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Abstract

In this paper, we speculate on a possible application of Liquid Crystal Elastomers to the field of
soft robotics. In particular, we study a concept for limbless locomotion that is amenable to minia-
turisation. For this purpose, we formulate and solve the evolution equations for a strip of nematic
elastomer, subject to directional frictional interactions with a flat solid substrate, and cyclically
actuated by a spatially uniform, time-periodic stimulus (e.g., temperature change). The presence of
frictional forces that are sensitive to the direction of sliding transforms reciprocal, ‘breathing-like’
deformations into directed forward motion. We derive formulas quantifying this motion in the case
of distributed friction, by solving a differential inclusion for the displacement field. The simpler case
of concentrated frictional interactions at the two ends of the strip is also solved, in order to provide a
benchmark to compare the continuously distributed case with a finite-dimensional benchmark. We
also provide explicit formulas for the axial force along the crawler body.

Keywords: Liquid Crystal Elastomers; soft biomimetic robots; crawling motility; frictional inter-
actions; directional surfaces.

1 Introduction

Liquid Crystal Elastomers (LCEs) are polymeric materials that can exhibit spontaneous deformations
when activated by light, heat or electric fields, thanks to the coupling between rubber elasticity and
nematic order (Warner and Terentjev, 2003). Among the possible applications that are being envisaged,
some of the most spectacular ones involve their use for locomotion purposes and as motors or soft
manipulators (Camacho-Lopez et al., 2004; Ikeda et al., 2007; Fukunaga et al., 2008; van Oosten et al.,
2008; Sawa et al., 2010; Wei and Yu, 2012; Knezevic and Warner, 2013).

In view of their striking properties, LCEs seem to be particularly appealing in the realm of soft
robotics. According to this new paradigm in robotic science, inspiration is sought from nature to endow
robots with new capabilities in terms of dexterity or adaptability, by exploiting large deformations typical
of soft materials. As far as dexterity is concerned, one may think, for example, of the manipulation
abilities of an elephant trunk or of an octopus arm. As for adaptability, one may think of the ability
of snakes to handle unexpected interactions with unstructured environments and move successfully on
uneven terrains by adapting their gait to ground properties that change from place to place in an
unpredictable way. Indeed, manipulation and locomotion are among the most intensively investigated
applications of current soft robotics research (Hirose, 1993; Trivedi et al., 2008; Kim et al., 2013).
Recent studies of bio-inspired mechanisms for shape control can be particularly interesting for this kind
of applications (Armon et al., 2011; Arroyo et al., 2012; Arroyo and DeSimone, 2014).
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Furthermore, LCEs are mechanically compliant, with elastic moduli comparable to those of skeletal
muscles and other biological tissues, unlike the case of hard, metal based active materials. For this
reason, they may prove particularly useful in the future development of medical micro-sized machines
such as endoscopic robotic capsules. In fact, Stefanini et al. (2006) argue that active and controllable
locomotion is one of the key features which can transform a high-tech miniaturized vision system into
a really useful device for endoscopic diagnosis and therapy.

While the compliance and large spontaneous deformations of LCEs make these materials appealing,
they raise considerable modelling challenges. Indeed, the strong material and geometric nonlinearities
associated with their interesting behaviour make the problem of predicting and controlling their response
to prescribed stimuli quite difficult.

Restricting attention to bio-inspired self-propulsion mechanisms, one can find several studies in the
recent literature that have drawn inspiration from earthworm locomotion (Gray and Lissmann, 1938;
Quillin, 1999; McNeil, 2003). A common feature in these studies is that traveling contraction waves
span the slender, straight body of a model crawler which uses nonlinear, frictional interactions with
a flat surface in order to move (Mahadevan et al., 2004; Menciassi et al., 2006; Tanaka et al., 2012;
DeSimone and Tatone, 2012; DeSimone et al., 2013; Noselli et al., 2013; Gidoni et al., 2014; Noselli and
DeSimone, 2014). The nonlinearity of the interactions is exploited to produce spatially modulated stick-
slip patterns similar to those observed in earthworms, that stick to the surface in the contracted portions
of the body (where larger friction forces are available thanks to the contraction-induced protrusion of
setae, which enhance surface roughness and traction) and slide in the smoother, non-contracted portion.

Prototypes of soft robotic crawlers have been realised, made of elastomeric bodies with embedded
shape memory alloy (SMA) wires. These were selectively activated, via the Joule heating of the SMA
actuators, to induce waves of localized contractions (Menciassi et al., 2006). LCEs provide us with the
possibility of dispensing with the SMA wires and with the need of driving them with carefully controlled
spatio-temporal actuation patterns. In fact, a crawler with a body made of an LCE would undergo large
extensions and contractions when subjected to various spatially uniform, time-periodic stimuli (such as
light, heat, electric field) directly applied to the LCE. And while producing travelling contraction waves
requires complex actuation strategies and stimuli modulated in space and time, we argue that a strip of
LCE, simply actuated by spatially uniform stimuli inducing breathing-like deformations, would exhibit
net displacements when placed on a directional surface, see the review by Hancock et al. (2012). The key
properties of such surfaces, a simple example of which is a patch of hairy skin, is that they offer different
resistance to motion along and against the grain. In other words, the force-velocity law characterizing
frictional interactions on directional surfaces is not odd. More generally, we use the term directional
frictional interactions to refer to force-velocity laws of this type, allowing for the possibility that the
inclined flexible elements (e.g., hair or bristles) mediating the contact interaction could be attached to
the crawling strip, rather than to the substrate. Evidence that directional frictional interactions can be
actually implemented trough the use of ‘asymmetric feet’ can be found in Menciassi et al. (2006) and
Noselli and DeSimone (2014), for example. It has been already shown in a number of theoretical and
experimental studies that, in these circumstances, it is feasible to extract net positional changes out of
breathing-like deformation modes (Mahadevan et al., 2004; Gidoni et al., 2014; Noselli and DeSimone,
2014). Interestingly, this is at odds with what happens in low Reynolds number swimmers where,
according to the so-called Scallop Theorem (Purcell, 1977), the net displacement associated with a
time-reversible history of shape changes is always zero.

Having argued in favour of the idea of using oscillations in gels for locomotion purposes (an idea
which is not new, see, e.g., Yoshida et al. (1996), Mahadevan et al. (2004) and Maeda et al. (2007)), we
are now ready to discuss our results. In this paper, we formulate and solve a one-dimensional model for
the motion of a strip of nematic LCE subject to directional frictional interactions and to a prescribed,
spatially uniform time-history of spontaneous distortions. We emphasise that, in this study, we do
not assume the shape of the crawler to be known a-priori, and freely prescribed through a given time
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history (this is the view-point taken in Gidoni et al. (2014)). Instead, similarly to what is done in Noselli
and DeSimone (2014) for a crawler resting on two elastic bristles, the time-evolving configuration of the
crawler is an emergent property which arises from the coupled nonlinear system consisting of the crawler
force-generating mechanism (the time-varying active distortions), its passive elasticity (associated with
its extensional elastic stiffness, quantified by the area of its cross section and its Young’s modulus), and
the external frictional forces.

Our focus in this paper is on the conceptual challenges that our model raises (in particular: what is
the axial force along the crawler body accompanying locomotion? What are the net displacements that
can be extracted from a reciprocal actuation strategy producing breathing-like deformations?), rather
than on the challenging question of how to actually build a device behaving in accordance with our
model (see however the Discussion section for some further remarks in this direction.) Our main results
are (i) the formulation and solution of the equations of motion for a strip of nematic elastomer subject
to directional frictional interactions and uniform distortions, which is, to the best of our knowledge,
obtained here for the first time, and (ii) explicit formulas for the achievable displacements and for the
axial force along the strip.

The rest of the paper is organised as follows. The equations governing the evolution of the LCE
crawler are derived in Section 2, and the motility problem is formulated in Section 3. The case of
frictional interactions acting only at the crawler extremities is explored in Section 4 as a warm up to
the more difficult case of distributed interactions, and to provide a benchmark to contrast the more
complex case against a simpler one. The case of distributed friction is considered in Section 5. The
Appendix shows how the evolution equations governing the motion of the crawler can be obtained from
an incremental minimisation problem.

2 Governing equations

We consider the model crawler shown in Fig. 1 and denote the position of its points through a one-to-one
function χ(X, t) mapping the reference configuration [X1, X2] (more concretely, X1 = 0 and X2 = L, L
being the reference length of the crawler) onto the deformed configuration [x1(t), x2(t)] where{

x1(t) = χ(X1, t) = X1 + u(X1, t) = u1(t),

x2(t) = χ(X2, t) = X2 + u(X2, t) = L+ u2(t).
(2.1)

X1 = 0 X2 = L x1(t) = u1(t) x2 = L+ u2(t)

x = χ(X, t)

X,x

Crawler body

Fig. 1: A sketch of the one-dimensional crawler analysed in this study. The model accounts only for horizontal
displacements along the X coordinate, whereas the system exploits directional frictional interactions with a solid
substrate either at its extremities (case of interactions only at the extremities) or along its body length (case of
distributed interactions, shown in the figure).

Here u(X, t) is the displacement at point X and time t defined by

u(X, t) = x−X = χ(X, t)−X, (2.2)

whereas u1(t) and u2(t) are the displacements at time t of the two end points. We will denote with
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primes and dots the partial derivatives with respect to space and time, respectively, according to

u′(X, t) :=
∂

∂X
u(X, t), u̇(X, t) :=

∂

∂t
u(X, t). (2.3)

The body of the crawler is made of a nematic LCE. We assume that its elastic energy is given by

E (u, t) =

∫ L

0

K

2
(εu(X, t)− εo(X, t))2 dX, (2.4)

where
εu(X, t) = u′(X, t) (2.5)

is the strain, K > 0 is the 1D elastic modulus (with dimension of force since K = EA, where E is
Young’s modulus and A the cross-sectional area), and εo(X, t) is the spontaneous, or stress-free strain
at X and t. We assume that −1 < εo < +∞ and refer to εo as the active distortion: in analogy
with thermal dilatation, it is the spontaneous strain (i.e., the one in the absence of stress) associated
with a phase transition. It can model the spontaneous deformation accompanying either the nematic-
to-isotropic transition (which can be induced by increasing the temperature past the phase transition
temperature, or by irradiation with UV light in the case of photosensitive elastomers), or the isotropic-
to-nematic transition induced by cooling a specimen initially in the isotropic state. Alternatively, it can
be the spontaneous deformation accompanying a director reorientation in a nematic specimen (say, from
perpendicular to parallel to the crawler axis, that can be induced by the application of a suitably oriented
electric field). In LCEs, spontaneous strains can be exceptionally large: the spontaneous extension
accompanying the isotropic-to-nematic transition can be as large as 300% (Warner and Terentjev, 2003).
For this reason, we put no restrictions on the magnitude of the spontaneous strain, which can be
arbitrarily large.

In expression (2.4) we have used, for simplicity, a quadratic energy density. More realistic (Ogden-
type) expressions to explore the regime of large induced stresses are discussed in DeSimone and Teresi
(2009) and Agostiniani and DeSimone (2011b). In fact, expression (2.4) for the energy is the 1D,
small strain version of the energy proposed by Warner, Terentjev and collaborators (Bladon et al.,
1993; Verwey et al., 1996), and thoroughly discussed by DeSimone and coworkers in a series of papers
(DeSimone, 1999; DeSimone and Dolzmann, 2000; DeSimone and Dolzmann, 2002; Conti et al., 2002a;
Conti et al., 2002b; Agostiniani and DeSimone, 2011a). The emergence of (2.4) as the small strain
limit of the Warner-Terentjev energy has been discussed on the basis of both formal Taylor expansion
and Gamma-convergence arguments in DeSimone and Teresi (2009), Cesana and DeSimone (2011) and
Agostiniani and DeSimone (2011b). We remark that the model we are going to develop, based on
energy (2.4), could be applied also to active strips made of other active materials (e.g., soft electroactive
polymers, but also hard materials such as electrostrictive, ferroelectric, ferromagnetic, and ferroelastic
solids). As we will see in the sequel, larger spontaneous strains lead to larger achievable displacements
and locomotion is possible only if the spontaneous strains are sufficiently large, in a sense made precise
by inequalities (4.5) and (5.9) below. Since LCEs provide the key example of a soft active material
exhibiting large spontaneous strains, they provide the most natural candidate material for which our
model can deliver interesting results.

The tension T (X, t) at any crawler section X and time t is given by

T (X, t) = K
(
u′(X, t)− εo(X, t)

)
= Ku′(X, t) + T a(X, t), (2.6)

and is the 1D analogue of the first Piola-Kirchhoff stress. The term T a(X, t) = −Kεo(X, t) can be
regarded as the active part of the internal tension, in analogy with the active stress used to model
biological matter as an active gel (Marchetti et al., 2013).

Frictional forces arising from directional interactions with a solid substrate act on the crawler. These
are either concentrated at the two ends or distributed along the crawler body, see the sketch of Fig. 1.
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v

F (v)

F−

−F+

v

D(v)

1
F+1

−F−

(a) (b)

Fig. 2: Force-velocity law (a) and dissipation (b) in the case of frictional, directional forces acting only at the
two extremities of the crawler.

In the case of frictional forces acting only at the two ends of the crawler Xi (i = 1, 2), these are
given by

Fi(t) = F (u̇i(t)), where F (v) ∈


{F−} if v < 0,

[−F+, F−] if v = 0,

{−F+} if v > 0,

(2.7)

and F− > F+ > 0 are threshold forces to be overcome for sliding to occur to the left or to the right,
respectively, see Fig. 2a. The assumption F− > F+ simply means that we have chosen to orient the
x-axis so that the positive direction is the one of easy sliding. We remark that the notation F (v) ∈ {F−}
means F (v) = F−, which occurs if v < 0. Likewise, the notation F (v) ∈ {−F+} means F (v) = −F+,
which occurs if v > 0. If instead v = 0, then F (v) can take any value in the interval [−F+, F−]. We
also notice that the contribution of the end frictional forces to the rate of energy dissipation reads

−
2∑
i=1

Fi(t)u̇i(t) =

2∑
i=1

D(u̇i(t)), (2.8)

where the dissipation D(v) := F+ (v)+ − F− (v)− has been introduced with (v)± := 1
2 (v ± |v|), such

that in the notation of convex analysis we can write

− F (v) ∈ ∂

∂v
D(v) =


{−F−} if v < 0,

[−F−, F+] if v = 0,

{F+} if v > 0,

(2.9)

where ∂
∂vD(v) is the sub-differential of D at v, see Fig. 2b.

v

f(v)

µ−

−µ+

v

d(v)

1

µ+1

−µ−

(a) (b)

Fig. 3: Force-velocity law (a) and dissipation (b) in the case of frictional, directional forces distributed along the
crawler body.
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In the case of distributed interactions, the frictional force per unit reference length is given by

f(X, t) = f(u̇(X, t)) , where f(v) ∈


{µ−} if v < 0,

[−µ+, µ−] if v = 0,

{−µ+} if v > 0,

(2.10)

and µ− > µ+ > 0 are threshold forces per unit reference length to be overcome for sliding to occur,
see Fig. 3a. As before, f(v) ∈ {µ−} means f(v) = µ−, which occurs if v < 0. Likewise, f(v) ∈ {−µ+}
means f(v) = −µ+, which occurs if v > 0. If instead v = 0, then f(v) can take any value in the interval
[−µ+, µ−]. The contribution of the distributed frictional forces to the rate of energy dissipation is now

−
∫ L

0
f(X, t)u̇(X, t) dX =

∫ L

0
d(u̇(X, t)) dX, (2.11)

where the dissipation per unit reference length d(v) := µ+ (v)+ − µ− (v)− has been introduced, again
with (v)± := 1

2 (v ± |v|), such that in the notation of convex analysis we can write

− f(v) ∈ ∂

∂v
d(v) =


{−µ−} if v < 0,

[−µ−, µ+] if v = 0,

{µ+} if v > 0,

(2.12)

where ∂
∂vd(v) is the sub-differential of d at v, see Fig. 3b.

We consider a history of active distortions εo(X,T ) varying in time sufficiently slowly, so that the
crawler evolves quasi-statically through a sequence of equilibrium states. The governing equations are
then obtained by neglecting inertia in the balance of linear momentum, and read

T ′(X, t) + f(u̇(X, t)) = 0, (2.13)

together with the boundary conditions for the tension at the crawler extremities{
T (0, t) = −F1(t) = −F (u̇1(t)),

T (L, t) = F2(t) = F (u̇2(t)).
(2.14)

Our quasi-static approximation may need to be reconsidered in some applications, where stick-slick
phenomena may lead to oscillations, or even in the interest of exploring dynamic effects that may lead
to additional locomotion mechanisms. This occurs, for example, in the case liquid drops moving on a
vibrated substrate where the complex shape dynamics of the drop may lead to reversal of the direction
of motion as the frequency and amplitude of vibration of the substrate are varied (Chaudhury et al.,
2015). It has been suggested in Cicconofri and DeSimone (2015) that a similar effect can also occur in
bristle-legged-robots locomoting on a rigid substrate when actuated by rotary motors or by a vibrating
internal mass.

By making use of (2.9) and (2.12), the balance of linear momentum can be rewritten as

T ′(X, t) ∈ ∂

∂v
d (u̇(X, t)) , (2.15)

whereas the boundary conditions at the two extremities become
T (0, t) ∈ ∂

∂v
D (u̇1(t)) ,

T (L, t) ∈ − ∂

∂v
D (u̇2(t)) .

(2.16)

Integrating (2.13), and using the boundary conditions (2.14), we obtain the global force balance for
the crawler, namely

F (u̇1(t)) + F (u̇2(t)) +

∫ L

0
f(u̇(X, t)) dX = 0 . (2.17)
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3 Formulation of the motility problem

We formulate our motility problem as follows. Given the initial state of the system through the as-
signment of the initial position and tension, e.g., u(X, 0) ≡ 0, and T (X, 0) ≡ 0, find the history of
displacements t 7→ u(X, t) and tensions t 7→ T (X, t) corresponding to a given periodic time history of
spatially constant active distortions, t 7→ εo(X, t) ≡ εo(t). In particular, find the asymptotic average
speed of the crawler

lim
t→+∞

u(X∗, t)

t
, (3.1)

where X∗ is an arbitrarily chosen point. We consider in particular the time history of active distortions
given by the 2τ -periodic sawtooth graph of Fig. 4, defined on [0, 2τ ] as

εo(t) =

{
αt for t ∈ [0, τ ],

α(2τ − t) for t ∈ [τ, 2τ ],
(3.2)

and then extended 2τ -periodically for t ≥ 0. We denote the maximum distortion encountered as

εmax
o := ατ. (3.3)

Clearly, more general time histories could be of interest such as, for example, the travelling contraction
waves considered in DeSimone and Tatone (2012), DeSimone et al. (2013) and Noselli et al. (2013), but
we postpone the analysis of these more general cases to future work.

t

εo(t)

0 τ 2τ 3τ 4τ 5τ

εmax
o

0
1

α

Fig. 4: Time history of 2τ -periodic, sawtooth active distortions applied to the crawler.

3.1 Friction only at the ends

Here, since f ≡ 0, we have that the internal tension T (X, t) is independent of the coordinate X. It
follows from (2.6) that also u′(X, t) is independent of X, and the expression (2.4) for the energy reduces
to

Er(u1(t), u2(t), t) =
KL

2

(
u2(t)− u1(t)

L
− εo(t)

)2
. (3.4)

Furthermore, the evolution equations (2.16) simplify to
T (0, t) = − ∂

∂u1
Er(u1(t), u2(t), t) ∈

∂

∂v
D (u̇1(t)) ,

−T (L, t) = − ∂

∂u2
Er(u1(t), u2(t), t) ∈

∂

∂v
D (u̇2(t)) ,

(3.5)

and, at times when sliding occurs, these can be written as equalities
− ∂

∂u1
Er(u1(t), u2(t), t) =

∂

∂v
D (u̇1(t)) if u̇1 6= 0,

− ∂

∂u2
Er(u1(t), u2(t), t) =

∂

∂v
D (u̇2(t)) if u̇2 6= 0.

(3.6)
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Denoting now by

F ifric :=
∂

∂u̇i

2∑
j=1

D(u̇j(t)) and F iel :=
∂

∂ui
Er(u1(t), u2(t), t) (3.7)

the frictional and elastic forces at the i-th end (i=1,2), we recover the interpretation of the evolution
equations (3.6) above as force balances at the two ends, on each of which the total force consists of an
elastic and of a frictional contribution, namely

F iel + F ifric = 0 . (3.8)

We recall that we are working in the quasi-static regime, hence neglecting inertial forces. Alternatively,
by multiplying each of the equations above by u̇i we obtain

− ∂

∂ui
Er u̇i = F ifric u̇i , (3.9)

and we can interpret the evolution equations as the statement that the system evolves in such a way
that the energy dissipation rate always matches the rate of release of elastic energy.

3.2 Only distributed friction

Here there are no concentrated frictional forces at the two ends, recall the sketch of Fig. 1, so that
equations (2.16) simply reduce to {

T (0, t) = 0 ,

T (L, t) = 0 ,
(3.10)

and provide the boundary conditions for the tension field

T (X, t) = K(u′(X, t)− εo(t)), (3.11)

which satisfies the evolution equation (2.15), namely,

T ′(X, t) ∈


{−µ−} if u̇(X, t) < 0,

[−µ−, µ+] if u̇(X, t) = 0,

{µ+} if u̇(X, t) > 0.

(3.12)

By substituting (3.11) into (3.12), we see that, in this case, the evolution equations take the form of a
differential inclusion for the displacement field u(X, t).

4 Friction only at the ends

We solve in this section the evolution problem for the case in which frictional forces act only at the two
ends. This can be considered as a warm up for the more difficult case in which distributed frictional
forces act along the crawler body.

4.1 Evolution equations

We recall that, in this case, the internal tension T (X, t) is independent of X and given by

T (t) = K

(
u2(t)− u1(t)

L
− εo(t)

)
. (4.1)
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The equations governing the evolution of the system are (3.5), and they can be conveniently recast as

u̇1(t) = 0, u̇2(t) = 0, if


T (t) ∈ ]−F+, F+[ ,

T (t) = F+ and ε̇o(t) ≥ 0,

T (t) = −F+ and ε̇o(t) ≤ 0,

(4.2)

corresponding to the case of stationarity of the two crawler extremities,

u̇1(t) = αL, u̇2(t) = 0, if T (t) = F+ and ε̇o(t) < 0, (4.3)

corresponding to the case of slip for the left hand side of the crawler and stationarity of the other one,
and finally

u̇1(t) = 0, u̇2(t) = αL, if T (t) = −F+ and ε̇o(t) > 0, (4.4)

corresponding to the case of stationarity for the left hand side of the crawler and slip of the other one.

4.2 Solution of the motility problem

We recall that the initial conditions are u1(0) = u2(0) = 0 and T (0) = 0, and we consider the case of
sufficiently large distortion, namely we assume that

εmax
o >

2F+

K
. (4.5)

We will show that the motion of the crawler is characterized by a preliminary transient phase for
t ∈ [0, τ ], followed by a 2τ -periodic behaviour for t > τ , with a constant forward displacement of the
crawler in each period. An important role in our analysis will be played by the time constant

td =
2F+

Kα
, (4.6)

and we notice that our assumption (4.5) is equivalent to td < τ .

Interval 0 ≤ t < td/2 . During this time interval ε̇o(t) = α > 0 and T (t) > −F+, so that we are in
case (4.2). The two ends of the crawler are stationary (u̇1(t) = u̇2(t) = 0), such that

u1(t) = u2(t) = 0, (4.7)

and the tension in the crawler varies linearly in time as

T (t) = −Kαt, (4.8)

reaching the critical value T (td/2) = −F+ at the end of the interval.

Interval td/2 ≤ t < τ . In this time interval we still have ε̇o(t) = α > 0, but now T (t) = −F+, so we
are in situation (4.4). The first end is stationary (u̇1(t) = 0) while the second one moves keeping the
tension constant (u̇2(t) = αL), leading to

u1(t) = 0, u2(t) = αL

(
t− td

2

)
. (4.9)

At the end of the time interval we have that T (τ) = −F+ and

u1(τ) = 0, u2(τ) = αL

(
τ − td

2

)
. (4.10)
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Interval τ ≤ t < τ + td . During this time interval ε̇o(t) = −α < 0 and T (t) < F+, so we are again in
situation (4.2). The two ends are stationary (u̇1(t) = u̇2(t) = 0) and therefore at time t = τ + td the
position of the crawler is given by (4.10). The tension instead increases linearly according to

T (t) = −F+ +Kα (t− τ) , (4.11)

reaching at the end of this time interval the other critical value T (τ + td) = F+.

Interval τ + td ≤ t < 2τ . In this time interval we still have ε̇o(t) = −α < 0, but now T (t) = F+, so
we are in situation (4.3). The second end is stationary (u̇2(t) = 0) while the first one moves keeping the
tension constant (u̇1(t) = αL), leading to

u1(t) = αL(t− τ − td), u2(t) = αL

(
τ − td

2

)
. (4.12)

At the end of the time interval we have that T (2τ) = F+ and

u1(2τ) = αL(τ − td), u2(2τ) = αL

(
τ − td

2

)
. (4.13)

Interval 2τ ≤ t < 2τ + td . During this time interval ε̇o(t) = α > 0 and T (t) > −F+, so that we are
in case (4.2). The two ends are stationary (u̇1(t) = u̇2(t) = 0) and so at t = 2τ + td the position of the
crawler is still the one of (4.13). The tension decreases linearly according to

T (t) = F+ −Kα(t− 2τ), (4.14)

and reaches at the end of the time interval the critical value of T (2τ + td) = −F+. In this time interval
we observe a behaviour similar to that of the first interval 0 < t < td/2, but in this case we have a
greater initial tension (F+ instead of 0), so we need twice the time to reach the critical tension −F+.

Interval 2τ + td ≤ t < 3τ . In this time interval we still have ε̇o(t) = α > 0, but now T (t) = −F+,
so we are in situation (4.4). The first end is stationary (u̇1(t) = 0) while the second one moves keeping
the tension constant (u̇2(t) = αL), leading to

u1(t) = αL(τ − td), u2(t) = αL

(
τ − td

2

)
+ αL(t− 2τ − td). (4.15)

At the end of the time interval we have that T (3τ) = −F+ and

u1(3τ) = αL(τ − td), u2(3τ) = αL

(
2τ − 3td

2

)
. (4.16)

The position of the crawler extremities xi(t) is depicted in Fig. 5 for a time interval of 3τ and for
the case of εmax

o = 1. Specifically, two cases are shown to stress the effect on the displacements of the
crawler stiffness, and these correspond to td/τ = 1/2 (blue solid curves), and td/τ = 0 (red dashed
curves). We observe that the state of the crawler at time t = 3τ corresponds to that at time t = τ
except for a translation of αL(τ − td). Since the dynamics of the crawler is translation-invariant, the
solution will repeat 2τ -periodically the behaviour found in [τ, 3τ ]. We can thus easily find the position
of the crawler at any positive integer multiple of τ , namely, for any integer m > 0,

u1(2mτ) = mαL(τ − td), u2(2mτ) = mαL(τ − td) + αL
td
2
, (4.17)
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Fig. 5: Position of the crawler extremities xi(t) during a time interval of 3τ and for a maximum distortion
εmax
o = 1. Two cases are shown to stress the effect on the displacements of the crawler stiffness, and these
correspond to td/τ = 1/2 (or equivalently to F+/K = εmax

o /4, blue solid curves), and td/τ = 0 (or equivalently
to F+/K = 0, red dashed curves). Notice the piecewise linear time history of the displacements, which arises
from the frictional, directional nature of the interactions with the substrate. At any time, the current length
l(t) of the crawler body (highlighted in the figure for the case of td/τ = 1/2) can be inferred from the vertical
distance between the two curves.

and
u1((2m+ 1)τ) = mαL(τ − td), u2((2m+ 1)τ) = (m+ 1)αL(τ − td) + αL

td
2
. (4.18)

Thus, the net displacement in one stretching cycle, corresponding to a time interval ∆t = 2τ , reads

αL(τ − td) = L

(
εmax
o − 2F+

K

)
. (4.19)

The equation above shows that, at fixed F+ and K, the achievable displacement increases when εmax
o

increases and no displacement is possible if the material exhibits spontaneous strains whose maximal
magnitude does not satisfy inequality (4.5).

Finally, we notice that the crawler will be elongated in comparison to the initial length L, oscillating
between a minimum length

l(2mτ) = L

(
1 +

F+

K

)
, (4.20)

and a maximum length

l((2m+ 1)τ) = L

(
1 + εmax

o − F+

K

)
. (4.21)

5 Distributed friction

In the previous section, the case of a crawler has been addressed that exploits frictional, directional
interactions at its ends only. We extend now our study to the case in which distributed frictional forces
act along the crawler body.

11



5.1 Evolution equations

We recall from Section 3.2 the evolution equations, namely,

T ′(X, t) ∈


{−µ−} if u̇(X, t) < 0,

[−µ−, µ+] if u̇(X, t) = 0,

{µ+} if u̇(X, t) > 0,

(5.1)

where the tension T (X, t) is given by

T (X, t) = K(u′(X, t)− εo(t)). (5.2)

It follows from equation (5.2) that

Ṫ (X0, t) = −Kε̇o(t) if u̇(X, t) = 0 ∀X ∈ N0(X0), (5.3)

i.e., in a neighbourhood N0 of X0. Additionally, we have the boundary conditions at the crawler
extremities, such that at any time {

T (0, t) = 0 ,

T (L, t) = 0 .
(5.4)

5.2 Solution of the motility problem

For the solution of the problem, it is expedient to introduce two special points, namely

XL =
µ+

µ− + µ+
L , XR =

µ−
µ− + µ+

L . (5.5)

We first notice that
XL +XR = L , (5.6)

and set
xL(t) = XL + uL(t) , xR(t) = XR + uR(t) , (5.7)

where uL(t) = u(XL, t) and uR(t) = u(XR, t). We further notice that we can relate the positions at
time t of every couple of points XA and XB through

u(XB, t) = u(XA, t) +

∫ XB

XA

(
εo(t) +

1

K
T (X, t)

)
dX, (5.8)

which follows from (5.2), by solving for u′ and then integrating with respect to X.
Similarly to the case of localized interactions, recall condition (4.5), we assume that the active

distortions are sufficiently large, and in fact require that

εmax
o >

µ+
K
L . (5.9)

For our analysis, it is also useful to introduce two special time values, namely,

tc =
µ+L

Kα
, t∗c =

µ−
µ− + µ+

µ+L

Kα
, (5.10)

and we notice that our assumption of large distortion is equivalent to tc < τ .
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In what follows, we will seek solutions by using an ansatz on u̇(X, t). Namely, we assume that the
interval [0, L] is partitioned into three, possibly empty, disjoint sub-intervals IL(t)∪I0(t)∪IR(t) = [0, L]
(written in order from left to right) with either

u̇(X, t) < 0 for X ∈ IL(t),

u̇(X, t) = 0 for X ∈ I0(t),
u̇(X, t) > 0 for X ∈ IR(t),

if ε̇o(t) > 0, (5.11)

i.e., for a positive incremental distortion, or
u̇(X, t) > 0 for X ∈ IL(t),

u̇(X, t) = 0 for X ∈ I0(t),
u̇(X, t) < 0 for X ∈ IR(t),

if ε̇o(t) < 0, (5.12)

i.e., for a negative incremental distortion. We assume that I0(t) is a closed interval and consequently
that IL(t) and IR(t) have an open end. The critical times mτ , where ε̇o is not defined, will be studied
as extreme points of prescribed time sub-intervals and thus the partition of the ansatz will be assigned
only as (left or right) limit, in accordance with the instance considered.

Combining the ansatz with (5.1) and the boundary conditions (5.4) we deduce that, if ε̇o(t) > 0,
then

IL(t) ⊆ [0, XL[ , IR(t) ⊆ ]XL, L] , (5.13)

and the tension satisfies 
T (X, t) = −µ−X if X ∈ IL(t),

T (X, t) ≥ −µ−X if X ∈ I0(t) ∩ [0, XL],

T (X, t) ≥ µ+(X − L) if X ∈ I0(t) ∩ [XL, L],

T (X, t) = µ+(X − L) if X ∈ IR.

(5.14)

In the two middle conditions of (5.14), equality holds only on the boundary of I0 in accordance with
the continuity of T . On the other hand, for the interior points of I0 the inequality is always strict, for
else there would be a contradiction with (5.3). In the extreme case I0(t) = {XL}, the tension reaches
everywhere its minimum admissible value

Tmin(X) =

{
−µ−X if 0 ≤ X ≤ XL,

µ+(X − L) if XL ≤ X ≤ L,
(5.15)

and the whole crawler is extending, with each point moving away from the only stationary point XL.
We remark that, once this tension configuration is reached, we will have T (X, t) = Tmin(X) as long as
ε̇o(t) > 0, with the crawler elongating according to (5.2). In fact, any change in the tension would be
in contradiction with (5.1).

A similar reasoning is applicable in the case of a negative incremental distortion. In fact we argue
that, if ε̇o(t) < 0, then

IL(t) ⊆ [0, XR[ , IR(t) ⊆ ]XR, L] , (5.16)

and the tension satisfies 
T (X, t) = µ+X if X ∈ IL(t),

T (X, t) ≤ µ+X if X ∈ I0(t) ∩ [0, XR],

T (X, t) ≤ −µ−(X − L) if X ∈ I0(t) ∩ [XR, L],

T (X, t) = −µ−(X − L) if X ∈ IR.

(5.17)
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As in the previous case, the inequalities are strict in the interior of I0(t), whereas the equality holds
on the boundary of I0(t). In the limit case I0(t) = {XR}, the tension reaches everywhere its maximum
admissible value

Tmax(X) =

{
µ+X if 0 ≤ X ≤ XR,

−µ−(X − L) if XR ≤ X ≤ L,
(5.18)

and the whole crawler is contracting around the only stationary point XR. The crawler will keep this
tension configuration, i.e. T (X, t) = Tmax(X), as long as ε̇o(t) < 0, contracting accordingly.

As in the case of friction only at the ends, we will show that the motion is characterized by a
preliminary transient phase for t ∈ [0, τ ], followed by a 2τ -periodic behaviour for t > τ , with a constant
forward displacement of the crawler in each period.

X

T (X)

Tmin

Tmax

XL XR L

µ+XR

0 ≤ t < t∗c

(a)

X

T (X)

XL XR L

t∗c ≤ t < τ

(b)

µ+XR

X

T (X)

XL XR L

τ ≤ t < τ + tc

(c)

µ+XR

X

T (X)

XL XR L

τ + tc ≤ t < 2τ

(d)

µ+XR

X

T (X)

XL XR L

2τ ≤ t < 2τ + tc

(e)

µ+XR

X

T (X)

XL XR L

2τ + tc ≤ t < 3τ

(f)

µ+XR

Fig. 6: Tension T (X) along the crawler body during distinct time intervals for the case of distributed, directional
friction. Notice that the tension stays always bounded and oscillates between the maximum and the minimum
admissible values of Tmax and Tmin, respectively.
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Interval 0 ≤ t < t∗c . We recall the initial conditions, namely u(X, 0) = 0 and T (X, 0) = 0. For (5.14),
at the beginning of the time interval the crawler is stationary, i.e. I0(0) = [0, L], and so at every point
X the tension decreases according to (5.3), until it reaches the critical value of Tmin(X), such that point
X starts to move, see Fig. 6a. Explicitly, we have that

T (X, t) =


−µ−X if 0 ≤ X < c1t, i.e., if X ∈ IL(t),

−Kαt if c1t ≤ X ≤ L− c2t, i.e., if X ∈ I0(t),
µ+(X − L) if L− c2t < X ≤ L, i.e., if X ∈ IR(t),

(5.19)

where the two velocities c1 and c2 have been introduced as

c1 =
Kα

µ−
, c2 =

Kα

µ+
. (5.20)

At the end of the time interval, we have T (X, t∗c) = Tmin(X). We also notice that during the whole
interval XL ∈ I0(t), that means that u̇L ≡ 0 and so

uL(t∗c) = 0. (5.21)

Hence, by using equations (5.6) and (5.8), we obtain the expressions for the displacement of the crawler
extremities at time t∗c 

u1(t
∗
c) = −αt∗cXL +

µ−
2K

X2
L,

u2(t
∗
c) = αt∗cXR −

µ+
2K

X2
R,

(5.22)

and of point XR, namely
uR(t∗c) = αt∗c(XR −XL)− µ+

2K
(X2

R −X2
L). (5.23)

Interval t∗c ≤ t < τ . At time t = t∗c , the tension has reached its minimum value (5.15) everywhere
along the crawler, and we still have ε̇o(t) > 0 until the end of the interval, so, as we have anticipated,
the tension remains constant, i.e. T (X, t) = Tmin(X), and the crawler elongates until t = τ . Moreover,
the point XL stands still and so

uL(τ) = uL(t∗c) = 0. (5.24)

Since the tension is known, see Fig. 6b, we can find the displacement of other points at time t = τ by
comparison with uL(τ) and using the condition (5.8). In this way, we immediately get the displacements
of the extremities, namely 

u1(τ) = −εmax
o XL +

µ−
2K

X2
L ,

u2(τ) = εmax
o XR −

µ+
2K

X2
R ,

(5.25)

and also of point XR

uR(τ) = εmax
o (XR −XL)− µ+

2K
(X2

R −X2
L). (5.26)

Interval τ ≤ t < τ + tc . During this time interval the crawler is subject to a negative incremental
distortion, i.e. ε̇o(t) < 0, so we are in the case (5.17). At the beginning of the interval the crawler is
stationary, and so the tension at each point X increases according to (5.3), until it reaches the maximum
admissible value of Tmax(X), such that point X begins to move, see Fig. 6c. Explicitly, we have now
that

T (X, t) =


µ+X if 0 ≤ X < c3(t− τ),

Kα(t− τ)− µ−X if c3(t− τ) ≤ X ≤ XL,

Kα(t− τ) + µ+(X − L) if XL ≤ X ≤ L− c3(t− τ),

−µ−(X − L) if L− c3(t− τ) < X ≤ L,

(5.27)
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where the first and the last interval correspond respectively to IL(t) and IR(t), whereas the union of
the other two is I0(t), and c3 has been introduced as

c3 =
Kα

µ− + µ+
. (5.28)

At the end of the time interval we have T (X, τ + tc) = Tmax(X). Furthermore, we remark that
during the whole interval we also have [XL, XR] ⊆ I0(T ), since all the points of this subinterval reach
the critical tension Tmax(X) simultaneously at t = τ + tc. It follows that XL and XR are stationary
(u̇L ≡ u̇R ≡ 0) and thus

uL(τ + tc) = uL(τ), uR(τ + tc) = uR(τ). (5.29)

It turns out that the displacements of the two end points can be obtained from uL(τ+ tc) and uR(τ+ tc)
by using (5.8), namely 

u1(τ + tc) = −(εmax
o − αtc)XL −

µ+
2K

X2
L ,

u2(τ + tc) = uR(τ + tc) + (εmax
o − αtc)XL +

µ−
2K

X2
L .

(5.30)

Interval τ + tc ≤ t < 2τ . At time t = τ + tc, the tension has reached its maximum value (5.18)
everywhere along the crawler, and we still have ε̇o(t) < 0 until the end of the interval, so the tension
remains constant, i.e. T (X, t) = Tmax(X), and the crawler contracts until time t = 2τ . Furthermore,
point XR stands still and so we immediately get

uR(2τ) = uR(τ + t∗c) = εmax
o (XR −XL)− µ+

2K
(X2

R −X2
L). (5.31)

Since the tension is known, see Fig. 6d, we can find the displacement of other points at t = 2τ by
comparison with uR(2τ) and using (5.8). In fact, the displacements of the extremities read

u1(2τ) = uR(2τ)− µ+
2K

X2
R ,

u2(2τ) = uR(2τ) +
µ−
2K

X2
L ,

(5.32)

whereas for point XL we get

uL(2τ) = uR(2τ)− µ+
2K

(X2
R −X2

L) = εmax
o (XR −XL)− µ+

K
(X2

R −X2
L). (5.33)

Interval 2τ ≤ t < 2τ + tc . During this time interval, the crawler is again subject to a incremental
positive distortion, i.e. ε̇o(t) > 0, and so we are in the case (5.14). The crawler is stationary at the
beginning of the interval, and consequently the tension at each point X decreases according to (5.3),
until it reaches the minimum admissible value Tmin(X), such that point X begins to move, see Fig. 6e.
Explicitly, we have that

T (X, t) =


−µ−X if 0 ≤ X < c3(t− 2τ),

−Kα(t− 2τ) + µ+X if c3(t− 2τ) ≤ X ≤ XR,

−Kα(t− 2τ)− µ−(X − L) if XR ≤ X ≤ L− c3(t− 2τ),

µ+(X − L) if L− c3(t− 2τ) < X ≤ L,

(5.34)

where the first and the last interval correspond to IL(t) and IR(t), respectively.
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At the end of this time interval we have T (X, 2τ + tc) = Tmin(X). We further underline that during
the whole time interval we have [XL, XR] ⊆ I0(T ). Specifically, points XL and XR are stationary during
this interval (u̇L ≡ u̇R ≡ 0) and thus

uL(2τ + tc) = uL(2τ), uR(2τ + tc) = uR(2τ). (5.35)

Again, the displacements of the end points can be conveniently computed by means of (5.8), namely
u1(2τ + tc) = uL(2τ + tc)− αtcXL +

µ−
2K

X2
L ,

u2(2τ + tc) = uR(2τ + tc) + αtcXL −
µ+
2K

X2
L .

(5.36)

Interval 2τ + tc ≤ t < 3τ . This time interval is qualitatively similar to the interval t∗c ≤ t < τ , but,
since t∗c < tc, it is shorter. We still have that ε̇o(t) > 0, and the tension is constant in time and equals
its minimum admissible value, i.e. T (X, t) = Tmin(X), see Fig. 6f. Therefore, the crawler elongates
during this interval, with XL as a single stationary point, such that

uL(3τ) = uL(2τ + tc) = εmax
o (XR −XL)− µ+

K
(X2

R −X2
L). (5.37)

As for the previous time intervals, the displacements of the extremities can be easily computed by
making use of (5.8), namely 

u1(3τ) = uL(3τ)− εmax
o XL +

µ−
2K

X2
L ,

u2(3τ) = uL(3τ) + εmax
o XR −

µ+
2K

X2
R ,

(5.38)

whereas the displacement of point XR at time t = 3τ reads

uR(3τ) = uL(3τ) + εmax
o (XR −XL)− µ+

2K
(X2

R −X2
L). (5.39)

The position of the crawler extremities xi(t) is depicted in Fig. 7 during a time interval of 3τ for the
case of εmax

o = 1 and for a ratio of µ+/µ− = 1/5. Specifically, two cases are shown to stress the effect
on the displacements of the crawler stiffness, and these correspond to µ−L/K = 5/2 (blue solid curves),
and µ−L/K = 0 (red dashed curves). We notice that the state of the crawler at time t = 3τ corresponds
to that at time t = τ except for a translation of uL(3τ) − uL(τ) = uL(3τ). Since the dynamic of the
crawler is translation-invariant, the behaviour found in the interval [τ, 3τ ] will repeat 2τ -periodically.
Furthermore, the asymptotic displacement produced in a 2τ -cycle can be reformulated as

u(X, 3τ)− u(X, τ) =

(
εmax
o − µ+L

K

)
µ− − µ+
µ− + µ+

L. (5.40)

To understand the meaning of the result above, we first recall that we have required the maximum
distortion to satisfy the condition εmax

o > µ+L/K. In fact, it can be easily shown that, otherwise, no
net displacement can be extracted on average from periodic shape changes.

The displacement (5.40) produced in a cycle is actually linear with respect to the body length (and
therefore scale invariant) if instead of the distortion εo we consider the distortion excess over the critical
threshold of µ+L/K. The quadratic part of (5.40) is only due to the fact that, keeping constant the
other parameters, the distortion needed to produce some net motion linearly increases with the crawler
length. Finally, we observe that the length of the crawler oscillates between a minimum value that is
reached at times that are even multiples of τ , namely

l(2mτ) = L+
µ−µ+L

2

2K(µ− + µ+)
, (5.41)
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Fig. 7: Position of the crawler extremities xi(t) during a time interval of 3τ for a maximum distortion εmax
o = 1

and for a ratio of µ+/µ− = 1/5. Two cases are shown to stress the effect on the displacements of the crawler
stiffness, and these correspond to µ−L/K = 5/2 (blue solid curves), and µ−L/K = 0 (red dashed curves). Notice
that for the case of distributed friction, a significant back-sliding of x1 takes place irrespective of the crawler
stiffness K. At any time, the current length l(t) of the crawler body (highlighted in the figure for the case of
µ−L/K = 5/2) can be inferred from the vertical distance between the two curves.

and a maximum value that, instead, is reached at times that are odd multiples of τ ,

l((2m+ 1)τ) = L+

(
εmax
o − µ−µ+L

2K(µ− + µ+)

)
L. (5.42)

6 Discussion

In this paper, a model crawler has been analysed that exploits frictional, directional interactions either
concentrated at its extremities or distributed along the body. Solutions to the motility problem have
been obtained for both cases. In particular, we provide explicit formulae for the net available displace-
ments and for the tension acting at the crawler sections as a function of time, position and magnitude
of the active distortions. These findings extend previous results by the authors. In fact, similarly to
the approach followed in Gidoni et al. (2014), we consider the system as subject to a spatially uniform
time-history of distortion, but now we do not assume the shape of the crawler to be known a-priori.
Instead, the configuration of the crawler is an emergent property which arises from the coupled nonlin-
ear system consisting of the crawler force-generating mechanism, its passive elasticity and the external
frictional forces. This approach has allowed us, in particular, to determine the axial forces acting along
the body of the crawler: this is a quantity of great mechanical relevance in assessing the propensity of
the system towards buckling, when compressions are generated during the locomotion process. We plan
to address this issue in future studies and to extend our approach to more complex time-histories of
active distortions, such as those caused by the propagation of contraction waves.

While our analysis has focused mostly on some of the theoretical challenges that our model crawler
raises, it already provides clues that may guide practical design. For example, (4.19) implies that
no net displacement can be achieved unless the available spontaneous strains are large enough that
inequality (4.5) is satisfied. Using order of magnitude estimates for the geometric and material pa-
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rameters involved, namely, F+ = 0.45N (as in Noselli and DeSimone, 2014) and K = 102N (arising
from K = EA, with Young’s modulus E = 1MPa and area A = 10−4m2 for a square cross-section
of 1 cm× 1 cm) we obtain that the minimal magnitude of the active strains to produce non-zero dis-
placements is around 1%. In these circumstances, using Euler’s formula for the buckling of a simply
supported rod, one would estimate that strips can safely locomote without buckling provided that their
length L is below 10 cm. Smaller scale cross sections (in particular, smaller thicknesses) will presumably
require contact interactions with smaller F+.

It is important to acknowledge that, while in our analysis we have taken for granted the existence
of frictional interactions where the tangential force depends only on the sign of the slip velocity, with
different values in the plus and minus direction, engineering such interactions in a practical device is
far from trivial. The prototype crawlers described in Menciassi et al. (2006), Noselli and DeSimone
(2014) implement directional frictional interactions by inserting asymmetric ‘microscopic feet’ between
the crawler body and the supporting substrate. But the question of which are the details of the frictional
interaction laws emerging at the macroscopic level from a given microscopic contact mechanism is very
interesting, and largely open. Among the issues worth addressing are the dependence of the emerging
frictional forces on the roughness of the supporting surface, on the normal forces acting at the points
of microscopic contacts (due to gravity, or possibly to van der Waals interactions for devices of smaller
size), static versus dynamic friction, stick-slip phenomena, and dynamic effects.

We hope that our results may contribute to the development of effective limbless locomotion strate-
gies in microscopic soft devices. In this area and, more generally, in the development of medical micro-
scopic machines, LCEs may provide an interesting avenue towards miniaturization of artificial devices
by exploiting the principle the material is the machine (Bhattacharya and James, 2005). As suggested
by the discussion above, the main challenges to be overcome are twofold. First and foremost, mak-
ing actual devices capable of implementing smart conceptual locomotion schemes. On the other hand,
progress will also be needed in the development of new modelling and numerical tools in order to tackle
the nonlinear problems of motion planning and control for devices based on materials capable of large
elastic deformations, since a general theory to handle them is still missing.
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Appendix A Evolution equations through an incremental, variational principle

The evolution equations solved in Sections 4 and 5 can be obtained from an incremental variational
principle, as we show below. This fact is not just a mathematical curiosity, because it could lead to the
construction of solution algorithms similar to those that have proved successful in plasticity (Ortiz and
Stainier, 1999; Miehe et al., 2002), or in the study of the evolution of capillary drops subject to contact
angle hysteresis phenomena (DeSimone et al., 2007; Fedeli et al., 2011; Alberti and DeSimone, 2011).

We consider the history of prescribed states of spontaneous distortions t 7→ εo(t) given in Section 3,
and assume that the displacement field X 7→ u(X, t) is known at time t. We look for the displacement
and tension at time t+dt by seeking solutions of the following incremental minimization problem. Find
X 7→ u(X, t+ dt) as

u(X, t+ dt) = argminv {E (v, t+ dt) + diss(v, u(·, t)) + Diss(v, u(·, t))} , (A.1)

where E is the elastic energy defined in (2.4) and

diss(v, u(·, t)) :=

∫ L

0

{
µ+ (v(X)− u(X, t))+ − µ− (v(X)− u(X, t))−

}
dX, (A.2)
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whereas

Diss(v, u(·, t)) := F+ (v1 − u1(t))+ − F− (v1 − u1(t))− + F+ (v2 − u2(t))+ − F− (v2 − u2(t))−. (A.3)

Here we have set v1 := v(X1 = 0) and v2 := (X2 = L). Once u(X, t + dt) is known, we can find
T (X, t+ dt) using (2.6), namely

T (X, t) = K
(
u′(X, t)− εo(X, t)

)
. (A.4)

We consider the case of distributed friction first. We check for solutions of the form u(X, t+ dt) =
u(X, t) + u̇(X, t) dt and assume that X 7→ u̇(X, t) is continuous.

Let us first prove (5.1) for every point x0 ∈ (0, L) and for every time t such that u̇(X, t) ≥ 0 in a
neighbourhood N+

x0 of x0. Using minimality of u(X, t+dt) against vη(X) := u(X, t)+u̇(X, t) dt+ηφ(X),
with η ≥ 0 an arbitrary non-negative scalar, and φ(X) ≥ 0 an arbitrary non-negative C∞ function with
compact support in N+

x0 , we obtain

E (u(·, t+ dt), t+ dt) + diss(u(·, t) + u̇(X, t) dt, u(·, t)) ≤

E (u(·, t+ dt) + ηφ(·), t+ dt) + diss(u(·, t) + u̇(X, t) dt+ ηφ(·), u(·, t)) , (A.5)

and, in turn,

Iφ(η) := E (u(·, t+ dt) + ηφ(·), t+ dt)− E (u(·, t+ dt)t+ dt) + η

∫
N+

x0

µ+φ(x) dX ≥ 0 (A.6)

for every η ≥ 0 and φ ≥ 0. Moreover, Iφ(0) = 0 for every φ. It follows that

d

dη
Iφ(η)|η=0+ =

∫
N+

x0

[−K(u′ − εo)′ + µ+]φ dX ≥ 0 (A.7)

for every φ, and since we can take an arbitrarily small neighbourhood N+
x0 , we obtain that, for every

x0 ∈ (0, L) with u̇(X, t) ≥ 0 in a neighbourhood N+
x0 ,

− T ′(x0, t+ dt) + µ+ ≥ 0 . (A.8)

If, in particular, u̇(x0, t) > 0, then there exists a neighbourhood N+
x0 where u̇(X, t) > 0 and we can take

η of unrestricted sign in the argument above. This leads to strict equality to zero in (A.7) and hence

− T ′(x0, t+ dt) + µ+ = 0 , at any x0 ∈ (0, L) with u̇(x0, t) > 0 . (A.9)

Similar arguments at a point x0 ∈ (0, L) such that either u̇(x0, t) ≤ 0, or u̇(x0, t) < 0, show that,
for every x0 ∈ (0, L) with u̇(X, t) ≤ 0 in a neighbourhood N−x0 ,

− T ′(x0, t+ dt)− µ− ≤ 0 , (A.10)

and that
− T ′(x0, t+ dt)− µ− = 0 , at any x0 ∈ (0, L) with u̇(x0, t) < 0 . (A.11)

We exclude from our analysis the points where u̇ changes sign. Since u̇ is continuous, those point are
at most countably many and thus negligible. Hence, putting (A.8)-(A.11) together, and using (2.12),
we obtain (2.15), namely,

T ′(X, t) ∈ ∂

∂v
d (u̇(X, t)) . (A.12)
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Now we derive the boundary conditions (5.4). Given our solution u(X, t+dt) = u(X, t)+ u̇(X, t) dt,
we define N+ = {X ∈ [0, L] : u̇(X, t) > 0} and N− = {X ∈ [0, L] : u̇(X, t) < 0}. Let φ(X) ≥ 0 be a
non-negative C∞ function on [0, L] such that φ(L) > 0 and φ(0) = 0. For every η we set

A(η) =


{X ∈ N+ : u̇(X, t) dt+ ηφ(X) < 0} if η < 0,

∅ if η = 0,

{X ∈ N− : u̇(X, t) dt+ ηφ(X) > 0} if η > 0.

(A.13)

We have that |A(η)| → 0 for η → 0. We repeat the minimality argument used previously and obtain

Iφ(η) := E (u(·, t+ dt) + ηφ(·), t+ dt)− E (u(·, t+ dt)t+ dt) + (A.14)

+ η

∫
N+

L

µ+φ(x) dX + η

∫
N−

L

µ−φ(x) dX +R(η) ≥ 0, (A.15)

where
R(η) =

∫
A(η)

(µ− + µ+) |u̇(X, t) dt+ ηφ(X)| dX. (A.16)

We observe that
|R(η)| ≤ |η| |A(η)|

∣∣∣∣(µ− + µ+) max
X∈[0,L]

φ(X)

∣∣∣∣ , (A.17)

from which it follows that
d

dη
R(η)|η=0 = 0. (A.18)

From this condition and the minimality of Iφ(0) we obtain

0 =
d

dη
Iφ(η)|η=0 =

∫
N+

L

[−T (X, t+ dt) + µ+]φ(x) dX + (A.19)

+

∫
N−

L

[−T (X, t+ dt)− µ−]φ(x) dX + T (L)φ(L)− T (0)φ(0). (A.20)

The two integrals are both equal to zero because the integrands vanish in view of (A.9) and (A.11).
Since φ(L) = 0 and φ(0) > 0, we get T (0) = 0. To obtain the second boundary condition T (L) = 0 it
suffices to consider instead test functions φ(X) ≥ 0 such that φ(L) > 0 and φ(0) = 0.

We now consider the case of friction concentrated at the two ends. Since d ≡ 0 implies that T (X, t)
is now independent of X and, since εo is spatially uniform, the function X 7→ u(X, t) is affine and the
incremental minimization problem (A.1) can be reduced to

u(t+ dt) = argminv {Er(v, t+ dt) + Diss(v,u(t))} , (A.21)

where u(t) := (u1(t), u2(t)) and v(t) := (v1(t), v2(t)), whereas

Er(v, t) :=
1

2
KL

(
v2 − v1
L

− εo(t)
)2

, (A.22)

and

Diss(v,u(t)) = F+ (v1 − u1(t))+ − F− (v1 − u1(t))− + F+ (v2 − u2(t))+ − F− (v2 − u2(t))−. (A.23)
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Following similar arguments to those used above for the case of distributed friction, we obtain (3.5),
namely, 

T (0, t) = − ∂

∂u1
Er(u(t), t) ∈ ∂

∂u1
D (u̇1(t)) ,

−T (L, t) = − ∂

∂u2
Er(u(t), t) ∈ ∂

∂u̇2
D (u̇2(t)) .

(A.24)

We remark in conclusion that the general case in which both distributed and concentrated frictional
forces are present can be obtained by combining equations (A.12) and (A.24).

References

[1] Agostiniani, V., DeSimone, A., 2011a. Ogden-type energies for nematic elastomers. Int. J. Nonlinear Mech.
47, 402-412. (doi: 10.1016/j.ijnonlinmec.2011.10.001)

[2] Agostiniani, V., DeSimone, A., 2011b. Gamma-convergence of energies for nematic elastomers in the small
strain limit. Cont. Mech. Thermodyn. 23, 257-274. (doi: 10.1007/s00161-011-0180-2)

[3] Alberti, G., DeSimone, A., 2011. Quasistatic evolution of sessile drops and contact angle hysteresis. Arch.
Rat. Mech. Anal. 202, 295-348. (doi: 10.1007/s00205-011-0427-x)

[4] Armon, S., Efrati, E., Kupferman, R., Sharon, E., 2011. Geometry and mechanics in the opening of chiral
seed pods. Science 333, 1726-1730. (doi: 10.1126/science.1203874)

[5] Arroyo, M., Heltai, L., Millán, D., DeSimone, A., 2012. Reverse engineering the euglenoid movement. Proc.
Nat. Acad. Sci. USA 109, 17874-17879. (doi: 10.1073/pnas.1213977109)

[6] Arroyo, M., DeSimone, A., 2014. Shape control of active surfaces inspired by the movement of euglenids.
J. Mech. Phys. Solids 62, 99-112. (doi: 10.1016/j.jmps.2013.09.017)

[7] Bhattacharya, K., James, R., 2005. The material is the machine. Science 307, 53-54.
(doi: 10.1126/science.1100892)

[8] Bladon, P., Terentjev, E.M., Warner, M., 1993. Transitions and instabilities in liquid-crystal elastomers.
Phys. Rev. E 47, R3838-R3840. (doi: 10.1103/PhysRevE.47.R3838)

[9] Camacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P., Shelley, M., 2004. Fast liquid-crystal elastomer
swims into the dark. Nature Materials 3, 307-310. (doi: 10.1038/nmat1118)

[10] Cesana, P., DeSimone, A., 2011. Quasiconvex envelopes of energies for nematic elastomers in the small
strain regime and applications. J. Mech. Phys. Solids 59, 787-803. (doi: 10.1016/j.jmps.2011.01.007)

[11] Chaudhury, M.K., Chakrabarti, A., Daniel, S., 2015. Generation of motion of drops with interfacial contact.
Langmuir, Available online (doi: 10.1021/la504925u)

[12] Cicconofri, G., DeSimone, A., 2015. Motility of a model bristle-bot: A theoretical analysis. Int. J. Nonlinear
Mech., Available online (doi: 10.1016/j.ijnonlinmec.2014.12.010)

[13] Conti, S., DeSimone, A., Dolzmann, G., 2002a. Soft elastic response of stretched sheets of nematic elas-
tomers: a numerical study. J. Mech. Phys. Solids 50, 1431-1451. (doi: 10.1016/S0022-5096(01)00120-X)

[14] Conti, S., DeSimone, A., Dolzmann, G., 2002b. Semi-soft elasticity and director reorientation in stretched
sheets of nematic elastomers. Phys. Rev. E 66, 061710:1-8. (doi: 10.1103/PhysRevE.66.061710)

[15] DeSimone, A., 1999. Energetics of fine domain structures. Ferroelectrics 222, 275-284.
(doi: 10.1080/00150199908014827)

[16] DeSimone, A., Dolzmann, G., 2000. Material instabilities in nematic elastomers. Physica D 136, 175-191.
(doi: 10.1016/S0167-2789(99)00153-0)

[17] DeSimone, A., Dolzmann, G., 2002. Macroscopic response of nematic elastomers via relaxation of a class
of SO(3)-invariant energies. Arch. Rat. Mech. Anal. 161, 181-204. (doi: 10.1007/s002050100174)

[18] DeSimone, A., Grunewald, N., Otto, F., 2007. A new model for contact angle hysteresis. Netw. Heterog.
Media 2, 211-225. (doi: 10.3934/nhm.2007.2.211)

[19] DeSimone, A., Teresi, L., 2009. Elastic energies for nematic elastomers. Eur. Phys. J. E 29, 191-204.
(doi: 0.1140/epje/i2009-10467-9)

22



[20] DeSimone, A., Tatone, A., 2012. Crawling motility through the analysis of model locomotors: two case
studies. Eur. Phys. J. E 35, 85. (doi: 10.1140/epje/i2012-12085-x)

[21] DeSimone, A., Guarnieri, F., Noselli, G., Tatone, A., 2013. Crawlers in viscous environments: linear vs
non-linear rheology. Int. J. Non-Linear Mech. 56, 142-147. (doi: 10.1016/j.ijnonlinmec.2013.02.007)

[22] Fedeli, L., Turco, A., DeSimone, A., 2011. Metastable equilibria of capillary drops on solid surfaces: a
phase field approach. Continuum Mech. and Thermodyn. 23, 453-471. (doi: 10.1007/s00161-011-0189-6)

[23] Fukunaga, A., Urayama, K., Takigawa, T., DeSimone, A., Teresi, L., 2008. Dynamics of electro-opto-
mechanical effects in swollen nematic elastomers. Macromolecules 41, 9389-9396. (doi: 10.1021/ma801639j)

[24] Gidoni, P., Noselli, G., DeSimone, A., 2014. Crawling on directional surfaces. Int. J. Non-Linear Mech. 61,
65-73. (doi: 10.1016/j.ijnonlinmec.2014.01.012)

[25] Gray, J., Lissmann, H.W., 1938. Studies in animal locomotion VII. Locomotory reflexes in the earthworm.
J. Exp. Biol. 15, 506-517.

[26] Hancock, M.J., Sekeroglu, K., Demirel, M.C., 2012. Bioinspired directional surfaces for adhesion, wetting,
and transport. Adv. Funct. Mater. 22, 2223-2234. (doi: 10.1002/adfm.201103017)

[27] Hirose, S., 1993. Biologically Inspired Robots: Snake-Like Locomotors and Manipulators. Oxford Univer-
sity Press, Oxford.

[28] Ikeda, T., Mamiya, J., Yu, Y., 2007. Photomechanics of Liquid-Crystalline Elastomers and other polymers.
Angew. Chemie 46, 506-528. (doi: 10.1002/anie.200602372)

[29] Kim, S., Laschi, C., Trimmer, B., 2013. Soft robotics: a bio-inspired evolution in robotics. Trends in
Biotechnology 31, 287-294. (doi: 10.1016/j.tibtech.2013.03.002)

[30] Knezevic, M., Warner, M., 2013. Optomechanical elastomeric engine. Phys. Rev. E 88, 040501:1-4.
(doi: 10.1103/PhysRevE.88.040501)

[31] Maeda, S., Hara, Y., Sakai, T., Yoshida, R., Hashimoto, S., 2007. Self-walking gel. Adv. Mater. 19, 3480-
3484. (doi: 10.1002/adma.200700625)

[32] Mahadevan, L., Daniel, S., Chaudhury, M.K., 2004. Biomimetic ratcheting motion of a soft, slender, sessile
gel. Proc. Nat. Acad. Sci. USA 101, 23-26. (doi: 10.1073/pnas.2637051100)

[33] Marchetti, M.C., Joanny, J.F., Ramaswamy, S., Liverpool, T.B., Prost, J., Rao, M., Aditi Simha, R., 2013.
Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143-1189. (doi: 10.1103/RevModPhys.85.1143)

[34] McNeil, A.R., 2003. Principles of Animal Locomotion. Princeton University Press, Princeton.

[35] Menciassi, A., Accoto, D., Gorini, S., Dario, P., 2006. Development of a biomimetic miniature robotic
crawler. Auton. Robot 21, 155-163. (doi: 10.1007/s10514-006-7846-9)

[36] Miehe, C., Schotte, J., Lambrecht, M., 2002. Homogenization of inelastic solid materials at finite strains
based on incremental minimization principles. Application to the texture analysis of polycrystals. J. Mech.
Phys. Solids 50, 2123-2167. (doi: 0.1016/S0022-5096(02)00016-9)

[37] Noselli, G., DeSimone, A., Tatone, A., 2013. Discrete one-dimensional crawlers on viscous sub-
strates: achievable net displacements and their energy cost. Mech. Res. Commun. 58, 73-81.
(doi: 10.1016/j.mechrescom.2013.10.023)

[38] Noselli, G., DeSimone, A., 2014. A robotic crawler exploiting directional frictional interactions: ex-
periments, numerics, and derivation of a reduced model. Proc. Roy. Soc. London A 470, 20140333.
(doi: 0.1098/rspa.2014.0333)

[39] Ortiz, M., Stanier, L., 1999. The variational formulation of viscoplastic constitutive updates. Comput.
Methods Appl. Mech. Engrg. 171, 419-444. (doi: 10.1016/S0045-7825(98)00219-9)

[40] Purcell, E.M., 1977. Life at low Reynolds number. Am. J. Phys. 45, 3-11. (doi: 10.1119/1.10903)

[41] Quillin K.J., 1999. Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling
by the earthworm Lumbricus terrestris. J. Exp. Biol. 202, 661-674.

[42] Sawa, Y., Urayama, K., Takigawa, T., DeSimone, A., Teresi, L., 2010. Thermally driven giant bending of
LCE films with hybrid alignment. Macromolecules 43, 4362-4369. (doi: 10.1021/ma1003979)

23



[43] Stefanini, C., Menciassi, A., Dario, P., 2006. Modeling and experiments on a legged microrobot lo-
comoting in a tubular, compliant and slippery environment. Int. J. Robotic Research 25, 551-560.
(doi: 10.1177/0278364906065876)

[44] Tanaka, Y., Ito, K., Nakagaki, T., Kobayashi, R., 2012. Mechanics of peristaltic locomotion and role of
anchoring. J. R. Soc. Interface 9, 222-233. (doi: 10.1098/rsif.2011.0339)

[45] Trivedi, D., Rahn, C.D., Kier, W.M., Walker, I.D., 2008. Soft robotics: Biological inspiration, state of the
art, and future research. Applied Bionics and Biomechanics 5, 99-117. (doi: 10.1080/11762320802557865)

[46] van Oosten, C.L., Corbett, D., Davies, D., Warner, M., Bastiaansen, C.W.M., Broer, D.J., 2008. Bending
dynamics and directionality reversal in liquid crystal network photoactuators. Macromolecules 41, 8592-
8596. (doi: 10.1021/ma801802d)

[47] Verwey, G.C., Warner, M., Terentjev, E.M., 1996. Elastic instability and stripe domains in liquid crystalline
elastomers. J. Phys. II France 34, 1273-1290. (doi: 10.1051/jp2:1996130)

[48] Warner, M., Terentjev, E.M., 2003. Liquid Crystal Elastomers. Clarendon Press, Oxford.

[49] Wei, J., Yu Y., 2012. Photodeformable polymer gels and crosslinked liquid-crystalline polymers. Soft Matter
8, 8050-8059. (doi: 10.1039/C2SM25474C)

[50] Yoshida, R., Takahashi, T., Yamaguchi, T., Ichijo, H., 1996. Self-oscillating gel. J. Am. Chem. Soc. 118,
5134-5135. (doi: 10.1021/ja9602511)

24


	1 Introduction
	2 Governing equations
	3 Formulation of the motility problem
	3.1 Friction only at the ends
	3.2 Only distributed friction

	4 Friction only at the ends
	4.1 Evolution equations
	4.2 Solution of the motility problem

	5 Distributed friction
	5.1 Evolution equations
	5.2 Solution of the motility problem

	6 Discussion
	Appendix A Evolution equations through an incremental, variational principle

