
t ∆tQ

−1
t

)
=
(
D−1
t ∆tQ

−1
t ⊗D−1

t ∆tQ
−1
t

) (
Dt∆

−1
t ⊗Dt∆

−1
t

)
=
(
D−1
t ∆tQ

−1
t Dt∆

−1
t ⊗D−1

t ∆tQ
−1
t Dt∆

−1
t

)
=
(
H−1
t Q−1

t Ht ⊗H−1
t Q−1

t Ht

)
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B.5 Proposition 3

Proof. Multiplying the inverse of 4.19 with the 4.18 we get

sWt =
(
Dk ′Ψ′t

(
H−1
t Q−1

t Ht ⊗H−1
t Q−1

t Ht

)
DkDk+ΨtDk

)−1D′kΨ′t

×
(
H−1
t Q−1

t ⊗H−1
t Q−1

t

)
[vec (Xt)− vec (Vt)]

=
(
Dk ′Ψ′t

(
H−1
t Q−1

t Ht ⊗H−1
t Q−1

t Ht

)
DkDk+ΨtDk

)−1D′kΨ′t

×
(
H−1
t Q−1

t Ht ⊗H−1
t Q−1

t Ht

) (
H−1
t ⊗H−1

t

)
[vec (Xt)− vec (Vt)]

=
(
Dk ′Ψ′t

(
H−1
t Q−1

t Ht ⊗H−1
t Q−1

t Ht

)
DkDk+ΨtDk

)−1D′kΨ′t

×
(
H−1
t Q−1

t Ht ⊗H−1
t Q−1

t Ht

) (
H−1
t ⊗H−1

t

)
DkDk+ [vec (Xt)− vec (Vt)]

=
(
Dk ′Ψ′t

(
H−1
t Q−1

t Ht ⊗H−1
t Q−1

t Ht

)
DkDk+ΨtDk

)−1D′kΨ′t

×
(
H−1
t Q−1

t Ht ⊗H−1
t Q−1

t Ht

)
DkDk+

(
H−1
t ⊗H−1

t

)
[vec (Xt)− vec (Vt)]

Now let us simplify IWt = ν
2
D′kΨ′t

(
H−1
t Q−1

t Ht ⊗H−1
t Q−1

t Ht

)
Dk. This sim-

plification is not restrictive because the matrix Ψt is very sparse, moreover

using the approximation Ψt = I allows us to define the inverse of It which

is not full-rank with the original representation.

We get

st =Dk+
(
H−1
t ⊗H−1

t

)
[vec (Xt)− vec (Vt)]

=Dk+
(
H−1
t ⊗H−1

t

)
vec(Xt)−Dk+

(
H−1
t ⊗H−1

t

)
(Ht ⊗Ht) vec(Qt)

=Dk+
(
H−1
t ⊗H−1

t

)
vec(Xt)− vech (Qt)

B.6 Proposition 4

Proof. As in the Wishart case, we can split

∂l (Xt)

∂vech (Qt)
′ =

∂l (Xt)

∂vec (Vt)
′
∂vec (Vt)

∂vec (Rt)
′
∂vec (Rt)

∂vec (Qt)
′
∂vec (Qt)

∂vech (Qt)
′ .
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The only terms which is different from the previous model is the first one.

The log-likelihood function is and get, using again d log |X| = tr (X−1) dX

and d (X−1) = −X−1 (dX)X−1

dlXt =− ν1

2
tr
(
V −1
t dVt

)
− ν1 + ν2

2
tr
(
W̃−1
t dW̃t

)
=∗ − ν1

2

(
vecV −1

t

)′
dvecVt +

ν1 + ν2

2
tr

(
W̃−1
t

ν1

ν2 − k − 1
V −1
t dVtV

−1
t Xt

)
=− ν1

2

(
vecV −1

t

)′
dvecVt +

ν1 + ν2

2
tr

(
ν1

ν2 − k − 1
V −1
t XtW̃

−1
t V −1

t dVt

)
=− ν1

2

(
vecV −1

t

)′
dvecVt +

ν1 + ν2

2
vec

(
ν1

ν2 − k − 1
V −1
t XtW̃

−1
t V −1

t

)′
dvecVt

hence we obtain

∂l (Xt)

∂vec (Vt)
′ =− ν1

2

(
vecV −1

t

)′
+
ν1 + ν2

2
vec

(
ν1

ν2 − k − 1
V −1
t XtW̃

−1
t V −1

t

)′
=
ν1

2

[(
V −1
t ⊗ V −1

t

)( ν1 + ν2

ν2 − k − 1
vec
(
XtW̃

−1
t

)
− vec (Vt)

)]′
.

Combining all the formulas together we get

∂l (Xt)

∂vech (Qt)
′ =

ν1

2

(
ν1 + ν2

ν2 − k − 1
vec
(
XtW̃

−1
t

)
− vec (Vt)

)′ (
V −1
t ⊗ V −1

t

)
(Dt ⊗Dt)

×
(
∆−1
t ⊗∆−1

t

)
ΨtDk

=
ν1

2

(
ν1 + ν2

ν2 − k − 1
vec
(
XtW̃

−1
t

)
− vec (Vt)

)′
×
(
D−1
t ∆tQ

−1
t ∆tD

−1
t ⊗D−1

t ∆tQ
−1
t ∆tD

−1
t

) (
Dt∆

−1
t ⊗Dt∆

−1
t

)
Ψ′tD′k

=
ν1

2

(
ν1 + ν2

ν2 − k − 1
vec
(
XtW̃

−1
t

)
− vec (Vt)

)′ (
H−1
t Q−1

t ⊗H−1
t Q−1

t

)
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B.7 Proposition 5

Proof. Consider the multiplication IWt ∇F
t , considering the same approxi-

mation of IWt we used in B.5,

sFt =
(
Dk ′

(
H−1
t Q−1

t Ht ⊗H−1
t Q−1

t Ht

)
Dk
)−1D′k

×
(
H−1
t Q−1

t ⊗H−1
t Q−1

t

) [ ν1 + ν2

ν2 − k − 1
vec
(
XtW̃

−1
t

)
− vec (Vt)

]
=
(
Dk ′

(
H−1
t Q−1

t Ht ⊗H−1
t Q−1

t Ht

)
Dk
)−1D′k

(
H−1
t Q−1

t Ht ⊗H−1
t Q−1

t Ht

)
×DkDk+

(
H−1
t ⊗H−1

t

) [ ν1 + ν2

ν2 − k − 1
vec
(
XtW̃

−1
t

)
− vec (Vt)

]
=

ν1 + ν2

ν2 − k − 1
vech

(
H−1
t XtW̃

−1
t H−1

t

)
− vech (Qt)

B.8 Proposition 6

Proof. The proof is straightforward:

lim
ν2→∞

sFt = lim
ν2→∞

ν1 + ν2

ν2 − k − 1
vech

(
H−1
t XtW̃

−1
t H−1

t

)
− vech (Qt)

=vech
(
H−1
t XtW̃

−1
t H−1

t

)
− vech (Vt) = sWt

since W̃t = Ik + ν1
ν2−k−1

V −1
t Xt

B.9 Figures of Section (4.3)

In this section, we report the figures of the experiment based on the mis-

specified DGP’s presented in Section (4.3)
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Figure B.1: In-sample and out-of-sample filtered estimates of ρ
(1)
t from both

the 2-step-W and 2-step-F models. Estimates are averaged over the 1000
simulations. Confidence bands are constructed by computing the 10% and
90% empirical quantiles.
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Figure B.2: In-sample and out-of-sample filtered estimates of ρ
(2)
t from both

the 2-step-W and 2-step-F models. Estimates are averaged over the 1000
simulations. Confidence bands are constructed by computing the 10% and
90% empirical quantiles.

Figure B.3: In-sample and out-of-sample filtered estimates of ρ
(3)
t from both

the 2-step-W and 2-step-F models. Estimates are averaged over the 1000
simulations. Confidence bands are constructed by computing the 10% and
90% empirical quantiles.
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Figure B.4: In-sample and out-of-sample filtered estimates of ρ
(4)
t from both

the 2-step-W and 2-step-F models. Estimates are averaged over the 1000
simulations. Confidence bands are constructed by computing the 10% and
90% empirical quantiles.
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Appendix of Chapter 5

C.1 Proof Propositions 1 and 2

The proof of proposition 1 is trivial. Indeed the value of the total derivative

is given by

dω1

drf
=
γψσ2 − λγ(r − rf )

(σ2)2
(C.1)

Using equation (5.6) we get that

dω1

drf
=
γψ − ω1

(σ2)
< 0 ⇐⇒ ω1 >

γψ

λ
(C.2)

which concludes the proof.

For Proposition 2, using the information set θ =
[
r − rf , σ2, γ

]
for the

investor problem (5.6), we analytically evaluate the Portfolio Instability

measure defined in (5.3). The Jacobian matrix reduces to

Dω(θ) =

 ∂ω1

∂(r−rf )
∂ω1

∂σ2
∂ω1

∂γ

∂ω2

∂(r−rf )
∂ω2

∂σ2
∂ω2

∂γ

 =

 ∂ω1

∂(r−rf )
∂ω1

∂σ2
∂ω1

∂γ

− ∂ω1

∂(r−rf )
−∂ω1

∂σ2 −∂ω1

∂γ


=

 γ
σ2 ,

γµMσ
2−γ(r−rf )
(σ2)2

, (r−rf )
σ2

− γ
σ2 , −γµMσ

2−γ(r−rf )
(σ2)2

, − (r−rf )
σ2

 (C.3)

199
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Firstly, we consider an exogenous change in the risky asset’s expected excess

return. We denote with vret the size of the exogenous shock, then

PI[vret,0,0] = Dω(θ)


vret

0

0

 =

 γvret

σ2

−γvret

σ2

 (C.4)

and the TPI can be evaluated as

TPI[vret,0,0] =
√

2
γ|vret|
σ2

. (C.5)

The sensitivity of the TPI to the risk-free rate is given by

dTPI[vret,0,0]

drf
= −
√

2
γλ|vret|
(σ2)2

. (C.6)

The second possible shock is a shock to the variance of the risky asset (vvar):

PI[0,vvar,0] = Dω(θ)


0

vvar

0

 =

 γµMσ
2−γ(r−rf )
(σ2)2

vvar

−γµMσ
2−γ(r−rf )
(σ2)2

vvar

 =

 γµM−ω1

(σ2)
vvar

−γµM−ω1

(σ2)
vvar


(C.7)

The total portfolio instability is given by TPI[0,vvar,0] =
√

2 |ω
1−γµM |
(σ2)

|vvar|

and the sensitivity with respect to the risk-free rate

dTPI[0,vvar,0]

drf


√

2
∂ω1

∂rf
σ2−λ(ω1−γµM )

(σ2)2
|vvar|, if ω1 − γµM > 0,

√
2
− ∂ω

1

∂rf
σ2−λ(γµM−ω1)

(σ2)2
|vvar|, if ω1 − γµM < 0,

(C.8)

For the third possible shock in the investor preference, i.e. in the pa-

rameter γ, we find similar results as in the previous scenario

PI[0,0,vγ ] = Dω(θ)


0

0

vγ

 =

 (r−rf )
σ2 vγ

− (r−rf )
σ2 vγ

 (C.9)
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TPI[0,0,vγ ] =
√

2
ω1

γ
|vγ|. (C.10)

∂TPI[0,0,vγ ]

∂rf
=
√

2
∂ω1

∂rf

γ
|vγ| < 0 ⇐⇒ ∂ω1

∂rf
< 0. (C.11)

This concludes the proof.

C.2 Econometric model with US Data

In this appendix we test the theoretical findings in Section 5.3 using US

monthly data from April 1951 to December 2019. The market proxy is the

value-weighted portfolio provided in the French’s website1 and risk-free rate

proxy is the one-month T-bill rate. Table C.1 shows the estimates for the

models 1.A (5.12), 1.B (5.13) and 1.C (5.14). The results are consistent

with the findings in table 5.1 with an higher significance, partially due to

the longer time series and partially due to the lower frequency of the data.

The only difference between the US estimates and the EU estimates is the

sign of the parameter ψ for the model 1.B but in both cases the results are

not significant.

Figure C.1 shows the same non-linear behaviour observed in figure 5.4.

The results show that the portfolio instability behaviour is robust across

countries.

1Kenneth R. French website.

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Parameters model 1.A model 1.B model 1.C
µ0 0.038 0.084 0.109

(0.979) (4.732) (2.836)

µM 0.168 −0.002 0.301
(1.192) (-0.636) (1.768)

µf −2.718
(-3.325)

ω 0.014 0.011 0.010
(2.274) (1.569) (1.667)

α 0.115 0.114 0.113
(3.717) (3.001) (2.979)

β 0.837 0.798 0.800
(20.213) (11.834) (13.233)

λ̃ 0.345 0.341
(2.410) (2.557)

ψ −0.001 −2.616
(-0.557) (-3.358)

∂ω1

∂rf
< 0 < 0

∂TPI[vret,0,0]
∂rf

< 0 < 0

∂TPI[0,vvar,0]
∂rf

< 0 < 0

∂TPI[0,0,vγ ]
∂rf

< 0 < 0

AIC 1176.6 1164.0 1150.6

Table C.1: Estimation of models 1.A, 1.B and 1.C in equations (5.13) and
(5.14) and model implied sensitivities to the interest rate. In the first sec-
tion we report the estimates and the Robust t ratios in parenthesis. The
estimates ψ is evaluated according to (5.5) and the Robust t-statistic is
evaluated with the delta method. In the second section we report the dif-
ferent quantities in equations (5.7), (5.8), (5.9) and (5.10). When the sign
is < 0 the partial derivative is negative in the whole sample, when the sign
is > 0 the partial derivative is positive and when the sign is ± the partial
derivative can be both positive and negative. In the last row we show the
AIC and the best performing model according to this measure is bolded.
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Figure C.1: Total Portfolio Instability sensitivity evaluated from model 1.B
(5.13) and model 1.C (5.14) for different values of the risk-free rate. For
the calculations, we use the unconditional levels of σ2 and r − rf given by
models (5.13) and (5.14) for different levels of rf .
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