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1
Introduction

The development of quantum mechanics at the turn of the last century represented a unique
intellectual experience, which forced scientists and philosophers to profoundly change the
concepts they used to describe the World. After these heroic efforts it was possible to un-
derstand the stability of matter, the mechanical and electrical properties of materials, the
interaction between radiation and matter and many other characteristics of the microscopic
world which, otherwise, were impossible to explain within the elegant but incomplete frame-
work of classical physics. After a few decades, that conceptual revolution made possible a
technological shake-up, known as “the first quantum revolution”, which is at the origin of our
information society. Indeed, it is with the quantum understanding of the structure and prop-
erties of matter that physicists and engineers were able to conceive and develop (inter alia)
transistors and lasers - two of the key technologies that today enable broadband information
transfer, among many others scientific and commercial applications [Bell2004].

Recently, tremendous advances in nanofabrication techniques have enabled unprecedented
preparation and control of quantum systems in a wide range of physical devices. Experiments
involving few degrees of freedom can be carried out in several platforms ranging from trapped
ions [Friedenauer2008, Blatt2012], to cold bosons loaded into optical lattices [Yukalov2009],
to superconducting qubits in microwave cavities [Wallraff2004, Majer2007], to single-electron
transistors [Kastner1992]. This experimental breakthrough has opened the path for a “second
quantum revolution”. Therefore, whereas the first quantum revolution provided us with the
rules that govern the physical reality on the microscopic scale, with the second quantum
revolution we will be able to use these rules allowing us to move into a new era of quantum
technology [MacFarlane2003].

Evidently a fruitful route towards the development of new quantum technologies is rep-
resented by the fertile field of quantum thermodynamics [Pekola2015, Binder2019]. The
dominant trend of building devices on a smaller and smaller scale, leads to the point that
design must inevitably be based on quantum principles. Thus, on the experimental side,
the goal of quantum thermodynamics is the development of highly controllable nanoscale
devices that operate on length and temperature scales that make a quantum description
necessary. It aims to build a new conceptual framework that goes beyond the conventional
regime of validity of macroscopic thermodynamics to account for finite size effects such as
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2 Introduction

quantisation, quantum superposition, entanglement and decoherence. At this point, ques-
tions arise: Do quantum phenomena, such as coherence and quantum correlations result in
thermodynamic advantages or limitations? Do quantum engines and refrigerators perform
better or worse compared to their classical counterparts? What is the meaning of heat, work
and entropy at the quantum level and how these quantities can be defined in this regime?
It was precisely in attempting to address such fundamental questions that, at the thresh-
old of the 21st century, with the pioneering works of Hicks and Dresselhaus [Hicks1993,
Hicks1993a] and Mahan and Sofo [Mahan1996], it was realized that nanostructured materials
can outperform classical thermoelectric materials [Harman2000, Venkatasubramanian2001,
Josefsson2018]. More recently, thermoelectricity in low-dimensional systems also finds ap-
plications in heat management at the nano-scale to perform (for example) active cooling on
chip [Giazotto2006, Fagas2014] - an urgent problem given the progressive miniuaturization
of the electronic components. In this respect, considerable progress has been made with
the introduction of the so called phase-coherent caloritronics in superconducting circuits
[Sanchez2014, Fornieri2017, Hwang2020]. The key idea here is to control heat fluxes in su-
perconducting hybrid systems by exploiting the macroscopic quantum coherence inherent to
the superconducting phase difference in Josephson junctions [Josephson1962]. Moreover, the
possibility to master heat currents in thermally biased Josephson junctions with a tunable
phase difference also demonstrated remarkable results towards the implementation of the ther-
mal counterparts of interferometers [Giazotto2012, Martinez-Perez2014, Fornieri2016], diodes
[Chang2006, Martinez-Perez2015] and solid-state memory devices [Xie2011] for the realization
of thermal transistors [Giazotto2014, Fornieri2016] and thermal logic gates [Li2012].

An alternative yet promising route to quantum technologies has been found in the re-
cently emerged field of quantum topology [Moore2009, Hasan2010, Bernevig2013a]. Origi-
nally developed nearly a hundred years ago, band theory of solids [Bloch1929] - a major
pillar of modern physics - has long been thought to be fully understood and lacking in par-
ticular revelations. However, starting in the late 1980s with the discovery of the quantum
Hall effect [Klitzing1980] and then in the early 2000s with the theorization and discovery of
topological insulators [Kane2005, Konig2007], our understanding of crystalline solids under-
went an unexpected turn. In fact, topological quantum materials are a class of compounds
featuring electronic band structures which are topologically distinct from trivial insulators.
Remarkably, topological insulators are characterized by a full insulating gap in the bulk and
topologically protected gapless edge states, manifesting spin-momentum locking features and
robustness against perturbations with very long decoherence lengths [Roth2009, Chen2012,
Wiedenmann2016]. For this reason, in combination with superconductors, topological insu-
lators are anticipated to lead to a new architecture for topological quantum bits exploiting
exotic phenomena such as Majorana modes [Kitaev2001, Lutchyn2010, Oreg2010], and fos-
tering advances in the fields of quantum information and quantum computation [Moore2009].

The work presented in this thesis develops themes which connect the two successful fields
of quantum thermodynamics and quantum topology. In particular, we focus on the study
of the electrical and thermoelectrical properties of hybrid topological superconducting sys-
tems [Veldhorst2012, Hart2014], investigating the potential of the intriguing and fruitful mar-
riage between topology and coherent thermodynamics [Scharf2020, Scharf2021]. Through this
work, we show how Josephson junctions based on Two Dimensional Topological Insulators
(2DTIs) may represent a concrete and fruitful playing ground for fundamental research as well
as for potential applications for quantum sensing [Giazotto2015, Heikkila2018], entanglement
manipulation [Blasi2019], and thermal engines [Mazza2014, Vischi2019]. On the one hand,
in the first part of the thesis, we give an overview of the theoretical framework and formalism
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necessary to describe these systems. On the other, we fully characterize the thermoelectric
response and performances of such hybrid junctions, in different configurations and under a
wide range of external tuning parameters. In this regard, we first investigate how the flux
and phase biases trigger nonlocal thermoelectric effects in a topological Josephson junction in
contact with a normal-metal probe under the application of a thermal difference between the
superconducting terminals. Then, we analyze the thermal conductance of a 2DTI Josephson
junction hosting a magnetic island showing that it can be used to characterize the topological
nature of the junction. In conclusion, we discuss how a hybrid topological Josephson junction,
consisting of two planes of topological insulator, can be used as promising platform for the
manipulation of spin-entangled electrons in solid-state systems offering the prospect of encod-
ing, transmitting and processing the quantum information in a fault-tolerant, topologically
protected manner [Nayak2008, Wu2014].

The outline of the thesis is the following. It consists of two parts: in Part I, entitled
“Theoretical Framework”, we lay the theoretical foundations necessary to describe hybrid
topological Josephson junctions; while Part II, named “Original Results”, is devoted to pre-
senting original studies about these systems. For completeness, appendices from A to D,
contain complementary results and details of calculations presented in the different chapters.
More specifically, in Chaps. 2 and 3 we provide an overview of the basic concepts that un-
derlie the two main constituent materials necessary for the realization of a hybrid topological
Josephson junction, namely: topological insulators and superconductors. In particular, in
Chap. 2, theoretical models, materials properties, and experimental results on Chern insu-
lators and 2DTIs are reviewed and the emergence of edge states at the boundaries of these
materials is discussed. In Chap. 3 we introduce the Bogoliubov-de Gennes (BdG) formalism
- which will constitute the framework of the entire thesis - and discuss how the BdG equa-
tions can be used to describe one of the most important phenomenon arising in presence of
superconductivity: the Andreev reflection.

In Chaps. 4 and 5, we introduce the technical tools necessary for dealing with phase-
coherent quantum transport and thermoelectricity in multiterminal mesoscopic hybrid de-
vices. Specifically, in Chap. 4 we start by presenting first the Landauer-Büttiker (or scat-
tering) theory developed for normal metal mesoscopic systems, and then we extend it to
include superconducting components. The power of the scattering approach is encoded in a
single mathematical object: the scattering matrix. In this respect, in Sec. 4.4, we deduce the
foundamental symmetry relations that the scattering matrix has to satisfy depending on the
specific symmetry class of the underlying Hamiltonian describing the system. In Chap. 5, we
apply the scattering theory to the case of the linear response regime, and use the aforemen-
tioned symmetries of the scattering matrix to obtain the Onsager reciprocal relations. The
main aspects of the Josephson effect and the constitutive equations governing the behavior
of Josephson junctions are reviewed in Chap. 6.

In the remaining chapters we collect original results. In Chaps. 7, 8 and 9 we consider
a system consisting of a topological Josephson junction hosting a pair of helical edge states
of a quantum spin Hall bar in contact with a normal-metal probe. In Chap. 7, the orbital
phase induced by a small magnetic field threading the junction known as Doppler shift (DS),
combines with the conventional Josephson phase difference and originates an effect akin to
a Zeeman field in the spectrum. As a consequence, when a temperature bias is applied to
the superconducting terminals, a thermoelectric current is established in the normal probe.
We argue that this purely non-local thermoelectric effect is a unique signature of the helical
nature of the edge states coupled to superconducting leads and it can constitute a useful tool
for probing the helical nature of the edge states in systems where the Hall bar configuration
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is difficult to achieve.
In Chap. 8 we show that nonlocal thermoelectricity can be eventually generated by

a purely Andreev interferometric mechanism. This response can be tuned by imposing a
Josephson phase difference, through the application of a dissipationless current between the
two superconductors, even without the need of applying an external magnetic field. We
discuss in detail the origin of this effect and we provide also a realistic estimation of the
nonlocal Seebeck coefficient.

While in Chaps. 7 and 8 we assumed equal proximized gaps in the two superconducting
terminals, by focusing only on the linear response regime; in Chap 9 we generalize the analysis
to the case where we have different gaps which better describes a realistic experimental
situation, where the samples have unavoidable imperfections leading to asymmetric pairing
potentials in the superconducting leads. In this configuration we point out that the gap
asymmetry gives rise to a new intermediate regime where Andreev interference determines
a local thermoelectrical effect even without applying a phase bias. Finally, we discuss the
power and the efficiency of the topological thermoelectric engine which reaches maximum
power at maximal efficiency for a well coupled normal probe.

In Chap. 10 we consider a 2DTI Josephson junction with embedded magnetic domains.
These hybrid heterostructures can host a number of topological phases, such as Jackiw-Rebbi
solitons and Majorana zero modes. In particular, we show that, configurations hosting soliton
magnetic modes lead to a peculiar behavior of the thermal conductance, characterized by a
negative slope as a function of the temperature. At low temperatures, these junctions also
show characteristic coherence patters in the behavior of the thermal conductance as function
of the Josephson phase bias and the angle between the magnetizations of the domains.

In Chap. 11 we investigate the supercurrent in a hybrid topological Josephson junction
consisting of two planes of topological insulator in a specific configuration, which allows both
local (LAR) and crossed (CAR) Andreev processes at the interfaces with two conventional
s-wave superconductors. We describe the effects of gate voltage and magnetic flux controls
applied to the edge states of each TI. In particular, we demonstrate that the voltage gating
allows the manipulation of the entaglement symmetry of non-local Cooper pairs associated
to the CAR process. Remarkably, we find that the critical current of the junction takes a
very simple form which reflects the change in the symmetry occurred to the entangled state
and allows to determine the microscopic parameters of the junction.

Finally, in Chap. 12, we draw the conclusions of this thesis.
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2
Topological Insulators

A recurring theme in condensed-matter physics has been the discovery and classification of
distinctive phases of matter. Classically, we learn of phases such as liquid, crystal, or vapor.
However quantum theory has revealed many more fascinating and exotic states of matter,
such as superconductors, Bose-Einstein condensates, ferromagnets and antiferromagnets, and
etc. Often, these phases can be understood using Landau’s approach [Ginzburg1944], which
characterizes states in terms of underlying symmetries that are spontaneously broken. How-
ever, the major limitation of Landau’s theory of phase transitions is that it is related to a local
order parameter. Over the past 40 years, it has become clear that a series of phases of matter
do not have a local order parameter [Bernevig2013]. For most of them, a nonlocal order
parameter can be defined, but it is unclear how a Landau-like theory of this order parameter
can be developed. In particular, the study of the quantum Hall effect has led to a different
classification paradigm based on the notion of topological order [TKNN1982, Wen1995]. The
state responsible for the quantum Hall effect does not break any symmetries, but it defines
a topological phase in the sense that certain fundamental properties (such as the quantized
value of the Hall conductance and the number of gapless boundary modes) are insensitive to
smooth changes in material parameters and cannot change unless the system passes through
a quantum phase transition.

In the present chapter we give a review of different topological phases of matter. In par-
ticular, we focus on two-dimensional insulating phases, i.e. phases where a bulk energy gap
separates the highest occupied electronic states (in the conduction band) from the lowest
empty states (in the valence band). The question underlying the topological classification
of insulators is whether all insulating phases are equivalent to each other, and in particular
whether the ensembles of the valence bands of different insulators can be continuously trans-
formed into each other without closing the energy gap. In contrast to ordinary (“trivial”)
insulators, one of the most striking features of topological (“non-trivial”) insulators is the
existence of gapless conducting edge states. As we will discuss along the thesis, these states
are predicted to have special properties that could be useful for applications ranging from
spintronics to quantum computation to quantum thermodynamics. Among the topologically
non-trivial insulating phases we can distinguish Chern insulators (and quantum Hall phases),
arising when time-reversal symmetry is broken, and Z2 topological insulators (or quantum

7



8 Topological Insulators

spin Hall phases), whose edge states are protected by time-reversal symmetry [Hasan2010].
The latter, which represent one of the main object of this thesis, are also known simply as
2D topological insulators or 2DTIs, and we will adhere to this naming convention.

2.1 Topological band theory
For crystalline insulating materials whose physical properties are well captured by a one-
particle theory, the band theory of solids [Bloch1929] provides a powerful language to describe
the electronic structure of such systems. This theory exploits the translational symmetry of
the crystal to classify electronic states in terms of their crystal momentum k, defined in
a periodic Brillouin zone. The Bloch states |um(k)〉, defined in a single unit cell of the
crystal, are eigenstates of the Bloch Hamiltonian H(k). The eigenvalues εm(k) define energy
bands that collectively form the band structure. In an insulator an energy gap separates the
occupied valence band states from the empty conduction band states.

Band structures where the eigenvalues of H(k) show an energy gap, can be classified
topologically by considering the equivalence classes of Bloch Hamiltonians H(k) that can be
continuously deformed into one another without closing the energy gap. These classes are
characterized by a topological invariant n ∈ Z, called the Chern invariant. The theory of the
Chern invariant is rooted in the mathematics of fiber bundles [Nakahara2003], but it can be
understood physically in terms of the Berry curvature [Berry1984, Xiao2010] associated with
the Bloch wave functions.

The concepts of Berry phase and Berry curvature were introduced by Sir Michael Berry
in a seminal paper [Berry1984] concerning the adiabatic evolution of an eigenenergy state
when some external parameters are changed slowly and cyclically, i.e. so that they describe
a closed path C in the parameter space. In the absence of degeneracy, the eigenstate |um(k)〉
will come back to itself at the end of the loop, but there will be a phase difference equal to
the time integral of the energy (divided by ~) - corresponding to the dynamical phase - plus
an extra Berry phase γm. Such a phase is given by the line integral over the path C of the
so-called Berry connection Am = i 〈um(k)| ∇k |um(k)〉. This may be equivalently expressed
as a surface integral of the Berry curvature (or Berry flux) Ωm = ∇k ×Am over an arbitrary
surface S enclosed by the path C 1. The Berry curvature is a gauge invariant vector field
whose flux through the Brillouin zone gives topological classification of the band structure
[Nakahara2003, Xiao2010]. The Chern invariant n ∈ Z, characterizing classes of equivalence
of insulating Bloch Hamiltonians, is given by the following expression

n =
?∑
m

1
2π

∫
BZ

dk Ωm(k) (2.2)

where the apex ? indicates that the summation is taken over occupied bands and the inte-
gration is taken for k inside the Brillouin zone (BZ). If the Chern invariant n, defined in
Eq. (2.2), is different from zero we talk about topologically non-trivial insulators, otherwise
we refer to trivial insulators.

1The Berry flux Ωm(k) is related to the gauge-field tensor [Xiao2010]

Ωmαβ(k) = i
∑
m′ 6=m

〈um(k)| ∂kαH(k) |um′ (k)〉 〈um′ (k)| ∂kβH(k) |um(k)〉 − (α↔ β)
(εm(k)− εm′ (k))2 , (2.1)

through the relation Ωmαβ = εαβξ(Ωm)ξ where where α, β and ξ are cartesian indexes and εαβξ is the Levi-Civita
antisymmetry tensor.
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2.2 Quantum Hall effect and Chern insulators
A first example of a topologically non-trivial insulating state is the integer quantum Hall
state. The quantum Hall effect was first reported for the two-dimensional electron gas in the
inversion layer of a silicon metaloxide- semiconductor field-effect-transistor at temperature
T = 1.5 K and magnetic field B = 18 T by Klaus von Klitzing [Klitzing1980], and earned
him the Nobel prize in 1985. The quantization of the electrons’ circular orbits with cyclotron
frequency ωc leads to quantized Landau levels with energy εm = ~ωc(m+ 1/2). If N Landau
levels are filled and the rest are empty, then an energy gap separates the occupied and empty
states just as in an insulator. Unlike an insulator, though, an electric field causes the cyclotron
orbits to drift, leading to a Hall current characterized by the quantized Hall conductivity

σxy = N
e2

h
, (2.3)

which represents the ratio between the electric current density along x and the y-component
of the electric field in the sample. The quantization of σxy has been measured to 1 part in
109, making it very appealing for metrological applications.

Quite remarkably, in Ref. [TKNN1982] Thouless et al. demonstrated that the Hall
conductivity σxy, computed by using the Kubo formula, is strongly related with the Chern
number. More precisely they showed that the number of Landau levels N of Eq. (2.3)
exactly coincides with the topological invariant n of Eq. (2.2). The Hall conductivity is
therefore proportional to the Chern number, where the proportionality constant depends only
on fundamental constants (e and ~). Let us insist on the observation that any perturbation
or disorder added to the Hamiltonian which, however, does not close the energy gap, leaves
the Chern number (and so the Hall conductivity) unaltered. This is a clear manifestation of
the topological nature of the quantum Hall state which also explains the exceptionally flat
plateaus of the Hall conductivity observed in quantum Hall effect experiments [Klitzing1980].

Haldane model

A simple example of the quantum Hall effect in a band theory is provided by the so-called
Haldane model Hamiltonian [Haldane1988]. It represents the paradigm for Chern insulators,
and has been used as a workhorse in many simulations, providing invaluable insight into topo-
logical features of the electronic wavefunction as well as into features of orbital magnetization
[Resta2020].

The idea of Haldane is that the quantum Hall effect may result from the broken time-
reversal symmetry without any net magnetic flux through the unit cell of a periodic two-
dimensional graphene model [Shen2012]. In order to understand that, let us first start by
considering the Hamiltonian of a two-dimensional graphene model. The simplest description
of graphene employs a two band model for the pz orbitals on the two equivalent atoms in the
unit cell of graphene’s honeycomb lattice. The Bloch Hamiltonian takes the following form

H(k) = ~h(k) ·~σ (2.4)

where ~σ = (σx, σy, σz) are Pauli matrices and ~h(k) = (hx(k), hy(k), 0). The combination
of spatial inversion symmetry (SIS) [i. e. hz(k) = −hz(−k)], and time-reversal symmetry
(TRS) [i. e. hz(k) = hz(−k)] requires hz(k) = 0. From the eigenspectrum of Eq. (2.4), it
turns out that the conduction and valence band touch each other at two distinct points in the
Brillouin zone (called Dirac points), namely K1 and K2 = −K1. Near those points, i. e. for
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small qi ≡ k −Ki (with i = 1, 2), the electronic dispersion resembles the linear dispersion,
and Eq. (2.4) splits in the two independent effective Hamiltonians

H(qi) = ~vF qi ·~σ (2.5)

where vF is the Fermi velocity. The degeneracy at the Dirac points is protected by the SIS
and TRS. In order to lift such a degeneracy, Haldane imagined to break the TRS with a
“periodic magnetic field” with opposite orientations on the different atoms of each unit cell
such that its cell average vanishes. This perturbation allows nonzero hz(k) and introduces a
mass term to the Hamiltonians of Eq. (2.5)

H(qi) = ~vFqi ·~σ +miσz, (2.6)

which have dispersions ε(qi) = ±
√
|~vFqi|2 +m2

i respectively characterized by the energy
gaps 2|mi| with mi = hz(Ki) for each Dirac point i = 1, 2. Note that, SIS requires the
masses at K1 and K2 have opposite signs, i. e. m1 = −m2. Haldane showed that this
gapped state is not an insulator but rather a quantum Hall state with σxy = e2/h. More
precisely, by using Eq. (2.2), it follows that each Dirac point contributes ±e2/2h to σxy. In
the insulating state with m1 = m2 the two cancel, so σxy = 0. In the quantum Hall state
with m1 = −m2 they add.

2.3 Two Dimensional Topological Insulator (2DTI)
As we have seen so far, it turns out that a necessary condition for having topologically
non-trivial Chern insulators is to have a broken TRS. Indeed, it is easy to show that if
the system is time-reversal symmetric, it follows that [Xiao2010] Ωm(−k) = −Ωm(k) and
the integral in Eq. (2.2) vanishes trivially. As a consequence, any time-reversal symmetric
Bloch insulator is a topologically trivial Chern insulator. For these time-reversal invariant
models, however, it exists a different topological classification proposed in 2005 by Kane and
Mele [Kane2005, Kane2005a]. The key to understand these new class of topological materials,
called Z2 insulators, or simply Two Dimensional Topological Insulators (2DTIs) is to examine
the role of TRS for spin 1/2 particles (see Sec. 4.4 for more details). A time-reversal invariant
Bloch Hamiltonian H(k) must satisfy

T H(k)T −1 = H(−k), (2.7)

where we introduced the time-reversal anti-unitary operator T = −iσyK, where σy is the
Pauli matrix acting in the spin-space and K is the complex conjugate operator, such that
T 2 = −1. Similarly to the case of Chern insulators, it is possible to distinguish the equivalence
classes of Bloch Hamiltonians satisfying this constraint and that can be smoothly deformed
without closing the energy gap. When TRS is preserved, the Chern number is n = 0, but
there is an additional Z2 topological invariant with two possible values ν = {0, 1} [Kane2005,
Kane2005a].

There are several mathematical formulations of the Z2 invariant ν of 2DTIs. In particular
the calculation of the topological invariant ν is quite simple if the 2D system conserves the
spin Sz along the z-direction. In this case the up and down spins have independent Chern
numbers n↑ and n↓. TRS requires n↑+n↓ = 0, but the difference n↑−n↓ defines a quantized
spin Hall conductivity, and the Z2 topological invariant ν takes the following simple form

ν = [(n↑ − n↓)/2]mod 2. (2.8)
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More general definitions of ν are available when Sz nonconserving terms are added to the
Bloch Hamiltonian - see Ref. [Hasan2010] for more details.

Quantum spin Hall insulators and HgTe/CdTe quantum wells

Research on spin-orbit coupling in graphene led Kane and Mele [Kane2005, Kane2005a] to
propose the first model of a 2DTI consisting of two time-reversed copies of the Haldane model.
In the Kane-Mele model the spin degree of freedom is taken into account, and the overall
system is time-reversal symmetric. For this reason, 2DTIs are also known as quantum spin
Hall insulators (QSHIs) [Hasan2010].

In the simplest picture, the intrinsic spin-orbit interaction commutes with the electron
spin Sz, so the Hamiltonian decouples into two independent Hamiltonians for the up and
down spins, resulting in two copies of Eq. (2.6), which overall do not violate TRS. The
result is that, under an applied electric field Ey, the up and down spins have Hall currents
that flow in opposite directions. Thus opposite signs of the conductivity are obtained for
each spin, and the total Hall conductivity of the system turns out to be zero. However,
even if the Hall conductivity is zero, there is a quantized spin Hall conductivity, defined by
σsxy = (J↑x − J↓x)/Ey with σsxy = e/2π - a quantum spin Hall effect.

However, even if the Kane-Mele model provided an interesting theoretical toy model for
QSHIs, it was soon shown to be unrealistic since the spin–orbit effect in graphene based
systems is extremely small [Konig2008]. Understandably, a better place to look for this
physics would be in materials with strong spin-orbit interactions. To this end, Bernevig,
Hughes, and Zhang [BHZ2006], paved the way to the experimental discovery of the QSH
state in semiconductors with an “inverted” electronic gap, and predicted a quantum phase
transition in HgTe/CdTe quantum wells. Hg1−xCdxTe is a family of semiconductors with
strong spin-orbit interactions. For both HgTe and CdTe, the main bands near the Fermi
level are close to the Γ-point in the Brillouin zone, and they are the s-type band (Γ6) and the
p-type band which is split to a J = 3/2-band (Γ8) and a J = 1/2-band (Γ7) by spin–orbit
coupling (see Fig. 2.1 (a)). CdTe has a band order with an s-type (Γ6) conduction band
and p-type valence bands (Γ8,Γ7) which are separated from the conduction band by a large
energy gap of ∼ 1.6 eV . HgTe, as a bulk material, can be regarded as a symmetry-induced
semi-metal. Its negative energy gap of ∼ 300 meV indicates that the Γ8 band, which usually
forms the valence band, is above the Γ6 band. Based on this unusual sequence of the states,
such a band structure is said to be inverted.

When HgTe-based quantum well structures are grown, the peculiar properties of the well
material can be utilized to tune the band structure in a unique way. Heuristically, when
the thickness d of the HgTe layer is small, the heterostructure behaves similarly to the bulk
CdTe (with normal band ordering). On the other hand, as d is increased, the material behaves
more like bulk HgTe (with inverted bands). So as the thickness increases we expect to reach
a critical thickness dc where the Γ8 and Γ6 subbands cross and become inverted with the Γ8
bands becoming conduction subbands and Γ6 becoming valence subbands - as illustrated in
Fig. 2.1 (b). Bernevig et al. showed that such an inversion of the bands takes place at the
critical thickness dc = 6.3 nm at which the gap closes, and the Z2 invariant changes, passing
from ν = 0 (trivial insulator for d < dc) to ν = 1 (quantum spin Hall insulator for d > dc),
signaling the occurrence of a quantum phase transition.
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Figure 2.1: (a) - Bulk bandstructure for HgTe (top-left panel) and CdTe (top-right panel). (b) -
Schematic picture of quantum well geometry and lowest subbands for two different thicknesses. The
notation for the heavy-hole-like (H1) and electron-like (E1) subbands is according to the properties
of the respective wave functions. Figure adapted from Ref. [Konig2008].

2.4 Edge states and bulk-boundary correspondence

A striking consequence of the topological classification of gapped band structures is the
existence of gapless conducting states at interfaces where the topological invariant changes.
The existence of edge states in topologically non-trivial crystal is readily explained imagining
an interface where the Bloch Hamilltonian slowly interpolates between a topologically non-
trivial insulator (n, ν 6= 0) and a trivial insulator (n, ν = 0). Somewhere along the way
the energy gap has to vanish because otherwise it would be impossible for the topological
invariant to change. There will therefore be low energy electronic states bound to the region
where the energy gap passes through zero. This interplay between the topological structure
of bulk crystals and the presence of gapless boundary modes is known as the bulk-boundary
correspondence: in a nutshell, even if the system is a bulk insulator, it constitutes an edge
Fermi liquid [Bernevig2013].

Chiral edge modes

In the context of Chern insulators, it is well known that edge states emerge at the interface
between the integer quantum Hall state and vacuum [Halperin1982]. Naively, they can be
understood in terms of the skipping motion electrons execute as their cyclotron orbits bounce
off the edge (see Fig. 2.2 (a)). It can be shown [Hasan2010] that the number of edge states at
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the interface with topologically trivial insulators corresponds to the topological invariant n of
Eq. (2.2). Importantly, such edge states of Chern insulators are chiral in the sense that they
propagate in one direction only along the edge, as showed in Fig. 2.2 (a). Moreover, these
states are insensitive to disorder because there are no states available for backscattering - a
fact that underlies the perfectly quantized electronic transport in the quantum Hall effect.

Figure 2.2: Pictorial representation of the chiral edge modes of Chern insulators. (a) -A Chern
insulator with n = 1 is interfaced with a trivial insulator (n = 0). At the interface, where the energy
gap closes, a chiral edge mode (blue arrow) is established. Dashed gray lines represent the skipping
cyclotron orbits executed by electrons bouncing off the edge. (b) - Schematic of the band structure
of this system. The bulk conduction and valence bands are joined by an edge mode traversing the
energy gap. Figure adapted from Ref. [Hasan2010].

A simple theory of the chiral edge states is based on the Jackiw-Rebbi model, which can
be developed using the two band Dirac model [Jackiw-Rebbi1976] introduced in Eq. 2.6 in
a semi-infinite geometry with an edge at y = 0, as depicted in Fig. 2.2 (a). In this respect,
let us consider an interface where the mass at one of the Dirac points (say K1) is fixed and
positive, m1 = m > 0, while the mass at the other Dirac point (K2) changes sign as a
function of y, namely

m2(y) ≡
{

+m for y > 0
−m for y < 0

. (2.9)

In this way we have a trivial insulator for y > 0, and the quatum Hall state for y < 0. The
wave function solution with energy ε(qx) = ~vF qx can be written as

Ψ(x, y) ∝ eiqxxe−|my/~vF |
(

1
1

)
, (2.10)

which dominantly distributes near the interface at y = 0 and decays exponentially away
from it. This band of states intersects the Fermi energy εF with a positive group velocity
vF = (1/~)(dε/dqx) and defines a right moving chiral edge mode, as depicted in Fig. 2.2 (b).

Helical edge modes

Edge states are also present in 2DTIs. Differently from Chern insulators, they always occurs
in pairs, and the Z2 invariant ν indeed corresponds to the number of pairs of the edge
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states modulo 2. The fact that the eigenstates of a TRS invariant Hamiltonian are at least
twofold degenerate is guaranteed by Kramer’s theorem, and directly follows from the relation
T 2 = −1 valid for spin 1/2 particles. Indeed, suppose that a nondegenerate state |ϕ〉 existed,
then T |ϕ〉 = c |ϕ〉 for some constant c. This would mean T 2 |ϕ〉 = |c|2 |ϕ〉, which is not
allowed since |c|2 6= −1. Importantly, the two states, |ϕ〉 and T |ϕ〉, form a Kramers pair
whose degeneracy cannot be lifted by any time reversal symmetric perturbation [Kane2005,
Kane2005a].

Figure 2.3: Pictorial representation of the helical edge modes of 2DTIs. (a) - A 2DTI with ν = 1
is interfaced with a trivial insulator (ν = 0). At the interface, where the energy gap closes, a couple of
counter-propagating edge modes is established. (b) - Schematic of the band structure of this system.
The bulk conduction and valence bands are joined by the two helical edge modes with opposite spins
traversing the energy gap. Opposite slops of the ε-k dispersion curves indicate that they have opposite
velocity. Figure adapted from Ref. [Hasan2010].

Moreover, since TRS requires that states at momenta k and −k have opposite spin,
Kramers pairs with opposite spin-polarization counterpropagate at a given edge, as schemat-
ically depicted in Fig. 2.3 (a). This distinctive property of edge states is called “spin-
momentum locking” and constitutes one of the main characteristics of 2DTIs that we will be
able to discuss extensively throughout the thesis. In contrast to the chiral states of Chern
insulators, they are said to be helical in analogy with the correlation between spin and mo-
mentum of a particle known as helicity [Wu2006]. The helical edge states can be described
by the following low energy 1D Dirac effective Hamiltonian

Hedge =
∫
dx ψ†↑ (−i~vF∂x − µ)ψ↑ + ψ†↓ (i~vF∂x − µ)ψ↓, (2.11)

where ψ↑ (ψ↓) is the field operator of spin-↑ (↓) electrons, µ is the chemical potential, and
vF is the propagation Fermi velocity.

Due to their helical property, 2DTI’s edge states form a unique 1D conductor that is es-
sentially half of an ordinary 1D conductor. However, while ordinary conductors (which have
both spins propagating in both directions) are fragile because the electronic states are sus-
ceptible to Anderson localization in the presence of weak disorder [Anderson1958, Lee1985];
the quantum spin Hall edge states cannot be localized even for strong disorder. Indeed, as
soon as time-reversal symmetry is ensured, it can be shown (by using the Landauer-Büttiker
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formalism) that no elastic backscattering can occur at the interface between a disordered and
a clean region. As a consequence, the transport along the edge is ballistic at zero temperature
and the conductivity will be quantized to 2e/h. Moreover, recent studies on the impact of
electron-phonon [Budich2012] and spin-phonon interaction [Groenendijk2018] in helical edge
states support the idea that the transport is ballistic at the operating temperatures of a few
kelvin.

Within a year of the theoretical prediction of 2DTIs in HgTe/CdTe quantum wells, the
Würzburg group led by Laurens Molenkamp [Konig2007], realized the device and performed
transport experiments that convincingly demonstrated the existence of the edge states in
quantum spin Hall insulators. In Fig. 2.4 are shown the resistance measurements for a

Figure 2.4: Experimental measures of the non-local resistance as a function of the gating voltage
in CdTe/HgTe/CdTe quantum wells of different widths. Samples III and IV , with d > dc, are in the
topological regime, and the non-local conductance is 2e2/h (red dashed line). Sample I, with d < dc,
is in the trivial insulating regime, showing much higher resistances. The inset shows the resistance of
the sample III at 30 mK (green) and 1.8 K (black). Figure adapted from Ref. [Konig2007].

series of HgTe/CdTe samples as a function of a gate voltage which tunes the Fermi energy
through the bulk energy gap. Sample I is a narrow quantum well with a thickness of the
HgTe layer smaller than the critical thickness dc = 6.3 nm: the resistance increases to the
order of ≈ 107 Ω, in agreement with the insulating behavior expected for the topologically
trivial regime. Samples II–IV are wider wells (d > dc) in the inverted regime. In particular,
samples III and IV (with the same length L = 1 µm but different widths W = 0.5, 1 µm)
exhibit quantized transport associated with edge states with a conductance 2e2/h. Sample
II, much longer (L = 20 µm), showed finite temperature scattering effects.

As a final remark, it is important to stress that, the helical nature of the edge states
is commonly probed in HgTe quantum wells by means of nonlocal transport measurements
in a Hall bar geometry with four or more terminals [Konig2007, Roth2009, Brune2012] and
quantum point contacts [Citro2011, Ronetti2016, Ronetti2017]. These kind of measurments
can be very hard to implement in other systems, where evidence is shown on the existence of
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edge states but not yet on their helical nature [Tang2017, Wu2018, Liu2020]. For this reason,
one of the main goal of this thesis is to demonstrate that non local thermoelectric effects,
obtained in 2DTI based Josephson junctions, can be used to probe the helical nature of the
edge states of such a systems.



3
Bogoliubov-de Gennes Formalism

Together with topological insulators (presented so far), superconductors constitute the other
important ingredient we need for the realization of a hybrid topological Josephson junction,
which represents the main object of investigation of this thesis. This introduction does not
aim at a detailed presentation of superconductivity but only introduces the few concepts
necessary for the understanding of the rest of this work.

In the first part of this chapter, Sec. 3.1, we present the microscopic theory of the super-
conductivity in case of spatially inhomogeneous superconducting systems. In this context we
introduce the Bogoliubov-de Gennes (BdG) formalism, which will constitute the framework
of the entire thesis. As we will see in Sec. 3.2, this formalism artificially doubles the degree
of freedom and this redundancy introduces a new “symmetry”: the particle-hole symmetry
(PHS). Finally, in Sec. 3.3, we conclude by showing that the BdG equations can be used also
to describe one of the most important phenomenon arising in presence of superconductivity:
the Andreev reflection.

3.1 BdG formalism

In the framework of the microscopic Bardeen-Cooper-Schrieffer (BCS) theory [BCS1957], one
considers only pure materials, in which the momentum k is a good quantum number, and in
which k ↑ and k ↓ states are occupied in pairs. However, a more general problem arises if
the superconducting order parameter ∆(r) varies in space, e. g. at an interface with another
material. To cope with these situation and describe spatially inhomogeneous superconducting
systems, one may use the Bogoliubov equations, which generalize the ordinary Hartree-Fock
equations of the many-electron theory [Tinkham1966].

When there are spatial variations in the Hamiltonian, such as variations in the super-
conducting pairing potential ∆(r) as well as the ordinary scalar potential V (r), the plane-
wave momentum eigenfunctions characterized by k (used in the original BCS development)
are no longer appropriate. They must be replaced by suitable position-dependent func-
tions [DeGennes1966]. In this respect, the many-particle effective BCS Hamiltonian in the
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Hartree-Fock-Bogoliubov mean-field approximation can be written as

H =
∑
σ

∫
dr ψ̂†σ(r)Hψ̂σ(r) +

∫
dr

[
∆(r)ψ̂†↑(r)ψ̂†↓(r) + ∆∗(r)ψ̂↓(r)ψ̂↑(r)

]
, (3.1)

where ψ̂†σ(r) and ψ̂σ(r) are the creation and annihilation operators for position eigenfunctions
with spin σ =↑↓ and H = P 2/2m + eV (r) − µ. Here P = −i~∇ − (e/c)A with A and V
the vector and scalar potential respectively, and with µ the chemical potential. The second
term in the right-hand side of Eq. (3.1) is responsible for the superconductivity and it is
associated with the complex order parameter in the superconductor ∆(r). The Hamiltonian
H can be diagonalized through the generalized Bogoliubov [Bogoliubov1958, Valatin1958]
transformation 

ψ̂σ(x) =
∑
n

[
un(x)γ̂n,σ + sign(σ)v∗n(x)γ̂†n,−σ

]
ψ̂†σ(x) =

∑
n

[
u∗n(x)γ̂†n,σ + sign(σ)vn(x)γ̂n,−σ

] . (3.2)

The summation over states n indicates the summation over the discrete spectrum and/or the
integration over the continuous spectrum. The operators of free electrons satisfy the standard
commutation relations for Fermi particles:[

ψ̂†σ(r), ψ̂σ′(r′)
]

= δσ,σ′δ(r − r′)[
ψ̂σ(r), ψ̂σ′(r′)

]
= 0. (3.3)

Similarly we require that the operators γ̂†n,σ, γ̂n,σ also satisfy the commutation relations for
Fermi particles reflecting the canonical character of the transformation of Eq. (3.2):[

γ̂†n,σ, γ̂n′,σ′
]

= δσ,σ′δn,n′[
γ̂n,σ, γ̂n′,σ′

]
= 0. (3.4)

Combining conditions of Eqs. (3.3) and (3.4), the functions un(r) and vn(r) satisfy the
completeness relation ∑

n

[
u∗n(r)un(r′) + vn(r)v∗n(r′)

]
= δ(r − r′)∑

n

[
u∗n(r)vn(r′)− vn(r)u∗n(r′)

]
= 0, (3.5)

and orthogonality relation∫
dr [u∗n(r)un′(r) + vn(r)v∗n′(r)] = δn,n′∫
dr [u∗n(r)vn′(r)− vn(r)u∗n′(r)] = 0. (3.6)

Transformation of Eq. (3.2) diagonalizes the Hamiltonian of Eq. (3.1), reducing it to the
form

H = U0 +
∑
σ,n

εnγ̂
†
n,σγ̂n,σ (3.7)
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in which Bogoliubov quasiparticle operators, given in terms of the wave field operators, take
the form

γ̂n,↑ =
∫
dr

[
u∗n(r)ψ̂↑(r) + v∗n(r)ψ̂†↓

]
γ̂†n,↓ =

∫
dr

[
un(r)ψ̂†↓(r)− vn(r)ψ̂↑

]
, (3.8)

and where U0 plays the role of the ground-state energy of the system

U0 =
∫
dr

∑
n

[vn(r)Hv∗n(r) + u∗n(r)Hun(r)]−
∑
n

εn. (3.9)

The diagonalization requires that the functions un(r) and vn(r) satisfy the so-called Bogoliubov-
de Gennes (BdG) equations(

H ∆
∆∗ −H∗

)(
un(r)
vn(r)

)
= εn

(
un(r)
vn(r)

)
. (3.10)

The pair potential ∆(r) has to be determined selfconsistently, and is given by

∆(r) = g
∑
n

un(r)v∗n(r) [1− 2f(εn)] , (3.11)

where g < 0 is the attractive interaction constant defined by BCS and f(εn) is the Fermi
function. Because of Eq. (3.11), the determination of the excitation energy spectrum is
a non-linear problem, which is further complicated by the fact that the vector potential
A has also to be determined self-consistently from the current density, via Maxwell’s equa-
tions [Bardeen1969]. A straightforward solution of the BdG equations would involve choosing
tentative forms for ∆(r), solving the equations, recalculating the pairing potential using Eq.
(3.11), and then repeating the procedure until a self-consistent solution is obtained. This can
be prohibitively difficult. The superconducting gap can sometimes be specified “manually”
and the problem can be solved quite accurately without resorting to self-consistency. For
example, in the case of a small normal contact connected to a massive superconductor(s) via
tunneling junctions we can assume the superconducting gap to be constant in the supercon-
ductor and zero in the normal metal. This approximation takes the name of “rigid boundary
condition”.

It is important to notice that the BdG equations of Eq. (3.10) are invariant under the
transformations εn → −εn, un(r) → v∗n(r) and vn(r) → −u∗n(r). In this sense the set of
solutions of Eqs. (3.10) is redundant [Lesovik2011]. This can be simply explained in the case
when the superconducting pairing potential is zero. It is clear that, in this case, the same
initial electron state (expressed in terms of the Bogoliubov quasiparticles) can be described
either by the creation of an electron-like state or by the annihilation of a hole-like state with
the opposite energy. This redundancy of the solutions of the BdG equations can be better
understood in the light of the intrinsic particle hole symmetry (PHS) of the BdG Hamiltonian,
as we will better discuss in the next section.

As a consequence of this redundancy, all quantities of interest (such as the charge density,
current density and the self-consistent fields U0 and ∆) can be expressed in two different
but equivalent ways [Datta1996, Datta1999]: (i) within the exitation picture, by using only
the solutions of the BdG equation corresponding to positive energies ε ≥ 0, in which case
both the electron-like and hole-like states have to be taken into account; (ii) within the single
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particle picture, by integrating over all the (positive and negative) energies, in which case
only the electron-like states are taken into account. These approaches are equivalent and can
be chosen in accordance with their practicality. We notice that in principle other variants
are also possible [Lesovik2011]. As far as concern this thesis, all the following results have
been obtained within the exitation picture.

3.2 Particle-Hole Symmetry

Particle-hole symmetry appears in the context of superconducting systems described by a
mean-field Bogoliubov-De Gennes Hamiltonian. It is a consequence of the fermionic exchange
statistics and applies to all quadratic (or mean-field) Hamiltonians of the form

H =
∑
αβ

Hαβ ĉ
†
αĉβ + 1

2
∑
αβ

(
∆αβ ĉ

†
αĉ
†
β + ∆∗αβ ĉαĉβ

)
(3.12)

where the operators ĉ†α and ĉα denote the creation and annihilation of an electron in second
quantization [Altland-Zirnabauer1997]. Importantly, such a HamiltonianH does not conserve
the number of electrons, but still conserves the parity of the number of electrons, that is
whether the number of electrons is even or odd. Here we introduced some generic orthonormal
basis of single electron states |α〉, where α is a multi-index that combines the orbital and spin
quantum numbers of the electron. If N is the number of orbital states used, α runs from 1 to
2N . Furthermore, the anti-commutation relations {ĉα, ĉβ} = {ĉ†α, ĉ

†
β} = 0 and {ĉα, ĉ†β} = δαβ

imply that the single-particle Hamiltonian H is hermitian (i. e. Hαβ = H∗βα), while the pair
potential ∆ is anti-symmetric, i. e. ∆αβ = −∆βα. Notice that, in the spin space, the pair
potential matrix can be written in the following form [Timm2012]

∆ =
(
−dx + idy ∆s + dz
−∆s + dz dx + idy

)
(3.13)

with

∆s = ∆↑↓ −∆↓↑
2 (3.14)

dx = −∆↑↑ + ∆↓↓
2 (3.15)

dy = −i ∆↑↑ + ∆↓↓
2 (3.16)

dz = ∆↑↓ + ∆↓↑
2 (3.17)

where we have identified the singlet matrix-component of the gap ∆s, and the triplet matrix-
components collected in the vector d = (dx,dy,dz). When d = 0 we talk about singlet pairing
or s-wave superconductors, otherwise we talk about triplet pairing superconductors. We can
now group all the creation and annihilation operators in the vector Ĉ =

(
ĉ↑, ĉ↓, ĉ↑

†, ĉ↓
†
)T

,
where we made explicit the spin degree of freedom. In this way we can write H in the form
“row multiplies matrix multiplies column” [Altland-Zirnabauer1997]

H = 1
2Ĉ
†
HBdGĈ. (3.18)
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The 4N × 4N matrix HBdG is known as the Bogoliubov-de Gennes Hamiltonian, and it has
the following structure

HBdG =
(
H ∆
−∆∗ −H∗

)
. (3.19)

It is important to notice that the eigenvalue problem

HBdGΨ(r) = εΨ(r) (3.20)

corresponds to the generalized Bogoliubov-de Gennes equations of Eq. (3.10) (notice the
different sign of the gap order parameter ∆∗, which in Eq. (3.19) is a matrix). Later in this
section we will show how Eq. (3.10) can be obtained from Eq. (3.19) in the case of singlet
pairing superconductors with preserved spin-rotation symmetry. Interestingly, Eq. (3.20)
can be interpreted as the wave equation for the multi-component wave function

Ψ(r) =
(
u(r)
v(r)

)
(3.21)

of a quasiparticle with energy ε. The wave function Ψ(r) describes excitations known
as Bogoliubov quasiparticles, formed out of coherent superpositions of electrons u(r) and
holes v(r). This interpretation can be useful, in the consideration of the Andreev scatter-
ing [Andreev1964] as we will see in the next Sec. 3.3.

If interpreted as a single particle Hamiltonian in first quantization picture, the operator
HBdG, acts in an enlarged space, which takes the name of Nambu space, which is the tensor
product of the physical space C2N (orbitals and spin) with an extra degree of freedom C2,
which we call the “particle-hole space”. Note however that the “particles” and “holes” of the
BdG formalism are not the particle and hole states of a degenerate Fermi gas. Indeed, the
matrix H already acts on all of the single-electron states, which have energies either above
or below the chemical potential. The BdG-hole states acted upon by −H∗ are identical (and
in this sense redundant, or unphysical) copies of the BdG-particle states acted upon by H.
They are introduced for the convenience of treating the pairing field within the formalism of
first quantization [Altland-Zirnabauer1997].

By construction the BdG Hamiltonian anticommutes with the anti-unitary particle-hole
(or charge conjugation) operator

P = τxK (3.22)

such that {HBdG,P} = 0, where K is the complex conjugate operator and τx is a Pauli
matrix acting on the particle-hole space. In this sense, the BdG-Hamiltonian HBdG is said
to obey the particle-hole symmetry (PHS), namely

HBdG = −PHBdGP−1. (3.23)

Because of this symmetry, for every eigenstate Ψ = (u,v)T with energy ε, there is a particle-
hole conjugate state PΨ = (v∗,u∗)T with opposite energy −ε, i. e. HBdGPΨ = −PĤBdGΨ =
−εPΨ. Furthermore, since the action of the complex conjugation in the momentum-space
changes k in −k, PHS ensures that electron and hole dispersions of the same spin are sym-
metric with respect to the point (ε, k) = (0, 0). We emphasize that, despite the name, PHS
is not a proper symmetry: the relation between the state at energy ε and −ε is due to a
mathematical artifact to resolve BdG equations and thus it is a redundancy rather than a
physical symmetry.
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As a final remark, let us consider the case of singlet pairing superconducting systems with
preserved spin-rotation symmetry (as that described by the Hamiltonian of Eq. (3.1)). This
means that the BdG Hamiltonian satisfy the following relation

[HBdG, Jk] = 0; with Jk ≡
(
σk 0
0 −σTk

)
, (3.24)

where k = x, y, z. In this case it can be shown that, the Hamiltonian H of Eq. (3.18) can be
brought into the form

H̃ = 1
2
(
ĉ†↑, ĉ↓

)
H̃BdG

(
ĉ↑
ĉ†↓

)
(3.25)

up to a term which is proportional to the identity. Here, H̃BdG is a 2N × 2N matrix with
the following structure

H̃BdG =
(
h δ
δ∗ −h∗

)
(3.26)

which clearly coincide with Eq. (3.10) when h ≡ H and δ ≡ ∆. In this case it is possible
to construct an alternative particle-hole symmetry operator, P = τyK, where τy acts in a
restricted particle-hole space of states of the form Ψ = (u↑, v↓)T [Schnyder2008].

3.3 Andreev reflection

In the previous sections we have seen that the Bogoliubov-de Gennes equations are used in
order to diagonalize the mean-field BCS Hamiltonian and can be interpreted as wave equa-
tions for quasiparticle excitations which are mixtures of particles and holes. Here we show
that through the BdG equations one can define Andreev reflections at the N -S interface be-
tween a normal-metal and an s-wave superconductor, which describe an additional scattering
process (with respect to ordinary reflections) taking place in such a system.
The simplest problem of a 1D N -S system was examined by Blonder, Tinkham and Klapwijk
in 1982 [BTK1982]. This approach is also valid in higher dimensions, provided that there is
translational invariance in the direction perpendicular to the electronic motion [Lambert1998].
To see this, imagine the 3D system of Fig. 3.1, with a finite width in the y-direction, finite
high in the z-direction and infinite in the x-direction. The problem is quantized in the
y-z-plane, thus we can factorize the wavefunction into

Ψ(x, y, z) = ψ(x)Φn(y, z), (3.27)

where n denotes the quantum number labeling the transversal modes[
− ~2

2m

(
∂2

∂z2 + ∂2

∂y2

)
+ V⊥(y, z)

]
Φn(y, z) = εnΦn(y, z) (3.28)

with transversal energy εn and V⊥ the transversal confining potential. The energy is the sum
of the longitudinal and transversal energies ε = ε‖+εn, such that, for a given transversal mode
n, the effective chemical potential for the longitudinal propagation reads µn = εF − εn, where
εF is the Fermi energy (which already includes the self-consistent potential U0 of Eq. (3.9)).
For a fixed transversal mode n∗ (such that µ ≡ µn∗), the problem becomes one-dimensional
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Figure 3.1: (a) - Scheme of a 3D N -S junction with finite width in the y-direction, finite high
in the z-direction and infinite in the x-direction. The interface is positioned at x0, the normal region
N extends for x < x0 and the superconductor S is located for x > x0. (b) - Profile of the gap order
parameter with rigid boundary condition along the x-direction.

and the Bogoliubov–de Gennes equations for a singlet pairing superconducting system reduce
to (

H ∆
∆∗ −H∗

)(
u(x)
v(x)

)
= ε

(
u(x)
v(x)

)
(3.29)

with
H = − ~2

2m
∂2

∂x2 + Λ(x)− µ (3.30)

in which we included the contact potential Λ(x) = Λδ(x − x0) at the interface located in
x = x0. This is meant to represent the effect of the barrier in the junction, the localized
disorder at the interface, or the intentional oxide barrier in a tunnel junction. Moreover, we
consider rigid boundary conditions for the gap order parameter, i. e. ∆(x) = Θ(x− x0)∆eiφ.

It is important to stress that here we consider an s-wave superconducting systems with pre-
served spin-rotation symmetry (as described by the Hamiltonians of Eqs. (3.10) and (3.26)).
This means that the superconducting order parameter ∆ only couples particles and holes with
opposite spin. As a consequence the components of the wave vector of Eq. (3.29), namely
u(x) and v(x), should be labeled by opposite spin indices: e. g. u↑(x)/v↓(x) or u↓(x)/v↑(x)
- see the discussion at the end of the previous section. However in the absence of spin-flip
processes (such as in the presence of magnetic domains) this only affects normalization, and
we can omit the spin label for simplicity.

Such Hamiltonian of Eq. (3.29) was introduced for the first time in Ref. [BTK1982] as
a generalized semiconductor model to treat the transmission and reflection of particles at
the N -S interface within the scattering theory of transport. This approach goes beyond the
usual tunnel limit in which only the superconducting density of states, NS(E), distinguishes
the superconductor from the situation in the normal state [Datta1996]. Indeed, one of the
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major shortcoming with the tunneling approach is that the density-of-states factor makes no
reference to the microscopic nature of the superconducting state by ignoring the presence of
condensate and not taking into account the quasiparticle excitations as mixtures of particles
and holes. Here instead, we describe a generalized semiconductor model specifically designed
to avoid this loss of information.

As prescribed by the excitation picture, in the following, we will be interested in finding
only the non-negative energy solutions of Eq. (3.29), i. e. with ε ≥ 0 (where µ is taken as
reference for energies) [Dolcini2009]. We will proceed by computing first the wavefunctions
in the normal region N (for x < x0), then in the superconducting region S (for x > x0),
and finally we will match the solutions in order to compute the scattering coefficients which
describe the interface.

Solutions in N

Figure 3.2: BdG spectrum in the N region. As ensured by PHS, dispersion curves for electrons
(blue solid line) and holes (red dotted line) are redundant copies mirrored with respect the origin.
Within the excitation picture, only positive energies are considered (notice that dispersion curves for
negative energies have been shaded). The horizontal dashed line, for a fixed ε > 0, intercepts the
curves at points ±ke for electrons and ±kh for holes. The slope of the dispersion curves at these
points indicate the group velocity of each mover.

In the normal side N the Eq. (3.29) reduces to

(
− ~2

2m
∂2

∂x2 − µ 0
0 ~2

2m
∂2

∂x2 + µ

)(
u(x)
v(x)

)
= ε

(
u(x)
v(x)

)
(3.31)
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which exhibits the following steady-state plane-wave solutions

ψNe±(x) =
(

1
0

)
e±ikex; ψNh±(x) =

(
0
1

)
e∓ikhx (3.32)

Here the upper index N refer to eigenstate solutions inside the normal region, and ± indicate
the direction of propagation along the x-axis (+ for right movers, − for left movers) for
both electrons (e) and holes (h). In Fig. 3.2 are reported the different branches of the
eigenspectrum of the BdG Hamiltonian relative to the eigenstate solutions of Eq. (3.32),
which are given by the following relations

Ee = ~2k2
e

2m − µ; Eh = µ− ~2k2
h

2m (3.33)

for electrons (blue solid line) and holes (red dotted line) respectively. Notice that, in Eqs.
(3.32) and (3.33), we introduced the electron and hole wave vector amplitudes

ke = kF

√
1 + ε

µ
; kh = kF

√
1− ε

µ
(3.34)

with kF =
√

2mµ/~ the Fermi wave vector. As emerges from Fig. 3.2, due to the BdG-
formalism and the corresponding introduction of holes, the spectrum is doubled. More pre-
cisely, the spectra of electrons and holes are mirrored with respect the point (ε, k) = (0, 0),
such that Eh(kh) = −Ee(−ke), as ensured by PHS. As already mentioned in the previous sec-
tion, such a redundancy in the eigenspectrum of the BdG Hamiltonian can be cured within
the excitation picture by considering only the solutions corresponding to positive energies
ε ≥ 0.

Solutions in S

In the superconducting side S the Eq. (3.29) reduces to(
− ~2

2m
∂2

∂x2 − µ ∆eiφ
∆e−iφ ~2

2m
∂2

∂x2 + µ

)(
u(x)
v(x)

)
= ε

(
u(x)
v(x)

)
(3.35)

which exhibits two solutions

ψSẽ±(x) =
(
u0e

iφ2

v0e
−iφ2

)
e±iqẽx; ψS

h̃±(x) =
(
v0e

iφ2

u0e
−iφ2

)
e∓iqh̃x. (3.36)

Here the upper index S refer to excitations inside the superconductor, and ± indicate the
direction of propagation along the x-axis (+ for right movers, − for left movers) for both
electron-like solutions (ẽ) and hole-like solutions (h̃). Usually, in the literature, one refers to
quasiparticles (QPs) for ψSẽ± and to quasiholes (QHs) for ψS

h̃±. In this thesis we adopt the
same notation. This nomenclature can be rationalized by observing that when the gap closes,
i. e. ∆→ 0, QPs continuously evolve into electrons (ψSẽ± → ψNe±) and QHs continuously evolve
into holes (ψS

h̃± → ψNh±). The different branches of the eigenspectrum of the BdG Hamiltonian
are depicted in Fig. 3.3. Within the excitation picture we are concerned with quasiparticles
energies above the ground state (ε ≥ 0), which are given by the following relations

Eẽ =

√√√√(~2q2
ẽ

2m − µ
)2

+ ∆2 Eh̃ =

√√√√(µ− ~2q2
h̃

2m

)2

+ ∆2 (3.37)



26 Bogoliubov-de Gennes Formalism

Figure 3.3: BdG spectrum in the S region. The presence of the superconductor opens a gap ∆
in the eigenspectrum of Fig. 3.2, and hybridizes electron- and hole-states (as indicated by the colored
transition). Branches corresponding to QPs are depicted by solid lines, those corresponding to QHs
are indicated by dotted lines. Eẽ and Eh̃ label branches with positive energy, E′ẽ, E′h̃ indicate those
with negative energy (the latter are redundant, hence we do not consider them, as indicated by the
shaded region). The horizontal dashed line, for a fixed ε > ∆, intercepts the curves at points ±qẽ for
QPs and ±qh̃ for QHs. The slope of the dispersion curves at these points indicate the group velocity
of each mover.

for QPs (solid line) and QHs (dashed line) respectively. Also in this case, PHS introduces
particle-hole conjugated states with negative energies, E′ẽ and E′

h̃
(see Fig. 3.3). These

eigenenergies, which satisfy the relations E′ẽ(qẽ) = −Eh̃(−qh̃) and E′
h̃
(qh̃) = −Eẽ(−qẽ), are

redundant and therefore we do not consider them. In Eqs. (3.36) and (3.37) we introduced
the wave vector amplitudes

qẽ = kF

√√√√1 +
√
ε2 −∆2

µ2 ; qh̃ = kF

√√√√1−
√
ε2 −∆2

µ2 (3.38)

for QPs and QHs respectively. Notice that, as depicted in Fig. 3.3, the direction of propaga-
tion (corresponding to the sign of the slope of eigenspectrum at a given energy) and the sign
of the wave vector are coincident for QPs (namely +qẽ is related to right moving QPs ψSẽ+,
and −qẽ refer to left moving QPs ψSẽ−), while are opposite for QHs (−qh̃ is related to right
moving QHs ψS

h̃+, and +qh̃ refer to left moving QHs ψS
h̃−).

The eigenstate solutions of Eq. (3.36), are expressed in terms of the so-call coherence
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factors u0 and v0 which take the following form

u0(ε) =

√√√√√1
2

1 +

√
ε2 −∆2

ε2

 ≡
√

∆
2εe

1
2h(ε);

v0(ε) =

√√√√√1
2

1−

√
ε2 −∆2

ε2

 ≡
√

∆
2εe
− 1

2h(ε) (3.39)

with

h(ε) ≡


arcCosh

(
ε

∆

)
for ε > ∆

i arccos
(
ε

∆

)
for ε < ∆

. (3.40)

It is worth to notice that quasiparticles at energy ε have charge

Q(ε) = ±e
[
u2

0(ε)− v2
0(ε)

]
= ±e

√
ε2 −∆2

ε2
≡ ±eNS(ε)−1 (3.41)

where ± stay for QPs and QHs respectively and NS(ε) indicates the density of states of the
excitations inside the superconductor. This witnesses the fractional character of quasiparticles
charge inside superconductors, which is zero at the energy gap and approaches ±e for energies
well above (below) the gap.

Scattering matrix coefficients

We now want to determine the scattering coefficients. Let us start by considering the case of
an incident electron, incoming from the N electrode towards the interface

ψin(x) = 1√
2π~ve

(
1
0

)
e+ikex. (3.42)

The incoming wave reflects back into the N region in a left-moving electron or a left-moving
hole

ψrefl(x) = ree√
2π~ve

(
1
0

)
e−ikex + rhe√

2π~vh

(
0
1

)
eikhx (3.43)

while, inside the superconducting region, it transmits (if the energy is not in the gap, i. e. ε ≥
∆) as a right-moving QP or a right-moving QH

ψtrans(x) = tẽe√
2π~we

(
u0e

iφ2

v0e
−iφ2

)
e+iqẽx + th̃e√

2π~wh

(
v0e

iφ2

u0e
−iφ2

)
e−iqh̃x. (3.44)

In Eq. (3.43) the coefficient ree represents an ordinary refelction process in which the incoming
electron from the N region is reflected as an electron on the same side. On the contrary,
the coefficients rhe represents a new scattering process called Andreev reflection, which only
emerges in presence of superconductors, and which converts the incoming electron from the
N electrode into a hole on the same side. Similarly, in Eq. (3.44), the coefficients tẽe and
th̃e represent the transmission amplitudes for the incoming electron to be transmitted to
the S side as a QP and a QH respectively. We have normalized the wavefunctions with
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their group velocities, which are different in general for particle and holes, and from normal
to superconduting side. In this way, each wavefunction carries the same amount of flux
of quasiparticle probability current, and therefore the above coefficients describe a unitary
scattering matrix. Specifically we have

ve = 1
~

∣∣∣∣∂Ee∂ke

∣∣∣∣ = vF
kF
ke; vh = 1

~

∣∣∣∣∂Eh∂kh

∣∣∣∣ = vF
kF
kh (3.45)

for the N side, and

wẽ = 1
~

∣∣∣∣∂Eẽ∂qẽ

∣∣∣∣ = vF
kF
qẽ
(
u2

0 − v2
0

)
; wh̃ = 1

~

∣∣∣∣∣∂Eh̃∂qh̃

∣∣∣∣∣ = vF
kF
qh̃

(
u2

0 − v2
0

)
(3.46)

for the S side, with vF = ~kF /m the Fermi velocity. It is important to stress that the
transmitted wave function ψtrans(x) of Eq. (3.44), indicates states which propagate above
the energy gap (i. e. ε ≥ ∆). In the sub-gap regime (i. e. ε < ∆), instead, the group velocity it
is not defined, the wave vector amplitudes qẽ/h̃ acquire an imaginary part, and the solutions
of the Bogoliubov equations become evanescent waves which decay exponentially inside the
superconductor

ψevan(x) = ηẽe

(
u0e

iφ2

v0e
−iφ2

)
e+iqẽx + ηh̃e

(
v0e

iφ2

u0e
−iφ2

)
e−iqh̃x. (3.47)

Notice, however, that unitary of the scattering matrix only holds for propagating modes,
because evanescent waves carry no current and unitarity is related to the conservation of
the current. To solve for the scattering coefficients ree, rhe, tẽe and th̃e one needs matching
conditions at the interface. The boundary conditions can be obtained by imposing first the
continuity across the interface {

u(x−0 ) = u(x+
0 )

v(x−0 ) = v(x+
0 )

(3.48)

where we indicated with x±0 = limδ→0± x0 + δ, and with x0 the position of the interface
along the x-direction. Similarly, we obtain the boundary conditions for the derivatives by
integrating Eq. (3.29) around the point x0,

∂xu(x+
0 )− ∂xu(x−0 ) = 2mΛ

~2 u(x0)

∂xv(x+
0 )− ∂xv(x−0 ) = 2mΛ

~2 v(x0)
. (3.49)

In the last equations we considered u(x0) = (u(x+
0 )+u(x−0 ))/2 and v(x0) = (v(x+

0 )+v(x−0 ))/2.
Eqs. (3.42)-(3.44), together with boundary conditions (3.48)-(3.49), completely determines
the scattering coefficients. The detailed solution is straightforward, but the resulting expres-
sions look rather cumbersome (see the end of this section for more details). In this regard, it
is convenient to resort to the so called Andreev approximation, which consists in envisaging
low energies with respect to the Fermi level

ε,∆� µ, (3.50)

and thus retain the lowest order in ε/µ and ∆/µ. One can then approximate

ke/h ' qẽ/h̃ ' kF . (3.51)
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It is important to notice that, under such approximation, all the details about the curvature
of the BdG eigenspectrum is completely lost. As consequence, no themoelectric effects can
arise within the Andreev approximation limit. Instead, for a correct description of the ther-
moelectric phenomena in hybrid superconducting systems, it is necessary to go beyond the
Andreev approximation.
Thus, by exploiting Eq. (3.51), we obtain the following expressions for the reflection and
transmission amplitudes

ree = −Z (i+ Z)
(
u2

0 − v2
0
)

u2
0 + Z2 (u2

0 − v2
0
) (3.52a)

rhe = u0v0
u2

0 + Z2 (u2
0 − v2

0
)e−iφ (3.52b)

tẽe =
(1− iZ)u0

√
u2

0 − v2
0

u2
0 + Z2 (u2

0 − v2
0
) e−i

φ
2 · Θ(ε−∆) (3.52c)

th̃e =
Zv0

√
u2

0 − v2
0

u2
0 + Z2 (u2

0 − v2
0
)e−iφ2 · Θ(ε−∆) (3.52d)

(see the end of this section for their computation beyond the Andreev approximation). The
amplitudes for the evanescent wave we introduced in Eq. (3.47) in the sub-gap regime (i. e. ε <
∆) read as

ηẽe = (1− iZ)u0
u2

0 + Z2 (u2
0 − v2

0
)e−iφ2 ; ηh̃e = Zv0

u2
0 + Z2 (u2

0 − v2
0
)e−iφ2 . (3.53)

Similar equations can be found for incoming holes from N or incoming QPs and QHs from
S. In this case, the remaining scattering coefficients respect the following relations

rẽẽ = r∗
h̃h̃

= r∗hh = ree

−rh̃ẽe
−iφ = −r∗

ẽh̃
e−iφ = r∗eh = rhe

teẽe
−iφ = t∗

hh̃
e−iφ = t∗

h̃h
= tẽe

−thẽ = −t∗
eh̃

= t∗ẽh = th̃e

(3.54)

Notice that in Eqs. (3.52)-(3.53), we introduced the dimensionless barrier strength

Z = Λ
~vF

. (3.55)

The meaning of such parameter Z becomes clear in the case of a normal junction, i. e. when
the gap in the superconductor is set to be zero (∆ → 0). In this case one can prove that Z
is related to the transmission probability

T = 1
1 + Z2 . (3.56)

From the above relation, it follows that Z can be interpreted as the transparency of the N -S
interface: for Z � 1 we have a very transparent (or ideal) interface, while for Z � 1 we have
a weakly transparent interface (tunnel limit) [BTK1982].

From Eqs. (3.52), one can easily verify that

|ree|2 + |rhe|2 + |tẽe|2 +
∣∣th̃e∣∣2 = 1 (3.57)
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as required by unitarity of the scattering matrix. In particular, it is important to notice that
in the subgap regime the transmission coefficients tẽe = th̃e = 0, and thus Eq. (3.57) becomes

|ree|2 + |rhe|2 = 1 for ε < ∆. (3.58)

Perfect Andreev reflection

Figure 3.4: Andreev reflection: An incident electron with energy ε < ∆ "drags" an electron with
energy −ε along with it into the superconductor. This leaves behind an empty state that flows away
from the interface. The process corresponds to the injection of a Cooper pair inside the superconductor.

In order to discuss the physical consequences of the coefficients ree, rhe, tẽe and th̃e found
above, it is convenient to consider the special case of an ideal interface (Z = 0). In this case
the reflection amplitudes of Eqs. (3.52a) and (3.52b), take the form

ree = 0 (3.59)

rhe = e−iφ
v0
u0

= e−iφeh(ε) = e−iφ


arcCosh

(
ε

∆

)
for ε > ∆

i arccos
(
ε

∆

)
for ε < ∆

, (3.60)

where we made explicit the expression for the function h(ε) defined in Eq. (3.40). A similar
relation can be obtained for an injected hole by simply changing φ → −φ. An important
consequence of this fact is that, for an ideal N -S interface, an injected electron can only
be reflected as a hole with opposite spin. This phenomenon is known as perfect Andreev
reflection, and is depicted in Fig. 3.4 [Andreev1964]. In contrast to an ordinary reflection,
where momentum is not conserved and charge is conserved, in an Andreev reflection process,
momentum is almost conserved (namely in the Andreev approximation limit both the in-
coming electron and the reflected hole have momentum very close to the same kF ), whereas
charge is not conserved. Such a coherent reflection of an incoming electron into an outgoing
hole with opposite spin can be effectively interpreted as the injection of a Cooper pair inside
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the superconducting lead, as schematically represented in Fig. 3.4. In this case, an incident
electron with energy ε “drags” an electron with opposite energy (with respect the chemical
potential µ, here taken as reference) along with it inside the superconductor. This creates a
Cooper pair at zero energy in the condensate of the superconductor, and leaves behind an
empty state (corresponding to an hole excitation) that flows away from the interface inside
the normal region [Datta1996].

Andreev reflection is the predominant scattering mechanism for quasiparticles incoming
from the normal side with energies below the superconducting gap. This phenomenon links
the transport in normal regions, where the charge is carried by quasi-particles, to the transport
in the superconducting region, where the charge is carried by the condensate, thus as far as
quantum transport is concerned, it allows electrical currents to flow instead of blocking them
as normal reflection does. Moreover, it doubles the conductance with respect to a normal
transmission event since the charge in the normal part changes by 2e instead of e. As far
as energy and heat are concerned, the Andreev reflection blocks their flows since energy is
propagated by quasi-particle, but not the condensate.

Current-Supercurrent conversion

As we have just seen, Andreev reflection processes seem to convert discontinuously ordinary
charge current into supercurrent at the interface between the N and S region. However, if one
examines the problem more deeply one can obtain a more microscopic view of this conversion
process. The key point relies on the evanescent wave solutions of the BdG Hamiltonian,
which decay exponentially inside the superconductor when ε < ∆ [BTK1982].

In order to see that, it is convenient to consider the time-dependent BdG equation

i~
∂

∂t

(
u(x, t)
v(x, t)

)
=
(
H ∆
∆∗ −H∗

)(
u(x, t)
v(x, t)

)
, (3.61)

which is the analog of the Schrödinger equation governing the dynamics of the excitations
above the superconducting ground state via the BdG Hamiltonian. Notice that, in the case
µ and ∆ are all constant, then

u(x, t) = u(x)e−iεt/~ and v(x, t) = v(x)e−iεt/~, (3.62)

where u(x) and v(x) correspond to the electron and hole components of the wave functions
of Eqs. (3.32) and (3.36) respectively. By defining P (x, t) = |u(x, t)|2 + |v(x, t)|2 as the
probability density of finding either an electron or a hole at a particular time and place, we
can use Eq. (3.61) in order to obtain the following continuity equation

∂P

∂t
+ ∂JP

∂x
= 0, (3.63)

where we introduced the probability current

JP = ~
m

[Im (u∗∂xu)− Im (v∗∂xv)] . (3.64)

Notice that the hole current enters with a sign opposite to that of the electron part.
Similarly, we can derive a conservation law for quasiparticle charge. Assigning a unit

charge +e to the electron and −e to the hole, the net quasiparticle charge density can be
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written as Q(x, t) = e
(
|u(x, t)|2 − |v(x, t)|2

)
. Using again Eq. (3.61), one obtains the conti-

nuity equation for the quasiparticle charge Q, which takes the form

∂Q

∂t
+ ∂JQ

∂x
= 4e∆

~
Im (u∗v) , (3.65)

where we introduced the charge current

JQ = e~
m

[Im (u∗∂xu) + Im (v∗∂xv)] . (3.66)

Differently from the case of the probability current of Eq. (3.64), in Eq. (3.66), both the
electron and hole contributions to the quasiparticle current enter with the same sign. By
direct inspection, it turns out that, inside the superconductor JP ∝ wẽ/h̃ = 0 at the gap edge
(i. e. ε = ∆), while JQ = evF . Of course, for the normal region nothing so dramatic occurs,
and we always find simply JQ = eJP .

Another important thing to notice, is the presence of a non-zero term on the right side of
Eq. (3.65). The fact that such a term is different from zero implies that the charge current is
not conserved. In fact, it acts as a source (or drain) term connecting the quasiparticles with
the condensate inside the superconductor.

As a simple example of quasiparticle current being converted to condensate current, we
consider the case of an electron with an energy ε < ∆, coming from the N region and
resulting in an evanescent wave inside the superconductor. For an ideal interface, i. e. Z = 0,
and φ = 0 one can show that (see Eqs. (3.52)-(3.53)) ree = ηh̃e = 0, rhe = u0/v0 and
ηẽe = 1/u0. In the sub-gap regime, |rhe|2 = 1, which means the incident electron is totally
Andreev reflected as a hole. Thus, the total charge carried in the normal metal equals 2evF ,
but in the superconductor JQ is exponentially suppressed. Explicitly

JQ = e~
m

Im
[(
ηẽee

iqẽx
)∗
∂x
(
ηẽee

iqẽx
)

(u∗0u0 + v∗0v0)
]
. (3.67)

Letting qẽ ≈ kF + i
√

∆2 − ε2/~vF (in the limit µ � ε,∆), and being |u0|2 = |v0|2 in the
sub-gap regime, we have

JQ = |u0|2 + |v0|2

|u0|2
evF e

− 2x
~vF

√
∆2−ε2 = 2evF e−

x
λ (3.68)

where we introduced the penetration depth

λ = ~vF
2∆

[
1−

(
ε

∆

)2
]− 1

2

, (3.69)

which corresponds to the length that the particle travels inside the superconductor before the
current is converted to the supercurrent carried by the condensate. Notice that, although right
at the gap edge such a length diverges, the characteristic length scales as the superconducting
coherence length λ ∼ ξ = vF~/∆. The “disappearing current” reappears as current carried
by the condensate. Indeed, by rewriting the drain term in Eq. (3.65) as

−∂xJS ≡
4e∆
~

Im (u∗v) (3.70)
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then

JS = 4e∆
~

∫ x

0
dx′ Im

(
η∗ẽev

∗
0e
−iqẽx′ηẽeu0e

iqẽx′
)

= 4e∆
~

Im
(
v∗0u0
u∗0u0

)∫ x

0
dx′ e−

x
λ

= 2evF
(
1− e−

x
λ

)
. (3.71)

This is the desired result, explicitly showing the supercurrent increasing to an asymptotic
value as x→∞, at the same rate as the quasiparticle current dies away.

Beyond the Andreev approximation
We conclude this section by giving the explicit expressions of the scattering coefficients of
Eq. (3.52) and similar, obtained beyond the Andreev approximation in the case of an ideal
interface Z = 0:

ree =e2ixke (−Γqẽqh̃ + Γkekh + Ξ1ke − Ξ2kh)
Γqẽqh̃ + Γkekh + Ξ1ke + Ξ2kh

rhe =2u0v0
√
kekh (qẽ + qh̃) ei(xke−xkh−φ)

Γqẽqh̃ + Γkekh + Ξ1ke + Ξ2kh

tẽe =2u0 (qh̃ + kh)
√

Γkeqẽe
1
2 i(−2xqẽ+2xke−φ)

Γqẽqh̃ + Γkekh + Ξ1ke + Ξ2kh

th̃e =−
2v0 (kh − qẽ)

√
Γkeqh̃e

1
2 i(2xqh̃+2xke−φ)

Γqẽqh̃ + Γkekh + Ξ1ke + Ξ2kh

reh =2u0v0
√
kekh (qẽ + qh̃) ei(xke−xkh+φ)

Γqẽqh̃ + Γkekh + Ξ1ke + Ξ2kh

rhh =e−2ixkh (−Γqẽqh̃ + Γkekh − Ξ1ke + Ξ2kh)
Γqẽqh̃ + Γkekh + Ξ1ke + Ξ2kh

tẽh =− 2v0 (ke − qh̃)
√

Γkhqẽe−
1
2 i(2xqẽ+2xkh−φ)

Γqẽqh̃ + Γkekh + Ξ1ke + Ξ2kh

th̃h =
2u0 (qẽ + ke)

√
Γkhqh̃eixqh̃−ixkh+ iφ

2

Γqẽqh̃ + Γkekh + Ξ1ke + Ξ2kh

reẽ =e−2ixqẽ (Γqẽqh̃ − Γkekh − Ξ3ke + Ξ4kh)
Γqẽqh̃ + Γkekh + Ξ1ke + Ξ2kh

rhẽ =−
2u0v0 (ke + kh)√qẽqh̃e−ix(qẽ−qh̃)

Γqẽqh̃ + Γkekh + Ξ1ke + Ξ2kh

tẽẽ =2u0 (qh̃ + kh)
√

Γkeqẽe
1
2 i(−2xqẽ+2xke+φ)

Γqẽqh̃ + Γkekh + Ξ1ke + Ξ2kh

th̃ẽ =− 2v0 (ke − qh̃)
√

Γkhqẽe−
1
2 i(2xqẽ+2xkh+φ)

Γqẽqh̃ + Γkekh + Ξ1ke + Ξ2kh

reh̃ =−
2u0v0 (ke + kh)√qẽqh̃e−ix(qẽ−qh̃)

Γqẽqh̃ + Γkekh + Ξ1ke + Ξ2kh

rhẽ =e2ixqh̃ (Γqẽqh̃ − Γkekh + Ξ3ke − Ξ4kh)
Γqẽqh̃ + Γkekh + Ξ1ke + Ξ2kh

tẽh̃ =−
2v0 (kh − qẽ)

√
Γkeqh̃e

1
2 i(2xqh̃+2xke+φ)

Γqẽqh̃ + Γkekh + Ξ1ke + Ξ2kh

th̃h̃ =
2u0 (qẽ + ke)

√
Γkhqh̃e−

1
2 i(−2xqh̃+2xkh+φ)

Γqẽqh̃ + Γkekh + Ξ1ke + Ξ2kh

where we defined the quantities
Γ = u2

0 − v2
0,

and (
Ξ1 Ξ2
Ξ3 Ξ4

)
=
(
qh̃ qẽ
qh̃ qẽ

)
u2

0 +
(
qẽ qh̃
−qẽ −qh̃

)
v2

0.
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4
Landauer Büttiker theory of transport

4.1 Landauer-Büttiker with Normal Metals
The Landauer-Büttiker [Landauer1957, Buttiker1986] (or scattering) theory of transport pro-
vides a simple and powerful theoretical framework for the description of currents flowing
in normal mesoscopic conductors, when coherent and elastic scattering processes are as-
sumed in the active region. Under these conditions, the scattering formalism has been shown
[Datta1997] to be equivalent to the non-equilibrium Green’s function formalism. In this re-
spect, it represents an elegant extension of equilibrium statistical mechanics that allows to
deal with non-equilibrium problems, providing a simple but accurate approach also for the
description of mesoscopic superconducting structures.

The idea of the scattering approach is to relate transport properties of the system to its
scattering ones, and applies to non-interacting systems in the stationary regime [Blanter2000].
In its traditional form the Landauer-Büttiker theory considers a mesoscopic sample connected
to R macroscopic contacts (acting as particle reservoirs) via metallic leads (assumed to be
perfect conductors), see Fig. 4.1. Particles which propagate along the lead from some reser-
voir, enter the sample, are scattered, and then leave the scattering region to go to the same or
a different reservoir. To calculate the current flowing between the sample and the reservoirs
it is enough to look at the incoming and outgoing particles flowing along each lead. Electrons
propagating to the sample are incident, or incoming particles, while electrons propagating
from the sample are scattered, or outgoing, particles. We emphasize that we consider only
elastic, i.e. energy-conserving, processes. To neglect inelastic scattering we assume low tem-
peratures when the phase coherence length is larger than the size of the sample, `ϕ(T )� L.
It is assumed that the reservoirs are so large that they can be considered at the thermodynam-
ical equilibrium with temperature Ti and a chemical potential µi, the distribution functions of
electrons in the reservoirs, defined via these parameters, are then Fermi distribution functions

fi(ε) =
[
e(ε−µi)/kBTi + 1

]−1
(4.1)

where ε is the energy, kB is the Boltzmann constant and i = 1, ...,R is the index for the i-th
reservoir. Is important to notice that, although there are no inelastic processes in the sample,
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S

Figure 4.1: A mesoscopic sample described by the scattering matrix S. The index i = 1, · · · ,R
labels electron reservoirs with temperature Ti and chemical potential µi. The arrows show the
propagation direction for incident âi,n and scattered b̂i,n electrons per each open transverse chan-
nel n = 1, · · · , Ni of each lead i.

a strict equilibrium state in the reservoirs can be established only via inelastic processes.
Notice that reservoirs act both as perfect sources and sinks of particles, irrespective of the
energy of the carrier that is leaving or arriving at the conductor.

Far from the sample, and inside the leads, we can assume that transverse (across the
leads) and longitudinal (along the leads) motion of electrons are separable. In the longitudinal
direction the system is open, and is characterized by the continuous wave vector k. Transverse
motion is quantized and described by the discrete index n = 1, · · · , Ni (ε) where Ni (ε) in the
total number of open transverse (quantum) channels at energy ε in the lead i (which, in
general, can be different for each lead). Here n is a multicomponent index which includes all
other quantum numbers associated with the lead (e. g. spin, isospin, etc).

To calculate the current flowing between the scatterer and the reservoirs we use the
second quantization formalism. This formalism deals with operators creating/annihilating
particles with energy ε, at lead i and transverse channel n. We use different operators cor-
responding to incident electrons, a†i,n(ε)/ai,n(ε), and to scattered electrons, b†i,n(ε)/bi,n(ε)
respectively. The operator a†i,n(ε) creates one electron in the state with wave function
ψ

(in)
i,n (ε)/

√
~vi,n(ε), while the operator b†i,n(ε) creates one electron in the state with wave

function ψ(out)
i,n (ε)/

√
~vi,n(ε) [Moskalets2011]. The incident and scattered states are normal-

ized to
√
~vi,n(ε), where vi,n(ε) is the group velocity of the electrons at energy ε, in order to

carry unit flux. They obey fermionic anticommutation relations

{â†i,n (ε) , âj,m
(
ε′
)
} = δijδnmδ

(
ε− ε′

)
{âi,n (ε) , âj,m

(
ε′
)
} = 0

{â†i,n (ε) , â†j,m
(
ε′
)
} = 0 (4.2)

with similar relations holding for the operators b†i,n(ε) and bi,n(ε).
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The power of the scattering approach - in the context of electronic transport - is that any
information concerning the flowing of electrons through the mesoscopic sample is compactly
encoded in a single mathematical object: the scattering matrix. The scattering matrix S(ε)
is defined as the linear operator mapping the vector of destruction operators of the incident
states at energy ε to the vector of destruction operators of the scattered states at the same
energy

b̂1,1(ε)
...

b̂1,N1(ε)
b̂2,1(ε)

...
b̂2,N2(ε)
b̂R,1(ε)

...
b̂R,NR(ε)



= S(ε)



â1,1(ε)
...

â1,N1(ε)
â2,1(ε)

...
â2,N2(ε)
âR,1(ε)

...
âR,NR(ε)



⇐⇒ b̂i,n(ε) =
R∑
j=1

Nj(ε)∑
m=1

S(i,n),(j,m)(ε)âj,m, (4.3)

where S (ε) has dimensions
[∑R

i=1Ni (ε)
]
×
[∑R

i=1Ni (ε)
]
. The creation operators â† and b̂†

for the incident and scattered states obey the same relation where S (ε) is replaced by its
conjugate S (ε)∗. Importantly, the flux conservation in the scattering process implies that
the matrix S is unitary

S (ε)S† (ε) = 1 ⇐⇒
R∑
j=1

Nj(ε)∑
m=1

∣∣∣S(i,n),(j,m) (ε)
∣∣∣2 = 1. (4.4)

The most important application of the Landauer-Büttiker approach for the problem of
quantum transport is the calculation of the mean probability (or particle) current flowing
through the mesoscopic sample. As we will see later in this thesis (see Chap. 5), such
probability current can be directly employed for the computation of thermodynamical relevant
quantities such as electric and heat currents at different lead of the system. In the second
quantization formalism the probability current operator for the i-th lead takes the following
form [Blanter2000, Moskalets2011]

Ĵi(x, t) = i~
2m

∫
dr⊥

{
∂Ψ̂†i (r, t)

∂x
Ψ̂i(r, t)− Ψ̂†i (r, t)

∂Ψ̂i(r, t)
∂x

}
(4.5)

where r ≡ (x, r⊥) with x and r⊥ the longitudinal and transverse coordinates respectively,
and where we assume that the particles have mass m. The operator Ψ̂i(r, t) is the field
operator for electrons in lead i

Ψ̂i(r, t) = 1√
2π

∫ ∞
−∞

dε e−iεt/~
Ni(ε)∑
n=1

ψ
(in)
i,n (ε, r)√
~vi,n(ε)

âi,n(ε)−
ψ

(out)
i,n (ε, r)√
~vi,n(ε)

b̂i,n(ε)


= 1√

2π

∫ ∞
−∞

dε e−iεt/~
Ni(ε)∑
n=1

χi,n(ε, r⊥)√
~vi,n(ε)

{
âi,n(ε)e−iki,n(ε)x − b̂i,n(ε)eiki,n(ε)x

}
(4.6)
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where in the second line we used the assumption that ψ(in)
i,n (ε, r) and ψ

(out)
i,n (ε, r) can be

factorized as the products of transverse and longitudinal components

ψ
(in)
i,n (ε, r) = χi,n (ε, r⊥) e−iki,n(ε)x (4.7)

ψ
(out)
i,n (ε, r) = χi,n (ε, r⊥) eiki,n(ε)x. (4.8)

Usually, for all observable quantities (average current, noise, or higher moments of the current
distribution), the energies ε and ε′ either coincide or are close to each other [Blanter2000].
Therefore, it is reasonable to consider the above quantities within an energy interval that is
much smaller than the energy itself ∣∣ε− ε′∣∣� ε. (4.9)

Within this energy interval the velocities vi,n (ε) ≈ vi,n (ε′) and the wave vectors ki,n (ε) ≈
ki,n (ε′) are assumed to vary slowly on the scale of the Fermi energy [Moskalets2011]. Sub-
stituting Eq. (4.6) into Eq. (4.5) and taking into account Eq. (4.9), together with the
normalization of the transverse wavefunctions

∫
dr⊥χi,n (r⊥)∗ χi,m (r⊥) = δnm, it is possible

to arrive at the following expression for the probability current operator [Buttiker1992]

Ĵi(t) = 1
h

∫ ∞
−∞

dε dε′e−i(ε−ε
′)t/~

Ni(ε)∑
n=1

{
â†i,n(ε)âi,n(ε′)− b̂†i,n(ε)b̂i,n(ε′)

}
(4.10)

which does not depend on the longitudinal component x. For a full derivation of Eq. (4.10)
and a discussion of its limitations we refer to Refs. [Pretre1996, Blanter2000].

The expectation value of the probability current operator Ji ≡
〈
Ĵi(t)

〉
is obtained by

taking the quantum-statistical average over the state of incoming electrons. Here we assume
that the presence of a mesoscopic scatterer does not affect the equilibrium properties of
reservoirs and that electrons at different reservoirs, i. e. i 6= j, are not correlated. Importantly,
the scattering theory of transport is based on the observation that each scattering state
remains in equilibrium with a particular reservoir. This is because it communicates with
one and only one contact, namely the one connected to the lead from which it is incident.
Therefore, the incoming particles are equilibrium particles of macroscopic reservoirs and for
them we can use standard rules for calculating the quantum-statistical average of the product
of creation and annihilation operators〈

â†i,n (ε) âj,m
(
ε′
)〉

= δijδnmδ
(
ε− ε′

)
fi (ε) (4.11)

where fi (ε) is the Fermi distribution function for electrons in the reservoir i introduced in
Eq. (4.1). The operators b̂†i,n and b̂i,n concerning scattered states, however, are not coming
from a reservoir at the thermodynamical equilibrium. To calculate the quantum-statistical
average of their product we need to express them in terms of the operators for incoming
particles for which we know how to calculate a corresponding average. Thus, by using Eqs.
(4.3) and (4.11), we obtain〈

b̂†i,n (ε) b̂j,n′
(
ε′
)〉

=
∑
l,l′

∑
m,m′

S∗(i,n),(l,m) (ε)S(j,n′),(l′,m′)
(
ε′
) 〈
â†l,m (ε) âl′,m′

(
ε′
)〉

= δ
(
ε− ε′

)∑
l

∑
m

S∗(i,n),(l,m) (ε)S(j,n′),(l,m)
(
ε′
)
fl (ε) (4.12)
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Thanks to the expression in Eqs. (4.11) and (4.12), and by exploiting the unitarity of the
scattering matrix S (ε), it is possible to calculate the thermodynamical average

〈
Ĵi(t)

〉
of Eq.

(4.10), which is given by

Ji ≡
〈
Ĵi(t)

〉
= 1
h

R∑
j=1

∫ ∞
−∞

dε [Ni (ε) δij − Pi,j (ε)] fj (ε) (4.13)

where we introduced the probability scattering coefficients

Pi,j (ε) ≡
Ni(ε)∑
n=1

Nj(ε)∑
m=1

∣∣∣S(i,n),(j,m) (ε)
∣∣∣2 = Tr

[
Sij (ε)S†ij (ε)

]
(4.14)

which represent the transmission (i 6= j) and reflection (i = j) probabilities of an electron
to go from lead j to lead i. The unitarity of the scattering matrix yields the following sum
rules: ∑

j

Pi,j (ε) = Ni (ε) ;
∑
i

Pi,j (ε) = Nj (ε) (4.15)

which relate the scattering coefficients Pi,j (ε) to the number Ni (ε) of open channels at lead
i, with energy ε. By exploiting the above relations, one can further simplify the expression
of the current of Eq. (4.13), which can be written in the following more compact form

Ji = 1
h

R∑
j=1

∫ ∞
−∞

dε [fi (ε)− fj (ε)]Pi,j (ε) . (4.16)

4.2 Two terminal case

It is interesting, for later convenience, to consider the case of a two terminals setup (i. e. R =
2) where a mesoscopic sample is connected to two reservoirs, to be referred to as “left” (L)
and “right” (R) respectively. In this simple scenario the scattering matrix S (ε) takes the
following block structure

S (ε) =
(
r (ε) t (ε)
t′ (ε) r′ (ε)

)
. (4.17)

Here the scattering matrix has dimension [NL (ε) +NR (ε)] × [NL (ε) +NR (ε)]. The square
diagonal blocks r (ε) (with size NL ×NL) and r′ (ε) (with size NR ×NR), describe electrons
reflected back to the left and right reservoirs respectively. The off-diagonal, rectangular
blocks t (ε) (with size NL × NR) and t′ (ε) (with size NR × NL), are responsible for the
electron transmission through the sample. The case of two terminals simplifies the previous
expression of the average probability current of Eq. (4.16)

Ji = 1
h

∫ ∞
−∞

dε [fi (ε)− fj (ε)] T (ε) (4.18)

with i 6= j = L,R, and where we introduced the “transmission function” T (ε)

T (ε) ≡ Tr
[
t (ε) t† (ε)

]
=

Ni∑
n=1

Nj∑
m=1

∣∣∣S(i,n),(j,m) (ε)
∣∣∣2 = Pi,j with i 6= j (4.19)
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which is an important basis invariant quantity which defines the transport properties of a
mesoscopic two-terminal quantum system. As we will see later in this thesis, an important
quantity in quantum transport theory is represented by the charge current

Jci = eJi = e

h

∫ ∞
−∞

dε [fi (ε)− fj (ε)] T (ε) , (4.20)

in which we used the convention that positive charge currents (with e the electron charge)
are directed from the reservoirs toward the sample. In the zero-temperature limit and for a
small applied voltage, Eq. (4.20) gives us the conductance for the two terminals case

G = e2

h
Tr
[
t (εF ) t† (εF )

]
. (4.21)

The matrix t (εF ) t† (εF ) can be diagonalized, it has a real set of eigenvalues (also called
transmission probabilities) 0 ≤ Tn ≤ 1, which allows us to write the well-known Landauer
formula for the conductance [Fisher1981, Imry1986]

G = e2

h

∑
n

Tn. (4.22)

From the above equation it turns out that the conductance is finite even for ballistic con-
ductors (Tn = 1). But how can a ballistic conductor have a non-zero resistance? This led
to much controversy and argument in the 1980’s - the common belief was that this was
essentially a “weak-coupling approach” applicable only when the transmission probability
is much less than one (Tn � 1) - till it was finally realized that this non-zero resistance
was really an interface (or contact) resistance between the conductor and the large reser-
voirs [Wees1988, Wharam1988, Landauer1989, Datta1996]. In this respect, an interesting
point to note is that scattering coefficients Pi,j of Eqs. (4.14) and (4.19) are calculated from
lead i to lead j and not from reservoir i to reservoir j. From a technical point of view
this makes the calculation of the scattering coefficients much simpler, since we do not need
to worry about the detailed nature of the connection between the lead and the reservoir.
From a conceptual point of view this is somewhat surprising, since the conductance given by
Eq.(4.22) already includes the interface resistance between the lead and the reservoir. The
experimental observation of this interface resistance in 1988 finally made it clear that the
scattering approach was applicable not just to weakly coupled tunneling systems but even to
strongly coupled ballistic systems.

4.3 Landauer-Büttiker with Superconductors

So far, we have shown that the scattering theory of transport provides a rigorous theoreti-
cal framework for the description of normal mesoscopic systems. This approach is based on
the observation that, as long as dissipative (inelastic) processes in the active region can be
neglected, each scattering eigenstate communicates with one and only one reservoir and as
such can be assumed to be in equilibrium with that reservoir. This allows us to calculate
any quantity of interest under non-equilibrium conditions using a simple extension of equilib-
rium statistical mechanics, without the need to solve complicated kinetic equations. In this
section we discuss how the same approach can be applied to mesoscopic systems including
superconducting segments [Lambert1991, Datta1996].
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As we have shown in Sec. 3.4, the key physical phenomenon which arises in the presence of
superconductivity is the possibility that an electron can be coherently reflected into a hole and
vice versa. This phenomenon, known as Andreev scattering [Andreev1964], occurs without
phase breaking and can be described by using the Bogoliubov-de Gennes formalism. In this
respect, the scattering theory which we presented in Section 4.1 needs to be extended to take
into account the Andreev scattering processes [Buttiker1992, Lambert1993, Lambert1998,
Blanter2000]. The main difference is that now we have to deal with an extra index α which
discriminates between electrons α = +1 and holes α = −1. Hence, by proceeding in much
the same way as in the previous section, we define operators in the transverse channel n at
the lead i which annihilate incoming electrons â+

i,n and holes â−i,n, and annihilate scattered
electrons b̂+i,n and holes b̂−i,n respectively. Here n = 1, . . . , Nα

i (ε) is a multicomponent index
which includes all quantum numbers of the lead (e. g. spin, isospin, etc), and Nα

i (ε) indicates
the number of open transverse channels at lead i, with energy ε for particles of type α.
Due to PHS, and by defning the zero of energy as being that of the chemical potential of
the superconductors, we can write hole creation operators at energy ε, in terms of electron
annihilation operators at energy −ε as [Lesovik2011, Jacquod2012][

â−i,n(ε)
]†

= â+
i,n(−ε)[

b̂−i,n(ε)
]†

= b̂+i,n(−ε). (4.23)

The electron and hole operators for the outgoing states are related to the electron and hole
operators of the incoming states via the extended scattering matrix

b̂αi,n(ε) =
∑
β=±

R∑
j=1

Nβ
j (ε)∑
m=1

Sα,β(i,n),(j,m)(ε)â
β
j,m (4.24)

which, in matrix form, can be written as(
b̂+(ε)
b̂−(ε)

)
= S(ε)

(
â+(ε)
â−(ε)

)
=
(
S++ (ε) S+− (ε)
S−+ (ε) S−− (ε)

)(
â+(ε)
â−(ε)

)
. (4.25)

Here the diagonal terms Sαα relate the outgoing α-type particle to the same type of incoming
particle, while the off diagonal terms Sαᾱ gives the outgoing α-type particle in response to
an opposite type of incoming particle. The latter terms turn out to be zero in case there are
no superconducting components.

By using Eq. (4.23) inside Eq. (4.10) (obtained for normal conductors), we can write the
probability current operator generalized to include superconductivity [Blanter2000]

Ĵi(t) = 1
h

∫ ∞
0

dε dε′e−i(ε−ε
′)t/~ Tr

[
â+†
i (ε)â+

i (ε′)− â−†i (ε)â−i (ε′)

−b̂+†i (ε)b̂+i (ε′) + b̂−†i (ε)b̂−i (ε′)
]

(4.26)

where the trace is taken over the particle and hole open transverse channels at lead i. To
avoid double counting, that would have been introduced by the BdG formalism, the integral
over the energies runs from 0 to +∞ instead of starting from −∞ . Here, similarly to the
case of a normal conductor we can compute the average current at lead i by exploiting the
quantum-statistical average of the product of creation and annihilation operators〈

âα†i,n (ε) âβj,m
(
ε′
)〉

= δαβδijδnmδ
(
ε− ε′

)
fαi (ε) (4.27)
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where f−i is the distribution function for a hole in lead i and f+
i is the analogous for electrons.

The particle-hole symmetry implies that the occupation of a hole state is the complementary
to the occupation of an electronic state with opposite energy:

f−i (ε) ≡
〈
â−†i,n (ε) â−i,n (ε)

〉
=
〈
â+
i,n (−ε) â+†

i,n (−ε)
〉

= 1− f+
i (−ε) , (4.28)

where we used the fact that a creation of a hole at energy ε correspond to an annihilation of an
electron at energy −ε. We can then write a generalized expression for the Fermi distribution
function as follows:

fαi (ε) =
{
e[ε−α(µi−µS)]/kBTi + 1

}−1
, (4.29)

where µi and Ti are respectively the chemical potential and the temperature of the i-th lead
and µS is the chemical potential of the superconductors which we take as a reference for the
energies. Thus, by using Eqs. (4.24)-(4.27) and acting in a similar way as in Section 4.1 for
normal systems, we can finally compute the average probability current at lead i as

Ji ≡
〈
Ĵi(t)

〉
= 1
h

R∑
j=1

∑
α,β

α

∫ ∞
0

dε
[
Nα
i (ε) δijδαβ − Pα,βi,j (ε)

]
fβj (ε) (4.30)

where we introduced the (generalized) probability scattering coefficients [Lambert1998]

Pα,βi,j (ε) ≡
Nα
i (ε)∑
n=1

Nβ
j (ε)∑
m=1

∣∣∣Sα,β(i,n),(j,m) (ε)
∣∣∣2 = Tr

[
Sα,βij (ε)Sα,β†ij (ε)

]
(4.31)

which represent the reflection (i = j) or transmission (i 6= j) of a quasi-particle of type β
in lead j to a quasi-particle of type α in lead i. For α 6= β, Pα,βi,j represents an Andreev
scattering coefficient, while for α = β, it is a normal scattering coefficient. The unitarity of
the scattering matrix yields the following sum rules:∑

j,β

Pα,βi,j (ε) = Nα
i (ε) ;

∑
i,α

Pα,βi,j (ε) = Nβ
j (ε) (4.32)

where Nα
i (ε) is the number of open channels at lead i, with energy ε for particles of type

α, satisfying N+
i (ε) = N−i (−ε) (due to PHS). As we did for the case of normal system, by

exploiting the above relations, one can simplify the expression of the current of Eq. (4.30),
which can be written in the following more compact form

Ji = 1
h

R∑
j=1

∑
α,β

α

∫ ∞
0

dε
[
fαi (ε)− fβj (ε)

]
Pα,βi,j (ε) . (4.33)

4.4 From symmetry classes
to symmetries of the Scattering matrix

The scatterer has an underlying Hamiltonian which may satisfies specific symmetries. In this
respect single-particle Hamiltonian systems can be classified into ten classes, in terms of the
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presence or absence of time-reversal (TRS), particle-hole (PHS), and sublattice/chiral (SLS)
symmetries [Schnyder2008, Jacquod2012]. Here we list such symmetries for noninteracting
fermionic quantum systems and derive the fundamental relations that the scattering matrix
S has to satisfy in those classes. Importantly, as we will see in Chap. 5, Onsager relations
will follow from these symmetries, once they are inserted into scattering theory expressions
for the computation of the linear transport coefficients [Benenti2017].

Symmetries of the Hamiltonian

According to Wigner’s theorem [Wigner1931], the symmetry operations in quantum mechan-
ics are represented by unitary or anti-unitary operators (which preserve probabilities). A
unitary operator U preserves the inner product of two states |Ψ〉, |Φ〉, i. e.

〈UΨ|UΦ〉 = 〈Ψ|Φ〉 (4.34)

while an anti-unitary operator A adds an additional complex conjugation:

〈AΨ|AΦ〉 = 〈Ψ|Φ〉∗ = 〈Φ|Ψ〉 . (4.35)

Each symmetry operation can commute or anti-commute with the Hamiltonian H which
describes the system. Seminal works by [Altland-Zirnabauer1997] have classified all nonin-
teracting quantum systems depending on the presence or absence of three relevant symmetries
(see the Scheme 4.36 below): time reversal symmetry (TRS), particle hole (or charge conju-
gation) symmetry (PHS), and chiral (or sublattice) symmetry (SLS).

TRS T [T , H] = 0 T 2 = ±1
PHS P {P, H} = 0 P2 = ±1
SLS Γ {Γ, H} = 0 Γ2 = 1

(4.36)

The TRS is represented by the anti-unitary operator T that commutes with H, T H =
HT . The physical operation of time-reversal (t→ −t) causes an inversion of both momentum
T pT −1 = −p and spin (angular momentum) T σiT −1 = −σi, and is described by the following
operator

T =
{
−iK for spinless or integer-spin particles
−iσyK for half-integer-spin particles

(4.37)

where σy acts on the spin-space and K denotes complex conjugation. The TRS operator
squares to +1 in case of spinless or integer-spin particles, and squares to −1 for half-integer-
spin particles.

The PHS is represented by the anti-unitary operator P, which anti-commutes with H,
PH = −HP. As we have already discussed in Chap. 3, the operator P acts on the BdG
Hamiltonians of the form of Eq. (3.18), and can be written as

P =
{
τxK for triplet superconductors
τyK for singlet superconductors

(4.38)

where τx and τy act in the particle-hole space1. Notice that the PHS operator squares to +1
in case of triplet pairing superconductors - when H breaks spin-rotation symmetry (SRS)

1In case of singlet pairing superconductors τy acts in a restricted particle-hole space of states of the form
Ψ = (u↑, v↓)T (see discussion in Chap. 3).
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- while it squares to −1 for singlet pairing (s-wave) superconductors (when H preserves
SRS) [Schnyder2008].

Unitary symmetries that commute with the Hamiltonian, UH = HU (such as SU(2)
SRS), do not appear in scheme (4.36). In fact, such a symmetry can be removed by block-
diagonalization, followed by a restriction to a subspace in which U acts as a scalar. However,
this is not possible for unitary symmetries that anti-commute with the Hamiltonian. This
is the case of the SLS (or chiral) symmetry operator Γ = PT which is a unitary (being the
product of two anti-unitary symmetries) and anticommutes with the H: PT H = PHT =
−HPT . In condensed-matter systems, it is often realized as a sublattice symmetry on a
bipartite lattice (i. e. the symmetry operation that changes the sign of wave functions on all
sites of one of the two sublattices of the bipartite lattice), and takes the following form

Γ = ηz (4.39)

with ηz acting on the sublattice space, and where Γ2 = 1. Notice that the nomenclature
is ambiguous since chiral, or chirality are also frequently used in the context of topological
insulators and superconductors (this is the case of chiral edge-modes, see Sec. 2.4). However,
neither of the two phases obeys an anti-commuting chiral symmetry. Moreover, similar to
PHS, chiral symmetry also implies a symmetry of the energy spectrum around zero. From
an eigenstate Ψ with energy ε, one can obtain another state ΓΨ with opposite energy −ε.
However, differently from PHS, the unitary chiral symmetry does not invert the momentum.
It implies ε(k) = ε(−k) rather than −ε(k) = ε(−k).

The “tenfold way”

There is a total of ten ways to combine T , P and Γ, distinguishing T 2,P2 = ±1, hence
the name “tenfold way” [Altland-Zirnabauer1997, Schnyder2008, Jacquod2012]. In Table
4.4, we summarize such ten classes by indicating with “0” the absence, and with “+1” or
“−1” the presence of these symmetries, depending on whether the relative (antiunitary)
operator squares to the identity operator or minus the identity operator respectively. The
ten symmetry classes can be grouped into three categories conventionally named after the
mathematical Cartan classification:

• Wigner-Dyson classes [Wigner1951, Dyson1962]: based on TRS and spin-rotational
symmetry (SRS). The class “A” has both symmetries broken, the class “AI” has both
symmetries present, and the class “AII” has broken SRS but unbroken TRS (there is
thus no fourth class since, if TRS is broken, the presence or absence of SRS only affects
the size of the Hamiltonian).

• Chiral classes: describe bipartite lattice Hamiltonians with unbroken sublattice symme-
try (SLS). Examples include two-dimensional square and hexagonal lattices. Here also,
there are three classes, with (apart from their chiral symmetry) the same symmetries
as the Wigner-Dyson classes.

• Bogoliubov–de Gennes classes: introduced by Altland and Zirnbauer. These classes
appear when normal metals are brought into contact with superconductors: with SRS
(C and CI) and without SRS (D and DIII), with TRS (CI and DIII) and without TRS
(C and D).
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Symmetry class TRS PHS SLS Physical example

Wigner-Dyson A 0 0 0 (no SC) mag. flux
AI +1 0 0 (no SC) no mag. flux, no spin orbit
AII −1 0 0 (no SC) spin-orbit, no mag. flux

Chiral AIII 0 0 1 (no SC) mag. flux, bip. lattice
BDI +1 +1 1 (no SC) no mag. flux, no spin-orbit, bip.

lattice
CII −1 −1 1 (no SC) no mag. flux, spin-orbit, bip. lattice

BdG D 0 +1 0 SC, mag. flux, spin-orbit
C 0 −1 0 SC, mag. flux, no spin-orbit
DIII −1 +1 1 SC, no mag. flux, spin-orbit
CI +1 −1 1 SC, no mag. flux, no spin-orbit

Table 4.1: Ten symmetry classes of single-particle Hamiltonians classified in terms of the presence
or absence of time-reversal symmetry (TRS) and particle-hole symmetry (PHS), as well as sublattice
(or chiral) symmetry (SLS). In the table, the absence of symmetries is denoted by “0”. The presence
of these symmetries is denoted by either “+1” or “−1,” depending on whether the (antiunitary) op-
erator implementing the symmetry squares to the identity operator or minus the identity operator
respectively. TRS= +1 when the spin is an integer, and TRS= −1 when it is a half-integer. For
the BdG symmetry classes, the Hamiltonian preserves SRS when PHS= −1 (singlet pairing super-
conductors), while it does not preserve SRS when PHS= +1 (triplet pairing superconductors). The
rightmost column mentions microscopic realizations in each class, with SC indicating the presence of
superconductivity.

Symmetries of the Scattering matrix

So far we presented the main symmetry classes in which it is possible to organize noninteract-
ing Hamiltonians which describe the scattering region. In the remaining part of this section,
we will discuss how to translate such symmetries (specifically TRS, PHS and SLS) of H into
symmetries of the S matrix [Jacquod2012].

In particular, let us consider first the case in which the Hamiltonian satisfies time-reversal
symmetry (TRS), i. e. T HT −1 = H. This means that if we reverse velocity and spin of all
particles, they will follow time-reversed trajectories back to where they came from, so that
incoming particles become outgoing particles and vice versa. In case the TRS is broken,
the same happens, but all TRS-breaking fields (e. g. magnetic fields, fluxes, exchange fields)
should be inverted too. Combining all of them into a single multicomponent field B, one can
show that the scattering matrix obeys the microreversibility relation

S (ε,B) = σy S
T (ε,−B)σy (4.40)

where σy acts in spin space, and “T” indicates the matrix transpose of spin, transport channel
and (with superconductivity) quasiparticle indices. Included in Eq. (4.40) is the relation
S (ε,B) = ST (ε,−B) valid when the antiunitary TRS operator squares to +1 and SRS is
preserved. Eq. (4.40), can be derived by constructing the scattering matrix S first with
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scattering states ψi,n(ε,B), then with their time-reversed T ψi,n(ε,−B), and equating the two
results. More important for the computation of physical currents are the symmetries of
scattering coefficients Pα,βi,j (ε) defined in Eq. (4.31). In this respect, by using Eq. (4.40),
it is possible to show that the microreversibility of the scattering matrix translates into the
following symmetry relation for the scattering coefficients

Pα,βi,j (ε,B) = P β,αj,i (ε,−B). (4.41)

A similar result can be obtained for Hamiltonians with unbroken PHS. In this case, by
using Eq. (4.38), one can show that the following relation holds for the scattering matrix

S (ε,B) = τx S
∗ (−ε,B) τx (4.42)

where τx acts in Nambu space and where the energies ±ε are expressed with respect the
chemical potential µ taken equal for all superconductors. Included in Eq. (4.42) is the relation
S (ε,B) = τy S

∗ (−ε,B) τy valid when the antiunitary PHS operator squares to −1 and SRS
is preserved. Similarly to the previous case, Eq. (4.42), can be derived by constructing
the scattering matrix S first with scattering states ψi,n(ε,B), then with their particle-hole
conjugated Pψi,n(−ε,B), and equating the two results. Also in this case it is possible to
translate the above-mentioned particle-hole relation for the scattering matrix to the scattering
coefficients

Pα,βi,j (ε,B) = P−α,−βi,j (−ε,B). (4.43)

Importantly, by using the latter relation in the expression for the particle current of Eq.
(4.33), and considering only normal processes in absence of superconducting components
(such that P±,∓i,j = 0), one can obtain the expression for the probability current in the case of
normal systems as given by Eq. (4.16). As we will see in the next Chap. 5, relations of Eqs.
(4.41) and (4.43) will be fundamental in proving Onsager reciprocal relations for mesoscopic
hybrid systems.

We finally just comment on SLS. The chiral Hamiltonian symmetry reads H = −ηzHηz,
with ηz acting in sublattice space. For the scattering matrix, this translates into

S (ε,B) = ηz S
† (−ε,B) ηz. (4.44)



5
Charge and Heat currents with Scattering Approach

5.1 Quantum Thermodynamics

Since the industrial revolution, the transformation of heat into work has been at the center
of technology. The quest to understand the physics of this transformation led to the theory
of thermodynamics. During the 19th century it became clear that heat and work were sim-
ply two different forms of energy (the first law of thermodynamics), but that heat is special
because it has entropy associated with it, and no process is allowed to reduce this entropy
(the second law of thermodynamics). A great revolution came with Boltzmann, who made
the connection between Newton’s deterministic laws of motion and thermodynamics. Boltz-
mann’s theory of statistical mechanics completely changed the status of thermodynamics,
which was no longer considered as an underlying theory of nature, but rather an effective
theory that applies to macroscopic systems.

However, the advent of quantum theory completely changed the vision of statistical me-
chanics when applied to nanoscale devices, forcing us to consider phenomena like quantization
of energy levels, the statistics of quantum particles (fermionic or bosonic), etc. Moreover,
superposition, interference and correlations - while not changing the rules of thermodynam-
ics - can give rise to numerous effects in quantum systems that are otherwise absent in the
macroscopic machines typically used for heat-to-work conversion. Interference, for example,
can induce thermoelectric effects in systems where they would otherwise be absent, and can
modify (either reducing or increasing) them in systems which would already have a ther-
moelectric response. Coherence, especially in presence of superconducting components, also
adds another parameter to the system: the quantum mechanical phase. When this phase
can be manipulated by experimentalists, it can often be adjusted to improve the relevant
properties of the system in question and make a better heat engine or refrigerator.

The perspective of investigating such phenomena and their potentials in performing useful
tasks (such as creating work or cooling systems) at a microscopic level, has given rise in recent
years to the field of “quantum thermodynamics”. In this context, the Landauer-Büttiker’s
scattering theory [Landauer1957, Buttiker1986] (we introduced in Chap. 4), provides us
with a simple and powerful tool capable of combining the quantum nature of a coherent
system of non-interacting electrons with its relevant electrical, thermal and thermoelectric

47
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properties. In order to show that, in this chapter, we use the Landauer-Büttiker’s approach
(in presence of superconductors) to compute charge and heat currents at different leads of
a multiterminal quantum system. We also introduced the electrical power and efficiency as
performance quantifiers of such systems interpreted as thermoelectric heat engines. Then we
conclude by discussing the linear response regime [Benenti2017, Mazza2014], in particular
showing how the structure of the scattering theory leads to Onsager reciprocal relations.

5.2 Scattering theory for thermoelectricity

In the context of traditional thermoelectrics, one can treat the electrons inside the ther-
moelectric structure as being in local thermal equilibrium, with a local temperature which
varies smoothly across the sample. The system can then be described by Boltzmann transport
equations. In contrast, in mesoscopic or nanoscale thermoelectric devices, the thermoelectric
structure is of similar size or smaller than the length scale on which electrons relax to a local
equilibrium. Under such conditions and at low temperatures, particles do not behave like
classical “balls” but their wave-like behavior must be taken into account. In this coherent
regime, quantum-mechanical effects (like interference and correlations) become relevant, and
the Boltzmann theory no longer applies. Alternatively, if the particles do not lose energy in-
side the conductor, quantum transport can be related to scattering events inside the sample,
and the Landauer-Büttiker approach can be used to compute currents through the system.

As we have shown in Sec. 4.3, the Landauer-Büttiker approach (generalized in presence
of superconducting components), can be used to compute the probability current Ji out of
the i-th reservoir (which we report here for clarity)

Ji = 1
h

R∑
j=1

∑
α,β

α

∫ ∞
0

dε
[
fαi (ε)− fβj (ε)

]
Pα,βi,j (ε) , (5.1)

in which R is the total number of terminals (which can be normal or superconducting), and
α, β = ± label particles and holes respectively. In a nutshell, the probability current Ji is
obtained by counting each particle/hole that crosses the boundary between the scatterer and
reservoir i, by assigning a sign + to particles and − to holes, and depends on the proba-
bility that the particles go from one reservoir to another, Pαβi,j (ε), multiplied by reservoir’s
occupation factor difference (fαi (ε)− fβj (ε)). As already mentioned, the quantity

fαi (ε) =
{
e[ε−α(µi−µS)]/kBTi + 1

}−1
(5.2)

represents the generalized occupation factors for electrons (α = +) and holes (α = −) respec-
tively, and it is the only function which contains information about the chemical potential
µi and temperature Ti of the i-th reservoir. Importantly we assume that all superconduc-
tors have the same chemical potential µS which we take as a reference for the energies.
In cases where there are multiple superconductors with different electrochemical potentials
one has to use methods beyond the scattering approach, such as the methods presented in
Refs. [Klapwijk1982, Octavio1983].

In the following section we will see how the expression of the probability current of Eq.
(5.1) can be naturally extended in order to compute thermodynamical relevant quantities
such as electric and heat currents at different leads of the system [Lambert1993].
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Charge and Heat Currents

The first simplest thermodynamical quantity which can be directly deduced from Eq. (5.1),
is the charge (or electrical) current Jci at the i-th terminal. Such a current is given by the
total flux of electrons with charge e and holes with charge −e, flowing from the lead i toward
the scatterer and takes the following form

Jci = 1
h

R∑
j=1

∑
α,β

(eα)
∫ ∞

0
dε
[
fαi (ε)− fβj (ε)

]
Pα,βi,j (ε) , (5.3)

where we use the convention that positive charge currents are directed from the reservoirs
toward the sample. Notice that, Eq. (5.3) has been obtained directly from Eq. (5.1), by
multiplying the probability current times the value of the electronic charge e, i. e. Jci = eJi.

It is important to notice that, due to Andreev reflection processes taking place at in-
terfaces with superconducting leads, a supercurrent starts flowing inside superconductors in
the form of Cooper pairs (see Sec. 3.3). This supercurrent cannot be computed with the
Landauer-Büttiker approach, which only provides results for the quasiparticle current com-
ponent. However, once the charge currents are determined in the normal leads, the sum of
the currents in the superconducting leads can be calculated exploiting Kirchhoff’s sum rule

JcSC =
∑
i∈SC

Jci = −
∑
i/∈SC

Jci (5.4)

as a consequence of the charge conservation.
Similarly to Eq. (5.3), we can follow the same argument and define the energy current

Jui out of reservoir i into the scatterer, except now each particle carries energy instead of
the charge. More precisely, given µS as the reference for energies, electron-like quasiparticles
carry the energy (ε+ µS) while hole-like quasiparticles transport the energy (ε− µS), hence
the energy current takes the following form

Jui = 1
h

R∑
j=1

∑
α,β

∫ ∞
0

dε (ε+ αµS)
[
fαi (ε)− fβj (ε)

]
Pα,βi,j (ε) . (5.5)

It is important to notice that the energy current is conserved, namely ∑i J
u
i = 0, but it is

not gauge-independent. That is to say, the value of the energy current, Jui , depends on our
choice of the zero of energy. This means that the energy current is not of physical relevance,
although differences in energy currents may be. In contrast, the heat current Jhi at the lead
i is a gauge-independent quantity taking the following form [Callen1998]

Jhi = Jui −
µi
e
Jci (5.6)

or, more explicitly by using Eqs. (5.3) and (5.5)

Jhi = 1
h

R∑
j=1

∑
α,β

∫ ∞
0

dε [ε− α (µi − µS)]
[
fαi (ε)− fβj (ε)

]
Pα,βi,j (ε) . (5.7)

Notice that, differently from the charge transport, Andreev reflection blocks energy and heat
fluxes since they are propagated by quasi-particles, but not by the condensate. Moreover,
even if no conservation laws hold for the heat currents, they obey to the following important
relation ∑

i

Jhi = −
∑
i

µi
e
Jci , (5.8)
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obtained from Eq. (5.6) by summing over the leads and using the energy current conservation.
Notice that the right hand side of Eq. (5.8) represents the electrical power generated by the
system as we are about to discuss in the next section. Importantly, Eq. (5.8) corresponds to
the first law of thermodynamics, since it says that the rate of work production in the junction
(electrical power) equals the rate of heat absorption (total heat current) from the leads. Note
that the equality between power generated and heat absorbed only holds when we sum over
all reservoirs, in general it does not hold at the level of any given reservoir.

As a final remark, we point out that expressions analogous to those of Eqs. (5.3) and
(5.7) for the charge and heat current respectively, can be obtained also in the case of normal
systems (without superconducting components). This can be easily done by setting to zero
the scattering coefficients relative to Andreev processes, i. e. P±∓i,j (ε) = 0, and by using PHS
to write fi(ε) ≡ f+

i (ε) = 1− f−i (−ε) and Pi,j ≡ P++
i,j (ε) = P−−i,j (−ε).

Power and efficiency

So far we have seen how the Landauer-Büttiker approach can be used for the computation of
the charge (Jci ) and heat (Jhi ) currents at different leads of a multiterminal system. These two
quantities are of fundamental importance to characterize the thermodynamic performance of
a mesoscopic hybrid device thought as a thermal machine. In this context, the heat-engine’s
conversion of heat into work is typically described by two quantifiers: the electrical power,
P , and the efficiency of the converter, η. In the case of the electrical power, it is defined as

P ≡ −
∑
i

µi
e
Jci . (5.9)

With this definition, P is positive when the current flows against the applied bias, i. e.
there is a thermopower generated in the system (Pgen ≡ P > 0) that can be dissipated on
an external load. In this case the scatterer is absorbing heat from the electronic reservoirs
and turning it into electrical power: the device thus works as a thermoelectrical engine. In
contrast, if P < 0, then the scatterer is absorbing electrical power and emits heat into the
electronic reservoirs: one can think of this as Joule heating.

The efficiency of the thermal machine, η, is defined as the ratio between the work W
extracted from the engine when it absorbs heat Q. By convention we assume positive the
heat flowing into the system, hence in the steady state the definition of the efficiency is
equivalent to

η = Ẇ

Q̇
= Pgen∑+

i J
h
i

(5.10)

where the numerator corresponds to the electrical power generated Pgen, while the denom-
inator corresponds to the total heat current entering the system (the superscript + in the
sum means that we are summing only positive heat currents). The time derivative of the
work must be positive for the machine to work as a heat to work converter, otherwise we are
dealing with a refrigerator and the definition of η is no longer valid.

5.3 Linear Response

Much can be said about the scattering theory of arbitrary systems in the limit where the
differences in temperature and voltage bias between reservoirs are small on the scale of
the average temperature. In this respect, let us consider each lead j characterized by a
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temperature Tj and a voltage bias Vj (such that eVj = µj). Assuming a reference temperature
T and a reference voltage V , each of the previous quantity can be written as to make explicit
the difference from the reference values, e. g. Tj = T + δTj and Vj = V + δVj , where δTj =
Tj − T and δVj = Vj − V . Here we assume the superconducting chemical potential µS = eVS
as reference. Assuming small temperature and voltage biases (i. e. eδVj , kBδTj � kBT ), we
can expand the generalized Fermi distribution function of Eq. (5.2) to the first order in such
quantities:

fαj (ε) ' f(ε) +
∂fαj
∂δTj

δTj +
∂fαj
∂δVj

δVj

= f(ε)− ε

T
f ′(ε)δTj − αef ′(ε)δVj (5.11)

where we introduced the Fermi function f(ε) =
[
1 + eε/kBT

]−1
, and its derivative with respect

the energy
−f ′(ε) = −∂f

∂ε
= 1

4kBT cosh2 (ε/2kBT )
(5.12)

which is a bell-shaped function centered in zero and width of the order of kBT . Since we
consider only non-interacting systems, the scattering matrix is independent of the biases, and
we can use Eq. (5.11) to linearize the currents of Eqs. (5.3) and (5.7) as follows [Groot2013]:

Jci =
∑
j

Lccij
δVj
T

+
∑
j

Lchij
δTj
T 2 ,

Jhi =
∑
j

Lhcij
δVj
T

+
∑
j

Lhhij
δTj
T 2 . (5.13)

Here we expressed the currents to be proportional to the thermodynamic forces δVj/T and
δTj/T

2 (also known as generalized forces or affinities), driving the charge and heat currents
respectively. We also notice that the terms which are zeroth-order in the affinities cancel
due to the difference fαi (ε) − fβj (ε) in Eqs. (5.3) and (5.7). These relations are referred
to as phenomenological coupled transport equations or linear response equations or kinetic
equations and the coefficients Lµνij (with µ, ν = c, h) are known as Onsager coefficients, which
take the following form 1

Lccij = e2T

2

R∑
k=1

∑
αβ

∫ ∞
−∞

dε α
(
−f ′(ε)

)
[αδik − βδjk]Pα,βi,k (ε), (5.14a)

Lchij = eT

2

R∑
k=1

∑
αβ

∫ ∞
−∞

dε ε α
(
−f ′(ε)

)
[δik − δjk]Pα,βi,k (ε), (5.14b)

Lhcij = eT

2

R∑
k=1

∑
αβ

∫ ∞
−∞

dε ε
(
−f ′(ε)

)
[αδik − βδjk]Pα,βi,k (ε), (5.14c)

Lhhij = T

2

R∑
k=1

∑
αβ

∫ ∞
−∞

dε ε2
(
−f ′(ε)

)
[δik − δjk]Pα,βi,k (ε). (5.14d)

1By using PHS, Eqs. (5.14) can be further simplified by restricting the energy integration from 0 to∞ and
dropping the 1/2 factor. This greatly simplifies the computation, since it allows to calculate the scattering
coefficients only for positive energies.
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All the above coefficients can be collected inside a 2R×2R matrix (with R the total number
of leads)

Jc1
Jh1
...
Jci
Jhi
...
JcR
JhR


=



Lcc11 Lch11 · · · Lcc1i Lch1i · · · Lhh1R Lch1R
Lhc11 Lhh11 · · · Lhc1i Lhh1i · · · Lhc1R Lhh1R
...

... . . . ...
... . . . ...

...
Lcci1 Lchi1 · · · Lccii Lchii · · · LcciR LchiR
Lhci1 Lhhi1 · · · Lhcii Lhhii · · · LhciR LhhiR
...

... . . . ...
... . . . ...

...
LccR1 LchR1 · · · LccRi LchRi · · · LccRR LchRR
LhcR1 LhhR1 · · · LhcRi LhhRi · · · LhcRR LhhRR





δV1/T
δT1/T

2

...
δVi/T
δTi/T

2

...
δVR/T
δTR/T

2


(5.15)

which takes the name of Onsager matrix, and is indicated with L. By collecting all the
affinities in the vector F , all the currents in the current vector J , and by using Eq. (5.15), it
is possible to write the entropy production rate in the linear response regime [Brandner2013]

Ṡ = FTJ = FTLF . (5.16)
Since the entropy production must be non-negative (i. e. Ṡ ≥ 0, as required from the second
law of thermodynamics), it turns out that the Onsager matrix L of phenomenological coeffi-
cients is a positive semi-definite matrix. Notice also that, from the unitarity of the scattering
matrix it follows that all coefficients of type Lccij , Lhhij ≥ 0. From the physical point of view,
this implies that the electrical (∝ Lccij ) and thermal (∝ Lhhij ) conductances are always positive
or zero.

Furthermore, is important to notice that, since f ′(ε) is an even function of ε, it turns out
that the thermoelectric (Lchij ) and Peltier (Lhcij ) coefficients of Eqs. (5.14b) and (5.14c), iden-
tically vanish if the scattering coefficients are symmetric in energy with respect the chemical
potential, namely

Pα,βi,k (ε) = Pα,βi,k (−ε). (5.17)
Often in literature this latter property is referred as particle-hole symmetry [Benenti2017], in
the sense that the dynamics of quasi-particles above and below the electrochemical potential is
the same. However, it should be clarified that this property is distinct from the PHS property
we have introduced in the context of superconducting systems, which instead requires also
the inversion of the quasi-paricle index (namely Pα,βi,k (ε) = P−α,−βi,k (−ε), see Sec. 4.4).

Finally, by combining Eqs. (5.13), (5.14c) and (5.14d), we obtain that linear response
heat current is conserved, i. e. ∑

i

Jhi = 0. (5.18)

However, this conservation of the linear heat current is a specificity of linear response theory,
while in general we have Eq. (5.8) in place of Eq. (5.18). The latter is only accurate to
first order in bias and/or temperature difference, while the electrical power (generated or
absorbed by the system) is quadratic in these parameters, thus its correction to the heat is
not described in the linear response.

Onsager Reciprocal Relations

Onsager’s reciprocity relations (also known as Onsager-Casimir relations) are cornerstones
of nonequilibrium statistical mechanics [Onsager1931, Casimir1945]. They relate linear re-
sponse coefficients between flux densities and thermodynamic forces to one another. They
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are based on the fundamental principle of microreversibility which implies that the scattering
coefficients obey the relation Pα,βi,j (ε,B) = P β,αj,i (ε,−B) (as already discussed in Sec. 4.4).
On a microscopic point of view, this means that, if one reverses the velocity and spin of
all particles, and inverts any external TRS-breaking field B (such as magnetic fields, fluxes,
or exchange fields), then the particles will retrace their former paths, reversing the entire
succession of configurations. Hence, by using the microreversibility inside the expressions of
the Onsager coefficients of Eq. (5.14), the Onsager reciprocity relations read

Lµνij (B) = Lνµji (−B) (5.19)

with µ and ν being either charge (c) or heat (h). Such reciprocal relations - theoretically
predicted by Onsager in 1931 [Onsager1931] and experimentally demostrated in quantum
conductors both for the conductance symmetries [Benoit1986] and the thermoelectric re-
sponse [Matthews2014] - depend only on fundamental symmetries and are equally valid in
topologically trivial and nontrivial states, to the point that they are now often referred to as
the fourth law of thermodynamics.

The above microscopic derivation also shows that, in the case of normal systems (thus in
absence of superconducting components), one can show the following additional symmetry
relation [Butcher1990]

Lchij (B) = Lhcij (B). (5.20)

However, it can be shown that decoherence due to inelastic scattering leads to a breaking
of the equality in Eq. (5.20) [Benenti2017]. Similarly we notice that, in presence of super-
conductors, the fact that the Andreev reflection turns electrons into holes (and vice-versa),
breaks the equality in Eq. (5.20), without affecting the reciprocity relation of Eq. (5.19).

As a final remark, it is important to comment that further symmetries in the underlying
system Hamiltonian such as spin-rotation symmetry, particle–hole symmetry, or sublattice
symmetry lead directly to additional relations between the above Onsager coefficients. Such
relations are given in Ref. [Jacquod2012], along with similar relations for the Onsager coeffi-
cients which couple spin transport to charge and heat transport.
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6
Josephson effect

The Josephson effect was first discovered by Brian Josephson in 1962 [Josephson1962] and
experimentally observed by Anderson and Rowell in 1963 [Anderson1963]. It opened not only
a new important chapter of physics but also new horizons for a wide variety of stimulating
applications. Josephson predicted that a supercurrent could exist between two superconduc-
tors separated by a thin insulating layer and that its value would be proportional to the sine
of the difference φ = φL − φR of the phases of the superconductor order parameters

J(φ) = JC sin (φ) (6.1)

where JC = maxφ J(φ) is called the critical current. This so-called dc Josephson effect ex-
tends beyond Josephson’s predictions and can exist also if superconductors are connected by
a “weak link” of any physical nature such as normal metal, insulators (trivial or topological),
semiconductor, superconductor with smaller critical temperature, geometrical constriction,
etc. The current-phase relation (CPR) is an important characteristic of a Josephson junc-
tion. In only a few cases does it reduces to the familiar sinusoidal form of Eq. (6.1), which
is ordinarily used to study the dynamics and ultimate performance of analog and digital de-
vices based on Josephson junctions [Barone1982]. The physics of the dc Josephson effect can
be understood if we take into account that a quasiparticle located in the weak link cannot
penetrate directly into a superconductor if its energy is smaller than the superconducting
energy gap. However, another form of charge transport can occur via Andreev reflections
[Andreev1964]. As already discussed in Sec. 3.3, an electron impinging on one of the in-
terfaces is converted into a hole moving in the opposite direction, thus generating a Cooper
pair in a superconductor. This hole is subsequently Andreev reflected at the second interface
and is converted back into an electron, leading to the destruction of a Cooper pair in the
other superconductor. As a result of this cycle, a pair of correlated electrons is transferred
from one superconductor to another, creating a supercurrent flow across the junction (see
Fig. 6.1(a)). Since the Andreev reflection amplitudes depend on the corresponding phases
φL,R, the resulting current depends on the phase difference φ, thus leading to the dc Joseph-
son effect. Due to the electron-hole interference in the quantum well, standing waves with
quantized energy εp appear in the weak-link region. The corresponding quantum states are
referred to as Andreev bound states (ABSs). The total supercurrent J flowing through the
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junction is the sum of the partial currents transported via Andreev bound states.
In this chapter we briefly review some general phenomenological aspects of supercon-

ducting state and provide a qualitative interpretation of the Josephson effect on the basis
of very simple models. In this framework, we derive the foundamental equations governing
the behavior of a Josephson junction under the application of an external potential bias
V and a magnetic field B. In conclusion we describe how the Josephson current can be
obtained directly from the quasi-particle excitation spectrum of the Bogoliubov-de Gennes
(BdG) equation, by exploiting the scattering matrix formalism.

Figure 6.1: (a) - Formation of Andreev levels in a Josephson junction. An electron e and the
Andreev-reflected hole h are shown. A Cooper pair of correlated electrons is transferred from the left
superconductor SL to the right one SR, creating a supercurrent flow across a junction. (b) - ψL and
ψR represent the left and right pair wavefunctions.

6.1 Phenomenological Aspects
After the pioneering work by London [London1935], the theory of Ginzburg and Landau
[Ginzburg-Landau1950] (developed to describe second order phase transitions), provided an
enormous insight into the nature of superconductivity as a quantum phenomenon on a macro-
scopic scale. Central to this theory was the introduction of the concept of a position dependent
order parameter, ψ(r), which gives a measure of the order in the superconducting state. Such
an order parameter, which is proportional to the local value of the energy gap function ∆(r), is
complex and can be regarded as a wave function for superconducting electrons [Barone1982].

In this framework ψ(r) is associated with a macroscopic number of electrons which are
assumed to “condense” in the same quantum state. In this sense, the superconductive state
can be regarded as a “macroscopic quantum state”. Therefore we are dealing with particles,
having effective mass and chargem∗ and e∗, respectively, which can be described as a “whole”
by a macroscopic wave function of the form

ψ(r) = |ψ(r)|eiφ(r) (6.2)
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where φ is the phase common to all the particles and |ψ(r)|2 represents the density in the
macrostate. The electric current density can be obtained as the functional derivative of free
energy F with respect to the vector potential A

J(r) = c
δF

δA(r) (6.3)

where c the speed of light. In other words J(r) is the variable conjugate to A(r). By explicit
calculation the current density takes the expression [Ketterson1999]

J(r) = ie∗~
2m∗ [ψ(r)∇ψ(r)∗ − ψ(r)∗∇ψ(r)]− e∗ 2

m∗c
|ψ(r)|2A(r) (6.4)

which corresponds to the standard result of the current density in quantum mechanics. As
obtained within the framework of the microscopic theory of superconductivity [BCS1957],
the charge e∗ is twice the electronic charge e, reflecting the fact that the “particles” we are
dealing with are in fact Cooper pairs of coupled electrons. Here we also assume m∗ = 2m
with m the electronic mass. Thus with the ψ(r) given by Eq. (6.2) the expression for J(r)
becomes

J(r) = e~
m
|ψ(r)|2

[
∇φ− 2e

~c
A(r)

]
. (6.5)

Gauge invariance requires that under the transformation of the vector potential A

A→ A+∇χ (6.6)

and scalar potential V
V → V − 1

c

∂

∂t
χ (6.7)

the observable physical quantities remain unchanged (being χ(r, t) an arbitrary single valued
function) [Ketterson1999]. We recall that such potentials are respectively related to the
magnetic field B = ∇ × A and the electric field E = −∇V − (1/c)(∂A/∂t). As can be
readily verified from the expression of current density J , Eqs. (6.6) and (6.7) imply the
following phase transformation

φ→ φ+ 2e
~c
χ. (6.8)

The choice of constant values for the scalar function χ does not affect potentials, but implies
different values of the phase factor φ. This means that the total phase of the sample as
a whole is not physical, and thus meaningless. What is meaningful to discuss, instead,
is the relative phase that can be established between two superconducting blocks SL and
SR which are connected by an insulating barrier. If the insulating barrier is sufficiently
thin between SL and SR, then Cooper pairs can flow from one superconductor to the other
(Josephson tunneling). The appearance of such a supercurrent flowing between two weakly
couple superconductors with a given phase difference is the basis of the Josephson effect. In
the following section, we set the basic equations for the Josephson effect in tunneling junctions
and introduce some general peculiar features which characterize the Josephson phenomena.

6.2 Josephson equations

The two-level system approach

It is possible to follow several different approaches in order to obtain the basic Joseph-
son relations. A very simple derivation is based on a phenomenological “two level system”
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picture [Feynman1965]. As mentioned in the previous section, let us consider two supercon-
ducting blocks SL and SR connected by an insulating barrier sufficiently thin for tunneling to
occur. Each superconducting electrode can be described by a single quantum state ψL and
ψR which can be regarded as the macroscopic wave functions for the left and right super-
conductor respectively. We indicate with the ket |L〉 (|R〉) the basis state for the left (right)
superconductor so that

|ψL|2 = 〈L|ψ∗LψL |L〉 ; |ψR|2 = 〈R|ψ∗RψR |R〉 (6.9)

represent the actual Cooper pair density in the two superconducting blocks. Because of
the weak coupling existing between the two superconductors, “transitions” between the two
states |L〉 and |R〉 can occur. This coupling is related to the finite overlap of the two pair
wave functions ψL and ψR as schematically depicted in Fig. 6.1(b). The state vector which
describes the junction can be written as

|ψ〉 = ψL |L〉+ ψR |R〉 (6.10)

i. e. the particle can be either in a “left” or “right” state with amplitude ψL or ψR respectively.
The time evolution of the system is described by the Schrödinger equation:

i~
∂

∂t
|ψ〉 = H |ψ〉 (6.11)

with the Hamiltonian given by

H = HL +HR +HT (6.12)

where HL = EL |L〉 〈L| and HR = ER |R〉 〈R| refer to the unperturbed superconductors with
ground state energies EL and ER respectively. The tunneling Hamiltonian takes the following
form

HT = K (|L〉 〈R|+ |R〉 〈L|) (6.13)
and describes the interaction term between the states |L〉 and |R〉. Here K is the coupling
amplitude of the two state system which can be assumed real in absence of a vector potential
A. As can be seen from the microscopic theory [Gorkov1959], in the two isolated supercon-
ductors, the energy terms EL = 2µL and ER = 2µR are equal to twice the electrochemical
potentials µL and µR. These values represent the minimum energy required to add a Cooper
pair to SL and SR respectively. Thus if we consider a d.c. potential difference V across
the junction these chemical potentials are shifted by an amount eV and consequently it is
EL − ER = 2eV . Therefore, by choosing the zero of the energy halfway between the two
values on the right and on the left, and taking projections on the two base states of the
Schrödinger equation (6.11), we can write

i~
∂

∂t
ψL = eV ψL +KψR

i~
∂

∂t
ψR = −eV ψL +KψL

(6.14)

By substituting ψL = |ψL|eiφL and ψR = |ψR|eiφR , and separating real and imaginary parts
in both Eqs. (6.14) we get

∂

∂t
|ψL|2 = 2K

~
|ψL||ψR| sin (φ)

∂

∂t
|ψR|2 = −2K

~
|ψL||ψR| sin (φ)


∂

∂t
φL = K

~
|ψL|
|ψR|

cos (φ) + eV

~
∂

∂t
φR = K

~
|ψL|
|ψR|

cos (φ)− eV

~

(6.15)
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where we introduced the phase difference

φ = φL − φR. (6.16)

The pair density current is simply defined as J = e ∂∂t |ψL|
2 = −e ∂∂t |ψR|

2, and thus from Eqs.
(6.15) it follows that

J = 2Ke
~
|ψL||ψR| sin (φ). (6.17)

Then, if we assume that both sides of the junction are prepared from the same kind of
superconducting material, i. e. |ψL| = |ψR| = |ψ|, we finally obtain the current-phase relation

J = JC sin (φ) (6.18)

where JC = 2Ke
~ |ψ|

2 is the critical current and corresponds to the maximum current density
that may be carried by the junction.

a.c. d.c. Josephson effect

It is easy to see that from Eqs. (6.15), it holds the following important voltage-phase relation

∂

∂t
φ = 2e

~
V (6.19)

which defines the time evolution of the phase difference φ under the application of the d.c.
potential V . Here we notice that the same relation can be obtained also from a general
gauge invariance argument by combining Eqs. (6.7) and (6.8). Notably, if V = 0, the phase
difference φ results to be constant and not necessarily zero, so that a finite current density
can flow through the barrier with zero voltage drop across the junction. This is the essence
of the so called d.c. Josephson effect [Josephson1962, Josephson1964]. If, instead, we apply
a constant (time-independent) voltage V 6= 0, it follows by integration of Eq. (6.19) that the
phase φ varies in time as

φ = φ0 + 2e
~
V t (6.20)

which leads to the appearance of an alternating current

J = JC sin
(
φ0 + 2e

~
V t

)
(6.21)

which oscillates with a frequency ωJ = 2eV/~. This is called the a.c. Josephson effect.

Magnetic field effects

Let us examine now the Josephson effect in the presence of a magnetic field B described by
the vector potential A such that B = ∇ ×A. In this case, a similar gauge-invariant form
analogous to Eq. (6.19), can be obtained for the the vector potential. Indeed, by comparing
Eqs. (6.6) and (6.8), we get the following relation

∇φ = 2e
~c
A. (6.22)

Therefore, from Eq. (6.22), the gauge-invariant phase difference is given by

φ = φ0 + 2π
Φ0

∫ r

l
A· d` (6.23)
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where Φ0 = hc/2e is the flux quantum, and the integral is taken across the barrier between
two points l on the interface with the left superconductor and r on the interface with the
right one.

By combining the gauge-invariant phase relation of Eq. (6.22) together with the phase
relation of Eq. (6.19) and the voltage-phase relation of Eq. (6.18), we obtain the fundamental
equations governing the behavior of Josephson junctions

J = JC sin
(
φ− 2π

Φ0

∫ r

l
A· d`

)
∂

∂t

(
φ− 2π

Φ0

∫ r

l
A· d`

)
= 2eV

~

. (6.24)

Doppler shift effect

Another important effects which emerges in Josephson junctions under the application of an
external magnetic field is the so-called Doppler shift effect [Tkachov2015]. In order to discuss

Figure 6.2: Schematic of a 2D Josephson junctions lying on the x-y plane with a constant mag-
netic field B applied along the (negative) z direction. The path of integration C is shown by the
dotted line. Blue arrows indicate the Doppler shift momentum acquired by Copper pairs inside the
superconductors.

this effect, we consider a 2D junction lying on the x-y plane with a constant magnetic field
applied along the (negative) z direction as depicted in Fig. 6.2. The gauge invariant phase
shifts may be obtained by integrating Eq. (6.22) around the closed path C (see the dotted
contour in Fig. 6.2). Noting that ∇φ is a multivalued function that can change by 2πn upon
completing the path, we obtain∮

C
∇φ· d` = (φb − φa) + (φc − φb) + (φd − φc) + (φa − φd) = 2πn (6.25)
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where n is the integer winding number of the order parameter phase. By using Eq. (6.23),
the phase differences across the upper and lower edges of the junction are given by

φb − φa = φu + 2π
Φ0

∫ b

a
A· d` (6.26)

and
φd − φc = −φl + 2π

Φ0

∫ d

c
A· d` (6.27)

where we indicated with φu and φl the gauge-invariant phase shifts associated to the upper and
lower edge of the junction. The second and fourth terms in Eq. (6.25) are phase differences
inside the superconducting leads and are found by using the formula for the supercurrent of
Eq. (6.5)

φc − φb =
∫ c

b
∇φ· d` = 2π

Φ0

∫ c

b

(
A+ 4πλ2

L

c
J

)
· d` (6.28)

and

φa − φd =
∫ a

d
∇φ· d` = 2π

Φ0

∫ a

d

(
A+ 4πλ2

L

c
J

)
· d` (6.29)

where we introduced the London penetration depth λL =
√
mc2/4π|ψ|2e2. Substituting the

above four equations in Eq. (6.25), we obtain

φu − φl = 2πn+ 2π
Φ0

∮
C
A· d`+ 8π2λ2

L

Φ0c

∫
C′
J · d`. (6.30)

The integration of J is taken over a path C ′ which excludes the insulator. By assuming the
thickness d of the superconducting films along the z direction larger than the London penetra-
tion depth [Ketterson1999], the integration path can be taken deep inside the superconductors
where the integral involving the supercurrent density is negligible. The integration of A is
around a complete closed path C and is equal to the total flux Φ inside the area enclosed by
the contour. We emphasize that the magnetic flux through the effective junction area L∗W
(Fig. 6.2), depends on the screening properties of the leads. However, if the Pearl length
λP = 2λ2

L/d� 1 (as in the case of a thick superconducting film), we can chose L∗ = L, which
gives a flux Φ = LWB. The phase difference is then simply related to the total flux by

φu − φl = 2πn+ 2π Φ
Φ0
. (6.31)

Alternatively, by taking φ0 (the gauge invariant shift phase at the middle of the junction,
i. e. y = 0) as a reference, and by neglecting the unobservable phase difference of 2πn, we
can recast Eq. (6.31) in the form 

φu = φ0 + π
Φ
Φ0

φl = φ0 − π
Φ
Φ0

(6.32)

namely, we can obtain the gauge invariant phase differences φu and φl at the opposite edges
of the junction y = ±W/2 by simply changing Φ→ −Φ.



62 Josephson effect

Together with the appearance of a local gradient of the superconducting phase difference,
the presence of the magnetic field induces a momentum-shift of the Cooper pairs inside the
superconductors [Ketterson1999]

p→ p− 2e
c
A (6.33)

where the factor 2e account for the charge of the coupled electrons inside the condensate.
Using the gauge A(y) = (−yB, 0, 0), and assuming W much larger than the transverse
dimension L of the junction, the vector potential acting on the superconducting edge states
can be approximated by its boundary value A(±W/2) ≈ ∓BW/2. This results in a finite
Cooper-pair momentum-shift along the edge

pDS(Φ) ≡ −2e
c
Ax(±W/2) = ±π~

L

Φ
Φ0

(6.34)

also called Doppler shift momentum, where ± correspond to the upper and lower edge re-
spectively (see Fig. 6.2) [Tkachov2015].

6.3 Josephson current from Scattering Formalism
In the present section we describe how the Josephson current can be obtained directly from
the quasi-particle excitation spectrum of the Bogoliubov-de Gennes (BdG) equation.

As we have already seen in Chap. 3, the BdG equation consist of two Schrödinger equa-
tions for electron and hole wavefunctions u(r) and v(r), coupled by the pair potential ∆(r)(

H ∆
∆∗ −H∗

)(
u
v

)
= ε

(
u
v

)
. (6.35)

Here the excitation energy ε is measured relative to the chemical potential µ and H =
(p+ eA)2 /2m + V − µ is the single-electron Hamiltonian in the field of a vector potential
A(r) and electrostatic potential V (r). In a uniform system with ∆(r) = ∆eiφ, A(r) = 0,
V (r) = 0, the solution of the BdG equations correspond to the QPs and QHs plane wave
eigenfuctions already introduced in Sec. 3.3. As we have seen, the excitation spectrum
is continuous and characterized by an excitation gap ∆. This simple excitation spectrum,
however, is modified in presence of a Josephson junction. In such a situation, the spectrum
acquires a discrete part due to the non-uniformities in ∆(r) near the junction. The discrete
spectrum corresponds to bound states in the gap (0 < ε < ∆), localized within a coherence
length ξ from the junction, which take the name of Andreev bound states (ABS).

Supercurrent from Excitation Spectrum

By recalling Eqs. (6.3) and (6.22), we can express the equilibrium Josephson current as the
derivative of the free energy F with respect to the phase difference φ [Anderson1964]

J = 2e
~
∂F

∂φ
. (6.36)

Notice that the derivative is to be taken without varying the vector potential A. To apply
this relation we need to know how to obtain F from the BdG equations [Beenakker2006]. As
follows from its definition [DeGennes1966], the free energy takes the following form

F = U − TS (6.37)
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where T is the temperature, and S is the entropy of the independent fermionic excitations,
which can be written as

S = −2kB
∑
ε>0

[f ln f + (1− f) ln (1− f)]

= −2kB
∑
ε>0

[ln f + (1− f) ε/kBT ] . (6.38)

The energy U takes the following form

U = 〈H〉+ Uint (6.39)

and is the sum of the single-particle energy 〈H〉 and the interaction potential energy

Uint = −
∫
dr|∆|2/g (6.40)

which is negative, since the interaction is attractive (here g is the interaction constant of
the BCS theory [BCS1957]). In order to compute the single-particle energy 〈H〉, we re-
call that the equilibrium average of a generic single-electron operator P takes the following
form [Beenakker2005]

〈P〉 = 2
∑
ε>0

∫
drf(ε)u∗Pu+ [1− f(ε)] vPv∗. (6.41)

Notice the reverse order, u∗Pu versus vPv∗, and the different thermal weight factors, f(ε)
for electrons and f(−ε) = 1− f(ε) for holes. The prefactor of 2 accounts for spin degeneracy
(assuming that P does not couple to the spin). Thus, by using Eqs. (3.11), (6.35) and (6.41)
we obtain for the single particle energy the expression

〈H〉 =
∑
ε>0

[fε+ ε (1− f)]− 2Uint +
∑
ε>0

ε

∫
dr
(
|u|2 − |v|2

)
. (6.42)

By making use of the completeness of the set of eigenfunctions (u, v) [Bardeen1969], the last
term of the above equation can be written as follow:

∑
ε>0

ε

∫
dr
(
|u|2 − |v|2

)
= 1

2
∑
ε

∫
dr (u∗Hu+ v∗H∗v) = 1

2 Tr
(
H 0
0 H∗

)
= TrH (6.43)

Collecting results, the expression for the free energy becomes

F = −2kB
∑
ε>0

ln [2 cosh (ε/2kBT )] +
∫
dr|∆|2/g + TrH. (6.44)

The first term (the sum over ε) can be formally interpreted as the free energy of non-
interacting electrons, all of one single spin, in a “semiconductor” with Fermi level halfway be-
tween the “conduction band” (positive ε) and the “valence band” (negative ε) [Beenakker2005].
The second term (corresponding to −Uint) corrects for a double-counting of the interaction
energy in the semiconductor model. The third term (TrH) cancels a divergence at large ε of
the series in the first term.
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In conclusion, by substituting F into Eq. (6.36), we obtain the required expression for
the Josephson current:

J = −2e
~
∑
p

tanh (εp/2kBT )dεp
dφ
− 2e

~
2kBT

∫ ∞
∆0

dε ln [2 cosh (ε/2kBT )]dρ
dφ

+ 2e
~
∂

∂φ

∫
dr|∆|2/g

(6.45)
where the sum is over discrete positive eigenvalues εp, and an integration over the continuous
spectrum with density of states ρ(ε). Notice that, the term TrH in Eq. (6.44) does not
depend on φ, and therefore does not contribute to the current. The spatial integral of |∆|2/g
does contribute in general. However, if rigid boundary condition holds for the gap order
parameter (see the discussion below), ∆ can be considered independent of φ so that this
contribution can be disregarded. A calculation of the Josephson current from Eq. (6.45)
then requires only knowledge of the eigenvalues. In the following we show how to relate the
excitation spectrum of Bogoliubov quasiparticles to the scattering matrix of normal electrons.

6.4 Excitation spectrum from scattering matrix
So far we have seen that, from Eq. (6.45), the Josephson current can be fully obtained
from the excitation spectrum of the BdG Hamiltonian. In the following section we will show
how to compute the excitation spectrum of a Josephson junction by exploiting the scattering
matrix formalism [Beenakker1991]. In order to do that, let us now consider an SNS junction
as depicted in Fig. 6.3. It consists of a disordered normal region sandwiched between two
superconducting leads SL and SR with interfaces located at x = ±L/2. To obtain a well-
defined scattering problem (see Chap. 4) we insert ideal (impurity-free) normal leads L and
R to the left and right of the disordered region. The leads should be long compared to the
Fermi wavelength λF , but short compared to the coherence length ξ [Beenakker2006].

Moreover, we let ∆(r) → ∆e∓iφ/2 deep inside the superconducting bulk (for x → ±∞),
and ∆(r) = 0 for |x| < L/2 inside the normal region. As discussed in Chap. 3, in general,
to determine ∆(r) near the junction one has to solve the self-consistency equation (see Eq.
(3.11)). However, if the width W of the junction is small compared to the coherence length,
the non-uniformities in ∆(r) extend only over a distance of order W from the junction.
Since non-uniformities on length scales � ξ do not affect the dynamics of the quasiparticles,
these can be neglected [Likharev1979]. Under this assumption one can safely use the “rigid
boundary-condition” (also referred as “step-function model”) for the gap order parameter

∆(r) =


∆eiφ/2 for x < −L/2,
0 for |x| < L/2,
∆e−iφ/2 for x > L/2.

(6.46)

Such an approximation is justified if the resistivity of the junction region is much bigger than
the resistivity of the bulk superconductor [Kupriyanov1982].

We first construct a basis for the scattering matrix in the normal region sN . A wave
incident on the disordered normal region is described by a vector of coefficients (in the basis
of Eq. (3.32))

cinN ≡
(
c+
L , c
−
R, b

+
L , b
−
R

)T
(6.47)

as schematically shown in Fig.(6.3). We indicate with c±L/R/b
±
L/R the incoming electrons/holes

in the N region, with L/R labeling the left/right lead and ± indicating the direction of
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Figure 6.3: Josephson junction containing a disordered normal region N . Scattering states in the
normal leads L and R are indicated schematically. Rigid boundary conditions are assumed for the
gap order parameter.

propagation of particles along the x axis (+ for right movers and − for left movers). The
scattered wave has vector of coefficients

coutN ≡
(
c−L , c

+
R, b
−
L , b

+
R

)T
. (6.48)

The scattering matrix sN of the disordered normal region relates these two vectors, namely

coutN = sNc
in
N . (6.49)

Because the normal region does not couple electrons and holes, this matrix has a block-
diagonal form

sN (ε) =
(
s0(ε) ∅
∅ s0(−ε)∗

)
, s0 ≡

(
r t
t′ r′

)
. (6.50)

Here s0 is the unitary scattering matrix associated with the single electron Hamiltonian H
of Eq. (6.35). By assuming for simplicity that the number of modes in leads L and R is the
same, the reflection and transmission matrices r(ε), r′(ε) and t(ε), t′(ε) are N ×N matrices,
with N(ε) being the number of propagating modes at energy ε (see also Sec. 4.2).

For energies 0 < ε < ∆ there are no propagating modes in the superconducting leads
SL and SR. We assume also that the only scattering at the interfaces with superconductors
consists of perfect Andreev reflections, i.e. we consider the case that the disorder is contained
entirely within the normal region. We can then define an scattering matrix sA for Andreev
reflection at the SN interfaces by

cinN = sAc
out
N . (6.51)

The elements of sA can be obtained by matching the wavefunctions at x = ±L/2 as we already
discussed in Sec. 3.4. In the case of ideal interface and within the Andreev approximation,
i. e. ε,∆� µ, we can write

sA(ε) ≡ α(ε)s̃A = α(ε)
(
∅ rA
r∗A ∅

)
; rA ≡

(
e−iφ/21 ∅
∅ eiφ/21

)
(6.52)

where α(ε) = exp [−i arccos (ε/∆)]. Here we explicitly divided sA in two contributions: a
phase shift − arccos (ε/∆) due to the penetration of the wavefunction into the superconduc-
tor, and a phase shift (included in s̃A) equal to ± the phase of the pair potential in the
superconductor (+ for reflection from hole to electron, − for the reverse process).
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For supra-gap energies ε > ∆ we can define the scattering matrix sSNS of the whole
junction, by coutS = sSNSc

in
S , where we introduced the vector of coefficients

cinS ≡
(
c̃+
L , c̃
−
R, b̃

+
L , b̃
−
R

)T
(6.53)

coutS ≡
(
c̃−L , c̃

+
R, b̃
−
L , b̃

+
R

)T
(6.54)

where, similarly to Eqs. (6.47) and (6.48), we indicate with c̃±L/R/b̃
±
L/R the incoming and

outgoing QPs/QHs inside the superconducting reservoirs SL and SR. Also in this case, by
matching the wavefunctions at x = ±L/2, and using again the Andreev approximation, we
can write

sSNS = U−1 (1−M)−1
(
1−M †

)
sNU (6.55)

U =
(
∅ rA
r∗A ∅

) 1
2

, M = sAsN . (6.56)

The three matrices sN (ε), sA(ε) and sSNS(ε) defined above are all unitary (s†s = ss† = 1)
and satisfy the symmetry relation sij(ε, φ) = sji(ε,−φ), as required by quasiparticle-current
conservation and by time-reversal invariance, respectively.

We are now ready to relate the excitation spectrum of the Josephson junction to the
scattering matrix of the normal region. Regarding the discrete spectrum, by combining Eqs.
(6.49) and (6.52), we obtain the condition

cinN = sAsNc
in
N (6.57)

which, for a bound state, implies the following secular equation

Det(1− sA(εp)sN (εp)) = 0. (6.58)

Analogously the density of states of the continuous spectrum is related to sSNS by the general
relation [Akkermans1991]

∂ρ

∂φ
= − 1

π

∂2

∂φ∂ε
Im lnDet(1− sA(εp)sN (εp)). (6.59)

Short-Junction Limit

In the short-junction limit L � ξ when ∆ � εc (here εc ≡ ~/τdwell is the correlation energy
in terms of the dwell time τdwell in the junction) we may approximate s0(ε) ≈ s0(−ε) ≡ s0. In
this regime, for ε > ∆, α is real (see Sec. 3.4) and so is the determinant Det(1− sA(εp)sN (εp))
of Eq. (6.58). In this case Eq. (6.59) reduces to ∂ρ/∂φ = 0, from which we conclude that the
continuous spectrum does not contribute to the Josephson current. Therefore the expression
of the Josephson current of Eq. (6.45), in the regime of short-junction and with rigid boundary
conditions simply reduces to

J = −2e
~
∑
p

tanh
(
β

2 εp
)
dεp
dφ

(6.60)

(where β = 1/kBT ) for those εp which satisfy Eq. (6.58) . In particular it can be shown
that Eq. (6.58) can be solved for εp, in the short-junction limit, in terms of the eigenvalues
0 ≤ Tp ≤ 1 (with p = 1, 2, . . . N) of the hermitian N ×N matrix tt† (or t′t′†)

εp = ∆
√

1− Tp sin (φ/2)2 (6.61)
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Substitution of Eq. (6.61) into Eq. (6.60) yields the Josephson current

J(φ) = e∆
2kB

N∑
p=1

Tp sin (φ)√
1− Tp sin2 (φ/2)

tanh
(∆β

2

√
1− Tp sin2 (φ/2)

)
. (6.62)

Notice that, the above equation holds for an arbitrary transmission matrix tt†, i.e. for
arbitrary disorder potential. A formula of similar generality for the conductance is the multi-
channel Landauer formula already introduced in Eq. (4.22). It is important to notice that,
in contrast to the Landauer formula, Eq. (6.62), is a non-linear function of the transmis-
sion eigenvalues Tp. It follows that knowledge of the conductance (i.e. of the sum of the
eigenvalues) is not sufficient to determine the supercurrent.
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7
Nonlocal Thermoelectricity

in a S-TI-S Junction with a Metal Probe:
Evidence for Helical Edge States

This chapter is based on the results published in the paper:
G. Blasi, F. Taddei, L. Arrachea, M. Carrega, and A. Braggio. Nonlocal Thermoelectricity in
a Superconductor–Topological-Insulator–Superconductor Junction in Contact with a Normal-
Metal Probe: Evidence for Helical Edge States. Phys. Rev. Lett., 124(22) 227701 (2020).

Quantum spin Hall systems in 2DTIs are receiving a lot of attention [Moore2009, Hasan2010,
Qi2011, Ando2013] due to their non-trivial topological properties. As we discussed in Chap.
2, the clearest signature of the quantum spin Hall phase is the existence of Kramers pairs
of helical edge states, which propagate in opposite directions with opposite spin orien-
tations (spin-momentum locking) [Tkachov2015a]. After the pioneering theoretical ideas
[Kane2005, Kane2005a, BHZ2006] and experimental realizations in HgTe quantum wells
[Konig2007, Roth2009, Brune2012], other platforms to realize this topological phase, preserv-
ing time-reversal symmetry, have been proposed in different materials [Tang2017, Jia2017,
Reis2017, Li2018, Wu2018, Shi2019, Liu2020]. In HgTe the helical nature of the edge states
is commonly probed by means of nonlocal transport measurements in a Hall bar geometry
with four or more terminals [Konig2007, Roth2009, Brune2012] and quantum point con-
tacts [Citro2011, Ronetti2016, Ronetti2017]. This can be very hard to implement in some
other systems, where evidence is shown on the existence of edge states but not yet on their
helical nature [Tang2017, Jia2017, Reis2017, Wu2018, Li2018, Shi2019, Liu2020].

When the Kramers pairs of helical edge states are embedded in a superconducting junc-
tion, the Andreev states inherit non-trivial properties. Topological Josephson junctions
formed by 2DTIs have been studied recently [Fu2009, Kopnin2011, Tkachov2013, Lee2014,
Dolcini2015, Tkachov2015, Sothmann2016, Tkachov2017, Shapiro2017, Bours2018, Blasi2019,
Bours2019] and experimentally realized [Hart2014, Wiedenmann2016, Deacon2017]. In par-
ticular, as we have seen in Sec. 6.2, a small magnetic flux in topological junctions can lead
to very interesting features due to the effective orbital Doppler shift (DS) acquired by the
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electrons in the edge states [Tkachov2015].
In the present chapter we argue that the DS leads to a nonlocal thermoelectric effect as

a unique consequence of the helical nature of the edge states. The setup under investigation
is shown in Fig. 7.1, where a pair of edge states are contacted to superconductors, while
a normal-metal probe – such as STM tip [Das2011, Liu2015, Hus2017, Voigtlander2018]
– is directly contacted to the edge states. A similar geometry has been considered in
Refs. [Sothmann2017, Bours2018], where however, only the voltage-driven charge transport in
the tunneling regime or the heat transport with no probe have been analyzed. In the absence
of DS, particle-hole symmetry, inherently present in superconducting systems, prevents the
development of any thermoelectric effect. Remarkably, the DS has an effect akin to a Zeeman
splitting in the two spin-polarized members of the Kramers pair. Although the whole system
is particle-hole symmetric by construction (see Sec. 3.2), the local density of states for each
spin species at the contact with the probe lack of symmetry between positive and negative
energies due to the DS. Therefore, when a temperature difference is applied between the two
superconductors a thermoelectric current flows between the TI and the probe. The key for
this response is the fact that the proximity to superconductors gives rise to a simultaneous
flow of helical electrons and holes. Since they move in opposite directions, they thermalize
with different reservoirs, see Fig. 7.2(b).

/2 /2

SRSL

−+ N

0
0

Φ

Figure 7.1: Sketch of the setup. A helical Kramers pair of edge states of a quantum spin Hall bar is
put in contact with two superconductors at different temperatures TL = T +δT/2 and TR = T −δT/2.
A bias voltage VN is applied to the normal-metal probe coupled to the edge at the point x0 and kept
at temperature TN = T . L is the length of the junction. The structure is threaded by a magnetic flux
Φ which induces a Doppler shift in the edge states. A Josephson phase difference φ ≡ φL−φR may be
applied between the two superconductors. The green arrow depicts spin-↑ right-moving quasi-particles,
the orange arrow indicates spin-↓ left-moving quasi-particles.

The intrinsic particle-hole symmetry of a normal metal-superconducting junction can
be broken, in order to generate thermoelectric current, by using a Zeeman field and spin-
polarized barriers or nonlinearities [Ozaeta2014, Bergeret2018, Keidel2020, Marchegiani2020].
Our proposal, on the contrary, relies on a completely different mechanisms which makes use
of the helicity of the edge states under the effect of the DS. In the following we quantitatively
discuss this peculiar effect in the linear response regime, using the scattering matrix approach
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developed in Chap. 5. We analyze different figures of merit, and show that it is possible to
achieve very high values of the nonlocal Seebeck coefficient.

7.1 Model

We consider the topological Josephson junction depicted in Fig. 7.1 with the upper edge of
length L tunnel coupled with a normal (N) probe. The width of the TI is assumed large
such that upper and lower edges are decoupled, and thus we focus only on the former one.
The two electrodes induce superconducting correlations on the edge states via proximity
effect [Tkachov2015, Sothmann2016]. The associated Bogoliubov-de Gennes (BdG) Hamil-
tonian reads

HBdG =
(

H(x) iσy∆(x)
−iσy∆(x)∗ −H(x)∗

)
, (7.1)

expressed in the four-component Nambu basis (ψ↑, ψ↓, ψ∗↑, ψ∗↓)T with spin ↑ and ↓ collinear
with natural spin quantization axis of the TI edge pointing along z-direction, and where
H(x) = vF (−i~∂x + pDS/2)σz − µσ0 + Λ(x) with −H(x)∗ its time-reversal partner. We
include also a contact potential Λ(x) = ΛLδ(x) + ΛRδ(x − L) at the junction boundaries;
vF indicates Fermi velocity, µ is the chemical potential and σi are the Pauli matrices. The
momentum pDS = (π~/L)(Φ/Φ0), already introduced in Sec. 6.2, represents the so-called
Doppler shift (DS) contribution describing the gauge invariant shift of momentum induced
by a small magnetic flux Φ through the TI junction [Tkachov2015], while Φ0 = h/2e is
the magnetic flux quantum. We consider rigid boundary conditions for the order parameter
∆(x) = ∆

[
Θ(−x)eiφL + Θ(x− L)eiφR

]
, with Θ(x) the step function, ∆ is the proximity

induced gap, and φ ≡ φL−φR is the gauge invariant Josephson phase difference between the
two superconductors. In this chapter we mainly focus on the Doppler shift effect induced by
the external flux Φ. The case of the application of a finite phase bias φ, involving Andreev
interference effects, deserves to be investigated separately as we will do in Chap. 8. In this
respect, is important to notice that the flux Φ and the phase bias φ represent two independent
degrees of freedom needed to fully characterize the state of the topological junction as we
will better discuss in Chap. 9.

The eigenspectrum of the BdG Hamiltonian relative to the homogeneous proximized TI
edge, is reported in Fig. 7.2(a) and is given by Eχ±(k) =

(
εDS(Φ) + χ

√
(~vFk ∓ µ)2 + ∆2

)
,

with χ = ± indicating branches with positive/negative concavity and εDS(Φ) = vF pDS/2 =
(vFh/4L)(Φ/Φ0) being the Doppler-shift energy. The effect of the DS on the dispersion curve
is to shift the various branches vertically by an amount εDS(Φ), upwards or downwards, as
shown in Fig. 7.2(a). A finite value of the magnetic flux Φ reduces the gap, which closes when
εDS(Φ) = ∆. The quasiparticle (QP) eigenfunctions in Nambu notation of both left/right
superconductors (i = L,R) are given by

Ψi,χ
e+ = 1√

2π~wje+
(ju−ei

φi
2 , 0, 0, v−e−i

φi
2 )T eik

j
e+x

Ψi,χ
e− = 1√

2π~wχe−
(0,−ju+e

i
φi
2 , v+e

−iφi2 , 0)T eik
χ
e−x, (7.2)
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Figure 7.2: (a) Dispersion curves for quasiparticles e± (solid lines) and quasiholes h± (dashed
lines) in the proximized superconductor SL/SR for 0 < εDS(Φ) < ∆. Transport processes are depicted
in panel (b) for VN = 0, δT 6= 0 and in panel (c) for VN 6= 0, δT = 0, when the spectrum for e+, h− is
assumed fully gapped.

where

u± =
√

∆
2ε±

e
1
2h(ε±); v± =

√
∆

2ε±
e−

1
2h(ε±)

with ε± = ε ± εDS(Φ) and h(ε±) = arcCosh (ε±/∆) for ε± > ∆ and h(ε±) = i arccos (ε±/∆)
for ε± < ∆. Here, the quasiparticle momentum is kχe± = ±kF (χ

√
(ε2∓ −∆2)/µ2 + 1) and

wχe± = ~−1|∂kEχ±| = vF (u2
∓ − v2

∓) is the associated group velocity. The quasihole (QH)
eigenfunctions Ψi,χ

h±
can be obtained by replacing (u±, v±)→ (v±, u±), kχe± → kχh∓ = k−χe± and

wχe± → wχh∓ = wχe± in the expressions Ψi,χ
e∓ of Eq. (9.2).

Finally, the normal-metal probe N – which would model for instance a STM tip – is
assumed to be directly contacted to the upper edge at the point x0 (see Fig. 7.1) and modelled
by an energy- and spin-independent transmission amplitude t (see Appendix A for more
details). Due to the helical nature of the TI, electrons injected through the probe with spin
component collinear with the natural spin quantization axis of the TI edge propagate in one
direction, while electrons with opposite spin component propagate in the other one .

7.2 Relevant Currents
In the setup depicted in Fig. 7.1, a voltage bias VN is applied between the probe N at the
temperature TN and the superconducting electrodes which are both grounded in order to
avoid any time-dependent dynamics (as a consequence of the Josephson relation - see Sec.
6.2). In this configuration the only thermal bias that gives rise to a nonlocal thermoelectric
response in the probe is δT = TL−TR imposed between the superconductors. In the following
we will investigate only the dissipative currents flowing through the structure which can be
obtained by using the Landauer-Büttiker scattering [Blanter2000] formalism generalized in
order to include superconductivity [Lambert1998]. More precisely, we are not interested in
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the dissipationless (Josephson) contribution to the charge current flowing in the supercon-
ducting electrodes, which has been already discussed elsewhere [Tkachov2013, Snelder2013,
Sochnikov2015, Dolcini2015, Kurter2015, Marra2016, Stehno2016, Scharf2020]. By using the
scattering approach already introduced in Sec. 4.3 [Datta1997, Lambert1998], one can write
the charge current JcN flowing in the probe as follows:

JcN = 1
h

∑
j

∑
α,β

(αe)
∫ ∞

0
dε
(
fαN (ε)− fβj (ε)

)
Pα,βi,j (ε), (7.3)

where α, β = ± stand for QPs and QHs respectively. The Fermi functions of the leads
j = L,R,N are fαj (ε) = {exp[(ε− αµj)/kBTj)] + 1}−1, where µN = eVN , µL = µR = 0,
i.e. superconductors are grounded. The charge current flowing in the two superconductors
is dominated by the dissipationless Josephson current which, in the linear response regime
(i. e. δT, VN → 0), is unaffected by the temperature difference between the electrodes. As
already discussed in Sec. 5, such a non-dissipative contribution cannot be caught by the
Landauer-Büttiker approach, though it can be obtained by using the method presented in
Sec. 6.3. Moreover, in the linear response regime, the temperature of the probe can be chosen
as the average temperature of the superconducting leads, i.e., TN = (TL + TR)/2 = T (see
Fig. 7.1). With this choice, due to the left/right symmetry of the system, there is no heat
current flowing inside the probe, i. e. JhN = 0 (see Appendix A.3), hence the heat current
flowing in the left superconducting lead is exactly opposite to the current flowing in the right
lead, i. e. JhL = −JhR. Thus, the only relevant heat current in our system is that flowing in
one (say the left) superconductor, which takes the following form

JhL = 1
h

∑
j

∑
α,β

∫ ∞
0

dε ε
[
fαL (ε)− fβj (ε)

]
Pα,βi,j (ε) . (7.4)

As discussed in Sec. 4.3, the scattering coefficients Pα,βi,j in Eqs. (7.3) and (7.4), represent the
reflection (i = j) or transmission (i 6= j) probabilities of a quasi-particle of type β in lead j to a
quasi-particle of type α in lead i [Lambert1998]. As a consequence of the helical nature of the
edge states, the fact that the probe is not spin-polarized and for superconductors with equal
gap, it is found that the scattering coefficients Pα,βi,j do not depend on the probe position (see
Appendix A.2). This is because each path taken by particles comes in pair with its symmetric
one (obtained by exchanging left and right). Hence, all the results discussed in this chapter
do not depend on x0. This is no longer valid in case the gaps of the superconducting leads
are different, as we will discuss in Chap. 9.

As a final remark, it is worth to notice that from their explicit expressions there is no
dependence of the scattering coefficients on the contact potential parameter ΛL/R. This is a
direct consequence of the helicity of the edge channels which do not admit ordinary reflections
at the interfaces (i. e. Klein tunnelling [Lee2019]). Notice that the independence of ΛL/R is
a generic result valid also with other form (not delta like) of the interface potential at least
in the absence of interaction.

7.3 Nonlocal thermoelectric response: the mechanism
We now demonstrate and quantify the appearance of a nonlocal thermoelectric response due
to the presence of a DS and the helical nature of the topological Josephson junction. We
focus on linear response with VN , δT → 0. A simple physical picture of the thermoelectric
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mechanism can be grasped analyzing the dispersion-curves in Fig. 7.2(a). When εDS > 0,
left-moving (right-moving) QPs e− (QHs h+) shift down with respect to the right-moving
(left-moving) QPs e+ (QHs h−). For simplicity, we assume 0 < (∆ − εDS(Φ)) ∼ kBT �
(∆ + εDS(Φ)) so that only left-moving QPs (right-moving QHs), thermalizing with the TR
(TL), contribute to the current. This unbalance between the fluxes of cold QPs and hot QHs
- see Fig. 7.2(b) - leads to a thermoelectric current flowing in the N probe. Moreover, it
is worth to notice that, as we will see in the next Chap. 8, also in the non-linear regime,
the thermoelectric current does not depend explicitly on the probe’s temperature as long
as TN . T . In this respect, the fact that TN is assumed to be exactly in between the
temperatures of the two superconductors (see Fig. 7.1) it is not a necessary requirement. For
an in-depth analysis of this fact, we refer to Appendix A.3.

In addition to the thermoelectric current, a Φ-controlled nonlocal Peltier cooling may be
also induced due to the application of a voltage VN . In this case, as shown in Fig. 7.2(c), a
charge current from the probe induces mainly left-moving QPs e− and right-moving QHs h+
which determine a net energy transport from right to left between the two superconductors
even if they are kept at the same temperature. Notably, both the sign of the net thermoelectric
current and the direction of the cooling can be varied by changing Φ→ −Φ. These conclusions
are not affected by the ABS, since they do not contribute neither to the thermal nor to the
thermoelectrical transport processes.

7.4 Onsager coefficients

As we discussed in Sec. 5.3, for small values of VN and δT , the currents of Eqs. (7.3) and
(7.4), can be expanded up to the linear order in these quantities. Quantitatively, the linear
response regime is thus characterized by the following relations [Benenti2017, Mazza2014,
Roura-Bas2018, Hussein2019, Sanchez2018, Kirsanov2019]

JcN = L11(VN/T ) + L12(δT/T 2)
JhL = L21(VN/T ) + L22(δT/T 2), (7.5)

where VN/T and δT/T 2 are the two relevant thermodynamic forces (affinities) for the config-
uration of interest. Notice that, although the configuration contains three terminals, the driv-
ing affinities are two. Hence, the Onsager matrix is effectively 2×2 [Mazza2014, Benenti2017,
Sanchez2015, Roura-Bas2018, Mani2018], where we defined (using the notation of Sec. 5.3)

L11 = LccNN , L12 = (LchNL − LchNR)/2,
L21 = LhcLN = (LhcLN − LhcRN )/2, L22 = (LhhLL − LhhLR)/2. (7.6)

Remarkably, in the present setup, the off-diagonal coefficients are nonlocal and satisfy the
relation L12 = −L21, as a consequence of the Onsager reciprocal relations (see Sec. 5.3).
The behavior of the Onsager coefficients Lij (i, j = 1, 2) are shown in Fig. 7.3 as functions of
εDS(Φ)/∆. The diagonal and local coefficients L11 and L22 are plotted in units of G0T and
GTT

2, while the nonlocal thermoelectrical coefficient L12 is plotted in units of
√
G0GTT 3;

with G0 = 2e2/h and GT = (π2/3h)k2
BT being respectively the electrical conductance quan-

tum and the thermal conductance quantum. In these plots, the length of the junction L is set
equal to the superconducting coherence length ξ = ~vF /∆. Similar results can be obtained
in the case of short L� ξ or long L� ξ junctions, as discussed below in Sec. 7.5.
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Figure 7.3: Onsager coefficients L11 (a), L22 (b) and L12 = −L21 (c) as functions of εDS(Φ)/∆
and the coupling parameter |t|2 for phase bias φ = φL − φR = 0, T/TC = 0.1 and L/ξ = 1. (d) L12
as a function of εDS(Φ)/∆ and the phase difference φ for |t|2 = 0.5. Such quantities are normalized
as follows: L11/(G0T ), L22/(GTT 2) and L12/(

√
G0GTT 3).

In Figs. 7.3(a) and (b) we plot L11 and L22, respectively, as functions of εDS(Φ)/∆ and
|t|2, setting φ = φL − φR = 0. When the gap is open (|εDS(Φ)|/∆ < 1), and for low cou-
pling |t|2 � 1, the electrical conductance L11/(G0T ) is almost zero apart from two sharp
resonances located at εDS(Φ)/∆ = ±1/2, where the ABSs cross zero-energy (indicated by
white dashed lines in Figs. 7.3(a)) as expected in the tunneling limit [Bours2018]. By in-
creasing the coupling |t|2 the resonances are broadened as a consequence of the enhancement
of the effective linewidth of the ABSs. When |t|2 increases towards unity, the ABSs are
spread and give rise to a finite electrical conductance in the whole range of values of εDS(Φ),
something that cannot be caught with a tunneling approach (see Appendix A.4). For all
values of |t|2 the thermal conductance L22 takes the largest values when the gap is closed
|εDS(Φ)|/∆ > 1, as one can see in Fig. 7.3(b). This is consistent with the fact that in the
linear response regime the heat transport in a superconductor is mediated by quasiparti-
cles [Sothmann2016, Sothmann2017]. On the other hand, L22 vanishes within the gap when
|εDS(Φ)|/∆ < 1. This is due to the fact that ABSs cannot allow any thermal transport, while
mediating the transport of charge through the Andreev reflection mechanism. When the gap
is closed, the thermal conductance L22 presents small fluctuations as a consequence of inter-
ference effects and decreases at increasing coupling strength with the probe. In Fig. 7.3(c)
we plot L12 as a function of εDS(Φ)/∆ and |t|2, with φ = 0. We distinguish two peaks at
|εDS(Φ)| ∼ ∆. This is because in this condition the orange band (for εDS(Φ) ∼ ∆) and the
green band (for εDS(Φ) ∼ −∆) shown in Fig. 7.2(a) nearly touch zero energy, thus allowing
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a small temperature bias to drive a charge current even for a temperature kBT � ∆. The
absolute value of L12 increases as a function of |t|2 and its sign changes when changing the
sign of DS (or Φ). Fig. 7.3(d) visualizes the impact of the Josephson phase φ (vertical axes)
in the behavior of the nonlocal thermoelectric coefficient L12 for |t|2 = 0.5. Here, we can
notice that due to symmetry reasons L12(Φ, φ) → −L12(−Φ,−φ). As a final remark, when
|t|2 ≈ 1 (i. e. perfect coupling with the probe) L12 does not depend neither on the phase bias
φ nor on the junction length L.

Figure 7.4: Onsager coefficients L11 (a), L22 (b) and L12 = −L21 (c) in the case of short L/ξ = 0.1
junction, as functions of εDS(Φ)/∆ and the coupling parameter |t|2 for phase bias φ = φL − φR = 0,
T/TC = 0.1 and L/ξ = 1. (d) L12 as a function of εDS(Φ)/∆ and the phase difference φ for |t|2 = 0.5.
Such quantities are normalized as follows: L11/(G0T ), L22/(GTT 2) and L12/(

√
G0GTT 3).
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Figure 7.5: Onsager coefficients L11 (a), L22 (b) and L12 = −L21 (c) in the case of long junction
L/ξ = 5, as functions of εDS(Φ)/∆ and the coupling parameter |t|2 for phase bias φ = φL − φR = 0,
T/TC = 0.1 and L/ξ = 1. (d) L12 as a function of εDS(Φ)/∆ and the phase difference φ for |t|2 = 0.5.
Such quantities are normalized as follows: L11/(G0T ), L22/(GTT 2) and L12/(

√
G0GTT 3).

7.5 Dependence on the junction length L

In the previous section we discussed the case in which the length of the junction is equal to
the coherence length of the system, i. e. L = ξ. For our setup, this situation is reasonable
assuming a STM tip with state-of-the-art size of 100 nm and a coherence length ξ in the
proximized TI of the order of 600 nm [Hart2014, Bocquillon2017]. Further a length L ∼ ξ
assures that the transport along the edge state is ballistic [Groenendijk2018] at the operating
temperatures for our the setup, typically of a few K. Here we complete the analysis by
investigating the behavior of the Onsager coefficients Lij as functions of εDS(Φ)/∆ and the
coupling parameter |t|2 for short (L/ξ = 0.1, Fig. 7.4) and long (L/ξ = 5, Fig. 7.5) junctions.
By comparing Figs. 7.4 and 7.5 with Fig. 7.3, it is easy to see that the main result (namely,
the occurrence of a purely non-local thermoelectric current due to the helical nature of the
edge states) is not modified. In particular, when the gap closes due to the flux bias Φ, i.e.
when |εDS(Φ)/∆| ≈ 1, the non-local thermoelectric current is maximized for any length. For
long junctions the only additional feature is the presence of oscillations in the linear-response
coefficients, due to the proliferation of resonant states in the junction - see Fig. 7.5. No
oscillations occur, though, at any lengths when |t|2 ≈ 1.
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7.6 Nonlocal Seebeck coefficient

To characterize the nonlocal effect induced by the DS we analyze the nonlocal Seebeck coef-
ficient. In particular, by setting JcN = 0 in Eq. (7.5) and solving for VN one finds the Seebeck
thermovoltage V S

N , through which we can compute the nonlocal Seebeck coefficient

S ≡ −V
S
N

δT
= 1
T

L12
L11

, (7.7)

similarly to the derivation of the local case. The latter is shown in Fig. 7.6, in units of µV/K,
in the case of a weak coupling |t|2 = 10−2, where the Seebeck coefficient takes the highest
values. In order to make realistic predictions in a wide temperature range, we have also in-
cluded the self-consistent temperature behavior ∆(T ) = ∆0 tanh

(
1.74

√
TC/T − 1

)
, accurate

better than 2% with respect to the self-consistent BCS result [Tinkham1966, Kamp2019]. In
Fig. 7.6(a) the Seebeck coefficient is reported at φ = π/2 for different values of temperatures:
its peak value is quite high (∼ 65µV/K), reaching the same order of magnitude of the values
predicted for hybrid ferromagnetic-superconducting junctions [Giazotto2015, Bergeret2018].
The maximum value of the Seebeck coefficient decreases by increasing the temperature T
and it is reached at |εDS(Φ)| ∼ ∆(T ). The shape of S also depends on the phase bias φ (see
Fig. 7.6(b)); namely for φ 6= 0 it is not antisymmetric S(φ,Φ) 6= −S(φ,−Φ) with respect to
Φ while it becomes exactly antisymmetric for φ = 0.

Figure 7.6: Seebeck coefficient as function of εDS(Φ)/∆0 for different temperatures at φ = π/2 (a)
and as function of εDS(Φ)/∆0 and φ for T/TC = 0.1 (b). The blue curve in panel (a) correspond to
the cut at φ = π/2 of the Seebeck coefficient depicted in panel (b) (dashed line) obtained for the same
set of parameters: L/ξ = 1 and |t|2 = 10−2.

7.7 Thermoelectric figure of merit ZT

Here we show the figure of merit ZT [Benenti2017] which parametrizes the maximum achiev-
able efficiency ηmax = ηC

√
ZT+1−1√
ZT+1+1 (which approaches to the Carnot efficiency ηC = δT/T
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for ZT → ∞) in the linear regime when the device is regarded as a thermoelectric heat-
engine/refrigerator. In our case this is defined as

ZT = −L12L21
L11L22

, (7.8)

since L12 = −L21. We plot ZT in Fig. 7.7 as a function of εDS and |t|2 for the parameters
specified in the caption. Notice that the value of ZT achieves its highest value at εDS ∼ ±∆
(where the Seebeck is maximal). Interestingly, ZT is maximal for |t|2 = 1, i.e. in the regime of
maximum coupling with the probe, but reaching quite small values ∼ 0.1. As a final remark,
we notice that the ZT and the Seebeck coefficient S present opposite behaviors as functions
of coupling parameter |t|2. More specifically the Seebeck coefficient takes higher values in the
weak coupling limit (|t|2 small), while ZT is largest in the strong coupling limit (|t|2 close
to 1). First we notice that, in general the Seebeck coefficient S and the figure of merit ZT
are not expected to have the same behavior. Being more specific, in our system (similarly
to the standard case of ordinary two-terminal systems), this can be understood by rewriting
Eq. (7.8) as ZT = S2T 2L11

L22
, where we explicitly see that ZT does not only depend on S

but also on the quotient between the electrical (∝ L11) and thermal (∝ L22) conductances.
For clarity, let us consider εDS/∆ ' ±1 where the Seebeck coefficient is maximal. We can
see that S increases as |t|2 decreases, while L11

L22
gets suppressed for |t|2 → 0, since L22 in

the denominator tends to a constant (see Fig.7.3 (b)), while L11 in the numerator goes to
zero (due to the decoupling with the probe). As a consequence, ZT tends to zero in the
weak coupling limit. In the strong coupling limit (|t|2 → 1), S goes to a constant, while L11
increases and L22 decreases (see Figs. 7.3(b) and (c)), resulting in an overall increase of the
ZT .

Figure 7.7: Density plot of the figure of merit ZT plotted as a function of εDS(Φ)/∆ and |t|2.
The parameters used are: L/ξ = 1, T/TC = 1/10 and φ = 0.
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7.8 Thermoelectric current for a proximized 2DTI

In this section we apply our results to the case of a 2DTI made of HgTe/HgCdTe quantum
wells, proximized with Aluminum with an induced gap ∆ ≈ 40µeV (see Ref. [Bocquillon2018]).
More precisely, we compute the non-local thermoelectric current Jc12 = JcN

∣∣
VN=0, defined as

the charge current at the probe when VN = 0. We assume a bad (ohmic) contact with
the probe (namely |t|2 ≈ 0.1) and a thermal gradient of the order of 80-120 mK, a real-
istic value for these type of experimental setups [Giazotto2006]. In Fig. 7.8 we depict the
thermoelectric current Jc12 as a function of the flux bias Φ and the temperature gradient
δT . 120mK, such that the induced gap of the right and left proximized regions are con-
stant and equal to ∆. Fig. 7.8 (main panel and inset (b)) shows that when the gap closes
by tuning the flux bias Φ such that |εDS(Φ)/∆| ≈ 1, the nonlocal thermoelectric current
is maximal, reaching values of the order ≈ 30 pA (a reasonable value for these kind of ex-
periments [Hart2014]). Moreover, we notice that, as shown in the inset (a) of Fig. 7.8, the
current has a linear behavior in δT up to 80 mK. As a final remark, we notice that the
specific choice of paramenters we have just discussed is not optimal. Indeed, we stress that
much higher values of the current and larger operation temperatures can be obtained with
different materials [Bernevig2013, Franz2013, Tkachov2015a] or fully proximized structures,
i. e. when the induced gap in the 2DTI is equal to the ∆ of the superconductor.

Figure 7.8: Density plot of the thermoelectric current Jc12 expressed in pA, as function of
εDS(Φ)/∆ and the thermal gradient δT expressed in units of mK, for phase bias φ = φL − φR = 0,
L/ξ = 1 and |t|2 = 0.1. In the inset (a) is depicted the behavior of Jc12 as a function of δT corre-
sponding to an horizontal cut at εDS(Φ)/∆ ≈ 1 (orange dashed line). In the inset (b) is depicted the
behavior of Jc12 as a function of εDS(Φ)/∆ corresponding to vertical cuts at δT = 30 mK, 110 mK
(dark and light blue dashed lines).
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7.9 Conclusions
We have discussed a striking consequence of the helical properties of the edge states in a
topological Josephson junction in the presence of a normal metal probe coupled to one edge of
a quantum spin Hall system. We showed that a thermal gradient between the superconductors
in the presence of the Doppler shift generates a nonlocal thermoelectrical transport in the
probe even in absence of any spin polarization. By using scattering matrix approach, we
have quantitatively evaluated both local and nonlocal Onsager transport coefficients as a
function of Doppler shift and phase difference. The nonlocal Seebeck coefficients can achieve
high values, comparable with the best hybrid devices based on ferromagnetic elements, in
the weak coupling limit (tunneling regime). These nonlocal features are a consequence of the
spin-momentum locking of helical states and the induced Doppler shift which can be tuned
by means of small external magnetic fields. This additional knob can be used to tune the
sign of the off-diagonal Onsager coefficient, and therefore to control heat and thermoelectric
response in a topological Josephson junction based device. Such effects are not limited to
the tunneling regime, but occur also for an ohmic contact with the probe, provided that the
Josephson coupling is not spoiled. The present device is a very promising tool for probing the
helical nature of the edge states in systems where the Hall bar configuration of edge states is
difficult to realize.

As a final remark, we notice that our analysis is not limited to the case of full proxi-
mization due to a perfect contact, which can be realized with superconducting pads laying
on the TI edges over a few µm (being much bigger than the superconducting coherence
length in the proximized TI ξ ≈ 600 nm) [Hart2014, Wiedenmann2016, Deacon2017]. A
bad contact, though, can be taken into account in our calculations by considering a reduced
gap, without changing our results [Bocquillon2018]. Furthermore, a length of the junction
L ∼ ξ is sufficient to host the contact with a metallic probe (such as an STM tip with a
width of 100 nm), and preserves, at the same time, the ballistic nature of the transport
along the edges [Lunczer2019]. Moreover, studies on the impact of electron-phonon inter-
action [Budich2012] and spin-phonon interaction [Groenendijk2018] in helical edge states
support the idea that the transport is ballistic at the operating temperatures for our the
setup, typically of a few kelvin.
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8
Nonlocal thermoelectricity

in a topological Andreev interferometer

This chapter is based on the results published in the paper:
G. Blasi, F. Taddei, L. Arrachea, M. Carrega, and A. Braggio. Nonlocal thermoelectricity in
a topological Andreev interferometer. Phys. Rev. B, 102(24) 241302(R) (2020).

Prominent topics in hybrid superconducting quantum technologies concern the thermal man-
agement [Partanen2016, Fornieri2017, Senior2020] and the thermoelectricity [Claughton1996,
Mazza2015, Sanchez2018, Kamp2019, Hussein2019, Kirsanov2019, Marchegiani2020]. These
represent novel functionalities for quantum sensing [Giazotto2015, Heikkila2018], entangle-
ment manipulation [Blasi2019] and thermal engines [Mazza2014, Yamamoto2015, Vischi2019,
Scharf2020, Marchegiani2020a].

Usually, finite thermoelectric response appears in hybrid superconducting systems only
when the particle-hole symmetry, encoded in the Bogoliubov-de Gennes (BdG) Hamilto-
nian, is broken, e.g. by means of ferromagnetic correlations [Machon2013, Ozaeta2014,
Kolenda2017, Shapiro2017, Keidel2020] or by exploiting nonlinearities [Sanchez2016]. Re-
cently, mechanisms able to generate nonlocal thermoelectricity have been predicted in Cooper
pair splitters [Hussein2019] and Andreev interferometers [Jacquod2010, Kalenkov2020], and
experimentally investigated [Eom1998, Jiang2005, Tan2021].

In Chap. 7 we have demonstrated [Blasi2020] that a Josephson junction based on a
two-dimensional (2D) topological insulator (TI) [BHZ2006, Konig2007, Qi2011, Ando2013,
Ronetti2017] threaded by a magnetic flux with one edge attached to a normal metallic probe
[Bours2018] presents nonlocal thermoelectricity when a temperature difference is applied
between the two superconducting leads. The responsible mechanism is the so-called Doppler
shift induced by the magnetic flux in the junction, which has an effect akin to a Zeeman
splitting in the two spin-polarized members of the Kramer pair of the 2DTI [Tkachov2015]. In
this chapter, we show that a phase bias alone in a topological Josephson junction is sufficient
to establish finite nonlocal thermoelectricity. This is very appealing since, differently from
the mechanism of Chap. 7 [Blasi2020], the present one takes place without the necessity of a
magnetic field, and solely relies on the superconducting Andreev interferometric effect. We
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argue that, with state-of-the-art technologies the corresponding nonlocal Seebek coefficient
results of the order of few µV/K at temperatures of few kelvins. Even if the analysis of this
chapter focuses on the 2DTI case, we show that a similar physics occurs also in 3D topological
surfaces - see the Appendix B.

8.1 Model

Differently from Chap. 7, here we consider the topological Josephson junction (TJJ) de-
picted in Fig. 8.1, which consists of two superconducting electrodes placed on top of a
2DTI at a distance L, without the application of any external magnetic flux, i. e. Φ = 0.
The two electrodes induce superconducting correlations on the edge states via proximity ef-
fect [Tkachov2015, Sothmann2016]. The width of the TI strip is assumed to be large enough
such that upper and lower edges are decoupled, and we focus only on the upper edge. The
system is described by the following BdG Hamiltonian

HBdG =
(

H(x) iσy∆(x)
−iσy∆(x)∗ −H(x)∗

)
, (8.1)

expressed in the Nambu basis (ψ↑, ψ↓, ψ∗↑, ψ∗↓)T with spin ↑ and ↓ collinear with natural spin-
quantization axis of the TI edge along z-direction, where H(x) = vF (−i~∂x)σz − µσ0 with
−H(x)∗ being its time-reversal partner. The Fermi velocity is vF , µ is the chemical potential
and σi are the Pauli matrices. We consider rigid boundary conditions with order parameter
∆(x) = ∆

[
Θ(−x)eiφL + Θ(x− L)eiφR

]
, where Θ(x) is the step function, ∆ is the proximity

induced gap and φ ≡ φL − φR is the gauge invariant Josephson phase difference between
the two superconductors. A normal-metal probe N – such as a STM tip [Das2011, Liu2015,
Hus2017, Voigtlander2018] – is directly contacted to the upper edge on the point x0 (see
Fig. 8.1) and modeled by an energy- and spin- independent transmission amplitude t (see
Appendix A for more details).

/2 /2

SRSL

−+ N

0
0

Figure 8.1: A helical Kramers pair of edge states of the quantum spin Hall effect is contacted
by two superconductors at different temperatures TL = T + δT/2 and TR = T − δT/2, and a phase
difference φ ≡ φL − φR. A bias voltage VN is applied to the normal-metal probe at temperature TN
and coupled to the edge at the point 0 ≤ x0 ≤ L, with L the length of the junction.
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8.2 Charge Current at the probe

In the setup depicted in Fig. 8.1, a voltage bias VN is applied between the probe N at the
temperature TN and the superconducting electrodes which are assumed equipotential and
grounded (this is important in order to not induce time dependent Josephson effects). In this
configuration the only thermal bias that gives rise to a nonlocal electric response in the probe
is δT = TL − TR imposed between the superconductors. Similarly to Chap. 7, by using the
scattering approach [Lambert1998, Blanter2000] one can write the charge current JcN flowing
in the probe as follows:

JcN = 1
h

∑
j

∑
α,β

(eα)
∫ ∞

0
dε
(
fαN (ε)− fβj (ε)

)
Pα,βN,j (ε, φ) (8.2)

where α, β = + stand for quasiparticle (QP), α, β = − for quasihole (QH), and with j
running over leads indices (L, R and N). In Eq. (8.2) we consider the chemical potentials
of the grounded superconductors as reference for the energies. The current depends on
the generalized Fermi distributions fαj (ε) = {e(ε−αeVj)/kBTj + 1}−1, where Tj and Vj are
respectively the temperature and the voltage at the lead j. Notice that when Vj = 0 (for
the grounded superconductors VL = VR = 0), f−j (ε) = f+

j (ε). The scattering coefficients
Pα,βi,j (ε, φ), with i, j = N,L,R, represent the reflection (i = j) or transmission (i 6= j)
probabilities of a quasiparticle of type β in lead j to a quasiparticle of type α in lead i (see
Sec. 4.3).

8.3 Symmetries

As a consequence of the helical nature of the edge states, the fact that the probe is not
spin-polarized and for superconductors with equal gap, it is found that the scattering co-
efficients Pα,βi,j (ε, φ) do not depend on the probe position. This is because each path taken
by particles comes in pair with its symmetric one (obtained by exchanging left and right).
Hence, all the results discussed hereafter in this chapter do not depend on x0. This is no
longer valid in case the gaps of the superconducting leads are different, as we will discuss
in Chap. 9. Furthermore, it can be shown that peculiar nonlocal symmetries hold for the
scattering coefficients of Eq. (8.2) between the probe and the left/right superconductors,
namely PαβN,L/R(ε, φ) = P−α−βN,R/L(ε, φ) and PαβN,L/R(ε, φ) = P−α−βN,L/R(ε,−φ), while the reflection
coefficients at the probe N satisfy the relation PαβN,N (ε, φ) = P−α−βN,N (ε, φ) between QP and QH
states. A generalized version of these symmetries of the scattering coefficients, obtained in
the general case in which both the Doppler shift and the phase bias are present, is discussed
in Appendix A.2.

8.4 Nonlocal thermoelectric response

By exploiting the aforementioned symmetry relations, one can write the charge current at
the probe JcN in the following form:

JcN = 1
h

∫ ∞
0
dε
{
F−N (ε)A(ε, φ)− F−S (ε) [Q(ε, φ)−Q(ε,−φ)]

}
(8.3)



88
Nonlocal thermoelectricity

in a topological Andreev interferometer

where in the first term we recognize the Fermi function differences for normal probe F−N ≡
f+
N − f

−
N weighted with a scattering coefficient

A(ε, φ) = e
(
N+
N − P

++
NN + P+−

NN

)
= e

(
N−N − P

−−
NN + P−+

NN

)
(8.4)

that represents the electronic charge transferred from the probe N into the edge, being
P±±NN normal reflections, P±∓NN the Andreev ones and N

+(−)
N the number of open channels

for electrons (holes) at the probe. The second term instead contains the Fermi function
differences between the two superconductors F−S ≡ f±L − f∓R which are non-zero when a
thermal bias δT 6= 0 is applied between the superconductors. The function F−S is weighted
with the odd parity component, with respect to φ, of the function

Q(ε, φ) = e
(
P++
N,L − P

−+
N,L

)
= −e

(
P+−
N,R − P

−−
N,R

)
. (8.5)

A visualization of the meaning of the quantity Q is given in Fig. 8.2 where we sketch the
resonant processes where a QP or QH is injected from right or left superconductors and is
transferred after multiple resonant Andreev processes to the probe as an electron (solid) or a
hole (dashed). In particular Q represents the net electronic charge transferred into the probe
N when a QP is injected from SL (see Fig. 8.2 (a)). The symmetries show that a QH injected
from the right superconductor SR brings exactly the same amount of charge, with opposite
sign [second identity of Eq. (8.5)] as represented in Fig. 8.2 (b). Alongside these processes
(represented in Figs. 8.2 (a)-(b)), there are also dual processes, depicted in Fig. 8.2 (c)-(d),
which correspond to the same amount of transferred charge given in Eq. (8.5) obtained by
exchanging the side of injection (i. e. SL � SR) and inverting the sign of φ→ −φ.

𝑄 (𝜖, 𝜙)𝑎)

−𝑄
(𝜖, 𝜙)𝑏)

𝑄 (𝜖, −𝜙)𝑐)
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ǁ𝑒

𝑒 ℎ

෨ℎ

𝑒 ℎ

ǁ𝑒

𝑒ℎ

෨ℎ

𝑒ℎ

Figure 8.2: Resonant processes describing the transfer of the charge Q from the superconducting
leads SL, SR into the probe N . ẽ,h̃ label respectively QP and QH at the superconducting leads. Solid
and dashed lines correspond to the trajectories traveled by electrons and holes respectively. Red (blue)
correspond to processes originated at the hot (cold) lead SL (SR) whose Fermi distribution fL = f±L
(fR = f±R ) is sketched on the side. In (a)-(b) are depicted the processes of QP and QH injected from
SL and SR respectively, and corresponding to a transfer of the opposite amount of charge Q(ε, φ) (a)
and −Q(ε, φ) (b). In (c)-(d) are depicted the dual processes obtained by inverting the lead of injection
(SL � SR) and the sign of φ→ −φ.

We now discuss the physical consequence of the result reported in Eq. (8.3). When VN = 0
there is no contribution from the Fermi functions of the normal probe (i. e. F−N = 0) because
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f+
N (ε) = f−N (ε). Since TN does not enter these expressions, the possibility of inducing local
thermoelectricity by means of a thermal bias between the TI and the probe is ruled out.
This is particularly important at experimental level since the temperature of the probe does
not need to be controlled during the measurement of nonlocal thermoelectricity. The only
thermoelectric response in the probe is the nonlocal one when a thermal bias between the two
superconductors δT is applied, i.e. F−S = f±L (ε) − f∓R (ε) 6= 0. This nonlocal thermoelectric
response (see Eq. (8.3)) is determined by the integral over the energies of the odd parity
component in φ of the function Q(ε, φ), i.e. Q(ε, φ) − Q(ε,−φ). If φ = 0, one cannot
have nonlocal thermoelectricity. The physical reason of this result comes from the exact
cancellation of the contributions of the processes represented in Fig. 8.2: in particular (a)
cancels with (d) and (b) with (c).

8.5 Phase dependent thermoelectricity
Here we concentrate on the action of the Josephson phase bias φ showing that it is respon-
sible for the generation of nonlocal thermoeletricity in the probe due to a peculiar Andreev
interferometric effect associated to the helical nature of the edge, as pictorially sketched in
Fig. 8.2. This can be rationalized looking at the analytical expressions of the quantities A
and Q of Eqs. (8.4) and (8.5):

A(ε, φ) =
∑
σ=±

2e|t|4 · Θ(∆− ε)
1 + |r|4 + 2|r|2 cos (2π Lε

ξ∆ + σφ+ 2 arcsin ( ε∆))
,

+
∑
σ=±

e(g(ε) + 1)(g(ε)− |r|2)|t|2 · Θ(ε−∆)
g(ε)2 + |r|4 − 2g(ε)|r|2 cos (2π Lε

ξ∆ + σφ)
(8.6)

Q(ε, φ) = e(g(ε)− 1)(g(ε)− |r|2)|t|2 · Θ(ε−∆)
g(ε)2 + |r|4 − 2g(ε)|r|2 cos (2π Lε

ξ∆ − φ)
, (8.7)

where g(ε) =
(
ε/∆ +

√
ε2/∆2 − 1

)2
, |r|2 = 1− |t|2 and ξ = ~vF /π∆ is the superconducting

coherence length. Notice that Eq. (8.6) consists of two parts each related to the sub-gap
(first line) and supra-gap (second line) processes, while Eq. (8.7) contains only the supra-gap
contribution. In particular, from Eq. (8.7), it emerges that Q(ε, φ) has no definite symmetry
in φ for L 6= 0 so that one would expect a finite nonlocal thermoelectric response. The
interferential nature of the phenomena can be better enlightened by investigating the behavior
of the Onsager coefficients in the linear response regime as we discuss next.
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Figure 8.3: Phase dependence of the Onsager coefficients. L11 (a), L22 (b) and L12 = −L21 (c)
as functions of φ/π and the junction length L/ξ for |t|2 = 0.5 . (d) L12 as a function of φ/π and
coupling parameter |t|2 with the junction length L/ξ = 0.25 (for which is maximal) . Such quantities
are taken at T/TC = 0.4 and normalized as follows: L11/(G0T ), L22/(GTT 2) and L12/(

√
G0GTT 3),

with G0 = 2e2/h and GT = (π2/3h)k2
BT being respectively the electrical conductance quantum and

the thermal conductance quantum.

8.6 Linear response regime
As already mentioned in Chap. 7, in the linear response regime, for δT, VN → 0, the temper-
ature of the probe can be chosen as the average temperature of the superconducting leads,
i. e. TN = (TL + TR)/2 = T . With this choice the heat current in the probe is zero while
it flows only between the two superconductors (see Appendix A.3 for more details). So the
relevant responses are the charge current flowing in the probe JcN and the heat current flowing
in one (say the left) superconductor [Lambert1998, Blanter2000]

JhL = 1
h

∑
j

∑
α,β

∫ ∞
0

dε ε
(
fαL (ε)− fβj (ε)

)
Pα,βL,j (ε, φ). (8.8)

The electric current flowing between the superconducting leads is mainly dominated by the
Josephson (equilibrium) current determined by the superconducting phase difference, unless
it overcomes the value of the critical current of the junction. Hence, no linear thermovolt-
age response can take place between the two superconductors. Quantitatively, the linear
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response regime is thus characterized by the following relations [Benenti2017, Mazza2014,
Roura-Bas2018, Hussein2019, Sanchez2018, Kirsanov2019]

JcN = L11(VN/T ) + L12(δT/T 2)
JhL = L21(VN/T ) + L22(δT/T 2). (8.9)

where the Onsager coefficients Lij have been already defined in Eq. (7.6). As already
mentiond in Chap. 7, although the configuration contains three terminals, the relevant driv-
ing affinities for nonlocal thermoelectric response of this setup are only two namely VN/T
and δT/T 2. Hence, the Onsager matrix, with entries Lij , is effectively 2 × 2 [Mazza2014,
Benenti2017, Sanchez2015, Roura-Bas2018, Mani2018]. In this effective formulation one
should remind that L12 and L21 are nonlocal thermoelectrical coefficients. In Fig. 8.3 the
Onsager coefficients are plotted as functions of φ/π and the length measured as L/ξ. In
Figs. 8.3(a),(b) and (c) we plot respectively, the local Onsager coefficients L11, L22 and the
nonlocal thermoelectrical coefficient L12 setting the strength of the coupling with the probe
at an intermediate value |t|2 = 0.5 1 and the temperature fixed at T/TC = 0.4 (the highest
temperature at which the induced gap of the right and left superconductors remain approxi-
mately constant and equal to ∆). Notice that, by exploiting the aforementioned symmetries
of the scattering coefficients, it can be shown that the off-diagonal nonlocal coefficients satisfy
a generalized nonlocal Onsager symmetry relation L12(φ) = L21(−φ) = −L21(φ), similarly
to the case discussed in Chap. 7 [Blasi2020].

We observe that L11 (which is proportional to the conductance at the probe), is an even
function [Jacquod2012] of φ and, for small length L� ξ, presents a minimum for φ ≈ 0 and
a maximum at φ ≈ ±π. Increasing the length L, the conductance become featureless and flat
due to an effective averaging between the (increasing) number of available states involved in
the transport. More interesting, instead, is the behavior of L22 and L12 which present a peri-
odicity of one coherence length ξ as functions of the length of the junction [Sothmann2016].
This periodicity is determined by the oscillatory change of available states at energies ε & ∆,
which dominate the spectral contribution to the transport window, oscillating between a
maximum to a minimum when the junction length changes by one ξ length. This effect is not
present in L11 since it is mostly determined by subgap states given by the Andreev contri-
butions. Remarkably, this oscillatory behavior affects also the thermal conductance (∝ L22)
which crucially differs from the nonlocal thermoelectric coefficient (∝ L12) since the first is
even with the phase bias φ while the latter is odd [Jacquod2012, Engl2011] (see Eq. (8.3)).
The different symmetry in φ is due to the fact that QPs and QHs contribute with the same
sign to the heat transport but with opposite sign to the thermoelectric current.

In Fig. 8.3 (d) we show how L12 changes with the coupling parameter |t|2, keeping the
length of the junction fixed to L/ξ = 0.25 (for which it is maximal, see Fig. 8.3 (c)). It
emerges that the absolute value of the nonlocal Onsager coefficient L12 reaches its maximum
for an intermediate value of the coupling parameter (i. e. |t|2 ≈ 0.5), while is zero either
when |t|2 → 0 (when the probe is decoupled) or |t|2 → 1 (when the two superconductors are
mutually decoupled). Notably, similar results for the nonlocal thermoelectrical coefficient L12
can be obtained in the case of 3DTI based Josephson junctions as shown in the Appendix B.

1The Onsager coefficients behave similarly to Figs. 8.3(a)–(c) for any value of |t|2 6= 0, 1.
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Figure 8.4: (a) Nonlocal Seebeck coefficient as function of φ/π versus T/TC for |t|2 = 10−2. (b)
Nonlocal Seebeck coefficient as function of φ/π versus the probe coupling |t|2 for T/TC = 0.7. Both
(a)-(b) have been obtained for the same length L/ξ = 0.25.

8.7 Nonlocal Seebeck coefficient

As a final remark, it is important to give a realistic estimation of the strength of the ther-
moelectrical effect we are discussing. In this regard, we compute the nonlocal Seebeck co-
efficient (already defined in Eq. (7.7)) S = (1/T )L12/L11 [Benenti2017] as a function of φ
(see Fig. 8.4). As a consequence of the latter relation, we notice that S, being proportional
to L12, stems from Andreev interference effetcs. In order to make realistic predictions in a
wide temperature range, here we also include the temperature dependence of the gap order
parameter 2. Fig. 8.4 (a) shows that the nonlocal Seebeck coefficient grows with the operating
temperature and reaches a maximum of 3 µV/K roughly at T/TC ≈ 0.7 for φ/π ≈ ±0.6. At
higher temperatures the gap closes reducing the nonlocal thermoelectricity, hence confirming
the fundamental role of the superconducting state. It is important to notice that higher
values of the nonlocal Seebeck coefficient can be obtained in the case of Josephson junctions
based on 3DTIs, in which case it reaches a maximum of 20 µV/K - see Appendix B.

Fig. 8.4 (b) (obtained for T/TC = 0.7) shows how the nonlocal Seebeck effect scales with
the probe coupling |t|2 as a result of the scaling of the ratio L12/L11. At small coupling
|t|2 ≈ 10−2 it returns highest values. Notably these values of the phase-dependent nonlocal
Seebeck coefficient are roughly 6% of the values determined by the Doppler shift mechanism
discussed in Chap. 7 [Blasi2020] (see Fig. 7.6). The advantage in the present case, is
that there is no need of any magnetic field since it is enough to impose a dissipationless
current between the two superconductors to induce the phase bias φ. This experimental
protocol seems quite attractive due to its simplicity and the absence of any spurious Nernst

2We took ∆(T ) = ∆0 tanh
(

1.74
√
TC/T − 1

)
, an approximation good at 2% with respect to the

self-consistent BCS result (here we indicate with ∆0 the zero-temperature value of the superconducting
gaps) [Tinkham1966, Kamp2019]
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effect [Ettingshausen1886, Behnia2016, Zuev2009, Zhu2010].
In Figs. 8.4 we considered the length of the junction L/ξ = 0.25. This situation is

reasonable assuming a STM tip with state-of-the-art size of 100 nm and a coherence length ξ
in the proximized TI of the order of 600 nm [Hart2014, Bocquillon2018]. Further, this choice
of the length assures that the transport along the edge state is ballistic [Groenendijk2018] at
the operating temperatures for our setup, typically of a few kelvins.

8.8 Conclusions
We have investigated a phase-dependent nonlocal thermoelectricity in a 2D topological Joseph-
son junction coupled to a probe. We have shown that an Andreev interferometric mechanism
affects QPs and QHs differently resulting in a nonlocal thermoelectric response. We have dis-
cussed the dependence of this mechanism over the junction length L and the coupling with
the probe |t|2. We have estimated, with realistic parameters, a nonlocal Seebeck coefficient
of few µV/K at temperatures of few kelvins. We underline that the provided estimations are
quite conservative since the critical temperature TC of the induced proximized gap is given by
the critical temperature of the parent superconductors which is usually much higher further
increasing the nonlocal Seebeck coefficient which is proportional to the operating tempera-
ture. Notice also that a nonlocal Seebeck coefficient of ≈ 20 µV/K can be obtained in 3DTI
based Josephson junction (see Appendix B).

Some of the experimental conditions for nonlocal Seebeck effect measurement are sim-
ilar to the proposed measurements of heat conductance in topological Josephson junctions
[Sothmann2016, Sothmann2017] but here we have discussed a mechanism which takes place
in absence of any magnetic field. The investigation of the nonlocal character in thermoelec-
trical coherent devices may open novel possibilities in thermal management and quantum
sensing.
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This chapter is based on the results published in the paper:
G. Blasi, F. Taddei, L. Arrachea, M. Carrega, and A. Braggio. Nonlocal thermoelectric en-
gines in hybrid topological Josephson junctions. Phys. Rev. B, 103, 235434 (2021).

Hybrid topological Josephson junctions have been actively investigated in the recent years
[Sacepe2011, Veldhorst2012, Hart2014, Sochnikov2015]. In particular, their potential to
localize Majorana fermions [Fu2008, Fu2009, Schrade2015, Stehno2016] could represent a
novel platform for topological quantum computation [Virtanen2018, Hegde2020]. Topolog-
ical Josephson junctions are also a unique resource in the field of low-temperature thermal
management [Giazotto2006, Partanen2016, Fornieri2017, Bohling2018, Hwang2020], which
could play an important role for quantum technologies in general. New applications based
on the proximized helical edge states have been envisioned [Tkachov2015, Sothmann2016,
Sothmann2017, Bours2018, Blasi2019, Vischi2019, Scharf2020]. For such cases a fundamen-
tal step is the capability to identify the helical nature of the edge states as result of the
spin-momentum locking, determined by the topological protection [Moore2009, Hasan2010,
Qi2011, Ando2013]. After the theoretical prediction [Kane2005, BHZ2006], experimental ev-
idence [Konig2007, Roth2009, Brune2012] have been shown on the existence of edge states
in several systems but not yet on their helical nature [Pribiag2015, Jia2017, Reis2017, Li2018,
Wu2018, Shi2019, Liu2020]. For this purpose different strategies have been identified [Das2011,
Mani2017]. In previous Chaps. 7 and 8, we have shown that the helical nature determines
an unique signature in the thermoelectrical properties of topological Josephson junctions
[Blasi2020, Blasi2020a].

Thermoelectricity is in itself an important trend in material science [Goldsmid2010],
which found a renaissance in low-dimensional [Dresselhaus2007, Dubi2011] and quantum-
based [Whitney2014, Sothmann2014, Kheradsoud2019] devices. The thermoelectric response
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in superconducting systems is expected to be negligible due to the particle-hole symme-
try which is enforced by superconducting correlations as clearly shown in the BdG Hamil-
tonian [DeGennes1966]. Still, thermoelectric response of superconductors has a long his-
tory since Ginzburg’s seminal work [Ginzburg1944] and following literature [Galperin1974,
Shelly2016]. There are various strategies aimed at inducing thermoelectricity in supercon-
ducting or proximized systems by explicitly breaking the particle-hole symmetry by means of
ferromagnetic correlations [Machon2013, Ozaeta2014, Kolenda2017, Shapiro2017, Keidel2020]
and nonlocal geometries [Machon2013, Mazza2015, Heidrich2019] or by using nonlineari-
ties [Sanchez2016, Pershoguba2019, Marchegiani2020a, Germanese2021]. Recently, several
authors have discussed Andreev interferometers [Virtanen2004, Titov2008, Jacquod2010,
Kalenkov2017, Kalenkov2020] and nonlocal thermoelectric effects in Cooper pair splitters
[Hussein2019, Kirsanov2019], which found experimental confirmations [Eom1998, Parsons2003,
Jiang2005, Tan2021]. The application of thermal gradients to Josephson junctions has
also suggested novel technologies [Giazotto2015, Heikkila2018, Guarcello2018a, Hajiloo2019,
Guarcello2019, Guarcello2019a, Marchegiani2020b, Marchegiani2020c], showing that the pe-
culiar properties of topological Josephson junctions could also play an important role in
this perspective [Bours2018, Bours2019, Kamp2019, Guarcello2020, Scharf2020, Scharf2021,
Gresta-Blasi2021].

In this chapter we discuss how, in realistic situations, the nonlocal thermoelectric response
is intimately connected to the helical nature of edge states in a topological Josephson junction
(TJJ). In previous Chaps. 7 and 8 [Blasi2020, Blasi2020a], we analyzed a three terminal
structure where the TJJ, obtained by proximizing the two ends of a 2DTI bar through
superconducting electrodes, is contacted on one edge with a normal metal probe [Das2011,
Liu2015, Hus2017, Voigtlander2018, Bours2018, Bours2019]. In this configuration there is
a nonlocal thermoelectric response when a temperature bias is applied between the two
superconductors, which consists in the occurrence of a current flowing in the probe. We
note that in order to observe such nonlocal thermoelectric effect it is necessary to break the
particle-hole symmetry at nonlocal level [Benenti2017]. This can be done by introducing a
magnetic field orthogonal to the plane of the TI, which induces the so called Doppler shift
(DS) of the TI bands [Blasi2020], or simply by applying [Blasi2020a] a Josephson phase
difference φ, which may be generated by imposing a dissipationless current throughout the
junction. In Chaps. 7 and 8 we assumed equal proximized gaps in the two superconducting
right/left ends and we concentrated only on the linear regime. In this chapter we generalize
to the case where we have different gaps, which better describes a realistic experimental
situation [Guarcello2019, Guarcello2019a, Marchegiani2020, Marchegiani2020a], showing how
the unique nonlocal signature survives in the asymmetric case. At the same time we take
the opportunity to analyze in detail the nonlinear regime, discussing the thermodynamic
performance of the nonlocal thermoelectric engine obtained in such configuration. Even if
the analysis of this chapter focuses on the 2DTI case, we expect a similar physics to occur also
in 3D topological surfaces, where Doppler shift effects can be induced [Yuan2018, Zhu2020]
(see also Appendix B).

More specifically, in Sec. 9.1, we present the three terminal setup and introduce the
model Hamiltonian. Notice that, it consists of the same system used in Chap. 7, except this
time we consider the possibility of having superconductors with different gaps. By using the
scattering approach, we discuss how the dissipative currents can be computed. In Sec. 9.2
we investigate the nonlocal Onsager coefficients in the linear-response regime and discuss
how the junction asymmetry affects the nonlocal thermoelectricity. In Sec. 9.3 we study
the performance quantifiers (electrical power, efficiency and nonlocal Seebeck coefficient) in
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the non-linear regime and in the presence of finite voltage bias and/or finite temperature
difference between the two superconducting electrodes. In Sec. 9.4 we present the relevant
conclusions concerning the nonlocal effects of the topological Josephson junctions and possible
perspectives.

9.1 System and Model
We consider a TJJ which consists of two superconducting electrodes placed on top of a 2DTI
at a distance L (see Fig. 9.1). The two electrodes induce superconducting correlations on
the edge states via proximity effect [Tkachov2015, Sothmann2016]. A normal-metal probe
is contacted to one side of the junction as depicted in Fig. 9.1, thus putting it in electrical
contact with only one edge. In the setup, a voltage bias VN may be applied between the
probe N and the superconducting electrodes, which are equipotential and grounded. 1 The
two superconductors are kept at different temperatures in order to maintain a thermal bias
δT = TL − TR. A superconducting phase difference φ = φL − φR is also applied between the
two. We fix the temperature of the probe at the average temperature TN = (TL+TR)/2 = T .
As we will see below, this choice is the most convenient experimental one in order to extract
the nonlocal signal. The width of the TI strip is assumed to be large enough such that we
can neglect the lower edge, i.e. we focus only on the upper one.

The proximized system in the upper-edge can be described by the following Bogoliubov-de
Gennes (BdG) Hamiltonian

HBdG =
(

H(x) iσy∆(x)
−iσy∆(x)∗ −H(x)∗

)
, (9.1)

expressed in the four-component Nambu basis (ψ↑, ψ↓, ψ∗↑, ψ∗↓)T with spin ↑ and ↓ collinear
with the natural spin quantization axis of the TI edge pointing along the z-direction. In
Eq. (9.1) H(x) = vF (−i~∂x + pDS/2)σz − µσ0 + Λ(x) is the low-energy effective Hamilto-
nian of a 2DTI, with −H(x)∗ being its time-reversal partner. Here vF indicates the Fermi
velocity, µ is the chemical potential and σi are the Pauli matrices. The momentum pDS =
(π~/L)(Φ/Φ0) represents the so-called DS contribution describing the gauge invariant shift of
momentum induced by a small magnetic flux Φ threading the weak link, while Φ0 = h/2e is
the magnetic flux quantum [Tkachov2015]. A contact potential Λ(x) = ΛLδ(x)+ΛRδ(x−L) is
also included at the junction boundaries. ∆(x) is the superconducting order parameter which
is assumed to obey rigid boundary conditions: ∆(x) = ∆LΘ(−x)eiφL+∆RΘ(x−L)eiφR , where
Θ(x) is the step function and ∆i (with i = L/R) is the proximity induced gap for the left and
right superconducting regions. The two gaps can indeed be different for many reasons. For ex-
ample, the two superconductors may be made of different materials [Tinkham1966], or the two
superconducting films might have different thicknesses [Chubov1969, Meservey1971, Ilin2004],
or the two S-TI interfaces might be made of different quality [McMillan1968, Maier2012].
Moreover, in realistic experimental conditions, the finite temperature difference in the non-
linear regime may induce the superconducting gaps to take different values on the two sides
[Tinkham1966]. In the latter case, in order to make realistic predictions in a wide tem-
perature range, we need to include the self-consistent temperature dependence of the gaps.
Despite these facts, a careful study of topological Josephson junctions with asymmetric gaps

1Keeping the two superconductor equipotentials is important in order to not induce time dependent Joseph-
son effect.
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Figure 9.1: Sketch of the setup. It consists of the same system used in Chap. 7 (see Fig. 7.1),
except this time we consider the possibility of having superconductors with different gaps. A helical
Kramers pair of edge states of a quantum spin Hall bar is put in contact with two superconductors
at different temperatures TL = T + δT/2 and TR = T − δT/2. A bias voltage VN is applied to the
normal-metal probe coupled to the edge at the point x0 and kept at temperature TN = T . L is
the length of the junction. The structure is threaded by a magnetic flux Φ which induces a Doppler
shift in the edge states in addition to a Josephson phase difference φ ≡ φL − φR applied between the
two superconductors. The green arrow depicts spin-↑ right-moving quasi-particles, the orange arrow
indicates spin-↓ left-moving quasi-particles.

is something not frequently done in literature, even if non-identical gaps may introduce many
unexpected not trivial effects especially when Doppler shift effects are involved.

The eigenspectrum of the BdG Hamiltonian relative to a homogeneously proximized 2DTI
upper edge is given by Eiχ± (k) =

(
εDS(Φ) + χ

√
(~vFk ∓ µ)2 + ∆2

i

)
. Here the lower in-

dex ± labels the right/left parabola, χ = ± indicates branches with positive/negative con-
cavity, i = L,R for the left and right superconducting regions and εDS(Φ) = vF pDS/2 =
(vFh/4L)(Φ/Φ0) is the DS energy. The effect of the DS on the dispersion curve is to shift
the various branches vertically by an amount εDS(Φ), upwards or downwards, as shown in
the example of Fig. 9.2, where we plot the dispersion curves for the three regions composing
the TJJ. As a consequence, a finite value of the magnetic flux Φ reduces the gap in the eigen-
spectrum, which eventually closes when |εDS(Φ)| = ∆L/R in the left/right superconducting
regions of the 2DTI, respectively. Clearly, when the values of ∆L and ∆R are different, such
a gap closing in the left and right regions occurs at different values of the flux Φ.

The eigenfunctions of the electron-like Bogoliubov quasiparticles (QPs) of the BdG Hamil-
tonian for both left/right (i = L/R) superconducting regions can be written, in Nambu
notation, as

Ψi,χ
e+ = (χui−ei

φi
2 , 0, 0, vi−e−i

φi
2 )T eik

iχ
e+x

Ψi,χ
e− = (0,−χui+ei

φi
2 , vi+e

−iφi2 , 0)T eik
iχ
e−x, (9.2)

where the energy-dependent coherence factors (spinor components) are

ui± =
√

∆i

2ε±
e

1
2hi(ε±); vi± =

√
∆i

2ε±
e−

1
2hi(ε±), (9.3)
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Figure 9.2: Dispersion curves for QPs (solid lines) and QHs (dashed lines) in the left [panel (a)] and
right [panel (c)] proximized regions, and in the weak link TI region [panel (b)], for 0 < εDS(Φ) < ∆L

(with ∆R > ∆L). Green arrows represent spin-↑ right-moving QPs, while orange arrows spin-↓ left-
moving QPs.

with ε± = ε±εDS(Φ) and hi(ε±) = arcCosh (ε±/∆i) for ε± > ∆i and hi(ε±) = i arccos (ε±/∆i)
for ε± < ∆i. The QP’s momentum is kiχe± = ±kF (χ

√
(ε2∓ −∆2

i )/µ2 + 1), while the related
group velocity is wiχe± = ~−1|∂kEiχ± | = vF (u2

i∓ − v2
i∓). The eigenfunctions Ψi,χ

h±
relative to

QHs can be obtained by replacing (ui±, vi±) → (vi±, ui±), kiχe± → kiχh∓ = ki,χ̄e± (with χ̄ = −χ)
and wiχe± → wiχh∓ = wiχe± in the expressions of Eq. (9.2). Clearly, the limit ∆i → 0 returns
the standard 1D Dirac spectrum [shown in Fig. 9.2(b)] which characterizes the 2DTI (non-
proximized) edge.

The normal-metal probe N – which would model for instance a STM tip [Das2011,
Liu2015, Hus2017, Voigtlander2018] – is assumed to be directly contacted to the upper edge
at the point x0 (see Fig. 9.1) and modelled by an energy- and spin-independent transmission
amplitude t (see Appendix A).

9.1.1 Charge and Heat Currents

In the following we will investigate only the dissipative currents flowing through the structure
which can be obtained by using the Landauer-Büttiker scattering [Blanter2000] formalism
generalized in order to include superconductivity [Lambert1998]. More precisely, we are not
interested in the dissipationless (Josephson) contribution to the charge current flowing in
the superconducting electrodes, which has been already discussed elsewhere [Tkachov2013,
Snelder2013, Sochnikov2015, Dolcini2015, Kurter2015, Marra2016, Stehno2016, Scharf2020].
The dissipative charge current JcN at lead N and heat currents Jhi exiting from leads i =
L,R,N can be written in the following compact form

[
JcN
Jhi

]
= 1
h

∑
j

∑
α,β

∫ ∞
0

dε

[
αe

(ε− αµi)

]
Fαβij (ε)Pα,βi,j (ε, ~θ), (9.4)
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with α, β = +/− for QPs and QHs respectively, and where we set µN = eVN and µL = µR =
0. The function

Fαβij = fαi (ε)− fβj (ε) (9.5)

is a compact way to write differences of the generalized Fermi functions fαi (ε) = {e(ε−αµi)/kBTi+
1}−1, where Ti represents the temperature of lead i. In Eq. (9.4) the most important physical
quantities are the scattering coefficients Pα,βi,j (ε, ~θ) which are calculated from the scattering
matrix Sα,β(i,σ),(j,σ′) as follows (see Sec. 4.3)

Pα,βi,j (ε, ~θ) =
∑
σ,σ′

∣∣∣Sα,β(i,σ),(j,σ′)(ε, ~θ)
∣∣∣2 (9.6)

[see Appendix A.1 for the details of the computation and Appendix A.2 for the discussion of
the special symmetries of the scattering coefficients in the symmetric case (i. e. when ∆L =
∆R)]. The scattering coefficients Pα,βi,j (ε, ~θ) represents the reflection (i = j) or transmission
(i 6= j) probability of a QP of type β injected from lead j to end up as a QP of type α in
lead i. We introduced the vector parameter ~θ ≡ (Φ, φ) which includes both the magnetic
flux Φ and the gauge invariant Josephson phase difference φ ≡ φL − φR. The two quantities
should be treated independently, since Φ depends directly on the magnetic-field flux in the
junction, while the phase bias φ depends also on the dissipationless current imposed through
the junction. They represent two different degrees of freedom needed to fully characterize the
state of the TJJ. Their difference is reflected in the fact that the observables relative to the
Josephson junction are 2π-periodic with respect to phase bias φ (as required by the gauge
invariance), but are not periodic in the flux bias Φ (once the gap is closed it does not open
again). Moreover, there is another important difference between the two quantities: the flux
bias operates differently on the two opposite helical edges states of the TI, while the phase
bias affects the two edges in the same way.

Finally, it is worth to notice that there is no dependence of the scattering coefficients on
the contact potential [BTK1982] parameters Λi. 2. This is a direct consequence of the helicity
of the edge channels which do not admit ordinary reflections at barriers (akin to the Klein
paradox) [Lee2019].

9.2 Linear response regime
The occurrence of a nonlocal thermoelectric response in the presence of a DS [Blasi2020] or
of a phase difference [Blasi2020a] was discussed in the previous Chaps. 7 and 8, where - for
simplicity - only the symmetric case of equal gaps ∆L = ∆R was considered. We refer to the
Appendix A.3 for a thorough discussion of such symmetric case, which complete the analysis
done in Chap. 8 by presenting the analytical expressions of the heat and charge currents
flowing through the probe obtained in the general case in which both the DS and the phase
bias are present.

In this section we explore the asymmetric case (where ∆L 6= ∆R). This is not a mere
generalization of previous results, since it provides important information relevant for realistic
(experimental) realizations. Indeed, when one of the two temperatures Ti is bigger than
0.4TC,i (with TC,i being the critical temperature of the i-th superconductor) the self-consistent

2This can be checked directly from the analytic expressions of the scattering coefficients, not reported here
for brevity. The independence of Λi is a generic result valid also with other form – not delta like – of the
interface potential at least in the absence of interaction.
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gap ∆i(Ti) gets reduced from the zero-temperature value ∆i,0 and the right-left symmetric
gap condition is hardly valid [Tinkham1966].

Let us first clarify which is the relevant thermoelectrical response for the three terminal
setup depicted in Fig. 9.1. We use the approach developed in Ref. [Mazza2014] to investigate
thermoelectrical properties for multiterminal systems [Benenti2017]. The first step is to
identify the independent currents. Since charge and energy must be conserved, we are only
left with 4 independent currents, out of 6 (3 charge currents and 3 heat currents). In our three-
terminal Josephson junction setup we consider the case of a stationary superconducting phase
bias (φ̇ = 0), which indeed necessarily requires VL = VR.3 In such configuration the charge
current flowing in the two superconductors is dominated by the dissipationless Josephson
current which, in the linear response regime, is unaffected by the temperature difference
between the electrodes. In the following, in analogy to Chaps. 7 and 8, we mainly discuss
the only relevant currents which allow us to characterize the nonlocal thermoelectric response
of our setup. These are the charge current (JcN ) flowing in the normal probe and the heat
current associated to the superconductors (see below for the proper definition). Moreover,
interesting features emerge also from the analysis of the linear heat current (JhN ) flowing in
the normal probe, which will be presented for completeness in Sec. 9.2.5.

9.2.1 Nonlocal thermoelectric and Peltier coefficients

For small values of VN and δT , the charge current JcN can be expanded up to the linear or-
der in these quantities [Benenti2017, Mazza2014, Roura-Bas2018, Hussein2019, Sanchez2018,
Kirsanov2019]. The charge current for the probe reads

JcN = LN11
VN
T

+ LN12
δT

T 2 , (9.7)

with VN/T and δT/T 2 taking the role of the relevant affinities of the problem, while LN11 and
LN12 are linear transport coefficients defined as (using the notation of Sec. 5.3)

LN11 = LccNN , LN12 = (LchNL − LchNR)/2. (9.8)
We note that the electrical response to the bias VN is given by the conductance G = LN11/T ,
while the linear response to δT (temperature difference between the superconductors) cor-
responds to a nonlocal thermoelectric current, represented by the coefficient LN12. It is im-
portant to stress now that in the linear-response regime the system is close to equilibrium.
As a result, the temperature of the probe needs to be set to its equilibrium value, namely
TN = T . By setting JcN = 0 in Eq. (9.7) and solving for VN one finds the linear See-
beck thermovoltage V S

N , through which we can compute the nonlocal Seebeck coefficient
S = −V S

N /δT = (1/T )LN12/L
N
11, similarly to the derivation of the local case.

Let us now consider the heat currents. In the symmetric case (∆L = ∆R) and for TN = T ,
the heat current flowing in left superconducting lead JhL is exactly opposite to the current
flowing in the right lead JhR, namely JhL = −JhR, while JhN = 0 (i.e. there is no heat current at
the probe), due to the symmetries of the configuration, see Appendix A.3 for details. When
the left-right symmetry is broken (∆L 6= ∆R), the two superconducting terminals are no more
equivalent and the heat currents in the two superconducting terminals are different. In such
a case it is convenient to describe the heat current associated to the two superconductors by
the average

JhS ≡
JhL − JhR

2 . (9.9)

3This is an implicit consequence of the Josephson relation which states φ̇ = 2e(VL − VR)/~.
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In the linear-response regime it is expressed as

JhS = LS21
VN
T

+ LS22
δT

T 2 , (9.10)

where we defined

LS21 = (LhcLN − LhcRN )/2, LS22 =
[
(LhhLL − LhhLR)/2 + (LhhRR − LhhRL)/2

]
/2. (9.11)

Notice that, Eq. (9.11) reduces to Eq. (7.6) for symmetric gaps (i e. ∆L = ∆R), in which
case it turns out that LhcRN = −LhcLN , LhhRR = LhhLL and LhhRL = LhhLR. The last term in Eq.
(9.10) is the local heat conductance κ = LS22/T

2 between the two terminals, while the first
term represents the nonlocal Peltier-like contribution. We notice that, in general, for a multi-
terminal system [Mazza2014] one does not expect any specific symmetry relation between the
nonlocal linear coefficients. However, with the definition of Eq. (9.9), the Onsager-Casimir
relations [Onsager1931, Casimir1945, Jacquod2012, Benenti2017] (see Sec. 5.3) for the lin-
ear coefficients defined by Eqs. (9.7) and (9.10) can be expressed in the following form:
LN12(~θ) = −LS21(~θ). In the next section we will numerically verify that such a relation holds
independently of the ratio between the gaps.

We will divide the analysis in two limiting situations. In the first case we will discuss the
Onsager coefficients as functions of the DS in absence of any phase-bias, i.e. φ = 0. In the
second case, instead, we analyze how in an extremely asymmetric case the thermoelectrical
effect depends on the phase bias in absence of the DS (Φ = 0). In real experiments the
discussed effects, which are different aspects of the nonlocal thermoelectricity, are probably
mixed but it is interesting to discuss them separately in order to clearly recognize their
contributions to the nonlocal thermoelectrical signal.

9.2.2 Asymmetric case for φ = 0
In this section we investigate the linear transport coefficients in the case where the right/left
symmetry is broken by different zero-temperature superconducting gaps (∆0,R 6= ∆0,L), and
we define the ratio δ ≡ ∆0,R/∆0,L = ξL/ξR where the second identity is expressed in terms
of the coherence lengths ξi = ~vF /π∆0,i, with i = R,L. We notice that, when δ 6= 1, the
scattering coefficients Pα,βi,j of Eq. (9.6) depend on the position of the probe. This is different
from the left/right symmetric case (when δ = 1) in which the scattering coefficients do not
depend on the position x0 of the probe, but simply on the total length L of the junction (see
Appendix A.2 for more details). For the sake of convenience, hereafter we consider the probe
positioned exactly in between the two superconductors (i. e. x0 = L/2) and we fix δ ≥ 1. 4

The behavior of the linear coefficients LN/Sij of Eqs. (9.7) and (9.10) is shown in Fig. 9.3
as a function of the DS εDS(Φ)/∆0,L and of the asymmetry parameter δ, for fixed phase
bias φ = 0. The local coefficients LN11 and LS22 are plotted in units of G0T and GTT

2,
respectively, where G0 denotes the electrical conductance quantum and GT = (π2/3h)k2

BT
the thermal one. The nonlocal thermoelectrical coefficients LN12 and LS21 are plotted in units
of
√
G0GTT 3. In these plots, we consider an intermediate coupling parameter to the probe

(|t|2 = 0.5) and set the length of the junction three times longer than the superconducting
coherence length, i.e. L/ξL = 3. Such a value of L corresponds to the case of a long junction
(given a coherence length ξL in the proximized TI of the order of 600 nm), which allows
the emergence of oscillations in the linear-response coefficients due to the proliferation of

4The same results are obtained for δ ≤ 1 by inverting the temperature bias and the sign of ~θ.
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resonant states in the junction. The choice of the value |t|2 = 0.5 comes from the fact that,
by increasing the coupling |t|2, the resonances get broadened, eventually disappearing when
the coupling approaches unity, irrespective of the length L (not shown).

Assuming ∆0,L < ∆0,R (namely δ > 1), it turns out that the DS energy εDS(Φ), mod-
ulated by the flux Φ, modifies the dispersion curves of Fig. 9.2 in a different way for the
right and left superconductor. In particular, for |εDS(Φ)| < ∆0,L the spectrum is gapped for
energies ε < ∆0,L − |εDS(Φ)| in both superconducting leads. For ∆0,L < |εDS(Φ)| < ∆0,R we
are in a situation where the gap is closed for the left superconductor, but open for the right
one. Finally when |εDS(Φ)| > ∆0,R the gaps are closed for both sides of the junction.

Figure 9.3: Onsager coefficients LN11 (a), LN12 (b), LS21 (c) and LS22 (d) as functions of εDS(Φ)/∆0,L
and δ = ∆0,R/∆0,L for φ = φL − φR = 0, T/TC,L = 0.1, L/ξL = 3 and |t|2 = 0.5. Such quantities are
normalized as follows: LN11/(G0T ), LS22/(GTT 2) and (LN12, L

S
21)/(

√
G0GTT 3).

These different regimes can be recognized in the behavior of the Onsager coefficients,
depicted in Fig. 9.3, computed at low temperature T/TC,L = 0.1 (with TC,L the critical
temperature of the left superconductor). In particular we recognize a subgap region (i)
(between vertical solid lines) for |εDS(Φ)/∆L| < 1, a partially gapped region (ii) (between
the dashed and solid lines) and the supragap region (iii) (below diagonal dashed lines).
Notice that the clear distinction of the different regions emerging in the behavior of all the
Onsager coefficients of Fig. 9.3 can be used, in principle, as an experimental observation of
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the different zero temperature gaps of the superconductors forming the junction.
For the electrical coefficient LN11/G0T , depicted in Fig. 9.3(a), we can recognize a similar-

ity with SINIS (superconductor-insulator-normal metal-insulator-supercondutor) junctions
where transport is typically suppressed in the subgap regime (i), though resonances are
present (vertical red stripes) that correspond to Andreev bound states (ABSs) crossing zero
energy. We checked that the linewidth of ABS resonances depends on the coupling parameter
(by increasing the coupling |t|2 the resonances broaden). Furthermore, the number of reso-
nances inside the region (i) grows with the ratio L/ξL due to the proliferation of ABSs in the
junction (not shown). Similarly, in the partially gapped (ii) and the supragap (iii) regions
we see a weak oscillating behavior (vertical stripes) reminiscent of Andreev interferometric
effects. On the other hand, we observe that the thermal coefficient LS22/GTT

2 [Fig. 9.3(d)] is
completely suppressed in region (i) since, in this case, the ABS resonances cannot contribute
to thermal transport due to the Andreev mirror effect. Indeed, Andreev reflection does not
allow the flow of energy through the S interface, since energy is carried by QPs, but not by
the condensate. However, the thermal conductance becomes finite and large in the supragap
region (iii) where energy can be carried by QPs. In the region (ii) the thermal transport
between the two superconductors is not completely suppressed and it is influenced by an
Andreev interferometric mechanism which determines an oscillating behavior.

Concerning the nonlocal coefficients LN12 and LS21, depicted in Fig. 9.3(b) and (c) respec-
tively, we confirm the validity of the discussed generalized Onsager symmetry which becomes
LN12(Φ) = −LS21(Φ) (being here φ = 0). The nonlocal coefficients clearly resemble some as-
pects of those discussed in Chap. 7 for identical gaps. In particular, LN12 is suppressed in
the subgap region (i) and two main peaks at |εDS(Φ)| = ∆0,R appear at the boundaries of
regions (ii) and (iii) (dashed lines). In this condition, for εDS > 0 (εDS < 0), the top left (top
right) band of the right proximized region in Fig. 9.2(c) nearly touch zero energy opening
the possibility for thermoelectrical effects. In particular, the helicity of the edge states allows
(for example, for εDS > 0) a flow of QHs [whose dispersion is represented by the dashed red
curve in Fig. 9.2(a)] to move to the right from the proximized region SL and a flow of QPs
[whose dispersion is represented by the solid blue curve in Fig. 9.2(c)] to move to the left
from the proximized region SR. Under the application of a small temperature bias between
the superconductors, the unbalance between the flow of cold QPs from the right and hot QHs
from the left leads to a net thermoelectric current flowing through the probe [Blasi2020].

9.2.3 Interference character of Doppler shift in region (ii)

The true novel feature of the asymmetric case is represented by the appearance of a finite
thermoelectric contribution (LN12 6= 0) in region (ii) [see Fig. 9.3(b)], where the right super-
conductor is still gapped. In such a case the situation resembles the Andreev interferometric
mechanism of Chap. 8, even if in this case φ = 0. In this respect, the presence of a finite
thermoelectric effect in region (ii) allows us to single out the Andreev interferential character
of the Doppler shift effect (which contributes as an effective finite phase bias) from that of
band-shifting. Notice that this effect, in principle, is also present in the subgap region (i)
even if it is exponentially suppressed as ∼ e−(|εDS(Φ)|−∆L)/kBT . Indeed, only the supragap
states contribute to thermoelectricity as long as they are thermally activated. This behavior
is clarified by investigating the evolution of LN12 for different temperatures. Figure 9.4 repre-
sents a horizontal cut of Fig. 9.3(b) at δ = 2 for four different values of the temperature T [the
blue curve corresponds to the data plotted in Fig. 9.3(b)]. When the temperature increases,
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Figure 9.4: Nonlocal thermoelectrical coefficient LN12, expressed in units of
√
G0GTT 3, as a func-

tion of εDS(Φ)/∆0,L for δ = 2 and different temperatures. We see that also in the subgap region
LN12 6= 0 when temperature increase. Parameters are as in Fig. 9.3.

LN12 also increases even in the subgap region (i). Furthermore, for higher temperatures all
the resonances are smoothened due to the averaging between different energies.

At the lowest temperature LN12 presents changes of sign which disappear for higher values
of T . This can be understood by noting that the sign of LN12 directly reflects the nature of the
dominant carriers in the junction. For kBT � ∆0,L and for |εDS | . ∆0,R, only one type of
carries, coming from the superconductor with the smaller gap, are allowed for the transport
within the energy window 0 ≤ ε . kBT (see Fig. 9.2): namely QHs (QPs) for εDS > 0
(εDS < 0). This flux of QHs (QPs) is contrasted by an opposite flux of QPs (QHs) originated
due to Andreev reflections occurring at the interface with the other superconductor which is
still gapped in that energy window. The (nontrivial) unbalance between these positive and
negative charged carries determines the sign of the charge current flowing inside the probe
and thus the sign of LN12.

As a final remark, it is important to notice that, differently from the results discussed in
Chap. 7 for identical gaps where LN12 was an odd function of Φ (namely LN12(Φ) = −LN12(−Φ)),
in the asymmetric case (i. e. ∆L 6= ∆R) LN12(Φ) does not manifest any particular symmetry
under the inversion Φ→ −Φ (as clearly emerges from Fig. 9.4). This is due to the fact that
in the symmetric case there are extra symmetries in the scattering coefficients, as discussed
in Appendix A.2.

9.2.4 Asymmetric case for Φ = 0:
interference effects on local thermoelectricity

Let us first recall that in Chap. 8 we have shown that a finite φ alone, i.e. even in the
absence of the DS, is sufficient to establish a nonlocal thermoelectric response due to an
Andreev interferometric effect. Here we demonstrate that Andreev interferometry generates
another peculiar effect that contributes to LN12, which emerges only by increasing the left/right
asymmetry. We consider the extreme situation in which ∆0,R →∞ (i. e. δ →∞), so that we
can neglect all the contributions from the QPs on the right side, allowing us to obtain a simple
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analytical result for the charge current at probe JcN . In other words we are focusing on the
regime where kBTL,∆L � ∆R. As a consequence of that choice, the temperature TR will not
even enter in the discussion. Therefore, the only thermal bias capable to drive a thermoelectric
current through the probe is the local one present between the left superconductor SL and
the probe N itself. Interestingly, the right superconductor SR, even if it does not directly
contribute to the energy transport (being fully gapped), still influences the exchange of charge
between the N and SL through the Andreev reflection processes occurring at the interface
with SR. The resulting dependence of the current JcN on the phase difference φ, see below,
is due to the Josephson coupling established between the two superconducting leads. Notice
that this interference (coherent) effect on the local thermoelectricity between N and SL can
be controlled by the application of a dissipationless current between the two superconductors,
which changes the phase difference φ. The charge current at the probe takes the form

JcN = e

h

∫ ∆L

0
dε F+−

NN (ε) [A(ε, φ) +A(ε,−φ)] + e

h

∑
σ,σ′=±

∫ ∞
∆L

dε σ |r||σ−σ′| F σ,σ
′

NL (ε) Q(ε,−σ′φ)

(9.12)
where the first term is the subgap energy contribution and the function

A(ε, φ) = 2|t|4 · Θ(∆L − ε)
1 + |r|4 + 2|r|2 cos

(
2π Lε

~vF + φ+ arcsin
(

ε
∆L

)) ,
with |r|2 = 1− |t|2. Such first term vanishes when VN = 0, since F+−

NN = 0 in that case (see
Eq. (9.5)). The second term, instead, collects all the contribution for energies above the left
gap and the function

Q(ε, φ) =
(
g(ε)2 − 1

)
· Θ(ε−∆L)

g(ε)2 + |r|4 − 2g(ε)|r|2 sin (2π Lε
~vF + φ)

, (9.13)

with g(ε) = earcCosh(ε/∆). Note that in Eq. (9.12) the function FαβNL = fαN (ε) − fβL(ε) in-
volves only the electrodes N and SL. From Eq. (9.12) it is possible to derive the analytical
expressions of the Onsager coefficients LN11 and LN12 of Eq. (9.7) in the case VN , δT → 0:

LN11 = −e
2

h

∫ ∆L

0
dε 2Tf ′0(ε) [A(ε, φ) +A(ε,−φ)]−e

2

h

∫ ∞
∆L

dε Tf ′0(ε)(1+|r|2) [Q(ε, φ) +Q(ε,−φ)] ,

(9.14)

LN12 = −2e
h

∫ ∞
∆L

dε ε Tf ′0(ε)|t|2 [Q(ε, φ)−Q(ε,−φ)] , (9.15)

where f ′0(ε) =
[
4kBT cosh (ε/2kBT )2

]−1
, is the derivative of the Fermi function f0(ε) =[

1 + eε/kBT
]−1

. From Eqs. (9.14) and (9.15) clearly emerges the even and odd parity in φ

of LN11 and LN12, respectively. In Fig. 9.5 we plot those two quantities with respect to the
phase bias φ and the junction length L. The main difference with respect to the purely
nonlocal thermoelectric coefficient of Chap. 8 is that the thermoelectric coefficient LN12 of
Eq. (9.15) depends on sin (2π Lε

~vF + φ) (see Eq. (9.13)) instead of cos (2π Lε
~vF + φ) (see Eq.

8.7). For long junctions (i. e. L→∞) the contributions for different energies average to zero
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Figure 9.5: Charge current JcN linear coefficients LN11 and LN12 in the extreme asymmetric limit
δ →∞ as a function of the phase bias φ and junction length L. Other parameters are T/TC,L = 0.2,
|t|2 = 0.5

recovering the expected result of a standard NS junction. This clearly shows that when the
superconducting leads are far from each other, the Andreev interferometric mechanism on
the local thermoelectrical transport is suppressed.

We conclude this section by observing that the local thermoelectric effect in the probe,
which emerges with gap asymmetry, represents one of the main source of disturbance to
the measurement of the nonlocal thermoelectric effect discussed in the sections above. This
implies that, in order to clearly see the nonlocal thermoelectrical effect, it is convenient to be
in a situation with weak asymmetry. However, we estimated that this local thermoelectric
effect is of the order of few µV/K, to be compared with the nonlocal thermoelectric effect
determined by DS, discussed before, which could reach values of the order of many tenths
µV/K (see below). So we do not expect that spurious local thermoelectrical effects would
substantially affect the nonlocal measurements at least for moderate gap asymmetry.

9.2.5 Linear-response heat current at the probe

In the asymmetric case (∆R 6= ∆L) it is interesting to discuss the behavior of the heat current
flowing in the probe JhN . Similarly to Eq. (9.7), in the linear-response regime we can write

JhN = LN21
VN
T

+ LN22
δT

T 2 , (9.16)

where we defined
LN21 = LhcNN , LN22 = (LhhNL − LhhNR)/2. (9.17)

The coefficient LN21 accounts for the local Peltier effect at the probe (describing how the
heat current at the probe is influenced by the voltage bias VN ). While LN22 represents the
transverse heat response at the probe, i.e. the heat current induced in the probe as deter-
mined by a trasversal temperature gradient between the superconductors. In contrast to the
symmetric case in which JhN = 0 in the linear response regime (see Appendix A.3), in the
asymmetric configuration JhN can be finite even in linear response. This can be interpreted
as the consequence of the contributions of the different heat currents flowing from the two
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superconducting leads kept at different temperatures. In Fig. 9.6 we plot LN21, panel (a),
and LN22, panel (b), as functions of εDS and δ; both quantities are significantly different from
zero only in region (ii). Indeed in region (i), JhN vanishes since the system is not able to

Figure 9.6: Heat current JhN Onsager coefficients LN21 (a), LN22 (b) as functions of εDS(Φ)/∆0,L
and δ = ∆0,R/∆0,L, for φ = φL−φR = 0, T/TC,L = 0.1, L/ξL = 3 and |t|2 = 0.5. Such quantities are
normalized as follows: LN21/(

√
G0GTT 3), LS22/(GTT 2).

activate enough supragap states. 5 On the other hand, in region (iii) the two gaps are both
closed and there is almost no difference in the thermal coupling between right and left leads.
Since the probe is at the average temperature T = (TR + TL)/2, the system behaves very
similarly to the symmetric case (δ = 1 bottom border of the figures) where the thermal flux
from hotter lead is compensated with the thermal losses in the colder lead giving a null net
thermal current in the probe.

Furthermore, we notice the behavior of the transverse thermal coefficient LN22 of the system
can be described in terms of a thermal divider, i.e. a device that controls the sign of the heat
current in an intermediate third terminal (the probe) assuming that there is a main heat flow
generated from the thermal gradient δT (between the superconductors). 6 In particular the
three terminal setup can be described as a series of two thermal conductances with the probe
in the middle. In such a case, the heat flux in the probe would depend essentially on the ratio
of thermal resistances. Indeed, in region (ii) for δ > 1 the thermal coupling of the probe with
right lead is very opaque with respect to the left lead. Since the probe temperature is fixed
at T = (TR + TL)/2 there is more heat flowing from the left lead than into the right one,
determining the negative sign of LN22 (since positive thermal current of the probe is defined
exiting from the probe).7 We verified that the sign of LN22 changes globally for the opposite

5Note that the Joule component can be neglected in the linear regime since it scales at least as V 2
N .

6The name is inspired by an evident analogy with voltage dividers.
7The negative sign of this quantity is simply determined by the adopted convention for probe currents but

clearly the spontaneous thermal flux always flows from the hotter to the colder lead, in agreement with the
laws of thermodynamics.
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case δ < 1 (not shown). This behavior qualitatively resembles the concept of the thermal
router [Timossi2018] in superconducting hybrid systems.

In region (ii), we notice that both linear coefficients are also oscillating (see the vertical
stripes). In particular, the sign changing of LN21 with Φ reflects the change of the main carrier
as determined by Andreev interference discussed in Sec. 9.2.2. It is indeed important to
remind that, being LN21 a local Peltier-like coefficient, its sign will directly depend on the
sign of the dominant carrier. Instead LN22 has not similar sign changes being associated to a
transversal thermal response that cannot distinguish on the main carrier charge sign.

9.3 Non-linear response regime

Figure 9.7: Electrical power P in units of GTCTC as a function of eVN/∆0 versus εDS(Φ)/∆0
in the case of short (a) L/ξ = 0.1, medium (b) L/ξ = 1 and long (c) L/ξ = 3 junction. In blue
is depicted the generated power Pgen = P > 0. The white dashed line corresponds to the stopping
voltage curve, while the red dashed line indicates the maximum generated power Pmax. Here we
chosen |t|2 = 0.5 (an intermediate coupling parameter representing a not fully Ohmic contact with
the probe), δT/TC ≈ 0.4 (large enough to guarantee the highest possible electrical power by keeping
constant and equal the gaps of the superconductors) with T/TC = 0.2 and φ = 0.

In this section we investigate the behavior of the nonlocal thermoelectricity from the
perspective of a thermodynamic engine within the nonlinear regime. The laws of thermody-
namics set very general constraints on the currents of Eq. (9.4). As discussed in Sec. 5.2, the
first law of thermodynamics, which guarantees energy conservation, can be written as∑

i

Jhi = P, (9.18)

where P is the electrical power
P = −

∑
i

Jci Vi. (9.19)

With this definition, P is positive when the current flows against the applied bias, i. e.
there is a thermopower generated in the system that can be dissipated on an external load
(P ≡ Pgen). The device thus works as a thermoelectrical engine [Whitney2013, Whitney2014,
Sothmann2014, Mazza2014, Benenti2017]. Notice that, since we set VL = VR = 0, Eq. (9.19)
reduces only to P = −JcNVN , which means that the power is dissipated in the probe circuit
only. As already mentioned in Sec. 5.2, another important performance quantifier is the
efficiency defined as

η = Pgen∑+
i J

h
i

, (9.20)
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where the numerator corresponds to the electrical power generated Pgen, while the denomi-
nator corresponds to the total heat current entering the system (the superscript + in the sum
means that we are summing only positive heat currents). In the remaining part of this chap-
ter we discuss the symmetric case (δ = 1), with ∆0 ≡ ∆0,L = ∆0,R and TC ≡ TC,L = TC,R.
However, when the temperature difference between the two superconductors becomes com-
parable with the critical temperatures, the superconducting gaps on the two sides of the
junction will take different values. In what follows we take into account this fact by including
self-consistent temperature dependence of the two gaps.

9.3.1 Electrical Power and maximum Power

The electrical power P of Eq. (9.19) is presented in Fig. 9.7 and expressed in units of GTCTC
(withGTC = (π2/3h)k2

BTC the thermal conductance quantum at TC), as a function of eVN/∆0
and εDS(Φ)/∆0 in the case of short L/ξ = 0.1 (Fig. 9.7 (a)), medium L/ξ = 1 (Fig. 9.7 (b))
and long L/ξ = 3 (Fig. 9.7 (c)) junctions, with ξ = ~vF /π∆0. Here we set |t|2 = 0.5,
representing a intermediate Ohmic contact with the probe, and a phase difference φ = 0. It
is important to notice that here we set T = 0.2TC and δT/TC ≈ 0.4, which is the largest
thermal bias for which TL, TR . 0.4TC , such that the superconducting gaps can be safely
considered still constant [∆L(TL) ≈ ∆R(TR) ≈ ∆0].

In Fig. 9.7 the white dashed lines represent the stopping voltage Vstop defined through
the equality Pgen(Vstop) = JcN (Vstop) = 0, while the red dashed lines locate the maximum
generated power Pmax = maxVN [Pgen]. By comparing Figs. 9.7 (a), (b) and (c), we can
see that the behavior of the electrical power for different lengths of the junction remains
roughly the same. In particular, when the gap closes due to the flux bias Φ, i.e. when
|εDS(Φ)/∆0| ≈ 1, the electrical generated power Pgen is maximized irrespective of the length
L. For long junctions, the only additional feature is the presence of ripples in the generated
power due to the proliferation of resonant states inside the junction [see Fig. 9.7 (c)] which in
turn affects also the supragap states. No oscillations occur at any lengths when |t|2 ≈ 1 (not
shown). Furthermore, another important feature which emerges from Fig. 9.7, is that the sign
of the stopping voltage Vstop changes when Φ → −Φ as a consequence of the antisymmetry
of the thermoelectricity under the magnetic field inversion.

A study of the dependence of the maximum generated power on the phase difference φ is
presented in Fig. 9.8. Here, Pmax is plotted in units of GTCTC , as a function of the two exter-
nal tuneable knobs, i. e. εDS(Φ)/∆0 and φ/π, setting L = ξ. This length is realistic assuming
a scanning tunneling microscopy (STM) tip with a state-of-the-art width of 100 nm and a co-
herence length ξ in the proximized TI of the order of 600 nm [Deacon2017]. Furthermore, over
a length L ∼ ξ no backscattering events are expected to occur at the operating temperatures
for our setup, typically of a few kelvin. Also in this case we consider an intermediate coupling
parameter |t|2 = 0.5 with the probe and a thermal gradient δT/TC ≈ 0.4 with T/TC = 0.2.
Importantly, Fig. 9.8 shows that the following symmetry holds: Pmax(~θ) = Pmax(−~θ). The
same holds, in general for the electrical power, i. e. P (~θ, VN ) = P (−~θ,−VN ).

In Fig. 9.9 we present the results of the maximum generated power Pmax as a function
of δT/TC for different values of the coupling parameter |t|2. In this case, we explicitly
consider the temperature dependence of the superconducting gaps by using the approximated
formula ∆i = ∆0 tanh

(
1.74

√
TC/Ti − 1

)
(with i = L,R) which is accurate better than

2% with respect to the self-consistent BCS result [Tinkham1966, Kamp2019]. We compare
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Figure 9.8: Maximum generated power Pmax in units of GTCTC as a function of εDS(Φ)/∆0
versus φ/π. Here we considered L/ξ = 1, |t|2 = 0.5 and δT/TC ≈ 0.4 (large enough to guarantee the
highest possible electrical power by keeping constant and equal the gaps of the superconductors) with
T/TC = 0.2.

it with the maximum power in the linear response regime given by the relation Pmax =
GS2

4 δT 2 = L2
12

L11
δT 2

4T 3 (dashed lines) [Benenti2017]. In the figure we consider T/TC = 0.5 in
order to maximize the excursion of the thermal gradient δT/TC ∈ [0, 1] by preserving the
superconducting state of the leads (namely, such that the gap of the hotter superconductor
does not close, i. e. TL/TC . 1). Here we set L/ξ = 1, φ = 0 and εDS(Φ)/∆0 = 1. From
an analysis of the result of Fig. 9.9 emerges that all the curves match the trend of the linear
regime for small δT as expected. Nonlinearities emerge only for δT/TC & 0.4 due to the
closure of the gap of the hotter superconductor.

It is important to notice that the red curves of Fig. 9.9, corresponding to the case of
perfect coupling with the probe (|t|2 = 1), do not depend on neither the phase difference φ
nor the length of the junction L. This curve clearly maximizes the performance with respect
to all the other cases |t|2 < 1.

9.3.2 Efficiency and Lasso diagram

We now present in Fig. 9.10, the results for the efficiency, defined in Eq. (9.20), by assuming
perfect coupling with the probe |t|2 = 1 and εDS(Φ)/∆0 = 1, for which we have maximum
power (according to the discussion of the previous section). In this situation, both the
efficiency η and Pmax do not depend on the phase difference φ and the junction length L. Here,
we consider different values of the temperature of the probe, namely T = 0.25 TC , 0.5 TC
and 0.75 TC , corresponding to different colors in Fig. 9.10. For each value of T , we take three
different values of the thermal bias δT = 0.1 δTmax, 0.5 δTmax, δTmax (corresponding to the
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Figure 9.9: Maximum generated power Pmax in units of GTCTC as a function of δT/TC for
different values of the coupling parameter |t|2 (solid lines) in comparison with the maximum power in
the linear regime (dashed lines). Other parameters in the heading. Here we chosen T/TC = 0.5 in order
to maximize the range of the thermal gradient δT/TC so that the gap of the hotter superconductor
does not close (i. e. TL/TC . 1).

different style of the lines: solid, dashed, dotdashed). δTmax take the following value

δTmax = min {2T, 2(TC − T )} (9.21)

in order to always fulfill the condition 0 < TL, TR < TC for any operating temperature of the
superconductors. All the curves in Fig. 9.10(a) present the same “reversed-parabola” behav-
ior, passing through VN = 0 when the themocurrent becomes null again, similarly to what
is expected for a linear thermoelectrical engine [Benenti2017]. The nonlocal thermoelectrical
engine has a quite small maximum value for the efficiency, i. e. η/ηC . 3.5%. This low
efficiency can be attributed to the large flux of heat entering the system [thus increasing the
denominator of Eq. (9.20)] which occurs when gaps close as a consequence of the DS.

A convenient way to present the efficiency at a given power output, and vice versa, is in
the form of lasso diagrams as depicted in Fig. 9.10(b). The parameter that is changed along
the lasso-line is the applied voltage VN . As we can notice, the lasso-curves in Fig. 9.10(b) are
long and narrow loops for all values of the controlling parameters (T and δT ). This implies
that maximum efficiency and maximum output power occur at the same value of parameters.
This is advantageous for the operation of a thermoelectric device, where one typically must
decide whether to optimize the engine operation with respect to efficiency or power output
and constitute a major difference between this nonlocal thermoelectrical engine and standard
linear thermoelectrical engines [Benenti2017].

9.3.3 Nonlinear Seebeck coefficient

In this section we present the result of the nonlinear Seebeck coefficient as a function of
δT/TC for different values of the coupling parameter |t|2. In Fig. 9.11 we plot the nonlinear
nonlocal Seebeck coefficient defined as

S = −Vstop
δT

(9.22)
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(a) (b)

Figure 9.10: (a) - Efficiency η normalized with respect the Carnot efficiency ηC = δT/T as
a function of eVN/∆0. (b) - So-called lasso diagrams showing the normalized efficiency η/ηC at
every power output expressed in units of GTCTC . Different colors correspond to different probe’s
temperature T/TC = 0.25 (blue line), T/TC = 0.5 (yellow line), T/TC = 0.75 (red line). Different
style of lines correspond to different values of the thermal gradient (normalized with respect to δTmax
of Eq. (9.21): δT/δTmax = 0.1 (solid line), δT/δTmax = 0.5 (dashed line), δT/δTmax = 1 (dot-dashed
line).

expressed in units of µV/K, where Vstop is the stopping voltage for which JcN (Vstop) =
Pgen(Vstop) = 0 (see white dashed lines of Fig. 9.7). We observe that the nonlinear See-
beck coefficient is quite big, considering that the operating temperature for these devices
is of the order of few kelvin. Moreover, we see that S weakly depends on the temperature
difference as long as the gap remains unaffected. Furthermore, we see that S increases going
toward the tunnelling limit |t|2 → 0. We can conclude that nonlocal thermoelectricity is a
strong effect.

Figure 9.11: Seebeck coefficient in units of µV/K as a function of δT/TC for different values of
the coupling parameter |t|2. The other parameters are the same of Fig. 9.9 (see the heading).
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9.4 Conclusions
We have discussed the nonlocal thermoelectricity generated in a three terminal topological
Josephson engine where one edge of a 2DTI is coupled to a normal metal probe. The nonlocal
thermoelectricity is associated to the helical nature of the edge states and it is triggered by
the application of the Doppler shift εDS(Φ) (flux bias Φ) and/or by the phase difference φ
between the superconductors. We have discussed in detail the case of asymmetric gaps which
generalize previous studies (see Chaps. 7 and 8) of the same device to a more realistic situation
where the right and left leads are not exactly identical. This is also necessary in order to
investigate strong nonlinear conditions which typically occur in experiments. We have found
that nonlocal thermoelectricity is present also in the asymmetric case. The nonlocal Onsager
coefficients satisfy the standard symmetry between Seebeck and Peltier coefficients if the
heat current between the two superconductors is properly defined to take into account the
nonlocality. We have found that, in the asymmetric gap case, the Doppler shift develops a
strong nonlocal thermoelectric effect when the two gaps close. We have discussed how the
gap asymmetry gives rise to a new intermediate regime (for ∆L < |εDS(Φ)| < ∆R) where
Andreev interference determines a weak nonlocal thermoelectrical effect without applying
a phase bias. We have investigated how this Andreev mechanism influences also the local
thermoelectric effect. We have estimated that such a local thermoelectric effect is of the order
of a few µV/K, to be compared with the nonlocal thermoelectric effect determined by the
Doppler shift discussed before, which could reach values of the order of many tenths µV/K.
We can conclude that the thermoelectricity generated in the probe by the Doppler shift can
be used as a clear evidence of the helical nature of the edge modes of the 2DTI. Similarly, we
expect that the Doppler shift will potentially generate a nonlocal thermoelectrical response
also in 3D topological structures [Yuan2018, Zhu2020]. Furthermore, we have also analyzed
the heat current in the probe finding that it can be finite and the system can be viewed as
a flux controlled thermal router depending on the difference between the superconducting
gaps.

Finally, we have discussed the nonlinear performance of the nonlocal thermoelectric ma-
chine. In particular, we have studied the symmetry of the Seebeck coefficient, the power
generated and the efficiency. The latter turns out to be quite low (with a maximum value
η/ηc ≈ 3.5%). Notably, efficiency and power are maximized simultaneously for a wide range
of parameters. We have finally estimated that the nonlocal Seebeck coefficient for large non-
linear temperature differences reaches a few tenths of µV/K, which is an impressive value
given the operating temperature of few kelvin required by the BCS superconductors. We
hope that this research will trigger further experimental investigations for similar setups
both for 2D and 3D topological insulators. We also expect that the stability against the
possible gap asymmetries and the intensity of the effect would be detectable with nowadays
low-temperature technologies.
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This chapter is based on the results published in the paper:
D. Gresta, G. Blasi, F. Taddei, M. Carrega, A. Braggio, and L. Arrachea. Signatures of
Jackiw-Rebbi resonance in the thermal conductance of topological Josephson junctions with
magnetic islands. Phys. Rev. B, 103(7) 075439 (2021)

The edge states defining the 1D helical conducting channels of a 2DTI offer a large variety of
quantum phenomena in combination with magnets [Barash2002, Arrachea2015, Duan2015,
Ghosh2017] and superconductors [Stanescu2010, Ronetti2017, Zhang2019, Michelsen2020,
Ronetti2020, Sedlmayr2021]. A prominent example is the platform for topological supercon-
ductivity proposed by Fu and Kane [Fu2009], which consists in a Josephson junction made of
a Kramers pair of helical edge states in close proximity to a s-wave superconductor and a mag-
net embedded in the junction. For a magnetic moment having a component perpendicular to
the natural quantization axis of the 2DTI, Majorana bound states are formed. The concomi-
tant signatures in the behavior of the Josephson current have been investigated in several
works [Fu2009, Meng2012, Jiang2013, Houzet2013, Barbarino2013, Tkachov2013, Lee2014,
Crepin2014, Hart2014, Marra2016, Bocquillon2017, Blasi2019, Ren2019, Keidel2020].

The key role played by a magnetic island placed inside the 2DTI is to introduce a boundary
with a backscattering process in the Dirac system constituted by the helical edge states. With-
out the superconducting ingredient, this phenomenon leads to interesting effects in the elec-
tron transport [Qi2008, Meng2014, Arrachea2015, Locane2017, Silvestrov2016, Madsen2021]
and in thermoelectric [Roura-Bas2018, Gresta2019, Hajiloo2020] properties. The fact that
the magnetic island may have multiple domains further extends the scenario to interesting
topological structures. The simplest of such situations corresponds to two domains with
opposite orientations of the magnetic moments, which is a realization of the so-called Jackiw-
Rebbi (JR) model - see Chap. 2 - of a 1D Dirac system with a space-dependent soliton mass
[Jackiw-Rebbi1976, Shen2012]. Similarly to the discrete Hamiltonian by Su-Schrieffer-Heeger
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[SSH1980] (SSH), this model is known to host topologically protected modes within the spec-
tral gap. The high thermoelectric response generated as a consequence of these modes was
recently pointed out in Ref. [Gresta2019]. JR physics on junctions with embedded supercon-
ductors was recently addressed also in Refs. [Malciu2019, Ziani2020], while the emergence of
other states with fractional charges in helical edge states with many-body interactions has
been also studied[Maciejko2009, Zhang2014, Ziani2015].

Thermal and thermoelectric effects in 2DTI in contact with superconductors have recently
attracted a significant interest [Sothmann2016, Sothmann2017, Shapiro2017, Zhang2017,
Bours2018, Keidel2020, Blasi2020, Blasi2020a, Hwang2020, Scharf2020]. It is remarkable
that topological properties, which typically have associated spectral features close to zero
energy may also have an impact on the thermal response. In this sense, interference patterns
in topological Josephson junctions were studied in Refs. [Sothmann2016, Blasi2020a].

The aim of this chapter is to analyze the thermal conductance of a topological Josephson
junction with an embedded magnetic island. A sketch of the device is shown in Fig. 10.1,
which consists of a Josephson junction constructed by proximity effect to a 2DTI with a
magnetic island contacting the two states of the Kramers pair in one of the edges. The
junction is biased with a small temperature difference, δT and with a phase difference, φ,
between the two superconducting pairing potentials. Here, we will focus on a magnetic
island with one or two magnetic domains. Our goal is to identify features in the thermal
transport that could indicate the topological nature of the junction. We show that the
thermal conductance is very sensitive to the characteristics of the junction, in particular,
to the domain structure of the magnetic island. Interestingly, systems hosting JR resonant
states lead to a peculiar behavior of the thermal conductance, such that it decreases for
increasing temperature just above the superconducting critical temperature.

The chapter is organized as follows. In Section 10.1 we present the model for the Kramers
pair of 2DTI edge states in contact to s-wave superconductors with a phase bias and magnetic
domains with different orientations of the magnetic moments. In Section 10.2 we discuss the
scattering matrix approach used to analyze the topological junction. In Section 10.3 we
present our main results concerning the Andreev spectrum and the thermal conductance
obtained in different configurations. Section 10.4 is devoted to summary and conclusions.

10.1 Model

The system under investigation is depicted in Fig. 10.1. It consists of a 2DTI strip attached
to two superconducting electrodes with a phase difference φ are placed on top and kept at
slightly different temperatures, T, T + δT (see light blue and red blocks in the sketch). Due
to the proximity effect, the two superconductors induce a pairing potential in the portion of
the 2DTI beneath it. In addition, a magnetic island with one or two domains (yellow blocks)
with the magnetization directions forming an angle θ, are put in contact with one of the
pairs of edge states of the strip. The lengths of the two magnetic domains along the edge
are L1 and L2, respectively, and they are placed at distance lS from each superconducting
electrode. The width of the TI strip is assumed to be large enough such that the helical states
(represented by solid lines) on the two edges are uncoupled one another and therefore we can
restrict our analysis to a single Kramers pair. The Hamiltonian describing the system taking
into account the proximity-induced pairing potential and the coupling to the magnetic island,



10.1 Model 117

expressed in the basis of Nambu spinors Ψ(x) =
(
ψ↑(x), ψ↓(x), ψ†↓(x),−ψ†↑(x)

)T
, reads

H =
∫ +∞

−∞
dxΨ†(x) [H0(x) +HM (x) +HS(x)] Ψ(x). (10.1)

The term
H0(x) = (−i~vF∂x)σzτz − µσ0τz, (10.2)

describes the free Kramers pair, with z as the natural quantization axis of the topological
insulator. The terms

HM (x) = J ~m(x) ·~σ, HS = ~∆(x) ·~τ , (10.3)

describe, respectively, the effect of the coupling to the magnetic island and the BCS super-
conducting potential. The matrices σ0, ~σ = (σx, σy, σz) and τ0, ~τ = (τx, τy, τz) operate, on
the spin and particle-hole degrees of freedom, respectively. The pairing potential induced by
superconducting proximity is described as follows,

~∆(x) =
[
~∆(φ/2)Θ(−x) + ~∆(−φ/2)Θ(x− xS)

]
, (10.4)

with ~∆(±φ/2) = ∆0 (cosφ/2,± sinφ/2, 0) where φ is the phase bias and xS is the distance be-
tween the two superconductors, which are considered to be semi-infinite. The magnetization
of the island is accounted for by

~m(x) = ~m1 [Θ(x− lS)−Θ(x− x1)]
+ ~m2 [Θ(x− x1)−Θ(x− x2)] , (10.5)

where ~mj = mj (cos θj , sin θj , 0), for j = 1, 2 and x1 = L1 + lS and x2 = L2 + x1. The total
length of the magnetic island is Lm = L1 + L2. The case with θ1 = θ2 and m1 = m2 ≡ m
effectively reduces to a single magnetic domain of length Lm. For sake of simplicity, we assume
a fully anisotropic magnetic moment with a vanishing ẑ-component of the magnetization
(direction parallel to the natural quantization axis of the topological insulator). Notice that
the component of the magnetization perpendicular to ẑ is the only mechanism introducing
a backscattering processes in the present problem, and it is precisely this ingredient the one
generating non-trivial effects in the two-terminal transport properties. For simplicity we
discuss results corresponding to the configuration where the magnetic island occupies all the
space of the junction, in which case lS = 0 and xS = Lm. However, for lS 6= 0, we find
qualitatively similar features.

In the absence of superconducting contacts (∆ = 0), the component of the magnetization
perpendicular to the natural spin quantization axis of the helical edge states is analogous
to a mass term in the Dirac system and opens a gap in the spectrum. There are several
consequences when this mass is not uniform in space. The magnetic island indeed plays the
role of a barrier for the propagating helical states and it must be long enough in order to
completely suppress the tunneling [Gresta2019]. Hence, in order to have a well defined gap in
the spectrum, for which the tunneling probability is exponentially suppressed, the magnetic
island must be larger than the characteristic length

ξM = ~vF
Jm

, (10.6)
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Figure 10.1: Top and lateral view of the device. Two semi infinite superconductors at slightly
different temperatures, T and T + δT and with a phase bias φ, proximized to a 2DTI in the quantum
spin Hall regime. A magnetic island, of total length Lm composed with two magnetic domains of
length L1 and L2 respectively, is placed at distance lS from both superconductors, and contacted to
the Kramers pair of helical states localized at one of the edges. The magnetic moments of the two
domains are oriented with a relative tilt θ.

being Jm the magnetic energy gap in the limit of uniform magnetization along infinite-length
helical modes. In summary, the inequality Lm > ξM must be satisfied in order to show a clear
suppression of the transmission probability due to the opening of the magnetic gap. Another
interesting effect introduced by a non-uniform magnetization takes place in the case of two
magnetic domains with exactly opposite orientations, i.e. θ = π, which realizes the JR model
[Jackiw-Rebbi1976], where two consecutive masses with different sign define a soliton domain
wall in a 1D Dirac system. This model, along with its SSH discrete version [SSH1980] hosts a
topological zero mode at the interface. As analyzed in Ref. [Gresta2019], this mode survives
as a resonant state in the magnetic gap, shifted away from zero energy for a wide range of
relative tilting angle θ in the orientations of the magnetic moments, and the width of this
resonance scales with the inverse of the length of the magnetic domains. The reason for its
stability is due to the fact that the system realizes a Goldstone-Wilczek soliton, as discussed
in Refs. [Goldstone1981, Qi2008, Fleckenstein2016].

In combination with superconductivity, for a finite magnetization embedded in the junc-
tion between the two superconductors, a topological state develops, with Majorana zero
modes localized in the boundaries between the superconductors and the magnetic island
[Fu2009, Jiang2013, Crepin2014]. Notably, a magneto-Josephson duality exists [Jiang2013],
such that the role of the magnetization can be interchanged with the superconducting poten-
tial. This can be understood by noticing that in the Hamiltonian for the device, Eq. (10.3),
the terms with the Pauli matrices acting on the spin degrees of freedom, ~σ, have the same
structure as those with Pauli matrices ~τ , which act on the particle-hole degrees of freedom.
Due to the s-wave nature of the superconducting order parameter, the relevant physical
parameter characterizing the orientation of the magnetic moments is the relative tilt θ. Fur-
thermore, this angle is related through the above mentioned duality to the phase difference
φ between the two superconductors.

Importantly, in the presence of the superconducting contacts, the other characteristic
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length in the problem is the superconducting coherence length ξS = ~vF /∆. As we will see,
most of the interesting effects in the behavior of the thermal conductance arise from the
interplay between the magnetic and superconducting spectral gaps. The conditions under
which they are most remarkable correspond to comparable values for the two characteristic
lengths ξM and ξS .

10.2 Scattering matrix approach
We rely on the scattering matrix approach to evaluate the subgap Andreev spectrum (see
Sec. 6.4), as well as the transmission function ruling the behavior of the thermal conductance
(see Sec. 5.3). In the absence of inelastic processes, dc transport is determined by the quantum
mechanical matrix S, which yields scattering properties at energy ε, of a phase-coherent, non-
interacting system described by the Hamiltonian H of Eq. (10.1). The scattering problem in
terms of the S-matrix can be formulated as

Ψα
(i,σ)

∣∣∣
out

= Sα,β(i,σ)(j,σ′) Ψβ
(j,σ′)

∣∣∣
in
, (10.7)

where summation is implicit on repeated indices. This equation relates incoming/outgoing
states (j, σ′)/(i, σ) with {σ, σ′} = {↑, ↓} labeling the spin-channel at the respective super-
conducting lead i, j = L,R. In Eq.(10.7), α, β = ± label the QPs (+) and QHs (−) in
the superconductors. Following the standard procedure presented in Ref. [Datta1997], we
computed the full scattering matrix of the system

S = SL ◦ SM ◦ SR. (10.8)

The matrices SL,R describe the left and right interfaces of the 2DTI with the superconductors.
These matrices are combined with the matrix SM describing the 2DTI edges in contact with
the magnetic domain. In Appendix C we present in more detail the calculation of the different
matrices SL,R (Sec. C.1) and SM (Sec. C.2). By taking the trace over spin channels of the
scattering matrix of Eq. (10.8) we can compute the probability scattering coefficients (see
Sec. 4.3) [Lambert1998]

Pα,βi,j =
∑
σ,σ′

∣∣∣Sα,β(i,σ),(j,σ′)

∣∣∣2 , (10.9)

which represents the reflection (i = j) or transmission (i 6= j) probabilities of a quasiparticle
of type β in the lead j to a quasiparticle of type α in lead i.

10.2.1 Andreev bound states and thermal conductance

As discussed in Sec. 6.4, under suitable conditions [Beenakker1991, Martin-Rodero2011],
Andreev bound states develop with energies below the superconducting gap ∆. These states
are crucial in the behavior of the Josephson current (see Sec. 6.3). To calculate the Andreev
spectrum for |ε| < ∆, we proceed as in Refs. [Crepin2014, Beenakker1991]. Recall that for
the non-superconducting region we have Ψout = SMΨin, with Ψin,out defined as in Eq. (10.7)
(see also Eq. (C.11)). For the subgap regime only perfect Andreev reflection is allowed, which
leads to Ψin = SAΨout, being

SA = exp
[
2i ε∆

lS
ξS
− iarccos( ε∆)

]
×(

0 Diag[eiφ/2, e−iφ/2]
Diag[e−iφ/2, eiφ/2] 0

)
. (10.10)
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By combining these two expressions we obtain the secular equation [Beenakker1991]

Det [1− SASM ] = 0, (10.11)

which we solve numerically to investigate the Andreev bound state spectrum.
Given the scattering matrix, we can also calculate the heat current generated as a response

to the temperature bias δT . This quantity provides a complementary information to the
Andreev spectrum, since it depends only on the quasiparticle spectrum above the gap. We
focus on small δT , such that linear response applies (see Sec. 5.3). Indeed the corresponding
heat current in this regime is proportional to δT and the thermal conductance is the natural
transport coefficient. We find it convenient to characterize the response to the thermal bias
in terms of the relative thermal conductance

κth(T ) ≡ LhhLL
GTT

, (10.12)

where LhhLL is the local Onsager coefficient defined in Eq. (5.14d), and GT = π2k2
BT/3h

is the quantum of thermal conductance. Explicitly it reads [Butcher1990, Benenti2017,
Lambert1998]

κth(T ) = − 1
GT

∫ ∞
∆

ε2
∂f(ε)
∂ε
T (ε)dε; (10.13)

where f(ε) =
[
exp

(
ε

kBT

)
− 1

]−1
is the Fermi-Dirac distribution. Note that, according to

this definition, the relative thermal conductance is dimensionless and express clearly the
ratio between the actual conductance and the maximum achievable thermal conductance for
a quantum channel which is GT . The transmission function, T (ε), can be written in terms
of the probability scattering coefficients as

T (ε) =
∑

α,β=±
Pα,βR,L, (10.14)

with Pα,βR,L given by Eq. (10.9). We recall that in the next section, for sake of simplicity, we
will focus on lS = 0. Similar results are obtained when lS 6= 0.

10.3 Results

We now turn to discuss results for the Andreev spectrum obtained by solving Eq. (10.11)
for two configurations: the single-domain magnetic island (Sec. 10.3.1) and the two-domain
island (Sec. 10.3.2) in the Josephson junction. The properties of the Andreev states strongly
affect the behavior of the dc Josephson current. Although the quasiparticle states above
the gap also contribute to the Josephson current, the signatures of the topological phase,
like the jumps in the current-phase relation in the dc case and the periodicity in the ac
case, fully depend on the behavior of the Andreev states [Fu2009, Houzet2013, Jiang2013,
Marra2016, Bocquillon2017]. Instead, the latter do not play any direct role in the response
to the difference of temperature δT between the two superconductors. The latter manifests
itself in the thermal conductance, which we analyze for both configurations in Sec. 10.3.3
and Sec. 10.3.4. As already mentioned, we focus on configurations with lS = 0, since this
parameter does not affect the main results we aim to discuss. In addition, we find sometimes
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convenient to characterize the strength of the magnetic coupling with respect the proximized
superconducting gap ∆0 through the dimensionless parameter

Γ = Jm

∆0
= ξS
ξM

. (10.15)

Importantly, as highlighted in the last equality, this parameter also defines the ratio between
the magnetic and superconducting lengths.

10.3.1 Andreev spectrum of a junction with a single-domain magnetic is-
land

The Andreev bound states for the configuration corresponding to a magnetic island with a sin-
gle magnetic domain have been already analyzed in Refs. [Fu2009, Houzet2013, Crepin2014].
Here, we review those results in order to have them as a reference.

Figure 10.2 presents the Andreev spectra calculated for several lengths Lm of the magnetic
island. The left panel of Fig. 10.2 shows the spectrum for Γ = 0, which corresponds to
a junction hosting bare helical edge states between the superconducting contacts. We can
identify two degenerate states corresponding to a Kramers pair at the time-reversal symmetric
case φ = 0,mod(2π). The degeneracy is broken as φ advances with one of the states evolving
to a higher energy and hybridizing with the quasiparticle continuum for |ε| > ∆. A crossing
point at zero energy takes place at φ = π. For Γ 6= 0 time reversal symmetry is broken
even for φ = 0, and the degeneracy is consequently lifted. According to calculations [Fu2009,
Crepin2014], Majorana modes are stabilized at the boundaries of the magnetic domain in
the present case. Hence, the Andreev states with lowest absolute value of the energy result
from the hybridization of these Majorana modes. These two states have different parity and
cross at φ = π. Since they are completely decoupled from the quasiparticle continuum, the
spectrum is effectively 4π-periodic and so does the ac Josephson current if parity is conserved,
in contrast to the Γ = 0 case, which is 2π-periodic due to the hybridization of the subgap
states with the continuum. An interesting feature to highlight is the fact that the Andreev
spectra are qualitatively different in the case Γ < 1 (panel (b) of Fig 10.2) and Γ ≥ 1 (panel
(c) of Fig. 10.2). For Γ < 1, several Andreev bound states may exist in the gap for large
enough junctions, in addition to the ones with lowest absolute energy. Instead, for Γ ≥ 1
the spectrum has only two Andreev states, which result from the hybridization of the two
Majorana zero modes.

10.3.2 Andreev spectrum of a junction with a magnetic island with two
domains

The spectrum for two domains of lengths L1,2 = Lm/2, equal magnetizations Γ1,2 = Γ =
Jm/∆ and relative tilt θ = π in the orientation of the magnetization of the domains is
presented in the left panel of Fig 10.3.

For φ = 0, this system is invariant under spatial inversion symmetry with respect to the
center of the junction, i. e. x = xS/2 and the simultaneous inversion of the magnetic moments
and spin. For this reason, in this configuration, the Andreev bound states are degenerate for
φ = 0,mod(2π) (see the level crossing in the left panel of Fig. 10.3). In general this degeneracy
is broken and a gap appears in the spectrum. A representative example is illustrated in the
right panel of Fig 10.3. This panel shows a zoom at φ = 0,mod(2π) for configurations which
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Figure 10.2: Andreev spectrum of the junction with a single magnetic domain of different lengths.
Panel (a), (b) and (c) correspond to Γ = 0, 0.5, 1, respectively. Grey bands indicate the continuum
spectrum. Different colors correspond to different lengths Lm/ξS = 0.25, 1, 2.5 of the magnetic island.

slightly depart from the symmetric case with Lm/ξS = 1 (red curve in both panels of Fig.
10.3). Namely, for the light blue curve we set L2 = 0.45ξS , for the yellow curve θ = 0.99π
and for the violet we set Γ2 = 0.9 while all the other parameters are equal to the symmetric
case. The plot in red lines is a reference equal to the red one in the left panel. For all the
configurations examined, the crossing at φ = π is topologically protected, as in the case of a
single magnetic domain. The behavior as a function of the coupling Γ is also similar to the
case of a single magnetic domain analyzed in Fig. 10.2. Namely, for Γ > 1 the spectrum is
composed of only two Andreev states crossing at φ = π, which can be identified as hybridized
Majorana states.

10.3.3 Thermal conductance of a junction with a single-domain magnetic
island

The relative thermal conductance, defined in Eq. (10.13) is completely determined by the
behavior of the transmission function given in Eq. (10.14). The analytical expression of
the transmission function for a system with a magnet and without superconductors has
been presented in Refs. [Bustos-Marun2013, Sternativo2014, Gresta2019]. Here, instead, we
discuss the numerical results of the transmission function introduced in Eq. (10.14) for the
hybrid system with the superconducting contacts. In this configuration, in addition to the
magnetic gap, the transmission function depends on the effect of the superconducting gap
which has a strong temperature dependence. We approximated the usual self-consistence
dependence of the BCS theory for the superconducting gap as a function of the temperature,
with ∆(T ) = ∆0 tanh

(
1.74

√
TC
T − 1

)
being ∆0 the corresponding value at T = 0. Since in
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Figure 10.3: Andreev spectrum of the junction with two magnetic domains. Left panel correspond
to Γ = 1 and θ = π and each domain of length L1 = L2 = Lm/2. Different colors correspond to
different lengths, Lm/ξS = 0.25, 1, 2.5 of the full magnetic island. Grey band indicates the continuum
spectrum. Black box indicates zoom on spectrum around φ = 0,mod(2π) for two domains. Right
panel: Andreev spectra for two domains, in the range covered by the box of the left panel. Different
lines correspond to a single parameter variation: L2 = 0.45ξS (light blue), θ = 0.99π (yellow) and
Γ2 = 0.9 (violet). Red line is the same in both panels.

the present problem ∆0 is the gap induced by proximity effect on the 2DTI, it is expected to
be smaller than the corresponding value in the bulk of the superconducting contact. On the
other hand, the magnetic gap does not change in magnitude within the temperature range
we will consider hereafter. Therefore, the transmission function depends on the temperature
T , as well as on the amplitude of the magnetic coupling, governed by the dimensionless
parameter, Γ, and the length of the magnet Lm. This is illustrated in Fig. 10.4, where
results for the transmission function are presented for the dimensionless magnetic coupling
Γ = 2 and several lengths of the magnetic island at temperatures T < TC (solid lines) and
T > TC (dashed lines). Notice that for T > TC the superconducting gap is closed. Hence, in
this case, the transmission function coincides with the one for a magnetic island contacting
the helical edge states without superconductivity analyzed in Ref. [Gresta2019].

Focusing on the plots of Fig. 10.4 we see that the quasiparticle transmission is strongly
suppressed for the case Lm = 2ξS (corresponding to Lm = 4ξM ) up to energies ε ' 2∆0, for
both temperatures. This is a clear manifestation of the fact that a gap opens in the spectrum
of the edge states when the length of the island is Lm � ξM , while for T > TC the gap is not
fully developed for islands of length Lm ' ξM or shorter. When the magnetic gap is not fully
formed the superconductivity can suppress the transmission. Indeed, within the low tem-
perature regime shown in solid lines, superconductivity dominates, and the superconducting
gap erases all the spectral features with energies ε < ∆(T ). This implies that for the short
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Figure 10.4: Transmission function for a single magnetic domain of length Lm embedded in the
Josephson junction with Γ = 2 (ξM = ξS/2) and φ = 0. Solid lines correspond to T = 0.44TC while
dashed lines correspond to T = 1.1TC . Vertical line indicates the magnetic gap. Other details are in
the figure.

magnets considered in the figure, (with length Lm < ξM ) the spectrum is still gapped, while
there is a finite spectral weight at higher temperatures when the superconductivity is sup-
pressed. On the other hand at energies ε > ∆(T ), the transmission function has a structure
of peaks and minima that depends on Lm. For low temperatures, the features above ∆(T )
also depend on the superconducting phase difference φ (that was set to zero in the Fig. 10.4).
In conclusion, for the long islands, like the one shown in the figure with Lm = 2ξS = 4ξM ,
we can clearly see the dominance of the magnetic gap over the superconducting one. In fact,
there is a gap of Γ∆0 (see vertical dashed line) in the transmission function in both regimes of
temperatures, in strong contrast with the cases of the shorter magnets, with Lm = ξM , 2ξM .
This will be reflected in the behavior of the thermal conductance, to be discussed shortly.

After the analysis of the transmission function we discuss the relative thermal conduc-
tance, κth. Indeed, the competition between the magnetic and the superconducting gaps is
particularly evident in the behavior of this response function as a function of temperature.
This is shown in Fig. 10.5. The upper panel corresponds to Γ = 1 (where ξM = ξS) and the
lower one to Γ = 2 (where ξM = ξS/2). In all the plots we can clearly identify the exponen-
tially small value of the thermal conductance at low temperatures as well as the high tempera-
ture saturation to the quantum bound κth = 1 [Bekenstein1981, Pendry1983, Bekenstein1984]
for Lm → 0. The limit where Lm = 0 corresponds to the junction without magnetic island,
in which case, the transport channel is fully open only when the superconducting gap closes,
for T > TC .

At finite Lm, the magnetic gap remains open even when the superconducting gap is
closed, and the thermal conductance is smaller than the quantum bound. This feature is
enhanced with increasing Γ (compare both panels of the figure). The changes in κth as the
superconducting gap closes are more visible in the behavior of its derivative κ′th = dκth/dT ,
which is shown in each panel with dashed lines. At T = TC the derivative has a discontinuity,
as expected when the phase transition happens between a superconducting regime and a non-
superconducting one. For T > TC the derivative of the thermal conductance monotonically
increases with both Γ and Lm, while the opposite behavior takes place for T < TC .
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Figure 10.5: Relative thermal conductance κth(T ) (left axis, solid line) and its temperature
derivative dκth

dT = κ′th(right axis, dashed line) for a magnet with a single magnetic domain embedded
in the Josephson junction with φ = 0. Top panel corresponds to Γ = 1 and bottom panel corresponds
to Γ = 2. Black dashed vertical line indicates T = TC . Inset: zoom of κ′ near T = TC . Other details
are on the figure.

When T > TC there is no superconductivity, hence it cannot be defined a fixed phase
bias φ in the setup. On the other hand, when T < TC there exists a phase difference φ in
the Josephson junction which introduces quantum interference in the behavior of the thermal
conductance. We better analyze the features related to this effect in Fig. 10.6, which shows
the behavior of κth as function of φ and Lm for a fixed temperature T < TC and different
values of Γ in the different panels. The limit Γ = 0, corresponding to the junction without
magnetic island, has been previously analyzed in Refs. [Sothmann2017, Blasi2020a] and is
shown in panel (a). The main feature to highlight is the oscillatory response which is even
and 2π− periodic in φ and oscillatory but decreasing on Lm/ξS , as shown in panel (b) for
Γ = 0.5. Further details on the oscillatory behavior as a function of the length are presented
in the inset of the panel (c), where results for κth as function of Lm are shown only for
φ = 0, π and Γ = 0, 0.5, 1 up to length Lm = 20ξS . We see that, for finite Γ < 1, the
pattern of damped oscillations is very similar to the one without magnet (corresponding to
Γ = 0). Notice, in particular that, besides a shift and a smaller amplitude, the period of the
oscillations is basically the same in the cases with Γ = 0, 0.5. Albeit, as the strength of the
magnetic coupling is increased and overcomes Γ = 1, this response is much less sensitive to
φ and decreases very fast with the length. This is consistent with a behavior dominated by
the magnetic gap, even for temperatures below TC , where the superconducting gap is finite.
In the inset of panel (c) it can be appreciated how the thermal conductance tends to some
limit when Lm � ξS that depends on Γ but does not depend on φ. This saturation value
is achieved as a limit of the damped oscillations for Γ < 1, while it is approached fast and
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Figure 10.6: Relative thermal conductance of the junction with a single magnetic domain with
temperature T = 0.44TC . Different panels correspond to different ratios Γ = Jm/∆0. Panel (a)
corresponds to Γ = 0, panel (b) to Γ = 0.5 and panel (c) to Γ = 1. Inset in panel (c) is κth as function
of Lm/ξS , blue line corresponds to Γ = 0, red line corresponds to Γ = 0.5 and green line corresponds
to Γ = 1. Solid lines are for φ = 0 and dashed lines are for φ = π.

without oscillations for Γ ≥ 1.

10.3.4 Thermal conductance for a magnetic island with two magnetic do-
mains

The transmission function for the magnet with two domains is shown in Fig. 10.7 for T < TC
(solid lines) and T > TC (dashed lines), for θ = π and Γ = 2 with L1,2 = Lm/2. In the
absence of superconducting contacts, or equivalently, for T > TC , the main feature is the
presence of resonant peaks inside the gap, as it was discussed in Ref [Gresta2019]. In this
case we can clearly distinguish the resonance that develops at ε = 0. This peak has a width
that decreases with the length of the island Lm and for these parameters it corresponds
to a JR zero mode. For other relative orientations θ 6= π the resonance is shifted from
ε = 0, albeit remains being a robust feature within the gap for a wide range of parameters
[Goldstone1981, Qi2008, Fleckenstein2016, Gresta2019]. The value of the expected magnetic
gap, Γ∆0, corresponding to the island with uniform magnetization is indicated as a reference
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Figure 10.7: Transmission function for two magnetic domains of length L1 = L2 = Lm/2 with
opposite orientation, θ = π, and equal magnetization m, embedded in the Josephson junction for
Γ = 2 and φ = 0. Solid lines correspond to T = 0.44TC while dashed lines correspond to T = 1.1TC .
Vertical dashed line indicates the magnetic gap. Other details are on the figure.

2.50.8

S= 0 S= 0.25 S= 0.5 S= 0.75 S= 1

0
0

0
0

0.8 2.5

3.50 T T C
1

-0.5

1.5
th́

10.9 T T C

10.9 T T C

0

th́

2

th th
‘

th
‘

th

Figure 10.8: Relative Thermal conductance κth(T ) (left axis, solid lines) and its derivative κ′th
(right axis, dashed line) for two magnetic domains with opposite orientations, equal length Lm/2 and
equal magnetizations m1 = m2 = m for φ = 0. Top panel corresponds to Γ = 1 and bottom panel
corresponds to Γ = 2. Black dashed horizontal line on both panels indicates κ′th = 0 while vertical
line indicates T = TC . Inset shows a zoom of κ′ near T = TC . Other details are on the figure.
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with a vertical line in the figure.
In the plots corresponding to T < TC we can clearly see the effect of the superconducting

gap, i. e. the transmission function is vanishing for ε < ∆(T ). Anyway the JR resonance
in the gap leads to a remarkable behavior of the thermal conductance as a function of the
temperature, which is presented in Fig. 10.8 for a configuration with two domains with equal
length, L1,2 = Lm/2, equal magnetization and opposite orientation, i. e. θ = π. As in the
case of the island with a single domain, when Lm → 0, κth tends to saturate at the quantum
bound for T > TC and is exponentially small at low temperatures. However, we now see
that the derivative κ′th is negative right above TC . We can trace back this peculiar feature to
the development of the resonant peak in the gap as the temperature overcomes the critical
temperature. From the mathematical point of view, this can be understood by calculating
the derivative with respect to the temperature on Eq. (10.13), which leads to

κ′th = 2κth
T
− 1
GTT

∫ ∞
0

ε3
∂f

∂ε

∂T
∂ε
dε, T ≥ TC . (10.16)

The first term on RHS is due to the contribution of GT – recall that this quantity is lin-
ear with T – and is always positive. Instead, the sign of the second term depends on the
sign of the derivative of the transmission function. Therefore, since ∂f/∂ε < 0, if ∂T /∂ε
is negative and the contribution of the second term is large enough, the derivative of the
relative thermal conductance may be negative. This is precisely the case of the configuration
with two magnetic domains due to the resonance where, within the window defined by the
function −∂f/∂ε, the transmission function T (ε) has a negative slope, which leads to a large
contribution to the integral when multiplied by ε3. This contribution becomes small as the
length of the island increases and the resonance becomes narrow enough. In conclusion, the
result of having κ′th negative just above TC can be regarded as an indication of the presence
of a JR peak in a Josephson junction.

This effect is analyzed in more detail in Fig. 10.9, where κ′th is shown as function of the
relative orientation of the islands and the length for fixed Γ in each panel at a temperature
just above TC . We can see that there is a wide range of lengths and orientations close to
θ = π where κ′th is negative. These cases coincide with configurations leading to resonant
peaks of the transmission function inside the magnetic gap. Importantly, the width of the
resonant peak scales with the inverse of the length of the magnetic island (see plots in dashed
lines in Fig. 10.7). Hence, the impact of this feature in generating a negative derivative of the
relative thermal conductance just above TC becomes negligible as the length of the magnetic
island increases. This shows that the JR peak can be identified by the negativity of κ′th only
if Lm ≤ ξS , i. e. for sufficiently short magnetic islands.

As in the case of a single-domain configuration, we expect some dependence of the thermal
conductance on φ in the low-temperature regime with T < TC . This is analyzed in Fig. 10.10
for the case of two magnetic domains with opposite orientations of the magnetic moments
(θ = π). The interference pattern is still even and 2π− periodic in φ but different from the
one observed in Fig. 10.6 for a single domain. However, like in that case, as the length of
the magnetic island increases and becomes significantly larger than ξM , the magnetic gaps
becomes dominant, and the features introduced by φ become suppressed. This is highlighted
in the inset shown in the bottom panel of the figure and we can pose similar observations
as in the case of the single magnetic domain. Namely, for Γ ≥ 1, where the magnetic
gap dominates, the conductance is practically non-sensitive to the superconducting phase
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Figure 10.9: Derivative of the relative thermal conductance, κ′th at T = 1.01TC as function of the
relative tilt θ in the orientation of the magnetic moments with Lm/2 = L1 = L2 and φ = 0. Panels
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each panel indicates the boundary for the region with κ′th < 0.

φ and it decreases rapidly with Lm. Instead, for Γ < 1, thermal conductance depends on
φ and displays oscillations as a function of Lm. The pattern of such oscillations is very
different and much less regular than the one observed in the junction without magnetic
island (corresponding to Γ = 0). Hence, in the regime of Γ < 1, the interference pattern of
the thermal conductance provides clear signatures of the domain structure of the magnetic
island. Instead, for Γ ≥ 1, the rapid suppression of the thermal conductance is an indication
of the effect of the magnetic island, but no information on the domain structure can be
extracted from that behavior.

Finally in Fig. 10.11, we analyze the combined effect of θ and φ on the behavior of
the thermal conductance for different lengths of the magnetic island, a magnetic coupling
corresponding to ξM = ξS where we expect the maximal interplay between superconductivity
and magnetic scales, and setting T < TC . The figure highlights the fact that, not only the
superconducting phase bias φ generates interference patterns but also the tilting angle θ.
Furthermore, we notice that the specific features as function of φ are similar to those as
function of θ. This is not surprising in the view of the duality relation between these two
parameters [Jiang2013]. Notice that such duality implies that similar physical properties
should be observed if the magnetic islands are interchanged with the superconductors, with
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Figure 10.10: Relative thermal conductance of the junction with two magnetic domain with
opposite magnetic moments and L1 = L2 = Lm/2 at temperature T = 0.44TC . Upper and lower
panels correspond to Γ = Jm/∆0 = 0.5, 1 (ξM = 2ξS , ξS). The inset in the lower panel shows κth as
function of Lm/ξS . Red line is for Γ = 0.5 and green line is Γ = 1 for φ = 0, (π) for solid (dashed)
lines.

θ playing the role of φ and viceversa, due the similar structure of the massive terms, as is
explicit in Eq. (10.3). In the Josephson-junction configuration studied here, we can observe
signatures of the aforementioned duality, in a context where the superconductors have infinite
length, while the magnetic islands are finite. In fact, we see that panel (a), which corresponds
to a purely superconducting junction has a pattern of straight vertical features, reflecting the
sensitivity of the thermal conductance only with the phase bias φ. In the opposite limit of
a long enough magnetic island shown in panel (d), the magnetic effect becomes dominant
and the pattern tends to follow horizontal straight lines, indicating a sensitivity on the tilt
θ but loosing the dependence on φ. Configurations between these two cases can be observed
in panels (b) and (c). These results show that the interplay of the tilting angle and phase
difference may be an interesting phenomenology in the studied system.
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Figure 10.11: Relative thermal conductance κth(T = 0.44TC) as function of the tilting angle in
the orientation of the magnetic domains θ and the phase difference of the superconducting potentials
φ for Γ = 1 (ξM = ξS) and L1 = L2 = Lm/2. Panel (a) corresponds to Lm/ξS = 0, panel (b) to
Lm/ξS = 0.5, panel (c) to Lm/ξS = 1 and panel (d) to Lm/ξS = 2.

10.4 Conclusions

In this chapter we have analyzed the Andreev spectrum and the thermal conductance of a
one edge Josephson junction of a 2D topological insulator hosting a magnetic island with
one and two magnetic domains. We have shown that the Andreev spectrum, which defines
the behavior of the Josephson current, is qualitative similar for these two configurations of
islands. Instead, the behavior of the thermal conductance shows several features as a function
of φ and the temperature T that characterize the nature of the junction. We have analyzed in
detail all these properties. Most of them can be understood as a consequence of a competition
between the temperature-dependent superconducting gap ∆(T ) below the superconducting
critical temperature TC and the magnetic gap, which typically remains constant within this
temperature range.

A remarkable result is the fact that for configurations with two magnetic domains with
different orientations, which host JR resonant modes, the thermal conductance decreases
with the temperature, just above the superconducting critical temperature. This is a peculiar
behavior that could be useful to identify the existence of these intriguing modes. So far, no
experimental signatures of JR resonances have been reported and this signature in the thermal
conductance can be useful to identify them. Notice that the Josephson current is not sensitive
to the existence of this resonant state. The Josephson current is defined by the derivative
of all the negative energies of the spectrum of the superconducting junction with respect
to the phase bias, including the quasiparticle continuum and the subgap Andreev states.
We have shown that the spectra for systems where the magnets have different orientations
are similar. Furthermore, they are also similar to those without any magnet. These results
rule out the Josephson current as an appropriate witness of the existence of a JR mode.
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More importantly, the peak in the transmission probability associated to the JR resonance
develops when the superconducting gap closes, in which case there is no Josephson effect at
all. Instead, the thermal conductance, being a non-equilibrium quantity, depends not only
on the spectrum but also on the transmission properties of the system, irrespectively of the
fact that the system is superconducting or not. The development of the JR resonance above
TC generates a large transmission probability at low energies, which significantly affects the
behavior of the thermal conductance.

In the low-temperature regime, for T < TC , the thermal conductance in the two-domain
configuration shows interference patterns as a function of both the phase bias of the super-
conductors and the angle between the magnetic moments. This feature is particularly clear
for islands where the magnetic and superconducting lengths are similar, ξM ∼ ξS .

According to estimates presented in Ref. [Gresta2019], reasonable configurations of the
magnetic island, compatible with the present state of the art experiments, should have mag-
netic lengths below ξM ∼ 10 − 20µm, which is of the same order of magnitude of the su-
perconducting coherence length ξS and energy gaps of Jm ∼ 1.2 − 2.4K. These correspond
to a regime with Γ ∼ 1, 2, similar to the one analyzed in the present chapter, where the
different features of κth as a function of φ below TC , as well as the corresponding behavior
as a function of temperature close to TC , clearly distinguish the different type junctions.
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Manipulation of Cooper pair entanglement
in hybrid topological Josephson junctions

This chapter is based on the results published in the paper:
G. Blasi, F. Taddei, V. Giovannetti, and A. Braggio. Manipulation of Cooper pair entangle-
ment in hybrid topological Josephson junctions. Phys. Rev. B, 99(6) 064514 (2019)

Quantum mechanics may revolutionize the way we encode, transmit and elaborate the in-
formation. A crucial element is the capability to generate and manipulate entangled states
[Einstein1935, Bell1966, Clauser1969]. First successful steps has been performed on pho-
tons [Aspect1981, Ekert1991, Tittel1998, Gisin2002]. To deal with quantum technology
and the development of a quantum computer, though, one needs to bring those capabili-
ties in the solid state platform to afford the embeddability and scalability issues [Loss1998,
Burkard2000, Recher2001, Bena2002, Kim2004, DiLorenzo2005, Hussein2016, Hussein2017].
In Refs. [Sato2010, Chen2012, Virtanen2012, Choi2014, Veldhorst2014, Sato2014, Crepin2014,
Zhang2015, Strom2015, Wang2015, Hou2016, Islam2017], 2DTIs has been put forward for the
production and detection of spin-entangled singlet Cooper pairs originating in s-wave super-
conductors. The reason lies in the property the edge states of 2DTIs which are topologically
protected ensuring robustness against perturbations with very long (& 1µm) decoherence
lengths [Chen2012, Konig2007, Roth2009, Wiedenmann2016]. These properties make TIs
promising platforms for the manipulation of spin-entangled electrons in solid state systems.

In this chapter we demonstrate that combining s-wave superconductivity with the heli-
cal properties of 2DTIs [Jacquet2019], the non-local manipulation of spin-entangled states
by means of local gating can be done. The proposed setup - see Fig. 11.2 - is composed
of two parallel 2DTIs properly connected to two superconducting electrodes, and comprises
electrical gates for the manipulation. We calculate analytically the current-phase relation-
ship (CPR) of the Josephson current making use of the scattering matrix approach and we
identify the various local and non-local scattering mechanisms. In particular, we show how
the different external potentials selectively operate over the local and non-local components.
We demonstrate that the application of gates affects the symmetry of the non-local entangled
states (from singlet to triplet) which arise from crossed Andreev reflection between the two
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edges. This entanglement symmetry manipulation does not affect the purity of the entangled
state but directly impact the Josephson coupling due to the intrinsic singlet nature of s-wave
superconducting leads. We find that the Josephson critical current, remarkably, allows a
direct quantification of the entanglement manipulation in the structure. We fully interpret
the described phenomenology in terms of the multiple Andreev processes which mediate the
Josephson coupling in the structure.

The chapter is organized as follows. In Sec. 11.1 we discuss the setup of the Josephson
nanojunction done with topological insulators, we clarify why non-local entanglement may
be realised and how the external potentials may be used to manipulate over the system. In
Sec. 11.2 we briefly discuss how the computation in the scattering matrix formalism is done
introducing the concept of electron losses at the TI-superconductor interfaces (all the details
are reported in the Appendix D). In Sec. 11.3 we discuss euristically how external potentials
affect the entanglement symmetry of the Cooper pairs in the junction, showing a simple
way to interpret the complex behavior of the Josephson current. In Sec. 11.4 we present our
analytical and numerical results for the CPR and for the critical current, discussing with care
the interpretation in terms of multiple Andreev reflection processes in some notable limits.
Finally we discuss the experimental feasibility of the proposal in the conclusions.

11.1 The Setup

As we discussed in Sec. 6.3, in a Josephson system with ideal interfaces and rigid boundary
conditions the phase difference φ = φR − φL between the two superconductors induces a
stationary Josephson current. Microscopically it originates from Andreev reflection processes
that describe the transfer of Cooper pairs (CPs) at the interfaces between the superconduc-
tors and the weak link (see Sec. 3.3). In a single 2DTI sandwiched between two conventional
s-wave superconductors, as the S-TI-S junction depicted in Fig. 11.1, CPs can only be in-
jected or absorbed locally on a specific edge. Indeed, while the helical nature of the TI edge
modes allows for local Andreev reflections (LARs) at the boundaries with the superconduc-
tors [Choi2014], i. e. an electron (hole) propagating through a helical mode and impinging
onto a superconductor is reflected as a hole (electron) with opposite spin in the other helical
mode on the same edge (see right side of Fig. 11.1), it prohibits crossed Andreev reflections
(CARs) [Crepin2015, Fleckenstein2018], i. e. an electron (hole) propagating through a helical
mode impinging onto a superconductor cannot be reflected as a hole (electron) with opposite
spin in the other helical mode on the other edge (see left side of Fig. 11.1). In order to
overcome this limitation one needs to consider a double TI junction [Sato2010]. Specifically
we focus on the architecture depicted in Fig. 11.2 where a Josephson junction is obtained by
sandwiching two planes of 2DTIs in between two s-wave superconductors. This system allows
for CAR processes if the distance W between the two TI-planes is comparable with the co-
herence length ξ, e. g. choosing Al as a superconducting material ξ ≈ 100 nm. Moreover, the
properties of the edge modes can be tuned through external voltage gate and magnetic flux
controls which mimics the presence of “local” (i.e. which acts differently on the upper and
lower edge modes) time reversal and time reversal breaking fields respectively (see Fig. 11.2).

Specifically the first consists in gate electrodes placed in the vicinity of the edges modes
(see Fig. 11.2) so to electrostatically affect the dynamical phase of the carriers [Xiao2016]
by assigning to particles moving (say) along the lower edge the same phase factor θV =
2eV L/~vF independently of their propagation direction and spin (with vF the Fermi velocity).
The second instead, consists in the application of a moderate, uniform magnetic field B
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SRTISL

CAR LAR

Figure 11.1: Standard S-TI-S junction: SL/R superconductors (gray) and the TI (yellow). The
arrowed blue (red) solid lines represent the 1D helical edge states with spin ↑ (↓). At interface with
SR, two example of emission/absorption of CPs due to LARs. The impossibility of a CAR process
where a ↑-h in the lower-edge is Andreev reflected in a ↓-e is represented at at SL interface with a
cross.

which, by Doppler shift effect [Tkachov2015, Sothmann2017] (see also Sec. 6.2), acts on
(say) the upper edge by assigning a phase factor θΦ = 4πΦ/Φ0 to spin-up (right-moving)
electrons and −θΦ to spin-down (left-moving) electrons (with Φ0 the magnetic flux quantum
and Φ = ByWL the magnetic flux in the junction).

The way we implement both the fields ensures their differential action among the upper
and lower edges of the TIs such that they can be effectively described, in the spin space, in
terms of local unitary operators:

U `V (θV ) = ei θV 1/2, (11.1)

Uu
Φ(θΦ) = ei θΦσ· n̂/2, (11.2)

with n̂ the natural spin-quantization axis of both the TIs [Qi2008, Maciejko2010] and with
σ the Pauli matrix vector. In Eqs. (11.1) and (11.2) the labels u and ` indicate the action
of the fields on the upper and lower edge respectively; other configurations, though, are fully
equivalent as discussed in Appendix D.4.

11.2 Model
Following the scattering approach [Buttiker1986, Buttiker1992, Datta1997, Lambert1998], the
scattering matrix of the Andreev processes occurring on the left L (right R) TI-S interface,
in the u-` space, can be written as [Beenakker1991, Beenakker1992] ∣∣∣ΛL(R)

∣∣∣ i
∣∣∣XL(R)

∣∣∣
i
∣∣∣XL(R)

∣∣∣ ∣∣∣ΛL(R)

∣∣∣
 eiφL(R) , (11.3)

with ΛL(R) and XL(R) representing respectively the amplitude for the LAR and CAR events
(these terms being related by the unitarity conditions |ΛL(R)|2+|XL(R)|2 = 1). In other words
the Andreev reflection is given by the superposition of LAR and CAR processes. Notice that
we neglected the presence of the edge modes running in the backside edges (i. e. along the
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Figure 11.2: Proposed double TI junction - 3D scheme. It consists of an heterostructure (say
CdTe-HgTe) grown along the z-axis resulting in two layers of TIs. The arrowed blue (red) solid lines
represent the 1D helical edge states with spin ↑ (↓). Edge modes running in the backside part of the
device here are not represented. On the frontal side, in the x-z-plane of the scheme, are depicted two
CAR processes where CP are non-locally splitted. The application of the V - and Φ-field due to the
presence of side gates and the induced magnetic flux. Such a fields act in terms of the unitary operators
UuΦ(θΦ) and U`V (θV ) (see text) on the upper and lower edges respectively. Other configurations of local
fields can be considered and in Appendix D.4 it is indeed shown they are fully equivalent.

y-direction) of the device of Fig. 11.2, which in turn represent an alternative coherent path
between the two superconducting leads. Anyway one can nullify their contribution to the
Josephson current by simply suppressing their transport coherence. This can be obtained
assuming that the size of the TI in the y-direction is much larger than the coherence length
`φ or having intentionally broken superconducting coherence introducing a dephasing source
along those edges 1. In such case they no longer contribute coherently to the transport even
if they still represent available channels for ordinary reflected particles at interfaces. Such
ordinary reflections, involving the backside modes, contribute by decreasing the supercurrent.
This can be described by introducing an effective loss parameter η ∈ [0, 1] where η = 0
represents lossless regime. When this loss mechanism is present, in order to describe the
dephasing along the backside modes, we calculate the current by averaging with respect the
dephasing angles – see Appendix D.3 for details.

1This can be done by adding a floating metal pad over those edge modes which will induce electron
decoherence.
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11.3 Local fields selective action
The V -field and Φ-field defined before and respectively associated to the angles θV and θΦ,
operate independently and selectively on the local and non-local components of the Josephson
current 2. Before calculating explicitly the Josephson current in the model, a preliminary
evidence of this fact is obtained via an heuristic argument applied to the simplified scenario
where LARs are absent (i. e. ΛL(R) = 0). Under this circumstance the non-local emission of
a CP from a superconducting electrode, say SL, results in the formation of a spin-entangled
CP state, which arises from two superimposed CAR processes. In the first one, a spin-↓ hole
propagating in the lower edge gets reflected into an spin-↑ electron in the upper edge, while
in the second one, a spin-↓ hole propagating in the upper edge gets reflected into an spin-↑
electron in the lower edge (see Fig. 11.2). Such spin-entangled state could be represented as
|C〉 =

(∣∣∣e↑uh↓`〉− ∣∣∣h↓ue↑`〉) /√2, where the minus sign recall the fact that the CP is in a spin-
singlet state as required by the s-wave nature of the superconducting leads. The action of
UV (θV ) and UΦ(θΦ) on |C〉 results in the state: ei

θΦ
2
(
e−iθV /2

∣∣∣e↑uh↓`〉− e+iθV /2
∣∣∣h↓ue↑`〉) /√2.

This expression shows that while the Φ-field introduces only a global phase, that can be
reabsorbed with a gauge transformation, the V -field modifies the entanglement symmetry of
the non-local CP state |C〉 by introducing a relative phase factor exp(i θV ), without altering
its entanglement content. In particular, if θV = π the non-local spin-singlet CP changes into
a spin-triplet one, thus giving rise to a mismatch with respect to the intrinsic CPs singlet
symmetry of the electrodes, thus hindering the Josephson coupling. In view of this fact, in
the absence of LAR processes, one hence expects the Josephson current to depend upon the
quantity C = | 〈C| UV (θV ) |C〉 | = | cos(θV /2)|, which measures the degree of change of the
symmetry of the entangled CP. This emerges clearly from the study of the critical current,
especially in the scenario where multiple Andreev reflections can be neglected (single-shot
limit) – see Eq. (11.11) below. The interplay between CAR and LAR and the possibility
of multiple reflections, on the contrary, tend to reduce the visibility of the effect: still, as
we shall show in the following, also in this case the Josephson current keeps record of the
phenomenon in a way that ultimately allows us to discriminating between CAR and LAR
processes.

2The angular notation for the action of the local fields imply a 2π-periodicity of their actions.
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Φ

ΦΦ

Figure 11.3: CPR. The Josephson current versus the phase difference φ expressed in units of
4∆0

e
~ at fixed temperature kBT/∆0 = 10−3. The curves in panel (a) have been obtained fixing the

value of the magnetic field (θΦ = 0), for different values of the V -field (θV = 0 for the solid black line
and θV = π for the solid red line). Panel (b) shows the opposite situation in which the V -field is fixed
(θV = 0) and θΦ is varied (θΦ = 0 for the solid black line and θΦ = π for the solid red line). The
respective black/red dashed curves, depicting the case with η = 0.2, have been obtained numerically.
For both the realizations we have considered the two extremal cases, i. e. only CAR |XL(R)|2 = 1
(upper panels) and only LAR |XL(R)|2 = 0 (lower panels).
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11.4 Josephson current

To set the above observations on firm ground in the remaining of this chapter we calculate the
Josephson current flowing through the system using the scattering formalism [Beenakker1991,
Beenakker1992, Beenakker2003] in the short junction limit (i. e. when L � ξ), with ideal
interfaces and rigid boundary conditions, i. e. with the order parameter

∆(x) = ∆0
[
Θ(−x− L/2)eiφL + Θ(x− L/2)eiφR

]
, (11.4)

where Θ(x) is the Heaviside function. As already discussed in Sec. 6.4, the Josephson current
can be calculated as

J = −2e
~
∑
p

tanh
(

εp
2kBT

)
dεp
dφ

, (11.5)

where εp are Andreev bound state energies obtained solving the self-consistent secular problem
of Eq. 6.58 [Beenakker2003]. In case of no losses (η = 0) we find the following analytical
expression of the CPR at finite temperature T

J(φ) =4e∆0
~

∑
σ=±

{
sin
(
θΦ
4 + φ

2 + σ tan−1
(√

1− Γ
1 + Γ

))
×

tanh
[

∆0
2kBT

cos
(
θΦ
4 + φ

2 + σ tan−1
(√

1− Γ
1 + Γ

))]}
, (11.6)

with
Γ = cos (θV /2)|XL||XR|+ cos (θΦ/2)|ΛL||ΛR|. (11.7)

Firstly we note that θΦ/4 in Eq. (11.7) acts as a global phase which shifts the CPR, and
manifests itself as an anomalous current at φ = 0 when TRS is broken [Campagnano2015,
Minutillo2018]. For simplicity, in what follows we will limit ourselves to consider the fully
symmetric case |XL| = |XR| = |X| and |ΛL| = |ΛR| = |Λ| =

√
1− |X|2.

In Fig. 11.3(a) and (b) we plot separately the contributions to the CPR arising from only
CAR (|X|2 = 1 for top panels) and only LAR processes (|X|2 = 0 for bottom panels), for
various choices of parameters. Solid curves refer to the CPR of Eq. (11.6), while dashed
curves are numerical results obtained in the presence of backside edges losses (η = 0.2) 3.
Firstly we note that the curves resembles the CPR of a weak-link in the presence of spin-orbit
and magnetic fields, as we may indeed naively expect [Yokoyama2013, Eto2014, Dolcini2015,
Marra2016, Nava2016, Mellars2016, Nesterov2016]. In Fig. 11.3(a) we fix θΦ = 0 and consider
two values of the V -field, namely θV = 0 (black curves) and θV = π (red curves), while in
Fig. 11.3(b) we fix θV = 0 and consider two values of Φ-field, namely θΦ = 0 (black curves)
and θΦ = π (red curves).

Figs. 11.3(a) and (b) allows us to appreciate the selective action of the Φ- and V - fields on
the CAR and LAR contributions to the supercurrent by their effect on the shape of the CPR.
In particular, in the case of CAR processes, the shape of the CPR depends on the value of θV
(Fig. 11.3(a), top panel), independently of the value of θΦ, which only induces a global phase-
shift (Fig. 11.3(b), top panel). Indeed in Fig. 11.3(a), where we fix for simplicity θΦ = 0,
black (θV = 0) and red (θV = π) curves have different shapes in the top panel (|X|2 = 1
only CAR) differently to the bottom panel (|X|2 = 0 only LAR) where the black and red

3We numerically tested that for η → 0 one obtain again the analytical result.
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curves are superposed having exactly the same shape. Conversely, as shown in Fig. 11.3(b),
the CPR shape is affected by the value of θΦ (black lines θΦ = 0 and red ones θΦ = π) when
only LAR processes are present (bottom panel) but not affected, forgetting an unessential
global phase shifting, in case of only CAR processes. For other values of θV the CPR shape
is changed, in comparison to the figure θV = 0, but the shape changes with θΦ only when
LAR contribution are indeed present.

We can conclude that, although in general the Josephson current contains both CAR and
LAR contributions, any variation of the shape of the CPR due to the action of the V -field is a
direct indication of the presence of CAR processes, (i. e. of non-local injection of spin-singlet
CPs). The presence of losses (η 6= 0) simply leads to a smoothing of the CPR shape, similarly
to the effect of a finite temperature (see Sec. 11.4.3), but not affect the previous discussion.

11.4.1 Single-shot limit

At this point is interesting to investigate the behaviour of the Josephson current in the limit
of high losses where η ≈ 1, i. e. looking at the lowest order in (1 − η). In that regime
few CPs tunnel into the junction (the Josephson current is dramatically reduced). Different
orders in the power (1 − η) corresponds to bounces of Cooper pairs at the interfaces with
the superconductors, i. e. multiple Andreev processes. In particular one expects that the
lowest order of the Josephson current corresponds to a term proportional to (1 − η)4 which
describes a process where a Cooper pair is emitted on one side and absorbed on the other
side and viceversa 4. This corresponds to the propagation of the single Cooper pair along
the junction (single shot limit). Higher orders (1 − η)α with α > 4 corresponds to multiple
Andreev processes where the emitted Cooper pair is at least reflected back one time.

We present below the analytical results of the Josephson current in the single shot limit
following the scheme presented in the previous section. More specifically, we considered two
scenarios (the same as those represented in Fig. 11.3 (a)-(b)): in the first case we just account
for the local application of the V -field along one of the edge states of the TI (hence setting
θΦ = 0); while in the second case the Φ-field is applied by fixing θV = 0. Again, per each
scenario, we consider the extremal situations in which only CAR (|XL| = |XR| = |X| = 1)
or only LAR (|X| = 0) processes are involved at both the interfaces, in order to have only
non-local or local CP-splitted states inside the junction.

• Case-(a): application of V -field (θΦ = 0)

CAR :

J̄(φ) = e

~
∆0 tanh

(∆0
2T

)
cos

(
θV
2

)
sin (φ)(1− η)4 +O((1− η)6), (11.8a)

LAR :

J̄(φ) = e

~
∆0 tanh

(∆0
2T

)
sin (φ)(1− η)4 +O((1− η)6). (11.8b)

4The lowest order (1− η)4 accounts for the single shot CP process, where the CP is splitted at one barrier,
taking an (1− η)2 factor, and another factor when it recombines on the other barrier.
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• Case-(b): application of Φ-field (θV = 0)

CAR :

J̄(φ) = e

~
∆0 tanh

(∆0
2T

)
sin
(
φ+ θΦ

2

)
(1− η)4 +O((1− η)6), (11.9a)

LAR :

J̄(φ) = e

~
∆0 tanh

(∆0
2T

)[
sin (φ) + sin

(
φ− θΦ

2

)]
(1− η)4 +O((1− η)6). (11.9b)

Here J̄(φ) represents the CPR averaged with respect the dephasing angles acquired along
the backside edges of the model – see Appendix D.3. It is important to note that Eqs. (11.8)
and (11.9) are fully in agreement with the behaviours of the Josephson current as described
by the results reported in Fig. 11.3. In particular, in Case-(a), the V -field just affects the
CAR component of the CPR Eq. (11.8a) while plays no role when only LAR processes are
involved Eq. (11.8b). In Case-(b), the action of the Φ-field just operates as a global shifting
on the CAR component of the CPR Eq. (11.9a), while it affects the shape of the supercurrent
in case only LAR processes occur at both the interfaces Eq. (11.9b). It is worth noting that
the modification of the shape of the CPR in the cases related to Eqs. (11.8a) and (11.9b)
respectively, have two different origins. More specifically, in the case of Eq. (11.9b), as a
consequence of the presence of only LAR processes the two CPs are separately injected in
the two different TI-planes. The resulting Josephson current takes the form of a sum of two
independent currents: one concerning the edge of the TI interested by the application of the
Φ-field (which is shifted by an amount of θΦ/2), and the other, that instead refers to the free
edge, which takes the usual form of sin (φ). On the contrary, for only CAR the modification of
the profile of the CPR of Eq. (11.8a), which is ruled by the factor cos (θV /2), exactly reflects
the action the V -field which operates on the non-local states affecting their entanglement
symmetry as discussed in Sec. 11.3. For the only CAR case this is even clearer by looking at
the critical current of the system as we will see in the next section.

11.4.2 Critical current

Let us now consider the behavior of the critical current, defined as JC = maxφ {|J(φ)|}, which
is plotted in the main panel of Fig. 11.4 as a function of θV for different sets of parameters.
Remarkably, we find that the critical current can be written in the following compact form

JC = α(η, T ) |Γ|+ β(η, T ), (11.10)

where Γ, defined in Eq. (11.7), depends only on the Andreev reflection amplitudes XL and
XR, and on the fields strengths θΦ and θV , while the prefactor α and the off-set β depend
only on the temperature T and on the losses η.

The main panel of Fig. 11.4 shows how the formula of Eq. (11.10) (white dotted lines)
exactly fits the numerical results of the critical current (black and red lines) for an arbitrary
choice of the CAR/LAR amplitudes and of the manipulation parameters. We first consider
the ideal case of no losses η = 0 and T = 0 for which α = β = 1. The different lines
corresponds to different cases: only CAR |X|2 = 1 (black lines) and the intermediate case
with CARs and LARs both present |X|2 = 0.6 (red lines). We show with solid lines the cases
θΦ = 0 and with dashed lines θΦ = π/4.
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Figure 11.4: Critical current in units of 4∆0
e
~ as a function of θV . In the main box, different set of

black (|X|2 = 1) and red (|X|2 = 0.6) curves have been obtained numerically for fixed T = 0 and η = 0.
For each |X|2, plots are shown in case of θΦ = 0 (dashed lines) and θΦ = π

4 (solid lines) respectively.
We superimposed (white dotted line) the analytical behaviour as predicted by Eq. (11.10). The inset in
the upper-right corner depicts the rescaled critical current (namely (JC−β)/α), obtained numerically
for fixed θΦ = 0 in three different conditions of η and T (different point shape) for |X|2 = 1 (black
color) and |X|2 = 0.6 (red color). All the data, independently of temperature and losses, perfectly
match the curve |Γ| (dashed lines), confirming the universality character of the shape of the critical
current upon different external parameters.

We see, for only CAR, that the minimum of JC occurs at θV = π and θΦ does not affect
JC (solid and dashed curves coincides), in full agreement with the discussion done before on
the CPR. Red lines shows that for the case where both CAR and LAR contributions are
present the JC is still described by the general formula for any value of θΦ.

Furthermore we can show the general validity of this formula for finite values of η and
T . In the inset of Fig. 11.4 we plot the quantity (JC − β)/α for different values of the
temperatures and losses (see label). All the points perfectly match the corresponding |Γ|
curve (thin dashed lines) as predicted by Eq. (11.10).

Hereafter we claim that the dependence on θV of JC such as the one shown by Eq. (11.10)
reflects the entanglement symmetry manipulation due to the action of the V -field. We first
notice that the critical current, resulting from Andreev bound states within the junction, can
be seen as consisting of the sum of contributions arising from multiple Andreev reflection
processes. In the only-CAR regime one can identify, for any values of η, two classes of
processes: the ones corresponding to Cooper pairs which traverse the junction back and forth
an even number of times and the processes which traverse the junction an odd number of
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times. For the even class, the singlet symmetry is not modified by the effect of the V -field,
since the backward time-reversed propagation cancels the V -field induced phase taken during
the forward propagation. The spin entanglement symmetry is instead changed only for the
odd class processes. This suggests that, at zero temperature and without losses (η = 0),
the odd class processes contribute to the critical current with the term, introduced before,
C = | 〈C| UV (θV ) |C〉 | = | cos(θV /2)| in units of J0 = 4∆0

e
~ . At the same time the even

class is independent of θV and contributes to the current with the constant value J0 (this
give rise to the off-set β in Eq. (11.10)). As a result, the critical current can be written
as JC = J0(1 + C). In particular, at θV = π the entanglement symmetry of the non-local
electronic state is changed into triplet in half of the processes (the odd ones) and is left
singlet in the other half (the even ones). As a result, the non-local electronic state is an equal
weighted mixture of singlet and triplet states. This interpretation is actually corroborated
by the fact that when only the lowest order processes contribute, i. e. in the single-shot limit
occurring when η ' 1, the critical current in the leading term of (1− η) takes the form

JC = e∆0
~
|cos (θV /2)|(1− η)4 +O((1− η)6) , (11.11)

that is equal to zero in when θV = π. Such a result shows that in the single shot regime the
action of the local V -field returns exactly the expected entanglement manipulation signature
C. Furthermore, Eq. (11.10) clarifies that the critical current allows one to access experimen-
tally the product |XR||XL| which determines the relative weight between the LAR and CAR
processes. Ultimately this can be seen as a consequence of the selective action of the fields
on the local and non-local components of the current (second and first term in Γ).

11.4.3 Effect of the temperature T and η

In this section we investigate in more detail the effect of the temperature T and losses η
on the critical current. As pointed out in Sec. 11.4.2, the general expression of the critical
current of the system takes the compact form of Eq. (11.10) where the amplitude α and the
off-set β just depend on the temperature T and on the losses η. In Sec. 11.4.1 we calculate
the Josephson current at the lowest order in (1− η) for any temperature, see Eqs. (11.8) and
(11.9). JC can be also calculated analytically in the regime of no losses (η = 0) in the limit
cases of low (kBT � ∆0) and high (kBT � ∆0) temperature. Indeed, we find

JC ' J0(1 + |Γ(θV , θΦ)|) for kBT � ∆0

JC ' J0
∆0

2kBT
|Γ(θV , θΦ)| for kBT � ∆0

(11.12a)

(11.12b)

which clearly shows the fundamental dependence of the critical current on the Γ function of
Eq. (11.7). In particular, in the limit of low temperature, Eq. (11.12a), we have α = β = 1,
while for high temperatures, Eq. (11.12b), we have α/J0 = ∆0

2kBT and β = 0. The numerical
plot of α (red line) and β (blue line) as functions of kBT , in the case η = 0, is shown in
Fig. 11.5.

We note that by increasing the temperature, the critical current is depressed being both
α and β decreasing (β gets suppressed much faster than α). The behavior of the off-set β as
a function of temperature is consistent with the interpretation, given in Sec. 11.4.2, that it
corresponds to the contribution to the critical current of processes where CPs bounce back and
forth along the junction, i. e. multiple Andreev reflections. Indeed increasing the temperature
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Figure 11.5: Numerical plots of the amplitude α (red line) and the off-set β (blue line) of the
critical current of Eq. (11.10) in case of no losses (η = 0), expressed in units of 4∆0

e
~ as functions of

the thermal energy kBT (in units of ∆0). Note in the limits of kBT � ∆0 and kBT � ∆0 we recover
the analytical results of Eq. (11.12).

we expect that multiple Andreev processes are strongly suppressed in comparison to the single
transmission of a Cooper pair which will dominate the Josephson current contribution in the
high temperature regime. This is why, in the high-temperature limit, the critical current is
directly proportional to the Γ function which effectively describes the manipulation induced
by the local fields over a single CP transfer.

We discussed at the beginning of Sec. 11.4 that the presence of losses η only smoothens the
shape of the CPR. In Fig. 11.6 we compare the CPR in the case of finite η (dashed lines) with
the case of no-losses (solid lines) for two different temperatures T = 0 and kBT/∆0 = 0.1.
One can easily see how the smoothening induced by the losses described by η are similar to
the smoothening induced by the temperature effects.



11.5 Conclusions 145

2 1 0 1 2
/

2

1

0

1

2
J/4

0e

= 0, kBT/ 0 = 0
= 0, kBT/ 0 = 1

10

= 1
10 , kBT/ 0 = 0

= 1
10 , kBT/ 0 = 1

10

Figure 11.6: Josephson CPR expressed in units of 4∆0
e
~ . For the sake of simplicity, symmetric

conditions have been considered at left/right boundaries for the splitting amplitudes: |XL| = |XR| =
|X|. All the curves have been obtained for the following choice of parameters: |X|2 = 1/2, θΦ = 0,
θV = π/2. Solid lines correspond to the ideal case of no losses, i. e. η = 0, with kBT = 0 (dark-blue
solid line) and kBT/∆0 = 1/10 (light-blue solid line). Dashed lines depict the case of finite losses,
namely η = 1/10, for the same values of temperature as before, i. e. kBT = 0 (red dashed line) and
kBT = 1/10 (magenta dashed line). The result of finite losses η is to smooth out the shape of the
Josephson current similarly to the effect of a finite temperature.

11.5 Conclusions

In this chapter we have proposed a system which makes use of helical edge states of a 2D
topological insulator (TI), in a specific configuration, to spatially separate the two electrons
composing a Cooper pair of an s-wave superconductor. Such spatial separation can described,
in the scattering approach, as a crossed Andreev reflection (CAR) process. The application
of an external gate potential, which do not break time-reversal symmetry, enables the ma-
nipulation of the entanglement symmetry of the CAR state preserving its purity. We have
also shown that a time-reversal breaking field can be used to tune the strength of the local
Andreev reflection (LAR) processes without affecting the previously discussed entanglement
manipulation. In particular we have shown, both analytically and numerically, that a mea-
surable signature of the manipulation is provided by the Josephson current. We have derived
the analytical formula for the current-phase-relationship in the structure as a function of the
external fields, for any temperature in the absence of losses η = 0. In this configuration,
the critical current can be directly connected to the relative weights between LAR and CAR
processes, thus representing a simple way to identify the existence of non-local processes. Fi-
nally we have demonstrated, by carefully discussing the multiple Andreev reflections process
occurring in the structure, the origin and the universality (independently of temperature or
losses) of the obtained results. In essence, the Josephson current phenomenology is natu-
rally associated to the entanglement symmetry evolution in the junction. We think that the
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proposed structure, can be realized with present technology of the hybrid topological nano-
junctions, thus opening a new route toward entanglement manipulation in electronic solid
state systems.

We conclude by estimating the strength of the potential voltage necessary to manipulate
the entanglement symmetry from singlet to triplet. In this case, in order to have θV ≈ π -
with a junction length of L ≈ 600 nm [Wiedenmann2016] and a TI Fermi velocity of vF = 105

m/s - the gate voltage can be estimated as V = 1.7 mV . A similar estimation shows that,
using the Doppler shift, the magnetic field strength necessary to perform a manipulation of
the angle θΦ ≈ π - able to suppress the LAR component - is 8 mT , which is not too prohibitive
in order to not break the topological protection of the TI.



12
Conclusions and Future Perspectives

In this thesis we studied the transport properties of hybrid topological Josephson junctions
based on two dimensional topological insulators (2DTIs). In Chaps. 2 and 3 we provided the
basic concepts that underlie the two main constituent materials necessary for the realization
of a hybrid topological Josephson junction, namely: topological insulators and supercon-
ductors. In Chap. 4 we introduced the Landauer-Büttiker theory generalized to include
superconducting components, in Chap. 5 we applied the scattering approach to the case of
the linear response regime to compute the Onsager coefficients, and in Chap. 6 we reviewed
the main aspects of the Josephson effect and discussed the constitutive equations governing
the behavior of Josephson junctions. In Chaps. 7, 8 and 9 we consider a system consisting of
a topological Josephson junction hosting a Kramers pair of helical edge states of a quantum
spin Hall bar in contact with a normal-metal probe. In Chap. 7, we showed that a thermal
gradient between the superconductors in the presence of the Doppler shift generates a non-
local thermoelectrical transport inside the probe. This purely nonlocal thermoelectric effect
is a unique signature of the helical nature of the edge states and it can constitute a useful
tool for probing helicity in systems where the Hall bar configuration is difficult to achieve.
In Chap. 8 we showed that a phase-dependent nonlocal thermoelectricity can be generated
by a purely Andreev interferometric mechanism through the application of a dissipationless
current between the two superconductors, even without the need of applying an external
magnetic field. We discussed the dependence of this mechanism over the junction length L
and the coupling with the probe |t|2, and provided also a realistic estimation of the nonlocal
Seebeck coefficient. In Chap 9 we generalized the analysis done in Chaps. 7 and 8 to the case
where we have different gaps in order to better describe a realistic experimental situation.
In this configuration we also analyzed the heat current in the probe, finding that it can be
finite and the system can be viewed as a flux controlled thermal router, depending on the dif-
ference between the superconducting gaps. Finally, we discussed the nonlinear performance
of the nonlocal thermoelectric machine finding that it reaches maximum power at maximal
efficiency for a well coupled normal probe. In Chap. 10, we analyzed the Andreev spectrum
and the thermal conductance of a 2DTI Josephson junction hosting a magnetic island with
one and two magnetic domains. We showed that, features related to the interplay between
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superconductivity and magnetism in these systems cannot be easily discerned looking at be-
havior of the Andreev spectrum. Instead, we verified that the thermal conductance is very
sensitive to the nature of the junction and the domain structure of the magnetic island. A
remarkable result is the fact that for configurations with two magnetic domains with different
orientations, which host Jackiw-Rebbi resonant modes, the thermal conductance decreases
with the temperature. Finally, in Chap. 11, we investigated the supercurrent in a hybrid
topological Josephson junction consisting of two planes of topological insulator. We described
the effects of gate voltage and magnetic flux controls applied to the edge states of each TI.
In particular, we demonstrated that the voltage gating allows the manipulation of the en-
taglement symmetry of non-local Cooper pairs associated to the crossed Andreev reflection
process. Remarkably, we showed that the behavior of the critical current reflects the change
in the symmetry occurred to the entangled state and allows to determine the microscopic
parameters of the junction.

As future direction, it would be interesting to further assess the impact of multiple An-
dreev reflections (MARs) on the manipulation of the entaglement symmetry of nonlocal
Cooper pairs in a system similar to that presented in Chap. 11, when a voltage is applied
between the two superconducting leads. Furthermore, as another possible direction, we are
already working on a generalization of our results on nonlocal thermoelectricity - obtained
for 2DTI Josephson junctions - to the case of a 3DTI Josephson junction. In this regard,
by following the calculations already presented in the Appendix B, we expect that Doppler
shift effects will also potentially generate a nonlocal thermoelectrical response on the surface
states of a 3D topological insulator. Finally, another possibility could be to use thermoelec-
tric effects as a tool of detection for Majorana zero modes in 2DTI based Josephson junction
systems with a magnetic island and in contact with a metallic probe.
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Appendix:

S-TI-S Josephson junction with an N-metal probe

In this appendix we report details of the calculations about the S-TI-S Josephson junction
system in contact with an N -metal probe discussed in Chaps. 7, 8 and 9.

A.1 Scattering matrix

Here we consider the general case of superconducting leads with different gap order parameters
∆L and ∆R (as discussed in Chap. 9), the left/right symmetric case discussed in Chaps. 7
and 8 can then be easily recovered by imposing ∆L = ∆R = ∆. We analyze the setup of Fig.
9.1, assuming the absence of inelastic scattering since it may only appear for junctions longer
than coherence length L� ξ and/or high temperatures where standard low temperature BCS
superconductivity cannot survive. In such case dc transport is determined by the quantum
mechanical scattering matrix S [Lambert1998], which yields scattering properties at energy
ε, of a phase-coherent, non-interacting system described by a Hamiltonian HBdG such as
Eq. (9.1) . The scattering problem, in terms of scattering matrix, can be formulated as

Ψα
(i,σ)|out = Sαβ(i,σ)(j,σ′)Ψ

β
(j,σ′)|in. (A.1)

It relates incoming/outgoing states (j, σ′)/(i, σ) with {σ, σ′} = {↑, ↓} labeling the spin-
channel at the respective lead i, j = N,L,R. In Eq. (A.1), {α, β} = {e, h} may indicate
electrons and holes in the normal probe N , or eventually {α, β} = {ẽ, h̃} label QPs and
QHs in the superconductors. In order to compute the full scattering matrix S of the system,
we proceed by writing first the scattering matrix SN describing the coupling of the metallic
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probe with the TI upper edge



c↓N
b↓N
c↑N
b↑N
c↓L
b↓L
c↑R
b↑R


=



0 0
0 0

r 0
0 r∗

r 0
0 r∗

0 0
0 0

0 0
0 0

t 0
0 t∗

t 0
0 t∗

0 0
0 0

0 0
0 0

t 0
0 t∗

t 0
0 t∗

0 0
0 0

0 0
0 0

r 0
0 r∗

r 0
0 r∗

0 0
0 0


SN



c↑N
b↑N
c↓N
b↓N
c↑L
b↑L
c↓R
b↓R


(A.2)

where we indicated with cσN/bσN the incoming and outgoing electrons/holes in the probe N ,
and with cσL/R/bσL/R the incoming and outgoing electrons/holes in the TI region. The index
i = L/R labels the interface with the left/right superconductor and σ =↑, ↓ indicate the spin.
Notice that spin and direction of propagation of particles moving along the x axis inside
the TI region are locked due to the helicity of the edge states: hence spin-up particles are
right movers and spin-down particles are left movers. In particular, for the previous formula
SN , we assumed a symmetric beam splitter which effectively describes the contact interface
between the normal lead N and the TI edge. The beam splitter is characterized by spin and
energy independent reflection and transmission amplitudes

r = cos(η) and t = i sin(η), (A.3)

which depend on only one parameter η ∈
[
0, π2

]
such that unitarity is satisfied, i. e. |r|2+|t|2 =

1. In order to keep the presentation simple, here we preferred not to specifically discuss any
energy dependency of the coupling amplitude t. In fact, if this was the case, the actual value
of the nonlocal thermoelectric current discussed in Chaps. 7, 8 and 9 would depend on the
details of the function t(ε) which has non universal nature.

Notice that, in the SN matrix of Eq. (A.2), the complex conjugate coefficients r∗ and
t∗ represent the scattering amplitudes for the holes. Indeed, as discussed in Sec. 4.4, if
SeeN (i,σ)(j,σ′)(ε) acts in the particle sector, the scattering (sub-)matrix for the holes satisfies
the relation: ShhN (i,σ)(j,σ′)(ε) =

[
SeeN (i,σ)(j,σ′)(−ε)

]∗
as requested by the particle-hole symmetry

of the system [Pershoguba2019]. Obviously the elements SαᾱN (i,σ)(j,σ′)(ε) (with α = e, h),
coupling incoming electrons(holes) with outgoing holes(electrons) are necessarily zero since
only ordinary scattering processes are involved, i. e. no Andreev reflections occur for normal
metal probe. Moreover, by using Eq. (A.3), the scattering matrix SN describing the contact
between the normal-metal probe and the TI edge, can be also recasted in the more compact
fashion SN (η) = i sin (η)ζ1 ⊗ σ1 ⊗ τ3 + cos (η)ζ0 ⊗ σ1 ⊗ τ0, expressed in terms of the Pauli
matrices ζ, σ and τ respectively acting in the N -TI channels space, spin space and particle-
hole space.

At this point we are ready to compute the scattering matrices Si with i = L/R describing
respectively left/right interfaces of the TI with the superconductors. In order to find the
solutions for the scattering amplitudes we have to solve the wave function matching problem
at both interfaces by imposing the following boundary condition obtained by integrating the
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BdG Hamiltonian of Eq. (9.1): 
−λ∗iu↑(x−int) = −λiu↑(x+

int)
λiu↓(x−int) = λ∗iu↓(x+

int)
−λiv↑(x−int) = −λ∗i v↑(x+

int)
λ∗i v↓(x−int) = λiv↓(x+

int) (A.4)

where λi = 1 + i Λi
2~vF accounts for the contact potential Λi at left (i = L) and right (i =

R) interface located at xint = 0, L. Following this prescription we find (for example) the
scattering matrix SL for the left interface

c̃↓L
b̃↓L
c↑L
b↑L

 =


0 rL

ẽh̃
rL
h̃ẽ

0
tLẽe 0
0 tL

h̃h
tLeẽ 0
0 tL

hh̃

0 rLeh
rLhe 0


SL


c̃↑L
b̃↑L
c↓L
b↓L

 (A.5)

where we indicated with c̃↑↓L and b̃↑↓L the incoming and outgoing QPs and QHs respectively
inside the left superconductor. The obtained coefficients rLαβ and tLαβ represent respectively
the reflection and transmission amplitudes of an incoming particle of type β to a particle of
type α at the interface. Those coefficients can be compactly written as

rLγγ̄ = γ
vLγ̄
uLγ̄

eiαγ̄eiγφL ,

rLγ̃ ˜̄γ = − vLγ
uLγ

e−iβ
L
γ · ΞLγ (ε),

tLγγ̃ =

√
u2
Lγ̄ − v2

Lγ̄

uLγ̄
e
i
2(αγ̄−βLγ̄ )e−iγ

φL
2 eiγ̄2 arg (λL) · ΞLγ̄ (ε),

tLγ̃γ = γ̄

√
u2
Lγ − v2

Lγ

uLγ
e
i
2(αγ−βLγ )eiγ̄

φL
2 eiγ̄2 arg (λL) · ΞLγ (ε), (A.6)

where the electron/hole index (γ = e/h) in the l.h.s. is converted in a simple sign (γ = +/−)
in the r.h.s. to match with the notation used in Eq. (9.3). We also introduced the symbol

ΞL±(ε) ≡
{

1 |εDS | > ∆L ∧ 0 < ε < |∆L − |εDS ||
Θ(|ε±| −∆L) otherwise

(A.7)

with ε± = ε± εDS(Φ). The phases take the form

α± = ε±/εc and βL± =
√
ε2± −∆2

L/εc, (A.8)

with εc = ~vF /L the Thouless energy of the junction. A similar result for the scattering
matrix at the right interface SR can be computed. The scattering coefficients can be obtained
from Eq. (A.6) by replacing (rLαβ, tLαβ) → (rRβα, tRβα) in the l.h.s. and, in the r.h.s., making
the substitution L→ R and φL → −φR.

In conclusion, following the standard procedure presented in Ref. [Datta1997] (see also
Appendix C), the full scattering matrix of the system is obtained by combining together the
three scattering matrices such as

S = SL ◦ SN ◦ SR, (A.9)
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which determines the scattering between the three terminals. More precisely, by taking into
account the scattering amplitudes obtained above and using Eq. (A.9), we can write the full
scattering matrix of the system in its explicit form:

c↓N
c↑N
c̃↓L
c̃↑R
b↓N
b↑N
b̃↓L
b̃↑R


out

=



0 a2
a1 0

0 a4
a3 0

0 b2
b1 0

0 b4
b3 0

C1 0
0 C2

C3 0
0 C4

D1 0
0 D2

D3 0
0 D4

A1 0
0 A2

A3 0
0 A4

B1 0
0 B2

B3 0
0 B4

0 c2
c1 0

0 c4
c3 0

0 d2
d1 0

0 d4
d3 0


S



c↑N
c↓N
c̃↑L
c̃↓R
b↑N
b↓N
b̃↑L
b̃↓R


in

(A.10)

where

a1 = r + rLehr
R
het

2r∗

1−rL
eh
rR
he
|r|2 ; a2 = rRehr

L
het

2r∗

1−rR
eh
rL
he
|r|2 + r; a3 = ttLeẽ

1−rL
eh
rR
he
|r|2 ; a4 = ttReẽ

1−rR
eh
rL
he
|r|2 ;

b1 = ttRẽe
1−rL

eh
rR
he
|r|2 ; b2 = ttLẽe

1−rR
eh
rL
he
|r|2 ; b3 = rtLeẽt

R
ẽe
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eh
rR
he
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R
eẽ
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eh
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he
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L
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he
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hh̃
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1−rL
eh
rR
he
|r|2 ; B3 = rL

h̃ẽ
+ rRhet

L
eẽt

L
h̃h
|r|2

1−rL
eh
rR
he
|r|2 ; B4 = rR

h̃ẽ
+ rLhet

R
eẽt

R
h̃h
|r|2

1−rL
eh
rR
he
|r|2 ;

C1 = rReh|t|
2

1−rL
eh
rR
he
|r|2 ; C2 = rLeh|t|

2

1−rL
eh
rR
he
|r|2 ; C3 = rRehtt

L
hh̃
r∗

1−rL
eh
rR
he
|r|2 ; C4 = rLehtt

R
hh̃
r∗

1−rL
eh
rR
he
|r|2 ;

D1 = rrReht
L
ẽet
∗

1−rL
eh
rR
he
|r|2 ; D2 = rrLeht

R
ẽet
∗

1−rL
eh
rR
he
|r|2 ; D3 = rL

ẽh̃
+ rReht

L
ẽet

L
hh̃
|r|2

1−rL
eh
rR
he
|r|2 ; D4 = rR

ẽh̃
+ rLeht

R
ẽet

R
hh̃
|r|2

1−rL
eh
rR
he
|r|2 .

As an example of the derivation of the non-zero entries of the scattering matrix, let us explicit
the calculation of the term a1, which relates an incoming spin-up electron with an outgoing
spin-up electron at the same N metallic lead

c↑N → c↑N :
a1 = r + trRher

∗rLeht+ trRher
∗rLehrr

R
her
∗rLeht+ . . .

= r + t2rRher
∗rLeh

∞∑
n=0

(
rLehr

R
he |r|

2
)n

= r + rLehr
R
het

2r∗

1− rLehrRhe |r|
2 . (A.11)

Notice that, multiple reflections occurring inside the junction have been taken into account,
as results from the geometrical series in Eq. (A.11).
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A.2 Symmetries of the scattering coefficients

As we discussed in Secs. 4.3 and 4.4 [Lambert1998, Jacquod2012, Blasi2020a], the scattering
coefficients satisfy relations due to microreversibility Pα,βi,j (ε, ~θ) = P β,αj,i (ε,−~θ), particle-hole
symmetry Pα,βi,j (ε, ~θ) = P−α,−βi,j (−ε, ~θ) and unitarity

∑
αi

Pα,βi,j (ε, ~θ) = Nβ
j (ε, ~θ))∑

βj

Pα,βi,j (ε, ~θ) = Nα
i (ε, ~θ),

where Nα
i (ε, ~θ) is the number of open channels for α-like QPs at energy ε in lead i and where

we introduced the vector parameter ~θ ≡ (Φ, φ) which includes both the magnetic flux Φ and
the gauge invariant Josephson phase difference φ = φL − φR (according to the notation used
in Chap. 9). Moreover, when ∆L = ∆R (namely, the system is left/right symmetric), the
scattering coefficients show also the following additional symmetries

Pα,βN,N (ε, ~θ) = P−α,−βN,N (ε, ~θ),

Pα,βN,L(ε, ~θ) = P−α,−βN,R (ε, ~θ),

Pα,βN,L/R(ε, ~θ) = P−α,−βN,L/R (ε,−~θ). (A.12)

Interestingly, again in the left/right symmetric case, one finds that the scattering coefficients
Pα,βi,j do not depend on the position x0 of the probe (see Fig. 9.1), but simply on the total
length L of the junction. The reason for this relies on the symmetry exhibited by the different
paths that take a QP of type β from lead j to a QP of type α in lead i. More specifically, due
to the helicity of the edge state and the spin-independence of the transmission amplitude t,
each of these paths comes in pair with its symmetric one (obtained by exchanging left and
right), in such a way that their contribution to Pα,βi,j only depends on L. On the contrary, in
the asymmetric case, i. e. when ∆L 6= ∆R, the position of the probe x0 along the edge does
matter. Notice that, in Chap. 9, when we discuss the asymmetric case we assume to fix the
probe tip just in the middle of the junction, i.e. x0 = L/2.

A.3 Analytical results of the probe’s currents in the symmet-
ric case ∆L = ∆R

Here we discuss some analytical results for the symmetric case (i. e. ∆L = ∆R = ∆) exploiting
the symmetry expressed in the relations of Eqs. (A.12). We concentrate mainly on the quasi-
particle charge (JcN ) and heat (JhN ) current at the probe N that can be written as

JcN = e

h

∫ ∞
0

dε
{
F−N (ε)

[
A−(ε, ~θ) +A−(ε,−~θ)

]
− F−LR(ε)

[
Q−(ε, ~θ)−Q−(ε,−~θ)

] }
, (A.13)

JhN = 1
h

∫ ∞
0

dε (ε− eVN )
{
F+
N (ε)

[
A+(ε, ~θ) +A+(ε,−~θ)

]
− F+

LR(ε)
[
Q+(ε, ~θ) +Q+(ε,−~θ)

] }
,

(A.14)
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in which we defined the Fermi function sums/differences at the probe F±N = f+
N ± f−N or

among the two superconductors F±LR = f±L ± f
∓
R . The quantity

Aγ(ε, ~θ) =
(
N+
N − P

++
NN + γP−+

NN

)
/2

=
(
N−N − P

−−
NN + γP+−

NN

)
/2 (A.15)

represents the strength of the charge (with γ = −) or the heat flux (with γ = +) transferred
from the probe into the edge at given energy ε and ~θ ≡ (Φ, φ). The scattering probabilities
P±±NN describe normal reflections, P±∓NN the Andreev ones and N

+(−)
N the number of open

channels for electrons (holes) at the probe. The quantity

Qγ(ε, ~θ) =
(
P++
NL + γP−+

NL

)
= (−1)δγ,−

(
P+−
NR + γP−−NR

)
. (A.16)

describes the strength of the charge (heat) γ = − (γ = +) transferred into the probe N when
a QP is injected from the left superconductor SL. For γ = −, due to the gap symmetry and
Eq. (A.12), it coincides with amount of QH (with opposite sign) transferred into the probe
when a QH is injected from the right superconductor SR. Similarly, when γ = +, Eq. (A.16)
represents the amount of energy transferred into the probe when a QP(QH) is injected from
SL(SR). These quantities have been discussed in Chap. 8 in the case of the charge current
(i. e. γ = −) and without the Doppler shift Φ = 0. Here we generalized them also to the
presence of the Doppler shift (namely ~θ 6= 0), in which case their analytical expressions read
as:

Aγ(ε, ~θ) =



2|t|4 · δγ,−

1 + |r|4 + 2|r|2 cos (2πLε+ξ∆ + φu − 2 arccos ( ε+∆ ))
for ε ∈ I

(g(ε)2 − γ)(g(ε)2 + γ|r|2)|t|2 · Θ(εDS)
g(ε)4 + |r|4 − 2g(ε)2|r|2 cos (2πLε+ξ∆ + φu)

+ 2|t|4 · Θ(εDS) δγ,−
1 + |r|4 + 2|r|2 cos (2πLε+ξ∆ − φu − 2 arccos ( ε+∆ ))

for ε ∈ II

(g(ε)2 − γ)(g(ε)2 + γ|r|2)|t|2

g(ε)4 + |r|4 − 2g(ε)2|r|2 cos (2πLε+ξ∆ + φu)
for ε ∈ III

Qγ(ε, ~θ) =



0 for ε ∈ I

(g(ε)2 − 1)(g(ε)2 + γ|r|2)|t|2

g(ε)4 + |r|4 − 2g(ε)2|r|2 cos (2πLε+ξ∆ + φu)
· Θ(εDS) for ε ∈ II

(g(ε)2 − 1)(g(ε)2 + γ|r|2)|t|2

g(ε)4 + |r|4 − 2g(ε)2|r|2 cos (2πLε+ξ∆ + φu)
for ε ∈ III

(A.17)

where g(ε) = earcCosh(ε+/∆), ε+ = ε + εDS , |r|2 = 1 − |t|2 and φu = φ + 2LεDS
πξ∆ is the phase

difference along the edge which includes the contribution of the external magnetic flux. In
the expressions of Eq. (A.17), we indicated the energy regions I, II and III, depicted in
Fig. A.1, which represent, respectively, the contributions deriving from the sub-gap (region
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I), the semi-continuum (region II) and the full continuum (regions III). We notice that in
Eq. (A.17) the sub-gap contribution of the function Aγ(ε, ~θ) is nonzero only in the case of
charge current (for γ = −), while it is zero for the heat current (for γ = +). This is because
the Andreev bound states cannot allow any thermal transport, while mediating only the
charge transport.
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Figure A.1: Regions of validity in Eq. (A.17) for εDS > 0: εDS < ∆ (left panel), εDS = ∆ (middle
panel), εDS > ∆ (right panel).

From the previous analytical formulas we can deduce some general consequences for the
probe’s currents of Eqs. (A.13) and (A.14). Let us consider first the case of the charge
current of Eq. (A.13). When VN = 0, the function F−N = 0 (since f+

N = f−N ), so from the
formula of Eq. (A.13) one can easily conclude that JcN is independent of the temperature
TN . This shows that no local thermoelectrical effect can be induced by means of a thermal
bias between the TI and the probe. The only thermoelectric response in the probe is the
nonlocal one when a thermal bias between the two superconductors δT is applied, i.e. F−LR =
f±L −f

∓
R 6= 0. This is particularly important at experimental level since the temperature of the

probe does not need to be controlled during the measurement of nonlocal thermoelectricity.
The strength of such nonlocal thermoelectric response (see Eq. (A.13)) is determined by
the integral over the energies of the odd parity component in ~θ of the function Q−(ε, ~θ),
i. e. Q−(ε, ~θ) − Q−(ε,−~θ), from which it follows that the Onsager nonlocal thermoelectrical
linear coefficient L12 is an odd function of ~θ. Instead, when δT = 0, the function F−LR = 0
(since f±L = f∓R ), so from formula Eq. (A.13) it turns out that the charge current JcN
is determined by the integral over the energies of the even parity component in ~θ of the
function A−(ε, ~θ), i. e. A−(ε, ~θ) + A−(ε,−~θ), from which it follows that the Onsager local
electrical coefficient L11 is an even function of ~θ

Furthermore, regarding the heat component of Eq.(A.14), it turns out that JhN is an even
function of ~θ since it depends only on the even components of the functions A+(ε, ~θ) and
Q+(ε, ~θ). In the linear regime one can find that, for TL/R = T ± δT/2 and TN = T , the heat
current in the probe is proportional to the energy integral of the term

∑
σ=±

[
A+(ε, σ~θ)−Q+(ε, σ~θ)

]
, (A.18)

which, using the expressions of Eq.(A.17), turns out to be zero. As a consequence, in the
linear regime, the heat current at the probe JhN = 0.
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A.4 Comparison with the tunneling approach

(a) (b)

Figure A.2: (a) - The charge current JcN at the metallic probe. Scattering results (solid lines)
coincide with the tunneling ones (dashed lines), curves overlap. (b) - The differential conductance GN
at the metallic probe. Scattering results (solid lines) coincide with the tunneling ones (dashed lines),
curves overlap. In both the plots we considered L/ξ = 3, T/TC = 1/10 and φ = 0.

In this section we compare the results obtained using the scattering approach with the
results obtained using the tunneling approach [Sothmann2016, Bours2018, Bours2019]. For
the sake of simplicity, here we consider the symmetric case of equal superconducting gaps,
i. e. ∆L = ∆R = ∆. Regarding the tunneling approach, we use the formulation presented in
Ref. [Bours2018], but modifying the density of states (DOS) by adding an imaginary part γ to
the energy in order to phenomenologically capture the contribution of Andreev bound states.
Regarding the scattering approach we consider the analytical expression of the current JcN
(derived in the Appendix Sec. A.3) at lowest order in |t|2. In Figs. A.2(a) and A.2(b) we plot
the current JcN and the differential conductance GN = dJcN/dVN , respectively, as functions of
the electrochemical potential eVN for different values of εDS and setting γ = 0. As expected,
on the scale of the plot the curves relative to the two approaches coincide for both quantities.
The density plot of the differential conductance GN is also shown in Figs. A.3(a) and A.3(b)
for the two approaches, respectively, as a function of eVN and εDS . Again, we see that the
conductance GN in the two approaches always coincides.

It is now important to notice that the expression for the current JcN in the scattering
approach at lowest order in |t|2 do not describe the results of the tunneling approach when
a finite value of γ is taken. Indeed, in such a case GN presents additional features produced
by the ABSs (see Fig. A.4(b), to be compared with Fig. A.3(a)). This is expected because
ABSs are accounted for by the scattering approach at the order O

(
|t|4
)
. By using the exact

scattering approach one obtains the results reported in Fig. A.4(a) for |t|2 = 10−2. By
comparing the two panels of Fig. A.4, we see that they show qualitatively the same behavior
(highlighting the presence of the ABSs in the same positions inside the gap), but they do not
exactly match. The difference is due to the effective description of the tunneling approach
with respect to the exact scattering approach.

A more direct comparison between tunneling approach and exact scattering approach is
given in Fig. A.5 where the linear-response conductance σ = L11/T is plotted as a function
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(a) (b)

Figure A.3: (a) - Density plot of the differential conductivity GN at the metallic probe obtained
with the scattering approach in the leading order in |t|2. (b) - Density plot of the differential conduc-
tivity GN at the metallic probe obtained with the tunneling approach with γ = 0. In both the plots
we considered L/ξ = 3, T/TC = 1/10 and φ = 0.

(a) (b)

Figure A.4: (a) - Density plot of the differential conductance obtained in the scattering approach.
GN is normalized with respect to the transmittance of the probe |t|2 = 10−2. (b) - Density plot of
the differential conductance obtained in the tunneling approach. Here γ = ∆

100 . In both the plots we
considered L/ξ = 3, T/TC = 1/10 and φ = 0.

of εDS for various values of φ. The two approaches almost exactly coincide apart from a dip
in the peak at φ = 0 present in the tunneling curve (green dashed line).

We conclude the discussion by noting that only applying the full scattering formalism one
can have a complete and consistent description of the transport in the three terminal setup
which fully include the influence of ABSs. Similar considerations can be applied to the ther-
moelectrical current in the probe. In particular, we find that the scattering formalism shows,
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Figure A.5: Linear regime - Scattering-Tunneling Comparison - Electrical conductance σ in units
of G0|t|2 (with G0 = 2e2

h the electrical conductance quantum), as a function of εDS(Φ)/∆. Different
curves refer to different values of the phase difference φ between the two superconductors. Solid lines
for the scattering approach (specifically |t|2 = 10−2), dashed lines for the tunneling approach (γ =

∆
1000 ). The other parameters are: L/ξ = 3, T/TC = 1/10 and φ = 0.

as naively expected, that ABSs do not contribute neither to thermal or to thermoelectrical
current in the probe. One can analytically show that, at VN = 0, there is no contribution to
the N probe thermoelectric current from ABSs for arbitrary values of |t|2 (see the discussion
in the Appendix Sec. A.3).

Figure A.6: Linear regime - Comparison between the scattering approach (without the probe) and
the DOS method presented in Ref. [Sothmann2017] - Thermal conductance κ in units of the thermal
conductance quantum GT = π2

3hk
2
BT , as a function of εDS(Φ)/∆. Different curves refer to different

values of L/ξ = 0.1, 1, 3. Solid lines for the scattering approach, dashed lines for the results obtained
using the DOS [Sothmann2017]: curves exactly overlap. Other parameters: T/TC = 1/10 and φ = 0.

As a final remark, in Fig. A.6, we present the thermal conductance κ = L22/T
2 calculated
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with the scattering approach by uncoupling the probe (i. e. setting t = 0) and compared with
the results presented in Ref. [Sothmann2017] calculated using the DOS. As expected the two
approaches are completely equivalent: curves overlap for all the parameters - see Fig. A.6.
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B
Appendix:

Nonlocal thermoelectricity in a 3DTI based Andreev
interferometer

In this appendix we generalize some of the calculations done in Chap. 8, obtained for a 2DTI
Josephson junction, to the case of 3DTI Josephson junction in contact with a metallic probe.

B.1 The System
Here we consider a topological Josephson junction (TJJ) based on the 2D surface state of
a 3DTI in contact with a metallic probe, as depicted in Fig. B.1, where the pairing in the
superconducting regions is induced from a nearby s-wave superconductor. The surface state
lies in the x-y plane, with the direction of the superconducting phase bias denoted as the
x direction. We take the weak link to be infinite along the y direction and finite, of length
L, along the x direction. We considered a 1D wire metallic probe in contact with the upper
surface of the 3DTI, positioned in the middle of the junction (at x = 0) and extending all
along the y direction (see Fig. B.1). Here, we study the regime where the Fermi level is
situated inside the bulk gap and where only surface states exist. We assume that the surface
considered is far enough away from the opposite surface so that there is no overlap between
their states. Moreover, in the setup, a voltage bias VN is applied between the probe N at
the temperature TN and the superconducting electrodes (grounded). A temperature gradient
δT = TL − TR is assumed between the left and the right superconducting leads.

The system is described by the following BdG Hamiltonian [Maistrenko2021]

HBdG =
(

H(x) iσy∆(x)
−iσy∆(x)∗ −H(x)∗

)
, (B.1)

expressed in the Nambu basis (ψ↑, ψ↓, ψ∗↑, ψ∗↓)T , where

H(x) = vF (p̂yσx − p̂xσy)− µσ0 + Λ(x)σ0 (B.2)

161
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Figure B.1: Scheme of a Josephson junction based on a 3DTI: s-wave superconductors (S) on
top of the TI proximity-induce pairing into the TI surface state. Superconductors have temperatures
TL = T + δT/2 and TR = T − δT/2, and a phase difference φ ≡ φL−φR. A bias voltage VN is applied
to the 1D wire metallic probe at temperature TN and coupled to the upper surface state of the TI at
the point x = 0. The length of the junction along the x direction is L, while the interfaces with the
superconductors are placed at x = ±L/2.

and −H(x)∗ being its time-reversal partner, with p̂l = −i∂l (with l = x, y) the momentum
operators. The Fermi velocity is vF , µ is the chemical potential and σi are the Pauli matri-
ces in the spin space. We consider rigid boundary conditions with order parameter ∆(x) =
∆
[
Θ(−x− L/2)eiφL + Θ(x− L/2)eiφR

]
, where Θ(x) is the step function, ∆ is the proximity

induced gap and φ ≡ φL − φR is the gauge invariant Josephson phase difference between the
two superconductors. We include also a contact potential Λ(x) = Λδ(x+L/2) + Λδ(x−L/2)
at the boundaries.

To solve HBdGΨ(r) = EΨ(r) and obtain the eigenspectrum of Eq.(B.1), we first make
use of translational invariance along the y direction [HBdG, p̂y] = 0 [Maistrenko2021]. Hence,
we choose the ansatz Ψ(r) = eipyyψ(x)/

√
W , where py is the momentum quantum number,

ψ(x) is a spinor in Nambu space, and W is a unit width of the system in y direction. The
eigenenergies and ψ(x) can then be obtained from the 1D BdG equation

HBdG(py)ψ(x) = Eψ(x) (B.3)

where HBdG(py) is given by Eq.(B.1) with the operator p̂y replaced by the quantum number
py. The ε-q relation in the both the superconducting regions is given by q± =

√
(µ± Ω)2/v2

F − p2
y

with Ω =
√
ε2 −∆2. The solutions of Eq. (B.3) in the superconducting regions read as

ψjξ,α(x) = 1√
2


eiφj/2uξ

−eiφj/2uξ · ΓSξ,(ξα)
e−iφj/2vξ · ΓSξ,(ξα)

e−iφj/2vξ

ei(αξ)qξx (B.4)

where j = L,R labels the left and right superconductor respectively, ξ = ± corresponds to
quasi-particle (QP) and quasi-hole (QH) solutions and α = ± selects the direction of motion
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along the x-axis. Here we defined

ΓSξ,α ≡
αi qξ − py
|µ+ ξΩ| vF ; uξ ≡

√
1
2

(
1 + ξΩ

ε

)
; vξ ≡

√
1
2

(
1− ξΩ

ε

)
. (B.5)

In the weak link, the electron and hole states are given by

ψNξ,α(x) = 1√
2

(
1+ξ

2
1−ξ

2

)
⊗
(

ΓNξ,(ξα)
1

)
ei(αξ)kξx (B.6)

with

ΓNξ,α = αi kξ + ξpy
|ε+ ξµ|

vF ; kξ =
√

(ε+ ξµ)2

v2
F

− p2
y. (B.7)

In Fig. B.2 are depicted the dispersion curves of the excitations in the superconductors (solid
red curve for QPs and solid orange curve for QHs) and inside the weak link (blue solid curve
for electrons and cyan solid curve for holes) respectively for different value of py.

Figure B.2: Dispersion curves in the superconductors (solid red curve for QPs and solid orange
curve for QHs) and inside the weak link (blue solid curve for electrons and cyan solid curve for
holes). Gray dashed curves represent higher energy branches which do not contribute to the transport
if ε,∆ � µ. Different panels show the evolution of the dispersion curves for different values of
py = 0, 0.5, 1.5 (expressed in arbitrary units). Horizontal lines label the position of the gap order
parameter ∆ (black solid line), the upper energy level ∆− for holes (cyan dashed line) and the bottom
energy level ∆+ for electrons (blue dashed line).

B.2 Scattering matrix
We computed the full scattering matrix of the system

S = SL ◦ SN ◦ SR (B.8)

by combining the scattering matrices SL/R describing the left and right interfaces of the
3DTI with the superconductors, with the scattering matrix SN describing the surface edge
in contact with metallic probe N . More specifically, the scattering matrices at the interfaces
SL/R have been obtained by exploiting the states solutions of Eqs.(B.4) and (B.6) and solving
the wave function matching problem in the limit kBT � ∆ � µ. In this regime the higher
energy branches of the dispersion curves (see gray dashed curves in Fig. B.2) do not contribute
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to the transport properties of the junction. The scattering matrices SL and SR take the
following form


c̃−L
c+
L

b̃−L
b+L


out

=


rLẽ,ẽ tLẽ,e rL

ẽ,h̃
tLẽ,h

tLe,ẽ rLe,e tL
e,h̃

rLe,h
rL
h̃,ẽ

tL
h̃,e

rL
h̃,h̃

tL
h̃,h

tLh,ẽ rLh,e tL
h,h̃

rLh,h


SL


c̃+
L

c−L
b̃+L
b−L


in


c−L
c̃+
R

b−L
b̃+L


out

=


rRe,e tRe,ẽ rRe,h tR

e,h̃

tRẽ,e rRẽ,ẽ tRẽ,h rR
ẽ,h̃

rRh,e tRh,ẽ rRh,h tR
h,h̃

tL
h̃,e

rL
h̃,ẽ

tL
h̃,h

rL
h̃,h̃


SR


c+
R

c̃−R
b+R
b̃−R


in

(B.9)

Here we indicated with c±i /c̃
±
i and b±i /b̃

±
i the incoming and outgoing electrons/QPs and

holes/QHs respectively, with ± labeling the direction of propagation along the x-axis and
i = L,R indicating the interface with left or right superconductor. The obtained coefficients
riα,β and tiα,β represent the reflection and transmission amplitudes respectively of an incoming
particle of type β to a particle of type α at the interface i. The explicit analytical expressions
of such a scattering coefficients (obtained without any contact potential, i. e. Λ = 0) are
cumbersome and therefore are not shown. The scattering matrix SN , instead, can be written
as 

c1
N

c2
N

c−L
c+
R

b1N
b2N
b−L
b+R


out

=
(
S+
N (ε, py) 0

0 S−N (ε, py)

)
SN



c1
N

c2
N

c+
L

c−R
b1N
b2N
b+L
b−R


in

(B.10)

Here we indicated with cnN/b
n
N the incoming/outgoing electrons/holes respectively, with

n = 1, 2 labeling the spin-degenerate transport channel inside the probe N . In Eq. (B.10),
S+
N (ε, py) and S−N (ε, py) represent the scattering matrices for particles and holes respec-

tively. Is important to notice that, due to particle-hole symmetry, they satisfy the relation
S−N (ε, py) =

[
S+
N (−ε,−py)

]∗
. These matrices have been modeled as follows

SξN (ε, py) =
(
r·RξN t·1

−t· 1 r·RξS

)
· Θ [ξ (ε−∆ξ)] +

(
1 0
0 0

)
· Θ [ξ(∆ξ − ε)] (B.11)

with ξ = ± and where we introduced the quantity

∆ξ = ξ (|py|vF − µ) (B.12)

labeling respectively the upper energy level ∆− for holes (cyan horizontal dashed line of Fig.
B.2) and the bottom energy level ∆+ for electrons (blue horizontal dashed line of Fig. B.2).
The latter quantities of Eq. (B.12) control, for different values of py, which types of particles
are available for the transport inside the junction at a given energy. In this regard, the
last term of Eq. (B.11) is needed in order to avoid particles, coming from the probe with
energy ε, to propagate inside the junction if there are no available channels at that energy. In
which case, such a particles are reflected back to the probe. In the first term of Eq. (B.11),
without loss of generality, we considered real valued r and t scattering parameters, such that
|r|2 + |t|2 = 1 which describe the coupling with the probe. Namely when |t|2 = 1 the probe is
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fully coupled with surface edge of the 3DTI, instead when |t|2 = 0 it is completely uncoupled.
The matrix RξS takes the following form

RξS(ε, py) =
(
rξLL i rξRL
i rξLR rξRR

)
. (B.13)

Here we introduced

rξLL(ε, py) = rξRR(ε, py) ≡
∣∣∣(ψNξ,∓(x0), ψNξ,±(x0))

∣∣∣ =
∣∣∣cos

(
∠ΓNξ,ξ

)∣∣∣ (B.14)

(where ∠ΓNξ,ξ represents the phase argument of the complex quantity ΓNξ,ξ) which represent
the reflection amplitude coefficients for an electron (ξ = +) or a hole (ξ = −) coming from the
left/right (L/R) side of the weak link and reflected back. In Eq. (B.14), rξii (with i = L,R)
is constructed as the absolute value of the scalar product of the wave functions ψNξ,±(x0)
associated to particles which move in opposite directions inside the junction at the point
x0 = 0. In this way, for example, when py = 0 states with opposite direction of motion
are orthogonal, thus rLL = rRR = 0 (similarly to the 2DTI case). On the contrary, when
py 6= 0 right (left) moving states have finite overlap with left (right) moving ones and this
allow reflection processes toward the lead of origin (i. e. rξLL = rξRR 6= 0). The scattering
coefficients which describe the reflection processes among the two superconductors can be
written as

rξRL(ε, py) = rξLR(ε, py) ≡
√

1−
∣∣∣rξLL(ε, py)

∣∣∣2 (B.15)

such that |rLL|2 + |rRL|2 = 1 and |rRR|2 + |rLR|2 = 1. Notice that, because of the unitarity
of the scattering matrix SξN of Eq. (B.11), RξN =

[
RξS

]†
.

B.3 Charge current at the probe

By using the scattering approach one can write the charge current JcN flowing in the probe
as follows [Lambert1998, Blasi2020]:

JcN = 1
h

∑
j

∑
α,β

∫ ∞
0

dε αe
(
fαN (ε)− fβj (ε)

)
Pα,βN,j (ε, φ) (B.16)

where α, β = + stand for quasi-particle (QP), α, β = − for quasi-hole (QH), and with j
running over leads indices (L, R and N). In Eq. (B.16) we consider the chemical potentials
of the grounded superconductors as reference for the energies. The current depends on
the generalized Fermi distributions fαj (ε) = {e(ε−αeVj)/kBTj + 1}−1, where Tj and Vj are
respectively the temperature and the voltage at the lead j. In Eq. (B.16) the probability
scattering coefficients

Pα,βi,j =
∫ ∞
−∞

dpy
∑
σ,σ′

∣∣∣Sα,β(i,σ),(j,σ′)(py)
∣∣∣2 (B.17)

represent the reflection (i = j) or transmission (i 6= j) probabilities of a quasi-particle of type
β in lead j to a quasi-particle of type α in lead i, and have been obtain by taking the trace
of the scattering matrix S of the system (see Eq.(B.8)), where σ (σ′) is a channel belonging
to lead i (j) and py is the momentum quantum number [Lambert1998].
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B.4 Linear response regime

As already discussed in the main text of Chap. 8, in the linear response regime, for δT, VN →
0, the temperature of the probe can be chosen as the average temperature of the supercon-
ducting leads, i. e. TN = (TL + TR)/2 = T . With this choice Eq. (B.16) can be written in
the following form [Benenti2017, Blasi2020]:

JcN = L11(VN/T ) + L12(δT/T 2) (B.18)

where L11 is proportional to the charge conductance at the probe and L12 is the nonlocal
thermoelectrical coefficient.

In the remaining part of this appendix we collect different results of the normalized nonlo-
cal coefficient L12/(

√
G0GTT 3) (with G0 = 2e2/h and GT = (π2/3h)k2

BT being respectively
the electrical conductance quantum and the thermal conductance quantum). In particular
in Figs. B.3 we depict the nonlocal thermoelectric coefficient L12 as a function of the phase
difference φ/π between the two superconductors versus the junction length L/ξ (Fig. B.3(a))
and the coupling parameter |t|2 (Fig. B.3(b)) respectively. As already mentiond in Chap.
8, these results qualitatively match with those obtained in the case of a 2DTI Josephson
junction (see Figs. 8.3 (c)-(d) with relative discussion in Sec. 8.5).

(a) (b)

Figure B.3: (a) - L12 as functions of φ/π and the junction length L/ξ for |t|2 = 0.5. (b) -
L12 as a function of φ/π and coupling parameter |t|2 with the junction length L/ξ = 0.4. In both
panels we considered a mean temperature of the junction T/TC = 0.2 and a chemical potential
µ/∆ = 5. Here we normalized the nonlocal thermoelectrical coefficient as follows: L12/(

√
G0GTT 3),

with G0 = 2e2/h and GT = (π2/3h)k2
BT being respectively the electrical conductance quantum and

the thermal conductance quantum.

To better quantify the nonlocal effect induced by the phase bias, in Fig. B.4, we depict
the nonlocal Seebeck coefficient S = (1/T )L12/L11 expressed in units of µV/K as a function
of φ/π and the coupling with the probe |t|2. Is important to notice that, even thou the
behavior of the nonlocal Seebeck coefficient resembles that obtained in Sec. 8.7 for a 2DTI
based Josephson junction, here (see Fig. B.4) S takes a maximum value which is one order of
magnitude bigger (≈ 20 µV/K) than the one obtained in Fig. 8.4 (≈ 3 µV/K). The reason
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lies in the fact that, in the 3DTI case, the nonlocal Seebeck coefficient S results from an
integration on different channels each labeled by the quantum number py (see Eq. B.17). In
the 2DTI case only the mode with py = 0 contributes to the thermoelectric effect inside the
probe.

Figure B.4: Nonlocal Seebeck coefficient S in units of µV/K as a function of φ/π and the coupling
with the probe |t|2. Other parameters in the heading.

B.5 Metallic pad probe
As a final remark, here we consider a probe which consists of a metallic pad modelled as
a collection 1D metallic parallel wires centered in different positions x0 along the junction.
We take the metallic pad, centered in the middle of the junction, to be infinite along the y
direction and finite, of length d, along the x direction, as depicted in Fig. B.5. The nonlocal
thermoelectric coefficient L12 as a function of the Josephson phase difference φ/π has been
computed by integrating the quantity L12(x0) (depicted in Fig. B.6(a)), obtained for a single
metallic wire centered at −d/2 ≤ x0 ≤ d/2. The final result is shown in Fig. B.6(b).
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Figure B.5: Scheme of a Josephson junction based on a 3DTI with a normal metallic pad as a
probe. The metallic pad is centered in the middle of the junction, is infinite along the y direction and
finite, of length d, along the x direction

(a) (b)

Figure B.6: (a) - Nonlocal thermoelectric coefficient L12(x0) as function of φ/π and the position
of a single metallic wire centered at −d/2 ≤ x0 ≤ d/2. Here we used d = L/2. (b) - L12 =∫ d/2
−d/2 dx0 L12(x0). Both panels have been obtained for the same set of parameters (see headings).
Both results are expressed in units of

√
G0GTT 3, with G0 = 2e2/h and GT = (π2/3h)k2

BT being
respectively the electrical conductance quantum and the thermal conductance quantum.
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Appendix:

Topological Josephson junctions with magnetic
islands

In this appendix we present the details of the calculations for the different scattering matrices
SL,R and SM introduced in Eq. (10.8) of Chap. 10. We proceed by writing first the scattering
matrices SL,R describing the left and right interfaces of the 2DTI with the superconductors
(in Sec. C.1) and then the scattering matrix SM describing the 2DTI edge in contract with
the magnetic domain (in Sec. C.2). In section C.3 we combine them in order to get the full
scattering matrix of the system.

C.1 Scattering matrix of the SC-2DTI interface

The scattering matrix equation for SL, obtained by solving the wave function matching
problem at the interface between the left superconducting lead and the edge state of the
2DTI, can be written as


c̃−L
b̃−L
c+
L

b+L

 =


0 rL

ẽ,h̃
tLẽ,e 0

rL
h̃,ẽ

0 0 tL
h̃,h

tLe,ẽ 0 0 rLe,h
0 tL

h,h̃
rLh,e 0



c̃+
L

b̃+L
c−L
b−L

 , (C.1)

where we indicated with c∓L/b
∓
L the incoming and outgoing electrons/holes in the TI region

and with c̃±L/b̃
±
L the incoming and outgoing quasiparticles/quasiholes in the superconductor.

The index L labels the interface with left superconductor and ± indicate the direction of
propagation of quasiparticles along the x-axis (+ for right movers and − for left movers).
Notice that with this basis the scattering matrix can be written as

SL =
(
rL t′L
tL r′L

)
, (C.2)
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where rL and r′L are blocks concerning particles reflected at the interface, whereas tL and t′L
are blocks concerning particles transmitted through the interface. The obtained coefficients
rLα,β and tLα,β represent the reflection and transmission amplitudes respectively of an incoming
particle of type β to a particle of type α at the interface.

The coefficients of Eq. C.1 can be compactly written as

rLγ,γ̄ = γ
v

u
eiαei

φ
2 ,

rLγ̃,˜̄γ = −v
u
e−iβΘ (ε−∆) ,

tLγ,γ̃ =
√
u2 − v2

u
e
i
2 (α−β)e−iγ

φ
4 Θ(ε−∆),

tLγ̃,γ = γ̄

√
u2 − v2

u
e
i
2 (α−β)eiγ̄

φ
4 Θ(ε−∆), (C.3)

where the QP/QH index (γ = e, h) in the LHS is converted in a simple sign (γ = +,−) in
the RHS and the bar represents the opposite element (for instance ē = h). In Eq. (C.3) we
defined the functions

u =

√
∆
2εe

1
2 arccos ε∆ ; v =

√
∆
2εe
− 1

2 arccos ε∆ , (C.4)

and the phases

α = 2 ε∆
lS
ξS

; β = 2 lS
ξS

√(
ε

∆

)2
− 1, (C.5)

with ξS = ~vF /∆ the coherence length, ∆ the superconducting gap and lS the length of the
2DTI measured from the superconductor as depicted in Fig. 10.1. A similar result for the
scattering matrix SR at the right interface can be obtained. The scattering coefficients can
be obtained from Eqs. (C.3) by replacing

(
rLα,β, t

L
α,β

)
→
(
rRβ,α, t

R
β,α

)
and φ→ −φ.

C.2 Scattering matrix of the magnetic island
Following Refs. [Bustos-Marun2013, Sternativo2014, Arrachea2015, Gresta2019], here we
compute the scattering matrix SM describing the edge of the 2DTI in contact with a mag-
netic island. In order to do this we start by writing the evolution operator U e(xN , x0) =∏N
k=1 U

e(xk, xk−1) where the superscript e makes reference to the electron part and N indi-
cates the total number of magnetic domains, with

U e(xk, xk−1) = σ0 cosλk + i~nk ·~σk sinλk, (C.6)

where Lk = xk − xk−1 is the length of the corresponding magnetic domain. We have intro-
duced λk = Lk

√
ε2 − ε2⊥/(~vF ), with ~nk = (iεk⊥ sin θk,−iεk⊥ cos θk, ε) /

√
ε2 − ε2⊥ and θk is

the orientation of the domain in the plane of the sample.
The inverse of the evolution operator is the transfer matrix

(U e)−1 = T e =
(
T e11 T e12
T e21 T e22

)
, (C.7)

which in turn is related to the scattering matrix as follows

SeM = 1
T e22

(
−T e21 1

1 T e12

)
, (C.8)
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satisfying the following scattering equation(
c−L , c

+
R

)T
= SeM

(
c+
L , c
−
R

)T
. (C.9)

A similar relation links the incoming and outgoing holes(
b−L , b

+
R

)
= ShM

(
b+L , b

−
R

)
, (C.10)

where ShM (ε) = −σzSe∗M (−ε)σz [Crepin2014]. By combining Eqs. (C.9) and (C.10), we obtain
the scattering matrix for the magnetic island which reads

SM =
(
rM t′M
tM r′M

)
=


SeM,11 0 SeM,12 0

0 ShM,11 0 ShM,12
SeM,21 0 SeM,22 0

0 ShM,21 0 ShM,22

 , (C.11)

satisfying the scattering equation(
c−L , b

−
L , c

+
R, b

+
R

)T
= SM

(
c+
L , b

+
L , c
−
R, b
−
R

)T
.

Here we can see that each sub-matrix takes a block diagonal form since in the magnetic
domain an electron cannot be converted into a hole or vice versa in contrast to the case of
the SC-2DTI interface which only allows an electron (hole) to be reflected as a hole (electron)
or be transmitted as a QP (QH) - see Eq. (C.1) .

C.3 Combination of the scattering matrices
By following Ref. [Datta1997] we combine matrices SL of Eq. (C.2) and SM of Eq. (C.11)
and obtain

SL ◦ SM =
(
r t′

t r′

)
, (C.12)

in which

r = rL + t′LrM
[
1− r′LrM

]−1
tL,

r′ = r′M + tM
[
1− r′LrM

]−1
r′Lt
′
M ,

t = tM
[
1− r′LrM

]−1
tL,

t′ = t′L
[
1− rMr′L

]−1
t′M , (C.13)

where 1 stands for the 2 × 2 identity matrix. Finally, by applying the same procedure but
adding SR we obtain the full scattering matrix of the system

S = SL ◦ SM ◦ SR. (C.14)
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Appendix:

Manipulation of Cooper pair entanglement in hybrid
topological Josephson junctions

In this appendix we present the details of some calculations relative to Chap. 11. We
introduce the full scheme of the system that we used in the main text (explicitly accounting
for the presence of the edge modes running in the backside par of the device), and consider
the more general application of the local fields along the edge states.

D.1 Effective Hamiltonian

The helical edge states at boundaries of each TI of the system are described by a one-
dimensional Dirac Hamiltonian

Hk =
∑
ζ=±

∫
dx×

[
ψ†ζk↓(ζi~vF∂x − µ)ψζk↓ − ψ†ζk↑(ζi~vF∂x + µ)ψζk↑

]
(D.1)

where k = u, ` labels the upper and lower TI plane, ψ↑ (ψ↓) is the field operator of ↑(↓)
electrons, µ is the chemical potential and vF is the propagation Fermi velocity. The index ζ
is associated to the front-side (ζ = +) or backside (ζ = +) edges, see Fig. 11.2 of the main
text. For the sake of simplicity we considered the same spin-quantization axis for both the
TI planes edges along the n̂ direction [Qi2008, Maciejko2010]. In the case this condition is
not realized one need to generalize our approach to the case of not collinear spin quantization
axis. In this case some of the simple analytical results are not anymore valid, but numerically
all the calculations can be repeated. Nonetheless the main results presented in Chap. 11,
such as the selective action of the V -field over the entanglement symmetry, are still valid since
they are based purely on general symmetry arguments. Furthermore not collinear natural
spin quantization axis would potentially results also in a reduction of the CAR injection in
favour of the LAR processes.
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D.2 Gate potential
Let us consider the Schrödinger equation for the topological effective edge Hamiltonian(

−i~vF∂x + eV (x)− εF 0
0 i~vF∂x + eV (x)− εF

)(
u(x)
d(x)

)
= E

(
u(x)
d(x)

)
(D.2)

in which we considered the application of a constant gate potential

V (x) =
{

0 for |x| > L
2

V for |x| ≤ L
2
.

In in Eq. (D.2) we expressed the wave function Ψ =
(
u(x)
d(x)

)
in spinorial notation for the

spin-up and spin-down components (along the n̂ natural spin-quantization axis), while εF
and vF represent the Fermi energy and the Fermi velocity respectively. The general form of
the solution is the following

Ψ(x) =



A

(
1
0

)
eikx +B

(
0
1

)
e−ikx for x < −L

2 (I)

C

(
1
0

)
eik
′x +D

(
0
1

)
e−ik

′x for |x| ≤ L
2 (II)

F

(
1
0

)
eikx +G

(
0
1

)
e−ikx for x > L

2 (III)

where, in the limit of low energies (E � εF ), k ≈ kF and k′ ≈ kF − eV
~vF . In order to obtain

the relation between the coefficients A,B, . . . ,G, one uses the continuity requirements for the
wave function Ψ and the current

lim
δ→0

Ψ(x) |−L/2+δ
−L/2−δ= 0, lim

δ→0
Ψ(x) |L/2+δ

L/2−δ= 0,

lim
δ→0

ĴΨ(x) |−L/2+δ
−L/2−δ= 0, lim

δ→0
ĴΨ(x) |L/2+δ

L/2−δ= 0, (D.3)

where Ĵ ≡ ∂Ĥ
∂p̂ = vFσz is the current operator for the Hamiltonian defined in Eq. (D.1) with

σz the z-Pauli matrix. By following standard procedures [Schwabl2008] one can calculate the
transmission t and reflection r amplitudes through the region II, in the following cases:

• A particle incident from the left (region I), i. e. A = 1, G = 0:

tI→III = F

A
= e
−iL eV

~vF ; rI→I = B

A
= 0. (D.4)

• A particle incident from the right (region III), i. e. A = 0, G = 1:

tIII→I = B

G
= e
−iL eV

~vF ; rIII→III = A

G
= 0. (D.5)
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The only contribution of V is to generate a dynamical phase in the electron propagation.
From Eqs. (D.4) and (D.5) is clear that the constant potential barrier acts by assigning to
electrons the same phase factor independently from their propagation direction and spin,
clarifying why the unitary operator of Eq. (11.1) takes the form UV (θV ) = ei θV 1/2, with 1

the identity operator in the spin space. In particular, in this case θV = 2eV L/(~vF ). This
phase indeed coincides with the dynamical phase acquired by an electron propagating along
the edge under the electrical potential V for a time of flight t = L/vF [Xiao2016].
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Figure D.1: The full scheme of the system is depicted here by unfolding the 3D model of Fig. 11.2
in the main text, keeping fixed the frontal side in the z-x-plane (cyan area) in between the two
superconductors (SL and SR in gray), and tilting the upper TI-plane along the z-axis and the lower
TI-plane in the opposite direction, such that the top of the first TI-plane and the bottom of the second
one are coplanar. In this scheme, the edges in the z-x-plane (frontal side) are defined as internal and
labeled with ui and `i (blue/red solid lines) instead the edge modes running in the backside are
referred to as external channels (blue/red dashed lines), and labeled with ux and `x for the upper
and lower TI-plane respectively. In the model the coherence of the branches is suppressed assuming
to insert dephasing angles α1, α2, β1, β2

i.i.d.∼ U[0,2π] and averaging over them. As in the main text,
we considered the case in which the V -field is applied along the `i edge of the lower TI-plane and the
Φ-field is applied along the ui edge of the upper TI-plane. The white boxes at each interface between
the TI-planes and the superconductors depict the beam splitters (BSs) which model the scattering of
the particle among the internal and external channels of each TI respectively. Notice that, in case the
beam splitters are purely transmitting, there is no coupling between the external and internal edges
corresponding to the limit of η = 0 we used in the main text for the analytical derivation of the CPR.
In the inset an incoming electron, impinging toward the left SC, emerges an another electron with
the same spin on the opposite counter-propagating edge of the same TI-plane, after an even number
of perfect Andreev reflections.
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D.3 The scheme

Here we discuss in detail the model we use in the main text. The full scheme of the system
is sketched in Fig. D.1 (details in the caption). Following the arrangement of the local fields
discussed in the main text, here we considered the application of the V -field on the internal
edge of the lower TI-plane together with the application of the Φ-field on the internal edge
of the upper one (later we will discuss how to go beyond to this semplification). The internal
(external) edges corresponds to the frontside (backside) edges of setup shown in Fig. 11.2
of the main text. The model consists of four beam-splitters (BSs) which describe effectively
the contact interfaces between the superconductors and the TI-planes. This is needed -
also in case of ideal interfaces - in order to take into account those scattering processes of
particles which involve both the (internal and external) edges of a same TI-plane by means of
ordinary reflection processes. Intriguingly those processes may be also mediated by multiple
Andreev reflections. Indeed, for example, an incoming electron toward the SC, can emerges
an another electron with the same spin on the opposite counter-propagating edge of the same
TI-plane, after an even number of perfect Andreev reflections (see the inset in Fig. D.1)
independently of their local or nonlocal nature. Anyway, we will see in a moment that if the
edge modes running in the backside part of the device (hereinafter referred to as “external
edges”, namely the dashed lines depicted in Fig. D.1) are long enough with respect to `φ or
properly dephased with a voltage probe their only action is to suppress the critical current
not affecting the general conclusions discussed in the main text of Chap. 11. We modeled
this mechanism by introducing a loss parameter ηj ∈ [0, 1] with j = 1, 2, 3, 4; which describes
the reflectance probability of the BS at each interface, such that:

ηj = |rj |2 = 1− |tj |2 (D.6)

where rj and tj represent respectively the reflectance and transmittance amplitudes of the j-
th BS. In particular, if ηj = 0 there are no losses, namely the BS is perfectly transmissive and
no electrons are reflected from internal to external modes of Fig. D.1. Conversely if ηj = 1
the BS is perfectly reflective and all the electrons reaching the superconductive contact from
the internal edges will be reflected onto the external modes (and vice versa), no Andreev
reflection are possible in that case and Josephson current is null. For the sake of simplicity,
in our calculation, we considered all the beam splitters to be characterized by the same
reflectance amplitude, such that ηj = η ∀j = 1, 2, 3, 4 but all the results given can be easily
generalized to a less symmetric case.

As discussed in Sec. 6.4, in order to derive the Josephson current of the model, we have
to calculate the Andreev bound state energies εp, solving the following self-consistent secular
problem [Beenakker1992]:

Det
[
ei arccos (εp/∆0)

1− sAsN
]

= 0. (D.7)

Here sA and sN are respectively the Andreev scattering reflection matrix and the scattering
matrix describing the weak-link in the short-junction limit with ideal interfaces; which in
turn (according to the notation introduced in Sec. 6.4) take the following form:

sN =
(
s0 ∅
∅ s∗0

)
; sA =

(
∅ rA
r∗A ∅

)
. (D.8)

In Eq.(D.8), the scattering matrix component r∗A, which relates the electrons impinging the
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SCs to the respective Andreev-reflected holes, takes the following form:



b↓uxL
b↑uiL
b↑liL
b↓lxL
b↑uxR
b↓uiR
b↓liR
b↑lxR


in

=




|ΛLx| 0 0 i|XLx|

0 |ΛLi| i|XLi| 0
0 i|XLi| |ΛLi| 0

i|XLx| 0 0 |ΛLx|

 eiφL ∅

∅


|ΛRx| 0 0 i|XRx|

0 |ΛRi| i|XRi| 0
0 i|XRi| |ΛRi| 0

i|XRx| 0 0 |ΛRx|

 eiφR


r∗A



c↑uxL
c↓uiL
c↓liL
c↑lxL
c↓uxR
c↑uiR
c↑liR
c↓lxR


out

(D.9)

It differs from the Andreev matrix of the main text because of the explicit presence of the
edge modes running in the backside part of the device which add new scattering channels
to the final structure (namely the external edges depicted in Fig. D.1 and labeled with ux
and `x respectively). For this reason we have to enlarge the set of the splitting parameters,
i. e. {ΛSn, XSn} as presented in Eq. (D.9), accounting for the local and non-local splitting
of Cooper pairs on each side of the junction S = L,R, and along the specific set of internal
and external channels n = i, x. One may have noticed, both from the scheme of Fig. D.1
and the structure itself of the scattering matrix of Eq. (D.9), that the splitting of CPs along
the internal and external edges of the model are related to independent mechanisms, which
are ruled by the set of constrain equations |ΛSn|2 + |XSn|2 = 1 for S = L,R and n = i, x,
imposed on the relative strength of the local and non-local splitting amplitudes because of
unitarity. At microscopical level this competitive role of LAR vs CAR processes at each
interface depends on the strength of the Coulomb interaction between the edges. Note also
that the phase difference in the Josephson junction is defined as φ = φL − φR.

The scattering matrix sN , which describes the weak-link, does not couple electrons and
holes, thus it takes a block-diagonal form in the electron-hole space as shown in Eq. (D.8).
Specifically, the block-matrix component s0, which relates incoming and outgoing electrons
only, assumes the following structure:

c↑uxL
c↓uiL
c↓liL
c↑lxL
c↓uxR
c↑uiR
c↑liR
c↓lxR


out

=



0 A2
A1 0

0 0
0 0

0 0
0 0

0 A4
A3 0

D1 0
0 D2

0 0
0 0

0 0
0 0

D3 0
0 D4

C1 0
0 C2

0 0
0 0

0 0
0 0

C3 0
0 C4

0 B2
B1 0

0 0
0 0

0 0
0 0

0 B4
B3 0


s0



c↓uxL
c↑uiL
c↑liL
c↓lxL
c↑uxR
c↓uiR
c↓liR
c↑lxR


in

(D.10)

In which

A1 = r1 + t21r2e
iα2e−iθΦ/2

1−r1r2eiα2e−iθΦ/2
; A2 = r1 + t21r2e

iα1eiθΦ/2

1−r1r2eiα1eiθΦ/2
; A3 = r3 + t23r4e

iβ2e−iθV /2

1−r3r4eiβ2e−iθV /2
; A4 = r3 + t23r4e

iβ1eiθV /2

1−r3r4eiβ1eiθV /2

B1 = r1 + t22r1e
iα1eiθΦ/2

1−r1r2eiα1eiθΦ/2
; B2 = r1 + t22r1e

iα2e−iθΦ/2

1−r1r2eiα2e−iθΦ/2
; B3 = r4 + t24r3e

iβ1eiθV /2

1−r3r4eiβ1eiθV /2
; B4 = r4 + t24r3e

iβ2e−iθV /2

1−r3r4eiβ2e−iθV /2

C1 = t1t2eiα2

1−r1r2eiα2e−iθΦ/2
; C2 = t1t2eiθΦ/2

1−r1r2eiα1eiθΦ/2
; C3 = t3t4e−iθV /2

1−r3r4eiβ2e−iθV /2
; C4 = t3t4eiβ1

1−r3r4eiβ2eiθV /2

D1 = t1t2eiα1

1−r1r2eiα1eiθΦ/2
; D2 = t1t2e−iθΦ/2

1−r1r2eiα2e−iθΦ/2
; D3 = t3t4eiθV /2

1−r3r4eiβ1eiθV /2
; D4 = t3t4eiβ1

1−r3r4eiβ2e−iθV /2

A similar relation links the incoming and outgoing holes through s∗0. As an example of the
derivation of the non-null entries of Eq. (D.10), let us explicit the calculation of the term A1,
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which relates an incoming electron from the upper-external branch on the left side (labeled
by uxL), with an outgoing electron with the same spin on the internal-upper edge, again at
interface with SL (labeled by uiL):

c↓uxL → c↓uiL :
A1 = r1 + t1e

iα2r2e
−iθΦ/2t1 + t1e

iα2 · r2e
−iθΦ/2r1e

iα2 · r2e
−iθΦ/2t1 + . . .

= r1 + t21r2e
iα2e−iθΦ/2

∞∑
n=0

(r2r1e
iα2e−iθΦ/2)n

= r1 + t21r2e
iα2e−iθΦ/2

1− r1r2eiα2e−iθΦ/2
. (D.11)

Multiple reflections between the different BSs have been taken into account, as results from
the geometrical series in Eq. (D.11). In the previous equation we also introduce the phases
acquired during the evolution along the external edges labeled as αi and βi. Those phases
are introduced in order to effectively describe the dephasing processes since, in the end,
we average the physical quantities over them (namely αi, βi

i.i.d.∼ U[0,2π]). So by the set
of the previous equations we can calculate the Josephson current J(φ, θΦ, θV , α1, α2, β1, β2)
where the dependence over T and η is implicitly assumed. The final value of this quan-
tity, in our results is obtained by the mentioned averaging procedure, i. e. J̄(φ, θΦ, θV ) =

1
(2π)4

∫ 2π
0 dα1dα2dβ1dβ2 J(φ, θΦ, θV , α1, α2, β1, β2). In the main text we show the numerical

results for the Josephson current at finite η and temperature T . In Sec. 11.4.1 we analytically
derive, with the same method, the Josephson current as perturbative expansion in (1− η).

D.4 Configuration of the fields
The most general scheme of the application of the local fields along the edge states of the
system is depicted in Fig. D.2. We represents four local fields contributions divided among
the different edge states such that each set of helical modes (belonging to the upper and lower
TI-plane respectively) is interested by one V -type field (which describing the TRS terms) and
one Φ-type field (describing TRS breaking terms). Here we labelled each manipulation angle,
associated with the corresponding term, θV n, θΦn with the index n = u, ` to indicate the
pertinent upper or lower edge (plane) of application.

Within this picture, by following the same procedure employed in the main text for the
calculation of the Josephson current, we obtained - in case of no losses (η = 0) - the following
result:

J(φ) =4e∆0
~

∑
ν=±

{
sin
(
θ̄Φ + φ

2 + ν tan−1
(√

1− Γ
1 + Γ

))

tanh
[

∆0
2kBT

cos
(
θ̄Φ + φ

2 + ν tan−1
(√

1− Γ
1 + Γ

))]}
(D.12)

which appears with the same functional form already presented in the main text. In partic-
ular, θ̄Φ = θΦu+θΦ`

2 is given by the sum of the two separated Φ contributions. The quantity
θ̄Φ affect the CPR with a global phase shifting and one immediately see that for θ̄Φ 6= 0 one
could find an anomalous current, i. e. Josephson current at φ = 0. This is consistent with the
fact that in general anomalous current can be generated by the breaking of TRS. Anyway
if the TRS is broken, at local level, but in an exactly opposite way, such as θΦu = −θΦ`,
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the anomalous current disappear since θ̄Φ = 0. At the same time also the function Γ is
generalized:

Γ = cos
(∆θV

2

)
|XL||XR|+ cos

(∆θΦ
2

)
|ΛL||ΛR|, (D.13)

where we note that the effective action of θV n and θΦn is given by their differential mode
∆θV = θV u−θV ` and ∆θΦ = θΦu−θΦ`. So only the difference between the local action in the
upper and lower edges of both the V and Φ terms effectively contributes on the modification
of the shape of the CPR. Intriguingly, the approaches suggested to generate the fields operate
(by construction) on the differential mode which are the required terms which modify the
Γ of Eq. (D.13). In this way we still preserve the selective action of the two different fields
which operate in a targeted manner on the local and non-local components of the current as
discussed in the main text.

SRSL

TI

TIl

u

l

u Φ

Φl

u

Figure D.2: General application of the fields along the edges states of the system.
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