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ANALYSIS OF THE HODGE LAPLACIAN ON THE HEISENBERG GROUP

DETLEF MULLER, MARCO M. PELOSO, AND FULVIO RICCI

ABSTRACT. We consider the Hodge Laplacian A on the Heisenberg group H,,, endowed with a
left-invariant and U(n)-invariant Riemannian metric. For 0 < k < 2n + 1, let A denote the
Hodge Laplacian restricted to k-forms.

Our first main result shows that L2A*(H,) decomposes into finitely many mutually orthog-
onal subspaces V, with the properties:

e dom Ay splits along the V,’s as > (dom A NV,);

e Ay :(domArNV,) — V), for every v;

o for each v, there is a Hilbert space H, of L?-sections of a U(n)-homogeneous vector bundle
over H, such that the restriction of Ay to V, is unitarily equivalent to an explicit scalar
operator.

Next, we consider LPA*, 1 < p < 0o, and prove that the same kind of decomposition holds

true. More precisely we show that:

e the Riesz transforms dA,:% are LP-bounded,;

e the orthogonal projection onto V, extends from (L? N LP)A* to a bounded operator from
LPA” to the the LP-closure VP of V, N LPA”.

We then use this decomposition to prove a Mihlin—-Hérmander multiplier theorem for each
Ay. We show that the operator m(Ay) is bounded on LPA*(H,) for all p € (1,00) and all
k=0,...,2n+ 1, provided m satisfies a Mihlin-Hoérmander condition of order p > (2n + 1)/2.
We also prove that this restriction on p is optimal and extend this result to the Dirac operator.
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INTRODUCTION

The theory of the Hodge Laplacian A on a complete Riemannian manifold M shows deep
connections between geometry, topology and analysis on M. While this theory is well developed
in the case of functions, i.e., for the Laplace-Beltrami operator, much less is known for forms
of higher degree on a non-compact manifold. In particular, one basic question that one would
like to answer is whether the Riesz transform dA~3 is LP-bounded in the range 1 < p < o0.
According to [St], this property is relevant for establishing the Hodge decomposition in LP for
differential forms, cf. ILoh] and references therein.

In a similar way, functional calculus on self-adjoint, left-invariant Laplacians and sublaplacians
L on Lie groups and more general manifolds has been widely studied, cf. [Al [Anl [AnLohl [Chl

IChM,, [CIS| [CoKSi, Hel, HeZl Hul, Mar, LuM, LuMS, MauMel MS| [Si, [Ta]. A key question
concerns the possibility that, for a given L, a Mihlin—-Hérmander condition of finite order on
the multiplier m(\) implies that the operator m(L) is bounded on L? for 1 < p < co. A second
fundamental question is the LP-boundedness, in the same range of p, of the Riesz trasforms
XL~ for appropriate left-invariant vector fields X [CD [Loh2, LohMul.

Also in these situations, not much is known for operators which act on sections of some

homogeneous linear bundle over a given group. The most notable case is that of sublaplacians
associated to the dy-complex on homogeneous CR-manifold [CoKSil [F'S]
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In this paper we consider the Hodge Laplacian A on the Heisenberg group H,, endowed with
a left-invariant and U (n)-invariant Riemannian metric, and give answers to the above questions.

The rich structure of the Heisenberg group makes it a natural model to explore such questions
in detail. First of all, it has a natural CR-structure, with a well-understood Kohn Laplacian
[E'S], and nice interactions with the Riemannian structure [MPRI].

For operators on H,, which act on scalar-valued functions and are left- and U (n)-invariant, the
methods of Fourier analysis are quite handy to study spectral resolution, and sharp multiplier
theorems for differential operators of this kind are known [MRS1,[MRS2]. This class of operators
is based on two commuting differential operators, namely the sublaplacian L and the central
derivative T, in the following sense:

— the left- and U (n)-invariant differential operators on H,, are the polynomials in L and T';
— the left- and U(n)-invariant self-adjoint operators on L?(H,,) containing the Schwartz
space in their domain are the operators m(L,i~'T), with m a real spectral multiplier.

The same methods also allow to study operators acting on differential forms, like the Kohn
Laplacian, which have the property of acting componentwise with respect to a canonical basis
of left-invariant forms, cf. (I4]).

On the other hand, the Hodge Laplacian restricted to k-forms, which we denote by Aj and
whose explicit expression is given in (L.22]) below, is far from acting componentwise.

Nevertheless, we are able to reduce the spectral analysis of Ay to that of a finite family of
explicit scalar operators. We call scalar an operator on some space of differential forms which
can be expressed as D ® I, i.e., which acts separately on each scalar component of a given form
by the same operator D.

We do so by introducing a decomposition of L2A*(H,,) into finitely many mutually orthogonal
subspaces V,, with the following properties:

(i) dom Ay, splits along the V,’s as ) (dom Ax NV,);

(ii) Ak : (domArNV,) — V, for every v;

(iii) for each v, there is a Hilbert space H, of L%-sections of a U(n)-homogeneous vector
bundle over H,, such that the restriction of Ay to V, is unitarily equivalent to a scalar
operator m, (L,i~'T) acting componentwise on H,;

(iv) there exist unitary operators U, : H, — V, intertwining m, (L,i~'T) and Aj; which
are either bounded multiplier operators u,(L,i~'T'), or compositions of such operators
with the Riesz transforms

(SIS

R=dA™3, R=00"3, R=00

This is done in the first part of the paper (Sections BHf]), and we refer to this part as to the
“L2-theory”. The main results in this context are Theorems B.1 and B.6] resp., where we obtain
the decomposition of L2A* into the Aj-invariant subspaces V,, respectively for 0 < k < n and
n+1<k<2n+1.

This decomposition is fundamental for all the second part of the paper, which we are going
to describe next. A quick description of the logic and the basic ideas in the construction of the
V, is postponed to the last part of this introduction.
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In Sections [QHI2] we develop the “Lp—theory”El. We prove that, for 1 < p < oo, the same kind
of decomposition also takes place in LPA*. Precisely:

(a)
(b)

()
(d)

the intertwining operators U, in (iv) have LP-bounded extensions;
consequently, the orthogonal projections U*U, from L?AF to V, extend to bounded
operators from LPA* to the the LP-closure VE of V, N LPA¥;

1

the Riesz transforms Ry = dA/;5 are LP-bounded;
the LP-strong Hodge decomposition holds true for £ = 0,...,2n + 1, and more precisely
LPAF is direct sums of the subspaces V}’s.

The (much simpler) case of 1-forms was already considered in [MPRI]. We expect that our
results can be applied to the study on conformal invariants on quotients of H,,, along the lines

of [MPR2], cf. [Lot [Li.

In our last main result, as consequence of the LP-theory we develop, we prove a Mihlin—
Hormander multiplier theorem for Ay, for all k =0,...,2n+ 1. We show that, if m : R — Cis a
bounded, continuous function satisfying a Mihlin—-Hérmander condition of order p > (2n+1)/2,
then, for 1 < p < oo, the operator m(Ay) is bounded on LP(H,)A*, with norm bounded by the
appropriate norm of m (cf. Theorem [IT.T]).

We briefly comment on some interesting aspects of the proof and on some consequences and
applications. It is always assumed that 1 < p < cc.

Our inductive strategy requires that two statements be proved simultaneously at each
step: property (a) above for the given k and LP-boundedness of the Riesz transform

Ry = dA,;l/ 2, Precisely, the validity of (a) for a given k implies LP-boundedness of Ry,
and this, in turn, is required to prove (a) for k + 1.

In order to handle the complicated expressions of the intertwining operators U,, we
identify certain symbol classes, denoted by W27, which satisfy simple composition prop-
erties, contain all the scalar components of the U,,, and, when bounded, give LP-bounded
operators (cf. Subsection [0.2]).

Taking as the initial definition of “exact LP-form” a form w which is the LP-limit of a
sequence of exact test forms (cf. Proposition for p = 2), we prove in Subsection
that this condition is equivalent to saying that w is in LP and a differential in the sense
of distributions. Incidentally, this allows to prove that the reduced LP-cohomology of
H,, is trivial for every k.

The Mihlin—Hoérmander theorem for spectral multipliers of Ay, proved in [MPRI] for
k =1, extends to every k.

Our analysis of A easily yields analogous results for the Dirac operator d + d*. Studying
the Hodge laplacian first has the advantage of isolating one order of forms at a time.
Corollary is a multiplier theorem for the Dirac operator completely analogous to
Theorem [I1.11

Outline of the decomposition of L2AF.

IThere is an unfortunate notational conflict, due to the fact that the letter p is the commonly used symbol
for both Lebesgue spaces and bi-degrees of forms. In this introduction and in the titles of sections we keep the
notation LP, while in the body of the paper we will denote by L" the generic Lebesgue space.
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We go back now to the construction of the subspaces V, of L2A¥(H,,).

First of all, by Hodge duality, we may restrict ourselves to form of degree k < n. We start
from the primary decomposition into exact and d*-closed forms:

L2Ak(Hn) = (LzAk)d—ex @ (L2Ak)d*—cl 5
where each summand is Aj-invariant.

1
Since the Riesz transform Rj_1 = dA,;_El commutes with A and transforms (LZAF™1)4_
onto (L2AF) ey unitarily, any A-invariant subspace V, of (L2AF~1)4 has a twin A-invariant
subspace Rj_1V, inside (L2A*) 4 ex.
The analysis is so reduced to the space of d*-closed forms. Associated with the CR-structure
of H,, there is a natural notion of horizontal (p,q)-form as a section of the bundle

AP = APATEH,, |

and of horizontal k-form as a section of A%, = % g AP

Every differential form w decomposes uniquely as
w=w;+0Aws,

where w1, wsy are horizontal and 6 is the contact form. Moreover, a d*-closed form w is uniquely
determined by its horizontal component w.

From now on it is very convenient to introduce a special “test space” Sy, contained in the
Schwartz space, together with its corresponding spaces of forms, SyA¥, SyAP4 etc., which are
cores for Ay and the other self-adjoint operators that will appear.

For forms in the core, we have enough flexibility to perform all the required operations in a
rather formal way, leaving the extensions to L2-closures for the very end. For instance, we can
say that to every horizontal form w; in the core we can associate a “vertical component” 6 A wo,
also in the core, to form a d*-closed form wy + @ A wy in the core.

Setting ®(wy1) = wy + 0 A ws, we can replace Ay by the conjugated (but no longer differential)
operator Dy, = &~ o Ay o &, which acts now on the space of horizontal k-forms in the core and
globally defined.

Here comes into play another invariance property of Ay, which is easily read as a property
of Dy and involves the horizontal symplectic form df. The following identity holds (cf. Lemma
G100 for a horizontal form w of degree k:

(0.1) Dk(de/\w) =dON(Dg—o+n—k+ 1w .

This brings in the Lefschetz decomposition of the space of horizontal forms, as adapted in
[MPRI] from the classical context of Kéhler manifolds [W]. Denoting by e(df) the operator of
exterior multiplication by df and by i(df) its adjoint, it is then natural to think of the core
SpAP? in the space of horizontal (p, g)-forms as the direct sum

min{p,q} '
SoAP? = N~ e(df) keri(df) .
§=0
Here each summand is Dg-invariant, and the conjugation formula (0.I]) allows us to focus our
attention on keri(df).
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Nevertheless, ker i(df) still is too big a space to allow a reduction of Dy to scalar operators.
It is however easy to identify, for each pair (p,q) with p+ ¢ = k, a proper Dy-invariant subspace
of keri(df) N SpAP9, namely

W = {w € AP : 9*w = I*w = 0} .
It turns out that Dy, acts as a scalar operator on W}, so that the L-closure Vi of ®(W}*?)

will be one of the spaces V, we are looking for3
Next, we take to the orthogonal complement of

wh =37 wpe
p+q=k
in SOAI}{. We have
(W) = {06 +0n:€&n e Sohf '}
and we can telescopically expand this splitting to obtain that
Soly = W§ @ {06+ 0 &,n € SyAf '}
=W {06+0n:&ne Wi} & {00¢+00n: &,n € Sohy 2}
= Wéf@ {55—1—577:5,77 € Wég_l}@ {58£+8577 € ne Wéc_2} D
— ZGB W e ZGB {0+ 0n: & newd?}
ptq=k p+q=k—1
o) _ _
® Y {00c+0om:Enewhit e
p+q=k—2
The subspaces
WPt ={0¢+0n:&ne Wt} p+qg=k—1)
Wyt ={00¢+00n: & e Wt (p+g=k—2)
etce.

generated in this way are Dj-invariant and mutually orthogonal.
Matters are simplified by the fact that, for j > 1,

WP, = e(do)WP .
So only W, WP and part of W17 are contained in keri(df). Setting
WP =e(do) WP, WP{ = e(do) Wi,
we obtain that
Sohly = Y wrie S0 wrte S0 wry.
pHq=k p+q+20=k—1 p+q+20=k—2

On each Wg’ % and Wf 1 Dy, acts as a scalar operator, as required.

2W(§"q is nontrivial, unless p+ ¢ = n and 0 < p < n, cf. Proposition (.3l
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The situation is not so simple with Wlp Y because the best one can obtain is a representation
of Dy as a 2 x 2 matrix of scalar operators, after parametrizing the elements of W% with pairs

(&, n) of forms in W[
6/ _ m11(L,i—1T) m12(L,i_1T) é.
') \mar(L,i7'T) maa(L,i™'T)) \n) -
A formal computation can be used on the core to produce “eigenvalues” Ay (L,i~'T) and the

splitting of WF? as the sum of the two “eigenspaces” W7 2t
The final decomposition is in formula (I0.2]).

1. DIFFERENTIAL FORMS AND THE HODGE LAPLACIAN ON H,,

The Heisenberg group H,, is C" x R with product
1
(1.2) (z,t)(¢,t) = (z +2t+t — §%m (z, z/>) .

On its Lie algebra, also identified with C" x R, we introduce the standard Euclidean inner
product, and we consider the left-invariant Riemannian metric on H,, induced by it. The complex
vector fields

i = )
Zj = \/5(823 - Zij&f) , Zj = \/5(8% + sz(‘)t) s T =20
(with 1 < 5 < n) form an orthonormal basis of the complexified tangent space at each point,
and the only nontrivial commutators involving the basis elements are

(1.3) (Z;,Z;] =iT .
The dual basis of complex 1-forms is
1 _ 1 i, _
(1.4) G=pb. G=pF%, O=ditg > (zjdz — zdz) .

j=1
The differential of a function f is therefore

df = Z (Zif¢ + Z; £E) +TF6 .
j=1

This formula extends to forms, once we observe that d¢; = dC_j = 0 and the differential of the
contact form 6 is the symplectic form on C",

(1.5) df = —’L'ZCJ' A Ej .
j=1
A differential form w is horizontal if 0w = 0, i.e. if
(1.6) w=Y fror¢' e
I

Every form w decomposes as

(1.7) w=w;+0Awsy,
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with wq,ws horizontal.

A differential operator D acting on scalar-valued functions is extended to forms by letting
D act separately on each scalar component (L) of each horizontal component (L7). Such
operators will be called scalar operators.

The partial differentials 9, 9, dy (vesp. holomorphic, antiholomorphic, horizontal differential)
of a form w are defined as

(1.8) aw:Zngij, 5w:ZC_j/\Z]w, dgw = 0w + 0w .
j=1 j=1
As in [MPRI], Prop. 2.2, for w = f¢f A ¢l
(1.9) 0w =&l ((Zf)¢" N, dw= (1)l (Zuf) AT
0,7 0

where EZ”],I =0 unless £ ¢ I and {¢{} UI = J, in which case

5‘{7] = Hsgn(z’ —0).
el
Obviously, they act separately on each horizontal component (L7) of w, and the same is true
for their adjoints 0%, 0, d};, where

(1.10) Ow=—=> e ;(Zef)¢" A" Tw=(=DIN e (Zef) AT
0,J 2,J’
Moreover, 8% = 92 = 9*% = 9% =o0.
Two operators that will play a fundamental role in this paper are
(1.11) e(df)w =df ANw and i(df)w = e(df)*w = dfw .
Together with 0 and 0, they satisfy the following identities:

00 4 00 = d? = —Te(dh) ,

(1.12) B T S
9*0" + 070" = dy” =Ti(db) ,

and
(1.13) 00* = —0*0  and 0%0 = —00" .

Other formulas involving 9, d, e(df) and their adjoints are
114) [i(df),0] = —z'?* , 7[i(d0),8_] =i0* |

(0%, e(df)] =0, (0%, e(df)] = —i0,

(1.15) [i(d9), 0% = [i(dF),0"] =0 = [e(dh),d] = [e(dh), D]
and
(1.16) [i(d9), e(db)] = (n— k)T .

For these formulas and the following in this section, we refer to A

3Pelrhabps we should add a few more formulas, while moving them into a section, later in the paper.
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We define the holomorphic, antiholomorphic and horizontal Laplacians as
O0=00"+0%0,
(1.17) O0=00"+0%0,
Ay =dydy +djdy =0+0.

Each of these Laplacians acts componentwise. Calling (p, ¢)-form a horizontal form of type

w = Z fI,I’CI/\CTI/ )

[I|=p,|I'|=q
and introducing the sublaplacian
n
(1.18) L=-)(2;Z;+2;Z;)
j=1

the operators (J,J, Ay coincide on (p, q)-forms with the following scalar operators:

1 n

(1.19) ﬁ:%L—z‘(g—q)T,

Ag=L+i(q—p)T .
To be more explicit, we shall occasionally denote the “box”’ operators by O, and [J,. Some
commutation relations that we will use are (see [MPRI])
. 0000 -i7), 00 =5'O+il),
0o =900+ T), do* =o0"(0—1T).

The full differential d of a form w = wy + 6 A w9 and its adjoint d* are represented, in terms
of the pair (wy,ws), by the matrices

dy e(df) « [ dy =T
(1.21) < T —dH> &= <z’(d9) —dy)
and the Hodge Laplacian A = dd* + d*d by the matrix
Ap —T? + e(df)i(d9) (5, e(dh)]
A =
[i(d8),dx| A —T? +i(df)e(dd)
(1.22)
Ay —T? + e(df)i(do) i0 — i0
i0* — i0* A —T? +i(df)e(dd)

When A acts on k-forms, it will be denoted by Aj. In particular,
Ag=L-T?.
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We denote by A¥ the k-th exterior product of the dual bZ of the Lie algebra of H,, (identified
with the linear span of (1, ...,Cn, Ciy -+, Cn, 0), by A'If{ the k-th exterior product of the horizontal
distribution (i.e. the linear span of the (j, Q_j), and by AP? the space of elements of bidegree
(p,q) in A’}_I. Symbols like LPA*, SAP? etc., denote the space of LP-sections, S-sections etc., of
the corresponding bundle over H,,. Clearly, LPA* = L? @ AF etc..

2. BARGMANN REPRESENTATIONS AND SECTIONS OF HOMOGENEOUS BUNDLES

The L?-Fourier analysis on the Heisenberg group involves the family of infinite dimensional
irreducible unitary representations {m}r.o such that m)(0,¢) = ¢*I. These representations
are most conveniently realized for our purposes in a modified version of the Bargmann form [F].

Let F = F(C™) be the space of entire functions F' on C" such that

P13 = [ PP aw < oo
Cn

The family of Bargmann representations ) on F is defined, for A\ # 0, as follows:
(i) for A =1,

(2.1) (m1(2,)F)(w) = eite_%<w’z>_%|z|2F(w +2) .
(ii) For A > 0,
(2.2) m(z,t) = 7T1()\%Z, At) ;
(iii) for A <0,
(2.3) (2, t) = m_\(Z, 1) .
The unitary group U(n) acts on H,, through the automorphisms
(z,t) — (2,t)) = (92,t) ,  (9€U®)),

and on L?(H,) through the representation
(a(@)f) (=) = F((=0)7) -

We also consider the pair of contragradient representations U, U of U(n) on F, given by

(2.4) UF=Fogt, U,=U;.
Then

ma(92,t) = Ugma(z,t) U1, for A >0,

(25) (g2, t) = Ugma(z,t) Uy, for A <0

The representation U in (2.4) splits into irreducibles according to the decomposition of F

(2.6) F=)_P;,

J=0

where P; denotes the space of homogeneous polynomials of degree j.
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We denote by P; the orthogonal projection of F on Pj, and by F°° the space of functions
F' € F such that

(2.7) IPiFlr=0G""), VNeN.

Then F*° is the space of C'*°-vectors for all representations .
The differential of 7y is given byll mA(T) =i\ and

V2 0y ifA>0 _ _ /2 ifA>0
(2.8) mA(Ze) = o mA(Ze) = \/;W 1
—\/Fwe fA<0; V2N 0y, HA<O.

We adopt the following definition of 7y (f):

(2.9) m(f) = i f(x)my(z)tde € L(F,F) .

Notice that m\(f * g) = mx(g)ma(f), but this disadvantage is compensated by a simpler
formalism when dealing with forms or more general vector-valued functions.
The Plancherel formula for f € L? is

—00

+00 +oo
I1£13 = Cn/ I (F)Izs A" dX = Cn/ D P Pyrllrs 1A dX -
— g

Let V be a finite dimensional Hilbert space. Defining 7y (f) for V-valued functions f by (2.9]),
we have

m(f) eL(F,F) @V =L(F,FV).

Suppose now that V' is the representation space of a unitary representation p of U (n), and
consider the two representations U ® p, U ® p of U(n) on F ® V. Denote by X1 = X (resp.

o~

¥~ = ¥77) the set of irreducible representations o € U(n) contained in U ® p (resp. in U ® p),
and let

(2.10) FeVv= &

ceEXE

be the corresponding orthogonal decompositions into U(n)-types. When V' = C, the decompo-
sition (2.10) reduces to (2.6). To indicate the dependence on p, we shall sometime also write
EF=¢&p*.

Lemma 2.1. Each £ is finite dimensional and decomposes into U(n)-invariant subspaces

EE=Pern(Pav).
J
In particular E£ C F @ V. More precisely, E& C F* @V, where F*> is defined in (Z1).

4 Even though dmy (D) is the more standard notation, we prefer to reduce the number of d’s around.



12 D. MULLER, M. M. PELOSO, AND F. RICCI

Proof. We only discuss the case of U®p. For every j, P;®@V is an invariant subspace. Therefore,

—

for o € U(n), &5 =32, E5N(P;@V). Let xj, Xp» Xo De the characters of U, , p, o respectively.
J
The multiplicity of o in P; ® V' is then given by

/ X5 (9)Xo(9)x0(9) dg = (X5, XpXo)
U(n)

which is the multiplicity of U, in p® o (with p denoting the contragredient of p). Since this
J

representation is finite dimensional, the multiplicity can be positive only for a finite number of
j. It follows that £ has finite dimension.
Since £F consists of V-valued polynomials, it is obviously contained in G ® V. Q.E.D.

The decomposition of F® V given above leads to the following form of the Plancherel formula
for L2V, with PF denoting the orthogonal projection of F ® V onto £

+oo
113 = e / ST B A ()P s A A

T JEN,cexsen A

+oo
— e / SO 1PE () s A dA

seExsEn A

(2.11)

Let p' be another unitary representation of U(n) on a finite dimensional Hilbert space V.
The convolution

f*K(z)= ; Ky ') f(y)dy

of integrable functions f with values in V and K with values in L(V,V’) produces a function
taking values in V’. In the representations my, A # 0,

m(K) e L(F, F)oL(V,V )2 L(FeV,FaV'),

and
m(f* K) =m(K)m\(f) e L(F, Fo V') .

Let p (resp. p') be the representation o ® p on L?V (resp. a ® p’ on L?V') of U(n) and
suppose that convolution by K is an equivariant operator, i.e.

(2.12) P (9)(f * K) = (plg)f) * K
for g € U(n) and f € SV. Since for f € SV and £ € F, with A > 0,

n(F@U 1) = [[ AR D) W Vyma)U, 1 dyda,
(600 1)¢ = [[Ke 0p@re " me e dyds,

by letting f tend weakly to dyp ® v, with v € V, we see that (212]) implies

/ P (9) K (@)v Ugma(z™ YUy € d = / K (x)p(g)v ma(z™")E da.
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Replacing £ by Uy, we obtain

Uy @ 0/ (9) (ma(E)(§ © v) ) = ma(K)(Uy € @ plg)v)

for every ¢ € F,v € V. A similar formula holds for A\ < 0 with U in place of U. Thus ZI2)
implies the following identities, for K defining an equivariant convolution operator:

(U@ ) (g)ma(K) = ma(K)U @ p)(g), A>0
(U @ ) (g)ma(K) = ma(K) U @ p)(g), A<O0

for g € U(n), i.e. m\(K) intertwines U ® p and U ® p’, or U ® p and U ® p' depending on the
sign of \. The following is an immediate consequence.

(2.13)

Lemma 2.2. Assume that convolution by K € L' ® L(V, V') is an equivariant operator. Then,
setting SPPsenA = yipsenA o i sen

m(K) = EB e (K) ,

oceXP:p sgn
' . op,sgn A P sgn
with 7y 5(K) : EF — &L .

By a variant of Schwartz’s Kernel Theorem, the convolution operators D with kernels K €
S'(H,) @ L(V, V') are characterized as the continuous operators from S(H,)®V to S'(H,)® V'’
that commute with left translations on H,. Lemma22lapplies to operators of this kind, provided
that the Fourier transform 7)(K) is well defined for A # 0. This is surely the case if K has
compact support, and in particular for a left-invariant differential operator Df = f* (Ddgy). We
then have

mA(Df) = ma(Ddo)mA(f) = ma(D)mA(f) -

We apply these remarks to the differentials and Laplacians introduced in Section [l

With pj denoting the representation of U(n) on A* induced from its action on H, by auto-
morphisms, and, as before let g, = a® pi, be the tensor product acting on L2A*. Then d, d*, A},
are equivariant operators. The same applies to 9,9, dg etc. on the appropriate L?-subbundles.

Notice that (0,00 and Ay have the special property of acting scalarly on (p,q)-forms, by
(LI9). Since the sublaplacian L has the property that my(L) acts as a scalar multiple of the
identity (namely, as |A\|(2m+n)I) on P, C F, the same is true for the image of (J,[J, Ay under
TN-

3. CORES, DOMAINS AND SELF-ADJOINT EXTENSIONS

For 0 < 0 < R and N € N, denote by S5 r n(H,) the space of functions f satisfying the
following properties:

(i) f e S(Hy);
(i) mA(f) =0 for |A| < ¢ and || > R;
(iii) for 6 < |A| < R, Pjmx(f) =0 for j > N.

We set Sy = U&RJV S5,R,N-

Lemma 3.1. Sy is invariant under left translations, and dense in L>.
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Proof. The first statement follows from the identity m\(L; . f) = ma(f)ma(2, t)~!, where Lo f
is the left translate of f € Sy by (z,t)~!. Take now f € S. For §, R > 0, fix a C*°-function us p(\)
on R, with values in [0, 1], supported where 6 < |A\| < R and equal to 1 where 2§ < |\| < R/2.

Given € > 0, by Plancherel’s formula it is possible to find J, R > 0 and N € N such that the
L2 function g such that mx(g) = us r(\) szN Pjm\(f) approximates f in L? by less than e.

We claim that g is in S, hence in Sy, and this will conclude the proof, by the density of S
in L2.

By definition, g = f * h, where h is the function with m\(h) = us r(A) >_;<y Pj- By explicit
computation of the matrix entries of the representations of H,, [Th], the Fourier transform h(z, 5\)
of h in the t-variable equals

< 1
Wz, A) = us r(N) Y w5(1AZ2)
J<N
where the v; are Schwartz functions on C". Hence h € S(H,,) and so is g. Q.E.D.

We regard Sp as the inductive limit of the spaces Ss g n, each with the topology induced
from S.

Obviously, SV = Sy ® V is contained in SV and dense in L?V. Assume, as in Section 2] that
V is a finite dimensional Hilbert space on which U(n) acts unitarily by the representation p.
Taking into account the action of U(n), one can then introduce a different chain of subspaces
filling up SoV. Given 0 < § < R, N € N and finite subsets X* of %, define Ss,r,x+V as the
space of functions f such that

@) feSH,)RV;
(ii’) mA(f) =0 for |A| < ¢ and || > R;
(iii’) for 6 < |A| < R, P31y (f) = 0 for o ¢ Xs8nX;
It follows from Lemma [21] that finite unions of the Ssp x+V exhaust finite unions of the
Ss,r,NV and viceversa.

In order to develop the L?-analysis of differentials and Laplacians, we establish some general
facts about densely defined operators from L2V to L2V, wih (V, p), (V',p’) finite-dimensional
representation spaces of U(n). Precisely, we consider operators whose initial domain is SV and
which map SyV into SyV’, continuously with respect to the Schwartz topologies. Most of the
operators to be considered in this paper will belong to this class.

Lemma 3.2.
(i) Let (V,p), (V',p') be finite-dimensional representation spaces of U(n), and let
B: SV — SV,
be a left-invariant linear operator, U(n)-equivariant and continuous with respect to the

So-topologies. Then there exists a family of linear operators By , : gpsenr Sé’/’sgnA

depending smoothly on A # 0, such that
(3.1) m(Bf= @B BrPE m(f),

oceXP:p sgn A

7
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(i) Conversely, giwen any family of linear operators By, : gLs8mN _y gl'sen A denending
smoothly on X\ # 0, there is a unique left-invariant operator B : SV — SoV', U(n)-
equivariant and continuous with respect to the Sp-topologies, such that BI) holds for
every f € SoV. We set

me(B)=Bre, Ba= Y BiP#E?,  m(B)=By.
oceXp.p’ sgn A

(iii) The closure of B as an operator from L*V to L*V' has domain dom (B) consisting of
those f € L2V such that

+oo
(3.2) / S 1 Bao Py () s 1A dA < 0 |

(iv) If (V.p) = (V',p') and B is symmetric (equivalently, By , is symmetric for every X, o),
then B is essentially self-adjoint.

(v) If B is symmetric and m is a Borel function on the real line such that m(B) ) is well
defined for every \, o, the domain of m(B) is the space of those f € L?*V such that

+oo
[ S I P () s A i < oo
Moreover, the space SoV N dom (m(B)) is a core for m(B) and the identity
+oo
(m(B)fg) = en [ 3 tr (m(Brn) B ma (o)) A i

holds for f € dom (m(B)) and g € L*V.
Proof. To prove (i), let {®;}scn be an enumeration of the orthonormal basis of monomials in F.
Define linear operators Eyp @ F — F by setting Eypp I = (F, @) 7®y. Let also {¢;} and {}}
be (finite) bases of V and V' respectively.

Given two compact intervals [a, b] and [, b'] such that [a,b] C [a’,b]°, with a’ > 0 (for intervals
contained in R~ the proof is similar) and ¢ € N, there exists g, € Sy such that 75 (g¢) = Ey for
A € [a,b] and ) (g¢) = 0 for X\ & [a/,b'] (cf. the proof of Lemma Bl and [Th]).

Then B(g; ® ¢;) € SoV' and

(3.3) T (B(gz & 62‘)) = Z <Z Cf{,ik,j()‘)Eh,k> ® e;» )
i Rk
where the sum in h ranges over a fixed finite set of indices independent of A\. The coefficients
C%/ ; are smooth in A and, since B is left-invariant, supported in [a, V']
Take now f =3, fi ®e; € SoV, with mx\(f) = 0 for A & [a,b]. Then
F=Y (fixgirg) @ei,
il
where the sum is finite. Hence, by the continuity assumption on B,

Bf = (fixg)*Blge®es) -

il
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Introducing the notation
Fi00)) = (mA(f1)®er, Do) 7
we have

mA(fi* g0) = Egema(fi) = Zfz)\gg Epp

The composition 7y (B (9r ® ei))m\( fi * ge) is well defined, because the second factor has the
one-dimensional range C®,. Therefore the index k in (B3] can only assume the value ¢, and

m(Bf) =3 <ZZCM; Ehvézfi(%f,f')Eu) ® e
7

J

_ Z (ZZ (Zcm Vi € e’))EW> ®e

i ht'

The infinite matrix C; ;(\) = (ci’ié j(/\)) 5o has only a finite number of nonzero entries, hence
it defines a linear operator Bi),\j from the linear span of the ®, (i.e. the space of polynomials
inside F) into itself, by setting

A 0,0
h
Notice that B{\’ng’g/ =3 Ci’fz,j(/\)Eh,é’- Then, setting £7; = (-, ¢;)ve; € L(V, V'), one easily
verifies that

A
(3.4) BA—ZB ® Ej;,

maps V-valued polynomials into V’-valued polynomials and

(3.5) m(Bf) = Bxma(f) ,

for every f € SoV with my(f) =0 for A & [a,b].

It is now easy to prove that for A € [a,b], B) is uniquely defined by the identity (33]), which
shows that it does not depend on the choice of the functions gy, and that if we repeat the same
argument starting with a larger interval [a”,b%] D [a,b] contained in R*, the new operators
Bfé coincide with By for A € [a,b]. Covering the positive half-line by compact intervals of this
type and repeating the same argument on the negative half-line, we find a unique map A — B),
defined for A\ # 0 and for which ([B.3]) holds for every f € SyV.

Since B is U(n)-equivariant, a repetition of the proof of Lemma shows that B, maps
£0%8 X into eg'ﬁg“ for every o € X2 5822 Tt is obvious from the smoothness of the coefficients
cfl’l j that the restricted operators B) , depend smoothly on A.

The proof of (ii) is quite obvious.

To prove (iii), denote by B be the operator on dom (B), defined in (3.2)), such that m\(Bf) =
Byma(f). 1t is easy to verify that B is closed and that SoV is dense in dom (B) in the graph
norm of B. Since B coincides with B on SV C SV, B is the closure of B.
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To prove (iv), assume that B is symmetric. Then each operator B} . is self-adjoint, hence so
is m\(B). If B’ is the adjoint of B, taking g in the domain of B and f € SV, we have

(B'g, f) = (9, Bf)

+00
— e / St (ma () ma(B) PEE" s (g) A" dA

—00 o

+o00
—au [t (m() BaaPE m(9) A" A
By the arbitrariness of m)(f) subject to conditions (i’)-(iii’), we conclude that
+o00
/ D IBa P ma(9) g A" dA < o0

i.e. g € dom(B), and that 7y(B'g) = mx(B)ma(g), i.e. B'g = Byg.
Finally, (v) is proved in a similar way. Q.E.D.

Consistently with the identity ) (m(B)) = m(m\(B)), we write 7y o (m(B)) for m(wA,U (B))

Remark 3.3. As a typical instance of operations that will be done in the sequel, consider an
expression like dA;l. As soon as we find out that the finite-dimensional operators my ,(Ag)
are invertible and depend smoothly on A (see the next Section), an operator ¥ satisfying the
identity WA, = d is automatically defined on SyA* with values in SoA*+! by imposing that

T (00) = 3 o (d)mne (M) Prma(w)
Its closure V¥ is defined on the space consists of the w € L2A* such that
+oo
[ S Ima@mo (a0 im ) s A A < oo
Notice that formal identities, like
11
(i) dAGT = (dA )AL %
(i) mA(dALY) = ma(d)ma(AL);
(iii) 7T)\7U(dA];1) = 7T>\7J(d)7r)\7a(A,;1);
are fully justified on SoA*.

In many instances we will make use of homogeneity properties of operators B as those con-
sidered in Lemma As before, we assume that (V, p), (V’, p) are finite dimensional represen-
tations of U(n).

We assume that the multiplicative group Ry acts on V' by means of the linear representation
~v: Ry — L(V) and on V’ by means of the linear representation ' : Ry — E(V’) such that the
operators y(r) and ~/(r) are self-adjoint, and in such a way that each of these actions commutes
with the corresponding action of U(n) (on V given by p and on V' given by p’).
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We also denote by §, the dilating automorphism of H,, defined by
6r(z,1) = (r'2z, 1), r>0,

and let Ry act on functions on H,, by the representation

B(T)f = f C0p-1 .
Then B is said to be homogeneous of degree a if
(3.6) Bo(B®y)(r)=r""(B®7)(r)oB  on &V, for every r > 0 .

We shall repeatedly use the following lemma, which applies in particular to operators such as
0,0,dpy etc.

Lemma 3.4. Let (V,p),(V',p') be finite dimensional unitary representations of U(n) and let
B,7,v" be as above.

If B is a U(n)- equivariant, left-invariant operator as in Lemmal3.2 (i), homogeneous in the
sense of ([B.4) for some a € R, then

ran BN SV’ = B(S)V).
Proof. We just have to verify that
ran BNSyV' C B(SyV) ,

the other implication being contained in the assumptions.
The homogeneity of B implies that

(3.7) TA(B) = N (I @+ (A7) Tgua(B) (I @ 7(1A])) -
Assume in fact that f € SoV. For A # 0, mA(f) € L(F,F ® V) and, by [2.2)) and [2.3)),
(I @A) mA(f) = (I @ ¥(IA]) Tsgn A (BOS) = Tsgna (B @ 1) (1A])S)-

Similarly,
(I @' (IAD) A (Bf) = Tsgn (B @Y )(IAN(BS)),
and thus, by the homogeneity (B.0]) of B,
I @9 (IAD) mA(Bf) = A Tsgn A (B (B @ 7)(IADS)) = A" Tsgna(B)T @ y([A]D) 7 (f)-

This yields (B.7]).
Since v and 7/ commute with p and p/, I ® 7 respects the decomposition

FeVv= @ &,

cELPE

in ([2.I0)), we have
(3-8) Bro =" (1@ (A™) Bsgure (L @A)

where By 5 = 1y 0 (B) : E£E" — ££58X i the operator defined in (@I).
We restrict now our attention to A = +1 and write, for simplicity, BS instead of B4 4.
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Since domain and codomain are finite dimensional, we have an inverse QF : ran Bf —

(ker B)* of B .- Denote by Q= the extension of Q% to £2% equal to 0 on (ran BE)L.
(ker B5 )

If f € SyV’, define the function J f by requiring that
PEATA(F) = (AU @~(A7)Q5 (T @+ (IAD) PE* ma(f).

If f €ran BNSyV’, then the range of Py%" )‘77,\(f) is contained in the range of 7 ,(B).

Choose 0 < ¢ < R such that (i) in the definition of SpV holds for f. Since for 6 < |A\| < R
the functions 7/(|A|) and v(J]A|7!) are smooth in A, it is easy to see that Jf € SyV. Moreover,
applying (B8] to g := Jf, we see that mx(B(Jf)) = mA(f), hence f = B(Jf) € B(S)V). Q.E.D.

o

Proposition 3.5. Let (V,p), (V',p'), B,7,7" be as above. Then the following hold.
(i) If B is a U(n)- equwarzant, left-invariant linear operator, homogeneous in the sense of
@B8), and bounded from L?V to L*V', then B satisfies the assumptions of Lemma [3.2
(i).
(i) Assume that H C L*V is a closed subspace, which is invariant under left-translation
by elements of H,, under the action of U(n) and invariant under the dilations (8 ®
¥)(r), > 0. Then

SV = (SogVNH)® (SVNHY),
where SoV N H is dense in H and SoV N H* is dense in H*.

Proof. As in the proof of Lemma [32] let {®;}sen be an enumeration of the orthonormal basis
of monomials in F and set EypF = (F, ®p)5®. Let also {e;} and {e}} be (finite) bases of V/
and V' respectively.

We fix an interval I = [a,b] with 0 < a < b and, for every £ € N, a function g, € Sy such that
mA(ge) = Eyy for A € I. Then B(g, ® e;) € L*V' and

(3.9) m(Blg®e) =Y. (Z cfl’fkd()\)Eh,k) 2¢,
i Rk
with cffk ;€ L?(I) for every choice of the indices. Then almost every point A € I is a Lebesgue

point for all Cf{fk,j and for 3, |cfl’7ik’j()\)|2

For every f =), fi®e; € SoV and for a.e. A€ 1,

ZWA (fi*ge) * (g @ es))

where the sum is finite (say over £ < N). The invariance of B under translations by elements
(0,t) of the center of H,, implies that B preserves the A-support of the group Fourier transform.
Therefore, we also have

ZM ((fi * g0) * (g0 ® €5)))
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for a.e. A € I. On the other hand, B((fi*g¢) * (9 ®¢€;)) = (fi * g¢) * B(g¢ ® €;). Hence, for a.e.
A€l (say, A € A),

mA(Bf) = mx(Blge @ ei))ma(fi * ge) -
il

The same computations in the proof of Lemma produce an infinite matrix C; ;(\) =
(cfl’zej()\))h , With at most N nonzero entries on each row, defined for A € A. Defining By by
B4)), we have that

(3.10) mA(Bf) = Bama(f)
for A € A.
Now, the homogeneity of B easily implies that, for A\, \" € A,
By =M/ XN)* (I @+ (N/X) By (I@~(A/X)) .

This identity allows to extend B) as a smooth function of A to every A > 0.

Obviously, the same construction can be made for A < 0. Then, for every f € SyV, the
identity ([B.I0) holds for every A # 0, which shows that B(SyV) C SyV’. Then Lemma 221 and
the following remarks imply that we are in the hypotheses of Lemma (ii).

In order to prove (ii), let us denote by P the orthogonal projection from L2V onto H. Since
H is invariant under left-translations, U(n)-invariant and dilation invariant, P is a left-invariant
operator which is U(n)-equivariant and homogeneous of degree 0. Moreover, by the Schwartz
kernel theorem, it is given by the convolution Pf = f % K with a tempered distribution kernel
K taking values in L(V, V). We may therefore apply (i) to B := P and conclude by means of
Lemma [3.4] that P(SpV') C SoV, and similarly, (I — P)(SoV) C SoV. Q.E.D.

4. FIRST PROPERTIES OF Ajg; EXACT AND CLOSED FORMS

The domain dom (Ag), defined according to Lemma[3.2] is the “left-invariant Sobolev space”
H? consisting of those f € L? such that X f, XY f € L? for every X,Y € b,. This follows from

the L? boundedness of the operators X (1 + Ao)_%, XY (1+Ap)7 ! . We also recall that
1
the operators XYAal, XA, ? are bounded on L? for every X,Y € b,,.

For k > 1, we have the analogous description of dom (Ag).
Lemma 4.1. For every k, dom (Ay) = H2A¥.

Proof. Tt is evident from (L22) that H2AF C dom (Ay).
Since Ag = L — T2, identifying Aj, with the matrix (L22]) we have

(Ag 0
Ak‘(o A0>+

=Ag+P.

Ay — L+ e(df)i(d) i0 — i0

i0* — i Ay — L+ i(d)e(d6)
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where P is symmetric on H2A*. By (II9), each entry in P involves at most first-order derivatives
in the left-invariant vector fields. Therefore, for w € H2A¥,

1
[Pwllz < C(llwll2 + [AFwll2)
1 1
< C(llwll2 + |Aowll3 [[wl]I3)
<C(1+ E_l)Hsz + Cel|Agw]|2 ,

for every ¢ > 0. By the Kato-Rellich theorem [Ka], Ag + P is self-adjoint on dom (Ag) = H2A*.
Q.E.D.

The following statement is an immediate consequence.
Proposition 4.2. Ay is injective on its domain.
Proof. Let w =w; + 0 Aws € dom (Ay), with wy,ws horizontal. Then
(Apw,w) = (Agwy,wr) + [ Twi |3 + |i(d0)wr |13 + {[di7, e(dd)]wa, wi)
+ <[i(d9),dH]w1,w2> + (Agwso,wy) + Hngﬂg + He(d@)ng% .
Notice that
(Agwi,wr) = [dgwi|l3 + |dgen3
and the same holds for wy. Moreover,
<[d§{, e(d@)]wg,w1> + <[i(d9), dH]wl,w2>
= 2Re < [z’(d@), dH]wl,wz>
= 2Re (dgwi, e(df)wa) — 2Re (i(df)w1, djywa)
> —[|ldgwill3 — lle(df)ws (13 — |i(d8)wr |3 — [[diwal3 -
It follows that
(4.1) (Apw,w) > [[diwrll + ldpws |3 + | Twi |13 + [ Twsl3 -

Therefore, if Agw = 0, then Tw = 0. Since 7)(T') = i\ I, this implies that 7)(w) = 0 for
almost every A, and finally that w = 0. Q.E.D.

Corollary 4.3. For every A > 0 and o € X%, dryiy o (Ay) is invertible and for every pair of
elements u,v € EF, (1) (Ag)u,v) is a polynomial in X. For every a > 0, ALY maps SoAF
into itself.

1
Proof. By @1), |Afwl|2 > || Twl|2 for every w € SyA*. This implies that

1 sgn
17070 (A)ZE > N[IE]], € € 82,
for every A, o with A\ # 0. The rest is obvious. Q.E.D.
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We call Riesz transforms the operators

R = dA; 7 : SyAF —s SuAR+!
and their adjoints
Rp = A2 SOAFHT 5 SoAb
Lemma 4.4. The following identities hold (with the convention that R—1 = Rap+q1 = 0):

_1 _1
(4.2) Ry=Ay2d, Rp=dA2
(4.3) Ry Ry = RiR;, =0,
(4.4) RiRy+ Ry Ry =1 .

In particular, RpRj_1 = 0.
Moreover, if 1 < k < 2n, Ry_1R;_,, R Ry are orthogonal projections on complementary
orthogonal subspaces of L>A* and Ry, and Ry are partial isometries.

Proof. From the identity dA; = Ay 1d on test functions we derive that
o (d)Tr o (Ag) = Tx o (Apg1)Tr 0 (d)

for all A, 0. Hence

o (@)r0(Ak) 72 = a0 (A1) 20 (d)
by finite-dimensional linear algebra. In turn, this gives the first identity of [@2) on SyA*. The
second identity is proved in the same way.
Then ([&3) follows from (&2) and the identity d* = 0.
On SyAF, by applying again Ty, to each term,

_1 _1 _1 _1
RiRy+ Rp 1 Ri_, = A 2d"dA % + A 2dd* A, ?

_1 _1
— ALZAGA?
=1,

which gives (4.

Since the two summands on the left-hand side of (@3] are positive operators, they are L2-
contractions. Since their sum is the identity and their product is zero by ([4.3)), they are idempo-
tent. This proves that they are orthogonal projections. It follows that Ry and R;_, are partial
isometries. Q.E.D.

The following statement says in particular that the cohomology groups of the De Rham
complex are trivial.

Proposition 4.5. Let 1 < k < 2n. The following subspaces of L2A% are the same:
(i) the range of Ry_1R;_4;

(ii) the range of Rp_1;

(ifi) ker Rp;

(iv) kerd;
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(v) d(SoAk1);
(vi) d(DAFT);
(vii) {w € L2AF : w = du in the sense of distributions for some u € D'AF~1},
We call this space (L*AF)gex or (L*AF)gq. Similarly, the following spaces
(i") the range of Rj Ry;
the range of Rj;
ker R;_,;

(vii") {w € L?A* : w = d*v in the sense of distributions for some v € D'AF+1}

are the same; we call them (L?A*)ge_ox or (L2AF)ge_q.
Proof. Since Rj_1 is a partial isometry, its range is closed, and
ran Ry_1 = (ker Rj_;)* = (ker R,_1R}_,)* =ran R, 1 R}_, .

This proves the identity of the spaces in (i) and (ii). In the same way one proves the same
for (i") and (ii’). From Lemma [£.4] we then obtain the orthogonal decomposition

L?A* = ran R_; ® ran Ry, .

But ran R} = (ker Rg)*, so that ran R_1 = ker Ry, i.e. (ii)=(iii).

By Plancherel’s formula and Lemma [3.2] w € ker d if and only if 7y ,(d)7) o (w) = 0 for a.e. A
and every o. By Corollary and (2, this is equivalent to saying that 7y ,(Rg)my o (w) = 0
for a.e. A and every o, i.e. that Ryw = 0. So (iii)=(iv). By Corollary B3, d(SoAF~1) =
Ry_1(SoA*=1) and this implies that (v)=(ii).

We thus have shown that the spaces (i) - (v) are the same, and the equality of the spaces (i’)-
(v’) are proved in the same way.

In order to prove that the spaces (i) - (v) agree also with the space (vi), we first observe that
d(DA*=1) C kerd, since d?> = 0 on DA*~1. We thus have d(DA*~1) C Ry_(L?A*~1). To prove
that these spaces are indeed the same, it will suffice to prove that o L Rk_l(LQAk_l) whenever
o € L2A* satisfies o L d(DAF'). But, the latter condition means that d*c = 0 in the sense
of distributions. So, by Lemma 3.2, ¢ € domd*, and since (iv’)=(ii’"), we see that 0 = R;¢ for
some ¢ € L2AF+1. This implies that for every Ry_pu € Ryp_1(L*AF1)

(0, Ri—1p) = (RiE, Re—1pt) = (&, R Ry—1p) = 0.
We have thus seen that the spaces (i) - (vi) all agree, and in a similar way one proves that the
spaces (i’) - (vi’) are all the same.

The proof that these spaces also do agree with the space (vii) respectively (vii’) will require
deeper LP-methods, and will therefore be postponed to Section [I1] (see Corollary [[T3]).

Q.E.D.
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Working out the same program for 9, d, their adjoints and the box-operators one encounters
some differences. One simplification comes from the fact that 0 and O act as scalar operators
on horizontal forms of a given bi-degree.

On the other hand, a complication comes from the fact they have a non-trivial null space in
L? for certain values of p or ¢. It is well known since [FS] that L + iaT is injective on L? if and
only if o # £(n + 25), j € N, and that it is hypoelliptic under the same restriction. It follows
from (LI9) that O (resp. OJ) is injective, and hypoelliptic, on (p, q)-forms provided that p # 0,n
(resp. ¢ # 0,n).

For p = 0, Oy = 0*0 and kerJ = ker 0, while, for p = n, 0 = 90" and ker[d = ker 9*.
Similarly, ker 0 = ker 0 for ¢ = 0, and ker O = ker 0* for ¢ = n.

For these values of p (resp. ¢), we shall denote by [’ (resp. ﬁ/) the unprimed operator with
domain and range restricted to the orthogonal complement of the corresponding null space.
Notice that the core SoAP? splits according to the decompositions ker d @ (ker 9)*, kerd @

(ker ). The negative powers [ “(resp. ﬁ/_a) are then well defined on SyAP9 N (ker 9)*
(resp. SoAP4 N (ker )1).
By (LI

_ _ 1
Oo=0.=5(L+inT), Oy=0o= 5L~ inT).

We denote by C (resp. C) the orthogonal projection from scalar L? onto ker(L + inT) (resp.
ker(L—inT')). The same symbols will be used to denote the extension to forms by componentwise
application.

Thus, C is the orthogonal projection onto ker @ when acting on (0, ¢)-forms as well as onto
ker 9* when acting on (n,q)-forms, and C is the orthogonal projection onto ker & when acting
on (p,0)-forms as well as onto ker 9* when acting on (p, n)-forms.

Regard O as a closed operator from L2APY to L2APT14. The holomorphic Riesz transforms
are defined on SyAP¢ (with values in SyAPTH4) by

_1 _1
00,* =0,20 1 for1<p<n-2,
1 — 2
(4.5) Ry = o0y *(I-C)=0,%0 forp=0,
o0, 2 =0,2%0 forp=n—1.

We observe that, is all cases,

1 1
(4.6) R} =02, R, =0.

The adjoint operators R from SoAPTLY to SyAPY are

_1 _1
Op 20" =00,7 for1<p<n-—2,
* _1
(4.7) R, = Dé_%a* =0*0, * forp=0,

_1 _1 _
0,20 =0"0,*I—-C) forp=n—1.
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The analogues of ([43]) and (4.4]) are
Rpt1Rp =R,R,1 =0,
(4.8) RoRp+Rp-aRp_y =1, (1<p<n-1)
RoyRo=1—-C, RpaR,_,=1-C.
Proposition has the following analogue.

—_

Proposition 4.6. For 0 < p < n — 1, the following subspaces of L>AP are the same:
(1) ker Rp;
(7i) ker O;
We call this space (L?AP9)q._q.
For 1 < p < n, the following subspaces of L>AP? are the same:
(iii) the range of Rp— 1Ry _4;
(iv) the range of Rp—1;
(v) O(SoAP~14).
We call this subspace (L?>AP9)g._cy.
For1<p<n-—1, (L2AP%) 5. = (L2APY)p_cx.
Similarly, for 1 <p <n, the following subspaces of L>AP? are the same:
(i) ker Ry, _y;
(ii’) ker O*;
and we call this subspace (L*AP?)gs_q.
For 0 < p <n — 1, the following subspaces of L>AP4 are the same:
(iii’) the range of RyR,y;
(iv’) the range of R;;
(v) O (SoAPFha);
and we call this subspace (L2AP)gs .
Finally, for 1 <p <n—1, (L?AP)ge_q = (L2APY) gr_ox.

We also set (L2AX)pex = zp+q:k(L2Ap7q)a_eX etc.

The antiholomorphic Riesz transforms ﬁq and their adjoints ﬁ; are defined by conjugating
all terms in (@A) and (7)) respectively, and replacing p by ¢q. The analogue of formula (I0.3])
also holds true for all ¢

— 1 1 __ _
(4.9) ROy =071 Rq =10 .
The rest goes in perfect analogy with the holomorphic case.

Definition 4.7. On (p, ¢)-forms, we also define the operators

(4.10) Cp=1-R,Ry, quf—ﬁ;ﬁq, for 0<p,gq<n-—1,
' Cp=1=0C,.

Notice that, by [@8), C), = Rp-1R,_; for 1 < p < n — 1, and similarly C;; = R4-1R
1<g<n—-1
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The following statements are obvious in view of Proposition

Lemma 4.8. C), is the orthogonal projection of L>AP onto the kernel of 9, and C, is the
orthogonal projection of L>AP? onto the kernel of O,
Moreover, if w € SoAP4, with 1 < p <n —1, then

Cpw =0 if and only if w € W if and only if 0w =0,
whereas for p =0,
Cow=0 if and only if w € W,
and for p=n,
Chw=0 if and only if w = 0.
Analogous statements hold for the operators Cy, if we replace p by q and conjugate all terms. In
particular, Cy = C,Co = C, and 0*w = 0 whenever Cpw = 0, and 9 w = 0 whenever Uqw = 0.

Given a horizontal k-form w =" . _; wp, we finally set

(4.11) Cw = Z Cpwpg » and Cw = Z Cywpq -
p+q=Fk ptq=k

5. A DECOMPOSITION OF L2*A¥ RELATED TO THE 0 AND 0 COMPLEXES

In this section, we shall work under the assumption that 0 < k < n, as this turns out to be
more convenient in view of the Lefschetz decomposition described in Prop. 2.1 of [MPRI1]. The
case where k > n can be reduced to the case kK < n by means of Hodge duality, as will be shown
later in Section [

Our starting point in the spectral analysis of Ay is the decomposition obtained in Proposition
4.0l

(5.1) L2AF = (L2A%) oy @ (L2AF) gl

Since dAj_1 = Agd for all k > 1, using the results from for A1, we can lift the decom-
position of L?A' into Aj-invariant subspaces and the related spectral properties to (L?A?)g.ex.
Therefore, inductively we analyse the (L2AF)gc-component in the decomposition of L2AF by
means of the preceeding step.

Thus, we are led to study the (L?A¥)g_y-component in the decomposition of L2AF.

By ([2I)) we can characterize the d*-closed forms. Notice that, if w € SoA¥, w = wy + 0 A wy
with wq,ws horizontal, then

w € (SoA")

Jeel if and only if Wy = T_ld*le .

In fact, if wy = T~ 'd}w, then the second equation i(df)w) — dws = 0 arising from in (L21))
follows from the first one.
Hence, if we set

(5.2) d(w)=w+ AT dhw
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we obtain an isomorphism

@ SoAfp — (SoAF) . -
Notice that, because of the invariance of § and the equivariance of dj;, ® commutes with the
action of U(n).

Clearly, Ay maps a subspace V of (SyA¥)gq into itself if and only if the (non-differential,
see (B.I7) below) operator

(5.3) Dy =3 1AL®,
maps W = &~V SOA’}_I into itself.
For this reason, we begin by decomposing SOA’}_I into orthogonal subspaces which are invariant
under Dy and on which Dy takes a simple form.
5.1. The subspaces.

The decomposition is based on the following lemma.
Lemma 5.1. Every w € SOA]}{ decomposes as
(5.4) w=uw+ 0+,
where £,m € SOA]}_I_l, and W' € SyA* satisfies the condition
(5.5) oW =0 =0.
The term W' is uniquely determined, and we can assume, in addition, that
(5.6) Cp1E=Cyn=0.
Notice that, even with the extra assumption (B.6)), £ and n are not uniquely determined.

Proof. Assume that w is a (p, ¢)-form. If p = 0, we obviously have the decomposition w = W' +0n,
with 0*w’ = 0, and 9*w’ = 0 holds tivially, since w’ is a (0, ¢)- form. A similar argument applies
if ¢ =0.

We therefore assume that p,q > 1. Consider the homogeneous U (n)-equivariant differential
operator

0d) <f7> s O+ I

acting from L2(AP~19) @ L2(AP9~1) to L2AP? and its adjoint (g*>

In L?AP4, we have

*

ran (0 9) =rand +rand , ker <g*> = ker 0* Nker 0* ,
so that
L*AP = (ker 0* Nker %) @ (ran d + ran 9) .
Moreover,
(0 0)(SoAP~ 11 @ SyAPI™1) = 9SuAP~ 1 4 §SyAPI~L
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so that, by Lemma [3.4]
SoAP = (ker * Nker 0* N SyAP?) @ (OSeAP 19 4 9SyAPI~1)

This gives the decomposition (B4). By orthogonality, the two terms «w’ and 9¢ + on are
uniquely determined. Since Cj,—1 and Cy—1 preserve Sp-forms, we can replace & by (I — Cp—1)§
and n by (I — Cy—1)n, without changing the equality. Q.E.D.

Observe that the decomposition (B.4]), without the extra assumptions on ¢ and 7, can be
iterated, so to obtain in a next step that

w=w 409 + a1 +9B1) + I + dag + IBa)
=w' 4+ 0 + 0y + 0081 +90ps ,
where now each of the primed symbols represents a form satisfying (5.5]). If w is a horizontal

k-form, the iteration stops after k steps, leaving no “remainder terms”.
We are so led to introduce, for each m < k the spaces of forms

(5.7) w=:--000&+--09n
m-terms m-terms

with &,1 € SoAST™ and 9*¢ = 9*¢ = 9" n = I*n = 0.

It is convenient to observe that in a sequence of at least three alternating d’s and 0’s, we can
replace a product 99 or 99 by d2, = —T~'e(df). Since T~ preserves Sp-forms, the form w in
(B7) can thus be written as

L e(dh)*(0¢ + On) if m=20+4+1,
) e(d9)4(99€ + ddn)  if m=20+2.

Definition 5.2. We set
W ={w € SeAP? : 0w = 0*'w = 0} ,
WP = {w=09¢+0n : & e W'},
Wt ={w =006+ 00n : & e Wi},

For / € N and j = 1,2, we set
WPE = e(df) WP,
We also set

We =Y W= {we A} : 0'w=0"w =0},
p+q=k
and, for 7 =1,2 and £ € N,
ngc - Z Wi
ptq+i=k
and
W= > WPI=e(do) Wi,
pHq+j+20=k
whenever k > j + 2/.
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The symbols W;?, Wf Y etc. denote the L2-closures of the corresponding spaces Wf, ij 4
etc..

We wish to characterize which spaces among the W[ and WJP ’Zq are non-trivial.

Proposition 5.3. Let 0 < k <n and p+q=k. Then W' is trivial if and only if k = n and

Proof. We show first that W/"? is non-trivial for p+¢ < n—1. In order to do so, it is sufficient to
prove that, under this assumption, there is a non-zero 5 € P;@AP?, with P; = span {wy,...,w,}
as in (2.6]), such that

m(0")8 =m(0")8=0.

From this it will easily follow from (CI0) and 3] that 7, (0*)8 = m\(9*)3 = 0 for every
A>0.

Let w € AP? be such that 7y (w) = x(\)Ps, where x is a smooth cut-off function with compact
support in (0,400) and Py is the orthogonal projection of F @ AP¢ onto Cj3. Then w € SoAP?
and 0*w = 0*w = 0.

Take

p+1
A= <Z(—1)”wjﬁ/\“'/\ﬁj/\"'/\Cp+1> net,
j=1
where I’ = (p+2,...,p+ q+1). Then, writing I;: (1,...,3,...,]9—!—1) we have

* 1 pt - I —77
m1(9%)(B) = EZZ(—U]EZ]W%‘ ¢! ng!
0,J j=1
s il ~ ~
== (—1)J{ (1) Ywpw; LA ACG A NG A Alpr
j=1 (=1
p+1 R R B
+ ) D wew; QA AG A A A A Gy | AL
(=j+1

Next, since 71(Z;) = v/20,, we have
m(@)(B) = (~1PTV2 Y el (Buwi) S5 AT =0,

0
since j & I’, so that 0y,w; = 0.
This shows that W[ # {0} whenp+¢ <n — 1.
Next, consider WO"’O. Take B = (1A Ay € Po®@A™Y. Clearly 7, (9*)8 = 0 for every A # 0,
while 7, (0*)3 = 0 for A < 0 by (LI0) and (Z8). As before, this implies that ng’o # {0}.
Finally, consider W' ®*, with 1 < s <n—1 and let w € W~ *°. Since O is injective on this

space and 0*w = 0 we have

w=0" (OD_l)w =0 .
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Similarly, since 0*w = 0,
w=000 'w=000 0'v
=0%00"(O—iT) v =00 (- 0@ —iT)"'v) ,
ie.
(5.8) w=00u,
for some p. But 0%*w = 0 if and only if
0=09%0"(9*p) = (9°0* + 8*0*) (0" w) = Ti(d) (0" ) .

It follows that, if p is as in (5.8, then w = 9*0*u € W% if and only if
(5.9) i(d8)(0" ) =0,
ie. 0" u € keri(do).

Therefore, 0% € So(kerAs,nsz i(d@)). Since max{0, s+(n—s+1)—n} = max{0,1} =1 > 0,

according to Prop. 2.1 in in [MPRI], we have kerpsn-s+14(df) = {0}, that is, 0" = 0; hence
w=0. Q.E.D.

Proposition 5.4. Assume that j = 1,2. Then the space W]p’; is non-trivial if and only if
(+ 54+ p+q<n. In this case, e(df)’ is bijective from W74 onto W]pf.

Proof. We first prove the “only if” part. Observe that W7 and W?? are in the kernel of i(df),
which is immediate from ([LI2]) and (LI4).

In order to prove the statement for j = 1, we set (p,q) = (p+1,¢q) or (p,q+1). By Prop. 2.1 in
[MPRI] we know that e(d6)* (ker i<d9)\L?Aﬁ,é) is non-trivial if and only if max (0, p+§+2¢—n) < ¢,
that is, £ < n—p—q. Since WP? C LZAPTL 4+ [2APt1 it follows that WP} can be non-trivial
only when / <n—p—q—1. 7

To prove that e(df)* is injective on W7 under this condition, we show by induction on ¢ that
e(dh)? is injective on keri(df)| ., when{ <n—p—g=n—p—q—1. Thecase {=0is trivial.
And, by (LI6) we see that for £ > 1 when acting on (p, §)-forms

{—1
[i(dB), e(d0)] =) " e(dB)”[i(dR), e(dh))e(dd) 17

(SN
[l
= o

(5.10) (n—p—q4—20+2+2w)e(dh) !

(]

[en]

I
S S X
-~ = |

n—p—q—~{+1)e(dd) !
n—p—q—~Le(dd) ",

~—

which allows to prove injectivity of e(df
assumption on £.

¢ on ker z'(al@)‘AM from injectivity of e(df)*~! under the



HODGE LAPLACIAN ON THE HEISENBERG GROUP 31

We now turn to the case j = 2, which requires a more refined discussion. Let us set
KPT=whin keri(d9)| L2AD et
We claim that W2 decomposes as an orthogonal sum
(5.11) Wt = KD @ e(do)ywi.

It is obvious by (LI2) that e(df)W? C W2, and clearly the two subspaces on the right-hand
side are orthogonal. B
Assume that w = 99¢ + 9on € Wi, with £,n € W["?. Then

i(df)w = i(On — 0¢) € W
Indeed, by (ILI3]) and (L20) we have
i(d) (90¢ + 80n) = T d3* (09€ + dom)

=T~ (-0*00¢ + 9*00¢ + 0*00on — 9*00n)

=T1(-00¢ + (O —iT)3¢ + (O +i7)On — OOn)

=4(0On — 0O¢) .
We have seen that i(d0)WL? c Wl and therefore w € W5 N (e(dd)WE )+ if and only if
w € K3 This proves (@II). Let us set K3/ = e(d9)* K5, Then
(5.12) WP = KDf @ e(df) T Wi,

and this decomposition is again orthogonal.
Indeed, if w € ker(i(df)) and o is a form orthogonal to w, then for every ¢ > 1

(e(dB)*w, e(df)‘o) = 0.
For, by (BI0) we have
i(df)e(df)’w = coe(df) ' w,
which implies, by induction on ¢, that
(e(df)'w, e(dB) o) = (i(df)e(dB) w,e(dd) to) =0 .

In order to prove the statement in the lemma for j = 2, using the orthogonal decomposition
in (5.I2) we may now argue as before by means of Prop. 2.1 in [MPRI] in order to see that Wé” ’Zq
can be non-trivial only if £ <n — p — ¢ — 2. Moreover, to verify that e(df)’ is injective on W5
under this condition, it suffices to check injectivity on each of the subspaces on the right-hand
side of (G.I1J). But this can be done by the same reasoning that we used for the case j = 1.

For the “if” part, assume again that p+q+j+¥¢ <nand j = 1,2. Then, p+q <n —1,
so that W[ # {0} by Proposition Then Wf’q # {0}, and by the first part Wf’jq # {0}.

Q.E.D.
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Lemma 5.5. For £ € W™,

D*e(dR) 9E = e(dB) TIE + ile(dB) 1 DOE
d*e(dh) o =0
(5.13) " (5 = ; (—195
e(df) 0¢ = e(df)"00E — ile(dO) ™00
d*e(d)* o =0 ,
and
d*e(dh) 00¢ = —e(df) O00E
9*e(d0) 00¢ = e(df) 0(0E —i(¢ + 1)T)¢
(5.14) _ _ _
D%e(dB) 00 = —e(dh)*00I¢
9*e(d0) 90 = e(df) 0(T€ +i(f + 1)T)E .

Proof. Since [0*, e(df)] = i0 commutes with e(df) (compare (LI4), (II5)) and similarly for 9%,
we obtain by induction that

(5.15) (0%, e(dB)"] = ilde(dh) =", [0%,e(df)"] = —ilde(dd)* ! .
We verify the first identity in (B.I3]), the others being similar and following by invoking also
(LI2) and (L20): )
d*e(df) O¢ = e(dB) 0" O¢ + itde(d)*~0¢
= e(df)0E + ile(dh) ~1DOE .
Q.E.D.
This immediately gives the following inclusions.
Corollary 5.6. For {>1,
TWrCcWyl, W Wi,
and similarly for O*.

Proposition 5.7. L2A]}{ decomposes as the orthogonal sum
27k © s @ :
pa = Yowpre Y7 wi
pt+q=k J:4,psq
J=1,
p+q+j+20=k
k Sk Sk
= Wie Y Wie ) Wi
1420<k 24-20<k
We recall that W' is non-trivial for p+q <n—1, and if p+q =n for pg = 0.
Proof. We have already shown that SOA]}{ is contained in the sum of the subspaces on the

right-hand side. It is then sufficient to show that any two Sp-forms belonging to two different
subspaces are orthogonal.

It is quite obvious that W7 is orthogonal to W} KCT; (p,q) # (0, q).
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The fact that W} is orthogonal to W;‘fz for j = 1,2 is a consequence of the fact that W} c

ker " Nker 9, whereas WF, C ran d + ran .

To prove the remaining orthogonality relations, we shall proceed inductively. For this purpose,
it will be convenient to represent the elements of Wﬁg in the form (5.7) with m = j + 2¢, and
rename, for the purpose of this proof, W;?’Zq as WhYif m = j + 2¢. Given m > m/ > 1, there are
three kinds of scalar products to consider,

(9D 0, 98-~ o), (900, 00 o), (900,00 o),
m-terms  m/-terms m-terms  m/-terms m-terms  m/-terms

with o € Wg’ ©and o € Wg’ 4" In the first case we have
(00 .0,00--0") = (§--0,0" 98- .0") .
N~ N~ ~——
m m/ m_l m/
By Corollary [5:6] this is the scalar product of an element of W, with an element of Wf:;,’zll.

By induction on m/, this shows that Wk? L Wf:;,’q/ unless p=1p', g =¢, m =m/.
QED.

We discuss now to what extent the pairs (§,1) € W7 x W[ provide a parametrization of
the spaces Wf M for j=1,2.

Lemma 5.8. Given & € Wi, there exists a unique §' € W such that 06 = 0¢" and Cp¢' = 0.
An analogous statement holds for O in place of 0.

Proof. The case p = n is trivial - here ¢ = 0. If 1 < p < n — 1, then by Lemma g we have
¢=¢

There only remains the case p = 0, where Cy = C is the orthogonal projection onto the kernel
of O (which in this case agrees with ker 9). This is a self-adjoint operator, so that, by Lemma
B SopA%? = (ker 0N SoA%?) @ (ran 0 N SyA%?). The commutation relation 9*0 = (O — i7)0*
from (L20) then implies that the two subspaces in this decomposition are mapped under 9* to
ker(O — iT) N SoA*? and ran (O — iT) N SoA%, respectively. This shows that

0*C¢ = PO*¢€ =0,
where P denotes the orthogonal projection onto the kernel of [0 — ¢T. Then ¢ = (I — C)¢ has
the desired properties. Q.E.D.

Set
(5.16) XPI={ceWP':C¢=0}, YPi={neWl?':Cm=0}, 2ZP71=XPIxYPI,

In combination with Proposition [5.4] the previous lemma implies that the spaces ZP¢ provide
parametrisations for the spaces Wf P

Corollary 5.9. Assume that j =1,2 and p+ q+ j + £ <n. Then the maps
e(d@)g(a 0): ZP1 —s W{i’;, (€,m) = O& + On,
e(d)" (90 00) : ZPt — W, (&) > 0O + 00n
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are bijections. Notice that this applies in particular to the spaces W;f ’Zq appearing in the orthogonal
decomposition of LQAII“{ in Proposition [5.7 under the assumption k < n.
Remark 5.10. Recall that, by Lemma 48]
W ifl<p<n-1,
XP1 = ¢ {0} ifp=n,
{f € SoA%1 : C¢E =0,0%¢ = O} ifp=0.
By the proof of Lemma [5.8] the latter space is indeed nothing but (I — C)W(? ,
Analogous statements hold true for Y74, Finally, notice that the spaces ZP:7 are non-trivial
ifp+qg<n-—1.
5.2. The action of Ay.

Let ® be the bijection (5.2]) from SOA]}{ onto (SoAF)gec1, and let D = ®7'AL® be the

operator in (5.3)).
For w € SoA¥,, by (L22) we have

Dyw = (Ag — T? + e(df)i(df))w + (T~ [d};, e(df))df; )w
= (Ay —T? + T 'dje(dd)dj;)w

The following identities are easily derived from ([L12]), (LI4) and (TI5):

Oe(df) = e(df)(O —iT),

(5.17)

(5.18) Oe(df) = e(df) (O +4T),
[An, e(df)] =
It follows from (LI9]) that, when acting on k-forms,
(5.19) O-0O=i(n—kT.

Lemma 5.11. The following identities hold
(i) Dye(df) = e(df)(Dg—o+n —k+1);
(i) Dye(df)’ = e(dd)*(Dg—oe + €(n — k + (), for £ >1.
Proof. By (LI4), (I1%) and (517), (5I8), when applied to a horizontal (k — 2)-form,
Dye(df) = e(df)(Agr — T?) + T~ (dye(dh))’
= e(df)(Ay — T?) + T~ (e(dh) dH +i(0—9))°
(5.20) = e(dO) Dy_o + T~ "e(dO) (dj (9 +(0—9)dy) — T~ 9)*
= e(df)Dy_o +iT 1 ( o) (O -0) — e(d@)
=e(df)(Dy—2+n—k+1).
Identity (ii) now follows by induction. Q.E.D.

Proposition 5.12. The subspaces W{, Wlp’eq, W;f are invariant under the action of Dy.



HODGE LAPLACIAN ON THE HEISENBERG GROUP 35

Proof. If w € W[, then dj;w = 0 and therefore
(5.21) Dyw = (Ag — T*w = (Ag +i(q — p)T)w,

by (LI9), where A denotes the scalar operator L — T2. The last expression shows that Dyw is
a (p, q)-form, and the previous one that dj; Dyw = 0, by (L20).
By Lemma [5.11], when j = 1,2, it suffices to take £ = 0.

Take now w € WF, w = 9¢ + 0n, with 0*¢ = 9*¢ = 9*n = 9*n = 0. We have
Dyw = (A —T? + T~ dye(d)dy;) (9 + In)
(A —T? +iT)E + 0(Ay — T? —iT)n + T~ die(dd)dy (06 + On)
(Ag —T* +iT)¢+ d(Ay — T* —iT)n
(5.22) + T} e(d9)0¢ + T djye(dd)0n
(Ag —T? +iT)¢ + 0(Ay — T? —iT)n + T~ (0 — i9) (D€ + On)
(Ag — T2 +iT —¢T~'0)¢ — T 'On)
+0((Ag — T —iT +4T~'O)n +4T'0¢) .
Therefore, Dy (0¢ + 0n) = 0&' + O, where
¢ =(Ay —T? +iT —iT7'0)¢ — T~ 10y
0 =(Ay —T?* —iT+iT™ 'Oy +4i7'0¢

0
0

0
0

that is,
= = (Ap —T? +iT —iT7'0 —iT~10
(5.23) D (0 0)=(0 9) < 0 Ay —T? —iT +iT-'0
’ 5 oy (O=T7 O
=(0 0 [(AH—TQ)I—zT 1( e _EJFTQH.

Using the commutation relations (L20) we see that
8*5/ — 5*6/ — 8*77/ — 5*77/ =0.

Therefore, also Wlk is Dy-invariant. Moreover, if £ and 7 are (p, q)-forms, so are £ and 7/, hence
each W is Dj-invariant.

Finally, take w € W&, w = 09¢ + 009, with 0*¢ = 0*¢ = 9*n = 0*n = 0. We first compute
dire(d0)d;00¢ = dyre(df)(—00¢ + TOE)
= e(df)d};(—00¢ +T0E) +i(0 — 9)(—00¢ + ToE)
= e(df)(—0O0¢ + 90*T0¢) + i(0001€ + 0010E)
= e(df)( — O0¢ + (O +iT)0¢) + i(000¢ + 90(0 + iT)¢)
= iTe(df)D¢ + i000¢ 4 i00(0 + iT)¢
= i00(-0+ 0O +iT)¢
= (n—k+1)T00¢ ,
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by ([6.19), since € is a (k — 2)-form. Similarly,
e(dd)d;;00n = (n — k+1)TA0n .
Therefore,
(5.24) Dyw= Ay —T*+n—k+1w.

As before, (L20) implies that Dyw € WX, and each subspace W57 is mapped into itself.
Q.E.D.

5.3. Lifting by .

Denote by V", Vf’gq, etc., the subspaces ®(W}?), @(Wfi’f), etc., of (L?A*)g_q. We want to
show that their closures V", Vf”g , etc. give an orthogonal decomposition of (L2AF)z«_.

In a way, this is not a priori obvious, because ® is not an orthogonal map. The fact that
it preserves the orthogonality of the subspaces we are working with is quite peculiar. On the
other hand, the reader may have noticed already an instance of this peculiarity in the fact that a
non-symmetric operator such as Dj. admits a rather fine decomposition into invariant subspaces
which are orthogonal.

Proposition 5.13. For 0 < k <n we have the orthogonal decompositions

@ @
20K _ D,q P54
(5.25) (L2AR) = D 1 Z AT ver,
p+q=k<n0 J.4psq
p+q=n,pq= j=12
pt+q+j+20=k

where each of the subspaces Vi, Vf’gq is non-trivial and Ag-invariant.

Proof. Since ® is a bijection from SOA'I“{ onto (SoAk)d*_Cl, it follows from Proposition [5.7] that

® ®
(SOAk)d*—cl = Z Vit @ Z Vféq :

p+g=k<n J:4.p,q
p+q=n,pq=0 j=1,2
p+q+j+20=k

Hence it remains to show that this decomposition is orthogonal. By (B.2]), this amounts to
proving that

d*H(W;j )L d*H(ij,/”g) whenever W]’-? G ij,i’g.
This, in turn, is an immediate consequence of Corollary and Proposition 5.7l Notice that
dy Wi ={0}.
Q.E.D.
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6. INTERTWINING OPERATORS AND DIFFERENT SCALAR FORMS FOR Ay

Following the decomposition of L?A* described in the previous section, we continue assuming
0<k<n.
In this section we describe the form that Ay attains on each of the subspaces of the decom-

position [5.25) of (L2AF)4+_. In particular, we will show that, up to conjugation with invertible

operators, Ay acts on V¥ and on each V2p ’Zq as a scalar operator. For le ’Zq instead, a further

splitting will be necessary in order to reduce A to a scalar form in a similar way.
In the process, we will also describe the intertwining operators that reduce Ay to such scalar
forms.

6.1. The case of V.

The simplest case is the one of Vop ! because ® acts on this space as the identity map and we
already know by (B.2I)) that Dk‘Wp,q = Ay +i(q — p)T. Hence, in this case Ay is itself a scalar
0

operator and we simply have the following

Proposition 6.1. Let p+q <n—1 or, pg =0 if p+q=n. Then, on V",
(6.1) Ap=Ao+i(qg—p)T .

When we pass to j = 1,2 we want to express Ay in terms of the parameters (£,7) in the
definition of W]P ’Zq which we can choose from the parameter spaces ZP4 = XP7 x YP1,

6.2. The case of V).
According to Corollary [£.9] we can write
(6.2) WEE = {w = e(d6)" (90 + 90n) = (&,n) € ZP7}.

Recall from the discussion in Section [l and the definitions of X% and Y?7 (see (5.10) that OJ
is injective when restricted to XP? and [ is injective when restricted to Y4.

Proposition 6.2. Let Ay, = Pe(dh)" (85 58) 2 7P — Vzpf. Then, Agy is injective on ZP9.

The operator Ay, restricted to the subspace V2p f is given by the following expression:

(63) Aip = Arg(Botilg = p)T+ (41— k041)) 45

\Z¥3
Proof. By Corollary it follows at once that A is injective on ZP9.
When k = p+ ¢+ 2 + 2/, from Lemma 51T we have

Dye(df)t = e(dh) (Dk_% Yl —k+ e)).

Moreover, by (5.24]) we know that Dy _gs, when acting on W% is given by Ag+i(q—p)T +n—
(k —20) + 1, so that on W1

(6.4) Dy.e(df)’ = e(d) (Ao tilg—p)T+ L+ 1) (n—k+(+ 1)).
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By the definitions of ® and V2p 77, and the commutation relations (L20), this proves (B.3)).
Q.E.D.

6.3. The case of Vllj’gq.

We now turn to the case j = 1. In this case the situation is quite more involved, as we
already observed in the case of 1-forms, see [MPRI]. Let us begin by recalling that according
to Corollary 5.9, we can write

(6.5) WP = {w = e(dd)" (9 + dn) : (&) € 2P},
Consider the subspace ij = <I>(Wi ).
. . . . (O-T1? O o
Our next goal will be to formally diagonalize the matrix 0 A4 appearing in

formula (5.:23]). This matrix operator is acting on column vectors (f}) corresponding to pairs

(&,m) € XP4 x YP1 = 7ZP9 where p+q+ 1+ 2¢ = k. We put

(6.6) si=p+q=k—-20—-1.
Notice that 0 < s <n — 1.
We define the operator matrix ) acting on <§7> by
n _
(6.7 o= ()
where, for €,0 = &, the expression of Q5 is
Q5 =T +em— 6T,
where

n—s
m = s

2
F:\/AH—T2+m2.

Observe here that the operator Ay —T2+m? satisfies the estimate Ay —T?+m? > m? > 1/4,
so that it has a unique positive square root.
The following identities are easily verified:

(6.8)

QIQ- =20
6.9) QT =20
' QIQr =2[0-T°—iT(m+1)] =2[0-T*+iT(m —T)]
Q-QT=2[0-T?—iT(m-T)] =2[0-T? +iT(m+T)] ,
since

_ 1
(6.10) O—imT =0+ imT = 5An.
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Lemma 6.3. If p+ q < n — 1, then the following properties hold true:
(i) The operator matriz @Q : SoAP? x SoAP? — SyAP9 x SyAP1 is invertible, with inverse

Q—l _ 1 _Q: _Q-T-
4IT\ Qf  Qf )~
Moreover, (Q maps the subspace Wg”q X Wop’q bz’jectz’velg onto itself.
(ii) If p=0, then QC =CQ_ =0, and if ¢ = 0, then Q,C =CQL = 0.
Proof. To prove (i), we compute formally the determinant of @ and find by (G3]) that det Q =

—4{TT . The formula for Q! is now obvious. Notice also that the operators ()5 leave the space
W§? invariant. The remaining statement in (i) is now clear.

As for (ii), notice that if p = 0 then C projects onto the kernel of 9, which coincides
with the kernel of OJ. And, on kerd, by (G.I0) we have Ay = —2imT > 0, so that I' =
V—=2imT — T2 + m?2 = m —iT, and hence Q_ = 0 on ker 9. This implies CQ~ = Q_C = 0. The

remaining identities in (ii) are proved analogously. Q.E.D.
We set
(6.11) ZPO = XPINYPI = (£ € WP Cp = Cp =0}, ZP9 = WP x 24

Lemma 6.4. o
=G 0_ 7D.9\ — 7P.4q
< 0 I—Cq>Q(Z ) =27
Proof. 1t suffices to show that
I-C, 0 =y (1 —Cp 0 0. 5,q
("0 0g )a@n = (1%, O ) e g

since Q(Wg x W) = Wi x Wi
We have EP7 = (I — C), — Cy)W[?, which means that it suffices to show that

(3 %)) (1365

is zero for every n = (Cj, + C,)n/. This follows from the identities
(I = Cp)(Cp + éq) = éq ) (- Cq)(cp + Cq) =Gy,

and from (ii) of Lemma [6.3 Q.E.D.
Lemma 6.5. Let

0-—12 [m]
(6.12) G = < 0O —E+T2>

be the matriz appearing in formula (B.23). Then, —iT~'G admits the diagonalization
—iT‘lG:Q<m3_F 0 >Q_1-

m—1TI
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Proof. In order to formally compute the eigenvalues AL of —iT'G, observe that the characteristic
equation for G is

”?—r[0-0+7?0+0-7°] =0,

which has roots

ry = imT /-T2 [0+ 0~ T? +m?] =iT(m+T) .

Therefore,
(O0-T?—iT(m+T) O
G_Ti1_< -0 —E+T2—z‘T(miF)> ’
and, by (6.9),
1/ QfQ:
o-ni-3 (G o)
L/ O
-3 () e oo

and analogously,
G-—71_1==- ;— (Q Q )
—_— Q+ .

These equations show that eigenvectors of GG of eigenvalues 7+ are given, respectively, by

n _
(6.13) - () e-(d)
so that
Q= (QQ7)
is indeed a matrix which formally diagonalizes —iT~'G as claimed. Q.E.D.

Recall now from (6.5) and the definition of V; that if we define the operator A; ¢ : (W§')? —
L2A* as 7
i) = w09 (0)
A = Pe(db)” (0 0O
() = wetan) @ ) (¢

_ <T_{ " > e(d0) (9 ) (f}) ,

then Ay ((ZP7) = V7. Observe also that Lemma shows that we may realize ZP¢ in this

identity as the space Q(Z”’q) and use ZP7 as a parameter space for le ’Zq. This has the advantage
of reducing the operator Dy, in ([5.23]) to diagonal form.
We therefore define the modified intertwining operator A; ¢ by

(6.15) Avei=A14Q) 7, Zr— Vi

(6.14)

By (5:23), Lemma [5.11] and Lemma [6.5] we have

(6.16) ApAiyg = A1,£<Ah —T? 4+ l(n —k+0) + <marr m (1 p> )
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This suggests to further introduce the operators Afz acting by

_ 0 _
(6.17) At = (§) = Qe i =i () = @,

with QF as in (6I3). The following proposition is then immediate.
Proposition 6.6. The space le kq decomposes as the direct sum

Vf%q — AIZ(Wé}’q) + A;Z(Ep’q) .

Moreover, the linear mappings
AD Wt — AIZ(W(‘?"]), 10" =P — AiZ(Ep’q)
are bijective, and the following identities hold, on W' and EP1 respectively:
(AT ) T TARAT = L—=T? +i(g—p)T +L(n—k+€) +m
+VL—=T?+i(qg—p)T +m?,

015 (A7) "ARAL = L=T? +i(g—p)T +(n—k+{) +m
—V/L—T2+i(q—p)T +m? .
Define
(6:19) VI = AL WS VT = AL E).

It should be stressed that up to this point we have not yet shown that the subspaces le f’+

and le ’Zq’_ are mutually orthogonal. This fact will be a consequence of the analysis of the
intertwining operators of the next section, see Lemma

7. UNITARY INTERTWINING OPERATORS AND PROJECTIONS

The intertwining operators for A that we have defined in the previous section where non-
unitary and unbounded. In order to verify that the forms to which A, when restricted to the
subspaces Vi, le ’gq’i and V2p 7, had been reduced on the corresponding parameter spaces by
means of the formulas (6.1]), (GI8) and (6.3]) are indeed describing the spectral theory of A on
these subspaces, we need to replace the previous intertwining operators by unitary ones. Our
next tasks will therefore be the following ones:

(1) replace these intertwining operators with unitary ones;
(2) determine the orthogonal projections from LZAF onto Vé”q,Vf”g’i and Vg”g, the L2-

closures of the invariant subspaces V",V f’i and V).

These two tasks can be accomplished simultaneously by making use of the polar decomposition
of the intertwining operators.

We shall repeatedly use the following basic fact from spectral theory (compare [RS|] for the
case H = K).
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Proposition 7.1. Let H, K be Hilbert spaces and A : dom A C H — K be a densely defined,
closed operator. Then there exist a positive self-adjoint operator |A| : dom A C H — H, with
dom |A| = dom A, and a partial isometry U : H — K with ker U = ker A and ranU = ran A,
so that A = UJA|. |A| and U are uniquely determined by these properties together with the
additional condition ker |A| = ker A.

Moreover, |A| = VJA*A, U*U is the orthogonal projection from H onto (ker A)* = ran A%,
and UU* is the orthogonal projection from K onto ran A = (ker A*)*.

In order to pass from a possibly unbounded intertwining operator to a unitary one, we also
need the following general principle.

Proposition 7.2. Let Hy, Hy be Hilbert spaces and let Dy C Hy, Dy C Hs be dense subspaces.
Assume that for j = 1,2, S; : dom S; C Hj — Hj is a self-adjoint operator on H; for which D;
is a core such that S;(D;) C D;. Moreover, let A :dom A C Hy — Hj be a closed operator such
that the following properties hold true:

(i) Dy C dom A and A(D;) C Do;
(ii) A intertwines S1 and Sy on the core Dy, i.e.,
(71) AS1€E = S A€ for all € € Dy .

Consider the polar decomposition A = U|A| from Propositiof{7.1], where |A| = VV A*A, and where
U : Hy — Hy is a partial isometry, and assume furthermore that Dy C dom |A|, and that

(iii) |A|(D1) = Dy;
(iv) the commutation relation
(7.2) S1lAlE = |A|S:1€ for all & € Dy
holds true on the core Dj.
Then, also U intertwines S1 and Sy on the core Dy, i.e., U(Dy) = A(D;) C D, and
(7.3) US§ = SU¢E for all & € Dy .

Moreover, we have ran A = A(Dy1) = U(Hy), ker A = ker |A| = ker U, and P := UU* is the
orthogonal projection from Ho onto A(Dy).

Let us finally denote by S5 = SQ‘ the restriction of So to A(D1), with domain dom S§ =

A(Dy)
dom Sy N A(Dy). If we assume in addition that
(v) ker |A] = {0} ;
(vi) (I —iS1)"Y(Dy) C Dy ;
(vii) P(Dq) = A(Dy),

then U s injective, and we even have that U(dom S;) = dom S5, and

ST =US U on domS].

Proof. Let us re-write (1)) as
U|A|Slf = 52U|A|f for all £ € Dy .
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Applying (Z2]), we find that
USI(|AIE) = S;U(A[E)  forall € €Dy,

which implies (3] because of (iii). Note that U(D;) = A(D;) C Dy in view of (iii).

Since A is closed and Dj is a core for A, we have ran A = A(D;), and the remaining statements
about ran A, ker A and UU* are obvious by Proposition [Z.1

If we assume in addition that (v) and (vi) hold true, then clearly U is injective. Moreover,

((C3]) implies that

U(I —iS))¢ = (I —iS)UE  for all € € Dy.

Since U(D;) C Dy, by (vi) we then obtain that U(I —iS;)™1¢ = (I —iS2)~1UE for every & € Dy,
hence

(7.4) U(I —iS))™ = (I —iSy)~tU

on H;. Noticing that dom S; = ran (I —iS;)~!, (T4) implies that U(dom S;) C dom Ss, so that
U(dom S7) C dom S, and that (73] holds true even for every € dom S :

If 2 = (I —iS;) 'y € dom Sy (with y € Hy), then Uz = (I —iS3)"'Uy € dom So, and
(I —iS)Ux =Uy =U(I —iSy)x.

It therefore only remains to show that dom S5 C U(dom S}).
To this end, we first observe that, because of (vii) and (Z),

SoP(Ds) C S3A(Dy) C AS1(D1) € A(D1) = P(Ds).
Since S, is self-adjoint, this implies
SQP(DQ) g P(Dg) and (SQ(I - P)(Dg) Q (I - P)(Hg)

Assume now that € dom S NranU. Then x = Uy for some unique y € H;. Choose a
sequence {xy}, in Dy such that

Ty, —x and Sox, — Sox.

Since Sz, = So(Pxy,) + So((I — P)x,)), where the components in this decomposition lie in
mutually orthogonal spaces, we see that there is some z = Uw € P(Dy) C U(Hj) such that

Px, - x=Uy and S3(Pz,)— z=Uw.

We can write Px, in a unique way as Pz, = Uy,, with y, € D, since U(D;) = A(D;) =
P(Dy). Since U is isometric on Hj, we then must have that y, — y. Moreover, by (73],
US1y, = SoUy, = So(Pxy) — z, so that S1y, — w. This shows that y € dom Sp, hence
x=Uy e U(dom Sy).

Q.E.D.

Remark 7.3. If we do not require that the crucial commutation relation in (iv) is satisfied,
but that in addition to the conditions (i) to (iii) the natural assumptions Dy C dom A* and
A*(D2) C Dy hold true, then one can conclude that

(7.5) Si| A€ = |A]?S1€  forall £ €Dy.
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Indeed, then for £ € Dy and n € Dy, (1)) and (i) imply that (£, S1A*n) = (€, A*San), hence
S1A*n = A*Son for all n € Dy .
Combining this with (7]), we obtain S;A*A{ = A*AS; for every € Dy, which verifies (T.H).

One might hope that (7.2) would follow from (7)) by means of general spectral theory.
However, this hope is destroyed by a classical example due to Nelson (cf. [RS]), which shows that
condition (ZH) will in general not suffice to conclude that the operators S and |A|?> commute,
in the sense that their respective spectral resolutions commute. This, however, would be needed
in order to derive (Z.2)).

However, in our applications, S7 will turn out to be a scalar operator on the Heisenberg group,
and A a positive square matrix whose entries are scalar operators too, so that (7.2]) will easily
follow from formula (IZ7) for the square root of such a matrix.

In the sequel, by Py, : H — H; we shall denote the orthogonal projection from the Hilbert
space H onto its closed subspace Hj.

In our later applications of Proposition [Z.I the next observation will often facilitate the
computation of the corresponding operators A*A.

Lemma 7.4. Let H, K be Hilbert spaces and Hi C H and K1 C K be closed subspaces. Let
A:domA C H — K be a densely defined, closed operator, and assume that D C dom A is a core
for A. Assume furthermore that Dy := D N Hy is dense in Hy and that dom A; := dom AN H;
is mapped under A into Ky, so that the operator Ay : dom Ay C Hy — Ky, given by restricting
A to dom Ay :=dom A N Hy, is densely defined and closed.

Under these conditions, also A* is densely defined, and dom A* N K; C dom A]. We shall
further assume that € C K is a subspace of dom A* such that A(D) C € and A*(E) C D (so
that, in particular, & = & N K is contained in dom A} ). Then we have

ATAlf = PHlA*Af for all £ € Dy
In particular, if we know that A*A maps Dy into Hy, then ATA1§ = A* AL for every € € Dy.

Proof. Since A(Dy) C &1, it suffices to prove that A7 = Py, A* on &. But, if z € D; C
dom A;,¢ € & C dom Aj, then

(z, AT§) = (A1z,§) = (Ax,§) = (z, A¢) = (z, P, A”S).
This implies that A7 = Py, A*E, since D; is dense in Hj. Q.E.D.

7.1. A unitary intertwining operator for V.

We recall from the preceding discussion that the intertwining operator on V'? is ®, which
reduces to the identity on this space. Hence, this case is trivial.
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7.2. Unitary intertwining operators for V} f’i.

Our next goal is to replace the intertwining operators Aiﬁé from Proposition by unitary
ones. Recall from Proposition [6.6] and (G.I7) that

+ + P,q - =P
Al,f =A1,Q" dom Al =W domAu ==2P1
where, according to (6.14]),

e(df) e(d0)‘d

(7.6) Ave (z’ﬁT‘le(dH)z_l@@ + T e(dd)'D —itT'e(dh) 100 + T_le(d9)£ﬁ>

According to Proposition [[.2] we seek to define unitary intertwining operators U 1iz by defining

1

(7.7) U, = UPP* = A (AT AT, )

which are expected to be isometries from the closed subspaces W = WP, resp. ZP4, onto
their ranges Vp a9t Recall, however, that we have not shown yet that the latter spaces are
mutually orthogonal this will in fact follow easily from the subsequent discussions.

Now, since

(Afz)*Afz - Qi*( T,eAl,Z)Qi,
we shall begin by computing A7 ;A1 4.
Subsequently, we will compu"ce the product Q*A’{’ZAMQ, showing, in particular, that it is
a diagonal matrix. The diagonal terms will give the explicit forms of (Al )* “41 » whereas the

vanishing of the off-diagonal terms will prove the orthogonality of the spaces Vf’g % Since these
computations are tedious and unenlightening, we shall only state here the relevant identities,
postponing their proofs to the Appendix.

Let us set, for s +j < n,

jl(n — s)!

(78) Cs,j == m .

Lemma 7.5. We have that A} ;A1 = —Cs+17gT_2N, where

(OO -iT - T?) [
(7.9) N= ( OO OO+ iT — T2)> ‘

Lemma 7.6. Let R = —T72Q*NQ on (W}'?")?2. Then
o R 0
= ( 0 R22> !

Ry = (T +m)*(Ag +2m(2m — €)) +2(T +m)((2m — £)Ay — 2mT?)
+ Ag(Ag — T?) 4+ 2mlT? |

where
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maps W5 bijectively onto itself, and
Rop = (I' — m)z(AH +2m(2m — €)) = 2(F = m)((2m — )Ay — 2mT2)
+ Ag(Ag —T?) +2meT? |

maps =P bijectively onto itself, and is zero on C,WH* @ C’qW(?’q, the orthogonal complement of
EP1 gn W

Proof. The proof of the formulas for the components of R is postponed to the Appendix. Given
these formulas, we prove here the mapping properties of Rj; and Ros.

On W, Ry acts as a symmetric scalar operator. Since Ay = L+i(q—p)T, I' and —T7? are
positive operators, we have

Riy > (T +m)?(Ag +2m(2m — €)) — 4m*T? + 2mlT*
= (T +m)*(Ay +2m(2m — £)) — 2m(2m — )T
> 2m3(2m —£0) >0 .

It follows that the operators (Ri1)y. in (B also satisfy the same inequality from below,
and hence are invertible. Applying Lemma (ii), we obtain that Rj; admits an inverse
Rl_ll : S(] — S(].

We tensor with AP? and restrict Ry;' to WP?. By ([20), the composition §*Ry; can be
expressed as R};0%, with Rj; differing from Rj; in that Ap is replaced by Ay — 4T (also in
the expression of I'), and similarly for 0* Ry, 8*R1_11 and G*Rl_ll. Therefore, Ry; maps W}

bijectively onto itself.
As to Rgs, we first observe that

R11R22 =det R
=T (det Q)* det N

(7.10) =T —4TT)*(~T%)(Ay — T? + £(2m — £))0O
=16(Ay — T +m?)(Ay — T? + ¢(2m — ¢))OO ,

so that

(7.11) Ry = 16(Ay — T +m?)(Ay — T? + ((2m — ¢))OOR .

Moreover, by the injectivity of Rqq,
ker Rog = ker R11 Ry = ker J @ ker O .

In order to repeat the same argument used above for Ry, we start from the operator Roo =
Rao + 65,0C + 94,0C (with § denoting the Kronecker symbol) acting on scalar-valued functions.

By (ZII)), Ry in invertible on Sy and, after tensoring and restricting, it is also invertible on
WM. For & € =P,

E2_21R22§ = ;32_2115;225 =£.

The conclusion now follows at once. Q.E.D.
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Corollary 7.7. We have that
AL = ey, -

In particular,
+ Vx4 + = V¥ A-
(“41,4) Al,é - Cs+1,éR11 > («4174) ‘Al,Z - Cs+1,€R22|5p,q >

and the subspaces Vf ’g’+ and Vf ’g’_ are orthogonal.

Proof. Obviously, R maps the subspace ZP4 of wp )2 into itself, so that the identities follow
from Lemma[Z.6land Lemmal[Z.4l The first statements are obvious. And, since the matrix Q*NQ
is diagonal, so is A} Z.Al ¢~ Thus, the map A;, preserves the orthogonality of the coordinate

subspaces W[ x {O} and {0} x 257 Q.E.D.

Let us finally compute U 1iz more explicitly. To this end, notice that if we combine the column-

vectors of operators Uliz to form a square matrix, then

1
(7.12) Urei= (U, Up,) = Avd( Al ).
Recall that we have set s =p+ ¢ and m = (n — s)/2.
Proposition 7.8. We have that

19 o= cchostan (82 32) (5 )
where

S11 = e(d)(-9QT +0Q7)

S12 = e(df)(—0Q% +0Q7)

So1 = £(00 — 80) — ie(df) [Ay + (T + m)(2m — 0)]
Sog = —£(00 — 00) + ie(df) [Ap — (I —m)(2m — ()]

(7.14)

and 311, X990 are given by
_1 7
Yn=Ry =T+ m)2(AH +2m(2m — €)) + 2(T + m)((2m — )Ay — 2mT2)

_1
2

+ Ag(Ag —T?) + 2meT?
(7.15)

Yoo = Rgf = :(r —m)?(Ag +2m(2m — €)) — 2(I' = m)((2m — {)Ay — 2mT?)

_1
+ Au(Ay —T?) +2m£T2} 2

Proof. From Corollary [(.7], we have

[SIES

1 _1
* —= 2 —
(A7 pA1e) 2 = Cs+1,zR )
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so that
_1

1 1
Ure = AeQ(AT pA1Le) "2 = ¢ 2 jA1L QR

~ (et 8 (&) (<R+O>‘% W ) |

We verify that the factor 77! in the second row is going to disappear. From Lemma [5.5, we
have

=

T~ dye(dd) (0 0) =T 'e(dd)" (O O) + T e(dd) " (90 —080) .
Let us define the matrix S by requiring that

e(d0)15 = (T_{ d?) e(do) (& ) <‘QQ§ _QQ:1> .

o e(d6)d e(d0)d -QF -Q7
~\ier—100 + T e(do)0 —itT 00+ T te(a)d) \ QT Q- ) -

Then

In particular,

S = e(d@)(—an + gQi)
Sia = e(d@)(—aQI_ + 5@:) .

Moreover,
Sor = [#T7100 + T 'e(d0)T) (—QF) + [ — T~ '00 + T 'e(d0)T| Q1
= ((00 — 00) — ie(d9) Ay — (T +m) [T~ (00 + 00) + T~ 'e(dd) (0 — O)]
= 0(00 — 00) — ie(df) [Ay + (T +m)(2m — 0)] .
Finally, a similar computation shows that
Sgg = —L(00 — D) + ie(df)[Ay — (I —m)(2m — {)] ,

as we claimed.

=

In order to conclude the proof, it suffice to notice that X;; = Rj_j , J = 1,2, where Rj; are

given in Lemma [7.0 Q.E.D.

We wish now to apply Proposition to .Afg. We restrict ourselves to A; ,, the other case
being simpler.

We set
Dy =EP9,  Hy =Ep4,
Dy = SoAF,  Hy = L2AF,
S1=D", Sy=A7y,
where
(7.16) D¥ =L -T?+i(g—p)T+Lln—k+0) +m+/L—-T2+i(q—p)T +m?

and denote by A the closure of A],. The commutation relation (ZII) is then satisfied because
of ([6I8]). Moreover, clearly So(Dsy) C Ds.
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Notice also that A maps Dy bijectively onto V"™ C Ds.
Next, according to Corollary [ A*A is a positive scalar operator, and so is S7. But then

also |[A| = VA*A =\ /e;110 R22 is a scalar operator, hence commutes with 57, so that condition
(iv) in Proposition [[.2 is satisfied too.
Conditions (iii) and (v) of Proposition[7.2 follow from Lemmal[7.6land condition (vi) is obvious.
Finally, our explicit formulas for U = U 1ein Proposition [[.8 show that here U maps the space
EP9 into SyA¥, so that U* maps SoAF into ZP7, and we see that P(Dy) = P(SyAF) = U(EP7) =
A<|A|_1(Ep’q)) = A(EP?) = A(D;). This shows that also condition (vii) is satisfied. =~ Q.E.D.

In the same way, we see that all the hypotheses of Proposition are satisfied by U, ,, and
as a consequence we obtain

Proposition 7.9. Uliz defined by (T7) maps W5, respectively =71, onto le’gq’i and intertwines

D* with Ay, on the core.
Moreover, Ufrz W — L2AF and U, : 5P — L2AF are linear isometries onto their ranges

qu+ and Vp D7 respectively, which intertwine DT resp. D™ with the restriction of Ay to
Vet e,

(7.17) Ak| :Ulj’EZDjE (Ufz)_l on domAk|

Vp,q,i Vp,q,i

Here, (U )" 1 denotes the inverse of U1 Y, when viewed as an operator into its range qu x

Finally, zf we regard of U 1¢ Gs an operator mapping into L?A*, then Pliz = Plpzqi =
U; Z(Ul )" is the orthogonal projection from L2AF onto qu x

. . . . p,q
7.3. A unitary intertwining operator for VM .

We next wish to replace the intertwining operator As ¢ from Proposition by a unitary one,
denoted by Us o = U}, which, according to Proposition[7.2}, should be given by A274(A§’£A274)_%.
In fact, it will be convenient to modify this expression introducing the unitary central factor
o(T) =4i71T/|T).

Recall that the non-unitary intertwining operator A, from Z”9 to Vg ’g is

Ayy = Be(dd) (30 09) = <T_{ d’h) e(d)’ (90 00)
(7.18) B e(dh)*do e(dh)* 00
= <T—1d;e(d9)féa T—ld;fe(de)fw) '

Since Ay acts on ZP9, the identities in Lemma [5.5] in combination with (L20) imply that
djre(d0) 00 = e(df)"[(T + itT)d — (O +4T)9)] .

Analogously, - B
51e(d9) 00 = e(df)* [(O — itT)d — (O —iT)0)] .
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Therefore,

00 00
(719) Az = e(dd)’ (T‘l (@ +itT)0 — (@ +iT)d] T-'[(@—itT)d — (T - z’T)@]) :
Lemma 7.10. We have
(i)

E E
* _ 2. —2 (B Eng
A27ZA274 = —Csp10T "E = —cs11 /T <E21 E22> )

where
Ey =00y —T?) +i(0+ )TO[Ay —T? —i(n —s — (- 1)T] ,
(7.20) Eiy = By = —00(Ay —T?)
By =00(Ay —T%) —i((+ 1)TO[Ay = T?* +i(n — s — £ — 1T ;

(A3 As)? = |—VTC|71A_"; B -1V 0DaA 1]

with E as above.

1
Moreover, (AS’ZAQ’[) 2 maps ZP1 bijectively onto itself, and, on ZP1,

_ 1 -
(AS,ZAZZ) = M )

el VDA

[NIES

where M and A’ are given by

S 11\, (M 0
M =00(Ay —T?) (1 1>+< 0 M22>,

with
o My = —i(¢+ 1)TO(Ay — T?) — T° (cﬁ + \/CDEA//) ,
7.21
Mz = i(¢+ )TO(Ay — T%) = T2(c0+ VeODA") |
- A= (2DE — e+ 1)2T2) (Ay —T?) — T2( S 2x/cDﬁA"> ,
' A= A —T? 4 ¢,
and

ci=l+1)(n—s—L—1).
Proof. The proof of the formulas is postponed to the Appendix, where we also prove the identity
(7.23) det B = cT00(Ay —T? +¢) .

1
Hence we only prove here that (A; ZAg,g) 2 maps ZP1 bijectively onto itself, assuming the

validity of (L20]) and (Z.23]).
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We can factor E as

E=-T? <E %) E'

where
det B =cA” > >0.
Applying Lemma as in the proof of Lemma [Z.6] we can conclude that the operator

2 O+ dp0C 0 ,
E= T< 0 T+o,00)F

maps bijectively (W] )2 onto itself. Restricting to ZP4, we obtain the conclusion. Q.E.D.

Some cancellations occur when we proceed to computing the matrix product AMM , as the
next lemma shows.

Lemma 7.11. We have that

~ P P
Ag oM =: e(d)'TP = e(df)'T | ) 12>
20T = e(dd)TP = eat)'T (1 7).

where

(7.24)
P =P =80 [z(e +1)0(Ay — T2) + T(dd+ \/CDEA")} —e(d0)0O(Ay — T?) ,
Py = Py = —8[cﬁ(AH ~ T+ @O+l +1)T) (O + \/cDﬁA”)] +00(cd+ vV cOOA") .

All A12

Proof. Let A = <A21 Aoy

T-YAM. Then

) denote the matrix on the right hand side of (ZI9), and set P =
90+ 090 00 + 00
i(l+1)(0—-0) —i(f+1)(0—09)

+ éaMll B 8_(‘§M22
T @ +T)d — (O +i7)d| My, T~ [(O — ilT)d — (O — iT)3] My,

where by (LI2) 90 + 00 = —Te(df). This implies that
Py = =00]i(t+1)0(Ay — T2) + (0 + vVODA") | - e(ag)00(A g — )

AM = ( ) O0(Ay —T?)

and Pj = Py1, which proves the statements about Py; and Pjo, and
Py =iT (¢ +1)(0 — 9)O0(Ay — T?)
+ 2@ +it)0 — (O +T)3| | — ife + DTO(Ay — T2) = T2(0 + VeODA")]

where P22 = P—21
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Next, using (L20) and the identity (5.19), with s = p + ¢ in place of k, we have
Py =T Y0+ 1)(0 — 0)00(Ay — T?)

+ T a@ +i(e+1)T) - 90| | i(e + DT(Ap — T) = T(dD+ VeODA")|

- [z’T‘l(@ — )0 — T 90+ (0 +1)0 + z'T_15D] (¢ +1)T(Ay — T?)
~ [o@+i(e+1)T) - 80| (D + VeODAY)

— c00(Ay —T?) — [a(i i+ 1)T) — 55} (T + VeODA")

= —8[ci(AH — T+ @O+ it +1)T) (O + \/ﬁ)] +80(dd + VedA")

This proves the lemma.

Q.E.D.

From the previous results we immediately get an explicit formula for Us ¢, at least when p # 0
and ¢ # 0. However, if p = 0 or ¢ = 0, our formulas, when properly interpreted, persist, and we
obtain the following result:

Recall that if p = 0, then XP¢ = (I — C)XP9, and if ¢ = 0, then YP4 = (I — C)YP4. Let us
correspondingly put

if p > — O ifg>
U, = - %fp_l’ U, = E/ ?fq_l’
O ifp=0, O ifg=0,

so that [, is always invertible on X?9, and [J, on YP¥.

Proposition 7.12. The operator Us g, which acts on ZP4, is given by

e(df)* 1
7.25 Up = H :
(7.25) 207 Jeiie ANAY

where the operator matrix H = <H21 I 2> is defined by

(NI

Hyy =T = —RR(O+iT)} [i(¢ + )02 (A — T?) + T(cO* + 3 VeA) |

[NIES

Hoy = Hyy = — [cﬁ? (A =T+ @O +i(t+1)T)(cO? + D%\/CN)]
_ _1
+R(cO02 + 002 VeAr) |
and where A', A" and ¢ are given by Lemma [7.10}

Finally, we have the following analogue of Proposition
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Proposition 7.13. The operator U in Proposition [7.13 maps the space ZP? onto Vzpf and
intertwines D := Ao +i(q —p)T + ({ + 1)(n — k + £ + 1) with Ay, on the core. Moreover
Usy: ZP9 — L2A¥ is a linear isometry onto Vg’g which intertwines D with the restriction of Ay

to Vg:g, i.e.,

(7.27) Ak‘ =Us D (Ug,g)_l on dom Ak‘ .
Here, (Uu)_1 denotes the inverse of Us ¢ when viewed as an operator into its range Vg’g.
Finally, if we regard of Us 4 as an operator mapping into L2AF | then Py = Pf’; = U (U p)*
is the orthogonal projection from L*A* onto V'[.

Proof. This will follow by applying Proposition to Ag . To this end, we set

Dl e Zp’q’ Hl — vaq’
Dy = SoAF,  Hy = L2AF,
S1=D, Sy=Ay,

and denote by A the closure of Ay, on ZP4. The commutation relation (ZII) is then satisfied
because of ([G.3)). Moreover, clearly Sy(D2) C D, and A maps D; bijectively onto V3! C Ds.

Next, according to Lemma [T.T0] A*A is a positive matrix with scalar operator entries, and
S; = SiI is a scalar operator. But then also |A| = vV A*A is a matrix with scalar operator
entries, hence commutes with S;7, so that condition (iv) in Proposition is satisfied too.

In order to verify conditions (iii), (v) and (vi), we can make use of the joint spectral theory of L
and i~!7T described in Section[@ Indeed, it is immediate by means of the spectral decomposition
of Sy that (vi) is satisfied.

Moreover, |A| maps ZP? into itself; this can be verified as follows:

The formula for |[A| = (AE,ZAM)% in Lemma shows that it suffices to prove that the
operator matrix £ maps ZP¢ into itself. This in return will be verified if we can show that
E15 maps YP7 into XP4, and Fo; maps XP7 into YP4. But, according to Lemma [I12.3] in the
Appendix, OO maps W into 2P, so that the latter claims are immediate.

And, the formula for A’2‘7 sAs ¢ in Lemmal[.10lin combination with Lemma[I0.91and Plancherel’s

theorem shows that A7 jAs, = |A|? has a trivial kernel in L2, and then the same applies to |A],
which proves (v).

Finally, our explicit formulas for U = U, in Proposition show that U maps the space
ZP9 into SyA*, so that U* maps SyA* into ZP9, and we see that P(Dy) = P(SyA*) = U(ZP9) =
A(|A|_1(Zp’q)) = A(ZP1) = A(Dy), where P = UU*. This shows that also condition (vii) is
satisfied, which concludes the proof of Proposition

Q.E.D.
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8. DECOMPOSITION OF L2ZA¥

We are now in the position to completely describe the orthogonal decomposition of L2A* into
Ap-invariant subspaces and the unitary intertwining operators that reduce Ay into scalar form.

Theorem 8.1. Let 0 < k < n. Then L*A* admits the orthogonal decomposition

81 A= YT wpre YT ST were 37 v

ptg=k<n e=t p+q+20=k—1 ptq+20=k—2
p+g=n, pq=0
b D D b
o X0 mpreX ¥ omire B vy,
p+qg=k—1 e==% ptq+2l=k—2 p+q+20=k—3

where R = Ryp_1 denotes the Riesz transform.

Proof. This follows immediately from (5.10), Proposition 513l and Proposition 5], since, accord-

ing to Lemma [44] Rj_1Rj_> = 0. Q.E.D.
SUBSPACE SCALAR FORM INTERTWINING ORTHOGONAL
(WITH DOMAIN) PROJECTION
Vo I [—RR* =y Pt
pP+ag=k<mn, Ao +i(g —p)T D,q 1Yepq
orpg=0if p+qg=n) (Vo) _ZPZ,’Z
P, R RR* — Y. RPPP*R*
e Ao +i(g—p)T o 2 R
(p+a=k—1) V5 — 2 REJ/R
Vf’g’i Ao +i(q—p)T + =52 +Ll(n—p—q+ 1) U{),Zq,i Plp,lq,i
(p+g=k—-20-1) :t\/Ao V(g —p)T + (n,g,q)z (WE1| resp. =Zr4) (Prop. [Z9)
i(q — n—p—q oy
R fo’i AO - Z(q p)T * 2 + e(n P ¢ + é) RU{),Y;’:E R PP»Q,:ER*
— = Ng
(p+q—k—2f—2) :t\/Ao-‘rZ(q—p)T-’-(nigiq)z (Wg’q, resp. :p,q) !
P,q
ypd . Uz pra
, No+i(g—p)T+ L+ 1D)(n—k+0+1 2L
(p+qg=k—20-2) o+ilg—p) ( ) ) (Z7) (Prop. [12])
RVPY RU;’;
2,0 Ao+i(qg—p)T+ (L+1)(n—k+0+2) RPPIR*
(p+q=Fk—20—23) (Z) ,

TABLE 1. Components of L2Ak, 0<k<n



HODGE LAPLACIAN ON THE HEISENBERG GROUP 55

The Hodge Laplacian Ag leaves all the subspaces in this decomposition invariant, and we have
seen that, after applying the unitary intertwining operators derived in the previous sections, it
will assume a scalar form on each of the corresponding parameter spaces.

In Table [l we list these subspaces, the corresponding scalar forms of Ay, the associated
unitary intertwining operators as well as the orthogonal projections onto these subspaces.

By J, we denote the inclusion the operator of a given subspace into L2A*.

8.1. The x-Hodge operator and the case n < k < 2n + 1.

We now remove the condition 0 < k < n and prove a decomposition theorem for L2A* also
in the case n < k <2n + 1.

We are going to use the x-Hodge operator defined on an arbitrary Riemannian d-manifold M,
acting for each point m € M as a linear mapping

w0 AR Ad-K

where AF denotes the k-th exterior product of the dual of the tangent space at m. It will be
viewed also as a linear mapping acting on forms on M. For its definition and basic properties
we refer to [Ra]. We summarize the main properties in the following statement.

Proposition 8.2. The x-Hodge operator is almost involutive, i.e., , x(xw) = (—1)k(d_k)w, and
the following properties hold true:

(1) for wy,ws € L2AF(M),
/ w1 A %3 = (W1, W) 124k ;
M

(2) as a mapping * : L2A* — L2A%"F the operator * is unitary;
(3) d* = — xdx;
(4) *Ak == Ad—k*-

In our situation, M = H, and d = 2n + 1.

It follows from property (4) above that a subspace V C L2AF is Ag-invariant if and only if
%V C L2A%F is A,_j-invariant. Thus, we wish to describe the Ag-invariant subspaces of L2AF,
when n < k <2n + 1.

We denote by A@ the space of vertical k-forms, that is, the forms w = 0 Aws, with ws € A’;{l,
and by p = 6 Adf A --- A df the volume element on H,. Similarly, ug = dfd A --- A df will
denote the corresponding volume element on the horizontal structure. In the same way as the
x-Hodge operator on H,, is determined by the relations o A *w = (o,w)u for all o,w € AF we
can introduce the *-Hodge operator xp acting on the horizontal structure, by requiring that
o Axp@ = (o,w)py for all o,w € Ak,

The following results are easy consequences of these defining relations.

Lemma 8.3. Let w € SOA’}_I. Then the following hold true:

(i) if we put ' := (—1)* xg w, then *w = O A W';
(i) *gw = *(0 Aw).



56 D. MULLER, M. M. PELOSO, AND F. RICCI

We set
(8.2) VT/QSZ {w' € SA™*: 0w = 0w’ =0}
and define
zZyt = {w =0ANW € SOA{“/ C W EVT/;’S } ;
(8.3) 70 ={w=0Auw €SA} 1 W =00+ 01, 0,7 Eﬁ/gs I

% TS

Zyt={w=0Au € SA} : W =000 + 0*0*1, o, T €W, |-
We also set
(8.4) o =i(do) 'zt j=1,2.
Notice that Z° is a subspace of SyAY,, where k = r+s+1, Z]"* C SyA}, with k = r + s, and
Zy® C SoAY with k = r+ s — 1. Therefore, Z;”; C SoAY where k=r+s+1—7—2(,j=1,2.
Observe also that from (L21]) it follows that w € SoA*, w = w1 + 0 Aws is d-closed if and only
if wy = T_ldeg.
The mapping ®: SOA{“/ — (SoA?F) 41 defined by
o OAS) =T ldyw +0 W,
where w' € SyA%;, is an isomorphism.
Lemma 8.4. The following properties hold true:
(i) *(LzAk)d_CX = (LzAd_k)d*_Cx and *(LzAk)d*_d = (LzAd_k)d_Cl;
(ii) if w € SoA%;, then *®(w) —0 (xw) .
Moreover, if for given p,q we put r =n — q and s =n — p, then
(iii) «*(W3?) = Zy*®, hence *(VE) —d (Zy*);
(iv) *(WP9) = 205, hence #(VP9) = (273);
(v) «(WE!) = Z3,, hence =V} — (Z37)-
Finally, the spaces Z;’;, J = 1,2 are non-trivial, and Zy* are non-trivial if and only ifr+s > n
or, ifr+s=mn, rs =0.

Proof. Property (i) follows from Proposition B2 (3).
If w € A¥, we shall put

W= (=1)* xp w,

so that according to Lemma B3], xw = 6 A w'.

Then
#®(w) = +w + *(0 AT djw) = xw + T sy djjw

= *xw + (_1)(2n_k+1)(k_1)+1T_ldH W
=0AW +T Mdgw',
which proves (ii).
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Using Lemma B3] the fact that (on horizontal forms) 9* = — *y dxg and the analogous
formula for 0%, for w € W}"? we obtain

sw=0AN (1P xgw=0A,

where here W’ € SyA™® and dw’ = Jw’ = 0.
This shows that (W) C Zj®, and in a similar way one proves that x(Z;°) c Wl
Combining this with (ii), we obtain (iii).

Next, if w = 9¢ + 9n, with £, € W%, then
sw = (—1)k0 A x5 (8E + On)

(8.5) _ _
=O0N(O" *g &+ 0" xgn) =0 (0°c+0"T)

% 1,8 _
where o, 7 €W, , hence O A (0*o+0*7) € Z°. This shows that «(W1"?) C Z*, and in a similar
way one proves that x(Z]°) C W, and we obtain (iv) in the case ¢ = 0.

For the general case, we observe that, for all test forms w and o,

/ o A kpild0w = (o, i(d0)w) = (e(df)o, w)

:/e(d@)a/\*Hw:/a/\W.

It follows that
xpri(df) = e(df)*p and xpe(df) =i(do) xp .

Hence, if w = 0¢ + On, with &,1 € W,
*@(e(d@)éw) —0 (* e(d@)éw)
= (=1)*0 A xge(dd)'w + (—D)*Ttdy +5 (e(d)'w)
= (=D)*ONi(dO)" xg w + (—D)PT dyi(dO) xpg w
—3 (i(d0)0 A w)

where 0 Aw' = 0 A (0% 0 + 0*1) € Z°, with 0,7 as in (). This shows that x(WF]) c Z]"},
and in a similar way one proves that *(Z;”)) C W/, and we obtain (iv).
The proof of (v) follows along the same lines and is therefore omitted.

The proof about the non-triviality of these subspaces follows from Propositions [5.3] and [5.4]
Q.E.D.

Definition 8.5. When r + s > n we set
YOO =0 (Z5°) = 250 YIPE = (Z15) . Yy =0 (25)).

and denote by YT(,°, Tg"Z’i respectively Y5 the closures of these spaces in LZA*.
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Let us finally observe that, in view of Lemmas[4.4] and B.2] the Riesz transforms on H,, satisfy
*Rop—k(w) = — Ry (+w).

Then, from Theorem B1], Lemma and Proposition we immediately obtain the following
decomposition of L2A* into Aj-invariant subspaces when n < k < 2n + 1.

Theorem 8.6. Let n < k < 2n+ 1. Then L2A* admits the orthogonal decomposition

B0 A= 3 Tred Y tie 3T

r+s=k—1>n e=+ r+s—20=k r4+s—20=k+1
r4s=n,rs=0
Dk ~nmys @ @ % AAT,S,E ® * ART,S
e TR e YU O rRT e Y RYY
r+s=k e=+t r+s—20=k+1 r+s5—20=k+2

where R* = Ry ;.

Moreover, since the x-Hodge operator transform the subspaces in this decomposition into the
corresponding subspaces in the decomposition given by Theorem[8 1, with p := n—s and q := n—r,
the unitary intertwining operators which transform A on each of these subspaces into scalar
forms are simply given by those from Table [0l at the end of Section [8, composed on the right
hand side by the x-Hodge operator, and similar remarks apply to the orthogonal projections and
scalar forms.

9. LP-MULTIPLIERS

The decomposition of L2AF presented in the previous sections, together with the description of
the action of Ay on the various subspaces, can be used for the LP- functional calculus of Aj. For
this purpose, we are going to show that LPA* admits the same decomposition when 1 < p < .
Concretely, this means proving that the orthogonal projections on the various invariant subspaces
and the intertwining operators that reduce Ay to scalar forms are LP-bounded.

9.1. The multiplier theorem.
The joint spectrum of L and i~ T is the Heisenberg fan F C R? defined as follows. If
lee ={(N§) 1 & =x(n+2k)A A e R},
then

F={JWhs+ Ul ).
keN

The variable A corresponds to i~ '7 and ¢ to L, i.e., calling dE(), &) the spectral measure on
F, then

1 o o
i T_/FAdE(A,g), L_/ngE(A,g).
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If m is any bounded, continuous function on R x R*, we can then define the associated
multiplier operator m(i~'T, L) by

m(—\T, L) = /F m(\€) dE(N, &),

which is clearly bounded on L?(H,,).

It follows from Plancherel’s formula that the spectral measure of the vertical half-line {(0, &) :
¢ >0} C F is zero. A spectral multiplier is therefore a function m(\, &) on F whose restriction
to each {j is measurable w.r. to dA for every k.

We shall use the following results from [MRSIl,[IMRS2] concerning LP-boundedness of spectral
multipliers, see also Section 5 in [MPRI].

Given p,0 > 0, we say that a measurable function f(\,§) is in the mixed Sobolev space
L?_ =1L%_(R?)if
p,o p,o

13, = [ QHIENP 0+ N+ VP OP X e

= cl[(1+ [9])” (1 + |0x] + 9)7 f1I3 < o0 .

(9.1)

Let ng € C§°(R) be a non-trivial, non-negative, smooth bump function supported in R :=
(0,00), put n1(x) := no(x) + no(—x) and set x := n1 @ no. If f(A,§) is a continuous, bounded
function on R x R*, then we put f7(\,&) = f(riA,r€), r = (r1,r2) € (R%)?, and say that f
lies in L2 (R x R%) if for every r = (r1,73) € (R%)?, the function f"x lies in L%,o’ and

p,o,sloc

(9:2) £l 2

p,o,sloc

= sup [/ xllpz,, < oo
T

Definition 9.1. A function m satisfying ([@.2)) is called a Marcinkiewicz multiplier of class
(p,0). A smooth Marcinkiewicz multiplier is a Marcinkiewicz multiplier of every class (p, o), i.e.,
satisfying the pointwise estimates

(9.3) |R0Em (N, €)] < Cinl AT JEl "
for every 7, k.

Theorem 9.2. ([MRS2]) Let m be a Marcinkiewicz multiplier of class (p, o) for some p > n
and o > %.Then m(i~1T, L) is bounded on LP(H,) for 1 < p < oo, with norm controlled by
|2

p,o,sloc

9.2. Some classes of multipliers.

We introduce the classes U577 of (possibly unbounded) smooth multipliers, in terms of which
we will understand the behavior of the projections and intertwining operators presenteded in
the previous sections.

These classes are defined by pointwise estimates on all derivatives, in analogy to (@.3)), which
must be satisfied on some open angle I',,_. := {(\,¢) € R? : £ > (n — ¢)|A|} containing the
Heisenberg fan F' taken away the origin.
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Definition 9.3. We say that m € V77 (p,o,7 € R) if

grik for € <1

J ok )
(9.4) [030em(\.©)] {(5 FA2)PTEgoR for >

for every j,k € N. We also say that m € *U27 if m € W27 and, moreover,

' for & <1

(9.5) m(\§) 2 {(5 F AP foré>1.

Prototypes are given by the smooth functions m such that

€ +pr+ary)T for £ <1
e {(é A€+ N for&>2,

with |p|, |¢| < n. The following properties are easy to prove.

Lemma 9.4. The classes V27 satisfy the following properties:

(i
(i

1
2:9

MU C W27 9wl C whot

/ / / !
PO P o p+p'oto’
et vl ;

(iv

(v

ifp+o<p+0d,2p04+0<2p+0" and T > 7', then V9 C \Ilﬁi’al.

of Marcinkiewicz multipliers.

Remark 9.5.

)
)
(iii) if m € *U27 and then m® € U™ for every s € R (for s € N, m € W97 is sufficient);
)
)

In particular, if p+0 <0, 2p+0 <0 and 7 > 0, then V27 C \1'8’0, and V27 consists

(i) Observe that if x is a smooth cut-off function on R, compactly supported on R\ {0}
and with 0 < x < 1, then n = x(§{/|\|) and 1 — 7 are in \Pg’o. By Lemma [0.4] (ii),
multiplication by 1 or 1 — 7 preserves the classes U2°. This property provides a certain

amount of flexibility, of which we give two examples.

(ii) If we are given a multiplier m, which satisfies the inequalities (@.4]), but is only defined
on an angle I' leaving out a finite number of half-lines ¢; 1 of F', we can easily extend m

to a multiplier in ¥2? which vanishes identically on the missing lines.

(iii) Property (iii) in Lemma [3:4] also applies to the situation where s > 0, (@.35]) only holds
on an angle omitting a finite number of half-lines in F, and m vanishes identically on

these half-lines.

We denote by the same symbol U2 the class of operators defined by the multipliers in this
class. For notational convenience, we shall often use the same symbol to denote an operator

M € ¥27 and (a convenient choice of) its multiplier M (), €).
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10. DECOMPOSITION OF LPAF AND BOUNDEDNESS OF THE RIESZ TRANSFORMS

Since the letter p is already used to denote degrees of differential forms, the summability
exponent will be denoted by 7.

If V is any of the spaces Vi, Vf ’g, T‘T’g, etc., by "V we shall denote the closure of this

space in L"A*. Our goal will be to prove the following theorem, whose parts (i) and (i) extend
Theorems Bl and .13

Theorem 10.1. Let 1 <7 < 0.

() For 0 < k <n, L"AF admits the direct sum decomposition

(10.0) A= 7 npag 3T ST rppas g 307 rypa

p+g=k<n e=t ptq+2l=k-1 ptq+20=k—2
p+g=n,pq=0
@ @ @ @
7y)P>q rY)P,4q,€ T\ )P-4
) E R _1"Vy" @ E E Ry VL@ D E Ry V2,Z ,
p+q=k—1 e=% ptq+20=k—2 p+q+20=k—3

_1
where Ry = dA, ?, is the Riesz transform;
(ii)x Forn+1<k<2n+1, L"A* admits the direct sum decomposition

(o2) LA = 3 e} 3 e 3T

r+s=k—1>n e=+t r4+s—20=k r+s—20=k+1
r4s=n,rs=0

(S5} @ S5} @
® E R*TTS’S &) E E R*TT;"Z’E &) E R*"Tg’j ,
r+s=k e=*t r+4+s—20=k+1 r+s—20=k+2
where R* = R}, .
k+1

(iii) For 0 < k < 2n, the Riesz transform Ry, is bounded from L"A* to L™ AR+

By L"-boundedness of the x-Hodge operator, we can restrict ourselves to the case 0 < k < n.

The proof is based on the following lemma.

Lemma 10.2. Let U = <511 512> denote any of the operators UV} in (TI) or UL’} in (T28)).
21 Uaa ’ ’
Then each component U;; of U consists of a multiplier operator in \1'8’0, possibly composed with
powers of e(df) and the holomorphic and antiholomorphic Riesz transforms R, R.
In particular, for 1 < r < oo, all these operators are L"-bounded on the spaces of differential
forms of the appropriate (bi-)degrees.

This lemma will be proved in the last part of this section. Taking it for granted, we give the
proof of the theorem.
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Proof of Theorem [I0.1. We prove the two parts of the theorem simultaneously, via the inductive
steps ((),_; + (ii),_;) = (i), = (ii),. The statement (i), is trivial, and (ii), and (i), are
proved in .

Assume that (i), _; and (ii),_, hold, and consider anyone of the orthogonal projections in the
last column of Table [l This is a product (or a sum of products) of factors, each of which can
be either Rj_q, or its adjoint R;_,, or P = UU*, U being one of the operators in Lemma
Then (i), follows easily.

We prove now the implication (i), = (ii),. Factoring

_1 L1
Ry =dA,? = RoAjA, *
11
and using (ii),, it suffices to prove the boundedness of AjA, * on LAk,
Referring to the decomposition (IILI), we disregard the d-exact components of L"A* (i.e.,
those with Ry_1), on which Ry = 0, and adopt the simplified notation

©®
(LAY = 37 Vs
B

Denote by Ug :"Zz — "Vg the L"-closure of the unitary intertwining operator in Table [I]
with "Zg denoting the L"-closure of the appropriate space XP4, YP¢ or ZP4 in (5I6]). Let
Pg = UBUE be the projection of L"AF onto"Vg.

Decomposing w € L"A* as
w=D ws =D Usos,
B B

with og €"Z3, we have
11 1 _1
AZAPw =) AiUsD, 05,
B
where Dg = U gAkU 3 is the scalar operator appearing in (€1), (€3]), (€I8]). Explicitely,

Ao +i(g—p)T if "Vg ="V

Ag+i(qg—p)T +(n—k+0)+m=E/A+ilg—p)T +m?2

s R

Ao+ilg—p)T+{+1)(n—k+l+1) if TV =T VP

Dg =

Denote by mg be the spectral multiplier of Dg. Then, for each of the above cases,

E+ X+ (p—a)A ey’
EX-N+(p—QA+ln—k+0+m+ EFXZ+(p—gr+m2 e*uy”
mg=CE+ N+ P—@QA+Lln—k+0)+m—/E+ X2+ (p— A +m?

*\I/% Difr=0 , *\I/é’o otherwise
E+N+ - N+ U+D)(n—k+0+1) e,
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! 1o . —10 . ..
respectively. By Lemmal[0.4] (iii), D 2isin U 3 orin ¥, 2", depending on the case. Combining

2

together Lemma [[0.2] Lemma [ ( i) and (v), and the fact that the multiplier & + A2 of Ay is
1

in *\Ill , we conclude that the composition AjU, 5D : has all its components in \IIO 0
Therefore,

1
2

N7 2w|!r<ZHA2Uﬁ

< CZ loallr
E

< el -

asllr

Q.E.D.

10.1. LP- boundedness of the intertwining operators Uliz.
Our next goal will be to prove

Proposition 10.3. Assume that p+q+1+20 <n and 1 < r < co. Then there is a constant
C., so that

U €l < Crlléller for every € € WE,
U enllr < Crllnllr for every n € EP.
Proof. According to Proposition [[.8, we have to prove the L"-boundedness of the operators:
(i) 0QT %11, 0QT %11,

(i) (00 — 00)%X11, when £ > 1,
(iii) [Ag+ @2m =0 +m)| T,

defined on W™, with p+¢+2¢+1 < nin (i) and (iii), and p + ¢ + 2¢ < n in (ii), and of the
operators:

(") 0Q7 Y22, 0Q” Yy,
(ii’) (00 — 00)X99, when £ > 1,
(iii") [Ag — (2m — )T —m)]|Sas.

defined on EP4, with p+¢+2(+1 <nin (i") and (iii’), and p+ ¢ + 2¢ < n in (ii’).
Recall that if p = 0, then 9 = (I —C), and if ¢ = 0, then 9 = 9(I —C), so that, putting again

O, ifp>1 — O, ifg>1
DT’: ; %p_ ' Dr: —; %q_ ’
O, ifp=0, 0, ifqg=0,

we have

1
(10.3) §="R0Oz, §=RO?,
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where R and R are the holomorphic and antiholomorphic Riesz transforms of (&H), which
are known to be Calderén-Zygmund type singular integral operators, and consequently are L"-
bounded for 1 < r < co.

Moreover, observe that 00 — 90 = 200 + Te(df). Since this term appears only when £ > 1
and p + ¢ + 2¢ < n, we have p + ¢ < n — 2, which easily implies that the operator [J + iT is
injective on its domain in L?AP, so that we can factorize

1

_ 1 _ o
(10.4) 80 = RO?0 = RA@ +iT)2 = RR (0 +47)207 on WP,
_ _ _1 _
since, on the core, [J0 = d(LJ +¢T), hence [120 = 9(1J + ZT)%
Observe also that 24 = (I — C), — C)(W[™).

Thus it will suffice to prove that the following scalar operators are in \1’8’0:

1
(1) D%Q+zn, D2Q+EH, [Ag + (2m — 0)(T +m)] Sy, for £ > 0;
(H) (D + ZT)2E|2211, 1T211, for £ > 1;

() D%ngm ElQ_Em, [Ag — (2m — £)(T — m)| g2, for £ > 0;
Ir) O+ ZT)ﬂj?Ezz, ~IT%,, for £ > 1.

This will be a direct consequence of the following Lemmas [I0.4], I0.5] 0.6l on the basis of
Lemma Q.E.D.

Observe that m = (n—p—¢q)/2>1/2, 2m —¢>11in (I) and (I"), and m > 1, 2m —£¢> 1 in
(IT) and (IT).

Lemma 10.4. Assume that p+q+1 <n. Then the following hold true:
1
OR VR 1
(b) 02,02 € U2, and (0 +iT)2 € ¥)?;

2
(c) Ay € \I/?’l C \Ifl’ , Ay —al? € \II%’O for every a € C, and (A —T? +¢)* € \1/8“0 for
every ¢ > 0.

o

Proof. (a) is obvious.
As for (b), note that

(20)2 (A, €) = (€ — (n — 2p)A)2. We have
on an angle containing the whole fan if p > 1, and, if p = 0, on an angle avoiding just the
half-line £ = nA, A > 0. By Lemma [0.4] (iii), 02 € \111’2, and a similar argument applies to
_1 _ _
02 and (O + ZT)% Remark (iii) must be used for 02 when p =0 and for (J+ ZT)% when
qg=mn—1.

Moreover, (2 (E—H’T))%()\ £) = (§+(n—2q— 2))\)2 wherep+q+2 < n, hence 2(g+1) < 2n—2,
i.e., [n —2(q+1)] <n — 2. This implies that (OJ +ZT)2 € \I/ ’2
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Finally,
(10.5) Ar(A & =8+ p—aA~¢,
on an angle containing the full fan, which shows that Ay € \IJ(I)’I. In combination with (a) and
Lemma [0.4] this easily yields (c). Q.E.D.

According to (IILH), the quantity & + (p — ¢)A, which we will also denote by &, is comparable
to £&. We then set

(10.6) (A& = (E+ A2 +m?)z2 .

Let Ry be as in Lemma [T so that, according to (I3, ¥11 = Rl_l%.
Lemma 10.5. For p+ q+ 20 + 1 < n, the following hold true:
() T+m, QF, Q" e w2
(b) Ry € *\I/(l)’l, consequently Y11 = Rl_lé € \I/a%’_%
Proof. We have
TV €) = (E+ X +m?)z,
1.0

and, since £ ~ &, this shows that T’ € “Wg. Then (a) follows easily.

As for Ry, recall that
10.7) Riy = (D +m)*(Ag +2m(2m — £)) + 2( +m)((2m — £)Ag — 2mT?)
' + Ag(Ag —T?) + 2mlT? .

By Lemma[0.4] and in view of what has been shown already, we find that
170 170 1’0
Ry e 02 02wyt 4 w2700 4 ol te? 4wyt cwpt
Moreover, since here I' > 0, we have

Ry > T2(Ag +2m(@2m —0)) + 2m(—2mT?) 4+ 2mlT?
= (E+ X +m)(E+2m(2m — 0)) + 2m(2m — 0)|T|?
Z (N +DE+ D,
_1 11
which shows that also the estimates from below for Ry; hold true, so that R,;*> € ¥, *" *. This
concludes the proof of (b). Q.E.D.

Lemma 10.6. For p+ q+ 20 + 1 < n, the following hold true:

_ _ 1o
(@) I'—=m,QL, Q- € Vi 1 .
(b) Rgo € \I/%vl and Ygo(I — C), — C’q) - R2_2§(I —Cy—C) e 1§, .
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Proof. We have

0

P08 —m = E+N) (T8 +m) " e 0w =" wp?

Lol VI

By (ZI1), on W{* we have the identity
Ryy = 16(Ag — T2 +m?)(Ay — T? + ¢(2m — ¢))O0ORy; |
where

Ur? i L #0

2,2
U2 ifr=0 c ¥
2 _

(10.8) (Ap —T*+m*)(Ag —T?+((2m — ¢))00 € {

Applying Lemma [[0.5] (b), we obtain that Rgg € \Ifé’l.

To prove the last part of the statement, observe that the presence of the factor I — C), — éq
allows us, on the basis of Remark (ii), to restrict, if necessary, our analysis to an angle
omitting one of the external half-lines of F', where the multipliers of [J and [J are non-zero, and
their reciprocal satisfy (@) with p = 0 and 0,7 = —1. Each of remaining factors in (I0.8) is in
*\I/é’o, and this, together with Lemma [I0.5] (b), gives the conclusion.

Q.E.D.

10.2. LP- boundedness of the intertwining operators Us .
We next turn to the intertwining operator Us y. Our goal will be to prove

Proposition 10.7. Assume that p+q+2+2( <n and 1 < r < co. Then there is a constant
C, so that

1026 (€ mllir < Coll(§m)llr for every (€,m) € 279

In view of the explicit expression for Us ¢ in Proposition [[12] it will suffice to prove that the

operators \/Z,“A,, and \/iflA,, are L"-bounded on X9 and the operators \/% and \/% on

YP4 (notice the the multiplier o(7T) corresponds essentially to the Hilbert transform along the
center of the Heisenberg group, which is L"-bounded).

We shall prove the estimates on XP? only, since the estimates on Y4 follow along the same
lines.

Using again the factorizations (I0.3]), (I0.4]) by means of Riesz transforms, we see that we are
reduced to estimating the following scalar operators on X?¢ with respect to the L"- norm:
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_ 1 — 1 11
@+4T)202(Ag - T?) T@O+iT)207 DFO°(Ay - T?)

(111)

TOZ (@ +iT)}
T
) ﬁ%(AH—T2)7 (D+z(€+1)T)ﬁ%7 Déﬁj D,E%’
@+ i(¢ + VT)O;
\/E

Lemma 10.8. Let A', A" be as in Lemma[7.10, Then, the following properties hold:
(a) (A")* € U0 for every a € R;
(b) if ¢ > 1, then (A")* € U3 for every o € R;
(b) if ¢ > 1, then (A'A") 7% € vy

Proof. (a) is immediate from Lemma [10.4] (c).
As for (b), we first recall that ¢ > 0. Moreover, A’ has multiplier

E(g —(n=2p)A) (£ + (n—29)\) + (£ + 1)2)\2] €+ - A+ 2\?)

22 [eX? 4 \fe(€ = (1= 2DN) (€ + (0 — 20)0) (§+ (P — DA+ A2+ )

Here, £ = (n+2k)A\, k € N, and k£ > 1, if A > 0 and p = 0, since we are acting on XP¢. Since
we are also assuming that ¢ > 1, this shows that

(10.9) E—(n—2p)\~¢, E+(n—29)A~E.
By means of Lemma [[0.4] and Lemma [0.4] we thus easily see that
A e oY e e w0 (w0

,1) C \II;)’Q +‘I’z21’0 LU 1 C \I/é,2 '

NN
SN

Moreover, the inverse estimate (@.5]) holds true for p = 1,0 = 2 and 7 = 3 because of (I0.9)),
which yields (b). Finally, (c) is a direct consequence of (a) and (b). Q.E.D.
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The lemmata [[0.8] and [[0.4] now easily imply that

@ +iT)30 (A — T2)

11T g0 2\ )T g
(111) NN < i NN € i NN 1
1 _ 1
5 o L
TDT (D + ZT) 2 c \I’q’o :
VA 2
1 _ _1 1__
O2(Ay —T?) 01 (O+i(¢+1)1O2 1,1 020 ~1,1
(IV) NN €y 7, VAN €y 7, NN € 7,
_1 _ 1
2 ~11 ] 2 _11
0,0 e, O+i(¢+1)T)O7 cuy e

A /A/ A /A/
All these classes are contained in \Ifg’o, so that all these operators are L"-bounded Marcinkiewic
type operators, for 1 < r < oo. This proves Proposition [0.7 when ¢ > 1.

The situation is slightly more complicated when ¢ = 0. The problem is that the second relation
in (I0.9]) will fail to be true in this case on the ray
p={(N§):A<0and { =n|A[} CF

of the Heisenberg fan, on which the multiplier of OJ will vanish identically. If we remove this
ray, the preceding arguments remain valid and we get L"- boundedness of the restrictions of
our operators to the orthogonal complement of the kernel of O, i.e., on (I — C)(X?4). So, what
remains is the restriction on C(XP9). This corresponds to the restrictions of our multipliers to

1
the ray p. However, all of the multipliers listed in (III) and (IV) which contain a factor [J or [12
vanish identically on this ray, so what remains are the operators

1 _ 1
TOZ (@ +iT)? 4 B+ )no?
an .
A /A/ \ /A/
On the ray p, the multipliers of these operators are given, up to multiplicative constants, by

/\2

\/<c+ (0 + 1)2)A4 + (L4 1)2(n—p)AP

M1 =

and
A2

M2 = .
\/<c (D)X (L4 1)2(n = p)|AP

1 1
TOZ(O+4T)2 =
It is easy to see that these are Mihlin-Hormander multipliers in A, so that %C

1
O+i(e+1)1T)O7 5
G+ Z(\/%) O C are compositions of Calderén-Zygmund operators acting in the central

and



HODGE LAPLACIAN ON THE HEISENBERG GROUP 69

variable of the Heisenberg group with the singular integral operator C, which shows that they
are L"-bounded, for 1 < r < oo, too.

This completes the proof of Proposition [0.71

Finally, let us denote by p* the rays
pti={(NE) :E=ENA>0CF
of the Heisenberg fan F, and define for (), ) € F' the spaces

XPA(N, €)= {0}, ifp=0and (\¢)€p”,

A Lo if p=0and (\,€) ¢ p™, orifp>0,
YPA(N,€) = {0}, ifg=0and (N\,§) cp,

R o ifg=0and (\,§) ¢ p, orif¢g>0,

and

ZPA(\, €) = { (5) pe XPUN €, v € YM(A,g)}.

Lemma 10.9. For (\,§) € F let E(\,&) = <g;§§’8 gggi’g), where the Eyj are given

in Lemma [7.10. Then, when viewed as a linear mapping from the space ZP9(X,€) into itself,
E(X,€) is invertible for almost every (X, &) with respect to the Plancherel measure on F.

Proof. When (), &) € F\ (pT™Up™), then O(), €) # 0,00(A, €) # 0, and since, according to (Z.23)),
det E = ¢I'*O0A”, the claim is immediate.
Assume next that (A, &) € pT. Then, if p > 0, we can argue as before. So, assume that p = 0.

In this case, (X, &) = 0, ZP9(\,€) = { S) NS (C}, and F(\ &) = <8 E22€)\ §)> , where

Ex(\ &) = =i+ 1)(n — ¢)A(N —n + £+ 2). Since p + ¢ + 2¢ + 2 < n, the factor (n — q) is
non-zero, and the claim follows.
Finally, the case where (A, §) € p~ can be dealt with in a very similar way. Q.E.D.

11. APPLICATIONS

11.1. Multipliers of Aj.

We are in a position now to extend Theorem 6.8 of to forms of any degree. A function
p definied on the positive half-line is a Mihlin-Hérmander multiplier of class p > 0 if, given a
smooth function x supported on [%, 4] and equal to 1 on [1,2],

||:u||p,sloc = ig%)) H,U(t')XHL% < 00 .

Theorem 11.1. Let m : R — C be a bounded, continuous function in L%’SIOC(R) for some

p> (2n+1)/2. Then, for every k =0,...,2n+ 1, the operator m(Ay,) is bounded on LP(H,)A*
for 1 < p < oo, with norm controlled by |[m||,sioc-



70 D. MULLER, M. M. PELOSO, AND F. RICCI

The proof follows the same lines as in [MPRI].
11.2. Exact LP-forms.

As a corollary to Theorem [[0J] and its proof, we can derive the following extension of Lemma
4.2 in [MPRI].

Lemma 11.2. Let r be such that 1/2 — 1/r = 1/(2n + 2). If w € L?A* is such that w = du in
the distributional sense for some u € D'A*~1, then there is some v € L"A*~1 such that w = dv
in the sense of distributions. Moreover, w € Rj,_1(L?AF1).

Proof. Define
_1
= L7 2(L2A %)) R} _jw.

=

We have seen that the operator AgA, *

_1 i1 1
same is true for L%Akfl = (L%AO 2)(AGAL2). As in the proof of Lemma 4.2 in [MPRI], we
can thus conclude that v € L"A*~1. And, if ¢ € SA¥, then

1
*, is LP-bounded for 1 < p < oo, which implies that the

_1 1
(dv, &) = <wyRk—1(Ak_21L%)L_§d*§> = (w, R—1R;_1§) = (Rr—1 R 1w, ),
so that dv = Ry 1R} _jw € L?AF. By Lemma 4] this implies that
w = dv + RjRjw,

_1
and by the same lemma Ryw = A 2 dw, where dw = d?*u = 0 in the sense of distributions. This
implies that w = dv, and thus also that w € Ry_(L*A*~1). Q.E.D.

Corollary 11.3. Ifw € L?A*, then w € Ry_1(L?*A*=1) if and only if there is some u € D'AF~1
such that w = du in the sense of distributions.

Proof. One implication is immediate by Lemma To prove the converse implication, let
us assume that w € Ry_1(L?>A*~1). Then, according to Lemma F4] and Proposition @5, w =
Ry_1R;_,w. Moreover, if we define v as in the proof of Lemma [I1.2] then v € L"A*=1 and
dv = Rp_1R;_,w, hence dv = w. We may thus choose u = v. Q.E.D.

11.3. The Dirac operator.

2n+1

Let us denote by A = S.% A* the Grassmann algebra of b*, and by LPA = LP(H,)A =
k=0

2n+1

Z@ LPAF SA etc. the space of LP-section, S-sections etc. of the corresponding bundle over H,,.

k=0

The Dirac operator acting on SA is given by
(11.1) D:=d+d*.

Notice that D? = A on dom (A), that is, the Dirac operator D and the Hodge Laplacian A
commute as differential operators.
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However, in order to reduce the spectral theory of D to that one of A we need to show
that D and A strongly commute, in the sense that the all spectral projections in the spectral
decompositions of D and A commute.

Proposition 11.4. We have that D'=A. In particular, D and A strongly commute.

Proof. Recall from the previous section that the Riesz transform R = dA~% and its adjoint
1 1
R*=A"2d* = d*A™2 are LP-bounded for 1 < p < co. Let us put

= %(IiDA‘é) - %(Ii(R+R*)>.

One easily verifies that P} = Py and P; = Py, so that Py and P_ are orthogonal projections,
which are in fact LP-bounded for 1 < p < co. Moreover,

(11.2) DPy = A3 Py,

ie.,

Py

D=AP, —A3P_ .
Let A = f0+oo AdE(X), so that

1 “+oo “+oo _
A2 :/ VAAE(N) :/ sdE(s) ,
0 0
where E denotes the image of the spectral measure E under the mapping A — v/A. Therefore,
“+oo B “+oo B
D=AP, — AP :/ sd(BP)(s) —/ sd(B,P_)(s)
0 0

Now, if A C R is a Borel set, let us put
(11.3) F(A) := E(A})Py + E(-A_)P_,
where Ay := AN[0,+00) and A_ := AN (—00,0). Then F' is a spectral measure on R, and

+00
D:/ sdF(s) on SA .

Indeed, notice that, since the operators R, R* are bounded and commute with A on the core,
they also commute with the spectral projections E(B), i.e.,
(11.4) E(B)Py = PLE(B) .
Moreover, we clearly have
F(A) = F(A}) + F(A)
and Py P_ = P_P; = 0. This implies that F'(A) is an orthogonal projection, and that F' is a

spectral measure on R.
We set

(11.5) D= /+oo sdF(s) ,

—00

as a closed operator, and claim that indeed D = D.
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_ To verify this, denote by Dy the restriction of D to SpA. Since D = D on SA, we then have
Do C D C D, and clearly

D? = /+0032dF(s) = /O+Oo)\dE()\) =A.

—00
Thus, it remains to show that D C D.
Let £ € dom D. Tt suffices to assume that there is an interval I = [a,b], with 0 < a < b, so
that F(R\ K)¢ =0, where K = I U (—I); hence D¢ = [, sdF(s)¢.
Let ¢ be a smooth cut-off function, even, identically 1 on K and with support contained in
K'=T'U(-T"), where I' = [d/,0'] with 0 < @’ <a <b <. Then,

A = D% = /K 2P (s)¢ = /K S2p(s) dF(s)¢ = /0 TGO dEOVE

where 9 is a smooth function with compact support in K'? = {s2: sec K'}.

Hence, if Q := ¢(A) = fooo Y(A)dE()N), we have that A = AQE. Tt is clear that @ is given by
right-convolution with a Schwartz function, and that @ is U(n)-equivariant, hence it preserves
the core SyA for A.

Choose a sequence {&,} C SoA such that &, — & and AE, — AE.
Then {Q&,} C So, Q¢ — Q€ and AQE, — AE. Therefore, we may assume that &, = Q§,
and & = Q€. Then

Ate— ABQE = /0 M) dE(N)E

= Jm | A2p(A) dE(N)E,

= lim sp(s)dF(s)&,

n—-+00 0

Hence, by (IL3) it follows that
DE= lim D&, = lim Dyé, .

n—-+o0o n—-+o0o
This implies that SoA is a core also for D; hence D = Dy. We have thus seen that

E:/Jroode(s).

By (IL3) and (IL4) F(A) and E(B) commute; hence D and A strongly commute. Q.E.D.
Moreover, if m is a bounded, Borel measurable spectral multiplier of R, then

(11.6) m(D) = m(A2)Py + m(—Az2)P_.
As an immediate consequence of Theorem [[T.1] and Theorem [[0.0] we therefore obtain

Corollary 11.5. Let m : R — C be a bounded, continuous function in Lf),SlOC(R) for some

p > (2n+1)/2. Then m(D) is bounded on LP(H,)A for 1 < p < oo, with norm controlled by
Hme,sloc-
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12. APPENDIX

In this final section we collect some technical facts and proofs that we have previously set
aside.
We need some preliminary computations.

Recall first from Lemma that

(12.1) (0%, e(dB)"] = ilde(dh) =", [0%,e(df)"] = —ilde(dd)* ! .
Taking adjoints, this implies
(12.2) 0,i(d)"] = itd*i(de)* "t ,  [9,i(d0)] = —itd*i(dh) T .

Lemma 12.1. If o € keri(df) C A} and s +2j < n, then
i(df) e(df) o = cs jo
where the coefficients cs j are defined in (L8], i.e.,

gl n —s)!
T
Moreover, the following relations hold:
FCot1j—1 = Csj — Cst1,js Csj(n—s—j) = coy1(n —s), Jest1,j-1(n—8—J) = csq1,j -

Proof. Use formula (2.8) in to compute i(df)e(df)’o. Observe that w; there corresponds
to our o and the value k = p + ¢ there is our s + 2j. Therefore,

i(df)e(ddY o = j(n —s —j+ De(ddy o .
Consequentely,
i(d0Y e(df) o = j(n — s — j + 1)i(d6) te(dh)’'o
and the statement follows inductively. Q.E.D.

If £ € W§, then &,0¢,0¢ are in keri(df), and consequently we see that

(12.3)  i(dO) e(dO) ¢ = csi1€ , i(dO) e(dO) OE = cs11,;06 ,  i(dO) e(dO) D¢ = ciq jO€ .

This is not necessarily the case for 99¢, 00¢. We therefore need some more computations to
simplify the expressions

9*0%i(d) e(d0) D , i(dh)e(dd) 1D , etc. .
Lemma 12.2. For £ € W,
9*0%i(d) e(d0) 00¢ = csi1,;(O+i(j + 1)T)1E ,
9*0%i(d0) e(df) 00¢ = csp1;(0 —i(j + 1)T)OE ,
0*0*i(d)’ e(df) € = §**i(dB)’ e(dh) DOE = —coyq ;O
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Proof. We have, by ([[2.2])
0*0%i(dO)Y e(d)? 00¢ = 5*0*[i(dB), D)e(dh)’ DE + 9*0*Di(dh) e(dh) ¢
= ijO*0*0%i(d0)"e(dO) D€ + coy1 ;07 0*DOE
= ijTO*i(d0) e(dO) O¢ + c51 ;07 0*DOE
= 541,07 (0 +145T)0¢
= cop1,;(O0+i(j + 1)T)0E .
The second identity follows in a similar way. Finally, we have
0*0%i(d0)’ e(dB)? 00¢ = 0*0*[i(dA), D)e(dh) OE + 0*0*9i(dB) e(dh)’ D¢
= cs+17j6*5*85£
= —Cs41,;0700%0¢
= —cs41,,00€ .

This proves the lemma. Q.E.D.

Lemma 12.3. The following properties hold true.
(i) For all p,q, OW[ = XP1 and OWJ? = YP4.
(ii) In particular, O maps XP9 into itself, and O maps YP? into itself. We therefore set

(12.4) DX = D|XW1 : XP4 — Xp,q) ﬁy = E|YP)CI YPY 5 YPA,
Then D;(l and ﬁ;l are well defined on XP9 and YP1, respectively.

Proof. (ii) is immediate from (i). To prove (i), we verify the statements concerning the spaces
XP4 the discussion of the spaces Y77 being similar. Observe first that [J leaves W["? invariant

because of (L20]).
Thus, in view of Remark B0, if 1 < p < n — 1, then X4 = W[, and we are done. And,

ifp=0and¢ € Woo’q, then ¢ = 0*9¢, so that by Lemma [4.8 CyJ¢ = 0, hence (J¢ € XP1.
Finally, if p =n and £ € WY, then ¢ = 99*¢ = 0. Q.E.D.

Proof of Lemma[7.3]. Define By to be the unbounded operator from LZAP4 to (L2A¥)? defined
by the matrix on the right-hand side of (Z.6]), with core SyAP?, and set

y Bi1 Bio
12. B ,B =: B = .
(12.5) LB ypays <321 ng)

We will use Lemma [T4] to see that

Aj Ay, = B ,B
1,6431,¢ 1,0P1,¢ .
) ‘(”7541)2
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Then, the matrix entries of B are:
By = 0%i(d6) e(df) o
+ (w:r—la*é*z'(de)f—l - T—lmz‘(de)f> (ieT—le(de)f—léa + T%(d@)@)
Bay = 0%i(df)’e(d)’d
+ ( — TTLF % i(dO) ) — T—lﬁz(de)f) ( — 0T e(d0) 108 + T—le(de)’fﬁ)
By = B3, = 9%i(df)"e(dh) D
- (iéT—la*é*z’(de)f—l - T—lmi(de)f> (iéT—le(de)f—laé - T—le(de)fﬁ) :
By (IZ3) and Lemma [[22] we have that
By = cop1 0+ T72 [ — 25*0%i(d0)"Le(dh) D0 + i£d*9*i(dh) te(df) D
— i00i(d6) e(dh) 150 — Di(d&)%(d@)"ﬂ]
(12'6) = CS+175D + T_2 |: - 62634_175_1(5 + Z@T)D
— ilT19*0*i(dh)" e (dh) (00 + 08)
— TTIO(87 8 + 8*9)i(d6) " e(df) 15D — 637552] .
Now notice that by Lemma

*0%i(d0) " e(df) MDD+ 00) = —cor10100+ corr (0 +iT)O
= ilegyr 1T,

and, by taking adjoints,
(070 + 0*0%)i(d0) " e(df) 190 = itce iy o TO .
Therefore, substituting into (I2:6]) and applying the identities from Lemma [[2.T] we obtain that
Bii = cop1,0+T72 [ — PCop1, 01 (O + ilT)O + 20%co41 010 — Cs,£52]
= 772011, T2+ Pegine 1 (0= 0 = ilT) + (~cos + o 10 0)0)
=770 [Cs+1,ZT2 +ilPesir-1(n—s— 0T — Cs+1,€|:|:|
= ey T0|T2 4007 - D)
By conjugation, we also get

By = o4, 720 [TQ — T — i] .
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Finally, arguing in a similar way, we find that

Bip = T2 [520*5*1'(de)f—le(de)f—laé — ey OO0 + 00" 5i(d0) " e(d9)'T

+ i00i(dB)*e(dB)* 0D

=72 [ — (PPeorr o+ cs )00 — ilT~10*0%i(d0) " e(d6) (00 4 00)0

ST + 5*0*)¢(d9)€—1e(d9)f—135]

- T—2Di[ — eyt — Cop+ilessr o1 T V0 — ilegsy o T~ H(T + ilT)
—ibegs1, 1 T D+ ilegyn 2 T7H(O - ilT)]

= T_2Dﬁ[ —Peoi10m1 — Cs o+ %zcsﬂ,z-l}

= —Cs+1’gT_2|:|ﬁ .

These computations show that

_ o o (OO —ilT — T?) 0o
B = BllBlve‘(Wg,Q)z - CS'H’ZT ( oo E(E + T — T2)

It is obvious that B maps (W}'?)? into itself, so that, by Lemma[7.4] Al A1 = BT’ZBLZ’(W”"]F'
This proves the lemma. Q.%E.D.

Completion of the proof of Lemma[7.0 Since @ maps the subspace (W} )2 into itself, we have
that

R <—Qt Qj_g) (D(D—MT—TQ) 0g ><—Qt —Q;)

-Q7 QC ([ O0+ar-1%)\ Qf Q-

Ri1 Ria
Ro1 Rao)
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We compute first Rq1. Using the identity 0 — O = 2imT and (3), we have
~T?Ri1 = (Q*NQ)11
= (- QTOM — T — T?) + QT00) (—QF) + (- QT0T + QTOMD + T — T?))Q*
= ()OO —itT — T?) — 2QTQT0O0+ (QL)*D(O + 4T — T?)
=T +m+40)*0(0 - ilT — T?) — 2(T +m — iT) (T +m +iT)00
+ (T +m —iT)?0(@ + ilT — T?)
= (T +m)? [D(D 0T — T?) — 200 + OO + T — T2)]
+ 2T + m) [D(D — T —T?) — O3 + ilT — T2)}
_ 72 [D(D — 0T —T?) + 200 + O3 + i6T — T2)}
= (T +m)? [(D O —ur@-0) - T+ i)]
+ 2T(T + m) [(D +OO-0) —ar@+0) - 70 - E)]
2 [(D +O2—wr@-0) - T*0+ i)}
= 772 [(P +m)?(Ag + 2m(2m — 0)) +2(I' + m)((2m — O)A g — 2mT?)
+ (AH(AH — T2) + 2me2):| .
In the same way one finds that
—T?Ros = (Q*NQ)a2
= _T? [(r —m)2(Ag +2m(2m — ) — 2(T — m)((2m — O)Ay — 2mT?)
+ (AH(AH — T2) + 2me2):| .
Finally, using the formulas in (6.9]) we see that
—T?Ris = —=T?Ro1 = (Q*NQ)12
= (- QDO - T — T°) + QI00)(-Q7)
+ (- QOO+ Q1O@ +ifT — T%)) Q=
=QTQI0O T - T%) - Q1Q;00 - Q*Q-00
+QIQ-OO + T —T?)
=200(0 — T — T?) — (Ay — 27° — 2iTT)00
— (Ay —2T% 4+ 2iTT)00 4 200(0 + T — T?)

Il
o

Q.E.D.
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Proof of Lemma[7.10 (1). In order to compute A3 A3, we apply again Lemma [T.4l We first
define By as the term on the right hand side of (ZI9]) acting as an unbounded operator from

(LzAp’q)2 to (L2Ap7q)2, with core (SoApvq)2, and then we compute B := B3 ZB2’Z|( paye’ If we
b W07

then show that B maps ZP into itself, the equality A3 A9, = B‘ZM, which in turn equals

—cs+17gT_2E, will follow.

We have that

B*B__Q@*—Tﬂ¢®+wm—?@+ﬁﬂ
27267\ ot~ 0O — i) — 90 — 47|
90 00
RPN ¢
x i(df) e(dd) <T—1 (@ +iT)0 — (O +iT)3] T-1[(@0 - ieT)d — (@ - iT)8]>
Using Lemmas and [[2J], and recalling that we are acting on elements in W, we see
that the matrix entries of B;ZBM are
By, = 0*9%i(d6) e(d6) D0
—T72[0* (@ +iT) — 0* (O +4T)]i(d) e(dd)" [(T + itT)0 — (O +4T))|
= cop10[O0+i(0+1)T]0
— csp1,/ T 2[00+ ilT) — 0*(O +4T)] (O + itT)0 — (O +iT)0]
= cop1e[0+i(0+ 1)T|O
— o1, T2 [@+i(C+ 1)T)0* — 00*] [(O + ilT)0 — (O + iT)0)]
:cHLﬂF2“ﬁ+¢@+lﬂﬂDT2—@j+uﬂ+DTFD—{fﬁ}
ZCHMTJDUi+u£+nﬂT?—EM%@+QTV-DE}
From this it follows that
By = -0|(@+i(¢+ )T)T? — @ +i(¢ + )T)* - O
=00(Ay —T?) +i(¢+ )TO[20 - T? +i(¢ + 1)T]
=00Ay —T*) +i(t+ )TO[Ay —T? —i(n—s— £ — 1)T] ,
where we have used the the equality (LI9).
Thus, the statement for F71 follows. The term FEos is its complex conjugate and thus it follows

as well.
Finally, we compute E12, and hence Es; too. We have that

Big = 0*0%i(d6) e(d0)*dd
— 72| (@ +ilT) — §* (O + z'T)] i(d6) e(dh)" [(D T — (O - Z'T)a] .
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Therefore, using Lemmas [[2.2] and [[2.7],

By = —cy31,000 + Cop1eT2 [(ﬁ il + 1)T)d* (0 — 7)) + 00* (0 — zeT)é}
= —Cop1, 00+ opp T2 [(E +i(t+ 1)T) 0T+ (O —i(0 + 1)T) Dﬁ]
= ¢ T00(Ay — T7) .

Recalling that Bs = —CS+175T_2E12, the assertion follows.

It is now easy to check that B maps ZP? into itself. For, suppose that £ € XP? and n € YP9,
and put o = B11§ + Bian. Observe that both By and Bay factor as By; = Dy, j = 1,2, where
Dy leaves W§'? invariant. Therefore Lemma [[2:3] shows that o € X?%. In a similar way, one
shows that Bo1& 4+ Baon € YP% which concludes the proof. Q.E.D.

To compute the square root of a matrix, we shall make use of the following formula, which
is an application of Cayley-Hamilton’s theorem: For a positive definite 2 x 2 matrix A we have
that

(12.7) b A+ VdetAT
Vir A+ 2y/det A
Proof of Lemma[710 (ii). We have
° T
(AE,ZAM)% = mE%, (AS,ZAZZ)_% _ 7 B2,
d Cs+1,0

where the matrix E is as in Lemma [7.10
Then, recalling that we set ¢ = (( 4+ 1)(n —s — ¢ — 1),

tr B =200(Ay — T?) +i(0 + 1)T(0 - O)(Ay — T?) + cT?Ay
=200(Ag —T?) — (U +1)(n — s)T*(Ag — T?) + cT?Ag
= [200 - (¢ + 1)*T?| (A — T?) + cT* .
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Moreover, using (LI9]) and recalling that the operators are acting on s-forms, we have
det E = O0(Ay — T?) [z‘(é FOTOAy —T% —i(n—s — £ — 1)T)
i+ VDTTO(Ay —T? +i(n—s— € — 1)T)}

+ (¢ + 121200 [(AH T2 4 (n—s— 0~ 1)2T2}

O0(Ag — T?) [i(e +DT(Ay —T2)(O-0) + cTZAH]
+ (¢ +1)*7°00 [(AH T2 4 (n—s— - 1)2T2}
— O0(Ay — T?)T? [ (1) (n - s)(Ay —T?) + cAH}
+ (¢ + 1) 7?00 [(AH T2 4 (n—s— - 1)2T2}
— OO [AH Ty c}
= OOT*A” .
This implies in particular that

A :=trE+2Vdet E
= [200 - (0 + 1)°T?](Ag — T?) + cT* + 2V OOT4A”
= [200 — (¢ + 1)*T2](Ay — T?) — T2 ( —T? 2\/CDEN) .

The formula for (A3 ZAQ’[)% in Lemma [.T0] (ii) is now immediate.
And, if we write

1
E—l _ _E(co)
det &

then we have

_1 T 1
AX A 5 — —E(CO)2
(Ase420) JEriVdet B

_ T 1
VetreVdet E \/tr Bleo) 1 9v/det E(©)

= 7] ! (E) + Vdet ET)
Vest1aVdet E \/tr E + 2/det E

1 1
- (co)
v CDEA"\/E(E +Vdet EI) .

E©) 1 \/det ) 1)
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The result for (AZ,ZAQ,Z)_% now follows easily, since

E©) 4 Vdet ET
=i ey (101
= 00(Ay T)<1 1>

O[—i(t+1)T(Ay —T?) — cT? 0
+< | (oH ) Ofi(¢ + )T (Ay — T2) — T?]

— TV OOA" T

_ 11 M
=00(Ay — T?) <1 1>+< 1 M22>,

where Mj; and My are as claimed in (21)).

)

81

Q.E.D.
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