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ANALYSIS OF THE HODGE LAPLACIAN ON THE HEISENBERG GROUP

DETLEF MÜLLER, MARCO M. PELOSO, AND FULVIO RICCI

Abstract. We consider the Hodge Laplacian ∆ on the Heisenberg group Hn, endowed with a
left-invariant and U(n)-invariant Riemannian metric. For 0 ≤ k ≤ 2n + 1, let ∆k denote the
Hodge Laplacian restricted to k-forms.

Our first main result shows that L2Λk(Hn) decomposes into finitely many mutually orthog-
onal subspaces Vν with the properties:

• dom∆k splits along the Vν ’s as
∑

ν(dom∆k ∩ Vν);
• ∆k : (dom∆k ∩ Vν) −→ Vν for every ν;
• for each ν, there is a Hilbert space Hν of L2-sections of a U(n)-homogeneous vector bundle

over Hn such that the restriction of ∆k to Vν is unitarily equivalent to an explicit scalar
operator.

Next, we consider LpΛk, 1 < p < ∞, and prove that the same kind of decomposition holds
true. More precisely we show that:

• the Riesz transforms d∆
−

1

2

k are Lp-bounded;

• the orthogonal projection onto Vν extends from (L2 ∩ Lp)Λk to a bounded operator from

LpΛk to the the Lp-closure V
p
ν of Vν ∩ LpΛk.

We then use this decomposition to prove a Mihlin–Hörmander multiplier theorem for each
∆k. We show that the operator m(∆k) is bounded on LpΛk(Hn) for all p ∈ (1,∞) and all
k = 0, . . . , 2n+ 1, provided m satisfies a Mihlin–Hörmander condition of order ρ > (2n+ 1)/2.
We also prove that this restriction on ρ is optimal and extend this result to the Dirac operator.
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Introduction

The theory of the Hodge Laplacian ∆ on a complete Riemannian manifold M shows deep
connections between geometry, topology and analysis on M . While this theory is well developed
in the case of functions, i.e., for the Laplace–Beltrami operator, much less is known for forms
of higher degree on a non-compact manifold. In particular, one basic question that one would

like to answer is whether the Riesz transform d∆− 1
2 is Lp-bounded in the range 1 < p < ∞.

According to [St], this property is relevant for establishing the Hodge decomposition in Lp for
differential forms, cf. [ACDH, Li, Loh] and references therein.

In a similar way, functional calculus on self-adjoint, left-invariant Laplacians and sublaplacians
L on Lie groups and more general manifolds has been widely studied, cf. [A, An, AnLoh, Ch,
ChM, ClS, CoKSi, He, HeZ, Hu, Mar, LuM, LuMS, MauMe, MS, Si, Ta]. A key question
concerns the possibility that, for a given L, a Mihlin–Hörmander condition of finite order on
the multiplier m(λ) implies that the operator m(L) is bounded on Lp for 1 < p <∞. A second
fundamental question is the Lp-boundedness, in the same range of p, of the Riesz trasforms

XL− 1
2 for appropriate left-invariant vector fields X [CD, CMZ, GSj, Loh2, LohMu].

Also in these situations, not much is known for operators which act on sections of some
homogeneous linear bundle over a given group. The most notable case is that of sublaplacians
associated to the ∂̄b-complex on homogeneous CR-manifold [CoKSi, FS]
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In this paper we consider the Hodge Laplacian ∆ on the Heisenberg group Hn, endowed with
a left-invariant and U(n)-invariant Riemannian metric, and give answers to the above questions.

The rich structure of the Heisenberg group makes it a natural model to explore such questions
in detail. First of all, it has a natural CR-structure, with a well-understood Kohn Laplacian
[FS], and nice interactions with the Riemannian structure [MPR1].

For operators on Hn which act on scalar-valued functions and are left- and U(n)-invariant, the
methods of Fourier analysis are quite handy to study spectral resolution, and sharp multiplier
theorems for differential operators of this kind are known [MRS1, MRS2]. This class of operators
is based on two commuting differential operators, namely the sublaplacian L and the central
derivative T , in the following sense:

– the left- and U(n)-invariant differential operators on Hn are the polynomials in L and T ;
– the left- and U(n)-invariant self-adjoint operators on L2(Hn) containing the Schwartz

space in their domain are the operators m(L, i−1T ), with m a real spectral multiplier.

The same methods also allow to study operators acting on differential forms, like the Kohn
Laplacian, which have the property of acting componentwise with respect to a canonical basis
of left-invariant forms, cf. (1.4).

On the other hand, the Hodge Laplacian restricted to k-forms, which we denote by ∆k and
whose explicit expression is given in (1.22) below, is far from acting componentwise.

Nevertheless, we are able to reduce the spectral analysis of ∆k to that of a finite family of
explicit scalar operators. We call scalar an operator on some space of differential forms which
can be expressed as D⊗ I, i.e., which acts separately on each scalar component of a given form
by the same operator D.

We do so by introducing a decomposition of L2Λk(Hn) into finitely many mutually orthogonal
subspaces Vν with the following properties:

(i) dom ∆k splits along the Vν ’s as
∑

ν(dom ∆k ∩ Vν);
(ii) ∆k : (dom ∆k ∩ Vν) −→ Vν for every ν;
(iii) for each ν, there is a Hilbert space Hν of L2-sections of a U(n)-homogeneous vector

bundle over Hn such that the restriction of ∆k to Vν is unitarily equivalent to a scalar
operator mν(L, i−1T ) acting componentwise on Hν ;

(iv) there exist unitary operators Uν : Hν −→ Vν intertwining mν(L, i−1T ) and ∆k which
are either bounded multiplier operators uν(L, i−1T ), or compositions of such operators
with the Riesz transforms

R = d∆− 1
2 , R = ∂�− 1

2 , R̄ = ∂̄�
− 1

2 .

This is done in the first part of the paper (Sections 3-8), and we refer to this part as to the
“L2-theory”. The main results in this context are Theorems 8.1 and 8.6, resp., where we obtain
the decomposition of L2Λk into the ∆k-invariant subspaces Vν , respectively for 0 ≤ k ≤ n and
n+ 1 ≤ k ≤ 2n+ 1.

This decomposition is fundamental for all the second part of the paper, which we are going
to describe next. A quick description of the logic and the basic ideas in the construction of the
Vν is postponed to the last part of this introduction.
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In Sections 9-12, we develop the “Lp-theory”1. We prove that, for 1 < p <∞, the same kind
of decomposition also takes place in LpΛk. Precisely:

(a) the intertwining operators Uν in (iv) have Lp-bounded extensions;
(b) consequently, the orthogonal projections U∗

νUν from L2Λk to Vν extend to bounded
operators from LpΛk to the the Lp-closure Vp

ν of Vν ∩ LpΛk;

(c) the Riesz transforms Rk = d∆
− 1

2
k are Lp-bounded;

(d) the Lp-strong Hodge decomposition holds true for k = 0, . . . , 2n+ 1, and more precisely
LpΛk is direct sums of the subspaces V p

ν ’s.

The (much simpler) case of 1-forms was already considered in [MPR1]. We expect that our
results can be applied to the study on conformal invariants on quotients of Hn, along the lines
of [MPR2], cf. [Lot, Lü].

In our last main result, as consequence of the Lp-theory we develop, we prove a Mihlin–
Hörmander multiplier theorem for ∆k, for all k = 0, . . . , 2n+1. We show that, if m : R → C is a
bounded, continuous function satisfying a Mihlin–Hörmander condition of order ρ > (2n+ 1)/2,
then, for 1 < p <∞, the operator m(∆k) is bounded on Lp(Hn)Λk, with norm bounded by the
appropriate norm of m (cf. Theorem 11.1).

We briefly comment on some interesting aspects of the proof and on some consequences and
applications. It is always assumed that 1 < p <∞.

• Our inductive strategy requires that two statements be proved simultaneously at each
step: property (a) above for the given k and Lp-boundedness of the Riesz transform

Rk = d∆
−1/2
k . Precisely, the validity of (a) for a given k implies Lp-boundedness of Rk,

and this, in turn, is required to prove (a) for k + 1.
• In order to handle the complicated expressions of the intertwining operators Uν , we

identify certain symbol classes, denoted by Ψρ,σ
τ , which satisfy simple composition prop-

erties, contain all the scalar components of the Uν , and, when bounded, give Lp-bounded
operators (cf. Subsection 9.2).

• Taking as the initial definition of “exact Lp-form” a form ω which is the Lp-limit of a
sequence of exact test forms (cf. Proposition 4.5 for p = 2), we prove in Subsection 11.2
that this condition is equivalent to saying that ω is in Lp and a differential in the sense
of distributions. Incidentally, this allows to prove that the reduced Lp-cohomology of
Hn is trivial for every k.

• The Mihlin–Hörmander theorem for spectral multipliers of ∆k, proved in [MPR1] for
k = 1, extends to every k.

• Our analysis of ∆ easily yields analogous results for the Dirac operator d+ d∗. Studying
the Hodge laplacian first has the advantage of isolating one order of forms at a time.
Corollary 11.5 is a multiplier theorem for the Dirac operator completely analogous to
Theorem 11.1.

Outline of the decomposition of L2Λk.

1There is an unfortunate notational conflict, due to the fact that the letter p is the commonly used symbol
for both Lebesgue spaces and bi-degrees of forms. In this introduction and in the titles of sections we keep the
notation Lp, while in the body of the paper we will denote by Lr the generic Lebesgue space.
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We go back now to the construction of the subspaces Vν of L2Λk(Hn).

First of all, by Hodge duality, we may restrict ourselves to form of degree k ≤ n. We start
from the primary decomposition into exact and d∗-closed forms:

L2Λk(Hn) = (L2Λk)d-ex ⊕ (L2Λk)d∗-cl ,

where each summand is ∆k-invariant.

Since the Riesz transform Rk−1 = d∆
− 1

2
k−1 commutes with ∆ and transforms (L2Λk−1)d∗-cl

onto (L2Λk)d-ex unitarily, any ∆-invariant subspace Vν of (L2Λk−1)d∗-cl has a twin ∆-invariant
subspace Rk−1Vν inside (L2Λk)d-ex.

The analysis is so reduced to the space of d∗-closed forms. Associated with the CR-structure
of Hn, there is a natural notion of horizontal (p, q)-form as a section of the bundle

Λp,q = Λp,qT ∗
CHn ,

and of horizontal k-form as a section of Λk
H =

∑⊕
p+q=k Λp,q.

Every differential form ω decomposes uniquely as

ω = ω1 + θ ∧ ω2 ,

where ω1, ω2 are horizontal and θ is the contact form. Moreover, a d∗-closed form ω is uniquely
determined by its horizontal component ω1.

From now on it is very convenient to introduce a special “test space” S0, contained in the
Schwartz space, together with its corresponding spaces of forms, S0Λ

k, S0Λ
p,q etc., which are

cores for ∆k and the other self-adjoint operators that will appear.
For forms in the core, we have enough flexibility to perform all the required operations in a

rather formal way, leaving the extensions to L2-closures for the very end. For instance, we can
say that to every horizontal form ω1 in the core we can associate a “vertical component” θ∧ω2,
also in the core, to form a d∗-closed form ω1 + θ ∧ ω2 in the core.

Setting Φ(ω1) = ω1 + θ∧ω2, we can replace ∆k by the conjugated (but no longer differential)
operator Dk = Φ−1 ◦ ∆k ◦ Φ, which acts now on the space of horizontal k-forms in the core and
globally defined.

Here comes into play another invariance property of ∆k, which is easily read as a property
of Dk and involves the horizontal symplectic form dθ. The following identity holds (cf. Lemma
5.11) for a horizontal form ω of degree k:

(0.1) Dk(dθ ∧ ω) = dθ ∧ (Dk−2 + n− k + 1)ω .

This brings in the Lefschetz decomposition of the space of horizontal forms, as adapted in
[MPR1] from the classical context of Kähler manifolds [W]. Denoting by e(dθ) the operator of
exterior multiplication by dθ and by i(dθ) its adjoint, it is then natural to think of the core
S0Λp,q in the space of horizontal (p, q)-forms as the direct sum

S0Λ
p,q =

min{p,q}∑

j=0

e(dθ)j ker i(dθ) .

Here each summand is Dk-invariant, and the conjugation formula (0.1) allows us to focus our
attention on ker i(dθ).
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Nevertheless, ker i(dθ) still is too big a space to allow a reduction of Dk to scalar operators.
It is however easy to identify, for each pair (p, q) with p+ q = k, a proper Dk-invariant subspace
of ker i(dθ) ∩ S0Λ

p,q, namely

W p,q
0 = {ω ∈ S0Λp,q : ∂∗ω = ∂̄∗ω = 0} .

It turns out that Dk acts as a scalar operator on W p,q
0 , so that the L2-closure Vp,q

0 of Φ(W p,q
0

)

will be one of the spaces Vν we are looking for2

Next, we take to the orthogonal complement of

W k
0 =

∑⊕

p+q=k

W p,q
0

in S0Λk
H . We have

(W k
0 )⊥ =

{
∂ξ + ∂̄η : ξ, η ∈ S0Λ

k−1
H

}
,

and we can telescopically expand this splitting to obtain that

S0Λ
k
H = W k

0 ⊕
{
∂ξ + ∂̄η : ξ, η ∈ S0Λ

k−1
H

}

= W k
0 ⊕

{
∂ξ + ∂̄η : ξ, η ∈W k−1

0

}
⊕
{
∂̄∂ξ + ∂∂̄η : ξ, η ∈ S0Λ

k−2
H

}

= W k
0 ⊕

{
∂ξ + ∂̄η : ξ, η ∈W k−1

0

}
⊕
{
∂̄∂ξ + ∂∂̄η : ξ, η ∈W k−2

0

}
⊕ · · ·

=
∑⊕

p+q=k

W p,q
0 ⊕

∑⊕

p+q=k−1

{
∂ξ + ∂̄η : ξ, η ∈W p,q

0

}

⊕
∑⊕

p+q=k−2

{
∂̄∂ξ + ∂∂̄η : ξ, η ∈W p,q

0

}
⊕ · · ·

The subspaces

W p,q
1 =

{
∂ξ + ∂̄η : ξ, η ∈W p,q

0

}
(p+ q = k − 1)

W p,q
2 =

{
∂̄∂ξ + ∂∂̄η : ξ, η ∈W p,q

0

}
(p + q = k − 2)

etc.

generated in this way are Dk-invariant and mutually orthogonal.
Matters are simplified by the fact that, for j ≥ 1,

W p,q
j+2 = e(dθ)W p,q

j .

So only W p,q
0 , W p,q

1 and part of W p,q
2 are contained in ker i(dθ). Setting

W p,q
1,ℓ = e(dθ)ℓW p,q

1 , W p,q
2,ℓ = e(dθ)ℓW p,q

2 ,

we obtain that

S0Λk
H =

∑⊕

p+q=k

W p,q
0 ⊕

∑⊕

p+q+2ℓ=k−1

W p,q
1,ℓ ⊕

∑⊕

p+q+2ℓ=k−2

W p,q
2,ℓ .

On each W p,q
0 and W p,q

2 , Dk acts as a scalar operator, as required.

2W p,q
0 is nontrivial, unless p+ q = n and 0 < p < n, cf. Proposition 5.3.
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The situation is not so simple with W p,q
1 , because the best one can obtain is a representation

of Dk as a 2× 2 matrix of scalar operators, after parametrizing the elements of W p,q
1 with pairs

(ξ, η) of forms in W p,q
0 :

(
ξ′

η′

)
=

(
m11(L, i

−1T ) m12(L, i
−1T )

m21(L, i
−1T ) m22(L, i

−1T )

)(
ξ
η

)
.

A formal computation can be used on the core to produce “eigenvalues” λ±(L, i−1T ) and the

splitting of W p,q
1 as the sum of the two “eigenspaces” W p,q,±

1 .
The final decomposition is in formula (10.2).

1. Differential forms and the Hodge Laplacian on Hn

The Heisenberg group Hn is Cn ×R with product

(1.2) (z, t)(z′, t′) =
(
z + z′, t+ t′ − 1

2
ℑm 〈z, z′〉

)
.

On its Lie algebra, also identified with Cn × R, we introduce the standard Euclidean inner
product, and we consider the left-invariant Riemannian metric on Hn induced by it. The complex
vector fields

Zj =
√

2
(
∂zj −

i

4
z̄j∂t

)
, Z̄j =

√
2
(
∂z̄j +

i

4
zj∂t

)
, T = ∂t

(with 1 ≤ j ≤ n) form an orthonormal basis of the complexified tangent space at each point,
and the only nontrivial commutators involving the basis elements are

(1.3) [Zj , Z̄j ] = iT .

The dual basis of complex 1-forms is

(1.4) ζj =
1√
2
dzj , ζ̄j =

1√
2
dz̄j , θ = dt +

i

4

n∑

j=1

(z̄jdzj − zjdz̄j) .

The differential of a function f is therefore

df =

n∑

j=1

(
Zjfζj + Z̄jf ζ̄j

)
+ Tfθ .

This formula extends to forms, once we observe that dζj = dζ̄j = 0 and the differential of the
contact form θ is the symplectic form on Cn,

(1.5) dθ = −i
n∑

j=1

ζj ∧ ζ̄j .

A differential form ω is horizontal if θyω = 0, i.e. if

(1.6) ω =
∑

I,I′

fI,I′ζ
I ∧ ζ̄I′ .

Every form ω decomposes as

(1.7) ω = ω1 + θ ∧ ω2 ,
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with ω1, ω2 horizontal.
A differential operator D acting on scalar-valued functions is extended to forms by letting

D act separately on each scalar component (1.6) of each horizontal component (1.7). Such
operators will be called scalar operators.

The partial differentials ∂, ∂̄, dH (resp. holomorphic, antiholomorphic, horizontal differential)
of a form ω are defined as

(1.8) ∂ω =

n∑

j=1

ζj ∧ Zjω , ∂̄ω =

n∑

j=1

ζ̄j ∧ Z̄jω , dHω = ∂ω + ∂̄ω .

As in [MPR1], Prop. 2.2, for ω = fζI ∧ ζ̄I′,
(1.9) ∂ω =

∑

ℓ,J

εJℓ,I(Zℓf)ζJ ∧ ζ̄I′ , ∂̄ω = (−1)|I|
∑

ℓ,J ′

εJ
′

ℓ,I′(Z̄ℓf)ζI ∧ ζ̄J ′

,

where εJℓ,I = 0 unless ℓ 6∈ I and {ℓ} ∪ I = J , in which case

εJℓ,I =
∏

i∈I
sgn (i− ℓ) .

Obviously, they act separately on each horizontal component (1.7) of ω, and the same is true
for their adjoints ∂∗, ∂̄∗, d∗H , where

(1.10) ∂∗ω = −
∑

ℓ,J

εIℓ,J(Z̄ℓf)ζJ ∧ ζ̄I′ , ∂̄∗ω = (−1)|I|+1
∑

ℓ,J ′

εI
′

ℓ,J ′(Zℓf)ζI ∧ ζ̄J ′

.

Moreover, ∂2 = ∂̄2 = ∂∗2 = ∂̄
∗2

= 0.
Two operators that will play a fundamental role in this paper are

(1.11) e(dθ)ω = dθ ∧ ω and i(dθ)ω = e(dθ)∗ω = dθyω .

Together with ∂ and ∂̄, they satisfy the following identities:

(1.12)
∂∂̄ + ∂̄∂ = d2H = −Te(dθ) ,
∂∗∂̄∗ + ∂̄∗∂∗ = d∗H

2 = T i(dθ) ,

and

(1.13) ∂∂̄∗ = −∂̄∗∂ and ∂∗∂̄ = −∂̄∂∗ .
Other formulas involving ∂, ∂̄, e(dθ) and their adjoints are

(1.14)

[
i(dθ), ∂

]
= −i∂̄∗ ,

[
i(dθ), ∂̄

]
= i∂∗ ,

[
∂∗, e(dθ)

]
= i∂̄ ,

[
∂̄∗, e(dθ)

]
= −i∂ ,

(1.15)
[
i(dθ), ∂∗

]
=
[
i(dθ), ∂̄∗

]
= 0 =

[
e(dθ), ∂

]
=
[
e(dθ), ∂̄

]

and

(1.16)
[
i(dθ), e(dθ)

]
= (n− k)I .

For these formulas and the following in this section, we refer to [MPR1].3

3Perhaps we should add a few more formulas, while moving them into a section, later in the paper.
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We define the holomorphic, antiholomorphic and horizontal Laplacians as

(1.17)

� = ∂∂∗ + ∂∗∂ ,

� = ∂̄∂̄∗ + ∂̄∗∂̄ ,

∆H = dHd
∗
H + d∗HdH = � + � .

Each of these Laplacians acts componentwise. Calling (p, q)-form a horizontal form of type

ω =
∑

|I|=p , |I′|=q

fI,I′ζ
I ∧ ζ̄I′ ,

and introducing the sublaplacian

(1.18) L = −
n∑

j=1

(ZjZ̄j + Z̄jZj) ,

the operators �,�,∆H coincide on (p, q)-forms with the following scalar operators:

(1.19)

� =
1

2
L+ i

(n
2
− p
)
T ,

� =
1

2
L− i

(n
2
− q
)
T ,

∆H = L+ i(q − p)T .

To be more explicit, we shall occasionally denote the “box”’ operators by �p and �q. Some
commutation relations that we will use are (see [MPR1])

(1.20)
�∂̄ = ∂̄(�− iT ) , �∂̄∗ = ∂̄∗(� + iT ) ,

�∂ = ∂(� + iT ) , �∂∗ = ∂∗(�− iT ) .

The full differential d of a form ω = ω1 + θ ∧ ω2 and its adjoint d∗ are represented, in terms
of the pair (ω1, ω2), by the matrices

(1.21)

(
dH e(dθ)
T −dH

)
, d∗ =

(
d∗H −T
i(dθ) −d∗H

)
,

and the Hodge Laplacian ∆ = dd∗ + d∗d by the matrix

(1.22)

∆ =




∆H − T 2 + e(dθ)i(dθ)
[
d∗H , e(dθ)

]

[
i(dθ), dH

]
∆H − T 2 + i(dθ)e(dθ)




=




∆H − T 2 + e(dθ)i(dθ) i∂̄ − i∂

i∂∗ − i∂̄∗ ∆H − T 2 + i(dθ)e(dθ)


 .

When ∆ acts on k-forms, it will be denoted by ∆k. In particular,

∆0 = L− T 2 .
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We denote by Λk the k-th exterior product of the dual h∗n of the Lie algebra of Hn (identified
with the linear span of ζ1, . . . , ζn, ζ̄1, . . . , ζ̄n, θ), by Λk

H the k-th exterior product of the horizontal
distribution (i.e. the linear span of the ζj, ζ̄j), and by Λp,q the space of elements of bidegree

(p, q) in Λk
H . Symbols like LpΛk, SΛp,q etc., denote the space of Lp-sections, S-sections etc., of

the corresponding bundle over Hn. Clearly, LpΛk ∼= Lp ⊗ Λk etc..

2. Bargmann representations and sections of homogeneous bundles

The L2-Fourier analysis on the Heisenberg group involves the family of infinite dimensional
irreducible unitary representations {πλ}λ6=0 such that πλ(0, t) = eiλtI. These representations
are most conveniently realized for our purposes in a modified version of the Bargmann form [F].

Let F = F(Cn) be the space of entire functions F on Cn such that

‖F‖2F =

∫

Cn

|F (w)|2e− 1
2
|w|2 dw <∞ .

The family of Bargmann representations πλ on F is defined, for λ 6= 0, as follows:

(i) for λ = 1,

(2.1)
(
π1(z, t)F

)
(w) = eite−

1
2
〈w,z〉− 1

4
|z|2F (w + z) .

(ii) For λ > 0,

(2.2) πλ(z, t) = π1(λ
1
2 z, λt) ;

(iii) for λ < 0,

(2.3) πλ(z, t) = π−λ(z̄,−t) .
The unitary group U(n) acts on Hn through the automorphisms

(z, t) 7−→ (z, t)g = (gz, t) ,
(
g ∈ U(n)

)
,

and on L2(Hn) through the representation
(
α(g)f

)
(z, t) = f

(
(z, t)g

−1)
.

We also consider the pair of contragradient representations U, Ū of U(n) on F , given by

(2.4) UgF = F ◦ g−1 , Ūg = Uḡ .

Then

(2.5)
πλ(gz, t) = Ug πλ(z, t)Ug−1 , for λ > 0 ,

πλ(gz, t) = Ūg πλ(z, t) Ūg−1 , for λ < 0 .

The representation U in (2.4) splits into irreducibles according to the decomposition of F

(2.6) F =
∑

j≥0

Pj ,

where Pj denotes the space of homogeneous polynomials of degree j.
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We denote by Pj the orthogonal projection of F on Pj , and by F∞ the space of functions
F ∈ F such that

(2.7) ‖PjF‖F = o(j−N ) , ∀N ∈ N .

Then F∞ is the space of C∞-vectors for all representations πλ.
The differential of πλ is given by4 πλ(T ) = iλ and

(2.8) πλ(Zℓ) =

{√
2λ ∂wℓ

if λ > 0

−
√

|λ|
2 wℓ if λ < 0 ;

πλ(Z̄ℓ) =

{
−
√

λ
2 wℓ if λ > 0√

2|λ| ∂wℓ
if λ < 0 .

We adopt the following definition of πλ(f):

(2.9) πλ(f) =

∫

Hn

f(x)πλ(x)−1 dx ∈  L(F ,F) .

Notice that πλ(f ∗ g) = πλ(g)πλ(f), but this disadvantage is compensated by a simpler
formalism when dealing with forms or more general vector-valued functions.

The Plancherel formula for f ∈ L2 is

‖f‖22 = cn

∫ +∞

−∞
‖πλ(f)‖2HS |λ|n dλ = cn

∫ +∞

−∞

∑

j,j′

‖Pjπλ(f)Pj′‖2HS |λ|n dλ .

Let V be a finite dimensional Hilbert space. Defining πλ(f) for V -valued functions f by (2.9),
we have

πλ(f) ∈  L(F ,F) ⊗ V ∼=  L(F ,F ⊗ V ) .

Suppose now that V is the representation space of a unitary representation ρ of U(n), and
consider the two representations U ⊗ ρ, Ū ⊗ ρ of U(n) on F ⊗ V . Denote by Σ+ = Σρ,+ (resp.

Σ− = Σρ,−) the set of irreducible representations σ ∈ Û(n) contained in U ⊗ ρ (resp. in Ū ⊗ ρ),
and let

(2.10) F ⊗ V =
⊕

σ∈Σ±

E±
σ

be the corresponding orthogonal decompositions into U(n)-types. When V = C, the decompo-
sition (2.10) reduces to (2.6). To indicate the dependence on ρ, we shall sometime also write

E±
σ = Eρ,±

σ .

Lemma 2.1. Each E±
σ is finite dimensional and decomposes into U(n)-invariant subspaces

E±
σ =

⊕

j

E±
σ ∩

(
Pj ⊗ V

)
.

In particular E±
σ ⊂ F ⊗ V . More precisely, E±

σ ⊂ F∞ ⊗ V , where F∞ is defined in (2.7).

4 Even though dπλ(D) is the more standard notation, we prefer to reduce the number of d’s around.
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Proof. We only discuss the case of U⊗ρ. For every j, Pj⊗V is an invariant subspace. Therefore,

for σ ∈ Û(n), E+
σ =

∑
j E+

σ ∩ (Pj ⊗V ). Let χj, χρ, χσ be the characters of U|Pj
, ρ, σ respectively.

The multiplicity of σ in Pj ⊗ V is then given by
∫

U(n)
χj(g)χρ(g)χσ(g) dg = 〈χj , χρχσ〉 ,

which is the multiplicity of U|Pj
in ρ̄ ⊗ σ (with ρ̄ denoting the contragredient of ρ). Since this

representation is finite dimensional, the multiplicity can be positive only for a finite number of
j. It follows that E+

σ has finite dimension.
Since E±

σ consists of V -valued polynomials, it is obviously contained in G⊗ V . Q.E.D.

The decomposition of F⊗V given above leads to the following form of the Plancherel formula
for L2V , with P±

σ denoting the orthogonal projection of F ⊗ V onto E±
σ :

(2.11)

‖f‖22 = cn

∫ +∞

−∞

∑

j∈N , σ∈Σsgn λ

‖P sgn λ
σ πλ(f)Pj‖2HS |λ|n dλ

= cn

∫ +∞

−∞

∑

σ∈Σsgn λ

‖P sgnλ
σ πλ(f)‖2HS |λ|n dλ .

Let ρ′ be another unitary representation of U(n) on a finite dimensional Hilbert space V ′.
The convolution

f ∗K(x) =

∫

Hn

K(y−1x)f(y) dy

of integrable functions f with values in V and K with values in  L(V, V ′) produces a function
taking values in V ′. In the representations πλ, λ 6= 0,

πλ(K) ∈  L(F ,F) ⊗  L(V, V ′) ∼=  L(F ⊗ V,F ⊗ V ′) ,

and

πλ(f ∗K) = πλ(K)πλ(f) ∈  L(F ,F ⊗ V ′) .

Let ρ̃ (resp. ρ̃′) be the representation α ⊗ ρ on L2V (resp. α ⊗ ρ′ on L2V ′) of U(n) and
suppose that convolution by K is an equivariant operator, i.e.

(2.12) ρ̃′(g)(f ∗K) =
(
ρ̃(g)f

)
∗K

for g ∈ U(n) and f ∈ SV . Since for f ∈ SV and ξ ∈ F , with λ > 0,

πλ

(
ρ̃′(g)(f ∗K)

)
ξ =

∫∫
ρ′(g)K(y−1x)f(y)Ugπλ(x−1)Ug−1ξ dydx,

πλ

(
(ρ̃(g)f) ∗K)

)
ξ =

∫∫
K(y−1x)ρ(g)f(yg

−1
)πλ(x−1)ξ dydx,

by letting f tend weakly to δ0 ⊗ v, with v ∈ V, we see that (2.12) implies
∫
ρ′(g)K(x)v Ugπλ(x−1)Ug−1ξ dx =

∫
K(x)ρ(g)v πλ(x−1)ξ dx.
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Replacing ξ by Ugξ, we obtain

Ug ⊗ ρ′(g)
(
πλ(K)(ξ ⊗ v)

)
= πλ(K)(Ug ξ ⊗ ρ(g)v)

for every ξ ∈ F , v ∈ V. A similar formula holds for λ < 0 with Ū in place of U . Thus (2.12)
implies the following identities, for K defining an equivariant convolution operator:

(2.13)
(U ⊗ ρ′)(g)πλ(K) = πλ(K)(U ⊗ ρ)(g) , λ > 0

(Ū ⊗ ρ′)(g)πλ(K) = πλ(K)(Ū ⊗ ρ)(g) , λ < 0

for g ∈ U(n), i.e. πλ(K) intertwines U ⊗ ρ and U ⊗ ρ′, or Ū ⊗ ρ and Ū ⊗ ρ′ depending on the
sign of λ. The following is an immediate consequence.

Lemma 2.2. Assume that convolution by K ∈ L1 ⊗  L(V, V ′) is an equivariant operator. Then,

setting Σρ,ρ′,sgnλ = Σρ,sgnλ ∩ Σρ′,sgnλ,

πλ(K) =
⊕

σ∈Σρ,ρ′,sgnλ

πλ,σ(K) ,

with πλ,σ(K) : Eρ,sgnλ
σ → Eρ′,sgnλ

σ .

By a variant of Schwartz’s Kernel Theorem, the convolution operators D with kernels K ∈
S ′(Hn)⊗  L(V, V ′) are characterized as the continuous operators from S(Hn)⊗V to S ′(Hn)⊗V ′

that commute with left translations on Hn. Lemma 2.2 applies to operators of this kind, provided
that the Fourier transform πλ(K) is well defined for λ 6= 0. This is surely the case if K has
compact support, and in particular for a left-invariant differential operator Df = f ∗ (Dδ0). We
then have

πλ(Df) = πλ(Dδ0)πλ(f) = πλ(D)πλ(f) .

We apply these remarks to the differentials and Laplacians introduced in Section 1.
With ρk denoting the representation of U(n) on Λk induced from its action on Hn by auto-

morphisms, and, as before let ρ̃k = α⊗ρk be the tensor product acting on L2Λk. Then d, d∗,∆k

are equivariant operators. The same applies to ∂, ∂̄, dH etc. on the appropriate L2-subbundles.
Notice that �,� and ∆H have the special property of acting scalarly on (p, q)-forms, by

(1.19). Since the sublaplacian L has the property that πλ(L) acts as a scalar multiple of the
identity (namely, as |λ|(2m+n)I) on Pm ⊂ F , the same is true for the image of �,�,∆H under
πλ.

3. Cores, domains and self-adjoint extensions

For 0 < δ < R and N ∈ N, denote by Sδ,R,N (Hn) the space of functions f satisfying the
following properties:

(i) f ∈ S(Hn);
(ii) πλ(f) = 0 for |λ| ≤ δ and |λ| ≥ R;
(iii) for δ < |λ| < R, Pjπλ(f) = 0 for j > N .

We set S0 =
⋃

δ,R,N Sδ,R,N .

Lemma 3.1. S0 is invariant under left translations, and dense in L2.
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Proof. The first statement follows from the identity πλ(L(z,t)f) = πλ(f)πλ(z, t)−1, where L(z,t)f

is the left translate of f ∈ S0 by (z, t)−1. Take now f ∈ S. For δ,R > 0, fix a C∞-function uδ,R(λ)
on R, with values in [0, 1], supported where δ ≤ |λ| ≤ R and equal to 1 where 2δ ≤ |λ| ≤ R/2.

Given ε > 0, by Plancherel’s formula it is possible to find δ,R > 0 and N ∈ N such that the
L2- function g such that πλ(g) = uδ,R(λ)

∑
j≤N Pjπλ(f) approximates f in L2 by less than ε.

We claim that g is in S, hence in S0, and this will conclude the proof, by the density of S
in L2.

By definition, g = f ∗ h, where h is the function with πλ(h) = uδ,R(λ)
∑

j≤N Pj . By explicit

computation of the matrix entries of the representations of Hn [Th], the Fourier transform h(z, λ̂)
of h in the t-variable equals

h(z, λ̂) = uδ,R(λ)
∑

j≤N

ψj(|λ|
1
2 z) ,

where the ψj are Schwartz functions on Cn. Hence h ∈ S(Hn) and so is g. Q.E.D.

We regard S0 as the inductive limit of the spaces Sδ,R,N , each with the topology induced
from S.

Obviously, S0V = S0⊗V is contained in SV and dense in L2V . Assume, as in Section 2, that
V is a finite dimensional Hilbert space on which U(n) acts unitarily by the representation ρ.
Taking into account the action of U(n), one can then introduce a different chain of subspaces
filling up S0V . Given 0 < δ < R, N ∈ N and finite subsets X± of Σ±, define Sδ,R,X±V as the
space of functions f such that

(i’) f ∈ S(Hn) ⊗ V ;
(ii’) πλ(f) = 0 for |λ| ≤ δ and |λ| ≥ R;

(iii’) for δ < |λ| < R, P sgnλ
σ πλ(f) = 0 for σ 6∈ Xsgn λ;

It follows from Lemma 2.1 that finite unions of the Sδ,R,X±V exhaust finite unions of the
Sδ,R,NV and viceversa.

In order to develop the L2-analysis of differentials and Laplacians, we establish some general
facts about densely defined operators from L2V to L2V ′, wih (V, ρ), (V ′, ρ′) finite-dimensional
representation spaces of U(n). Precisely, we consider operators whose initial domain is S0V and
which map S0V into S0V

′, continuously with respect to the Schwartz topologies. Most of the
operators to be considered in this paper will belong to this class.

Lemma 3.2.

(i) Let (V, ρ), (V ′, ρ′) be finite-dimensional representation spaces of U(n), and let

B : S0V −→ S0V
′ ,

be a left-invariant linear operator, U(n)-equivariant and continuous with respect to the

S0-topologies. Then there exists a family of linear operators Bλ,σ : Eρ,sgnλ
σ −→ Eρ′,sgnλ

σ ,
depending smoothly on λ 6= 0, such that

(3.1) πλ(Bf) =
⊕

σ∈Σρ,ρ′,sgn λ

Bλ,σP
sgnλ
σ πλ(f) ,
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(ii) Conversely, given any family of linear operators Bλ,σ : Eρ,sgnλ
σ −→ Eρ′,sgnλ

σ , depending
smoothly on λ 6= 0, there is a unique left-invariant operator B : S0V −→ S0V

′, U(n)-
equivariant and continuous with respect to the S0-topologies, such that (3.1) holds for
every f ∈ S0V . We set

πλ,σ(B) = Bλ,σ , Bλ =
∑

σ∈Σρ,ρ′,sgnλ

Bλ,σP
sgnλ
σ , πλ(B) = Bλ .

(iii) The closure of B as an operator from L2V to L2V ′ has domain dom (B) consisting of
those f ∈ L2V such that

(3.2)

∫ +∞

−∞

∑

σ

‖Bλ,σP
sgnλ
σ πλ(f)‖2HS |λ|n dλ <∞ .

(iv) If (V, ρ) = (V ′, ρ′) and B is symmetric (equivalently, Bλ,σ is symmetric for every λ, σ),
then B is essentially self-adjoint.

(v) If B is symmetric and m is a Borel function on the real line such that m(Bλ,σ) is well
defined for every λ, σ, the domain of m(B) is the space of those f ∈ L2V such that

∫ +∞

−∞

∑

σ

∥∥m(Bλ,σ)P sgnλ
σ πλ(f)

∥∥2
HS

|λ|n dλ <∞ .

Moreover, the space S0V ∩ dom
(
m(B)

)
is a core for m(B) and the identity

〈m(B)f, g〉 = cn

∫ +∞

−∞

∑

σ

tr
(
m(Bλ,σ)P sgn λ

σ πλ(f)πλ(g)∗
)
|λ|n dλ

holds for f ∈ dom
(
m(B)

)
and g ∈ L2V .

Proof. To prove (i), let {Φℓ}ℓ∈N be an enumeration of the orthonormal basis of monomials in F .
Define linear operators Eℓ,ℓ′ : F → F by setting Eℓ,ℓ′F = 〈F,Φℓ′〉FΦℓ. Let also {ei} and {e′j}
be (finite) bases of V and V ′ respectively.

Given two compact intervals [a, b] and [a′, b′] such that [a, b] ⊂ [a′, b′]0, with a′ > 0 (for intervals
contained in R− the proof is similar) and ℓ ∈ N, there exists gℓ ∈ S0 such that πλ(gℓ) = Eℓ,ℓ for
λ ∈ [a, b] and πλ(gℓ) = 0 for λ 6∈ [a′, b′] (cf. the proof of Lemma 3.1 and [Th]).

Then B(gℓ ⊗ ei) ∈ S0V
′ and

(3.3) πλ
(
B(gℓ ⊗ ei)

)
=
∑

j

(∑

h,k

cℓ,ih,k,j(λ)Eh,k

)
⊗ e′j ,

where the sum in h ranges over a fixed finite set of indices independent of λ. The coefficients

cℓ,iℓ,ℓ′,j are smooth in λ and, since B is left-invariant, supported in [a′, b′].
Take now f =

∑
i fi ⊗ ei ∈ S0V , with πλ(f) = 0 for λ 6∈ [a, b]. Then

f =
∑

i,ℓ

(fi ∗ gℓ ∗ gℓ) ⊗ ei ,

where the sum is finite. Hence, by the continuity assumption on B,

Bf =
∑

i,ℓ

(fi ∗ gℓ) ∗B(gℓ ⊗ ei) .
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Introducing the notation

f̂i(λ, ℓ, ℓ
′) = 〈πλ(fi)Φℓ′ ,Φℓ〉F ,

we have

πλ(fi ∗ gℓ) = Eℓ,ℓ πλ(fi) =
∑

ℓ′

f̂i(λ, ℓ, ℓ
′)Eℓ,ℓ′ .

The composition πλ
(
B(gℓ ⊗ ei)

)
πλ(fi ∗ gℓ) is well defined, because the second factor has the

one-dimensional range CΦℓ. Therefore the index k in (3.3) can only assume the value ℓ, and

πλ(Bf) =
∑

j

(∑

i,ℓ

∑

h

cℓ,ih,ℓ,j(λ)Eh,ℓ

∑

ℓ′

f̂i(λ, ℓ, ℓ
′)Eℓ,ℓ′

)
⊗ e′j

=
∑

j

(∑

i

∑

h,ℓ′

(∑

ℓ

cℓ,ih,ℓ,j(λ)f̂i(λ, ℓ, ℓ
′)
)
Eh,ℓ′

)
⊗ e′j .

The infinite matrix Ci,j(λ) =
(
cℓ,ih,ℓ,j(λ)

)
h,ℓ

has only a finite number of nonzero entries, hence

it defines a linear operator Bλ
i,j from the linear span of the Φℓ (i.e. the space of polynomials

inside F) into itself, by setting

Bλ
i,jΦℓ =

∑

h

cℓ,ih,ℓ,j(λ)Φh.

Notice that Bλ
i,jEℓ,ℓ′ =

∑
h c

ℓ,i
h,ℓ,j(λ)Eh,ℓ′ . Then, setting E′

j,i = 〈·, ei〉V e′j ∈  L(V, V ′), one easily

verifies that

(3.4) Bλ =
∑

i,j

Bλ
i,j ⊗ E′

j,i ,

maps V -valued polynomials into V ′-valued polynomials and

(3.5) πλ(Bf) = Bλπλ(f) ,

for every f ∈ S0V with πλ(f) = 0 for λ 6∈ [a, b].
It is now easy to prove that for λ ∈ [a, b], Bλ is uniquely defined by the identity (3.5), which

shows that it does not depend on the choice of the functions gℓ, and that if we repeat the same
argument starting with a larger interval [a#, b#] ⊃ [a, b] contained in R+, the new operators

B#
λ coincide with Bλ for λ ∈ [a, b]. Covering the positive half-line by compact intervals of this

type and repeating the same argument on the negative half-line, we find a unique map λ 7−→ Bλ

defined for λ 6= 0 and for which (3.5) holds for every f ∈ S0V .
Since B is U(n)-equivariant, a repetition of the proof of Lemma 2.2 shows that Bλ maps

Eρ,sgnλ
σ into Eρ′,sgnλ

σ for every σ ∈ Σρ,ρ′,sgnλ. It is obvious from the smoothness of the coefficients

cℓ,ih,ℓ,j that the restricted operators Bλ,σ depend smoothly on λ.

The proof of (ii) is quite obvious.

To prove (iii), denote by B̃ be the operator on dom (B), defined in (3.2), such that πλ(B̃f) =

Bλπλ(f). It is easy to verify that B̃ is closed and that S0V is dense in dom (B) in the graph

norm of B̃. Since B̃ coincides with B on S0V ⊂ SV , B̃ is the closure of B.
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To prove (iv), assume that B is symmetric. Then each operator Bλ,σ is self-adjoint, hence so
is πλ(B). If B′ is the adjoint of B, taking g in the domain of B′ and f ∈ S0V , we have

〈B′g, f〉 = 〈g,Bf〉

= cn

∫ +∞

−∞

∑

σ

tr
(
πλ(f)∗πλ(B)P sgnλ

σ πλ(g)
)
|λ|n dλ

= cn

∫ +∞

−∞

∑

σ

tr
(
πλ(f)∗Bλ,σP

sgnλ
σ πλ(g)

)
|λ|n dλ .

By the arbitrariness of πλ(f) subject to conditions (i’)-(iii’), we conclude that
∫ +∞

−∞

∑

σ

‖Bλ,σP
sgnλ
σ πλ(g)‖2HS |λ|n dλ <∞ ,

i.e. g ∈ dom (B), and that πλ(B′g) = πλ(B)πλ(g), i.e. B′g = B̃g.
Finally, (v) is proved in a similar way. Q.E.D.

Consistently with the identity πλ
(
m(B)

)
= m

(
πλ(B)

)
, we write πλ,σ

(
m(B)

)
for m

(
πλ,σ(B)

)
.

Remark 3.3. As a typical instance of operations that will be done in the sequel, consider an
expression like d∆−1

k . As soon as we find out that the finite-dimensional operators πλ,σ(∆k)
are invertible and depend smoothly on λ (see the next Section), an operator Ψ satisfying the
identity Ψ∆k = d is automatically defined on S0Λk with values in S0Λ

k+1 by imposing that

πλ(Ψω) =
∑

σ

πλ,σ(d)πλ,σ(∆k)−1P λ
σ πλ(ω) .

Its closure Ψ̄ is defined on the space consists of the ω ∈ L2Λk such that
∫ +∞

−∞

∑

σ

‖πλ,σ(d)πλ,σ(∆k)−1P λ
σ πλ(ω)‖2HS |λ|n dλ <∞ .

Notice that formal identities, like

(i) d∆−1
k = (d∆

− 1
2

k )∆
− 1

2
k ;

(ii) πλ(d∆−1
k ) = πλ(d)πλ(∆−1

k );

(iii) πλ,σ(d∆−1
k ) = πλ,σ(d)πλ,σ(∆−1

k );

are fully justified on S0Λ
k.

In many instances we will make use of homogeneity properties of operators B as those con-
sidered in Lemma 3.2. As before, we assume that (V, ρ), (V ′, ρ′) are finite dimensional represen-
tations of U(n).

We assume that the multiplicative group R+ acts on V by means of the linear representation
γ : R+ →  L(V ) and on V ′ by means of the linear representation γ′ : R+ →  L(V ′) such that the
operators γ(r) and γ′(r) are self-adjoint, and in such a way that each of these actions commutes
with the corresponding action of U(n) (on V given by ρ and on V ′ given by ρ′).
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We also denote by δr the dilating automorphism of Hn defined by

δr(z, t) := (r1/2z, rt), r > 0 ,

and let R+ act on functions on Hn by the representation

β(r)f := f ◦ δr−1 .

Then B is said to be homogeneous of degree a if

(3.6) B ◦ (β ⊗ γ)(r) = r−a (β ⊗ γ′)(r) ◦B on S0V, for every r > 0 .

We shall repeatedly use the following lemma, which applies in particular to operators such as
∂, ∂̄, dH etc.

Lemma 3.4. Let (V, ρ), (V ′, ρ′) be finite dimensional unitary representations of U(n) and let
β, γ, γ′ be as above.

If B is a U(n)- equivariant, left-invariant operator as in Lemma 3.2 (i), homogeneous in the
sense of (3.6) for some a ∈ R, then

ranB ∩ S0V
′ = B(S0V ).

Proof. We just have to verify that

ranB ∩ S0V
′ ⊆ B(S0V ) ,

the other implication being contained in the assumptions.
The homogeneity of B implies that

(3.7) πλ(B) = |λ|a (I ⊗ γ′(|λ|−1))πsgn λ(B) (I ⊗ γ(|λ|)) .
Assume in fact that f ∈ S0V . For λ 6= 0, πλ(f) ∈  L(F ,F ⊗ V ) and, by (2.2) and (2.3),

(I ⊗ γ(|λ|))πλ(f) = (I ⊗ γ(|λ|))πsgn λ

(
β(λ)f

)
= πsgnλ

(
(β ⊗ γ)(|λ|)f

)
.

Similarly,

(I ⊗ γ′(|λ|))πλ(Bf) = πsgnλ((β ⊗ γ′)(|λ|)(Bf)),

and thus, by the homogeneity (3.6) of B,

(I ⊗ γ′(|λ|))πλ(Bf) = |λ|a πsgnλ(B ((β ⊗ γ)(|λ|)f) ) = |λ|a πsgnλ(B)(I ⊗ γ(|λ|))πλ(f).

This yields (3.7).
Since γ and γ′ commute with ρ and ρ′, I ⊗ γ respects the decomposition

F ⊗ V =
⊕

σ∈Σρ,±

E±
σ ,

in (2.10), we have

(3.8) Bλ,σ = |λ|a
(
I ⊗ γ′(|λ|−1)

)
Bsgnλ,σ

(
I ⊗ γ(|λ|)

)
,

where Bλ,σ = πλ,σ(B) : Eρ,sgnλ
σ −→ Eρ′,sgnλ

σ is the operator defined in (3.1).
We restrict now our attention to λ = ±1 and write, for simplicity, B±

σ instead of B±1,σ.
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Since domain and codomain are finite dimensional, we have an inverse Q±
σ : ranB±

σ −→
(kerB±

σ )⊥ of B±
σ |

(kerB±
σ )⊥

. Denote by Q̃±
σ the extension of Q±

σ to Eρ,±
σ equal to 0 on (ranB±

σ )⊥.

If f ∈ S0V
′, define the function Jf by requiring that

P sgnλ
σ πλ(Jf) = |λ|−a(I ⊗ γ(|λ|−1))Q̃±

σ (I ⊗ γ′(|λ|))P sgn λ
σ πλ(f).

If f ∈ ranB ∩ S0V
′, then the range of P sgnλ

σ πλ(f) is contained in the range of πλ,σ(B).
Choose 0 < δ < R such that (i) in the definition of S0V holds for f. Since for δ ≤ |λ| ≤ R

the functions γ′(|λ|) and γ(|λ|−1) are smooth in λ, it is easy to see that Jf ∈ S0V. Moreover,
applying (3.8) to g := Jf, we see that πλ(B(Jf)) = πλ(f), hence f = B(Jf) ∈ B(S0V ). Q.E.D.

Proposition 3.5. Let (V, ρ), (V ′, ρ′), β, γ, γ′ be as above. Then the following hold.

(i) If B is a U(n)- equivariant, left-invariant linear operator, homogeneous in the sense of
(3.6), and bounded from L2V to L2V ′, then B satisfies the assumptions of Lemma 3.2
(i).

(ii) Assume that H ⊂ L2V is a closed subspace, which is invariant under left-translation
by elements of Hn, under the action of U(n) and invariant under the dilations (β ⊗
γ)(r), r > 0. Then

S0V = (S0V ∩H) ⊕ (S0V ∩H⊥) ,

where S0V ∩H is dense in H and S0V ∩H⊥ is dense in H⊥.

Proof. As in the proof of Lemma 3.2, let {Φℓ}ℓ∈N be an enumeration of the orthonormal basis
of monomials in F and set Eℓ,ℓ′F = 〈F,Φℓ′〉FΦℓ. Let also {ei} and {e′j} be (finite) bases of V

and V ′ respectively.
We fix an interval I = [a, b] with 0 < a < b and, for every ℓ ∈ N, a function gℓ ∈ S0 such that

πλ(gℓ) = Eℓ,ℓ for λ ∈ I. Then B(gℓ ⊗ ei) ∈ L2V ′ and

(3.9) πλ
(
B(gℓ ⊗ ei)

)
=
∑

j

(∑

h,k

cℓ,ih,k,j(λ)Eh,k

)
⊗ e′j ,

with cℓ,ih,k,j ∈ L2(I) for every choice of the indices. Then almost every point λ ∈ I is a Lebesgue

point for all cℓ,ih,k,j and for
∑

h,k |c
ℓ,i
h,k,j(λ)|2.

For every f =
∑

i fi ⊗ ei ∈ S0V and for a.e. λ ∈ I,

πλ(f) =
∑

i,ℓ

πλ
(
(fi ∗ gℓ) ∗ (gℓ ⊗ ei)

)
,

where the sum is finite (say over ℓ ≤ N). The invariance of B under translations by elements
(0, t) of the center of Hn implies that B preserves the λ-support of the group Fourier transform.
Therefore, we also have

πλ(Bf) =
∑

i,ℓ

πλ
(
B((fi ∗ gℓ) ∗ (gℓ ⊗ ei))

)
,
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for a.e. λ ∈ I. On the other hand, B
(
(fi ∗ gℓ) ∗ (gℓ ⊗ ei)

)
= (fi ∗ gℓ) ∗B(gℓ ⊗ ei). Hence, for a.e.

λ ∈ I (say, λ ∈ Λ),

πλ(Bf) =
∑

i,ℓ

πλ
(
B(gℓ ⊗ ei)

)
πλ(fi ∗ gℓ) .

The same computations in the proof of Lemma 3.2 produce an infinite matrix Ci,j(λ) =(
cℓ,ih,ℓ,j(λ)

)
h,ℓ

with at most N nonzero entries on each row, defined for λ ∈ Λ. Defining Bλ by

(3.4), we have that

(3.10) πλ(Bf) = Bλπλ(f) ,

for λ ∈ Λ.
Now, the homogeneity of B easily implies that, for λ, λ′ ∈ Λ,

Bλ = (λ/λ′)a
(
I ⊗ γ′(λ′/λ)

)
Bλ′

(
I ⊗ γ(λ/λ′)

)
.

This identity allows to extend Bλ as a smooth function of λ to every λ > 0.
Obviously, the same construction can be made for λ < 0. Then, for every f ∈ S0V , the

identity (3.10) holds for every λ 6= 0, which shows that B(S0V ) ⊂ S0V
′. Then Lemma 2.2 and

the following remarks imply that we are in the hypotheses of Lemma 3.2 (ii).

In order to prove (ii), let us denote by P the orthogonal projection from L2V onto H. Since
H is invariant under left-translations, U(n)-invariant and dilation invariant, P is a left-invariant
operator which is U(n)-equivariant and homogeneous of degree 0. Moreover, by the Schwartz
kernel theorem, it is given by the convolution Pf = f ∗K with a tempered distribution kernel
K taking values in  L(V, V ). We may therefore apply (i) to B := P and conclude by means of
Lemma 3.4 that P (S0V ) ⊂ S0V , and similarly, (I − P )(S0V ) ⊂ S0V . Q.E.D.

4. First properties of ∆k; exact and closed forms

The domain dom (∆0), defined according to Lemma 3.2, is the “left-invariant Sobolev space”
H2 consisting of those f ∈ L2 such that Xf,XY f ∈ L2 for every X,Y ∈ hn. This follows from

the L2 boundedness of the operators X(1 + ∆0)
− 1

2 , XY (1 + ∆0)
−1 [MPR1]. We also recall that

the operators XY ∆−1
0 , X∆

− 1
2

0 are bounded on L2 for every X,Y ∈ hn.

For k ≥ 1, we have the analogous description of dom (∆k).

Lemma 4.1. For every k, dom (∆k) = H2Λk.

Proof. It is evident from (1.22) that H2Λk ⊂ dom (∆k).
Since ∆0 = L− T 2, identifying ∆k with the matrix (1.22) we have

∆k =

(
∆0 0
0 ∆0

)
+




∆H − L+ e(dθ)i(dθ) i∂̄ − i∂

i∂∗ − i∂̄∗ ∆H − L+ i(dθ)e(dθ)




= ∆0 + P .
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where P is symmetric onH2Λk. By (1.19), each entry in P involves at most first-order derivatives
in the left-invariant vector fields. Therefore, for ω ∈ H2Λk,

‖Pω‖2 ≤ C
(
‖ω‖2 + ‖∆

1
2
0 ω‖2

)

≤ C
(
‖ω‖2 + ‖∆0ω‖

1
2
2 ‖ω‖

1
2
2

)

≤ C(1 + ε−1)‖ω‖2 + Cε‖∆0ω‖2 ,

for every ε > 0. By the Kato-Rellich theorem [Ka], ∆0 +P is self-adjoint on dom (∆0) = H2Λk.
Q.E.D.

The following statement is an immediate consequence.

Proposition 4.2. ∆k is injective on its domain.

Proof. Let ω = ω1 + θ ∧ ω2 ∈ dom (∆k), with ω1, ω2 horizontal. Then

〈∆kω, ω〉 = 〈∆Hω1, ω1〉 + ‖Tω1‖22 + ‖i(dθ)ω1‖22 +
〈[
d∗H , e(dθ)

]
ω2, ω1

〉

+
〈[
i(dθ), dH

]
ω1, ω2

〉
+ 〈∆Hω2, ω2〉 + ‖Tω2‖22 + ‖e(dθ)ω2‖22 .

Notice that

〈∆Hω1, ω1〉 = ‖dHω1‖22 + ‖d∗Hω1‖22 ,
and the same holds for ω2. Moreover,

〈[
d∗H , e(dθ)

]
ω2, ω1

〉
+
〈[
i(dθ), dH

]
ω1, ω2

〉

= 2ℜe
〈[
i(dθ), dH

]
ω1, ω2

〉

= 2ℜe
〈
dHω1, e(dθ)ω2

〉
− 2ℜe

〈
i(dθ)ω1, d

∗
Hω2

〉

≥ −‖dHω1‖22 − ‖e(dθ)ω2‖22 − ‖i(dθ)ω1‖22 − ‖d∗Hω2‖22 .
It follows that

(4.1) 〈∆kω, ω〉 ≥ ‖d∗Hω1‖22 + ‖dHω2‖22 + ‖Tω1‖22 + ‖Tω2‖22 .
Therefore, if ∆kω = 0, then Tω = 0. Since πλ(T ) = iλ I, this implies that πλ(ω) = 0 for

almost every λ, and finally that ω = 0. Q.E.D.

Corollary 4.3. For every λ > 0 and σ ∈ Σ±, dπ±λ,σ(∆k) is invertible and for every pair of

elements u, v ∈ E±
σ , 〈π±λ,σ(∆k)u, v〉 is a polynomial in λ. For every α > 0, ∆−α

k maps S0Λk

into itself.

Proof. By (4.1), ‖∆
1
2
k ω‖2 ≥ ‖Tω‖2 for every ω ∈ S0Λ

k. This implies that

‖πλ,σ(∆k)
1
2 ξ‖ ≥ |λ|‖ξ‖, ξ ∈ Esgnλ

σ ,

for every λ, σ with λ 6= 0. The rest is obvious. Q.E.D.
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We call Riesz transforms the operators

Rk = d∆
− 1

2
k : S0Λ

k −→ S0Λk+1 ,

and their adjoints

R∗
k = ∆

− 1
2

k d∗ : S0Λ
k+1 −→ S0Λk .

Lemma 4.4. The following identities hold (with the convention that R−1 = R2n+1 = 0):

Rk = ∆
− 1

2
k+1d , R∗

k = d∗∆
− 1

2
k+1 ,(4.2)

Rk+1Rk = R∗
kR

∗
k+1 = 0 ,(4.3)

R∗
kRk +Rk−1R

∗
k−1 = I .(4.4)

In particular, RkRk−1 = 0.
Moreover, if 1 ≤ k ≤ 2n, Rk−1R

∗
k−1, R∗

kRk are orthogonal projections on complementary

orthogonal subspaces of L2Λk and Rk and R∗
k are partial isometries.

Proof. From the identity d∆k = ∆k+1d on test functions we derive that

πλ,σ(d)πλ,σ(∆k) = πλ,σ(∆k+1)πλ,σ(d)

for all λ, σ. Hence

πλ,σ(d)πλ,σ(∆k)−
1
2 = πλ,σ(∆k+1)

− 1
2πλ,σ(d)

by finite-dimensional linear algebra. In turn, this gives the first identity of (4.2) on S0Λ
k. The

second identity is proved in the same way.
Then (4.3) follows from (4.2) and the identity d2 = 0.
On S0Λk, by applying again πλ,σ to each term,

R∗
kRk +Rk−1R

∗
k−1 = ∆

− 1
2

k d∗d∆
− 1

2
k + ∆

− 1
2

k dd∗∆
− 1

2
k

= ∆
− 1

2
k ∆k∆

− 1
2

k

= I ,

which gives (4.4).
Since the two summands on the left-hand side of (4.4) are positive operators, they are L2-

contractions. Since their sum is the identity and their product is zero by (4.3), they are idempo-
tent. This proves that they are orthogonal projections. It follows that Rk and R∗

k−1 are partial
isometries. Q.E.D.

The following statement says in particular that the cohomology groups of the De Rham
complex are trivial.

Proposition 4.5. Let 1 ≤ k ≤ 2n. The following subspaces of L2Λk are the same:

(i) the range of Rk−1R
∗
k−1;

(ii) the range of Rk−1;
(iii) kerRk;
(iv) ker d;
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(v) d(S0Λk−1);

(vi) d(DΛk−1);
(vii) {ω ∈ L2Λk : ω = du in the sense of distributions for some u ∈ D′Λk−1}.

We call this space (L2Λk)d-ex or (L2Λk)d-cl. Similarly, the following spaces

(i’) the range of R∗
kRk;

(ii’) the range of R∗
k;

(iii’) kerR∗
k−1;

(iv’) ker d∗;

(v’) d∗(S0Λk+1);

(vi’) d∗(DΛk+1);
(vii’) {ω ∈ L2Λk : ω = d∗v in the sense of distributions for some v ∈ D′Λk+1}

are the same; we call them (L2Λk)d∗-ex or (L2Λk)d∗-cl.

Proof. Since Rk−1 is a partial isometry, its range is closed, and

ranRk−1 = (kerR∗
k−1)

⊥ = (kerRk−1R
∗
k−1)

⊥ = ranRk−1R
∗
k−1 .

This proves the identity of the spaces in (i) and (ii). In the same way one proves the same
for (i’) and (ii’). From Lemma 4.4 we then obtain the orthogonal decomposition

L2Λk = ranRk−1 ⊕ ranR∗
k .

But ranR∗
k = (kerRk)⊥, so that ranRk−1 = kerRk, i.e. (ii)=(iii).

By Plancherel’s formula and Lemma 3.2, ω ∈ ker d if and only if πλ,σ(d)πλ,σ(ω) = 0 for a.e. λ
and every σ. By Corollary 4.3 and (4.2), this is equivalent to saying that πλ,σ(Rk)πλ,σ(ω) = 0

for a.e. λ and every σ, i.e. that Rkω = 0. So (iii)=(iv). By Corollary 4.3, d(S0Λk−1) =
Rk−1(S0Λk−1) and this implies that (v)=(ii).

We thus have shown that the spaces (i) - (v) are the same, and the equality of the spaces (i’)-
(v’) are proved in the same way.

In order to prove that the spaces (i) - (v) agree also with the space (vi), we first observe that

d(DΛk−1) ⊂ ker d, since d2 = 0 on DΛk−1. We thus have d(DΛk−1) ⊂ Rk−1(L
2Λk−1). To prove

that these spaces are indeed the same, it will suffice to prove that σ ⊥ Rk−1(L
2Λk−1) whenever

σ ∈ L2Λk satisfies σ ⊥ d(DΛk−1). But, the latter condition means that d∗σ = 0 in the sense
of distributions. So, by Lemma 3.2, σ ∈ dom d∗, and since (iv’)=(ii’), we see that σ = R∗

kξ for

some ξ ∈ L2Λk+1. This implies that for every Rk−1µ ∈ Rk−1(L
2Λk−1)

〈σ,Rk−1µ〉 = 〈R∗
kξ,Rk−1µ〉 = 〈ξ,RkRk−1µ〉 = 0.

We have thus seen that the spaces (i) - (vi) all agree, and in a similar way one proves that the
spaces (i’) - (vi’) are all the same.

The proof that these spaces also do agree with the space (vii) respectively (vii’) will require
deeper Lp-methods, and will therefore be postponed to Section 11 (see Corollary 11.3).

Q.E.D.
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Working out the same program for ∂, ∂̄, their adjoints and the box-operators one encounters
some differences. One simplification comes from the fact that � and � act as scalar operators
on horizontal forms of a given bi-degree.

On the other hand, a complication comes from the fact they have a non-trivial null space in
L2 for certain values of p or q. It is well known since [FS] that L+ iαT is injective on L2 if and
only if α 6= ±(n + 2j), j ∈ N, and that it is hypoelliptic under the same restriction. It follows
from (1.19) that � (resp. �) is injective, and hypoelliptic, on (p, q)-forms provided that p 6= 0, n
(resp. q 6= 0, n).

For p = 0, �0 = ∂∗∂ and ker� = ker ∂, while, for p = n, � = ∂∂∗ and ker� = ker ∂∗.
Similarly, ker� = ker ∂̄ for q = 0, and ker� = ker ∂̄∗ for q = n.

For these values of p (resp. q), we shall denote by �′ (resp. �
′
) the unprimed operator with

domain and range restricted to the orthogonal complement of the corresponding null space.
Notice that the core S0Λ

p,q splits according to the decompositions ker ∂ ⊕ (ker ∂)⊥, ker ∂̄ ⊕
(ker ∂̄)⊥. The negative powers �′−α(resp. �

′−α
) are then well defined on S0Λ

p,q ∩ (ker ∂)⊥

(resp. S0Λ
p,q ∩ (ker ∂̄)⊥).

By (1.19)

�0 = �n =
1

2
(L+ inT ) , �n = �0 =

1

2
(L− inT ) .

We denote by C (resp. C̄) the orthogonal projection from scalar L2 onto ker(L + inT ) (resp.
ker(L−inT )). The same symbols will be used to denote the extension to forms by componentwise
application.

Thus, C is the orthogonal projection onto ker ∂ when acting on (0, q)-forms as well as onto
ker ∂∗ when acting on (n, q)-forms, and C̄ is the orthogonal projection onto ker ∂̄ when acting
on (p, 0)-forms as well as onto ker ∂̄∗ when acting on (p, n)-forms.

Regard ∂ as a closed operator from L2Λp,q to L2Λp+1,q. The holomorphic Riesz transforms
are defined on S0Λp,q (with values in S0Λ

p+1,q) by

(4.5) Rp =





∂�
− 1

2
p = �

− 1
2

p+1∂ for 1 ≤ p ≤ n− 2 ,

∂�′
0
− 1

2 (I − C) = �
− 1

2
1 ∂ for p = 0 ,

∂�
− 1

2
n−1 = �′−

1
2

n ∂ for p = n− 1 .

We observe that, is all cases,

(4.6) Rp�
1
2
p = �

1
2
p+1Rp = ∂ .

The adjoint operators R∗
p from S0Λp+1,q to S0Λ

p,q are

(4.7) R∗
p =





�
− 1

2
p ∂∗ = ∂∗�

− 1
2

p+1 for 1 ≤ p ≤ n− 2 ,

�′
0
− 1

2 ∂∗ = ∂∗�
− 1

2
1 for p = 0 ,

�
− 1

2
n−1∂

∗ = ∂∗�′−
1
2

n (I − C̄) for p = n− 1 .
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The analogues of (4.3) and (4.4) are

(4.8)

Rp+1Rp = R∗
pR∗

p+1 = 0 ,

R∗
pRp + Rp−1R∗

p−1 = I , (1 ≤ p ≤ n− 1)

R∗
0R0 = I − C , Rn−1R∗

n−1 = I − C̄ .
Proposition 4.5 has the following analogue.

Proposition 4.6. For 0 ≤ p ≤ n− 1, the following subspaces of L2Λp,q are the same:

(i) kerRp;
(ii) ker ∂;

We call this space (L2Λp,q)∂-cl.
For 1 ≤ p ≤ n, the following subspaces of L2Λp,q are the same:

(iii) the range of Rp−1R∗
p−1;

(iv) the range of Rp−1;

(v) ∂(S0Λp−1,q).

We call this subspace (L2Λp,q)∂-ex.
For 1 ≤ p ≤ n− 1, (L2Λp,q)∂-cl = (L2Λp,q)∂-ex.

Similarly, for 1 ≤ p ≤ n, the following subspaces of L2Λp,q are the same:

(i’) kerR∗
p−1;

(ii’) ker ∂∗;

and we call this subspace (L2Λp,q)∂∗-cl.
For 0 ≤ p ≤ n− 1, the following subspaces of L2Λp,q are the same:

(iii’) the range of R∗
pRp;

(iv’) the range of R∗
p;

(v’) ∂∗(S0Λp+1,q);

and we call this subspace (L2Λp,q)∂∗-ex.
Finally, for 1 ≤ p ≤ n− 1, (L2Λp,q)∂∗-cl = (L2Λp,q)∂∗-ex.

We also set (L2Λk
H)∂-ex =

∑
p+q=k(L2Λp,q)∂-ex etc.

The antiholomorphic Riesz transforms Rq and their adjoints R∗
q are defined by conjugating

all terms in (4.5) and (4.7) respectively, and replacing p by q. The analogue of formula (10.3)
also holds true for all q

(4.9) Rp�
1
2
q = �

1
2
q+1Rq = ∂̄ .

The rest goes in perfect analogy with the holomorphic case.

Definition 4.7. On (p, q)-forms, we also define the operators

(4.10)
Cp = I −R∗

pRp , Cq = I −R∗
qRq , for 0 ≤ p, q ≤ n− 1 ,

Cn = I = Cn.

Notice that, by (4.8), Cp = Rp−1R∗
p−1 for 1 ≤ p ≤ n − 1, and similarly Cq = Rq−1R∗

q−1 for
1 ≤ q ≤ n− 1.



26 D. MÜLLER, M. M. PELOSO, AND F. RICCI

The following statements are obvious in view of Proposition 4.6.

Lemma 4.8. Cp is the orthogonal projection of L2Λp,q onto the kernel of ∂, and Cp is the

orthogonal projection of L2Λp,q onto the kernel of ∂,
Moreover, if ω ∈ S0Λ

p,q, with 1 ≤ p ≤ n− 1, then

Cpω = 0 if and only if ω ∈ ∂∗(S0Λp+1,q) if and only if ∂∗ω = 0,

whereas for p = 0,

C0 ω = 0 if and only if ω ∈ ∂∗(S0Λ1,q),

and for p = n,

Cn ω = 0 if and only if ω = 0.

Analogous statements hold for the operators Cq, if we replace p by q and conjugate all terms. In

particular, C0 = C, C0 = C, and ∂∗ω = 0 whenever Cpω = 0, and ∂
∗
ω = 0 whenever Cqω = 0.

Given a horizontal k-form ω =
∑

p+q=k ωpq we finally set

(4.11) Cω =
∑

p+q=k

Cpωpq , and Cω =
∑

p+q=k

Cqωpq .

5. A decomposition of L2Λk
H related to the ∂ and ∂̄ complexes

In this section, we shall work under the assumption that 0 ≤ k ≤ n, as this turns out to be
more convenient in view of the Lefschetz decomposition described in Prop. 2.1 of [MPR1]. The
case where k > n can be reduced to the case k ≤ n by means of Hodge duality, as will be shown
later in Section 8.

Our starting point in the spectral analysis of ∆k is the decomposition obtained in Proposition
4.5

(5.1) L2Λk = (L2Λk)d-ex ⊕ (L2Λk)d∗-cl .

Since d∆k−1 = ∆kd for all k ≥ 1, using the results from [MPR1] for ∆1, we can lift the decom-
position of L2Λ1 into ∆1-invariant subspaces and the related spectral properties to (L2Λ2)d-ex.
Therefore, inductively we analyse the (L2Λk)d-ex-component in the decomposition of L2Λk by
means of the preceeding step.

Thus, we are led to study the (L2Λk)d∗-cl-component in the decomposition of L2Λk.
By (1.21) we can characterize the d∗-closed forms. Notice that, if ω ∈ S0Λk, ω = ω1 + θ ∧ ω2

with ω1, ω2 horizontal, then

ω ∈
(
S0Λk

)
d∗-cl

if and only if ω2 = T−1d∗Hω1 .

In fact, if ω2 = T−1d∗Hω1, then the second equation i(dθ)ω1 − d∗Hω2 = 0 arising from in (1.21)
follows from the first one.

Hence, if we set

(5.2) Φ(ω) = ω + θ ∧ T−1d∗Hω
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we obtain an isomorphism

Φ : S0Λk
H −→

(
S0Λ

k
)
d∗-cl

.

Notice that, because of the invariance of θ and the equivariance of d∗H , Φ commutes with the
action of U(n).

Clearly, ∆k maps a subspace V of (S0Λk)d∗-cl into itself if and only if the (non-differential,
see (5.17) below) operator

(5.3) Dk := Φ−1∆kΦ ,

maps W = Φ−1V ⊂ S0Λk
H into itself.

For this reason, we begin by decomposing S0Λ
k
H into orthogonal subspaces which are invariant

under Dk and on which Dk takes a simple form.

5.1. The subspaces.

The decomposition is based on the following lemma.

Lemma 5.1. Every ω ∈ S0Λk
H decomposes as

(5.4) ω = ω′ + ∂ξ + ∂̄η ,

where ξ, η ∈ S0Λ
k−1
H , and ω′ ∈ S0Λ

k satisfies the condition

(5.5) ∂∗ω′ = ∂̄∗ω′ = 0 .

The term ω′ is uniquely determined, and we can assume, in addition, that

(5.6) Cp−1ξ = C̄q−1η = 0 .

Notice that, even with the extra assumption (5.6), ξ and η are not uniquely determined.

Proof. Assume that ω is a (p, q)-form. If p = 0, we obviously have the decomposition ω = ω′+∂̄η,
with ∂̄∗ω′ = 0, and ∂∗ω′ = 0 holds tivially, since ω′ is a (0, q)- form. A similar argument applies
if q = 0.

We therefore assume that p, q ≥ 1. Consider the homogeneous U(n)-equivariant differential
operator

(∂ ∂̄) :

(
ξ
η

)
7→ ∂ξ + ∂̄η ,

acting from L2(Λp−1,q) ⊕ L2(Λp,q−1) to L2Λp,q and its adjoint

(
∂∗

∂̄∗

)
.

In L2Λp,q, we have

ran (∂ ∂̄) = ran ∂ + ran ∂̄ , ker

(
∂∗

∂̄∗

)
= ker ∂∗ ∩ ker ∂̄∗ ,

so that

L2Λp,q = (ker ∂∗ ∩ ker ∂̄∗) ⊕ (ran ∂ + ran ∂̄) .

Moreover,

(∂ ∂̄)(S0Λp−1,q ⊕ S0Λp,q−1) = ∂S0Λ
p−1,q + ∂̄S0Λp,q−1 ,
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so that, by Lemma 3.4,

S0Λp,q = (ker ∂∗ ∩ ker ∂̄∗ ∩ S0Λp,q) ⊕ (∂S0Λp−1,q + ∂̄S0Λ
p,q−1) .

This gives the decomposition (5.4). By orthogonality, the two terms ω′ and ∂ξ + ∂̄η are
uniquely determined. Since Cp−1 and C̄q−1 preserve S0-forms, we can replace ξ by (I − Cp−1)ξ
and η by (I − C̄q−1)η, without changing the equality. Q.E.D.

Observe that the decomposition (5.4), without the extra assumptions on ξ and η, can be
iterated, so to obtain in a next step that

ω = ω′ + ∂(ξ′ + ∂α1 + ∂̄β1) + ∂̄(η′ + ∂α2 + ∂̄β2)

= ω′ + ∂ξ′ + ∂̄η′ + ∂∂̄β1 + ∂̄∂β2 ,

where now each of the primed symbols represents a form satisfying (5.5). If ω is a horizontal
k-form, the iteration stops after k steps, leaving no “remainder terms”.

We are so led to introduce, for each m ≤ k the spaces of forms

(5.7) ω = · · · ∂∂̄∂︸ ︷︷ ︸
m-terms

ξ + · · · ∂̄∂∂̄︸ ︷︷ ︸
m-terms

η ,

with ξ, η ∈ S0Λk−m
H and ∂∗ξ = ∂̄∗ξ = ∂∗η = ∂̄∗η = 0.

It is convenient to observe that in a sequence of at least three alternating ∂’s and ∂̄’s, we can
replace a product ∂∂̄ or ∂̄∂ by d2H = −T−1e(dθ). Since T−1 preserves S0-forms, the form ω in
(5.7) can thus be written as

ω =

{
e(dθ)ℓ(∂ξ + ∂̄η) if m = 2ℓ + 1 ,

e(dθ)ℓ(∂̄∂ξ + ∂∂̄η) if m = 2ℓ + 2 .

Definition 5.2. We set

W p,q
0 =

{
ω ∈ S0Λp,q : ∂∗ω = ∂̄∗ω = 0

}
,

W p,q
1 =

{
ω = ∂ξ + ∂̄η : ξ, η ∈W p,q

0

}
,

W p,q
2 =

{
ω = ∂̄∂ξ + ∂∂̄η : ξ, η ∈W p,q

0

}
.

For ℓ ∈ N and j = 1, 2, we set

W p,q
j,ℓ = e(dθ)ℓW p,q

j .

We also set

W k
0 =

∑

p+q=k

W p,q
0 =

{
ω ∈ S0Λ

k
H : ∂∗ω = ∂̄∗ω = 0

}
,

and, for j = 1, 2 and ℓ ∈ N,

W k
j =

∑

p+q+j=k

W p,q
j

and

W k
j,ℓ =

∑

p+q+j+2ℓ=k

W p,q
j,ℓ = e(dθ)ℓW k−2ℓ

j ,

whenever k ≥ j + 2ℓ.
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The symbols Wk
j ,W

p,q
j , etc. denote the L2-closures of the corresponding spaces W k

j , W
p,q
j ,

etc..

We wish to characterize which spaces among the W p,q
0 and W p,q

j,ℓ are non-trivial.

Proposition 5.3. Let 0 ≤ k ≤ n and p + q = k. Then W p,q
0 is trivial if and only if k = n and

1 ≤ p, q ≤ n− 1.

Proof. We show first that W p,q
0 is non-trivial for p+q ≤ n−1. In order to do so, it is sufficient to

prove that, under this assumption, there is a non-zero β ∈ P1⊗Λp,q, with P1 = span {w1, . . . , wn}
as in (2.6), such that

π1(∂∗)β = π1(∂̄
∗)β = 0 .

From this it will easily follow from (1.10) and (2.8) that πλ(∂∗)β = πλ(∂̄∗)β = 0 for every
λ > 0.

Let ω ∈ Λp,q be such that πλ(ω) = χ(λ)Pβ , where χ is a smooth cut-off function with compact
support in (0,+∞) and Pβ is the orthogonal projection of F ⊗ Λp,q onto Cβ. Then ω ∈ S0Λ

p,q

and ∂∗ω = ∂̄∗ω = 0.
Take

β =

(p+1∑

j=1

(−1)jwj ζ ∧ · · · ∧ ζ̂j ∧ · · · ∧ ζp+1

)
∧ ζ̄I′ ,

where I ′ = (p+ 2, . . . , p+ q + 1). Then, writing Iĵ = (1, . . . , ĵ, . . . , p + 1) we have

π1(∂
∗)(β) =

1√
2

∑

ℓ,J

p+1∑

j=1

(−1)jε
I
ĵ

ℓJwℓwj ζ
J ∧ ζ̄I′

=
1√
2

p+1∑

j=1

(−1)j
[ j−1∑

ℓ=1

(−1)ℓ−1wℓwj ζ1 ∧ · · · ∧ ζ̂ℓ ∧ · · · ∧ ζ̂j ∧ · · · ∧ ζp+1

+

p+1∑

ℓ=j+1

(−1)ℓwℓwj ζ1 ∧ · · · ∧ ζ̂j ∧ · · · ∧ ζ̂ℓ ∧ · · · ∧ ζp+1

]
∧ ζ̄I′

= 0 .

Next, since π1(Zℓ) =
√

2∂wℓ
we have

π1(∂̄
∗)(β) = (−1)p+1

√
2
∑

ℓ, J ′

εI
′

ℓJ ′

(
∂wℓ

wj

)
ζIĵ ∧ ζJ

′

= 0 ,

since j 6∈ I ′, so that ∂wℓ
wj = 0.

This shows that W p.q
0 6= {0} when p+ q ≤ n− 1.

Next, consider W n,0
0 . Take β = ζ1∧ · · · ∧ ζn ∈ P0⊗Λn,0. Clearly πλ(∂̄∗)β = 0 for every λ 6= 0,

while πλ(∂̄∗)β = 0 for λ < 0 by (1.10) and (2.8). As before, this implies that W n,0
0 6= {0}.

Finally, consider W n−s,s
0 , with 1 ≤ s ≤ n− 1 and let ω ∈W n−s,s

0 . Since � is injective on this
space and ∂∗ω = 0 we have

ω = ∂∗
(
∂�−1

)
ω =: ∂∗ν .
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Similarly, since ∂̄∗ω = 0,

ω = ∂̄∗∂̄�
−1
ω = ∂̄∗∂̄�

−1
∂∗ν

= ∂̄∗∂̄∂∗(�− iT )−1ν = ∂̄∗∂∗
(
− ∂̄(� − iT )−1ν

)
,

i.e.

(5.8) ω = ∂̄∗∂∗µ ,

for some µ. But ∂̄∗ω = 0 if and only if

0 = ∂∗∂̄∗(∂∗µ) = (∂̄∗∂∗ + ∂∗∂̄∗)(∂∗µ) = T i(dθ)(∂∗µ) .

It follows that, if µ is as in (5.8), then ω = ∂̄∗∂∗µ ∈W s,n−s
0 if and only if

(5.9) i(dθ)(∂∗µ) = 0 ,

i.e. ∂∗µ ∈ ker i(dθ).

Therefore, ∂∗µ ∈ S0

(
kerΛs,n−s+1 i(dθ)

)
. Since max{0, s+(n−s+1)−n} = max{0, 1} = 1 > 0,

according to Prop. 2.1 in in [MPR1], we have kerΛs,n−s+1 i(dθ) = {0}, that is, ∂∗µ = 0; hence
ω = 0. Q.E.D.

Proposition 5.4. Assume that j = 1, 2. Then the space W p,q
j,ℓ is non-trivial if and only if

ℓ+ j + p+ q ≤ n. In this case, e(dθ)ℓ is bijective from W p,q
j onto W p,q

j,ℓ .

Proof. We first prove the “only if” part. Observe that W p,q
0 and W p,q

1 are in the kernel of i(dθ),
which is immediate from (1.12) and (1.14).

In order to prove the statement for j = 1, we set (p̃, q̃) = (p+1, q) or (p, q+1). By Prop. 2.1 in
[MPR1] we know that e(dθ)ℓ

(
ker i(dθ)|

L2Λp̃,q̃

)
is non-trivial if and only if max(0, p̃+q̃+2ℓ−n) ≤ ℓ,

that is, ℓ ≤ n− p̃− q̃. Since W p,q
1 ⊆ L2Λp+1,q +L2Λp,q+1 it follows that W p,q

1,ℓ can be non-trivial

only when ℓ ≤ n− p− q − 1.
To prove that e(dθ)ℓ is injective on W p,q

1 under this condition, we show by induction on ℓ that
e(dθ)ℓ is injective on ker i(dθ)|

Λp̃,q̃
when ℓ ≤ n− p̃− q̃ = n− p− q − 1. The case ℓ = 0 is trivial.

And, by (1.16) we see that for ℓ ≥ 1 when acting on (p̃, q̃)-forms

(5.10)

[i(dθ), e(dθ)ℓ] =
ℓ−1∑

ν=0

e(dθ)ν [i(dθ), e(dθ)]e(dθ)ℓ−1−ν

=
ℓ−1∑

ν=0

(n− p̃− q̃ − 2ℓ + 2 + 2ν)e(dθ)ℓ−1

= ℓ(n− p̃− q̃ − ℓ+ 1)e(dθ)ℓ−1

= ℓ(n− p− q − ℓ)e(dθ)ℓ−1 ,

which allows to prove injectivity of e(dθ)ℓ on ker i(dθ)|
Λp̃,q̃

from injectivity of e(dθ)ℓ−1 under the

assumption on ℓ.
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We now turn to the case j = 2, which requires a more refined discussion. Let us set

Kp,q
2 = W p,q

2 ∩ ker i(dθ)|L2Λp+q+2
H

.

We claim that W p,q
2 decomposes as an orthogonal sum

(5.11) W p,q
2 = Kp,q

2 ⊕ e(dθ)W p,q
0 .

It is obvious by (1.12) that e(dθ)W p,q
0 ⊂W p,q

2 , and clearly the two subspaces on the right-hand
side are orthogonal.

Assume that ω = ∂∂̄ξ + ∂̄∂η ∈W p,q
2 , with ξ, η ∈W p,q

0 . Then

i(dθ)ω = i(�η −�ξ) ∈W p,q
0 .

Indeed, by (1.13) and (1.20) we have

i(dθ)
(
∂∂̄ξ + ∂̄∂η

)
= T−1d∗H

2(∂∂̄ξ + ∂̄∂η
)

= T−1
(
−∂∗∂�ξ + ∂̄∗�∂̄ξ + ∂∗�∂η − ∂̄∗∂̄�η

)

= T−1
(
−��ξ + (�− iT )�ξ + (� + iT )�η −��η

)

= i(�η −�ξ) .

We have seen that i(dθ)W p,q
2 ⊂ W p,q

0 , and therefore ω ∈ W p,q
2 ∩ (e(dθ)W p,q

0 )⊥ if and only if
ω ∈ Kp,q

2 . This proves (5.11). Let us set Kp,q
2,ℓ = e(dθ)ℓKp,q

2 . Then

(5.12) W p,q
2,ℓ = Kp,q

2,ℓ ⊕ e(dθ)ℓ+1W p,q
0 ,

and this decomposition is again orthogonal.
Indeed, if ω ∈ ker(i(dθ)) and σ is a form orthogonal to ω, then for every ℓ ≥ 1

〈e(dθ)ℓω, e(dθ)ℓσ〉 = 0.

For, by (5.10) we have

i(dθ)e(dθ)ℓω = cℓe(dθ)
ℓ−1ω ,

which implies, by induction on ℓ, that

〈e(dθ)ℓω, e(dθ)ℓσ〉 = 〈i(dθ)e(dθ)ℓω, e(dθ)ℓ−1σ〉 = 0 .

In order to prove the statement in the lemma for j = 2, using the orthogonal decomposition
in (5.12) we may now argue as before by means of Prop. 2.1 in [MPR1] in order to see that W p,q

2,ℓ

can be non-trivial only if ℓ ≤ n− p− q − 2. Moreover, to verify that e(dθ)ℓ is injective on W p,q
2

under this condition, it suffices to check injectivity on each of the subspaces on the right-hand
side of (5.11). But this can be done by the same reasoning that we used for the case j = 1.

For the “if” part, assume again that p + q + j + ℓ ≤ n and j = 1, 2. Then, p + q ≤ n − 1,
so that W p,q

0 6= {0} by Proposition 5.3. Then W p,q
j 6= {0}, and by the first part W p,q

ℓ,j 6= {0}.

Q.E.D.
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Lemma 5.5. For ξ ∈W p,q
0 ,

(5.13)

∂∗e(dθ)ℓ∂ξ = e(dθ)ℓ�ξ + iℓe(dθ)ℓ−1∂̄∂ξ

∂∗e(dθ)ℓ∂̄ξ = 0

∂̄∗e(dθ)ℓ∂̄ξ = e(dθ)ℓ�ξ − iℓe(dθ)ℓ−1∂∂̄ξ

∂̄∗e(dθ)ℓ∂ξ = 0 ,

and

(5.14)

∂∗e(dθ)ℓ∂̄∂ξ = −e(dθ)ℓ∂̄�ξ
∂∗e(dθ)ℓ∂∂̄ξ = e(dθ)ℓ∂̄

(
�ξ − i(ℓ + 1)T

)
ξ

∂̄∗e(dθ)ℓ∂∂̄ξ = −e(dθ)ℓ∂�ξ
∂̄∗e(dθ)ℓ∂̄∂ξ = e(dθ)ℓ∂

(
�ξ + i(ℓ + 1)T

)
ξ .

Proof. Since [∂∗, e(dθ)] = i∂̄ commutes with e(dθ) (compare (1.14), (1.15)) and similarly for ∂̄∗,
we obtain by induction that

(5.15) [∂∗, e(dθ)ℓ] = iℓ∂̄e(dθ)ℓ−1 , [∂̄∗, e(dθ)ℓ] = −iℓ∂e(dθ)ℓ−1 .

We verify the first identity in (5.13), the others being similar and following by invoking also
(1.12) and (1.20):

∂∗e(dθ)ℓ∂ξ = e(dθ)ℓ∂∗∂ξ + iℓ∂̄e(dθ)ℓ−1∂ξ

= e(dθ)ℓ�ξ + iℓe(dθ)ℓ−1∂̄∂ξ .

Q.E.D.

This immediately gives the following inclusions.

Corollary 5.6. For ℓ ≥ 1,

∂∗W p,q
1,ℓ ⊂W p,q

2,ℓ−1 , ∂∗W p,q
2,ℓ ⊂W p,q

1,ℓ ,

and similarly for ∂̄∗.

Proposition 5.7. L2Λk
H decomposes as the orthogonal sum

L2Λk
H =

∑⊕

p+q=k

Wp,q
0 ⊕

∑⊕

j,ℓ,p,q
j=1,2

p+q+j+2ℓ=k

Wp,q
j,ℓ

= Wk
0 ⊕

∑⊕

1+2ℓ≤k

Wk
1,ℓ ⊕

∑⊕

2+2ℓ≤k

Wk
2,ℓ.

We recall that Wp,q
0 is non-trivial for p+ q ≤ n− 1, and if p+ q = n for pq = 0.

Proof. We have already shown that S0Λ
k
H is contained in the sum of the subspaces on the

right-hand side. It is then sufficient to show that any two S0-forms belonging to two different
subspaces are orthogonal.

It is quite obvious that W p,q
0 is orthogonal to W p′,q′

0 if (p, q) 6= (p′, q′).
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The fact that W k
0 is orthogonal to W k

j,ℓ for j = 1, 2 is a consequence of the fact that W k
0 ⊂

ker ∂∗ ∩ ker ∂̄∗, whereas W k
j,ℓ ⊂ ran ∂ + ran ∂̄.

To prove the remaining orthogonality relations, we shall proceed inductively. For this purpose,
it will be convenient to represent the elements of W k

j,ℓ in the form (5.7) with m = j + 2ℓ, and

rename, for the purpose of this proof, W p,q
j,ℓ as W p,q

m if m = j + 2ℓ. Given m ≥ m′ ≥ 1, there are

three kinds of scalar products to consider,

〈 ∂∂̄ · · ·︸ ︷︷ ︸
m-terms

σ, ∂∂̄ · · ·︸ ︷︷ ︸
m′-terms

σ′〉 , 〈 ∂̄∂ · · ·︸ ︷︷ ︸
m-terms

σ, ∂∂̄ · · ·︸ ︷︷ ︸
m′-terms

σ′〉 , 〈 ∂̄∂ · · ·︸ ︷︷ ︸
m-terms

σ, ∂̄∂ · · ·︸ ︷︷ ︸
m′-terms

σ′〉 ,

with σ ∈W p,q
0 and σ′ ∈W p′,q′

0 . In the first case we have

〈∂∂̄ · · ·︸ ︷︷ ︸
m

σ, ∂∂̄ · · ·︸ ︷︷ ︸
m′

σ′〉 = 〈∂̄ · · ·︸︷︷︸
m−1

σ, ∂∗ ∂∂̄ · · ·︸ ︷︷ ︸
m′

σ′〉 .

By Corollary 5.6, this is the scalar product of an element of W p,q
m−1 with an element of W p′,q′

m′−1.

By induction on m′, this shows that W p,q
m ⊥W p′,q′

m′ unless p = p′, q = q′, m = m′.

Q.E.D.

We discuss now to what extent the pairs (ξ, η) ∈ W p,q
0 ×W p,q

0 provide a parametrization of
the spaces W p,q

j,ℓ for j = 1, 2.

Lemma 5.8. Given ξ ∈W p,q
0 , there exists a unique ξ′ ∈W p,q

0 such that ∂ξ = ∂ξ′ and Cpξ
′ = 0.

An analogous statement holds for ∂̄ in place of ∂.

Proof. The case p = n is trivial - here ξ′ = 0. If 1 ≤ p ≤ n − 1, then by Lemma 4.8 we have
ξ′ = ξ.

There only remains the case p = 0, where C0 = C is the orthogonal projection onto the kernel
of � (which in this case agrees with ker ∂). This is a self-adjoint operator, so that, by Lemma
3.4, S0Λ

0,q = (ker� ∩ S0Λ0,q) ⊕ (ran� ∩ S0Λ
0,q). The commutation relation ∂̄∗� = (� − iT )∂̄∗

from (1.20) then implies that the two subspaces in this decomposition are mapped under ∂̄∗ to
ker(�− iT ) ∩ S0Λ0,q and ran (�− iT ) ∩ S0Λ0,q, respectively. This shows that

∂̄∗Cξ = P ∂̄∗ξ = 0 ,

where P denotes the orthogonal projection onto the kernel of � − iT. Then ξ′ = (I − C)ξ has
the desired properties. Q.E.D.

Set

(5.16) Xp,q = {ξ ∈W p,q
0 : Cpξ = 0} , Y p,q = {η ∈W p,q

0 : C̄qη = 0} , Zp,q = Xp,q × Y p,q .

In combination with Proposition 5.4 the previous lemma implies that the spaces Zp,q provide
parametrisations for the spaces W p,q

j,ℓ :

Corollary 5.9. Assume that j = 1, 2 and p+ q + j + ℓ ≤ n. Then the maps

e(dθ)ℓ(∂ ∂̄) : Zp,q −→W p,q
1,ℓ , (ξ, η) 7→ ∂ξ + ∂̄η,

e(dθ)ℓ(∂̄∂ ∂∂̄) : Zp,q −→W p,q
2,ℓ , (ξ, η) 7→ ∂̄∂ξ + ∂∂̄η
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are bijections. Notice that this applies in particular to the spaces W p,q
j,ℓ appearing in the orthogonal

decomposition of L2Λk
H in Proposition 5.7 under the assumption k ≤ n.

Remark 5.10. Recall that, by Lemma 4.8,

Xp,q =





W p,q
0 if 1 ≤ p ≤ n− 1 ,

{0} if p = n ,{
ξ ∈ S0Λ

0,q : Cξ = 0, ∂̄∗ξ = 0
}

if p = 0 .

By the proof of Lemma 5.8, the latter space is indeed nothing but (I − C)W 0,q
0 .

Analogous statements hold true for Y p,q. Finally, notice that the spaces Zp,q are non-trivial
if p+ q ≤ n− 1.

5.2. The action of ∆k.

Let Φ be the bijection (5.2) from S0Λk
H onto (S0Λk)d∗-cl, and let Dk = Φ−1∆kΦ be the

operator in (5.3).
For ω ∈ S0Λ

k
H , by (1.22) we have

(5.17)
Dkω =

(
∆H − T 2 + e(dθ)i(dθ)

)
ω +

(
T−1[d∗H , e(dθ)]d

∗
H

)
ω

=
(
∆H − T 2 + T−1d∗He(dθ)d

∗
H

)
ω .

The following identities are easily derived from (1.12), (1.14) and (1.15):

(5.18)

�e(dθ) = e(dθ)(�− iT ) ,

�e(dθ) = e(dθ)(� + iT ) ,

[∆H , e(dθ)] = 0 .

It follows from (1.19) that, when acting on k-forms,

(5.19) �−� = i(n − k)T .

Lemma 5.11. The following identities hold

(i) Dke(dθ) = e(dθ)(Dk−2 + n− k + 1);

(ii) Dke(dθ)
ℓ = e(dθ)ℓ

(
Dk−2ℓ + ℓ(n− k + ℓ)

)
, for ℓ ≥ 1.

Proof. By (1.14), (1.15) and (5.17), (5.18), when applied to a horizontal (k − 2)-form,

(5.20)

Dke(dθ) = e(dθ)(∆H − T 2) + T−1
(
d∗He(dθ)

)2

= e(dθ)(∆H − T 2) + T−1
(
e(dθ)d∗H + i(∂̄ − ∂)

)2

= e(dθ)Dk−2 + iT−1e(dθ)
(
d∗H(∂̄ − ∂) + (∂̄ − ∂)d∗H

)
− T−1(∂̄ − ∂)2

= e(dθ)Dk−2 + iT−1e(dθ)(�−�) − e(dθ)

= e(dθ)(Dk−2 + n− k + 1) .

Identity (ii) now follows by induction. Q.E.D.

Proposition 5.12. The subspaces W p,q
0 , W p,q

1,ℓ , W
p,q
2,ℓ are invariant under the action of Dk.



HODGE LAPLACIAN ON THE HEISENBERG GROUP 35

Proof. If ω ∈W p,q
0 , then d∗Hω = 0 and therefore

(5.21) Dkω = (∆H − T 2)ω = (∆0 + i(q − p)T )ω ,

by (1.19), where ∆0 denotes the scalar operator L− T 2. The last expression shows that Dkω is
a (p, q)-form, and the previous one that d∗HDkω = 0, by (1.20).

By Lemma 5.11, when j = 1, 2, it suffices to take ℓ = 0.

Take now ω ∈W k
1 , ω = ∂ξ + ∂̄η, with ∂∗ξ = ∂̄∗ξ = ∂∗η = ∂̄∗η = 0. We have

(5.22)

Dkω =
(
∆H − T 2 + T−1d∗He(dθ)d

∗
H

)
(∂ξ + ∂̄η)

= ∂(∆H − T 2 + iT )ξ + ∂̄(∆H − T 2 − iT )η + T−1d∗He(dθ)d
∗
H(∂ξ + ∂̄η)

= ∂(∆H − T 2 + iT )ξ + ∂̄(∆H − T 2 − iT )η

+ T−1d∗He(dθ)�ξ + T−1d∗He(dθ)�η

= ∂(∆H − T 2 + iT )ξ + ∂̄(∆H − T 2 − iT )η + T−1(i∂̄ − i∂)(�ξ + �η)

= ∂
(
(∆H − T 2 + iT − iT−1�)ξ − iT−1�η

)

+ ∂̄
(
(∆H − T 2 − iT + iT−1�)η + iT−1�ξ

)
.

Therefore, Dk(∂ξ + ∂̄η) = ∂ξ′ + ∂̄η′, where

ξ′ = (∆H − T 2 + iT − iT−1�)ξ − iT−1�η

η′ = (∆H − T 2 − iT + iT−1�)η + iT−1�ξ ,

that is,

(5.23)

Dk

(
∂ ∂̄

)
=
(
∂ ∂̄

)(∆H − T 2 + iT − iT−1� −iT−1�

iT−1� ∆H − T 2 − iT + iT−1�

)

=
(
∂ ∂̄

) [
(∆H − T 2)I − iT−1

(
�− T 2 �

−� −� + T 2

)]
.

Using the commutation relations (1.20) we see that

∂∗ξ′ = ∂̄∗ξ′ = ∂∗η′ = ∂̄∗η′ = 0.

Therefore, also W k
1 is Dk-invariant. Moreover, if ξ and η are (p, q)-forms, so are ξ′ and η′, hence

each W p,q
1 is Dk-invariant.

Finally, take ω ∈W k
2 , ω = ∂̄∂ξ + ∂∂̄η, with ∂∗ξ = ∂̄∗ξ = ∂∗η = ∂̄∗η = 0. We first compute

d∗He(dθ)d
∗
H ∂̄∂ξ = d∗He(dθ)(−∂̄�ξ + �∂ξ)

= e(dθ)d∗H(−∂̄�ξ + �∂ξ) + i(∂̄ − ∂)(−∂̄�ξ + �∂ξ)

= e(dθ)(−��ξ + ∂∗�∂ξ) + i(∂∂̄�ξ + ∂̄�∂ξ)

= e(dθ)
(
−��ξ + (� + iT )�ξ

)
+ i
(
∂∂̄�ξ + ∂̄∂(� + iT )ξ

)

= iT e(dθ)�ξ + i∂∂̄�ξ + i∂̄∂(� + iT )ξ

= i∂̄∂(−� + � + iT )ξ

= (n− k + 1)T ∂̄∂ξ ,
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by (5.19), since ξ is a (k − 2)-form. Similarly,

d∗He(dθ)d
∗
H∂∂̄η = (n− k + 1)T∂∂̄η .

Therefore,

(5.24) Dkω = (∆H − T 2 + n− k + 1)ω .

As before, (1.20) implies that Dkω ∈W k
2 , and each subspace W p,q

2 is mapped into itself.

Q.E.D.

5.3. Lifting by Φ.

Denote by V p,q
0 , V p,q

1,ℓ , etc., the subspaces Φ(W p,q
0 ), Φ(W p,q

1,ℓ ), etc., of (L2Λk)d∗-cl. We want to

show that their closures Vp,q
0 , Vp,q

1,ℓ , etc. give an orthogonal decomposition of (L2Λk)d∗-cl.

In a way, this is not a priori obvious, because Φ is not an orthogonal map. The fact that
it preserves the orthogonality of the subspaces we are working with is quite peculiar. On the
other hand, the reader may have noticed already an instance of this peculiarity in the fact that a
non-symmetric operator such as Dk admits a rather fine decomposition into invariant subspaces
which are orthogonal.

Proposition 5.13. For 0 ≤ k ≤ n we have the orthogonal decompositions

(5.25)
(
L2Λk

)
d∗-cl

=
∑⊕

p+q=k<n
p+q=n, pq=0

Vp,q
0 ⊕

∑⊕

j,ℓ,p,q
j=1,2

p+q+j+2ℓ=k

Vp,q
j,ℓ ,

where each of the subspaces Vp,q
0 ,Vp,q

j,ℓ is non-trivial and ∆k-invariant.

Proof. Since Φ is a bijection from S0Λ
k
H onto (S0Λk)d∗-cl, it follows from Proposition 5.7 that

(
S0Λk

)
d∗-cl

=
∑⊕

p+q=k<n
p+q=n, pq=0

V p,q
0 ⊕

∑⊕

j,ℓ,p,q
j=1,2

p+q+j+2ℓ=k

V p,q
j,ℓ .

Hence it remains to show that this decomposition is orthogonal. By (5.2), this amounts to
proving that

d∗H(W p,q
j,ℓ ) ⊥ d∗H(W p′,q′

j′,ℓ′ ) whenever W p,q
j,ℓ 6= W p′,q′

j′,ℓ′ .

This, in turn, is an immediate consequence of Corollary 5.6 and Proposition 5.7. Notice that
d∗HW

p,q
0 = {0}.

Q.E.D.
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6. Intertwining operators and different scalar forms for ∆k

Following the decomposition of L2Λk described in the previous section, we continue assuming
0 ≤ k ≤ n.

In this section we describe the form that ∆k attains on each of the subspaces of the decom-
position (5.25) of (L2Λk)d∗-cl. In particular, we will show that, up to conjugation with invertible
operators, ∆k acts on V p,q

0 and on each V p,q
2,ℓ as a scalar operator. For V p,q

1,ℓ instead, a further

splitting will be necessary in order to reduce ∆k to a scalar form in a similar way.
In the process, we will also describe the intertwining operators that reduce ∆k to such scalar

forms.

6.1. The case of V p,q
0 .

The simplest case is the one of V p,q
0 , because Φ acts on this space as the identity map and we

already know by (5.21) that Dk

∣∣
W p,q

0
= ∆0 + i(q − p)T . Hence, in this case ∆k is itself a scalar

operator and we simply have the following

Proposition 6.1. Let p+ q ≤ n− 1 or, pq = 0 if p+ q = n. Then, on V p,q
0 ,

(6.1) ∆k = ∆0 + i(q − p)T .

When we pass to j = 1, 2 we want to express ∆k in terms of the parameters (ξ, η) in the
definition of W p,q

j,ℓ which we can choose from the parameter spaces Zp,q = Xp,q × Y p,q.

6.2. The case of V p,q
2,ℓ .

According to Corollary 5.9, we can write

(6.2) W p,q
2,ℓ =

{
ω = e(dθ)ℓ(∂̄∂ξ + ∂∂̄η) : (ξ, η) ∈ Zp,q

}
.

Recall from the discussion in Section 4 and the definitions of Xp,q and Y p,q (see (5.16)) that �

is injective when restricted to Xp,q and � is injective when restricted to Y p,q.

Proposition 6.2. Let A2,ℓ = Φe(dθ)ℓ
(
∂∂̄ ∂̄∂

)
: Zp,q → V p,q

2,ℓ . Then, A2,ℓ is injective on Zp,q.

The operator ∆k restricted to the subspace V p,q
2,ℓ is given by the following expression:

(6.3) ∆k
∣∣
V
p,q
2,ℓ

= A2,ℓ

(
∆0 + i(q − p)T + (ℓ + 1)(n − k + ℓ+ 1)

)
A−1

2,ℓ .

Proof. By Corollary 5.9 it follows at once that A2,ℓ is injective on Zp,q.
When k = p+ q + 2 + 2ℓ, from Lemma 5.11 we have

Dke(dθ)
ℓ = e(dθ)ℓ

(
Dk−2ℓ + ℓ(n− k + ℓ)

)
.

Moreover, by (5.24) we know that Dk−2ℓ, when acting on W p,q
2 , is given by ∆0 + i(q− p)T +n−

(k − 2ℓ) + 1, so that on W p,q
2

(6.4) Dke(dθ)
ℓ = e(dθ)ℓ

(
∆0 + i(q − p)T + (ℓ+ 1)(n − k + ℓ+ 1)

)
.



38 D. MÜLLER, M. M. PELOSO, AND F. RICCI

By the definitions of Φ and V p,q
2,ℓ , and the commutation relations (1.20), this proves (6.3).

Q.E.D.

6.3. The case of V p,q
1,ℓ .

We now turn to the case j = 1. In this case the situation is quite more involved, as we
already observed in the case of 1-forms, see [MPR1]. Let us begin by recalling that according
to Corollary 5.9, we can write

(6.5) W p,q
1,ℓ =

{
ω = e(dθ)ℓ(∂ξ + ∂̄η) : (ξ, η) ∈ Zp,q

}
.

Consider the subspace V p,q
1,ℓ = Φ(W p,q

1,ℓ ).

Our next goal will be to formally diagonalize the matrix

(
�− T 2 �

−� −� + T 2

)
appearing in

formula (5.23). This matrix operator is acting on column vectors

(
ξ
η

)
corresponding to pairs

(ξ, η) ∈ Xp,q × Y p,q = Zp,q, where p+ q + 1 + 2ℓ = k. We put

(6.6) s := p+ q = k − 2ℓ− 1 .

Notice that 0 ≤ s ≤ n− 1.

We define the operator matrix Q acting on

(
ξ
η

)
by

(6.7) Q =

(
−Q+

− −Q−
+

Q+
+ Q−

−

)
,

where, for ε, δ = ±, the expression of Qε
δ is

Qε
δ = Γ + εm− δiT ,

where

(6.8)
m =

n− s

2
,

Γ =
√

∆H − T 2 +m2 .

Observe here that the operator ∆H−T 2+m2 satisfies the estimate ∆H−T 2+m2 ≥ m2 ≥ 1/4,
so that it has a unique positive square root.

The following identities are easily verified:

(6.9)

Q+
+Q

−
− = 2�

Q+
−Q

−
+ = 2�

Q+
+Q

−
+ = 2

[
�− T 2 − iT (m + Γ)

]
= 2
[
�− T 2 + iT (m− Γ)

]

Q−
−Q

+
− = 2

[
�− T 2 − iT (m− Γ)

]
= 2
[
�− T 2 + iT (m + Γ)

]
,

since

(6.10) �− imT = � + imT =
1

2
∆H .
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Lemma 6.3. If p+ q ≤ n− 1, then the following properties hold true:

(i) The operator matrix Q : S0Λp,q × S0Λp,q → S0Λp,q × S0Λp,q is invertible, with inverse

Q−1 =
1

4iTΓ

(
−Q−

− −Q−
+

Q+
+ Q+

−

)
.

Moreover, Q maps the subspace W p,q
0 ×W p,q

0 bijectively onto itself.
(ii) If p = 0, then Q−

−C = CQ−
− = 0, and if q = 0, then Q−

+C̄ = C̄Q−
+ = 0.

Proof. To prove (i), we compute formally the determinant of Q and find by (6.9) that detQ =
−4iTΓ . The formula for Q−1 is now obvious. Notice also that the operators Qε

δ leave the space
W p,q

0 invariant. The remaining statement in (i) is now clear.

As for (ii), notice that if p = 0 then C projects onto the kernel of ∂, which coincides
with the kernel of �. And, on ker�, by (6.10) we have ∆H = −2imT ≥ 0, so that Γ =√
−2imT − T 2 +m2 = m− iT , and hence Q−

− = 0 on ker ∂. This implies CQ−
− = Q−

−C = 0. The
remaining identities in (ii) are proved analogously. Q.E.D.

We set

(6.11) Ξp,q = Xp,q ∩ Y p,q = {ξ ∈W p,q
0 : Cpξ = C̄qξ = 0} , Z̃p,q = W p,q

0 × Ξp,q .

Lemma 6.4. (
I − Cp 0

0 I − C̄q

)
Q(Z̃p,q) = Zp,q.

Proof. It suffices to show that
(
I − Cp 0

0 I − C̄q

)
Q(Z̃p,q) =

(
I − Cp 0

0 I − C̄q

)
Q(W p,q

0 ×W p,q
0 ),

since Q(W p,q
0 ×W p,q

0 ) = W p,q
0 ×W p,q

0 .
We have Ξp,q = (I − Cp − C̄q)W

p,q
0 , which means that it suffices to show that

(
I − Cp 0

0 I − C̄q

)
Q

(
0
η

)
=

(
−(I − Cp)Q

−
+η

(I − C̄q)Q
−
−η

)

is zero for every η = (Cp + C̄q)η
′. This follows from the identities

(I − Cp)(Cp + C̄q) = C̄q , (I − C̄q)(Cp + C̄q) = Cp ,

and from (ii) of Lemma 6.3. Q.E.D.

Lemma 6.5. Let

(6.12) G =

(
�− T 2 �

−� −� + T 2

)

be the matrix appearing in formula (5.23). Then, −iT−1G admits the diagonalization

−iT−1G = Q

(
m+ Γ 0

0 m− Γ

)
Q−1 .



40 D. MÜLLER, M. M. PELOSO, AND F. RICCI

Proof. In order to formally compute the eigenvalues λ± of −iTG, observe that the characteristic
equation for G is

τ2 − τ
[
�−�

]
+ T 2

[
� + �− T 2

]
= 0 ,

which has roots

τ± = imT ±
√

−T 2
[
� + �− T 2 +m2

]
= iT (m± Γ) .

Therefore,

G− τ±I =

(
�− T 2 − iT (m± Γ) �

−� −� + T 2 − iT (m± Γ)

)
,

and, by (6.9),

G− τ+I =
1

2

(
Q+

+Q
−
+ Q+

−Q
−
+

−Q+
+Q

−
− −Q+

−Q
−
−

)

=
1

2

(
Q−

+

−Q−
−

)(
Q+

+ Q+
−
)
,

and analogously,

G− τ−I =
1

2

(
Q+

−
−Q+

+

)(
Q−

− Q−
+

)
.

These equations show that eigenvectors of G of eigenvalues τ± are given, respectively, by

(6.13) Q+ =

(
−Q+

−
Q+

+

)
, Q− =

(
−Q−

+

Q−
−

)
,

so that

Q =
(
Q+|Q−)

is indeed a matrix which formally diagonalizes −iT−1G as claimed. Q.E.D.

Recall now from (6.5) and the definition of V p,q
1,ℓ that if we define the operator A1,ℓ : (W p,q

0 )2 →
L2Λk as

(6.14)

A1,ℓ

(
ξ
η

)
:= Φe(dθ)ℓ

(
∂ ∂̄

)(ξ
η

)

=

(
I

T−1d∗H

)
e(dθ)ℓ

(
∂ ∂̄

)(ξ
η

)
,

then A1,ℓ(Z
p,q) = V p,q

1,ℓ . Observe also that Lemma 6.4 shows that we may realize Zp,q in this

identity as the space Q(Z̃p,q) and use Z̃p,q as a parameter space for V p,q
1,ℓ . This has the advantage

of reducing the operator Dk in (5.23) to diagonal form.
We therefore define the modified intertwining operator A1,ℓ by

(6.15) A1,ℓ := A1,ℓQ
∣∣Z̃p,q

: Z̃p,q → V p,q
1,ℓ .

By (5.23), Lemma 5.11 and Lemma 6.5, we have

(6.16) ∆kA1,ℓ = A1,ℓ

(
∆h − T 2 + ℓ(n− k + ℓ) +

(
m+ Γ 0

0 m− Γ

))
.
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This suggests to further introduce the operators A±
1,ℓ acting by

(6.17) A+
1,ℓξ = A1,ℓ

(
ξ
0

)
= A1,ℓQ

+ξ , A−
1,ℓη = A1,ℓ

(
0
η

)
= A1,ℓQ

−η ,

with Q± as in (6.13). The following proposition is then immediate.

Proposition 6.6. The space V p,q
1,ℓ decomposes as the direct sum

V p,q
1,ℓ = A+

1,ℓ(W
p,q
0 ) + A−

1,ℓ(Ξ
p,q) .

Moreover, the linear mappings

A+
1,ℓ : W p,q

0 → A+
1,ℓ(W

p,q
0 ), A−

1,ℓ : Ξp,q → A−
1,ℓ(Ξ

p,q)

are bijective, and the following identities hold, on W p,q
0 and Ξp,q respectively:

(6.18)

(A+
1,ℓ)

−1∆kA+
1,ℓ = L− T 2 + i(q − p)T + ℓ(n− k + ℓ) +m

+
√
L− T 2 + i(q − p)T +m2 ,

(A−
1,ℓ)

−1∆kA−
1,ℓ = L− T 2 + i(q − p)T + ℓ(n− k + ℓ) +m

−
√
L− T 2 + i(q − p)T +m2 .

Define

(6.19) V p,q,+
1,ℓ = A+

1,ℓ(W
p,q
0 ) , V p,q,−

1,ℓ = A−
1,ℓ(Ξ

p,q).

It should be stressed that up to this point we have not yet shown that the subspaces V p,q,+
1,ℓ

and V p,q,−
1,ℓ are mutually orthogonal. This fact will be a consequence of the analysis of the

intertwining operators of the next section, see Lemma 7.6.

7. Unitary intertwining operators and projections

The intertwining operators for ∆k that we have defined in the previous section where non-
unitary and unbounded. In order to verify that the forms to which ∆k, when restricted to the
subspaces V p,q

0 , V p,q,±
1,ℓ and V p,q

2,ℓ , had been reduced on the corresponding parameter spaces by

means of the formulas (6.1), (6.18) and (6.3) are indeed describing the spectral theory of ∆ on
these subspaces, we need to replace the previous intertwining operators by unitary ones. Our
next tasks will therefore be the following ones:

(1) replace these intertwining operators with unitary ones;

(2) determine the orthogonal projections from L2Λk onto Vp,q
0 ,Vp,q,±

1,ℓ and Vp,q
2,ℓ , the L2-

closures of the invariant subspaces V p,q
0 , V p,q,±

1,ℓ and V p,q
2,ℓ .

These two tasks can be accomplished simultaneously by making use of the polar decomposition
of the intertwining operators.

We shall repeatedly use the following basic fact from spectral theory (compare [RS] for the
case H = K).
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Proposition 7.1. Let H,K be Hilbert spaces and A : domA ⊂ H → K be a densely defined,
closed operator. Then there exist a positive self-adjoint operator |A| : domA ⊂ H → H, with
dom |A| = domA, and a partial isometry U : H → K with kerU = kerA and ranU = ranA,
so that A = U |A|. |A| and U are uniquely determined by these properties together with the
additional condition ker |A| = kerA.

Moreover, |A| =
√
A∗A, U∗U is the orthogonal projection from H onto (kerA)⊥ = ranA∗,

and UU∗ is the orthogonal projection from K onto ranA = (kerA∗)⊥.

In order to pass from a possibly unbounded intertwining operator to a unitary one, we also
need the following general principle.

Proposition 7.2. Let H1,H2 be Hilbert spaces and let D1 ⊂ H1, D2 ⊂ H2 be dense subspaces.
Assume that for j = 1, 2, Sj : domSj ⊂ Hj → Hj is a self-adjoint operator on Hj for which Dj

is a core such that Sj(Dj) ⊂ Dj. Moreover, let A : domA ⊂ H1 → H2 be a closed operator such
that the following properties hold true:

(i) D1 ⊂ domA and A(D1) ⊆ D2;
(ii) A intertwines S1 and S2 on the core D1, i.e.,

(7.1) AS1ξ = S2Aξ for all ξ ∈ D1 .

Consider the polar decomposition A = U |A| from Proposition7.1, where |A| =
√
A∗A, and where

U : H1 → H2 is a partial isometry, and assume furthermore that D1 ⊂ dom |A|, and that

(iii) |A|(D1) = D1;
(iv) the commutation relation

(7.2) S1|A|ξ = |A|S1ξ for all ξ ∈ D1

holds true on the core D1.

Then, also U intertwines S1 and S2 on the core D1, i.e., U(D1) = A(D1) ⊂ D2, and

(7.3) US1ξ = S2Uξ for all ξ ∈ D1 .

Moreover, we have ranA = A(D1) = U(H1), kerA = ker |A| = kerU, and P := UU∗ is the

orthogonal projection from H2 onto A(D1).

Let us finally denote by Sr
2 = S2

∣∣
A(D1)

the restriction of S2 to A(D1), with domain domSr
2 :=

domS2 ∩ A(D1). If we assume in addition that

(v) ker |A| = {0} ;
(vi) (I − iS1)

−1(D1) ⊆ D1 ;
(vii) P (D2) = A(D1) ,

then U is injective, and we even have that U(domS1) = domSr
2 , and

Sr
2 = US1U

−1 on domSr
2 .

Proof. Let us re-write (7.1) as

U |A|S1ξ = S2U |A|ξ for all ξ ∈ D1 .
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Applying (7.2), we find that

US1(|A|ξ) = S2U(|A|ξ) for all ξ ∈ D1 ,

which implies (7.3) because of (iii). Note that U(D1) = A(D1) ⊂ D2 in view of (iii).

Since A is closed and D1 is a core for A, we have ranA = A(D1), and the remaining statements
about ranA, kerA and UU∗ are obvious by Proposition 7.1.

If we assume in addition that (v) and (vi) hold true, then clearly U is injective. Moreover,
(7.3) implies that

U(I − iS1)ξ = (I − iS2)Uξ for all ξ ∈ D1.

Since U(D1) ⊆ D1, by (vi) we then obtain that U(I− iS1)−1ξ = (I− iS2)−1Uξ for every ξ ∈ D1,
hence

(7.4) U(I − iS1)−1 = (I − iS2)−1U

on H1. Noticing that domSj = ran (I − iSj)
−1, (7.4) implies that U(domS1) ⊆ domS2, so that

U(domS1) ⊆ domSr
2 , and that (7.3) holds true even for every ξ ∈ domS1 :

If x = (I − iS1)
−1y ∈ domS1 (with y ∈ H1), then Ux = (I − iS2)−1Uy ∈ domS2, and

(I − iS2)Ux = Uy = U(I − iS1)x.

It therefore only remains to show that domSr
2 ⊆ U(domS1).

To this end, we first observe that, because of (vii) and (7.1),

S2P (D2) ⊆ S2A(D1) ⊆ AS1(D1) ⊆ A(D1) = P (D2).

Since S2 is self-adjoint, this implies

S2P (D2) ⊆ P (D2) and (S2(I − P )(D2) ⊆ (I − P )(H2).

Assume now that x ∈ domS2 ∩ ranU. Then x = Uy for some unique y ∈ H1. Choose a
sequence {xn}n in D2 such that

xn → x and S2xn → S2x.

Since S2xn = S2(Pxn) + S2((I − P )xn)), where the components in this decomposition lie in
mutually orthogonal spaces, we see that there is some z = Uw ∈ P (D2) ⊂ U(H2) such that

Pxn → x = Uy and S2(Pxn) → z = Uw.

We can write Pxn in a unique way as Pxn = Uyn, with yn ∈ D1, since U(D1) = A(D1) =
P (D2). Since U is isometric on H1, we then must have that yn → y. Moreover, by (7.3),
US1yn = S2Uyn = S2(Pxn) → z, so that S1yn → w. This shows that y ∈ domS1, hence
x = Uy ∈ U(domS1).

Q.E.D.

Remark 7.3. If we do not require that the crucial commutation relation in (iv) is satisfied,
but that in addition to the conditions (i) to (iii) the natural assumptions D2 ⊂ domA∗ and
A∗(D2) ⊂ D1 hold true, then one can conclude that

(7.5) S1|A|2ξ = |A|2S1ξ for all ξ ∈ D1 .
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Indeed, then for ξ ∈ D1 and η ∈ D2, (7.1) and (i) imply that 〈ξ, S1A∗η〉 = 〈ξ,A∗S2η〉, hence

S1A
∗η = A∗S2η for all η ∈ D2 .

Combining this with (7.1), we obtain S1A
∗Aξ = A∗AS1 for every ξ ∈ D1 , which verifies (7.5).

One might hope that (7.2) would follow from (7.5) by means of general spectral theory.
However, this hope is destroyed by a classical example due to Nelson (cf. [RS]), which shows that
condition (7.5) will in general not suffice to conclude that the operators S1 and |A|2 commute,
in the sense that their respective spectral resolutions commute. This, however, would be needed
in order to derive (7.2).

However, in our applications, S1 will turn out to be a scalar operator on the Heisenberg group,
and A a positive square matrix whose entries are scalar operators too, so that (7.2) will easily
follow from formula (12.7) for the square root of such a matrix.

In the sequel, by PH1 : H → H1 we shall denote the orthogonal projection from the Hilbert
space H onto its closed subspace H1.

In our later applications of Proposition 7.1, the next observation will often facilitate the
computation of the corresponding operators A∗A.

Lemma 7.4. Let H,K be Hilbert spaces and H1 ⊆ H and K1 ⊆ K be closed subspaces. Let
A : domA ⊂ H → K be a densely defined, closed operator, and assume that D ⊂ domA is a core
for A. Assume furthermore that D1 := D ∩H1 is dense in H1 and that domA1 := domA ∩H1

is mapped under A into K1, so that the operator A1 : domA1 ⊂ H1 → K1, given by restricting
A to domA1 := domA ∩H1, is densely defined and closed.

Under these conditions, also A∗ is densely defined, and domA∗ ∩ K1 ⊂ domA∗
1. We shall

further assume that E ⊂ K is a subspace of domA∗ such that A(D) ⊂ E and A∗(E) ⊂ D (so
that, in particular, E1 := E ∩K1 is contained in domA∗

1). Then we have

A∗
1A1ξ = PH1A

∗Aξ for all ξ ∈ D1 .

In particular, if we know that A∗A maps D1 into H1, then A∗
1A1ξ = A∗Aξ for every ξ ∈ D1.

Proof. Since A(D1) ⊂ E1, it suffices to prove that A∗
1 = PH1A

∗ on E1. But, if x ∈ D1 ⊂
domA1, ξ ∈ E1 ⊂ domA∗

1, then

〈x,A∗
1ξ〉 = 〈A1x, ξ〉 = 〈Ax, ξ〉 = 〈x,A∗ξ〉 = 〈x, PH1A

∗ξ〉.

This implies that A∗
1ξ = PH1A

∗ξ, since D1 is dense in H1. Q.E.D.

7.1. A unitary intertwining operator for V p,q
0 .

We recall from the preceding discussion that the intertwining operator on Vp,q
0 is Φ, which

reduces to the identity on this space. Hence, this case is trivial.
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7.2. Unitary intertwining operators for V p,q,±
1,ℓ .

Our next goal is to replace the intertwining operators A±
1,ℓ from Proposition 6.6 by unitary

ones. Recall from Proposition 6.6 and (6.17) that

A±
1,ℓ = A1,ℓQ

± , domA+
1,ℓ = W p,q

0 , domA−
1,ℓ = Ξp,q ,

where, according to (6.14),

(7.6) A1,ℓ =

(
e(dθ)ℓ∂ e(dθ)ℓ∂̄

iℓT−1e(dθ)ℓ−1∂̄∂ + T−1e(dθ)ℓ� −iℓT−1e(dθ)ℓ−1∂∂̄ + T−1e(dθ)ℓ�

)
.

According to Proposition 7.2, we seek to define unitary intertwining operators U±
1,ℓ by defining

(7.7) U±
1,ℓ := Up,q,±

1,ℓ := A±
1,ℓ

(
(A±

1,ℓ)
∗A±

1,ℓ

)− 1
2
,

which are expected to be isometries from the closed subspaces W p,q
0 = Wp,q, resp. Ξp,q, onto

their ranges Vp,q,±
1,ℓ . Recall, however, that we have not shown yet that the latter spaces are

mutually orthogonal; this will in fact follow easily from the subsequent discussions.
Now, since

(A±
1,ℓ)

∗A±
1,ℓ = Q±∗

(A∗
1,ℓA1,ℓ)Q

±,

we shall begin by computing A∗
1,ℓA1,ℓ.

Subsequently, we will compute the product Q∗A∗
1,ℓA1,ℓQ, showing, in particular, that it is

a diagonal matrix. The diagonal terms will give the explicit forms of (A±
1,ℓ)

∗A±
1,ℓ, whereas the

vanishing of the off-diagonal terms will prove the orthogonality of the spaces Vp,q,±
1,ℓ . Since these

computations are tedious and unenlightening, we shall only state here the relevant identities,
postponing their proofs to the Appendix.

Let us set, for s+ j ≤ n,

(7.8) cs,j =
j!(n − s)!

(n − s− j)!
.

Lemma 7.5. We have that A∗
1,ℓA1,ℓ = −cs+1,ℓT

−2N , where

(7.9) N =

(
�(�− iℓT − T 2) ��

�� �(� + iℓT − T 2)

)
.

Lemma 7.6. Let R = −T−2Q∗NQ on (W p,q
0 )2. Then

R =

(
R11 0
0 R22

)
,

where

R11 = (Γ +m)2
(
∆H + 2m(2m− ℓ)

)
+ 2(Γ +m)

(
(2m− ℓ)∆H − 2mT 2

)

+ ∆H(∆H − T 2) + 2mℓT 2 ,
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maps W p,q
0 bijectively onto itself, and

R22 = (Γ −m)2
(
∆H + 2m(2m− ℓ)

)
− 2(Γ −m)

(
(2m− ℓ)∆H − 2mT 2

)

+ ∆H(∆H − T 2) + 2mℓT 2 ,

maps Ξp,q bijectively onto itself, and is zero on CpW
p,q
0 ⊕ C̄qW

p,q
0 , the orthogonal complement of

Ξp,q in W p,q
0 .

Proof. The proof of the formulas for the components of R is postponed to the Appendix. Given
these formulas, we prove here the mapping properties of R11 and R22.

On W p,q
0 , R11 acts as a symmetric scalar operator. Since ∆H = L+ i(q− p)T , Γ and −T 2 are

positive operators, we have

R11 ≥ (Γ +m)2
(
∆H + 2m(2m− ℓ)

)
− 4m2T 2 + 2mℓT 2

= (Γ +m)2
(
∆H + 2m(2m− ℓ)

)
− 2m(2m− ℓ)T 2

≥ 2m3(2m− ℓ) > 0 .

It follows that the operators (R11)λ,σ in (3.1) also satisfy the same inequality from below,
and hence are invertible. Applying Lemma 3.2 (ii), we obtain that R11 admits an inverse
R−1

11 : S0 −→ S0.

We tensor with Λp,q and restrict R−1
11 to W p,q

0 . By (1.20), the composition ∂∗R11 can be
expressed as R′

11∂
∗, with R′

11 differing from R11 in that ∆H is replaced by ∆H − iT (also in

the expression of Γ), and similarly for ∂̄∗R11, ∂
∗R−1

11 and ∂̄∗R−1
11 . Therefore, R11 maps W p,q

0
bijectively onto itself.

As to R22, we first observe that

(7.10)

R11R22 = detR

= T−4(detQ)2 detN

= T−4(−4iTΓ)2(−T 2)
(
∆H − T 2 + ℓ(2m− ℓ)

)
��

= 16(∆H − T 2 +m2)
(
∆H − T 2 + ℓ(2m− ℓ)

)
�� ,

so that

(7.11) R22 = 16(∆H − T 2 +m2)
(
∆H − T 2 + ℓ(2m− ℓ)

)
��R−1

11 .

Moreover, by the injectivity of R11,

kerR22 = kerR11R22 = ker�⊕ ker� .

In order to repeat the same argument used above for R11, we start from the operator R̃22 =
R22 + δp,0C + δq,0C̄ (with δ denoting the Kronecker symbol) acting on scalar-valued functions.

By (7.11), R̃22 in invertible on S0 and, after tensoring and restricting, it is also invertible on
W p,q

0 . For ξ ∈ Ξp,q,

R̃−1
22 R22ξ = R̃−1

22 R̃22ξ = ξ .

The conclusion now follows at once. Q.E.D.
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Corollary 7.7. We have that

A∗
1,ℓA1,ℓ = cs+1,ℓR|

Z̃p,q
.

In particular,

(A+
1,ℓ)

∗A+
1,ℓ = cs+1,ℓR11 , (A−

1,ℓ)
∗A−

1,ℓ = cs+1,ℓR22|Ξp,q ,

and the subspaces Vp,q,+
1,ℓ and Vp,q,−

1,ℓ are orthogonal.

Proof. Obviously, R maps the subspace Z̃p,q of (W p,q
0 )2 into itself, so that the identities follow

from Lemma 7.6 and Lemma 7.4. The first statements are obvious. And, since the matrix Q∗NQ
is diagonal, so is A∗

1,ℓA1,ℓ. Thus, the map A1,ℓ preserves the orthogonality of the coordinate

subspaces W p,q
0 × {0} and {0} × Ξp,q

0 . Q.E.D.

Let us finally compute U±
1,ℓ more explicitly. To this end, notice that if we combine the column-

vectors of operators U±
1,ℓ to form a square matrix, then

(7.12) U1,ℓ :=
(
U+
1,ℓ U−

1,ℓ

)
= A1,ℓ(A∗

1,ℓA1,ℓ)
− 1

2 .

Recall that we have set s = p+ q and m = (n− s)/2.

Proposition 7.8. We have that

(7.13) U1,ℓ = c
− 1

2
s+1,ℓ e(dθ)

ℓ−1

(
S11 S12
S21 S22

)(
Σ11 0
0 Σ22

)
,

where

(7.14)

S11 = e(dθ)(−∂Q+
− + ∂̄Q+

+)

S12 = e(dθ)(−∂Q−
+ + ∂̄Q−

−)

S21 = ℓ(∂̄∂ − ∂∂̄) − ie(dθ)
[
∆H + (Γ +m)(2m− ℓ)

]

S22 = −ℓ(∂̄∂ − ∂∂̄) + ie(dθ)
[
∆H − (Γ −m)(2m− ℓ)

]

and Σ11,Σ22 are given by

(7.15)

Σ11 = R
− 1

2
11 =

[
(Γ +m)2

(
∆H + 2m(2m− ℓ)

)
+ 2(Γ +m)

(
(2m− ℓ)∆H − 2mT 2

)

+ ∆H(∆H − T 2) + 2mℓT 2
]− 1

2

Σ22 = R
− 1

2
22 =

[
(Γ −m)2

(
∆H + 2m(2m− ℓ)

)
− 2(Γ −m)

(
(2m− ℓ)∆H − 2mT 2

)

+ ∆H(∆H − T 2) + 2mℓT 2
]− 1

2
.

Proof. From Corollary 7.7, we have

(A∗
1,ℓA1,ℓ)

− 1
2 = c

− 1
2

s+1,ℓR
− 1

2 ,
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so that

U1,ℓ = A1,ℓQ(A∗
1,ℓA1,ℓ)

− 1
2 = c

− 1
2

s+1,ℓA1,ℓQR
− 1

2

= c
− 1

2
s+1,ℓ

(
I

T−1d∗H

)
e(dθ)ℓ

(
∂ ∂̄

)(−Q+
− −Q−

+

Q+
+ Q−

−

)(
(R+)−

1
2 0

0 (R−)−
1
2

)
.

We verify that the factor T−1 in the second row is going to disappear. From Lemma 5.5, we
have

T−1d∗He(dθ)
ℓ(∂ ∂̄) = T−1e(dθ)ℓ

(
� �

)
+ iℓT−1e(dθ)ℓ−1

(
∂̄∂ −∂∂̄

)
.

Let us define the matrix S by requiring that

e(dθ)ℓ−1S =

(
I

T−1d∗H

)
e(dθ)ℓ

(
∂ ∂̄

)(−Q+
− −Q−

+

Q+
+ Q−

−

)
.

Then

S =

(
e(dθ)∂ e(dθ)∂̄

iℓT−1∂̄∂ + T−1e(dθ)� −iℓT−1∂∂̄ + T−1e(dθ)�

)(
−Q+

− −Q−
+

Q+
+ Q−

−

)
.

In particular,
S11 = e(dθ)(−∂Q+

− + ∂̄Q+
+)

S12 = e(dθ)(−∂Q−
+ + ∂̄Q−

−) .

Moreover,

S21 =
[
iℓT−1∂̄∂ + T−1e(dθ)�

]
(−Q+

−) +
[
− iℓT−1∂∂̄ + T−1e(dθ)�

]
Q+

+

= ℓ(∂̄∂ − ∂∂̄) − ie(dθ)∆H − (Γ +m)
[
iℓT−1(∂̄∂ + ∂∂̄) + T−1e(dθ)(�−�)

]

= ℓ(∂̄∂ − ∂∂̄) − ie(dθ)
[
∆H + (Γ +m)(2m− ℓ)

]
.

Finally, a similar computation shows that

S22 = −ℓ(∂̄∂ − ∂∂̄) + ie(dθ)
[
∆H − (Γ −m)(2m− ℓ)

]
,

as we claimed.

In order to conclude the proof, it suffice to notice that Σjj = R
− 1

2
jj , j = 1, 2, where Rjj are

given in Lemma 7.6. Q.E.D.

We wish now to apply Proposition 7.2 to A±
1,ℓ. We restrict ourselves to A−

1,ℓ, the other case

being simpler.
We set

D1 = Ξp,q, H1 = Ξp,q,

D2 = S0Λ
k, H2 = L2Λk,

S1 = D−, S2 = ∆k,

where

(7.16) D± := L− T 2 + i(q − p)T + ℓ(n− k + ℓ) +m±
√
L− T 2 + i(q − p)T +m2,

and denote by A the closure of A−
1,ℓ. The commutation relation (7.1) is then satisfied because

of (6.18). Moreover, clearly S2(D2) ⊂ D2.
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Notice also that A maps D1 bijectively onto V p,q,−
1,ℓ ⊆ D2.

Next, according to Corollary 7.7, A∗A is a positive scalar operator, and so is S1. But then

also |A| =
√
A∗A =

√
cs+1,ℓR

1
2
22 is a scalar operator, hence commutes with S1, so that condition

(iv) in Proposition 7.2 is satisfied too.
Conditions (iii) and (v) of Proposition 7.2 follow from Lemma 7.6 and condition (vi) is obvious.
Finally, our explicit formulas for U = U−

1,ℓ in Proposition 7.8 show that here U maps the space

Ξp.q into S0Λ
k, so that U∗ maps S0Λ

k into Ξp.q, and we see that P (D2) = P (S0Λk) = U(Ξp,q) =

A
(
|A|−1(Ξp,q)

)
= A(Ξp,q) = A(D1). This shows that also condition (vii) is satisfied. Q.E.D.

In the same way, we see that all the hypotheses of Proposition 7.2 are satisfied by U−
1,ℓ, and

as a consequence we obtain

Proposition 7.9. U±
1,ℓ defined by (7.7) maps W p,q

0 , respectively Ξp,q, onto V p,q,±
1,ℓ and intertwines

D± with ∆k on the core.
Moreover, U+

1,ℓ : Wp,q
0 → L2Λk and U−

1,ℓ : Ξp,q → L2Λk are linear isometries onto their ranges

Vp,q,+
1,ℓ and Vp,q,−

1,ℓ , respectively, which intertwine D+ resp. D− with the restriction of ∆k to

Vp,q,±
1,ℓ , i.e.,

(7.17) ∆k
∣∣
V
p,q,±
1,ℓ

= U±
1,ℓD

± (U±
1,ℓ)

−1 on dom ∆k
∣∣
V
p,q,±
1,ℓ

.

Here, (U±
1,ℓ)

−1 denotes the inverse of U±
1,ℓ when viewed as an operator into its range Vp,q,±

1,ℓ .

Finally, if we regard of U±
1,ℓ as an operator mapping into L2Λk, then P±

1,ℓ := P p,q,±
1,ℓ :=

U±
1,ℓ(U

±
1,ℓ)

∗ is the orthogonal projection from L2Λk onto Vp,q,±
1,ℓ .

7.3. A unitary intertwining operator for V p,q
2,ℓ .

We next wish to replace the intertwining operator A2,ℓ from Proposition 6.2 by a unitary one,

denoted by U2,ℓ = Up,q
2,ℓ , which, according to Proposition 7.2, should be given by A2,ℓ(A

∗
2,ℓA2,ℓ)

− 1
2 .

In fact, it will be convenient to modify this expression introducing the unitary central factor
σ(T ) = i−1T/|T |.

Recall that the non-unitary intertwining operator A2,ℓ from Zp,q to Vp,q
2,ℓ is

(7.18)

A2,ℓ = Φe(dθ)ℓ
(
∂̄∂ ∂∂̄

)
=

(
I

T−1d∗H

)
e(dθ)ℓ

(
∂̄∂ ∂∂̄

)

=

(
e(dθ)ℓ∂̄∂ e(dθ)ℓ∂∂̄

T−1d∗He(dθ)
ℓ∂̄∂ T−1d∗He(dθ)

ℓ∂∂̄

)
.

Since A2,ℓ acts on Zp,q, the identities in Lemma 5.5 in combination with (1.20) imply that

d∗He(dθ)
ℓ∂̄∂ = e(dθ)ℓ

[
(� + iℓT )∂ − (� + iT )∂̄

]
.

Analogously,
d∗He(dθ)

ℓ∂∂̄ = e(dθ)ℓ
[
(�− iℓT )∂̄ − (� − iT )∂

]
.
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Therefore,

(7.19) A2,ℓ = e(dθ)ℓ
(

∂̄∂ ∂∂̄
T−1

[
(� + iℓT )∂ − (� + iT )∂̄

]
T−1

[
(�− iℓT )∂̄ − (�− iT )∂

]
)
.

Lemma 7.10. We have

(i)

A∗
2,ℓA2,ℓ = −cs+1,ℓT

−2E =: −cs+1,ℓT
−2

(
E11 E12

E21 E22

)
,

where

(7.20)

E11 = ��(∆H − T 2) + i(ℓ + 1)T�
[
∆H − T 2 − i(n − s− ℓ− 1)T

]
,

E12 = E21 = −��(∆H − T 2) ,

E22 = ��(∆H − T 2) − i(ℓ + 1)T�
[
∆H − T 2 + i(n − s− ℓ− 1)T

]
;

(ii)
(
A∗

2,ℓA2,ℓ

) 1
2 =

√
cs+1,ℓ

|T |
√

∆′

[
E − T 2

√
c��∆′∆′′ I

]
,

with E as above.

Moreover,
(
A∗

2,ℓA2,ℓ

) 1
2 maps Zp,q bijectively onto itself, and, on Zp,q,

(
A∗

2,ℓA2,ℓ

)− 1
2 =

1
√
cs+1,ℓ c|T |

√
��∆′∆′′

M̃ ,

where M̃ and ∆′ are given by

M̃ = ��(∆H − T 2)

(
1 1
1 1

)
+

(
M11 0

0 M22

)
,

with

(7.21)
M11 = −i(ℓ+ 1)T�

(
∆H − T 2

)
− T 2

(
c� +

√
c��∆′′

)
,

M22 = i(ℓ+ 1)T�
(
∆H − T 2

)
− T 2

(
c� +

√
c��∆′′

)
,

(7.22)
∆′ :=

(
2��− (ℓ+ 1)2T 2

)
(∆H − T 2) − T 2

(
− cT 2 + 2

√
c��∆′′

)
,

∆′′ := ∆H − T 2 + c ,

and

c := (ℓ + 1)(n− s− ℓ− 1) .

Proof. The proof of the formulas is postponed to the Appendix, where we also prove the identity

(7.23) detE = cT 4��(∆H − T 2 + c) .

Hence we only prove here that
(
A∗

2,ℓA2,ℓ

) 1
2 maps Zp,q bijectively onto itself, assuming the

validity of (7.20) and (7.23).
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We can factor E as

E = −T 2

(
� 0
0 �

)
E′

where

detE′ = c∆′′ ≥ c2 > 0 .

Applying Lemma 3.2 as in the proof of Lemma 7.6, we can conclude that the operator

Ẽ = −T 2

(
� + δp,0C 0

0 � + δq,0C̄

)
E′

maps bijectively (W p,q
0 )2 onto itself. Restricting to Zp,q, we obtain the conclusion. Q.E.D.

Some cancellations occur when we proceed to computing the matrix product A2,ℓM̃ , as the
next lemma shows.

Lemma 7.11. We have that

A2,ℓM̃ =: e(dθ)ℓTP = e(dθ)ℓT

(
P11 P12

P21 P22

)
,

where

(7.24)

P11 = P12 = −∂̄∂
[
i(ℓ + 1)�

(
∆H − T 2

)
+ T

(
c� +

√
c��∆′′)

]
− e(dθ)��(∆H − T 2) ,

P21 = P22 = −∂
[
c�(∆H − T 2) + (� + i(ℓ + 1)T )(c� +

√
c��∆′′)

]
+ ∂̄�(c� +

√
c��∆′′) .

Proof. Let A =

(
A11 A12

A21 A22

)
denote the matrix on the right hand side of (7.19), and set P =

T−1AM̃ . Then

AM̃ =

(
∂∂̄ + ∂̄∂ ∂∂̄ + ∂̄∂

i(ℓ + 1)(∂ − ∂̄) −i(ℓ + 1)(∂̄ − ∂)

)
��(∆H − T 2)

+

(
∂̄∂M11 ∂∂̄M22

T−1
[
(� + iℓT )∂ − (� + iT )∂̄

]
M11 T−1

[
(�− iℓT )∂̄ − (�− iT )∂

]
M22,

)

where by (1.12) ∂∂̄ + ∂̄∂ = −Te(dθ). This implies that

P11 = −∂̄∂
[
i(ℓ + 1)�

(
∆H − T 2

)
+ T

(
c� +

√
c��∆′′)

]
− e(dθ)��(∆H − T 2)

and P12 = P11, which proves the statements about P11 and P12, and

P21 = iT−1(ℓ + 1)(∂ − ∂̄)��(∆H − T 2)

+ T−2
[
(� + iℓT )∂ − (� + iT )∂̄

][
− i(ℓ + 1)T�

(
∆H − T 2

)
− T 2

(
c� +

√
c��∆′′)

]

where P22 = P21.
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Next, using (1.20) and the identity (5.19), with s = p+ q in place of k, we have

P21 = iT−1(ℓ+ 1)(∂ − ∂̄)��(∆H − T 2)

+ T−1
[
∂(� + i(ℓ+ 1)T ) − ∂̄�

][
− i(ℓ + 1)�

(
∆H − T 2

)
− T

(
c� +

√
c��∆′′)

]

=
[
iT−1(∂ − ∂̄)�− iT−1∂� + (ℓ + 1)∂ + iT−1∂̄�

]
(ℓ + 1)�(∆H − T 2)

−
[
∂(� + i(ℓ + 1)T ) − ∂̄�

](
c� +

√
c��∆′′)

= −c∂�(∆H − T 2) −
[
∂(� + i(ℓ + 1)T ) − ∂̄�

](
c� +

√
c��∆′′)

= −∂
[
c�(∆H − T 2) + (� + i(ℓ+ 1)T )(c� +

√
c��∆′′)

]
+ ∂̄�(c� +

√
c��∆′′) .

This proves the lemma.

Q.E.D.

From the previous results we immediately get an explicit formula for U2,ℓ, at least when p 6= 0
and q 6= 0. However, if p = 0 or q = 0, our formulas, when properly interpreted, persist, and we
obtain the following result:

Recall that if p = 0, then Xp,q = (I − C)Xp,q, and if q = 0, then Y p,q = (I − C)Y p,q. Let us
correspondingly put

�r =

{
� if p ≥ 1,

�′ if p = 0,
�r =

{
� if q ≥ 1,

�
′

if q = 0,

so that �r is always invertible on Xp,q, and �r on Y p,q.

Proposition 7.12. The operator U2,ℓ, which acts on Zp,q, is given by

(7.25) U2,ℓ =
e(dθ)ℓ

√
cs+1,ℓ c

H
1√

∆′∆′′ ,

where the operator matrix H =

(
H11 H12

H21 H22

)
is defined by

(7.26)

H11 = H12 = −R̄R(� + iT )
1
2

[
i(ℓ + 1)�

1
2
(
∆H − T 2

)
+ T

(
c�

1
2 + �

1
2

√
c∆′′)

]

− e(dθ)�
1
2�

1
2 (∆H − T 2) ,

H21 = H22 = −R
[
c�

1
2 (∆H − T 2) + (� + i(ℓ+ 1)T )(c�

1
2 + �

1
2

√
c∆′′)

]

+ R̄(c��
1
2 + ��

1
2
√
c∆′′) ,

and where ∆′,∆′′ and c are given by Lemma 7.10.

Finally, we have the following analogue of Proposition 7.9.
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Proposition 7.13. The operator U2,ℓ in Proposition 7.12 maps the space Zp,q onto V p,q
2,ℓ and

intertwines D := ∆0 + i(q − p)T + (ℓ + 1)(n − k + ℓ + 1) with ∆k on the core. Moreover
U2,ℓ : Zp,q → L2Λk is a linear isometry onto Vp,q

2,ℓ which intertwines D with the restriction of ∆k

to Vp,q
2,ℓ , i.e.,

(7.27) ∆k
∣∣
V
p,q
2,ℓ

= U2,ℓD (U2,ℓ)
−1 on dom ∆k

∣∣
V
p,q
2,ℓ

.

Here, (U2,ℓ)
−1 denotes the inverse of U2,ℓ when viewed as an operator into its range Vp,q

2,ℓ .

Finally, if we regard of U2,ℓ as an operator mapping into L2Λk, then P2,ℓ := P p,q
2,ℓ := U2,ℓ(U2,ℓ)

∗

is the orthogonal projection from L2Λk onto Vp,q
2,ℓ .

Proof. This will follow by applying Proposition 7.2 to A2,ℓ. To this end, we set

D1 = Zp,q, H1 = Zp,q,

D2 = S0Λ
k, H2 = L2Λk,

S1 = D, S2 = ∆k,

and denote by A the closure of A2,ℓ on Zp,q. The commutation relation (7.1) is then satisfied
because of (6.3). Moreover, clearly S2(D2) ⊂ D2, and A maps D1 bijectively onto V p,q

2,ℓ ⊆ D2.

Next, according to Lemma 7.10, A∗A is a positive matrix with scalar operator entries, and
S1 = S1I is a scalar operator. But then also |A| =

√
A∗A is a matrix with scalar operator

entries, hence commutes with S1I, so that condition (iv) in Proposition 7.2 is satisfied too.
In order to verify conditions (iii), (v) and (vi), we can make use of the joint spectral theory of L

and i−1T described in Section 9. Indeed, it is immediate by means of the spectral decomposition
of S1 that (vi) is satisfied.

Moreover, |A| maps Zp,q into itself; this can be verified as follows:

The formula for |A| =
(
A∗

2,ℓA2,ℓ

) 1
2 in Lemma 7.10 shows that it suffices to prove that the

operator matrix E maps Zp,q into itself. This in return will be verified if we can show that
E12 maps Y p,q into Xp,q, and E21 maps Xp,q into Y p,q. But, according to Lemma 12.3 in the
Appendix, �� maps W p,q

0 into Ξp,q, so that the latter claims are immediate.
And, the formula forA∗

2,ℓA2,ℓ in Lemma 7.10 in combination with Lemma 10.9 and Plancherel’s

theorem shows that A∗
2,ℓA2,ℓ = |A|2 has a trivial kernel in L2, and then the same applies to |A|,

which proves (v).

Finally, our explicit formulas for U = U2,ℓ in Proposition 7.12 show that U maps the space

Zp.q into S0Λ
k, so that U∗ maps S0Λ

k into Zp.q, and we see that P (D2) = P (S0Λk) = U(Zp,q) =

A
(
|A|−1(Zp,q)

)
= A(Zp,q) = A(D1), where P = UU∗. This shows that also condition (vii) is

satisfied, which concludes the proof of Proposition 7.13.

Q.E.D.
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8. Decomposition of L2Λk

We are now in the position to completely describe the orthogonal decomposition of L2Λk into
∆k-invariant subspaces and the unitary intertwining operators that reduce ∆k into scalar form.

Theorem 8.1. Let 0 ≤ k ≤ n. Then L2Λk admits the orthogonal decomposition

(8.1) L2Λk =
∑⊕

p+q=k<n
p+q=n, pq=0

Vp,q
0 ⊕

∑⊕

ε=±

∑⊕

p+q+2ℓ=k−1

Vp,q,ε
1,ℓ ⊕

∑⊕

p+q+2ℓ=k−2

Vp,q
2,ℓ

⊕
∑⊕

p+q=k−1

RVp,q
0 ⊕

∑⊕

ε=±

∑⊕

p+q+2ℓ=k−2

RVp,q,ε
1,ℓ ⊕

∑⊕

p+q+2ℓ=k−3

RVp,q
2,ℓ ,

where R = Rk−1 denotes the Riesz transform.

Proof. This follows immediately from (5.1), Proposition 5.13 and Proposition 4.5, since, accord-
ing to Lemma 4.4, Rk−1Rk−2 = 0. Q.E.D.

subspace scalar form intertwining orthogonal
(with domain) projection

V
p,q
0

(p + q = k < n,

or pq = 0 if p+ q = n)

∆0 + i(q − p)T
I

(Vp,q
0 )

I −RR∗
−
∑

P p,q,±
1,ℓ

−
∑

P p,q
2,ℓ

RV
p,q
0

(p + q = k − 1)
∆0 + i(q − p)T

R

(Vp,q
0 )

RR∗ −
∑

RP p,q,±
1,ℓ R∗

−
∑

RP p,q
2,ℓ R

∗

V
p,q,±
1,ℓ

(p + q = k − 2ℓ− 1)

∆0 + i(q − p)T + n−p−q

2
+ ℓ(n− p− q + ℓ)

±

√

∆0 + i(q − p)T +
(

n−p−q

2

)2

Up,q,±
1,ℓ

(Wp,q
0 , resp. Ξp,q)

P p,q,±
1,ℓ

(Prop. 7.9)

RV
p,q,±
1,ℓ

(p + q = k − 2ℓ− 2)

∆0 + i(q − p)T + n−p−q

2
+ ℓ(n− p− q + ℓ)

±

√

∆0 + i(q − p)T +
(

n−p−q

2

)2

RUp,q,±
1,ℓ

(Wp,q
0 , resp. Ξp,q)

RP p,q,±
1,ℓ R∗

V
p,q
2,ℓ

(p + q = k − 2ℓ− 2)
∆0 + i(q − p)T + (ℓ+ 1)(n− k + ℓ+ 1)

Up,q
2,ℓ

(Zp,q)

P p,q
2,ℓ

(Prop. 7.12)

RV
p,q
2,ℓ

(p + q = k − 2ℓ− 3)
∆0 + i(q − p)T + (ℓ+ 1)(n− k + ℓ+ 2)

RUp,q
2,ℓ

(Zp,q)
RP p,q

2,ℓ R
∗

Table 1. Components of L2Λk, 0 ≤ k ≤ n
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The Hodge Laplacian ∆k leaves all the subspaces in this decomposition invariant, and we have
seen that, after applying the unitary intertwining operators derived in the previous sections, it
will assume a scalar form on each of the corresponding parameter spaces.

In Table 1, we list these subspaces, the corresponding scalar forms of ∆k, the associated
unitary intertwining operators as well as the orthogonal projections onto these subspaces.

By J, we denote the inclusion the operator of a given subspace into L2Λk.

8.1. The ∗-Hodge operator and the case n < k ≤ 2n+ 1.

We now remove the condition 0 ≤ k ≤ n and prove a decomposition theorem for L2Λk also
in the case n < k ≤ 2n + 1.

We are going to use the ∗-Hodge operator defined on an arbitrary Riemannian d-manifold M,
acting for each point m ∈M as a linear mapping

∗ : Λk
m → Λd−k

m ,

where Λk
m denotes the k-th exterior product of the dual of the tangent space at m. It will be

viewed also as a linear mapping acting on forms on M. For its definition and basic properties
we refer to [Ra]. We summarize the main properties in the following statement.

Proposition 8.2. The ∗-Hodge operator is almost involutive, i.e., , ∗(∗ω) = (−1)k(d−k)ω, and
the following properties hold true:

(1) for ω1, ω2 ∈ L2Λk(M),
∫

M
ω1 ∧ ∗ω2 = 〈ω1, ω2〉L2Λk ;

(2) as a mapping ∗ : L2Λk → L2Λd−k, the operator ∗ is unitary;

(3) d∗ = − ∗ d∗;

(4) ∗∆k = ∆d−k∗.

In our situation, M = Hn and d = 2n + 1.
It follows from property (4) above that a subspace V ⊆ L2Λk is ∆k-invariant if and only if

∗V ⊆ L2Λd−k is ∆d−k-invariant. Thus, we wish to describe the ∆k-invariant subspaces of L2Λk,
when n < k ≤ 2n+ 1.

We denote by Λk
V the space of vertical k-forms, that is, the forms ω = θ∧ω2, with ω2 ∈ Λk−1

H ,
and by µ = θ ∧ dθ ∧ · · · ∧ dθ the volume element on Hn. Similarly, µH = dθ ∧ · · · ∧ dθ will
denote the corresponding volume element on the horizontal structure. In the same way as the
∗-Hodge operator on Hn is determined by the relations σ ∧ ∗ω = 〈σ, ω〉µ for all σ, ω ∈ Λk, we
can introduce the ∗-Hodge operator ∗H acting on the horizontal structure, by requiring that
σ ∧ ∗Hω = 〈σ, ω〉µH for all σ, ω ∈ Λk

H .
The following results are easy consequences of these defining relations.

Lemma 8.3. Let ω ∈ S0Λ
k
H . Then the following hold true:

(i) if we put ω′ := (−1)k ∗H ω, then ∗ω = θ ∧ ω′;
(ii) ∗Hω = ∗(θ ∧ ω).
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We set

(8.2)
∗
W

r,s

0 =
{
ω′ ∈ S0Λr,s : ∂ω′ = ∂̄ω′ = 0

}

and define

(8.3)

Zr,s
0 =

{
ω = θ ∧ ω′ ∈ S0Λ

k
V : ω′ ∈

∗
W

r,s

0

}
,

Zr,s
1 =

{
ω = θ ∧ ω′ ∈ S0Λ

k
V : ω′ = ∂∗σ + ∂̄∗τ, σ, τ ∈

∗
W

r,s

0

}
,

Zr,s
2 =

{
ω = θ ∧ ω′ ∈ S0Λ

k
V : ω′ = ∂̄∗∂∗σ + ∂∗∂̄∗τ, σ, τ ∈

∗
W

r,s

0

}
.

We also set

(8.4) Zr,s
j,ℓ = i(dθ)ℓZr,s

1 , j = 1, 2.

Notice that Zr,s
0 is a subspace of S0Λk

V , where k = r+ s+ 1, Zr,s
1 ⊆ S0Λk

V with k = r+ s, and

Zr,s
2 ⊆ S0Λk

V with k = r+ s− 1. Therefore, Zr,s
j,ℓ ⊆ S0Λk

V where k = r+ s+ 1− j − 2ℓ, j = 1, 2.

Observe also that from (1.21) it follows that ω ∈ S0Λ
k, ω = ω1 + θ∧ω2 is d-closed if and only

if ω1 = T−1dHω2.

The mapping
∗
Φ: S0Λ

k
V → (S0Λ

d−k)d-cl defined by
∗
Φ (θ ∧ ω′) = T−1dHω

′ + θ ∧ ω′ ,

where ω′ ∈ S0Λk
H , is an isomorphism.

Lemma 8.4. The following properties hold true:

(i) ∗(L2Λk)d-ex = (L2Λd−k)d∗-ex and ∗(L2Λk)d∗-cl = (L2Λd−k)d-cl;

(ii) if ω ∈ S0Λk
H , then ∗Φ(ω) =

∗
Φ (∗ω) .

Moreover, if for given p, q we put r = n− q and s = n− p, then

(iii) ∗(W p,q
0 ) = Zr,s

0 , hence ∗(V p,q
0 ) =

∗
Φ (Zr,s

0 );

(iv) ∗(W p,q
1,ℓ ) = Zr,s

1,ℓ , hence ∗(V p,q
1,ℓ ) =

∗
Φ (Zr,s

1,ℓ);

(v) ∗(W p,q
2,ℓ ) = Zr,s

2,ℓ , hence ∗(V p,q
2,ℓ ) =

∗
Φ (Zr,s

2,ℓ).

Finally, the spaces Zr,s
j,ℓ , j = 1, 2 are non-trivial, and Zr,s

0 are non-trivial if and only if r+s > n
or, if r + s = n, rs = 0.

Proof. Property (i) follows from Proposition 8.2 (3).
If ω ∈ Λk, we shall put

ω′ := (−1)k ∗H ω,

so that according to Lemma 8.3, ∗ω = θ ∧ ω′.
Then

∗Φ(ω) = ∗ω + ∗
(
θ ∧ T−1d∗Hω

)
= ∗ω + T−1 ∗H d∗Hω

= ∗ω + (−1)(2n−k+1)(k−1)+1T−1dH ∗H ω

= θ ∧ ω′ + T−1dHω
′ ,

which proves (ii).
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Using Lemma 8.3, the fact that (on horizontal forms) ∂∗ = − ∗H ∂∗H and the analogous
formula for ∂̄∗, for ω ∈W p,q

0 we obtain

∗ω = θ ∧ (−1)p+q ∗H ω = θ ∧ ω′,

where here ω′ ∈ S0Λ
r,s and ∂ω′ = ∂̄ω′ = 0.

This shows that ∗(W p,q
0 ) ⊂ Zr,s

0 , and in a similar way one proves that ∗(Zr,s
0 ) ⊂ W p,q

0 .
Combining this with (ii), we obtain (iii).

Next, if ω = ∂ξ + ∂̄η, with ξ, η ∈W p,q
0 , then

(8.5)
∗ω = (−1)kθ ∧ ∗H(∂ξ + ∂̄η)

= θ ∧ (∂∗ ∗H ξ + ∂̄∗ ∗H η) =: θ ∧ (∂∗σ + ∂̄∗τ)

where σ, τ ∈
∗
W

r,s

0 , hence θ∧ (∂∗σ+ ∂̄∗τ) ∈ Zr,s
1 . This shows that ∗(W p,q

1 ) ⊂ Zr,s
1 , and in a similar

way one proves that ∗(Zr,s
1 ) ⊂W p,q

1 , and we obtain (iv) in the case ℓ = 0.
For the general case, we observe that, for all test forms ω and σ,

∫
σ ∧ ∗H i(dθ)ω = 〈σ, i(dθ)ω〉 = 〈e(dθ)σ, ω〉

=

∫
e(dθ)σ ∧ ∗Hω =

∫
σ ∧ e(dθ)(∗Hω) .

It follows that

∗Hi(dθ) = e(dθ)∗H , and ∗H e(dθ) = i(dθ) ∗H .

Hence, if ω = ∂ξ + ∂̄η, with ξ, η ∈W p,q
0 ,

∗Φ
(
e(dθ)ℓω) =

∗
Φ
(
∗ e(dθ)ℓω

)

= (−1)kθ ∧ ∗He(dθ)ℓω + (−1)kT−1dH ∗H (e(dθ)ℓω)

= (−1)kθ ∧ i(dθ)ℓ ∗H ω + (−1)kT−1dH i(dθ)
ℓ ∗H ω

=
∗
Φ
(
i(dθ)ℓθ ∧ ω′)

where θ ∧ ω′ = θ ∧ (∂∗σ + ∂̄∗τ) ∈ Zr,s
1 , with σ, τ as in (8.5). This shows that ∗(W p,q

1,ℓ ) ⊂ Zr,s
1,ℓ ,

and in a similar way one proves that ∗(Zr,s
1,ℓ) ⊂W p,q

1,ℓ , and we obtain (iv).

The proof of (v) follows along the same lines and is therefore omitted.

The proof about the non-triviality of these subspaces follows from Propositions 5.3 and 5.4.

Q.E.D.

Definition 8.5. When r + s ≥ n we set

Y r,s
0 =

∗
Φ (Zr,s

0 ) = Zr,s
0 , Y r,s,±

1,ℓ =
∗
Φ (Zr,s,±

1,ℓ ) , Y r,s
2,ℓ =

∗
Φ (Zr,s

2,ℓ) ,

and denote by Υr,s
0 ,Υr,s,±

1,ℓ respectively Υr,s
2,ℓ the closures of these spaces in L2Λk.
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Let us finally observe that, in view of Lemmas 4.4 and 8.2, the Riesz transforms on Hn satisfy

∗R2n−k(ω) = −R∗
k+1(∗ω).

Then, from Theorem 8.1, Lemma 8.4 and Proposition 8.2 we immediately obtain the following
decomposition of L2Λk into ∆k-invariant subspaces when n < k ≤ 2n+ 1.

Theorem 8.6. Let n < k ≤ 2n + 1. Then L2Λk admits the orthogonal decomposition

(8.6) L2Λk =
∑⊕

r+s=k−1>n
r+s=n, rs=0

Υr,s
0 ⊕

∑⊕

ε=±

∑⊕

r+s−2ℓ=k

Υr,s,ε
1,ℓ ⊕

∑⊕

r+s−2ℓ=k+1

Υr,s
2,ℓ

⊕
∑⊕

r+s=k

R∗ Υr,s
0 ⊕

∑⊕

ε=±

∑⊕

r+s−2ℓ=k+1

R∗ Υr,s,ε
1,ℓ ⊕

∑⊕

r+s−2ℓ=k+2

R∗ Υr,s
2,ℓ ,

where R∗ = R∗
k+1.

Moreover, since the ∗-Hodge operator transform the subspaces in this decomposition into the
corresponding subspaces in the decomposition given by Theorem 8.1, with p := n−s and q := n−r,
the unitary intertwining operators which transform ∆k on each of these subspaces into scalar
forms are simply given by those from Table 1 at the end of Section 8, composed on the right
hand side by the ∗-Hodge operator, and similar remarks apply to the orthogonal projections and
scalar forms.

9. Lp-multipliers

The decomposition of L2Λk presented in the previous sections, together with the description of
the action of ∆k on the various subspaces, can be used for the Lp- functional calculus of ∆k. For
this purpose, we are going to show that LpΛk admits the same decomposition when 1 < p <∞.
Concretely, this means proving that the orthogonal projections on the various invariant subspaces
and the intertwining operators that reduce ∆k to scalar forms are Lp-bounded.

9.1. The multiplier theorem.

The joint spectrum of L and i−1T is the Heisenberg fan F ⊂ R2 defined as follows. If

ℓk,± = {(λ, ξ) : ξ = ±(n+ 2k)λ, λ ∈ R∗
+} ,

then

F =
⋃

k∈N
(ℓk,+ ∪ ℓk,−) .

The variable λ corresponds to i−1T and ξ to L, i.e., calling dE(λ, ξ) the spectral measure on
F , then

i−1T =

∫

F
λdE(λ, ξ) , L =

∫

F
ξ dE(λ, ξ) .
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If m is any bounded, continuous function on R × R∗
+, we can then define the associated

multiplier operator m(i−1T,L) by

m(i−1T,L) :=

∫

F
m(λ, ξ) dE(λ, ξ),

which is clearly bounded on L2(Hn).
It follows from Plancherel’s formula that the spectral measure of the vertical half-line {(0, ξ) :

ξ ≥ 0} ⊂ F is zero. A spectral multiplier is therefore a function m(λ, ξ) on F whose restriction
to each ℓk is measurable w.r. to dλ for every k.

We shall use the following results from [MRS1, MRS2] concerning Lp-boundedness of spectral
multipliers, see also Section 5 in [MPR1].

Given ρ, σ > 0, we say that a measurable function f(λ, ξ) is in the mixed Sobolev space
L2
ρ,σ = L2

ρ,σ(R2) if

(9.1)
‖f‖2L2

ρ,σ
: =

∫

R2

(1 + |ξ′|)2ρ(1 + |λ′| + |ξ′|)2σ |f̂(λ′, ξ′)|2 dλ′ dξ′

= c‖(1 + |∂ξ|)ρ(1 + |∂λ| + |∂ξ|)σf‖22 <∞ .

Let η0 ∈ C∞
0 (R) be a non-trivial, non-negative, smooth bump function supported in R∗

+ :=
(0,∞), put η1(x) := η0(x) + η0(−x) and set χ := η1 ⊗ η0. If f(λ, ξ) is a continuous, bounded
function on R × R∗

+, then we put f r(λ, ξ) = f(r1λ, r2ξ), r = (r1, r2) ∈ (R∗
+)2, and say that f

lies in L2
ρ,σ,sloc

(
R× R∗

+

)
if for every r = (r1, r2) ∈ (R∗

+)2, the function f rχ lies in L2
ρ,σ and

(9.2) ‖f‖L2
ρ,σ,sloc

:= sup
r

‖f rχ‖L2
ρ,σ

<∞ .

Definition 9.1. A function m satisfying (9.2) is called a Marcinkiewicz multiplier of class
(ρ, σ). A smooth Marcinkiewicz multiplier is a Marcinkiewicz multiplier of every class (ρ, σ), i.e.,
satisfying the pointwise estimates

(9.3)
∣∣∂jλ∂kξm(λ, ξ)

∣∣ ≤ Cjk|λ|−j |ξ|−k ,

for every j, k.

Theorem 9.2. ([MRS2]) Let m be a Marcinkiewicz multiplier of class (ρ, σ) for some ρ > n
and σ > 1

2 .Then m(i−1T,L) is bounded on Lp(Hn) for 1 < p < ∞, with norm controlled by
‖m‖L2

ρ,σ,sloc
.

9.2. Some classes of multipliers.

We introduce the classes Ψρ,σ
τ of (possibly unbounded) smooth multipliers, in terms of which

we will understand the behavior of the projections and intertwining operators presenteded in
the previous sections.

These classes are defined by pointwise estimates on all derivatives, in analogy to (9.3), which
must be satisfied on some open angle Γn−ε := {(λ, ξ) ∈ R2 : ξ > (n − ε)|λ|} containing the
Heisenberg fan F taken away the origin.
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Definition 9.3. We say that m ∈ Ψρ,σ
τ (ρ, σ, τ ∈ R) if

(9.4)
∣∣∂jλ∂kξm(λ, ξ)

∣∣ .
{
ξτ−j−k for ξ ≤ 1

(ξ + λ2)ρ−
j
2 ξσ−k for ξ > 1 .

for every j, k ∈ N. We also say that m ∈ ∗Ψρ,σ
τ if m ∈ Ψρ,σ

τ and, moreover,

(9.5) m(λ, ξ) &

{
ξτ for ξ < 1

(ξ + λ2)ρξσ for ξ > 1 .

Prototypes are given by the smooth functions m such that

m(λ, ξ) =

{
(ξ + pλ+ aλ2)τ for ξ < 1

(ξ + λ2)ρ(ξ + qλ)σ for ξ > 2 ,

with |p|, |q| < n. The following properties are easy to prove.

Lemma 9.4. The classes Ψρ,σ
τ satisfy the following properties:

(i) ∂λΨρ,σ
τ ⊂ Ψ

ρ− 1
2
,σ

τ−1 , ∂ξΨ
ρ,σ
τ ⊂ Ψρ,σ−1

τ−1 ;

(ii) Ψρ,σ
τ Ψρ′,σ′

τ ′ ⊂ Ψρ+ρ′,σ+σ′

τ+τ ′ ;

(iii) if m ∈ ∗Ψρ,σ
τ and then ms ∈ Ψsρ,sσ

sτ for every s ∈ R (for s ∈ N, m ∈ Ψρ,σ
τ is sufficient);

(iv) if ρ+ σ ≤ ρ′ + σ′, 2ρ+ σ ≤ 2ρ′ + σ′ and τ ≥ τ ′, then Ψρ,σ
τ ⊂ Ψρ′,σ′

τ ′ .

(v) In particular, if ρ + σ ≤ 0, 2ρ + σ ≤ 0 and τ ≥ 0, then Ψρ,σ
τ ⊂ Ψ0,0

0 , and Ψρ,σ
τ consists

of Marcinkiewicz multipliers.

Remark 9.5.

(i) Observe that if χ is a smooth cut-off function on R, compactly supported on R \ {0}
and with 0 ≤ χ ≤ 1, then η = χ(ξ/|λ|) and 1 − η are in Ψ0,0

0 . By Lemma 9.4 (ii),
multiplication by η or 1− η preserves the classes Ψρ,σ

τ . This property provides a certain
amount of flexibility, of which we give two examples.

(ii) If we are given a multiplier m, which satisfies the inequalities (9.4), but is only defined
on an angle Γ leaving out a finite number of half-lines ℓk,± of F , we can easily extend m
to a multiplier in Ψρ,σ

τ which vanishes identically on the missing lines.
(iii) Property (iii) in Lemma 9.4 also applies to the situation where s > 0, (9.5) only holds

on an angle omitting a finite number of half-lines in F , and m vanishes identically on
these half-lines.

We denote by the same symbol Ψρ,σ
τ the class of operators defined by the multipliers in this

class. For notational convenience, we shall often use the same symbol to denote an operator
M ∈ Ψρ,σ

τ and (a convenient choice of) its multiplier M(λ, ξ).
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10. Decomposition of LpΛk and boundedness of the Riesz transforms

Since the letter p is already used to denote degrees of differential forms, the summability
exponent will be denoted by r.

If V is any of the spaces Vp,q
0 , Vp,q

1,ℓ , Υp,q
1,ℓ , etc., by rV we shall denote the closure of this

space in LrΛk. Our goal will be to prove the following theorem, whose parts (i) and (ii) extend
Theorems 8.1 and 5.13.

Theorem 10.1. Let 1 < r <∞.

(i)k For 0 ≤ k ≤ n, LrΛk admits the direct sum decomposition

(10.1) LrΛk =
∑⊕

p+q=k<n
p+q=n, pq=0

rVp,q
0 ⊕

∑⊕

ε=±

∑⊕

p+q+2ℓ=k−1

rVp,q,ε
1,ℓ ⊕

∑⊕

p+q+2ℓ=k−2

rVp,q
2,ℓ

⊕
∑⊕

p+q=k−1

Rk−1
rVp,q

0 ⊕
∑⊕

ε=±

∑⊕

p+q+2ℓ=k−2

Rk−1
rVp,q,ε

1,ℓ ⊕
∑⊕

p+q+2ℓ=k−3

Rk−1
rVp,q

2,ℓ ,

where Rk−1 = d∆
− 1

2
k−1 is the Riesz transform;

(ii)k For n+ 1 ≤ k ≤ 2n + 1, LrΛk admits the direct sum decomposition

(10.2) L2Λk =
∑⊕

r+s=k−1>n
r+s=n, rs=0

rΥr,s
0 ⊕

∑⊕

ε=±

∑⊕

r+s−2ℓ=k

rΥr,s,ε
1,ℓ ⊕

∑⊕

r+s−2ℓ=k+1

rΥr,s
2,ℓ

⊕
∑⊕

r+s=k

R∗rΥr,s
0 ⊕

∑⊕

ε=±

∑⊕

r+s−2ℓ=k+1

R∗rΥr,s,ε
1,ℓ ⊕

∑⊕

r+s−2ℓ=k+2

R∗rΥr,s
2,ℓ ,

where R∗ = R∗
k+1.

(iii)k For 0 ≤ k ≤ 2n, the Riesz transform Rk is bounded from LrΛk to LrΛk+1.

By Lr-boundedness of the ∗-Hodge operator, we can restrict ourselves to the case 0 ≤ k ≤ n.

The proof is based on the following lemma.

Lemma 10.2. Let U =

(
U11 U12

U21 U22

)
denote any of the operators Up,q

1,ℓ in (7.13) or Up,q
2,ℓ in (7.25).

Then each component Uij of U consists of a multiplier operator in Ψ0,0
0 , possibly composed with

powers of e(dθ) and the holomorphic and antiholomorphic Riesz transforms R, R̄.
In particular, for 1 < r < ∞, all these operators are Lr-bounded on the spaces of differential

forms of the appropriate (bi-)degrees.

This lemma will be proved in the last part of this section. Taking it for granted, we give the
proof of the theorem.
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Proof of Theorem 10.1. We prove the two parts of the theorem simultaneously, via the inductive
steps

(
(i)k−1 + (ii)k−1

)
=⇒ (i)k =⇒ (ii)k. The statement (i)0 is trivial, and (ii)0 and (i)1 are

proved in [MPR1].
Assume that (i)k−1 and (ii)k−1 hold, and consider anyone of the orthogonal projections in the

last column of Table 1. This is a product (or a sum of products) of factors, each of which can
be either Rk−1, or its adjoint R∗

k−1, or P = UU∗, U being one of the operators in Lemma 10.2.
Then (i)k follows easily.

We prove now the implication (i)k =⇒ (ii)k. Factoring

Rk = d∆
− 1

2
k = R0∆

1
2
0 ∆

− 1
2

k ,

and using (ii)0, it suffices to prove the boundedness of ∆
1
2
0 ∆

− 1
2

k on LrΛk.

Referring to the decomposition (10.1), we disregard the d-exact components of LrΛk (i.e.,
those with Rk−1), on which Rk = 0, and adopt the simplified notation

(LrΛk)d∗−cl =
∑

β

⊕ rVβ .

Denote by Uβ : rZβ −→ rVβ the Lr-closure of the unitary intertwining operator in Table 1,
with rZβ denoting the Lr-closure of the appropriate space Xp,q, Y p,q or Zp,q in (5.16). Let

Pβ = UβU
∗
β be the projection of LrΛk onto rVβ.

Decomposing ω ∈ LrΛk as

ω =
∑

β

ωβ =
∑

β

Uβσβ ,

with σβ ∈ rZβ , we have

∆
1
2
0 ∆

− 1
2

k ω =
∑

β

∆
1
2
0 UβD

− 1
2

β σβ ,

where Dβ = U∗
β∆kUβ is the scalar operator appearing in (6.1), (6.3), (6.18). Explicitely,

Dβ =





∆0 + i(q − p)T if rVβ = rVp,q
0

∆0 + i(q − p)T + ℓ(n− k + ℓ) +m±
√

∆0 + i(q − p)T +m2
(
m = n−p−q

2

)
if rVβ = rVp,q,±

1,ℓ

∆0 + i(q − p)T + (ℓ + 1)(n − k + ℓ+ 1) if rVβ = rVp,q
2,ℓ .

Denote by mβ be the spectral multiplier of Dβ. Then, for each of the above cases,

mβ =





ξ + λ2 + (p− q)λ ∈ ∗Ψ1,0
1

ξ + λ2 + (p− q)λ+ ℓ(n− k + ℓ) +m+
√
ξ + λ2 + (p − q)λ+m2 ∈ ∗Ψ1,0

0

ξ + λ2 + (p− q)λ+ ℓ(n− k + ℓ) +m−
√
ξ + λ2 + (p − q)λ+m2

∈ ∗Ψ1,0
1 if ℓ = 0 , ∗Ψ1,0

0 otherwise

ξ + λ2 + (p− q)λ+ (ℓ + 1)(n − k + ℓ+ 1) ∈ ∗Ψ1,0
0 ,
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respectively. By Lemma 9.4 (iii), D
− 1

2
β is in Ψ

− 1
2
,0

− 1
2

or in Ψ
− 1

2
,0

0 , depending on the case. Combining

together Lemma 10.2, Lemma 9.4 (ii) and (v), and the fact that the multiplier ξ + λ2 of ∆0 is

in ∗Ψ1,0
1 , we conclude that the composition ∆

1
2
0 UβD

− 1
2

β has all its components in Ψ0,0
0 .

Therefore,

‖∆
1
2
0 ∆

− 1
2

k ω‖r ≤
∑

β

‖∆
1
2
0 UβD

− 1
2

β σβ‖r

≤ C
∑

β

‖σβ‖r

≤ C‖ω‖r .
Q.E.D.

10.1. Lp- boundedness of the intertwining operators U±
1,ℓ.

Our next goal will be to prove

Proposition 10.3. Assume that p + q + 1 + 2ℓ ≤ n and 1 < r < ∞. Then there is a constant
Cr so that

‖U+
1,ℓ ξ‖Lr ≤ Cr‖ξ‖Lr for every ξ ∈W p,q

0 ,

‖U−
1,ℓ η‖Lr ≤ Cr‖η‖Lr for every η ∈ Ξp,q.

Proof. According to Proposition 7.8, we have to prove the Lr-boundedness of the operators:

(i) ∂Q+
−Σ11, ∂̄Q+

+Σ11,

(ii) (∂̄∂ − ∂∂̄)Σ11, when ℓ ≥ 1,
(iii)

[
∆H + (2m− ℓ)(Γ +m)

]
Σ11,

defined on W p,q
0 , with p + q + 2ℓ + 1 ≤ n in (i) and (iii), and p + q + 2ℓ ≤ n in (ii), and of the

operators:

(i’) ∂Q−
+Σ22, ∂̄Q−

−Σ22,

(ii’) (∂̄∂ − ∂∂̄)Σ22, when ℓ ≥ 1,
(iii’)

[
∆H − (2m− ℓ)(Γ −m)

]
Σ22.

defined on Ξp,q, with p+ q + 2ℓ + 1 ≤ n in (i’) and (iii’), and p+ q + 2ℓ ≤ n in (ii’).

Recall that if p = 0, then ∂ = ∂(I−C), and if q = 0, then ∂̄ = ∂̄(I−C̄), so that, putting again

�r =

{
�, if p ≥ 1,

�′, if p = 0,
�r =

{
�, if q ≥ 1,

�
′
, if q = 0,

we have

(10.3) ∂ = R�
1
2 , ∂̄ = R�

1
2 ,
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where R and R are the holomorphic and antiholomorphic Riesz transforms of (4.5), which
are known to be Calderón-Zygmund type singular integral operators, and consequently are Lr-
bounded for 1 < r <∞.

Moreover, observe that ∂̄∂ − ∂∂̄ = 2∂̄∂ + Te(dθ). Since this term appears only when ℓ ≥ 1
and p + q + 2ℓ ≤ n, we have p + q ≤ n − 2, which easily implies that the operator � + iT is
injective on its domain in L2Λp,q, so that we can factorize

(10.4) ∂̄∂ = R̄�
1
2 ∂ = R̄∂(� + iT )

1
2 = R̄R (� + iT )

1
2�

1
2 on W p,q,

since, on the core, �∂ = ∂(� + iT ), hence �
1
2 ∂ = ∂(� + iT )

1
2 .

Observe also that Ξp,q = (I − Cp − C̄q)(W
p,q
0 ).

Thus it will suffice to prove that the following scalar operators are in Ψ0,0
0 :

(I) �
1
2Q+

−Σ11, �
1
2Q+

+Σ11,
[
∆H + (2m− ℓ)(Γ +m)

]
Σ11, for ℓ ≥ 0;

(II) (� + iT )
1
2�

1
2 Σ11, i−1TΣ11, for ℓ ≥ 1;

(I’) �
1
2Q−

+Σ22, �
1
2Q−

−Σ22,
[
∆H − (2m− ℓ)(Γ −m)

]
Σ22, for ℓ ≥ 0;

(II’) (� + iT )
1
2�

1
2 Σ22, i−1TΣ22, for ℓ ≥ 1.

This will be a direct consequence of the following Lemmas 10.4, 10.5, 10.6, on the basis of
Lemma 9.4. Q.E.D.

Observe that m = (n− p− q)/2 ≥ 1/2, 2m− ℓ ≥ 1 in (I) and (I’), and m ≥ 1, 2m− ℓ ≥ 1 in
(II) and (II’).

Lemma 10.4. Assume that p+ q + 1 ≤ n. Then the following hold true:

(a) i−1T ∈ Ψ
1
2
,0

1 ;

(b) �
1
2 ,�

1
2 ∈ Ψ

0, 1
2

1
2

, and (� + iT )
1
2 ∈ Ψ

0, 1
2

1
2

;

(c) ∆H ∈ Ψ0,1
1 ⊂ Ψ1,0

1 , ∆H − aT 2 ∈ Ψ1,0
1 for every a ∈ C, and (∆H − T 2 + c)α ∈ Ψα,0

0 for
every c > 0.

Proof. (a) is obvious.
As for (b), note that

(2�)
1
2 (λ, ξ) = (ξ − (n− 2p)λ)

1
2 . We have

ξ − (n− 2p)λ ∼ ξ ,

on an angle containing the whole fan if p ≥ 1, and, if p = 0, on an angle avoiding just the

half-line ξ = nλ, λ > 0. By Lemma 9.4 (iii), �
1
2 ∈ Ψ

0, 1
2

1
2

, and a similar argument applies to

�
1
2 and (� + iT )

1
2 . Remark 9.5 (iii) must be used for �

1
2 when p = 0 and for (� + iT )

1
2 when

q = n− 1.

Moreover, (2(�+iT ))
1
2 (λ, ξ) = (ξ+(n−2q−2)λ)

1
2 , where p+q+2 ≤ n, hence 2(q+1) ≤ 2n−2,

i.e., |n− 2(q + 1)| ≤ n− 2. This implies that (� + iT )
1
2 ∈ Ψ

0, 1
2

1
2

.
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Finally,

(10.5) ∆H(λ, ξ) = ξ + (p− q)λ ∼ ξ ,

on an angle containing the full fan, which shows that ∆H ∈ Ψ0,1
1 . In combination with (a) and

Lemma 9.4, this easily yields (c). Q.E.D.

According to (10.5), the quantity ξ + (p− q)λ, which we will also denote by ξ̃, is comparable
to ξ. We then set

(10.6) Γ(λ, ξ) = (ξ̃ + λ2 +m2)
1
2 .

Let R11 be as in Lemma 7.6, so that, according to (7.15), Σ11 = R
− 1

2
11 .

Lemma 10.5. For p+ q + 2ℓ+ 1 ≤ n, the following hold true:

(a) Γ +m, Q+
+ , Q

+
− ∈ ∗Ψ

1
2
,0

0 ;

(b) R11 ∈ ∗Ψ1,1
0 , consequently Σ11 = R

− 1
2

11 ∈ Ψ
− 1

2
,− 1

2
0

Proof. We have

Γ(λ, ξ) = (ξ̃ + λ2 +m2)
1
2 ,

and, since ξ̃ ∼ ξ, this shows that Γ ∈ ∗Ψ
1
2
,0

0 . Then (a) follows easily.
As for R11, recall that

(10.7)
R11 = (Γ +m)2

(
∆H + 2m(2m− ℓ)

)
+ 2(Γ +m)

(
(2m− ℓ)∆H − 2mT 2

)

+ ∆H(∆H − T 2) + 2mℓT 2 .

By Lemma 9.4, and in view of what has been shown already, we find that

R11 ∈ Ψ
1
2
,0

0 Ψ
1
2
,0

0 Ψ0,1
0 + Ψ

1
2
,0

0 Ψ1,0
1 + Ψ0,1

1 Ψ1,0
1 + Ψ1,0

2 ⊆ Ψ1,1
0 .

Moreover, since here Γ ≥ 0, we have

R11 ≥ Γ2(∆H + 2m(2m− ℓ)) + 2m(−2mT 2) + 2mℓT 2

= (ξ̃ + λ2 +m2)(ξ̃ + 2m(2m − ℓ)) + 2m(2m− ℓ)|T |2

& (ξ + λ2 + 1)(ξ + 1),

which shows that also the estimates from below for R11 hold true, so that R
− 1

2
11 ∈ Ψ

− 1
2
,− 1

2
0 . This

concludes the proof of (b). Q.E.D.

Lemma 10.6. For p+ q + 2ℓ+ 1 ≤ n, the following hold true:

(a) Γ −m, Q−
+ , Q

−
− ∈ Ψ

1
2
,0

1 ;

(b) R22 ∈ Ψ1,1
2 and Σ22(I − Cp − C̄q) = R

− 1
2

22 (I − Cp − C̄q) ∈ Ψ
− 1

2
,− 1

2
−1 ;
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Proof. We have

Γ(λ, ξ) −m = (ξ̃ + λ2)
(
Γ(λ, ξ) +m

)−1 ∈ Ψ1,0
1 Ψ

− 1
2
,0

0 ⊂ Ψ
1
2
,0

1 .

By (7.11), on W p,q
0 we have the identity

R22 = 16(∆H − T 2 +m2)
(
∆H − T 2 + ℓ(2m− ℓ)

)
��R−1

11 ,

where

(10.8) (∆H − T 2 +m2)
(
∆H − T 2 + ℓ(2m− ℓ)

)
�� ∈

{
Ψ2,2

2 if ℓ 6= 0

Ψ2,2
3 if ℓ = 0

⊂ Ψ2,2
2 .

Applying Lemma 10.5 (b), we obtain that R22 ∈ Ψ1,1
2 .

To prove the last part of the statement, observe that the presence of the factor I − Cp − C̄q

allows us, on the basis of Remark 9.5 (ii), to restrict, if necessary, our analysis to an angle
omitting one of the external half-lines of F , where the multipliers of � and � are non-zero, and
their reciprocal satisfy (9.5) with ρ = 0 and σ, τ = −1. Each of remaining factors in (10.8) is in
∗Ψ1,0

0 , and this, together with Lemma 10.5 (b), gives the conclusion.

Q.E.D.

10.2. Lp- boundedness of the intertwining operators U2,ℓ.

We next turn to the intertwining operator U2,ℓ. Our goal will be to prove

Proposition 10.7. Assume that p + q + 2 + 2ℓ ≤ n and 1 < r < ∞. Then there is a constant
Cr so that

‖U2,ℓ (ξ, η)‖Lr ≤ Cr‖(ξ, η)‖Lr for every (ξ, η) ∈ Zp,q.

In view of the explicit expression for U2,ℓ in Proposition 7.12, it will suffice to prove that the

operators H11√
∆′∆′′

and H21√
∆′∆′′

are Lr-bounded on Xp,q, and the operators H12√
∆′∆′′

and H22√
∆′∆′′

on

Y p,q (notice the the multiplier σ(T ) corresponds essentially to the Hilbert transform along the
center of the Heisenberg group, which is Lr-bounded).

We shall prove the estimates on Xp,q only, since the estimates on Y p,q follow along the same
lines.

Using again the factorizations (10.3), (10.4) by means of Riesz transforms, we see that we are
reduced to estimating the following scalar operators on Xp,q with respect to the Lr- norm:
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(III)
(� + iT )

1
2�

1
2 (∆H − T 2)√

∆′∆′′ ,
T (� + iT )

1
2�

1
2

√
∆′∆′′ ,

�
1
2
r �

1
2 (∆H − T 2)√

∆′∆′′ ,

T�
1
2
r (� + iT )

1
2

√
∆′ ,

(IV)
�

1
2 (∆H − T 2)√

∆′∆′′ ,
(� + i(ℓ + 1)T )�

1
2

√
∆′∆′′ ,

�
1
2
r �√

∆′∆′′ ,
�r�

1
2

√
∆′ ,

(� + i(ℓ + 1)T )�
1
2
r√

∆′ .

Lemma 10.8. Let ∆′,∆′′ be as in Lemma 7.10. Then, the following properties hold:

(a) (∆′′)α ∈ Ψα,0
0 for every α ∈ R;

(b) if q ≥ 1, then (∆′)α ∈ Ψα,2α
3α for every α ∈ R;

(b) if q ≥ 1, then
(
∆′∆′′)− 1

2 ∈ Ψ−1,−1

− 3
2

.

Proof. (a) is immediate from Lemma 10.4 (c).
As for (b), we first recall that c > 0. Moreover, ∆′ has multiplier

[1

2

(
ξ − (n− 2p)λ

)(
ξ + (n− 2q)λ

)
+ (ℓ + 1)2λ2

](
ξ + (p− q)λ+ λ2

)

+λ2
[
cλ2 +

√
c
(
ξ − (n− 2p)λ

)(
ξ + (n− 2q)λ

)(
ξ + (p− q)λ+ λ2 + c

)
.

Here, ξ = (n + 2k)λ, k ∈ N, and k ≥ 1, if λ > 0 and p = 0, since we are acting on Xp,q. Since
we are also assuming that q ≥ 1, this shows that

(10.9) ξ − (n− 2p)λ ∼ ξ, ξ + (n− 2q)λ ∼ ξ .

By means of Lemma 10.4 and Lemma 9.4, we thus easily see that

∆′ ∈ Ψ0,1
1 Ψ0,1

1 Ψ1,0
1 + Ψ1,0

2

(
Ψ1,0

2 + Ψ
1
2
,1

3
2

)
⊆ Ψ1,2

3 + Ψ2,0
4 + Ψ

3
2
,1

7
2

⊆ Ψ1,2
3 .

Moreover, the inverse estimate (9.5) holds true for ρ = 1, σ = 2 and τ = 3 because of (10.9),
which yields (b). Finally, (c) is a direct consequence of (a) and (b). Q.E.D.
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The lemmata 10.8 and 10.4 now easily imply that

(III)
(� + iT )

1
2�

1
2 (∆H − T 2)√

∆′∆′′ ∈ Ψ0,0
1
2

,
T (� + iT )

1
2�

1
2

√
∆′∆′′ ∈ Ψ

− 1
2
,0

1
2

,
�

1
2
r �

1
2 (∆H − T 2)√

∆′∆′′ ∈ Ψ0,0
1
2

,

T�
1
2
r (� + iT )

1
2√

∆′ ∈ Ψ0,0
1
2

;

(IV)
�

1
2 (∆H − T 2)√

∆′∆′′ ∈ Ψ
0,− 1

2
0 ,

(� + i(ℓ + 1)T )�
1
2

√
∆′∆′′ ∈ Ψ

−1, 1
2

0 ,
�

1
2
r �√

∆′∆′′ ∈ Ψ
−1, 1

2
0 ,

�r�
1
2

√
∆′ ∈ Ψ

− 1
2
, 1
2

0 ,
(� + i(ℓ+ 1)T )�

1
2
r√

∆′ ∈ Ψ
− 1

2
, 1
2

0 .

All these classes are contained in Ψ0,0
0 , so that all these operators are Lr-bounded Marcinkiewic

type operators, for 1 < r <∞. This proves Proposition 10.7 when q ≥ 1.

The situation is slightly more complicated when q = 0. The problem is that the second relation
in (10.9) will fail to be true in this case on the ray

ρ := {(λ, ξ) : λ < 0 and ξ = n|λ|} ⊆ F

of the Heisenberg fan, on which the multiplier of � will vanish identically. If we remove this
ray, the preceding arguments remain valid and we get Lr- boundedness of the restrictions of
our operators to the orthogonal complement of the kernel of �, i.e., on (I − C̄)(Xp,q). So, what
remains is the restriction on C̄(Xp,q). This corresponds to the restrictions of our multipliers to

the ray ρ. However, all of the multipliers listed in (III) and (IV) which contain a factor � or �
1
2

vanish identically on this ray, so what remains are the operators

T�
1
2
r (� + iT )

1
2√

∆′ and
(� + i(ℓ+ 1)T )�

1
2
r√

∆′ .

On the ray ρ, the multipliers of these operators are given, up to multiplicative constants, by

µ1 =
λ2√(

c+ (ℓ + 1)2
)
λ4 + (ℓ+ 1)2(n− p)|λ|3

and

µ2 =
|λ| 32√(

c+ (ℓ + 1)2
)
λ4 + (ℓ+ 1)2(n− p)|λ|3

.

It is easy to see that these are Mihlin–Hörmander multipliers in λ, so that
T�

1
2
r (� + iT )

1
2

√
∆′ C̄

and
(� + i(ℓ + 1)T )�

1
2
r√

∆′ C̄ are compositions of Calderón-Zygmund operators acting in the central
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variable of the Heisenberg group with the singular integral operator C̄, which shows that they
are Lr-bounded, for 1 < r <∞, too.

This completes the proof of Proposition 10.7.

Finally, let us denote by ρ± the rays

ρ± := {(λ, ξ) : ξ = ±λ, λ > 0 ⊆ F

of the Heisenberg fan F, and define for (λ, ξ) ∈ F the spaces

Xp,q(λ, ξ) :=

{
{0}, if p = 0 and (λ, ξ) ∈ ρ+,

C, if p = 0 and (λ, ξ) /∈ ρ+, or if p > 0 ,

Y p,q(λ, ξ) :=

{
{0}, if q = 0 and (λ, ξ) ∈ ρ−,

C, if q = 0 and (λ, ξ) /∈ ρ−, or if q > 0 ,

and

Zp,q(λ, ξ) =
{(

µ
ν

)
: µ ∈ Xp,q(λ, ξ), ν ∈ Y p,q(λ, ξ)

}
.

Lemma 10.9. For (λ, ξ) ∈ F let E(λ, ξ) =

(
E11(λ, ξ) E12(λ, ξ)
E21(λ, ξ) E22(λ, ξ)

)
, where the Eij are given

in Lemma 7.10. Then, when viewed as a linear mapping from the space Zp,q(λ, ξ) into itself,
E(λ, ξ) is invertible for almost every (λ, ξ) with respect to the Plancherel measure on F.

Proof. When (λ, ξ) ∈ F \(ρ+∪ρ−), then �(λ, ξ) 6= 0,�(λ, ξ) 6= 0, and since, according to (7.23),
detE = cT 4��∆′′, the claim is immediate.

Assume next that (λ, ξ) ∈ ρ+. Then, if p > 0, we can argue as before. So, assume that p = 0.

In this case, �(λ, ξ) = 0, Zp,q(λ, ξ) =
{(

0
ν

)
: ν ∈ C

}
, and E(λ, ξ) =

(
0 0
0 E22(λ, ξ)

)
, where

E22(λ, ξ) = −i(ℓ + 1)(n − q)λ(λ − n + ℓ + 2). Since p + q + 2ℓ + 2 ≤ n, the factor (n − q) is
non-zero, and the claim follows.

Finally, the case where (λ, ξ) ∈ ρ− can be dealt with in a very similar way. Q.E.D.

11. Applications

11.1. Multipliers of ∆k.

We are in a position now to extend Theorem 6.8 of [MPR1] to forms of any degree. A function
µ definied on the positive half-line is a Mihlin–Hörmander multiplier of class ρ > 0 if, given a
smooth function χ supported on [12 , 4] and equal to 1 on [1, 2],

‖µ‖ρ,sloc := sup
t>0

∥∥µ(t·)χ
∥∥
L2
ρ
<∞ .

Theorem 11.1. Let m : R → C be a bounded, continuous function in L2
ρ,sloc(R) for some

ρ > (2n+ 1)/2. Then, for every k = 0, . . . , 2n+ 1, the operator m(∆k) is bounded on Lp(Hn)Λk

for 1 < p <∞, with norm controlled by ‖m‖ρ,sloc.
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The proof follows the same lines as in [MPR1].

11.2. Exact Lp-forms.

As a corollary to Theorem 10.1 and its proof, we can derive the following extension of Lemma
4.2 in [MPR1].

Lemma 11.2. Let r be such that 1/2 − 1/r = 1/(2n + 2). If ω ∈ L2Λk is such that ω = du in
the distributional sense for some u ∈ D′Λk−1, then there is some v ∈ LrΛk−1 such that ω = dv
in the sense of distributions. Moreover, ω ∈ Rk−1(L

2Λk−1).

Proof. Define

v := L− 1
2 (L

1
2 ∆

− 1
2

k−1)R
∗
k−1ω.

We have seen that the operator ∆
1
2
0 ∆

− 1
2

k−1 is Lp-bounded for 1 < p < ∞, which implies that the

same is true for L
1
2 ∆

− 1
2

k−1 = (L
1
2 ∆

− 1
2

0 )(∆
1
2
0 ∆

− 1
2

k−1). As in the proof of Lemma 4.2 in [MPR1], we

can thus conclude that v ∈ LrΛk−1. And, if ξ ∈ SΛk, then

〈dv, ξ〉 = 〈ω,Rk−1(∆
− 1

2
k−1L

1
2 )L− 1

2d∗ξ〉 = 〈ω,Rk−1R
∗
k−1ξ〉 = 〈Rk−1R

∗
k−1ω, ξ〉,

so that dv = Rk−1R
∗
k−1ω ∈ L2Λk. By Lemma 4.4, this implies that

ω = dv +R∗
kRkω,

and by the same lemma Rkω = ∆
− 1

2
k+1dω, where dω = d2u = 0 in the sense of distributions. This

implies that ω = dv, and thus also that ω ∈ Rk−1(L
2Λk−1). Q.E.D.

Corollary 11.3. If ω ∈ L2Λk, then ω ∈ Rk−1(L
2Λk−1) if and only if there is some u ∈ D′Λk−1

such that ω = du in the sense of distributions.

Proof. One implication is immediate by Lemma 11.2. To prove the converse implication, let
us assume that ω ∈ Rk−1(L

2Λk−1). Then, according to Lemma 4.4 and Proposition 4.5, ω =
Rk−1R

∗
k−1ω. Moreover, if we define v as in the proof of Lemma 11.2, then v ∈ LrΛk−1 and

dv = Rk−1R
∗
k−1ω, hence dv = ω. We may thus choose u = v. Q.E.D.

11.3. The Dirac operator.

Let us denote by Λ =
2n+1∑⊕

k=0

Λk the Grassmann algebra of h∗n, and by LpΛ = Lp(Hn)Λ =

2n+1∑⊕

k=0

LpΛk,SΛ etc. the space of Lp-section, S-sections etc. of the corresponding bundle over Hn.

The Dirac operator acting on SΛ is given by

(11.1) D := d+ d∗ .

Notice that D2 = ∆ on dom (∆), that is, the Dirac operator D and the Hodge Laplacian ∆
commute as differential operators.
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However, in order to reduce the spectral theory of D to that one of ∆ we need to show
that D and ∆ strongly commute, in the sense that the all spectral projections in the spectral
decompositions of D and ∆ commute.

Proposition 11.4. We have that D
2

= ∆. In particular, D and ∆ strongly commute.

Proof. Recall from the previous section that the Riesz transform R = d∆− 1
2 and its adjoint

R∗ = ∆− 1
2 d∗ = d∗∆− 1

2 are Lp-bounded for 1 < p <∞. Let us put

P± :=
1√
2

(
I ±D∆− 1

2

)
=

1√
2

(
I ± (R+R∗)

)
.

One easily verifies that P 2
± = P± and P ∗

± = P±, so that P+ and P− are orthogonal projections,
which are in fact Lp-bounded for 1 < p <∞. Moreover,

(11.2) DP± = ±∆
1
2P±,

i.e.,

D = ∆
1
2P+ − ∆

1
2P− .

Let ∆ =
∫ +∞
0 λdE(λ), so that

∆
1
2 =

∫ +∞

0

√
λdE(λ) =

∫ +∞

0
s dẼ(s) ,

where Ẽ denotes the image of the spectral measure E under the mapping λ 7→
√
λ. Therefore,

D = ∆
1
2P+ − ∆

1
2P− =

∫ +∞

0
s d(ẼP+)(s) −

∫ +∞

0
s d(ẼsP−)(s)

Now, if A ⊂ R is a Borel set, let us put

(11.3) F (A) := Ẽ(A+)P+ + Ẽ(−A−)P− ,

where A+ := A ∩ [0,+∞) and A− := A ∩ (−∞, 0). Then F is a spectral measure on R, and

D =

∫ +∞

−∞
s dF (s) on SΛ .

Indeed, notice that, since the operators R,R∗ are bounded and commute with ∆ on the core,
they also commute with the spectral projections Ẽ(B), i.e.,

(11.4) Ẽ(B)P± = P±Ẽ(B) .

Moreover, we clearly have
F (A) = F (A+) + F (A−) ,

and P+P− = P−P+ = 0. This implies that F (A) is an orthogonal projection, and that F is a
spectral measure on R.

We set

(11.5) D̃ :=

∫ +∞

−∞
s dF (s) ,

as a closed operator, and claim that indeed D̃ = D.
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To verify this, denote by D0 the restriction of D to S0Λ. Since D = D̃ on SΛ, we then have
D0 ⊂ D ⊂ D̃, and clearly

D̃2 =

∫ +∞

−∞
s2 dF (s) =

∫ +∞

0
λdE(λ) = ∆ .

Thus, it remains to show that D̃ ⊂ D0.
Let ξ ∈ dom D̃. It suffices to assume that there is an interval I = [a, b], with 0 < a < b, so

that F (R \K)ξ = 0, where K = I ∪ (−I); hence D̃ξ =
∫
K s dF (s)ξ.

Let ϕ be a smooth cut-off function, even, identically 1 on K and with support contained in
K ′ = I ′ ∪ (−I ′), where I ′ = [a′, b′] with 0 < a′ < a < b < b′. Then,

∆ξ = D̃2ξ =

∫

K
s2 dF (s)ξ =

∫

K
s2ϕ(s) dF (s)ξ =

∫ ∞

0
λψ(λ) dE(λ)ξ ,

where ψ is a smooth function with compact support in K ′2 = {s2 : s ∈ K ′}.
Hence, if Q := ψ(∆) =

∫∞
0 ψ(λ)dE(λ), we have that ∆ξ = ∆Qξ. It is clear that Q is given by

right-convolution with a Schwartz function, and that Q is U(n)-equivariant, hence it preserves
the core S0Λ for ∆.

Choose a sequence {ξn} ⊂ S0Λ such that ξn → ξ and ∆ξn → ∆ξ.
Then {Qξn} ⊂ S0, Qξn → Qξ and ∆Qξn → ∆ξ. Therefore, we may assume that ξn = Qξn

and ξ = Qξ. Then

∆
1
2 ξ = ∆

1
2Qξ =

∫ ∞

0
λ

1
2ψ(λ) dE(λ)ξ

= lim
n→+∞

∫ ∞

0
λ

1
2ψ(λ) dE(λ)ξn

= lim
n→+∞

∫ ∞

0
sϕ(s) dF (s)ξn .

Hence, by (11.3) it follows that

D̃ξ = lim
n→+∞

D̃ξn = lim
n→+∞

D0ξn .

This implies that S0Λ is a core also for D̃; hence D̃ = D0. We have thus seen that

D =

∫ +∞

−∞
s dF (s) .

By (11.3) and (11.4) F (A) and E(B) commute; hence D and ∆ strongly commute. Q.E.D.

Moreover, if m is a bounded, Borel measurable spectral multiplier of R, then

(11.6) m(D) = m(∆
1
2 )P+ +m(−∆

1
2 )P−.

As an immediate consequence of Theorem 11.1 and Theorem 10.1 we therefore obtain

Corollary 11.5. Let m : R → C be a bounded, continuous function in L2
ρ,sloc(R) for some

ρ > (2n + 1)/2. Then m(D) is bounded on Lp(Hn)Λ for 1 < p < ∞, with norm controlled by
‖m‖ρ,sloc.



HODGE LAPLACIAN ON THE HEISENBERG GROUP 73

12. Appendix

In this final section we collect some technical facts and proofs that we have previously set
aside.

We need some preliminary computations.

Recall first from Lemma 5.5 that

(12.1) [∂∗, e(dθ)ℓ] = iℓ∂̄e(dθ)ℓ−1 , [∂̄∗, e(dθ)ℓ] = −iℓ∂e(dθ)ℓ−1 .

Taking adjoints, this implies

(12.2) [∂, i(dθ)ℓ] = iℓ∂̄∗i(dθ)ℓ−1 , [∂̄, i(dθ)ℓ] = −iℓ∂∗i(dθ)ℓ−1 .

Lemma 12.1. If σ ∈ ker i(dθ) ⊂ Λs
H and s+ 2j ≤ n, then

i(dθ)je(dθ)jσ = cs,jσ ,

where the coefficients cs,j are defined in (7.8), i.e.,

cs,j =
j!(n − s)!

(n − s− j)!
.

Moreover, the following relations hold:

j2cs+1,j−1 = cs,j − cs+1,j, cs,j(n− s− j) = cs+1,j(n − s), jcs+1,j−1(n− s− j) = cs+1,j .

Proof. Use formula (2.8) in [MPR1] to compute i(dθ)e(dθ)jσ. Observe that ωj there corresponds
to our σ and the value k = p+ q there is our s+ 2j. Therefore,

i(dθ)e(dθ)jσ = j(n − s− j + 1)e(dθ)j−1σ .

Consequentely,

i(dθ)je(dθ)jσ = j(n− s− j + 1)i(dθ)j−1e(dθ)j−1σ ,

and the statement follows inductively. Q.E.D.

If ξ ∈W s
0 , then ξ, ∂ξ, ∂̄ξ are in ker i(dθ), and consequently we see that

(12.3) i(dθ)je(dθ)jξ = cs+1,jξ , i(dθ)je(dθ)j∂ξ = cs+1,j∂ξ , i(dθ)je(dθ)j ∂̄ξ = cs+1,j ∂̄ξ .

This is not necessarily the case for ∂∂̄ξ, ∂̄∂ξ. We therefore need some more computations to
simplify the expressions

∂∗∂̄∗i(dθ)ℓe(dθ)ℓ∂̄∂ , i(dθ)ℓe(dθ)ℓ−1∂̄∂ , etc. .

Lemma 12.2. For ξ ∈W s
0 ,

∂∗∂̄∗i(dθ)je(dθ)j ∂̄∂ξ = cs+1,j

(
� + i(j + 1)T

)
�ξ ,

∂̄∗∂∗i(dθ)je(dθ)j∂∂̄ξ = cs+1,j

(
�− i(j + 1)T

)
�ξ ,

∂∗∂̄∗i(dθ)je(dθ)j∂∂̄ξ = ∂̄∗∂∗i(dθ)je(dθ)j ∂̄∂ξ = −cs+1,j��ξ .
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Proof. We have, by (12.2)

∂∗∂̄∗i(dθ)je(dθ)j ∂̄∂ξ = ∂∗∂̄∗[i(dθ)j , ∂̄]e(dθ)j∂ξ + ∂∗∂̄∗∂̄i(dθ)je(dθ)j∂ξ

= ij∂∗∂̄∗∂∗i(dθ)j−1e(dθ)j∂ξ + cs+1,j∂
∗∂̄∗∂̄∂ξ

= ijT∂∗i(dθ)je(dθ)j∂ξ + cs+1,j∂
∗∂̄∗∂̄∂ξ

= cs+1,j∂
∗(� + ijT )∂ξ

= cs+1,j

(
� + i(j + 1)T

)
�ξ .

The second identity follows in a similar way. Finally, we have

∂∗∂̄∗i(dθ)je(dθ)j∂∂̄ξ = ∂∗∂̄∗[i(dθ)j , ∂]e(dθ)j ∂̄ξ + ∂∗∂̄∗∂i(dθ)je(dθ)j ∂̄ξ

= cs+1,j∂
∗∂̄∗∂∂̄ξ

= −cs+1,j∂
∗∂∂̄∗∂̄ξ

= −cs+1,j��ξ .

This proves the lemma. Q.E.D.

Lemma 12.3. The following properties hold true.

(i) For all p, q, �W p,q
0 = Xp,q and �W p,q

0 = Y p,q.

(ii) In particular, � maps Xp,q into itself, and � maps Y p,q into itself. We therefore set

(12.4) �X = �|Xp,q : Xp,q → Xp,q , �Y = �|Y p,q : Y p,q → Y p,q .

Then �−1
X and �

−1
Y are well defined on Xp,q and Y p,q, respectively.

Proof. (ii) is immediate from (i). To prove (i), we verify the statements concerning the spaces
Xp,q, the discussion of the spaces Y p,q being similar. Observe first that � leaves W p,q

0 invariant
because of (1.20).

Thus, in view of Remark 5.10, if 1 ≤ p ≤ n − 1, then Xp,q = W p,q
0 , and we are done. And,

if p = 0 and ξ ∈ W 0,q
0 , then �ξ = ∂∗∂ξ, so that by Lemma 4.8 C0�ξ = 0, hence �ξ ∈ Xp,q.

Finally, if p = n and ξ ∈W n,q
0 , then �ξ = ∂∂∗ξ = 0. Q.E.D.

Proof of Lemma 7.5. Define B1,ℓ to be the unbounded operator from L2Λp,q to (L2Λk)2 defined
by the matrix on the right-hand side of (7.6), with core S0Λp,q, and set

(12.5) B∗
1,ℓB1,ℓ|(W p,q

0 )2
=: B =

(
B11 B12

B21 B22

)
.

We will use Lemma 7.4 to see that

A∗
1,ℓA1,ℓ = B∗

1,ℓB1,ℓ|(W p,q
0 )2

.
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Then, the matrix entries of B are:

B11 = ∂∗i(dθ)ℓe(dθ)ℓ∂

+
(
iℓT−1∂∗∂̄∗i(dθ)ℓ−1 − T−1�i(dθ)ℓ

)(
iℓT−1e(dθ)ℓ−1∂̄∂ + T−1e(dθ)ℓ�

)

B22 = ∂̄∗i(dθ)ℓe(dθ)ℓ∂̄

+
(
− iℓT−1∂̄∗∂∗i(dθ)ℓ−1 − T−1�i(dθ)ℓ

)(
− iℓT−1e(dθ)ℓ−1∂∂̄ + T−1e(dθ)ℓ�

)

B12 = B∗
21 = ∂∗i(dθ)ℓe(dθ)ℓ∂̄

−
(
iℓT−1∂∗∂̄∗i(dθ)ℓ−1 − T−1�i(dθ)ℓ

)(
iℓT−1e(dθ)ℓ−1∂∂̄ − T−1e(dθ)ℓ�

)
.

By (12.3) and Lemma 12.2 we have that

(12.6)

B11 = cs+1,ℓ� + T−2
[
− ℓ2∂∗∂̄∗i(dθ)ℓ−1e(dθ)ℓ−1∂̄∂ + iℓ∂∗∂̄∗i(dθ)ℓ−1e(dθ)ℓ�

− iℓ�i(dθ)ℓe(dθ)ℓ−1∂̄∂ −�i(dθ)ℓe(dθ)ℓ�
]

= cs+1,ℓ� + T−2
[
− ℓ2cs+1,ℓ−1(� + iℓT )�

− iℓT−1∂∗∂̄∗i(dθ)ℓ−1e(dθ)ℓ−1(∂∂̄ + ∂̄∂)�

− iℓT−1�(∂∗∂̄∗ + ∂̄∗∂∗)i(dθ)ℓ−1e(dθ)ℓ−1∂̄∂ − cs,ℓ�
2
]
.

Now notice that by Lemma 12.2

∂∗∂̄∗i(dθ)ℓ−1e(dθ)ℓ−1(∂∂̄ + ∂̄∂) = −cs+1,ℓ−1�� + cs+1,ℓ−1(� + iℓT )�

= iℓcs+1,ℓ−1T� ,

and, by taking adjoints,

(∂∗∂̄∗ + ∂̄∗∂∗)i(dθ)ℓ−1e(dθ)ℓ−1∂̄∂ = iℓcs+1,ℓ−1T� .

Therefore, substituting into (12.6) and applying the identities from Lemma 12.1, we obtain that

B11 = cs+1,ℓ� + T−2
[
− ℓ2cs+1,ℓ−1(� + iℓT )� + 2ℓ2cs+1,ℓ−1�

2 − cs,ℓ�
2
]

= T−2�
[
cs+1,ℓT

2 + ℓ2cs+1,ℓ−1(�−�− iℓT ) + (−cs,ℓ + ℓ2cs−1,ℓ−1)�
]

= T−2�
[
cs+1,ℓT

2 + iℓ2cs+1,ℓ−1(n− s− ℓ)T − cs+1,ℓ�
]

= cs+1,ℓT
−2�

[
T 2 + iℓT −�

]
.

By conjugation, we also get

B22 = cs+1,ℓT
−2�

[
T 2 − iℓT −�

]
.
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Finally, arguing in a similar way, we find that

B12 = T−2
[
ℓ2∂∗∂̄∗i(dθ)ℓ−1e(dθ)ℓ−1∂∂̄ − cs,ℓ�� + iℓ∂∗∂̄∗i(dθ)ℓ−1e(dθ)ℓ�

+ iℓ�i(dθ)ℓe(dθ)ℓ−1∂∂̄
]

= T−2
[
− (ℓ2cs+1,ℓ−1 + cs,ℓ)��− iℓT−1∂∗∂̄∗i(dθ)ℓ−1e(dθ)ℓ−1(∂∂̄ + ∂̄∂)�

+ iℓT−1�(∂∗∂̄∗ + ∂̄∗∂∗)i(dθ)ℓ−1e(dθ)ℓ−1∂∂̄
]

= T−2��
[
− ℓ2cs+1,ℓ−1 − cs,ℓ + iℓcs+1,ℓ−1T

−1�− iℓcs+1,ℓ−1T
−1(� + iℓT )

− iℓcs+1,ℓ−1T
−1� + iℓcs+1,ℓ−1T

−1(�− iℓT )
]

= T−2��
[
− ℓ2cs+1,ℓ−1 − cs,ℓ + 2ℓ2cs+1,ℓ−1

]

= −cs+1,ℓT
−2�� .

These computations show that

B = B∗
1,ℓB1,ℓ|(W p,q

0 )2
= −cs+1,ℓT

−2

(
�(�− iℓT − T 2) ��

�� �(� + iℓT − T 2)

)
.

It is obvious that B maps (W p,q
0 )2 into itself, so that, by Lemma 7.4, A∗

1,ℓA1,ℓ = B∗
1,ℓB1,ℓ|(W p,q

0 )2
.

This proves the lemma. Q.E.D.

Completion of the proof of Lemma 7.6. Since Q maps the subspace (W p,q
0 )2 into itself, we have

that

R =

(
−Q+

− Q+
+

−Q−
+ Q−

−

)(
�(�− iℓT − T 2) ��

�� �(� + iℓT − T 2)

)(
−Q+

− −Q−
+

Q+
+ Q−

−

)

=

(
R11 R12

R21 R22

)
.
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We compute first R11. Using the identity �−� = 2imT and (6.9), we have

−T 2R11 = (Q∗NQ)11

=
(
−Q+

−�(�− iℓT − T 2) +Q+
+��

)
(−Q+

−) +
(
−Q+

−�� +Q+
+�(� + iℓT − T 2)

)
Q+

+

= (Q+
−)2�(�− iℓT − T 2) − 2Q+

+Q
+
−�� + (Q+

+)2�(� + iℓT − T 2)

= (Γ +m+ iT )2�(�− iℓT − T 2) − 2(Γ +m− iT )(Γ +m+ iT )��

+ (Γ +m− iT )2�(� + iℓT − T 2)

= (Γ +m)2
[
�(�− iℓT − T 2) − 2�� + �(� + iℓT − T 2)

]

+ 2iT (Γ +m)
[
�(�− iℓT − T 2) −�(� + iℓT − T 2)

]

− T 2
[
�(�− iℓT − T 2) + 2�� + �(� + iℓT − T 2)

]

= (Γ +m)2
[
(� −�)2 − iℓT (�−�) − T 2(� + �)

]

+ 2iT (Γ +m)
[
(� + �)(� −�) − iℓT (� + �) − T 2(� −�)

]

− T 2
[
(� + �)2 − iℓT (�−�) − T 2(� + �)

]

= −T 2
[
(Γ +m)2

(
∆H + 2m(2m− ℓ)

)
+ 2(Γ +m)

(
(2m− ℓ)∆H − 2mT 2

)

+
(
∆H(∆H − T 2) + 2mℓT 2

)]
.

In the same way one finds that

−T 2R22 = (Q∗NQ)22

= −T 2
[
(Γ −m)2

(
∆H + 2m(2m− ℓ)

)
− 2(Γ −m)

(
(2m− ℓ)∆H − 2mT 2

)

+
(
∆H(∆H − T 2) + 2mℓT 2

)]
.

Finally, using the formulas in (6.9) we see that

−T 2R12 = −T 2R21 = (Q∗NQ)12

=
(
−Q+

−�(�− iℓT − T 2) +Q+
+��

)
(−Q−

+)

+
(
−Q+

−�� +Q+
+�(� + iℓT − T 2)

)
Q−

−

= Q+
−Q

−
+�(�− iℓT − T 2) −Q+

+Q
−
+��−Q+

−Q
−
−��

+Q+
+Q

−
−�(� + iℓT − T 2)

= 2��(� − iℓT − T 2) − (∆H − 2T 2 − 2iTΓ)��

− (∆H − 2T 2 + 2iTΓ)�� + 2��(� + iℓT − T 2)

= 0 .

Q.E.D.
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Proof of Lemma 7.10 (i). In order to compute A∗
2,ℓA2,ℓ we apply again Lemma 7.4. We first

define B2,ℓ as the term on the right hand side of (7.19) acting as an unbounded operator from(
L2Λp,q

)2
to
(
L2Λp,q

)2
, with core

(
S0Λp,q

)2
, and then we compute B := B∗

2,ℓB2,ℓ|(W p,q
0 )2

. If we

then show that B maps Zp,q into itself, the equality A∗
2,ℓA2,ℓ = B|Zp,q

, which in turn equals

−cs+1,ℓT
−2E, will follow.

We have that

B∗
2,ℓB2,ℓ =

(
∂∗∂̄∗ −T−1

[
∂∗(� + iℓT ) − ∂̄∗(� + iT )

]

∂̄∗∂∗ −T−1
[
∂̄∗(�− iℓT ) − ∂∗(� − iT )

]
)

× i(dθ)ℓe(dθ)ℓ
(

∂̄∂ ∂∂̄
T−1

[
(� + iℓT )∂ − (� + iT )∂̄

]
T−1

[
(� − iℓT )∂̄ − (� − iT )∂

]
)
.

Using Lemmas 12.2 and 12.1, and recalling that we are acting on elements in W p,q
0 , we see

that the matrix entries of B∗
2,ℓB2,ℓ are

B11 = ∂∗∂̄∗i(dθ)ℓe(dθ)ℓ∂̄∂

− T−2
[
∂∗(� + iℓT ) − ∂̄∗(� + iT )

]
i(dθ)ℓe(dθ)ℓ

[
(� + iℓT )∂ − (� + iT )∂̄

]

= cs+1,ℓ

[
� + i(ℓ + 1)T

]
�

− cs+1,ℓT
−2
[
∂∗(� + iℓT ) − ∂̄∗(� + iT )

][
(� + iℓT )∂ − (� + iT )∂̄

]

= cs+1,ℓ

[
� + i(ℓ + 1)T

]
�

− cs+1,ℓT
−2
[
(� + i(ℓ + 1)T )∂∗ −�∂̄∗

][
(� + iℓT )∂ − (� + iT )∂̄

]

= cs+1,ℓT
−2
[[
� + i(ℓ + 1)T

]
�T 2 − (� + i(ℓ + 1)T )2�−�2�

]

= cs+1,ℓT
−2�

[[
� + i(ℓ + 1)T

]
T 2 −

(
� + i(ℓ+ 1)T

)2 −��
]
.

From this it follows that

E11 = −�
[(
� + i(ℓ+ 1)T

)
T 2 −

(
� + i(ℓ + 1)T

)2 −��
]

= ��(∆H − T 2) + i(ℓ + 1)T�
[
2�− T 2 + i(ℓ+ 1)T

]

= ��(∆H − T 2) + i(ℓ + 1)T�
[
∆H − T 2 − i(n − s− ℓ− 1)T

]
,

where we have used the the equality (1.19).
Thus, the statement for E11 follows. The term E22 is its complex conjugate and thus it follows

as well.
Finally, we compute E12, and hence E21 too. We have that

B12 = ∂∗∂̄∗i(dθ)ℓe(dθ)ℓ∂∂̄

− T−2
[
∂∗(� + iℓT ) − ∂̄∗(� + iT )

]
i(dθ)ℓe(dθ)ℓ

[
(�− iℓT )∂̄ − (�− iT )∂

]
.



HODGE LAPLACIAN ON THE HEISENBERG GROUP 79

Therefore, using Lemmas 12.2 and 12.1,

B12 = −cs+1,ℓ�� + cs+1,ℓT
−2
[
(� + i(ℓ+ 1)T )∂∗(�− iT )∂ + �∂∗(�− iℓT )∂̄

]

= −cs+1,ℓ�� + cs+1,ℓT
−2
[(
� + i(ℓ + 1)T

)
�� +

(
�− i(ℓ + 1)T

)
��
]

= cs+1,ℓT
−2��(∆H − T 2) .

Recalling that B12 = −cs+1,ℓT
−2E12, the assertion follows.

It is now easy to check that B maps Zp,q into itself. For, suppose that ξ ∈ Xp,q and η ∈ Y p,q,
and put σ = B11ξ+B12η. Observe that both B11 and B22 factor as B1j = �D1j , j = 1, 2, where
D1j leaves W p,q

0 invariant. Therefore Lemma 12.3 shows that σ ∈ Xp,q. In a similar way, one
shows that B21ξ +B22η ∈ Y p,q, which concludes the proof. Q.E.D.

To compute the square root of a matrix, we shall make use of the following formula, which
is an application of Cayley-Hamilton’s theorem: For a positive definite 2 × 2 matrix A we have
that

(12.7) A
1
2 =

A+
√

detAI√
trA+ 2

√
detA

.

Proof of Lemma 7.10 (ii). We have

(A∗
2,ℓA2,ℓ)

1
2 =

√
cs+1,ℓ

|T | E
1
2 , (A∗

2,ℓA2,ℓ)
− 1

2 =
|T |

√
cs+1,ℓ

E− 1
2 ,

where the matrix E is as in Lemma 7.10.
Then, recalling that we set c = (ℓ+ 1)(n − s− ℓ− 1),

trE = 2��(∆H − T 2) + i(ℓ + 1)T (� −�)(∆H − T 2) + cT 2∆H

= 2��(∆H − T 2) − (ℓ + 1)(n − s)T 2(∆H − T 2) + cT 2∆H

=
[
2��− (ℓ + 1)2T 2

]
(∆H − T 2) + cT 4 .
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Moreover, using (1.19) and recalling that the operators are acting on s-forms, we have

detE = ��(∆H − T 2)
[
i(ℓ+ 1)T�(∆H − T 2 − i(n − s− ℓ− 1)T )

− i(ℓ + 1)T�(∆H − T 2 + i(n− s− ℓ− 1)T )
]

+ (ℓ+ 1)2T 2��
[
(∆H − T 2)2 + (n − s− ℓ− 1)2T 2

]

= ��(∆H − T 2)
[
i(ℓ+ 1)T (∆H − T 2)(� −�) + cT 2∆H

]

+ (ℓ+ 1)2T 2��
[
(∆H − T 2)2 + (n − s− ℓ− 1)2T 2

]

= ��(∆H − T 2)T 2
[
− (ℓ+ 1)(n − s)(∆H − T 2) + c∆H

]

+ (ℓ+ 1)2T 2��
[
(∆H − T 2)2 + (n − s− ℓ− 1)2T 2

]

= c��T 4
[
∆H − T 2 + c

]

= c��T 4∆′′ .

This implies in particular that

∆′ := trE + 2
√

detE

=
[
2��− (ℓ+ 1)2T 2

]
(∆H − T 2) + cT 4 + 2

√
c��T 4∆′′

=
[
2��− (ℓ+ 1)2T 2

]
(∆H − T 2) − T 2

(
− cT 2 + 2

√
c��∆′′

)
.

The formula for (A∗
2,ℓA2,ℓ)

1
2 in Lemma 7.10 (ii) is now immediate.

And, if we write

E−1 =
1

detE
E(co)

then we have

(A∗
2,ℓA2,ℓ)

− 1
2 =

|T |
√
cs+1,ℓ

√
detE

E(co)
1
2

=
|T |

√
cs+1,ℓ

√
detE

1√
trE(co) + 2

√
detE(co)

(
E(co) +

√
detE(co)I

)

=
|T |

√
cs+1,ℓ

√
detE

1√
trE + 2

√
detE

(
E(co) +

√
detEI

)

=
1

√
cs+1,ℓ|T |

√
c��∆′′

1√
∆′
(
E(co) +

√
detEI

)
.
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The result for (A∗
2,ℓA2,ℓ)

− 1
2 now follows easily, since

E(co) +
√

detE I

= ��(∆H − T 2)

(
1 1
1 1

)

+

(
�
[
− i(ℓ+ 1)T

(
∆H − T 2

)
− cT 2

]
0

0 �
[
i(ℓ+ 1)T

(
∆H − T 2

)
− cT 2

]
)

− T 2
√
c��∆′′ I

= ��(∆H − T 2)

(
1 1
1 1

)
+

(
M11

M22

)
,

where M11 and M22 are as claimed in (7.21). Q.E.D.
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[LohMu] Lohoué N., S. Mustapha, Sur les transformées de Riesz sur les groupes de Lie moyennables et sur
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1998.
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