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ABSTRACT

We investigate the effects of the leading tadpole potentials of 10D tachyon-free non—super-
symmetric strings in warped products of flat geometries of the type M, 1 x R x Tip—p—2
depending on a single coordinate. In the absence of fluxes and for p < 8, there are two families
of these vacua for the orientifold disk-level potential, both involving a finite internal interval.
Their asymptotics are surprisingly captured by tadpole-free solutions, isotropic for one family
and anisotropic at one end for the other. In contrast, for the heterotic torus-level potential there
are four types of vacua. Their asymptotics are always tadpole-dependent and isotropic at one end
lying at a finite distance, while at the other end, which can lie at a finite or infinite distance, they
can be tadpole-dependent isotropic or tadpole—free anisotropic. We then elaborate on the general
setup for including symmetric fluxes, and present the three families of exact solutions that emerge
when the orientifold potential and a seven—form flux are both present. These solutions include a
pair of boundaries, which are always separated by a finite distance. In the neighborhood of one,
they all approach a common supersymmetric limit, while the asymptotics at the other boundary
can be tadpole-free isotropic, tadpole-free anisotropic or again supersymmetric. We also discuss
corresponding cosmologies, with emphasis on their climbing or descending behavior at the initial

singularity. In some cases the toroidal dimensions can contract during the cosmological expansion.
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1 INTRODUCTION AND SUMMARY

Above and beyond the clear interest of broken supersymmetry [I] for Particle Physics, the very
existence of a handful of non—supersymmetric ten-dimensional string models [2], free of tachyons
and satisfying all known consistency rules, makes it imperative to explore their compactifications,
paying properly attention to their stability properties. Supersymmetry is absent in two of these
models, the heterotic SO(16) x SO(16) string of [3] and the U(32) orientifold [4] model of [5],
while in the third model, Sugimoto’s USp(32) orientifold [6], it is non-linearly realized [7] (for
recent reviews see [§]). In all three cases, the breaking of supersymmetry in the original ten—
dimensional Minkowski space induces a back-reaction that manifests itself via the emergence,
in the low—energy effective field theory, of a new contribution associated to a runaway “tadpole
potential”

AS = — T/dlox —g e’ . (1.1)

String theory yields a sharp prediction for the strengths 7" of these potentials and for the exponents
v, which reflect their origin in string perturbation theory. In the Einstein frame, v = % for
the heterotic model of [3], which only involves closed strings, so that the leading contribution
emerges from the torus amplitude, while v = % for the orientifold models of [5] and [6], where
the leading contribution emerges from the two disk-level amplitudes. A direct consequence of
the potential (L)) is that ten—dimensional flat space is not an acceptable vacuum for these
theories. Moreover, tadpole potentials of this type emerge, in lower dimensions, as a result of
compactifications that break supersymmetry, and in particular in the widely explored Scherk—

Schwarz reductions [9].

Ideally, one would like to address dynamical questions on the vacuum directly within String
Theory, but the currently available tools make it imperative to rely on the low—energy effective
field theory. Therefore, vacuum solutions for the Einstein equations coupled to collections of
matter fields are the key ingredient to gather some information on the problem, with one proviso.
Their indications are fully reliable and significant for String Theory only within regions where
the string coupling g; = e® and spacetime curvature invariants are bounded since, from the
vantage point of String Theory, low—energy descriptions based on General Relativity are merely

the leading contribution to a double series expansion in curvatures and gs.

In this paper, we explore the effects on the vacuum of the tadpole potential (II]) for the three



non-supersymmetric non—tachyonic strings, and more generally we trace their dependence on .
To this end, we focus on geometries that are warped products of two flat spaces, and are described

by metric tensors of the form
ds? = 240 Ny dat dz” + B0 g 4 200§ dy™ dy™ (1.2)

depending on a single coordinate r, where p = 0,...,p and the y™, with m = 1,...,8 — p, are
coordinates on an internal torus. We also allow for symmetric dilaton and form profiles of all
types that are compatible with their symmetries. Backgrounds for supersymmetric strings with
these isometries were explored in detail in [I0], to which we shall refer at times as I, and of which

this paper is a sequel.

The plan of the paper is as follows. In Section 2] we briefly set up our notation, reviewing the
effective action and the symmetric field profiles that are allowed in the class of metrics ([L2]), we
identify the convenient harmonic gauge and present the set of equations for A(r), B(r), C(r), the
dilaton profile ¢(r), and the allowed form field strengths. The reader can find a more detailed
discussion of all these steps in I. In Section [B] we construct, within the above framework, all static
vacuum solutions in the presence of the tadpole potential in (L)), but in the absence of form fluxes.
We also highlight the surprising sub—dominance of the tadpole potential in many asymptotic
regions and connect these solutions, which are anisotropic generalizations of the p = 8 Dudas—
Mourad vacuum of [II], to the Kasner—-like flux—free geometries of [I0] that are also reviewed in
Appendix [Al The special role of the “critical” orientifold potential with v = . = % manifests
itself clearly in this analysis, and in particular in the new solutions with p < 8. For v = ~, we
find two families of such solutions: both approach, at one end, a tadpole-free isotropic solution
of Appendix [Al while at the other end the asymptotics is governed by a tadpole-free isotropic
or anisotropic solution, even if the string coupling diverges there. For v < 7. the backgrounds
approach, at both ends of the internal interval, which is of finite length, the anisotropic tadpole-
free solutions of I, and the string coupling diverges at least at one end. For v > ~, there are four
types of solutions. They all approach an isotropic tadpole-dependent limit at one end, which
lies at a finite distance, while at the other end, which can lie at a finite or infinite distance, the
limiting behavior can be either isotropic and tadpole—dependent or anisotropic and tadpole—free.
The string coupling diverges again at least at one end. In Section (] we discuss corresponding
cosmological models, with emphasis on their climbing or descending behavior. In Section [ we
describe the general setup to analyze more complicated vacua where a form flux and a tadpole

potential are simultaneously present. In Section [f] we describe in detail the exact solutions in



the presence of the orientifold tadpole potential with v = % and of a “magnetic” three—form
flux, and elaborate on their limiting behaviors. All these solutions include a finite interval and
approach a supersymmetric limit at one end, while at the other the limiting behavior can be
zero—flux tadpole—free isotropic or anisotropic, or again supersymmetric. The anisotropic case
allows a finite string coupling in the asymptotic region. Section [f] also contains a discussion of
the corresponding cosmological solutions, which can combine climbing and descending behaviors
with contractions of some set of coordinates. Section [[ contains our conclusions, and includes
tables summarizing the main properties of the solutions, together with some comments on possible
future developments along these lines. Appendix[Blcollects some properties of a Newtonian model
that recurs in our analysis, and finally Appendix [(] recovers the AdS x S vacua of [12] in the

harmonic gauge.

2 SYMMETRIC PROFILES AND EQUATIONS OF MOTION

In this section we describe our basic setup and the notation that we shall use for the solutions
of interest. We use the conventions of I, so that in the string frame the bosonic portions of the

low—energy effective field theories of interest include the terms

1 6_2BS¢
S = —— [dPav=G{e R+ 4(09)°] - T - F——2,) . (21
2(a) T / A G LR ’ 2(p+2)! paf - 2

In principle, one should consider different values of p, with the exponents that are collected in
Table [l This prototype action thus involves, in general, two types of fields aside from gravity:
the dilaton ¢ and a (p + 1)-form gauge potential B, of field strength H, 2. Here the “tadpole
term” sized by T' can describe, in principle, a non—critical sphere-level potential if v¢ = —2 and
D # 10, with T' ~ D — 10, a disk—level orientifold term if y¢ = —1 and D = 10, or a genus—one
contribution if vg = 0 and D = 10. In this paper, we shall focus on critical non—supersymmetric
strings in D = 10, and on the effects induced by an exponential potential determined by the choice
of v that dominates at weak string coupling, but here and there we shall set up the formalism for

generic values of D.

In the Einstein frame, with the metric g related to G according to

e
Gun = eD2 gyn , (2.2)

the action of eq. (Z.I]) becomes

—2Bp¢
S = —ps / P2/ =g [R L A . H’ (2.3)
o) %5 D —2

5oy e
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Model p Bs Vs
USp(32) (1,5) 0,0) 1

U(32) ILVy(—1,1,3,5,7) | 1, —1;(0,0,0,0,0) | —1

SO(16) x SO(16) heter. LV 1, -1 0

Table 1: String—frame parameters for the tachyon—free ten—dimensional string models. Roman numerals
refer to NS-NS branes, entries within parentheses refer to RR ones, and dashes signal couplings that are
not present in the low—energy effective theory.

with
D —2(p+2) 2D

= S 2.4
D_2 y Ys + ( )

5}7:53_ D—92°

The values of these quantities for the ten—dimensional tachyon—free string models are collected

in Table 2 and the corresponding field equations read

1 B 4 5 uo e~ 206p¢ 9
Run — 3 gun R = D_9 Mo OND + m (Hp-i-?)MN
1 4(8¢)2 6—25p¢ 9
2N Dy Fagp o e V)
8 /Bpe—25p¢ 9 ’
— 0y = — -
d(e—2ﬁpd> *%p-i-?) = 0. (25)
where
V(p) = Tel? . (2.6)

In the 0’B string there is also a five—form field strength, which satisfies the first—order self-duality
equation

H5 = *H5, (27)

whose contribution is not captured by the preceding actions. We shall return to this case shortly.

As we anticipated in the Introduction, we focus on metrics of the form (L.2]), which involve
three dynamical functions of a single variable r. Furthermore, as in [10], we shall find it convenient

to work in the “harmonic gauge”, whereby

B=(p+DA + (D-p-2)0C, (2.8)



Model P By ~
U932 (5 ERNE
U(32) I7V;(_171737577) %7_ %7 (_ 17_ %707%71) %

SO(16) x SO(16) heter. LV [ :

Table 2: Einstein—frame parameters for the tachyon—free ten—dimensional string models. Roman numerals
refer to NS-NS branes, entries within parentheses refer to RR ones, and dashes signal couplings not present

in the low—energy effective theory.

which will simplify the resulting equations. Moreover, we shall also explore counterparts of these
solutions that are obtained via an analytic continuation of  and z° to imaginary values. These

build anisotropic cosmologies and generalize previous results.

As explained in [I0], there are four types of symmetric tensor profiles compatible with the

Bianchi identities and the equations of motion,

Hpro = Hpio e 2Ppt B+ )A=(D=p=2)C 4.0 A A daP Adr
Hpr1 = hpp1 da® AL AdaP (2.9)
and
Hp—p-1 = ﬁD_p_l ¢ 2Pp—p-3¢+B—(p+)A+(D—p=-2)C dy* A ANdyPTPE A dr
Hp po = hppody' Ao AdyP P72, (2.10)

where the H, H, h and h are constants.

There are also special tensor profiles that are relevant for the type-0'B theory in ten di-
mensions. They demand a few additional comments, since the corresponding field strength is

self-dual. To begin with, one can start from the solution of the self-duality condition, which

reads
Hs = & (€B+4A_5CE(4) Adr + €(5)) , (2.11)
22
since Bg = 0 in this case. In a similar fashion, a second type of profile,
hs —5A+B+4C ~
Hs = —= (€5 + e *4TETC gr n¢€ , 2.12
= 575 O ) (212)

is the counterpart of eq. ([2.11]) for the h field strengths discussed above.



In the “harmonic” gauge (2.8)), the equations of motion for A, C' and ¢ deduced from eqgs. ([2.5])

are
T
Al = - D) 2B+ (2.13)
(D—P—=3) 9B+28,6—20D—p-2)C 12 (D=P—=2) 95_28, 16—2pt1)A;2
R H R p—1 p+1) h
- 2(D—-2) ‘ pr2 T 2(D —2) ¢ p+1 >
T
o’ = — DD e2Brve (2.14)
(P+1)  2B128,6—2D-p-2)C1p2 p 2B 28p_16—2(pt1)Ap2
- e g2, - £ p—1 p+1)Ay,
2(D — 2) P2 T 5D _2) ¢ P
¢// _ T7(§_2) e2B+’yd> (215)
D -2 (D -2
N By ( - ) (2B+26,0-2D-p-DCp2 | Bp 1(8 ) 2B =281 0-20+DAp2

Moreover the equation for B, which is usually called “Hamiltonian constraint”, reads

p+ 1A pA + (D—p—-2)0"1 + (D —p—2)C"[(D—p—3)C"+ (p+1)A']
4(¢/)2 + T62B+'y¢

D -2
1 1
4 _625p¢+2B—2(D—p—2)C H§+2 o 56—2ﬁp71¢—2(p+1)A+2B h?H_l =0. (216)

Notice that this system has an interesting discrete symmetry: its equations are left invariant

by the redefinitions

[A,C, p] +— [C,A, D—p—3],

[H§+27 Bp; h129+17 /Bp—l] A [_h?H-lu —Bp—1; _H§+27 _/Bp] . (2.17)

Two special cases, related to the type—0’B string, must be treated separately, since they involve
fluxes of the self-dual five—form field strength, for which we refer the reader to eqs. (2I1]) and
[212]), and also to I and [I3]. The complete equations of motion for the first case are

1

1 T
Fa = g5 (M) + 5000050 + 57 0w 219

and their reduced form for the class of metrics of interest in the “harmonic” gauge B = 4A + 5C

and for the symmetric Hj profile of eq. (2I1]) reads

H? T
4" — s 8A 1 2B+4~¢
g ¢ 8¢ ’
H? T
o - —?568‘4 o §62B+7¢>’
¢’ = gT e2Bre (2.19)



The corresponding Hamiltonian constraint is
H? T
3(A) + 104°C + 5(C) = = (¢)° — 228 — Z2Bre, (2.20)

The counterpart of these results for the h,41-fluxes corresponds to p = 4, and in this case

h? T
AT — 5 8C - 2B++v¢
8 ¢ 8¢ ’
h?2 T
o' = _§5€80 . §62B+fy¢,
¢ = gT e2Bre (2.21)

while the Hamiltonian constraint becomes

2
() + s gso T 2piq0 (2.22)

5(A) + 104'C + 3(C)° = o :

1
8
3 VACUUM SOLUTIONS WITHOUT FORM FLUXES

We can now see how a tadpole potential affects the vacuum solutions of supersymmetric strings
described in I that do not involve form fluxes, which are also reviewed in Appendix [Al The

following discussion applies to all three non—tachyonic models in ten dimensions.

Egs. (ZI3)—(ZI%) simplify considerably in the present setting and become, in ten dimensions,

T
A" = — g 62X,
T
C// — _ g er,
¢" = Tye?X, (3.1)
where
X = (p+1)A+(8—p)C’—|—%¢. (3.2)

Note that the harmonic gauge condition translates into
_ Y
X =B + 3 o . (3.3)

The r.h.s.’s of the three equations in ([B.1]) are all proportional, and consequently the new variable

X satisfies
X// —

2|

(v? = 22) e, (3.4)

10



where
Yo = 5 (3.5)
the value that pertains the two ten—dimensional orientifolds. We thus come across the quantity

T
A = = | -2

5 : (3.6)

which will play an important role in ensuing analysis. The introduction of X reduces the Hamil-
tonian constraint of eq. (Z.I6]) to

(¢)?

S+ Te?X =0, (3.7)

2
(x=24) - w+n@) - 6-n(C) -
but the four variables X, A, C' and ¢ are clearly not independent.

The form of the original equations (B.I)) now suggests to work with X and with the additional

combinations

whose equations of motion are simply

V" =0,
w" = 0. (3.9)
Notice, however, the linear relation
X+(8—p)V—%W:—4(72—73)A, (3.10)

so that the three variables (V,W, X) are not independent in the special case v = ~. that is
relevant for the orientifold models of [5, 6], which is to be treated separately. Let us now begin

our analysis from the special case v = ..

3.1 VACUUM SOLUTIONS WITH 7 =7, = 3
For v = 7. = 3 eq. (B4) reduces to
X" =0, (3.11)

so that
X = Br + B, (3.12)

where [ and By are a pair of constants, and it is now again convenient to distinguish two cases.

11



3.1.1 THE SPECIAL CASE =0

The special case 8 = 0 results in technically simpler solutions,

T07‘2

A = — A A
16 + 17"1’ 2
T2

c = - ig + Cir 4+ Oy,

where —oo < r < +00, the A; and C; are constants and
Ty = Te*
while the condition X = 3y determines

¢ = ETOTQ + %[50 —(p+)(Arr+A2) — (8=p)(Cir+C2)] .

Finally, in view of eq. (B3], the harmonic gauge translates into

3 9
B=-70+h = —1—6T0r2 + (p+ 1)(A17r + A3) + (8 —p)(Cyr +Cy)

and taking these results into account the Hamiltonian constraint reduces to

9Th

(8—p) (A1 — C1)* = brl)

It can be solved consistently within this family only for p < 8, and letting

b b
A1:a+§7 Clza_§7
it determines
9T
b =+ —-———.
(p+1)(8—p)

Using the preceding results this family of solutions can be cast in the form

To r2

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

_9 2 —(7— _3 — — -
d82 — ¢ sTor? +18ar— (7T—2p)br 2¢2+2ﬁ0d,r,2_|_e s— +2ar (ebrd$2_|_ e brdy2) ,

b — e¢ge%Tor2—12ar+%(7—2p)br

)

(3.20)

and, as we have stated, they only exists for p < 8. The special tadpole-free solutions found in

Section 5 of I with A; = (4 are recovered in the limit Ty — 0.

These solutions apparently depend on three arbitrary parameters, 8y, a and ¢o. However, in

the presence of a non—vanishing tension 7', one can eliminate the contributions proportional to a

by a translation of r, a redefinition of ¢9 and independent rescalings of the x and y coordinates.

12



One is then left with ¢ and Sy, which only appears in the combination re®, so that a rescaling
of r can eliminate By altogether. All in all, these solutions can be presented in the form

2

ds? — e 8Tr*—(T=2pbr—362 g2 o =75 <ebrdx2+ e—brd?j2> 7

¢ b2 TP+ 5 (T-2p)br

e , (3.21)

where b is now as in eq. (3.19) with Tj replaced by T', so that they depend on a single parameter,
¢2. Alternatively, one can choose in eqs. B2I) By = %@, after removing a, so that only the
combination Te3 %2 enters the preceding expressions. The system is then invariant under shifts of
¢9 combined with corresponding multiplicative redefinitions of 7', as expected from the original
form of the Lagrangian (2.4]). In conclusion, ¢9 is the only essential parameter on which this class

of solutions depends.

For large values of r, the terms depending on the tension 7T clearly dominate and, letting

u = ealr’ (3.22)

ds® =~ e~ (d2® + dg*) + e 2" ii”
N 3Tu
u du2
N _u 2 ) — 2
~ 0 (det + dgt) +oem 2
e = v, (3.23)

since % u + logu +log3d ~ % u for large values of u. The end result is the asymptotic form of

the nine-dimensional Dudas—Mourad vacuum of [IT] at its strong—coupling end, and in terms of

u

the proper length & ~ e ,

ds* ~ & (d? + dy?) + d€?,
e ~ €75 (3.24)

where & = 0 at the boundaries, and where the dependence on T was eliminated by a further
rescaling of £. Note that this is also, surprisingly, the isotropic strong—coupling solution obtained

in I in the absence of tension, which is briefly reviewed in Appendix [Al

In these anisotropic spacetimes, the length L in the r—direction is finite in the presence of a

non—vanishing tension 7', and is given by

[e'e) _ 2
L = / eBdr = g r e<P(+71)2(g)*P) . (3.25)

—00



At the same time, the effective (p 4+ 1)-dimensional Planck mass can be finite if the y’s describe

an internal torus, and then

(o]
ml}.;l_(;ﬂ) = mgl(lo) Vi e 192 / dr ¢~ T+ 2r(p=4)
—00
. 9(p—4)2
_ m%l(lo) Vi e~ 192 /% ewFNE-p) | (3.26)
Consequently
-1 3 3 (p—5)(5p—19)
Miipen) = 7 Mpiao) Vo Le T (3.27)

and the factor is of order one for 2 < p < 6 and of order 10 or so for p = 1 and p = 7. However,
in the three non—tachyonic ten—dimensional models there is strong coupling at both ends, since

T>0.

This simple example is quite instructive. The key issue is that a positive tension translates, in
general, into a convex dilaton profile, and increasing ¢ is tantamount to increasing even more the
effective tension, which is determined by 7" €Y ®, with positive values of v in all cases of interest for
ten—dimensional strings with broken supersymmetry. The dilaton profile has a minimum value in
the interval, and one can choose ¢ to obtain a small string coupling in a wide region away from

the ends, where the effects of the tension pile up and the string coupling diverges.

These solutions are vacua of non-supersymmetric strings that have a (p + 1)-dimensional
Poincaré symmetry. They only exist for p < 8, since they require two independent sets of x
and y coordinates. In particular, for p = 3 one gets a vacuum with four—dimensional Poincaré
symmetry that, when combined with an internal torus, has an effective four—-dimensional gravity.
The special form of the Hamiltonian constraint implies that these vacua cannot be isotropic and
do not admit cosmological counterparts, which would require a continuation of A; and Cy to
imaginary values. When 7" = 0, one cannot remove the constant a in egs. ([8.20]), and one recovers

the two—parameter family of tadpole-free solutions reviewed in Appendix [Al

3.1.2 SOLUTIONS WITH 3 # 0

If B # 0, up to a reflection of the radial coordinate one can confine the attention to positive values

of B. X acquires the linear term in eq. (812]), and now Sy can be absorbed by a translation of r.

14



A and C are determined from eq. (B1]), and read (—oo < 7 < 00)

T e2B7
T 287
= - 3 —52 + Cyr + Cy. (3.28)
The definition of X in eq. (B2) then determines
3 6257*
6 = gTF—i—qﬁlr—l—qﬁz, (3.29)
with
4
o1 = 3B - (+DA - B-p)C1],
4
by = — g[(er 1A + (8—p)Cs] . (3.30)

and finally the harmonic gauge condition F' = 0 determines

9 e2Br

B=—nTS5 48— S+ o). (3:31)

Note also that As and Cs can be eliminated from the metric by rescalings in the x and y directions,

while their combination ¢9 remains in ¢ and B.

These solutions are to be considered again on the whole real r axis. All r—dependent terms
drop out of the Hamiltonian constraint (B), which reduces to a quadratic relation among the

three constants Ay, Cy and S, or equivalently Ay, C7 and ¢y:

4p 2 2 88-p)
= |pA _ _ . 32
S+ D) pAr +(8—-p)Cy P (o (3.32)

This expression, which should be used for p # 0, is independent of T, and coincides with a
corresponding result that emerged in [10] for vacua of supersymmetric strings. It can be cast in

the two equivalent forms

- = P+ DAL +2(p+1)(8 = p)AiCr+ (8 - p)(T—p)CT (3.33)
and ,
DL oA+ (-0 = [+ DA + 8- p)Cf (3.34)

which can also be used for p = 0. This last form is also discussed in Appendix [Al

Eq. B3] determines /3, which is assumed not to vanish for the present class of solutions, as

5= 261+ (p+ DAL+ B-p)C1, (3.35)
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and consequently A1 = C1 = ¢1 = 0 is not an acceptable choice.

These results reveal an important property of these “critical” vacua for v = % and B # 0:
given a solution of the T = 0 case, and thus an angle 0 in Appendiz [4l, eq. (B38) determines
a corresponding value of B, and eqs. (B28]) and B29) determine a solution of the system in
the presence of the “critical” tadpole potential with v = .. These “critical” solutions are thus
dressings of those for 7' = 0, and yet this modification has the crucial effect of leading to r—

intervals of finite length, as we can now see in detail.

M)

3.1.2.1 THE DUDAS-MOURAD ISOTROPIC SOLUTION FOR 7 = 3

Let us begin our analysis from the most symmetric case, p = 8. In this case the Hamiltonian

constraint ([3.32]) gives
¢ = F124;, (3.36)

and only the upper sign gives a non—vanishing § in eq. (830). In this fashion
3

and after letting

T 3p1r
v=Gg e drr (3.38)

and rescaling the x coordinates, the solution takes the form

d32 = e_%u% dm2 + 2 < e_%(u+¢0)du2
3T u2
e = eutoys , (3.39)
where © > 0 and X
607 °
e? = 2 <%> . (3.40)

One can now explore the behavior of this solution in the neighborhoods of the two boundaries,

starting from the one at u = 0. In this case, the additional substitution
€ ~ ut (3.41)
shows that this limiting behavior is dominated, as £ — 0, by

ds® ~ €5da? + de?,

e ~ €3 (3.42)



This is again the isotropic tensionless solution of I reviewed in Appendix A, with a string coupling

that vanishes at & = 0.

On the other hand, for large values of u, where the powers have negligible effects compared to
the exponential terms, the background in eqs. ([3:39) approaches

u 1
ds’ = e 6dz® + T e” 3 udy? ,

e = ev. (3.43)

u

Letting now e” 1Y ~ &, or if you will in terms of the distance from the other boundary, the

background takes the form
ds® ~ £5da? + de?,

e ~ 5 (3.44)

This is again the isotropic tensionless solution of I reviewed in Appendix [A]l which emerges,
surprisingly, in a region of strong coupling. Remarkably, the tadpole ought to dominate at this

end of the interval, but has somehow negligible effects even there for v = ~..

Summarizing, we have described a one-parameter family of solutions depending on ¢q, as
in [T1]], which is indeed the Dudas—Mourad vacuum in a different parametrization. Its key property

in that the internal space is an interval of finite length

2 3 > 3 3 2 -3 1
(= —e_4¢°/ e 1%y ddu = — (3e¢°> F<—> , 3.45
3T 0 VT 1 (3.45)

which decreases for increasing values of ¢g. The corresponding nine-dimensional Planck mass is

finite, and is given by

3 4
2 3 © _a, _s 31/ 3\° 4
M) = Mhii0) | 37 € 4%/0 e 3%u vdu = m%l(m)m (1) F<§>
4

~ 0.09 mpyip) ¢ - (3.46)

[SU

3.1.2.2 THE ANISOTROPIC p < 8 CASES

As in I and in Appendix[Al it is now convenient to define

A C
ap = —1, ac = —1, ay = ﬁ, (3.47)
7 7 7

which are determined in terms on angle # in egs. (A.I3]), and then
B = u(l + sind) . (3.48)
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Note that the point & = 7 must be left out in the current treatment, since [ vanishes there.
Consequently the solutions can be parametrized as
T 62(1 + sin@)ur

A = — + aa(@)pr + Ay,
3212 (1 + sing)? A6) ?

9 T e2(1+sin9),ur 3
B = ——— ————~ + ur — —¢o,
211 sme? M 1™
T 62(1 + sin@)ur
Cc = - + ac(@)pur + Cy
3212 (1 + sing)>? c(6)n ?
3T e2(1 + sin@)pur 4
= —-— ——— + —sinfur + , 3.49
? T BWE U 1 mep T 3OMOMT A (349
where
4
o = = [+ DA + 8-p)C] . (3.50)

As for p = 8, these expressions suggest a convenient change of variable,
u = up e2(1 + sin@)pur 7 (351)

where

T
w = o - (3.52)
8 u?(1 + sind)

After rescaling the  and y coordinates, letting also

_ _2sin0
e = P2y, T (3.53)
the result can be finally cast in the form
u as(9) u ac(9)
ds? = e~ % yi+smo dz? + 3%6_%(“+¢0)uﬁ_2du2 + e & uT + sind T
2 sin @
e = Ut Py + ne) (3.54)

where 0 < u < oo and a4 (), and a¢ () can be found in eqgs. (AI3). Note that u has disappeared,

and these vacua have a two—dimensional moduli space: they are characterized by ¢y and 0 # .

For small values of u one can ignore the exponential terms and eqs. ([8.54]), and letting
1
&~ 2@ F smo) (3.55)
the solutions take the form

d32 ~ §2QA(9) de + §2QC(€) de + d§2 7

e ~ ggsind (3.56)
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Once more, this limiting behavior is captured by the anisotropic tensionless solutions of [10] that
are reviewed in Appendix[Al independently of the limiting behavior of the string coupling, which

can be zero, finite or infinite depending on the value of 6.

For large values of u, where the exponential terms in eqs. ([8.49) dominate, the solutions ap-
proach the nine-dimensional Dudas—Mourad vacuum of [I1] given in eq. ([8.43]), whose asymptotics
is again dominated by the strong—coupling tensionless solution of I reviewed in Appendix [Al To
reiterate, the behavior of the background near the two boundaries is captured by tensionless
solutions, independently of the limiting behavior of the string coupling. At one end the limiting
form of the metric is generally anisotropic while at the other end it is isotropic, and the string

coupling diverges at least at one end.

5
4
3
2L
/—1,

L L L L L L L L L L L L
0.0 0.5 1.0 1.5 20 25 0.0 0.5 1.0 15 20 25

Figure 1: Left panel: the length of the interval as a function of the angle 6 that parametrizes the ellipse
in eq. (A9). Right panel: the ratios of the effective (p+ 1)-dimensional Planck mass to the product of the
length L and the volume of the internal torus for p = 1,4, 7 (solid, dashed, dotted) as functions of 6. The
p =1 case has a bump but the other curves fall essentially on top of one another. The string coupling is

finite at the origin in the left portion of these curves and is infinite in the right portion.

The singularities at © = 0 and u = 400 are separated by a distance

1
2 3 4 2((1 + sin0) 1
L=/ ein(Z rl— = 3.57
37 ¢ <3> [2(1 n sin@)] ’ (3:57)

which is finite in the allowed region, where (1 + sin#) > 0, and if the y coordinates describe a

torus of parametric volume Vp, the reduced Planck mass, which is determined by

1—ay
» 2 -3 4 3 o -1
m?’l(;-i—l) - m%l(ﬁ-ﬁ-l)VT V37 ¢ * o0 /du 3u g (1t 20)

e~
l—ay

2 _3 3\ 1+3a 1—ay
_ 8 b 7o
= MR YT\ g e O<Z> YT gay
3 1+2(1—o gy T [ 1—3aA ]
8 2 1+3a 1+—C|{¢
= Mpip41) VTL(z) (4t e0) —i ) (3.58)
I [2(1+%a¢)]



is always finite in the region sin# > —1, where they apply. Some examples are displayed in fig. [l

These solutions are vastly different from those obtained for 5 = 0 in Section B 1.1l

3.2 VACUUM SOLUTIONS FOR 7 # %

In this case one can work with the three variables (V, W, X)), defined in egs. (8:2)) and (B8], which
are now independent and determine (A, C, ¢) according to

X + 8-pV - 3]

A = — :
107 )
(X + [8-p +4(* - D))V - 3W]
cC = — ,
4(y* = 72)
[MX +27@8-p)V — %ZW}
= . 3.59
’ R (529
One can write the solutions of eqs. (89]) for V' and W in the convenient form
N 2
Vo= Sr+ 2,
W = [( > (P17 + ¢2) + ¥(8 p) (vlr—i-vg)] , (3.60)
where v1, v9, ¢1 and ¢4 are ntegratlon constants. Consequently
1 1
A = §{ 2 — 2 +t3 [(8—29)111 —7¢1]7"} + ag,
1 1
c = 9{ = 5[(p+1)v1 +’y<;51]7’} + e,
¢ = 2ﬁ+¢1r+¢2, (3.61)

(7 - /70)
where a9 and ¢y are a pair of constants determined by vy and ¢9, whose detailed form does not

play a role, since they can be removed from the metric by rescaling the x and y coordinates, and

B is determined as
e X

y
B=X~-26=-1

B2

(P17 + ¢2) . (3.62)

2

7= e

Finally, X is determined by the Hamiltonian constraint, which reads

(X')? = eA?X + B, (3.63)
where
T .
A* = S =] e =sian (v - )
L[ o (P P\ o
E = Z{(Tg_l> 2ot - (5 -1 p+1)(1-%) off. (3.64)
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and the two case v < v, and v > 7, are to be discussed separately.

3.2.1 VACUUM SOLUTIONS FOR 7 < 3

Although this range of values is not realized in ten-dimensional String Theory, it is simple and
instructive to include it in our analysis. For 0 < v < v, = %, referring to Appendix [B] one can see
that the problem reduces to the one-dimensional dynamics of a Newtonian particle subject to a
positive exponential potential, so that its energy E must be positive. Up to a translation of the

radial variable r, we have

X = —log [Ap cosh <£>] , (-0 < r < +400), (3.65)
where
1
=—. 3.66
r=7 (3.66)
Letting now
A= % ) (3.67)
- %)
Ve
the allowed values of v; and ¢ can be parametrized via an angle 7, as
_ & 18\
o= 2 = - =2 cosy,
p Pe
o 12 2\ .
v = — = —y|——————sinn, 3.68
' P\ ornE—p " (3:68)
and the solution reads
) e e (87pg)u1r dmg + e *(P+91)v1r dy2 e—*y((j)l T+ ¢2) dr2
ds” = ’ 2X + 18X
[Ap cosh (%)} [Ap cosh <%)]
182'\/
e = [Ap cosh <£>] o ehrtor (3.69)

Notice that n parametrizes the anisotropy of this family of solutions, which become 9 + 1 dimen-

sional when it vanishes. We shall return to this case in Section [3.2.3

In fact, contrary to what eqs. ([3.69) may suggest, finite values of p can be removed also from
these solutions, rescaling r and the x and y coordinates and redefining ¢o, while taking into

account the definition of A in eq. ([B.67). This leads to

. 6_@ er:ﬁ + ew dy2 N e—w($1r+¢72) dr?
[A cosh(r)]** [A cosh(r)]'#* 7
18~y ~ ~
¢ = [Acosh(r)] " Pt (3.70)
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where v1 and qz~51 are defined in eqs. (3.68]) and depend on 7. This family of solutions thus depends
on the two parameters 1 and qz~52. On the other hand, the p — oo limit in eqs. ([B.69) is singular.

As r — 400, the exponential potential becomes negligible in eq. (.63]), and

Taking into account the definitions of A and ¢; in egs. (3:68) and (B57), one can then conclude

that, as r — 400,

—9)\[:|:1 - ,ch Cosn]r

Bdr ~ e dr (3.72)

so that the interval has a finite length for any choice of 1. At the same time,

1
¢ ~ 87/\T (:l:l - cosn) . (3.73)

so that the string coupling diverges only at one end and vanishes at the other if

|cos n| > 71 , (3.74)

C

while it diverges at both ends otherwise. Moreover, the reduced Planck mass is finite, if the

internal space is a torus, since

€ 8(8 —p)

¥ 1 .
1 —€e—cosn + ——= sin 3.75
TRV S 1)
is positive for 0 < p < 8.
In terms of the proper lengths, which behave as
£ ~ 6—9)\[11 — % cosn]r (376)

close to the two ends of the interval, so that they vanish there in all cases, the background

approaches

ds? ~ £00da® + E°CdiP + de

e~ % (3.77)
where the exponents are
2(8=p) ..
ot _ 2 [’Yc F oy cosn £ 2/ i) smn}
409 (Ye F v cosn) ’
2(p+1) ..
ot _ 2 [% T ycosn F e/ ey smn}
¢ 79 (e F 7 cosn) ’
2

Ye (Ve F ycosn)
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Taking into account that . = %, one thus finds that the two conditions

(p+1)ak + 8—plag =1,
1
(p+1)a%? + (8 —p)aF? + 3 a;? =1 (3.79)
hold, so that the two asymptotic regions are again described by Kasner—like flux—free backgrounds

for the T' = 0 case, with parameters 6% that depend on v and 7 as

(v F 7ecosn)
(Ye F 7 cosn)

sinft = — (3.80)

+
One can verify that, in all cases, the tadpole potential V(¢) ~ £7“ is sub-dominant as & — 0
with respect to the scalar kinetic term.

In brief, for all values of v < . there are two asymptotic regions, where the limiting behavior
is dominated again by particular flux—free solutions of the T = 0 system. The behavior at one

end determines 7, and thus also the behavior at the other end.

3.2.2  VACUUM SOLUTIONS FOR 7 > 3

For v > 7., a range that is directly relevant for the SO(16) x SO(16) string, the potential is an
inverted exponential and the sign of the energy F in eqs. (8.63)) is arbitrary, so that one must

distinguish three cases.
o [f the energy E = 0, a value which obtains if

_ 8 2o
o= j”"‘f’l\/ sroE e 1) (3:81)

one can see from Appendix [Bl that, up to a translation of the radial variable r, X is given

by

X = —log(Ar), (0<r<oo). (3.82)

The solutions then read

ds® e~ 15 (A7) (e S g + e e dyz)
+ (Ar)lw" e~ V@1t éa) g2

o _ — 7R st
e? = (Ar) @ e . (3.83)

There are singularities at the two ends of the range of r, » = 0 and r = oo, which are

separated by a finite (infinite) distance if ¢; > 0 (¢1 < 0). In the former case the reduced
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Planck mass is also finite if the internal space is a torus, while in the latter case it is infinite.
There is always strong coupling at one end (r = 0), and there is weak coupling at the other
end if ¢; < 0 and strong coupling if ¢; > 0. In the vicinity of the origin the background

approaches

ds® = (Ar)PM(da® + dy?) + (Ar)SN dr?

e = (Ar) % Al g2 , (3.84)
which is the isotropic ¢ = 0 solution. In terms of the proper length & = rINFL it becomes
ds® = g%(d:ﬁ +dy?) + dE>

¢ = £ et (3.85)

This is once more a Kasner—like behavior but, in contrast with what we saw in the preceding
cases, it is not the tensionless behavior of eqs. (AIH]), which is only approached as v — v,

and thus for A — —oo.
On the other hand, as r — +o0 for ¢; # 0, the limiting form of the background is
ds® ~ 04 da® + &° diff +d¢?
e? ~ g%, (3.86)
where
£~ e 20T (3.87)

so that £ = 0 at the right boundary when ¢; > 0 and £ = oo if ¢1 < 0, and

_ 1 8(8 —p) gl
e 5[”\/@(1‘?)]’
1 8(p+1) 2
S \/(8—p> (1 v2>] |
0y = —%. (3.88)

Taking into account that 7. = 2, one can verify that these expressions are of the form (AI3),

so that the » — oo limit is dominated by an anisotropic tensionless solution with

sinf = — 1 (3.89)

y

independently of whether the coupling is weak or strong there, and the two values of cos 6

correspond to the two branches in eq. (B:81]). Finally, for ¢; = 0 the limiting behavior is
captured by eqgs. (3.85]).
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e If the energy E > 0, as discussed in Appendix Bl one can choose the solution

X = —log [Ap sinh (g)} (r > 0) (3.90)

and work in the region 0 < r < co. There are two branches of solutions of the Hamiltonian

constraint in egs. (8.64]) parametrized by a real variable (,

18| A 1 -
¢ = ﬂ:—8’ | cosh( = —¢1,
PYe p
12 2|\l 1
v1 = — sinh —_— = -1, 3.91
' p ‘ p+DB-p) p (3:91)

where ) is defined in eq. (8.67]), and the background reads

2[Al
P17 (8—p)vy r —(p+1l)vy r
ds® = e 9 [Apsinh<1>} <e T dn? e o dy2>
P

S\ 118
+ [Ap sinh <—>} e~ Verr+e2) g2
p

eP17+ 2
e? = — (3.92)

[apsin(z)] 7

Notice that p can be removed from these solutions, rescaling r and the x and y coordinates,

and redefining ¢5. As a result, this is a two—parameter family of solutions, depending on
¢9 and (.

There are two singularities, at » = 0 and at » = 400. Near r = 0 the background approaches
the E = 0 solution in eqs. [B:84]) or, in terms of the proper length, in eqs. (8:85). The string
coupling diverges at r = 0, where the dominant behavior is isotropic and sensitive to the

tension 7.

At the other singularity, as r — 0o, the background can be conveniently expressed in terms

of the proper length

9| X|r 2 cos
£~ o213 coshe) (3.93)

)

which diverges in the lower branch and tends to zero in the upper branch, and reads

ds® ~ 04 da® + &0 dif +dg?

e? ~ % (3.94)
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where

2 2(8—p) ]
oo = 1|, 3sihC NG D
4 7 9 1 F %coshﬁ ’
[ 2 o 2(p+1) T
W 1|, zsinhe NG
© 79 1 F Lcosh¢ |~
4 —cosh( &+ &+
w = 3 e (3.95)

<% cosh¢ F 1)

In all cases, these coefficients satisfy eqs. ([B.79), so that the limiting behavior at the right end
is captured, once more, by the tensionless flux—free solutions of I reviewed in Appendix [A]
with

—cosh¢ =+ % 1 sinh ¢
S PR — cost = > .
7 cosh ¥ 1 3vIA 1 F o cosh ¢

This also happened for v < 4., but in that case this type of behavior was also approached

sinf = (3.96)

at the other end, while for v > 4, the limiting behavior at the other end is not captured by

tension—free solutions.

In the first branch (upper sign) £ — 0 as r — oo and the length is finite. Moreover, a, can
have both signs. When a4 > 0 the solutions exhibit a novel feature: a finite length in the r
direction can be accompanied by a string coupling that is also finite as » — oo. This occurs
when

cosh( < X, (3.97)

Ye

The solutions in the second branch (lower sign) have an infinite length in the r direction, so
that eqs. (3.94) apply for large values of £. In this case oy < 0, so that the string coupling

tends to zero at this end.

If the energy E < 0, letting £ = — p%, one can parametrize ¢; and v; according to
18|\
0 = J sinh ¢ ,
P e
12 2|l
vy = £ — cosh( /| ———F———, 3.98
p (P+1)@B—p) (395

so that v; cannot vanish and the solutions in this family are all anisotropic. In this case,

using the results in Appendix[Bl X can be presented in the form

X = —log [Apsin (%)} , (3.99)
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so that 0 < r < 7 p, and the metric and the string coupling read

2|
P17 (8—p)vy r —(p+1)vy r
ds> = e~ 79 [Apsin<z>] (e TG e dy2)
p

18|
+ [Ap sin <C>] e~ V(@17 +02) 7,2 ’
p

P17+ P2
e = € (3.100)

[Apsin(z)] cias

Now the interval has a finite length and the effective Planck mass is finite, but the string

coupling diverges at both ends. Once more, p can be removed from the solutions, rescaling
r and the z and y coordinates, and redefining ¢o. This background approaches the £ = 0
solution at both ends, so that the limiting behavior is isotropic, is not captured by tension—

free solutions and the string coupling diverges.

3.2.3 ISOTROPIC SOLUTIONS FOR 7 # 3

This class of solutions comprises the most symmetric backgrounds, which replace ten—dimensional
flat space in the presence of the tadpole potential (ILT]). They can be recovered from the general

ones letting v; = 0, but their special nature deserves a few additional comments.

e For v <~ there are the two options § = 0,7 in eqs. ([B.68]), which are equivalent up to an

overall reflection of the radial coordinate r € (—o0, 00), so that it will suffice to consider

~ 18X
o1 = : (3.101)
Ve
The background then becomes
5 _zuar da? 4+ dy? 6_7<%AT+$2> dr?
ds® = e e o T sx
[A cosh ()] [A cosh ()]
18~y e
¢ = [A cosh(r)] 7 Yetertor (3.102)

This class of solutions is a special case of what we discussed in Section B.2.1l It describes
compactifications on intervals of finite length, where the string coupling vanishes at the one
end and diverges at the other. The limiting behavior at both ends is captured, as was the

case for v = 4., by the isotropic tensionless solution of [I0] or Appendix [A]

(3.103)



£ is close to zero in both cases, but this value corresponds to r = —oc at one end and to

r = +oo at the other.
e For v > ~. there are two classes of solutions, since for £ < 0 there are no isotropic solutions.

— If the energy E = 0, the solutions are obtained from eqs. ([B:83]) letting v; = 0, and
read

18 [A|

A2

: (3.104)

ds> = 2 (d:z:2 + dy2) + r e~ 79 dr? |

_18'\/>\ ~
e¢ = r 7?”6‘1)2

where 0 < r < oo. They describe intervals of infinite length, and the string coupling

diverges at one end. Letting

~ 9A+1
S T 3.105
the preceding expressions become, for 0 < £ < oo,
278 de2
ds* = 97 (do® + dy’) + % :
¢ = £75 b2, (3.106)

after absorbing some multiplicative constants in rescalings of the (x,y) coordinates
and in redefinitions of qz~52. Contrary to what happens for v < ., the limiting behavior
of these solutions at both ends is not captured by tension—free solutions, and the

Kasner-like exponents satisfy the constraints of Appendix [Al only as v — ..

— If the energy E > 0, referring to the preceding section, there are two branches of

solutions with v; = 0, and thus ¢ = 0, for which

~ 18|
L B

= 3.107
P1 % ( )
The corresponding form of the background is
29 A7
ds2 = eT 7 [A sinh ()2 (dz® + dy?)
18~y A7
+ [A sinh ()] T Te e~ 792 gp? ,
b2 + 18\2\7“
¢ = £°°¢ (3.108)

18~ ‘)\| ‘

[A sinh (r)] ¢
In both branches, the string coupling vanishes as r — oo but diverges at » = 0. In

the first branch (upper sign) the length of the r-interval is finite, while in the second
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(lower sign) it is infinite. Close to r = 0 the limiting behavior is as in eqs. (3.106]), and
the string coupling is unbounded. On the other hand, as r — oo, the limiting behavior
is what we described in egs. (3.95]), so that it is captured, for the two branches, by the

isotropic tensionless solutions

ds® ~ & (da® + dy?) + d¢?

§
e ~ g3 P (3.109)

where in the first case £ — 0 and in the second £ — +oo. The string thus vanishes in

both asymptotic regions.

Summarizing, for v < «. the asymptotic behavior of these isotropic backgrounds at both ends
of the internal interval is captured by the tension—free solutions of I, although the string coupling
vanishes at one end and diverges at the other. The length of the interval is always finite, and
the solutions depend on one real parameter, ¢o. For v > ~., there are three types of isotropic
solutions. For F > 0 there are indeed two families of solutions, identified by the branches in
egs. (3I08), while the third type of solutions correspond to E = 0. The length is only finite for
one of the branches with £ > 0, while the string coupling vanishes at one end and diverges at

the other.

4 COSMOLOGICAL SOLUTIONS WITHOUT FORM FLUXES

We can now turn to the cosmological solutions, which can be obtained from the preceding results

via an analytic continuation.

4.1 COSMOLOGICAL SOLUTIONS FOR 7 = % AND 8 #0

There are cosmological counterparts of the solutions with 8 # 0, which can be obtained continuing

rtoi7, and Ay, C1 and ¢1, and thus also 3, to imaginary values. The end result is just an overall
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change of sign for T, so that

A = 3226;? + AT,
B = %—ZEZT + Bir,
c = 312%+017,
¢:_%%+¢1T+¢27 (4.1)

where the range of 7 is the whole real axis.

Let us begin to describe these cosmologies, assuming that 8 > 0. In this case, the Big Bang
lies a finite amount of cosmic time in the past, and the solutions approach quickly a universal

isotropic behavior for large positive values of 7. When the exponential terms dominate, the

relation
dt = eBdr (4.2)
integrates indeed to
28t ~ &P, (4.3)
since def ~ 28 eB dr, so that
ds ~ —dt? +15 (da® + dif?)
e ~ (281)712. (4.4)

Proceeding as in the previous section, one can recast these results in a form similar to eq. ([B.54)),

1L 9 oA ac
—

ds> = — 3%6%(“+¢0)u”1% du? + e6 u'ti% d7% + e6 u'ti% dgj?
o
RN ol 4s)
where
3T 287

Here the o’s correspond again to the points of the ellipse of eq. (A.9), and are given in eqs. (A.13).
The value ¢ = 7, which corresponds to ay = —%, would describe an isotropic descending solution,
but is excluded, consistently with [16]. Close to the initial singularity at u = 0, in terms of the

cosmic time,

ds? ~ —dt®* + 2 dz? + ?ecdy?

e? ~ e(zot%, (4.7
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and one recovers the behavior of the tension—free cosmological solution of [10].

The values of a4 within the range — % < oy < 0 correspond to the descending behavior, which
is possible in the anisotropic case also for v = <., while the values in the range 0 < ay < %
correspond to the climbing behavior. Moreover, ay = 0 is a novelty of these solutions, since in
that case the dilaton descends from a finite height.
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Figure 2: e (dashed), e© (dotted) and e? (solid) for a “critical” anisotropic climbing scalar cosmology
with aq < 0,ac > 0,4 > 0, where the space—time x—coordinates undergo a bounce (left panel), and for
an anisotropic climbing scalar cosmology with ay > 0, ¢ > 0, iy > 0, where all directions expand (right

panel).
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Figure 3: e# (dashed), e (dotted) and e? (solid) for a “critical” anisotropic descending scalar cosmology
with g < 0,ac > 0,4 < 0, where the space-time z—coordinates undergo a bounce (left panel), and
for an anisotropic descending scalar cosmology with a4 > 0,ac > 0,y < 0, where all directions expand
(right panel).

Summarizing, for 8 > 0 these cosmologies are generally anisotropic as the Universe emerges
from the initial singularity at a finite cosmic time in the past, but always approach an isotropic
expanding behavior for large values of the cosmic time. The two sets of coordinates can always
expand, or one set can first contract to then expand, and the climbing and descending behaviors
are both possible in the anisotropic case. On the other hand, if 5 < 0 these cosmologies are
generally isotropic and contracting as the Universe emerges from an initial singularity, but become
generically anisotropic for large values of the cosmic time. These solutions could describe, in

principle, dynamical compactifications of an internal torus if a4 > 0 and ac < 0, but the Big
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Bang lies an infinite amount of cosmic time in the past.

4.2 COSMOLOGICAL SOLUTIONS FOR 7 # %
There are also cosmological counterparts of these other families of solutions, with metrics
ds? = — 2Bdr? + 4dz? + ¢ dy? (4.8)

that can be obtained letting » — ¢ 7 and continuing ¢ and v; to imaginary values. In this fashion

the relevant equations become

(X)? = eA?eX + E, (4.9)
where
T
Az = 5 ‘72 - fYc2| )
e = sign(; —7°) ,
1 [(~? S 72 (p+1)B—p) -

The corresponding relations between X and the other quantities now read

A = 1{— (ﬂi + %[(8—19)?11 —Wl]f},

9 2= 2)
B = —% — 21T+ 6)
¢ = %{—% - %[(p+1)v1+7¢1]7},
¢ = 2ﬁ+¢1r+¢2. (4.11)

The sign of the exponential potential is thus reverted with respect to the spatial profiles, while the
constant term maintains the same form, after the independent variable and the old coefficients

are all continued to imaginary values. Let us now investigate the behavior of these models.

4.2.1 COSMOLOGICAL SOLUTIONS FOR 7y < 3

For v < 7, the Newtonian potential is a negative exponential while the third of eqs. (I0]) implies
that £ > 0, and one can capture the independent values of ¢; and vy via the trigonometric

parametrization of eqs. (B.68]). As before, we thus set E' = %. There are two classes of solutions
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where X spans the whole real axis, and one can confine the attention to the choice where X

increases as T < 0 also increases,

X = —log [Ap sinh <_—T>} (oo <7 <0). (4.12)
p
Then, defining again
1
A= ———, (4.13)
o1 - %)
as in eq. ([B671), the solutions for the metric and the string coupling for E > 0 read
9 e~ VP17 +¢2) 2 _y41T e (871)9)1)1 . de? + e 7(p+91)v1 - dy2
ds® = - wy T ¢ ° X ,
[Ap sinh(—%)} [Ap sinh(—%)]
18y A
T\ | %
e? = [Ap sinh <— —>] eI (4.14)
p
Notice that, from eqs. (Z14),
.

Koo ™~ ; ) X;0- ~ —log|Ar], (4.15)
and since 9A > 1 the latter limit corresponds to large cosmic time ¢ ~ (—7')1_9>‘, where the
Universe approaches the isotropic expanding geometry

22
ds® ~ — dt* + t9? (dz® + dy*) (4.16)
while the string coupling tends to zero as
_z2
e ~ t77 . (4.17)

This is actually the exact solution of the problem for £ = 0, in which case ¢; and v; must
also vanish. Indeed, all these anisotropic cosmologies approach, for large cosmic time, this ten—

dimensional counterpart of the isotropic Lucchin-Matarrese attractor [14].

On the other hand, 7 — —oo corresponds to the initial singularity, and the results are those

in eqs. B72) and [B.73]), up to the replacement of |r| with —7, so that the limiting behaviors of
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metric and string coupling are

2\ isaf1 4 2 .
ds2 ~ — (A—> e [ + Yo COSW];E—“{QE de (418)
p
2\
+ <i> [dfgeZ?)r(H—Jc COS”*‘%sinn)
Ap
4 dg2e227(1+%005n—%51nn)
=
18AT
e? ~ e (%) &= (5 o) | o)

These results indicate that in these cosmologies:

e there is always a Big Bang singularity in the finite past, since the integral

/_ :0 dreB(r)

is finite for any value of 7;

o descending scalar solutions, for which the string coupling diverges as 7 — —o0, exist for
values of 7 such that

x + cosn > 0.

C

The isotropic solutions with cosn = 1 are a special instance in this class;

e climbing scalar solutions, which emerge from the initial singularity with vanishing string

coupling, also exist in the complementary region

l+cosn<0.

Ve

The isotropic solutions with cosn = —1 are a special instance in this class.

e finite values of p can be removed from these equations, up to rescalings of the = and y
coordinates and up to a redefinition of ¢, for any value of 7. As a result, the solutions

depend only on 7 and ¢s.

Up to the interchange of the z and y coordinates, the independent cases are p =0, 1, 2,3, and
they all allow for A and C both increasing as cosmic time increases (a Big Bang singularity), or
one increasing and one initially decreasing (a bounce for one group of coordinates and a Big Bang
singularity for the rest). The plots in figs. @l and [ illustrate these types of behavior, which are

manifest in the special cases n = 0, £7, for both climbing and descending scalars.
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Figure 4: e (dashed), e¢ (dash-dotted) and e? (solid) for an anisotropic climbing scalar cosmology where

the space—time z—coordinates undergo a bounce (v = 0.2v.,n = —%’r) (left panel), and for an anisotropic
climbing scalar cosmology where all directions expand (y = 0.27.,n = —%) (right panel).
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Figure 5: e” (dashed), e“ (dash-dotted) and e (solid) for an anisotropic descending scalar cosmol-
ogy where the space-time z-coordinates undergo a bounce (y = 0.27.,7 = ) (left panel), and for an

anisotropic descending scalar cosmology where all directions expand (y = 0.27.,n = 7g) (right panel).

4.2.2 COSMOLOGICAL SOLUTIONS FOR 7 > 3

For v > ~., which is a case of direct interest for String Theory, the potential is a positive

exponential and the energy in egs. ([B.64]) must be positive. In this case the solution reads
18 [A|
ds?> = — [Ap cosh <Z>} e~ V1T +e2) g2
p

2|
P17 (8—p)vy T —(p+1)vy 7
+ e 79 [Apcosh<z>] (e T dr? e T dy2) ;
p

_187)\

Al
e? = {Apcosh <I>] % e T (4.20)
p

where 7 € (—00, +00), with the hyperbolic parametrization of eqs. (3.91]), which we display again

here for the reader’s benefit. We concentrate on the branch

18|\
o = — BN e,

Ve

12 / 2|\
v] = P sinh ¢ BEDG=p) (4.21)
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since the other, where ¢1 — —¢1, would simply obtain from this letting 7 — —7 and {( — —(.

Figs. [0 and [7 illustrate some interesting options for this class of cosmological models.
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Figure 6: e” (dashed), e“ (dash-dotted) and e? (solid) for an anisotropic four—dimensional climbing
scalar cosmology where space-time expands while the y internal space contracts (v = 2., = 1.2) (left

panel), and for an anisotropic climbing scalar cosmology where all directions expand (y = 27.,¢( = 0.1)

(right panel).

Figure 7: e? (dashed), e“ (dash-dotted) and e? (solid) for an anisotropic descending scalar cosmology
where space—time expands while the y internal space contracts (y = 1.6v., ( = 1.2) (left panel), and for an
anisotropic descending scalar cosmology where all directions expand (y = 1.19,, = 1.2) (right panel).

For large values of |7

18| Al i I7|
ds? ~ — <%> 618\)\|[1 + %mgm’ cosh(]7 =792 g2 (422)

21 e .
4 (A 14 di2e 2|\ |7 (1—}—,%C signT cosh ¢+ fa(séiili)k\ signT sinh C)
2

)

27| (1+%sign7‘ cosh ¢— 9(88(57:)1‘)/\‘ signT sinhC) 7

+ dij*e
Ao\~ s
2 _ By g
€¢ ~ €¢2 <7p> B e P e (’Yc +signT COShC) , (423)
and one can see that
e this class of metrics has two singularities. The first, at 7 = —o0, is reached within a finite
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amount of cosmic time, and models the Big Bang, while the second, at 7 = +o0, is reached

within an infinite amount of cosmic time;
e the string coupling tends to zero as 7 — 400 for all values of (;

e the string coupling tends to zero as 7 — —oc if

i > cosh( ,

[

so that in this range the system exhibits only a climbing behavior. If % = cosh (, the string
coupling starts from a finite value at the initial singularity. In the isotropic case ¢ = 0, and

one recovers the result of [I6]. On the other hand, in the complementary range

o < cosh(,

[

which is available in these anisotropic cosmologies, the system exhibits a purely descending

behavior;

e p can be removed from these equations, up to rescalings of the z and y coordinates and
up to a redefinition of ¢9, for any value of v. As a result, the solutions depend only on ¢
and ¢o. However, the potential for X is now positive, and consequently the p — oo limit is

singular.

5 INCLUSION OF FORM FLUXES

We can now consider the general equations of Section 2] allowing for both form fluxes of the
H-type and dilaton tadpoles. The corresponding results for the h fluxes are determined by the
discrete symmetry in eq. (2I7).

5.1 NEW VARIABLES FOR THE GENERAL CASE : H-FLUXES

The reduced form of the system of eqs. (2I3) — ([ZI8) is now

Ao g 2lprAtE-rog e | (71;6@ (2ot DA 2
oo g 2p+DA+E-P)C+ ] _ % (2ot ) Al 2
¢ = T 2lerDATE-DI0+50] L g 2B d+(p1) A HZ,,, (5.1)
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and suggests to work in terms of three new variables
U = ¢+ {llp+Dy—26]A4 + [(T—p)y +25,]C},
= (p+1)A+ g(b—i-(S—p)C,

Z = (p+DA+B,6. (5.2)

The last two are the combinations that enter the exponents, while the first is a combination of

the original functions that is still linear in r, as we shall see shortly.

Inverting these relations gives

4 = ﬁ{%){[%ﬁ(?—p)ﬂ —2(8—p)BpU—Z[v[2ﬁp+(7—p)’v]—2(8—p)]},

c = ﬁ{X[%p[?ﬁp—’v(pH)]+2(p+1)}
+ Z[v[—25p+v(p+1)] —2(p+1)} +(p+ 1)U(2Bp—7)} : (53)
¢ = %{(S—P)(P‘Fl)(f— [2Bp+’y(7—p)}(p+1)X + [16/817_'7(17""1)]2} ,

where the denominator is

Den = —(p+1) [7[261) +(7=p)y] —2(8 — p)} + 2 By [18@) - (p+ 1)7] . (5.4)

When this expression does not vanish, letting

a:4(72_702)7 b:8ﬁp7_p_17
7 — 1
¢ = 2[8@% 4 (p)#] 7 (5.5)
where, as before, 7. = %, one can reduce the system to
U’ = 0 (5.6)
2
X" — zaezx + @bezz
8 16
2
" — zbe2X + @cezz
8 16 ’
while the corresponding expression for the Hamiltonian constraint reads
1)(8 —
C(X/)2 4 a(z/)2 o 2bX/ Z/ . (p+ )2(8 p) (U/)2
1 H?
+ g(b2 — ac) <T€2X + pTHeQZ> =0, (5.7)
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and determines (U’)2. Notice that for 7 = 4, the preceding equations take a simpler form, with

a =0, ¢c =16, and for RR forms b = 2(p — 5). These considerations will play a role shortly.

If the denominator in eq. (5.4]) vanishes, one can still reduce the system to the last two equations

for X and Z in (0.0]), while ¢ can be obtained solving
¢ = Tvye*™ + B, H ,e*? . (5.8)

In this case, after obtaining X and Z, (¢’)? can be determined by the Hamiltonian constraint,

which reads

C(X/)2 + a(Z/)2_2bX/Z/ _ (p+1)2(8_p)(¢/)2
2
+ %(b2 — ac) <T€2X + %622> =0. (5.9)

5.2 SPECIAL CASES

These systems are complicated, and exploring their solutions requires in general numerical tech-
niques. Therefore, we shall now concentrate of the special cases that arise in String Theory, one
of which is remarkably far simpler than one could have naively anticipated. Let us now record

these special forms of the preceding expressions.

5.2.1 USp(32) AND U(32) ORIENTIFOLDS WITH p = 1 “ELECTRIC FLUXES”

In this case v = % and (a,b,c) = (0,—8,16), so that the equations become

u’ =0
X" = _£3262Z
2 )
Z// — —T€2X + H32€22
H2
0 = 2(X)? +2X'7 — g(U’)Q + Te?X + 7%22. (5.10)
The original variables are then determined as
7 1 1
A= —U - =X —A
16U 2 " 87
) 1 1
= - — =X -7
¢ 16U + 2 + 87
7 3
= -U —-2X - -Z. A1
6 = U i (511)
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5.2.2 SO(16) x SO(16) HETEROTIC WITH p = 1 “ELECTRIC” FLUXES

In this case v = g and (a,b,c) = (16,8,16), so that the equations are

U// — O
X" = 2Te2X 4 i??ezz
2 )
7" = Te*X 4 Hie?? | (5.12)
0 = l(U/)2 _ g[(X/)2—X/Z/+(Z/)2] + T€2X + ES?EQZ
24 3 2 .
The original variables are then determined as
1
A = (U~ 16X + 262) ,
1
C = —U - 22
16( ) )
1
¢ = Z(=TU + 16X - 27) . (5.13)

5.2.3 USp(32) AND U(32) ORIENTIFOLDS WITH p =5 “MAGNETIC FLUXES”

In these cases v = % and (a,b,c) = (0,0,16). As a result, U becomes linearly dependent on X

and Z, while the non—trivial second—order equations reduce to the far simpler form

X" =0,
7" = H?e?7 . (5.14)
The dilaton is then determined by
P = gTe” + H; e2? (5.15)

and the corresponding Hamiltonian constraint reads

2 1 H?
X (X' + 72— 24) - 5 (20 + Te?™ + 77e22 =0. (5.16)

Finally, the original variables are related to (X, Z, ¢) according to

A =

27 — ¢ 024(X—Z)—¢

17 , B (5.17)

This case is remarkably simple, and will be discussed in detail in the next section.
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5.2.4 SO(16) x SO(16) HETEROTIC WITH p =5 “MAGNETIC” FLUXES

In this case v = % and (a,b,c) = (16,—16,16), and therefore the non—trivial second-order equa-

tions are
X" = 2Te** — Hie?Z,
Z' = —2Te?* 4+ H2e%7 | (5.18)
which imply that
X"+ 7" =0, (5.19)

and the dilaton equation is then
H2
¢ = ST e?X - L 27 (5.20)

The original variables are related to (X, Z, ¢) according to

AL 2240
12
4 X-7zZ) -7
C = ( 1; ¢ , (5.21)
and the Hamiltonian constraint is
2 / / l ! 1 2 2X H72 2Z
The special case X = —Z can be related to elliptic functions.

5.2.5 U(32) ORIENTIFOLD WITH p = 3 “DYONIC” FLUX

This model affords this additional option, since its massless spectrum includes a self-dual five—
form field strength. In this case the non—trivial second—order equations follow from the special

system of egs. (2.I9]), and read

U// — 0’
H2
X" = 75 27
s ¢
T H?
Z// = - 5 €2X + 75 €2Z, (523)

while the Hamiltonian constraint of eq. (220) becomes
H2
—5U"? + 8(X)? + 4X' 7 + Te?* + fe” =0, (5.24)
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The original variables are then determined as

1
A = -Z
4 )
1
C = ;(-6U +8X + 7),
= 10U — 12X — 3Z. (5.25)

6 ORIENTIFOLDS WITH TENSION AND FLUX: AN EXACT SOLUTION

In terms of the variables X, Z and ¢, the equations for D = 10, p = 5 and the “critical” orientifold

coupling v, = % reduce to the simple form discussed in Section (.2.3] Consequently
X = xir + 2o, (6.1)

where z1 and z9 are two integration constants. The equations for Z and ¢ are then

Z// — ‘FI’?eQZ7
" 3 2z 217 1 "
¢ = 3 Te "2 e*™1" + 3 zZ". (6.2)

The function Z is determined by the first of egs. (6.2]), and also by the Hamiltonian constraint.
The dilaton profile ¢ is obtained by quadratures, integrating the second of eqs. (G.2]), while A,
B and C follow from eqs. (B.I7) and the harmonic gauge condition. As before, one must treat

separately the case 1 = 0.

6.1 THE SPECIAL VACUA WITH z; = 0

Now the second of egs. ([6.2]) integrates to

1 3
¢ = §Z+ZT6“2T2+X1T+X2, (6.3)

where x1 and yo are two more integration constants. The Hamiltonian constraint then becomes
(Z')? = H%e?? 4 2Te?™2 . (6.4)

Referring to Appendix [Bl this energy conservation condition corresponds to a particle with posi-

tive energy subject to an inverted Newtonian potential, and therefore the solution reads

Z = —log [H7psinh <£>] , (6.5)
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with
1
2

Notice that these solutions are deformations, induced by the tension 7', of those in Section 6.1 of

= 2Te?™ = 2Ty . (6.6)

[10]. Alternatively, they are deformations, induced by the form flux parametrized by Hy, of those

in Section Bl The solution for Z translates into

1 3Tyr?
¢ = — 5log [HH) sinh (%)] + ZT + xar + Xxz, (6.7)

while egs. (5IT) and the harmonic gauge condition lead to

1 r Tyr? 1
A = — —1 H i h - - TS
5 og[ 7 p sin <p>] 16 B ar + xa)
T 2
B = g log [Hﬂ) sinh <£>} _ 2 12; — g(xlr + x2) + 72, (6.8)
3 i r Ty r? 1 1
C = =log|H h{- — - — — (dxy — . 6.9
3 og[ 7 p sin (p)} 16 12X17" + 12( T2 — X2) (6.9)

Therefore the metric is

3

2 » 2
ds? = e N & T T [HH) sinh <C>] L edm dy*
[H7p sinh (%)} ! r
3
9Ty r2  3(xq1r ) 1
boem TR T g2 [Hﬂ) sinh <Z>} dr? (6.10)
p

while the string coupling and the form field strength are

63T2T2+X17’+X2
€¢ = T 5
. )12
[H7,0 sinh <5>}
Hregd
H7 = e¢*(H7dy1dy2dy3> = T dr . (6.11)

2
[H7,0 sinh <£>}
6.1.1 PROPERTIES OF THE SOLUTIONS

Let us first note that the solutions in the preceding equations contain an inessential parameter,
9, which can be eliminated rescaling the variable r and the x and y coordinates. As a result,

these vacua depend on two independent parameters, y; and ya.

A second property is th