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MORI DREAM STACKS

ANDREAS HOCHENEGGER AND ELENA MARTINENGO

Abstract. We propose a generalisation of Mori dream spaces to stacks.
We show that this notion is preserved under root constructions and
taking abelian gerbes. Unlike the case of Mori dream spaces, such a
stack is not always given as a quotient of the spectrum of its Cox ring
by the Picard group. We give a criterion when this is true in terms
of Mori dream spaces and root constructions. Finally, we compare this
notion with that of smooth toric Deligne-Mumford stacks.
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Introduction

In [18], Yi Hu and Seán Keel introduce the notion of a Mori dream space,
which is a projective variety satisfying a number of properties ensuring that
the Minimal Model Program works nicely. Moreover, they characterise Mori
dream spaces as exactly those projective varieties, which can be written as
a GIT quotient of the spectrum of its Cox ring R(X) by Hom(Cl(X),C∗).
We want to note here, that the unstable locus of SpecR(X) is the so-called
irrelevant locus V (Jirr), where all global sections of an ample line bundle
on X vanish. In [loc. sit.], Cl(X) is assumed to be free of finite rank. In
[17], Jürgen Hausen extends the definition to include the case where Cl(X)
is just finitely generated.

In this paper, we propose a definition of Mori dream stacks as a general-
isation of Mori dream spaces. For us, a Mori dream stack X (or MD-stack
for short) is a smooth Deligne-Mumford stack with only constant invertible
functions, finitely generated Picard group Pic(X ) and finitely generated Cox
ringR(X ). It turns out that an MD-stack X is not automatically of the form

X =
[

SpecR(X ) \ V (Jirr)
/

Hom(Pic(X ),k∗)

]

,
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as in the case of varieties. If X is such a quotient, we call it an MD-quotient
stack. Without the smoothness of X , most of our results on MD-quotient
stacks will not hold; e.g., see Example 2.8. Moreover, we will also need that
the coarse moduli space of X has at most quotient singularities.

We prove that MD-stacks are preserved by classical constructions for
stacks, like the root constructions with simple normal crossing divisors and
by taking abelian gerbes; see Theorems 2.9 and 2.10. MD-quotient stacks
are also preserved by these root constructions. However, they are not pre-
served by taking arbitrary abelian gerbes, only by those which come from
taking roots of line bundles.

The main result of this paper is the following characterisation of MD-
stacks and of the subclass of MD-quotient stacks. Let X be a Deligne-
Mumford stack and X → X be the structure morphism to its coarse moduli
space X. This morphism factors through X → X can → X, where X can is
the canonical stack i.e., the minimal orbifold having X as its coarse moduli
space. In the following see Definition 1.1 for the notion of an MD-space.

Main Theorem (Theorems 3.1, 3.5 and Corollary 3.4). Let X be a smooth
Deligne-Mumford stack and X → X be the structure morphism to its coarse
moduli space X.

(1) If X is an MD-stack, then X is an MD-space. Moreover, if X has abelian
generic stabiliser and a ramification divisor with simple normal crossing
components, then the converse holds too.

(2) X is an MD-quotient stack if and only if X is an MD-space with the
property that SpecR(X)\V (Jirr) is smooth and X can be obtained from
X can by root constructions with simple normal crossing divisors and line
bundles.

The easiest class of Mori dream spaces are toric varieties. They are char-
acterised among the Mori dream spaces by the property that their Cox rings
are polynomial rings. Moreover a Mori dream space can be embedded as a
closed subvariety in a toric variety in such a way that their Picard groups
are naturally isomorphic; see [18]. In [8], Lev Borisov, Linda Chen and
Greg Smith introduce toric stacks. In the later work [12], Barbara Fantechi,

Étienne Mann and Fabio Nironi give a geometric definition of a smooth toric
Deligne-Mumford stack with an action of a Deligne-Mumford torus. They
show that any such stack can be obtained from its coarse moduli space,
which is again toric, by root constructions along torus-invariant divisors
and line bundles. Many of our results are a generalisation of their ideas to
the MD-setting.

The last part of our article is dedicated to the relation between MD-
quotient stacks and smooth toric Deligne-Mumford stacks. As a generalisa-
tion of [18] mentioned above, we show the following theorem.

Theorem (Theorems 4.1 and 4.2). Let X be an MD-quotient stack. Then:

(1) X is a smooth toric Deligne-Mumford stack if and only if its Cox ring
is a polynomial ring.

(2) If the divisor class group of the coarse moduli space X of X is free,
then there is a closed embedding ι : X →֒ Y into a smooth toric Deligne-
Mumford stack Y such that ι∗ : Pic(Y)

∼
−→ Pic(X ) is an isomorphism.
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Notation and Conventions. In this article, k will always be an alge-
braically closed field of characteristic 0, since most results on Mori dream
spaces and GIT quotients are only available in this setting. A stack is always
meant to be algebraic, separated and of finite type over k. We work in the
étale topology.

Acknowledgements. The authors would like to thank Nicola Pagani and
Angelo Vistoli for answering our questions; Barbara Fantechi, Flavia Poma
and Fabio Tonini for very helpful discussions and explanations; Cinzia Casa-
grande for stimulating questions; and again Fabio Tonini for reading care-
fully a preliminary version of this article. Finally, we want to thank the
anonymous referee for helpful comments.

1. Preliminaries

1.1. Mori dream spaces and Cox rings. Our definition of a Mori dream
space will differ from the standard terminology coming from the Minimal
Model Program. To avoid confusion, we will always use the abbreviation
MD-space when referring to the definition given below. The reason is that
we rely on a quotient description of such a variety, which comes in handy
when passing to stacks. Therefore, our definition will be based on the char-
acterisation of projective, Q-factorial Mori dream spaces as GIT quotients
as given in [18, Prop. 2.9], and the more general one of a variety which is a
GIT quotient of the spectrum of its (finitely generated) Cox ring as found
in [5].

Definition 1.1. A normal variety X will be called an MD-space if

(1) X has at most quotient singularities,
(2) H0(X,O∗

X ) = k∗,
(3) Cl(X) is finitely generated as a Z-module,
(4) its Cox ring R(X) is finitely generated as a k-algebra.

Remark 1.2. Note that a variety has by definition quotient singularities if
there exists an analytical open cover by sets of the form U/G, where U is
smooth and G a finite group. Consequently, such a variety is Q-factorial.
Moreover, this condition will allow us to associate to X a smooth stack in a
canonical way.

If X in the definition is moreover projective, then our definition is a
slightly more restrictive than the standard one, in which Q-factorial singu-
larities are allowed; see [18, Prop. 2.9].

Let X be an MD-space. For us the most important feature is that X has
a description as a GIT quotient of the spectrum of its Cox ring R(X) by
Hom(Cl(X),k∗). Let us introduce all the ingredients necessary to under-
stand this quotient description. The Cox ring can be näıvely defined as the
Cl(X)-graded vector space

R(X) =
⊕

L∈Cl(X)

H0(X,L),

but as pointed out in [18], this definition does not admit a canonical ring
structure. To obtain one in the case when Cl(X) is free, one has to fix a
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basis of Cl(X). Then the product can be defined by multiplying the sections
as rational functions.

For an arbitrary finitely generated Cl(X), the definition of a ring structure
is a bit more technical; see [17]. In the following presentation we will follow
[5, Sec. I.4].

Choose a finite number of divisors D1, . . . ,Dm, such that the classes
[D1], . . . , [Dm] generate Cl(X). Denote by K the free subgroup of the group
of Weil divisiors WDiv(X) generated by these divisors. We hence have a
surjection K ։ Cl(X). If we write K0 for its kernel, then we obtain a short
exact sequence K0 →֒ K ։ Cl(X) with K,K0 free groups. Finally, since
the composition of K0 →֒ K →֒ WDiv(X) and WDiv(X) ։ Cl(X) is zero,
the map K0 →֒ WDiv(X) has to factor uniquely through k(X)∗, that is,
the kernel of WDiv(X) ։ Cl(X). So we obtain a map χ : K0 →֒ k(X)∗. In
particular, for a principal divisor E ∈ K0 we have E = divχ(E).

Consider the sheaf of Cl(X)-graded rings S =
⊕

D∈K OX(D) containing

the homogeneous ideal I = 〈1− χ(E) | E ∈ K0〉.

Definition 1.3. The Cox ring of X is the Cl(X)-graded ring

R(X) := H0(X,S)/H0(X,I).

We note that the definition of the Cox ring depends on the choices we
made above. But for different choices, the resulting rings will be (non-
canonically) isomorphic.

The Cl(X)-grading of the Cox ring R(X) is equivalent to an action of
Hom(Cl(X),k∗) on SpecR(X). Actually, X arises as a GIT quotient by
this action in the following way.

Proposition 1.4 ([18, Prop. 2.9], [5, Sec. I.6]). Let X be an MD-space and
L an ample line bundle on X, giving a character χ : Hom(Cl(X),k∗) → k∗.
Then X is isomorphic to the GIT quotient SpecR(X)//χ Hom(Cl(X),k∗).

More explicitly, define the irrelevant ideal Jirr = Jirr(X) :=
√

〈H0(X , L)〉,
that turns out to be independent of the choice of the ample line bundle L.
Then we obtain

X = SpecR(X) \ V (Jirr)
/

Hom(Cl(X),k∗) .

1.2. Stacks. We recall that we assume stacks to be algebraic, separated
and of finite type over k. Most of the constructions of this section will hold
also if the stacks are not Deligne-Mumford. In this section we recall some
basic facts on stacks, that will be useful for the following.

The first notion we need is that of a coarse moduli space. The main
references for us are [22], [23] and [25].

Definition 1.5. Let X be a stack. A coarse moduli space for X is an
algebraic space X over k with a morphism π : X → X, such that:

(1) the following universal property holds: for every morphism ψ : X → Z
to an algebraic space, there exists a unique morphism f : X → Z, such
that ψ = f ◦ π;

(2) the map |X (k)| → X(k) is bijective, where |X (k)| denotes the set of
isomorphism classes in X (k).
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The following theorem ensures the existence of coarse moduli spaces.

Proposition 1.6 ([19], [11, Thm. 1.1]). Let X be a (separated) Deligne-
Mumford stack. Then there exists a coarse moduli space π : X → X which
is proper and quasi-finite. Moreover, if X ′ → X is a flat map of algebraic
spaces, then X ×X X ′ → X ′ is a coarse moduli space, too.

The next proposition actually characterises tame moduli spaces, but in
our situation the two notions coincide since chark = 0. Note that since we
assume our stacks and varieties to be of finite type over k, maps between
them are automatically quasi-compact.

Proposition 1.7 ([3, Thm. 3.2],[19],[4, Rem. 7.3]). Let π : X → X be the
natural map to the coarse moduli space. Then

(3) π∗ : QCohX → QCohX is exact;
(4) there is a natural isomorphism OX → π∗OX .

Conversely, if π : X → X satisfies the conditions (2), (3) and (4), then π is
a coarse moduli map.

Now we recall the concept of the rigidification of a stack. We refer to [1],
[3] and [12] for details.

Let X be a stack. The inertia stack of X is defined to be the fibre product
I(X ) := X ×X×X X . The inertia stack of a smooth Deligne-Mumford stack
is smooth, but will consist of several components, not all necessarily of
the same dimension. Let I(X ) → X be the natural projection. Its identity
section gives an irreducible component canonically isomorphic to X ; all other
components are called twisted sectors.

A smooth Deligne-Mumford stack of dimension d is an orbifold if and
only if all the twisted sectors have dimension at most d−1, and is canonical
if and only if all twisted sectors have dimension at most d− 2.

The canonical stack can be defined also as the smooth Deligne-Mumford
stack X can, whose natural map to the coarse moduli space π : X can → X
fails to be an isomorphism just on a locus of dimension ≤ d− 2. Note that
X can is unique up to isomorphism with this property; see [12, Thm. 4.6].

The generic stabiliser Igen(X ) of X is the subsheaf of groups of I(X )
given by the union of all d-dimensional components of I(X ).

Let now H ⊂ I(X ) be a flat subgroup stack. Let ξ ∈ X (T ) be an object of
the stack X over a k-scheme T , which corresponds to a morphism T → X .
The pullback T ×X I(X ) is canonically isomorphic to the group scheme
AutT,X (ξ) and the pullback of H to T gives a flat subgroup scheme Hξ ⊂
AutT,X (ξ). It is easy to see that the construction implies thatHξ is normal in
AutT,X (ξ). In this situation the following theorem defines the rigidification
of X by H.

Proposition 1.8 ([3, Thm A.1.]). There is a stack X(((H called the rigidi-
fication of X by H and a morphism ν : X → X(((H satisfying the following
properties:

(1) for any k-scheme T and for any object ξ ∈ X (T ), the homomorphism
of group schemes AutT,X (ξ) → AutT,X(((H(ν(ξ)) is surjective with kernel
Hξ,

(2) X is a fppf gerbe over X(((H (for the definition of gerbe, see Section 1.4).
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Furthermore, if X is a Deligne-Mumford stack, then also X(((H is a Deligne-
Mumford stack.

It can be shown that these properties characterise X(((H uniquely up to
isomorphism.

A more intuitive way to think of the rigidification is to consider first the
prestack (X(((H)pre, whose objects are the same as those of X and whose sheaf
of automorphisms AutT,(X(((H)pre(ξ) of an object ξ ∈ X (T ) is the quotient of

AutT,X (ξ) by the subsheaf of normal groups Hξ. The rigidification X(((H can
be obtained as the fppf stackification of this prestack. From this construction
follows that X and X(((H have the same coarse moduli space.

In our work we are mainly interested in the rigidification of a stack by its
generic stabiliser, which we assume to be abelian and flat. It will be called
the rigidification of X and indicated by X rig.

Proposition 1.9 ([12, Rem. 3.7]). Let X be a Deligne-Mumford stack and
π : X → X its coarse moduli map. Moreover, let D be a prime divisor on
X. Denote by D the reduced closed substack with support π−1(D). When
restricting to the smooth locus of X, D becomes Cartier, and there is a
unique positive integer a such that π−1(D ∩Xsm) = a(D ∩ π−1(Xsm)).

Definition 1.10. In the notation above we call a the divisor multiplicity of
D. The ramification divisor of X is the sum of all prime divisors of X with
positive divisor multiplicity.

Now let X be an arbitrary Deligne-Mumford stack and ν : X → X rig its
rigidification. If Drig is the ramification divisor of X rig, we call the reduced
closed substack D inside ν−1(Drig) the ramification divisor of X .

Definition 1.11. A line bundle L on a stack X is called ample if H i(X ,F⊗
L⊗n) vanishes for any sheaf F on X , i > 0 and n≫ 0.

Lemma 1.12. Let π : X → X be the map of a Deligne-Mumford stack to
its coarse moduli space and L an ample line bundle on X. Then π∗L is an
ample line bundle on X .

Proof. Since L is locally free, we can use the projection formula to get π∗(F⊗
π∗L⊗n) = π∗F⊗L⊗n, since π∗ is exact by Proposition 1.7(3). Apply on both
sides H i(X, – ) this becomes H i(X , F ⊗ π∗L⊗n) = H i(X,π∗F ⊗ L⊗n). But
the latter cohomology group vanishes for i > 0 and n≫ 0. �

1.3. Root constructions. In this section, we recall the definition of two
root constructions as found in [10] and [2] and we state some facts about
these.

Definition 1.13. Let X be a stack and D an effective divisor on X . Let r
be a positive integer. Consider the fibre product

X ×[A1/k∗] [A
1/k∗] //

��

[A1/k∗]

r
��

X
D

// [A1/k∗]

where the lower map corresponds to the divisor and the right map is induced
by p 7→ pr. The stack r

√

D/X := X ×[A1/k∗] [A
1/k∗] is the r-th root of the

divisor D on X .
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Definition 1.14. Let X be a stack and L a line bundle on X . Let r be a
positive integer. Consider the fibre product

X ×Bk∗ Bk∗ //

��

Bk∗

r
��

X
L

// Bk∗

where the lower map corresponds to the line bundle and the right map is
induced by p 7→ pr. The stack r

√

L/X := X ×Bk∗ Bk∗ is the r-th root of the
line bundle L on X .

Definition 1.15. Let X be a stack. We say that X ′ is obtained by roots from
X , if X ′ is the result of performing a finite sequence of root constructions
with divisors or line bundles starting from X .

By [25, Ex. 7.21], a coherent sheaf on a quotient stack X = [Z/G] is a
G-equivariant sheaf on Z, i.e., a coherent sheaf LZ on Z equipped, for every
g ∈ G, with an isomorphism ϕg : LZ → g∗LZ , such that ϕgh = h∗ϕg ◦ ϕh.
The data {ϕg}g∈G is called a G-linearisation of LZ .

In the case of invertible sheaves this leads to the following exact sequence;
see [20, Lem. 2.2]:

0 → H1
alg(G,O

∗
Z) → Pic(X ) → Pic(Z).

Here, the group H1
alg(G,O

∗
Z) parametrises G-linearisations of the trivial line

bundle on Z. The group ofG-linearisations is naturally linked to the group of
characters of G by the following exact sequence obtained from [20, Prop. 2.3]

1 → H0(X ,O∗
X ) → H0(Z,O∗

Z ) → Hom(G,k∗) → Pic(X ) → Pic(Z).

This implies that, if H0(Z,O∗
Z) = k∗, the first arrow is an isomorphism and

the group H1
alg(G,O

∗
Z ) coincides with the group of characters of G.

In this case we can generalise [12, Lem. 7.1]:

Proposition 1.16. Let Z be a variety with H0(Z,O∗) = k∗ and G an
abelian group acting on it, such that X = [Z/G] is a Deligne-Mumford stack.
Let D be a divisor on X corresponding to a line bundle L and a section s.
Assume that L is given by the trivial line bundle on Z and a character χ of
G. Finally, let r be a positive integer.

(1) The stack r
√

D/X is isomorphic to [Z ′/G′] where both Z ′ and G′ are
defined as the fibre products

Z ′ //

��

A1

r
��

Z s
// A1

G′ //

��

k∗

r
��

G χ
// k∗

and both maps on the right are induced by p 7→ pr. The action of G′ on
Z ′ is given by

(g, λ) · (z, t) = (g · z, λt).

(2) The stack r
√

L/X is isomorphic to [Z/G′] where G′ is defined as above
and acts on Z using the map G′ → G.
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Remark 1.17. The variety Z ′ together with the map Z ′ → Z is called the
r-th cyclic cover of Z ramified along D, which is the divisor D pulled back
to Z.

Note that, if Pic(Z) = 0, any invertible sheaf on the quotient stack X is
given by a unique character of G.

Proposition 1.18 ([10, Thm. 2.3.3 and Rem.]). Let X be a stack obtained
by roots from a Deligne-Mumford stack. Then X is also a Deligne-Mumford
stack.

Proposition 1.19 ([4, Prop. 3.10(vii)]). Consider the following cartesian
square of Artin stacks:

X ′ //

f ′

��

Y ′

f
��

X // Y

If f is cohomologically affine (i.e., quasi-compact and f∗ is exact) and Y has
quasi-affine diagonal over k, then f ′ is also cohomologically affine. Note that
the condition on Y is automatically fulfilled if Y is a Deligne-Mumford stack.

Lemma 1.20. Let X → X be the map to the coarse moduli space of a
Deligne-Mumford stack X , and X ′ obtained by roots with divisors from X .
Then the composition X ′ → X → X is the coarse moduli map of X ′.

Proof. Let X ′ be obtained by one single root of a divisor from X . So X ′ fits
into the following cartesian square:

X ′ //

ν
��

[A1/k∗]

r
��

X // [A1/k∗]

We will check that X ′ ν
−→ X → X is a coarse moduli map, using the char-

acterisation in Proposition 1.7. Since this already holds for X → X, we
are left to show that ν is cohomologically affine, induces an isomorphism
OX → ν∗OX ′ and a bijection |X ′(k)| → |X (k)|.

First we show that ν is cohomologically affine by applying Proposition 1.19.
For this note that [A1/k∗] has a quasi-affine diagonal over k. Moreover, the

composition [A1/k∗]
r
−→ [A1/k∗] → Speck is the same map as [A1/k∗] →

Bk∗ → Speck, which is cohomologically affine. Therefore, by [4, Prop. 3.14],

[A1/k∗]
r
−→ [A1/k∗] is also cohomologically affine and consequently ν as well.

Secondly, OX → ν∗OX ′ is an isomorphism by [10, Thm. 3.1.1(3)].
Finally, we need to see whether ν induces a bijection of closed points

|X ′(k)| → |X (k)|. Let pt → X be a closed point and consider the fibre
product

P //

��

X ′

�� ��

pt // X

By extending this cartesian square by the diagram above, one sees that P
is either pt or [Spec

(

k[t]/tr
)

/µr], which has pt or Spec
(

k[t]/tr
)

as an atlas.
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Note that latter containes a unique closed point. Therefore, |X ′(k)| →
|X (k)| is surjective.

Suppose we have two maps fi : pt → X ′ with i = 1, 2 such that the
composition pt → X ′ → X is the same map g for both up to isomorphism.
Therefore, we can build the following diagram where the square is cartesian

pt fi

%%

id

!!

##
❍

❍

❍

❍

P //

��

X ′

����

pt g
// X

Hence, the fi factor over P . Independent of its actual form, |P (k)| = pt, so
the maps fi differ only by an isomorphism. This shows that |X ′(k)| → |X (k)|
is also injective. �

Remark 1.21. A very similar proof also works for roots with line bundles.
We will show the analoguous statement in a more general situation, namely
for gerbes, see Example 1.28.

Lemma 1.22 ([24, Prop. 3.1]). Let Z be a smooth variety and D1, . . . ,Dl

prime divisors on Z. Moreover, let Z ′ be obtained from Z by cyclic covers
along the divisors D1, . . . ,Dl. Then Z ′ is smooth if and only if D1, . . . ,Dl

are simple normal crossing.

Corollary 1.23. Let X be a smooth Deligne-Mumford stack and X ′ obtained
by roots along the divisors D1, . . . ,Dl. Then X ′ is smooth if and only if
D1, . . . ,Dl are normal crossing.

Proof. Note that the smooth Deligne-Mumford stack X can be étale locally
covered by smooth varieties. Moreover, by Proposition 1.16, the root on
such a variety U along some of its divisors yields a quotient stack, whose
atlas is a cyclic cover of U . The application of Lemma 1.22 concludes the
proof. �

1.4. Gerbes. In this section we recall the definition of gerbes and some of
their properties. We mainly follow [9] and we refer to [14, Ch. IV.2] for a
complete treatment.

Definition 1.24. A gerbe on a stack X is a stack in groupoids G on X
which is:

(1) locally non-empty : for any étale morphism U → X of X , G(U) is non-
empty;

(2) locally transitive: for any x, y ∈ G(U) there is an open cover {Vi → U},
such that x|Vi

, y|Vi
∈ G(Vi) are isomorphic.

Let G be a sheaf of abelian groups over X . A gerbe G onX is called G-banded
(or simply a G-gerbe) if, for every étale atlas U → X and for every object
x ∈ G(U), there exists an isomorphism αx : G|U → AutU,G(x) of sheaves of
groups and all these isomorphisms are compatible with the pullbacks in the
following sense. Given two objects x ∈ G(U) and y ∈ G(V ) and an arrow
φ : x→ y over a morphism of schemes f : U → V , the natural pullbacks:

φ∗ : AutV,G(y) → AutU,G(x) and f∗ : G(V ) → G(U)
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commute with the isomorphisms, i.e., αx ◦ f
∗ = φ∗ ◦ αy.

Definition 1.25. A gerbe G on X is trivial if the fibre category G(X ) is
non-empty.

Example 1.26. The stack BXG of G-principal bundles on X is a G-gerbe
and it is the trivial gerbe, i.e., every trivial G-gerbe on X is isomorphic to
it.

Remark 1.27. By definition each gerbe is locally non-empty, and therefore
locally trivial.

Example 1.28. Let X be a stack and X(((H an H-rigidification of it, where
H is a flat subgroup stack of the inertia of X . Then X → X((( H is an
H-gerbe. Let X ′ be the r-th root of a line bundle over X . The stack X ′ is
a gerbe banded by the constant sheaf µr, especially X = X ′(((µr. Therefore
X ′ and X have the same coarse moduli space.

An important result about G-gerbes is their classification up to isomor-
phisms that preserve the G-banded structure. By [14, Sec. IV.3.4], the group
H2

ét(X , G) classifies the equivalence classes of G-gerbes on X .
Let Gm be the constant sheaf to k∗ and let

0 → µr
ι
−→ Gm

∧r
−→ Gm → 0

be the Kummer sequence. It induces a long exact sequence

. . .→ H1
ét(X ,Gm) → H2

ét(X ,µr)
ι∗
−→ H2

ét(X ,Gm) → . . . .

The µr-gerbes whose H
2
ét(X ,µr)-class has zero image via ι∗ in H2

ét(X ,Gm)
are called essentially trivial and, from the exact sequence, they are exactly
the ones obtained as r-th roots of a line bundle on X .

Let G be a µr-gerbe on X . The Leray spectral sequence for the étale sheaf
Gm with respect to the map ν : G → X gives the exact sequence:

0 → H1
ét(X ,Gm)

ν∗
−→ H1

ét(G,Gm)
res
−−→ H0

ét(X , R
1ν∗Gm)

obs
−−→ H2

ét(X ,Gm) → . . .
(♠)

Here H1
ét(G,Gm) = Pic(G), H0

ét(X , R
1ν∗Gm) = Pic(Bµr) = Z/rZ since the

the fibre of ν is isomorphic to Bµr, and the map res is the restriction of line
bundles to this fiber. The map obs : Z/rZ → H2

ét(X ,Gm) sends 1̄ to the
image by ι∗ of the class of the µr-gerbe G. Thus it is zero if and only if
the gerbe is essentially trivial and in this case the sequence becomes short
exact.

2. Construction of Mori dream stacks

In the following, we propose the definition of a Mori dream stack, sim-
ilar to the one of MD-spaces. Before we give the definition, we make two
preliminary observations. First, since MD-spaces have at most quotient sin-
gularities, we can associate to any MD-space a smooth Deligne-Mumford
stack which will be smooth. Moreover for a stack X , we change the defi-
nition of its Cox ring to R(X ) =

⊕

L∈Pic(X )H
0(X ,L) (see Remark 2.5 for

a reason). The structure as an algebra is obtained in a similar way as in
Section 1.1:
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If Pic(X ) is finitely generated as a Z-module, we can fix an isomorphism
Pic(X ) ∼= Z/r1Z × · · · × Z/rkZ with ri ≥ 0. To avoid confusion, we note
that ri can be zero, in which case Z/riZ = Z. For each 1 ≤ i ≤ k, choose
a line bundle Li that generates the corresponding Z/riZ, and moreover an

isomorphism σi : L
ri ∼
−→ OX .

Note that any line bundle L ∈ Pic(X ) can be written uniquely up to
isomorphism as

⊗

Lai
i with 0 ≤ ai and ai < ri for ri 6= 0. Moreover, for

ri 6= 0 the chosen isomorphisms σi induce isomorphisms Lai
i ⊗ Lbi

i
∼
−→ Lci

i ,
where 0 ≤ ai, bi, ci < ri and ai + bi = ci ∈ Z/riZ. These data define the
sheaf of algebras R =

⊕

L∈Pic(X ) L on X .

Definition 2.1. Let X be a stack such that Pic(X ) is finitely generated.
The Cox ring of X is the Pic(X )-graded ring

R(X ) = H0(X ,R).

Remark 2.2. By [15, Prop. 4.7.3] and [16, Prop. 4.1.], the sheaf of OX -
algebras R defines a Hom(Pic(X ),k∗)-torsor over X .

Actually, there are many ways to define the algebra structure on R(X )
by choosing different (not necessarily minimal) generating sets of Pic(X ).
All of them yield isomorphic Cox rings.

Moreover, we want to note here that we can also define such a Pic-graded
ring for a variety X. If X is Q-factorial, this will be then a subring of the
Cl-graded Cox ring R(X).

Definition 2.3. We call a Deligne-Mumford stack X a Mori dream stack if

(1) X is smooth,
(2) H0(X ,O∗

X ) = k∗,
(3) Pic(X ) is finitely generated as a Z-module,
(4) R(X ) is finitely generated as a k-algebra,

In the following we will always use the abbreviation MD-stack.

Definition 2.4. We call a Mori dream stack X a Mori dream quotient stack
(or MD-quotient stack for short) if

X =
[

SpecR(X ) \ V (Jirr)
/

Hom(Pic(X ),k∗)

]

,

where Jirr is defined as for MD-spaces.

Remark 2.5. For an orbifold, the Picard group and the divisor class group
coincide. In the general case, the divisor class group can be strictly contained
in the Picard group. As an example, for a positive integer r, the stack Bµr

is an MD-quotient stack. Here Pic(Bµr) = Z/rZ which gives the quotient
description, but Cl(Bµr) = 0.

Remark 2.6. For a reductive group scheme G acting linearly on some
scheme Z, we can look at the map [Zss/G] → Zss/G. If [Zss/G] is a Deligne-
Mumford stack, then the scheme Zss/G is already the coarse moduli space,
see for example [4].

Therefore an MD-space X = Zss/G with Z = SpecR(X) and G =
Hom(Cl(X),k∗) gives a smooth Deligne-Mumford stack X = [Zss/G] if Zss
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is smooth. Moreover in this case, X is the canonical stack of X, as the sin-
gular locus of X has codimension at least 2, and X → X is an isomorphism
outside the singular locus.

Moreover it is a classical fact that every variety with finite quotient singu-
larities is the coarse moduli space of a canonical smooth Deligne-Mumford
stack unique up to isomorphism; see [12, Rem. 4.9].

Our aim for the rest of the section is to study how the definitions of
MD-stacks and MD-quotients behave with respect to the constructions we
recalled in the previous section. First we describe the canonical stack of an
MD-space and then we prove that root constructions and gerbes preserve
the property of being an MD-stack.

Theorem 2.7. Let X be an MD-space. Then its canonical stack X can is
an MD-stack and R(X) = R(X can). Moreover, suppose that SpecR(X) \
V (Jirr) is smooth. Then its canonical stack X can is an MD-quotient, so

X can =
[

SpecR(X can) \ V (Jirr)
/

Hom(Pic(X can),k∗)

]

.

Proof. First, the canonical stack X can, which is smooth by definition, ex-
ists by Remark 2.6. By construction, we get Pic(X can) = Cl(X can) =
Cl(X) which is finitely generated. Moreover, we note that H0(X,O(D)) =
H0(X can,O(D)) for any divisor class D, by [12, Sec. 1.2].

Therefore, H0(X can,O∗
X can) = k∗ and R(X can) = R(X) as algebras. For

the latter note that, if we fix generators Li of Pic(X
can) as in the construction

of the Cox ring R(X can), then we can write an analoguous resolution K ։

Cl(X) by using the isomorphism Pic(X can) = Cl(X), and vice versa. Hence
X can is indeed an MD-stack.

By Lemma 1.12 it is immediate that Jirr(X
can) = Jirr(X). If we assume

additionally that SpecR(X) \ V (Jirr) = SpecR(X can) \ V (Jirr) is smooth,
then X can is even an MD-quotient by Remark 2.6.

�

In the following example we see that the assumption on the smoothness
of SpecR(X) \V (Jirr(X)) is indeed necessary to have the description of the
canonical stack as an MD-quotient.

Example 2.8. Let Dicn be the dicyclic or binary dihedral group of 4n
elements, defined as:

Dicn =

〈(

0 1
−1 0

)

,

(

ξ 0
0 ξ−1

)〉

= 〈s, r | s4 = 1 = r2n, rn = s2, srs−1 = r−2〉

for a primitive 2n-th root ξ of unity and let X = A2/Dicn be the quotient
by the usual matrix action. It turns out that X is an MD-space. First, it
has an isolated quotient singularity at zero. Easy calculations show that

Cl(X) =

{

Z/2Z⊕ Z/2Z if n even,

Z/2Z if n is odd,

R(X) = k[u, v, w]/(un − vw) and that invertible global sections are just
the non-zero constants. As V (Jirr) is empty in this case, we computed that

X = SpecR(X)/Hom(Cl(X),k∗) = SpecR(X)Cl(X).
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On the other hand, since R(X) is singular at zero, the quotient stack
X = [SpecR(X)/Hom(Cl(X),k∗)] is not smooth. Hence X differs from the
(smooth) canonical stack X can = [A2/Dicn].

The computation of the proof above shows that X can is an MD-stack
with Pic(X can) = Cl(X) and R(X can) = R(X). Consequently, there is no
description of X can as an MD-quotient, since the candidate would be the
singular X .

Theorem 2.9. Let X be an MD-stack and X ′ be a stack obtained by root
constructions along simple normal crossing divisors from X . Then X ′ is an
MD-stack and its Cox ring is of the form

R(X ′) = R(X )[z1, . . . , zl]/(z
ri
i − si | i = 1, . . . , l)

for some positive integers ri and si ∈ R(X ).

Proof. Smoothness is ensured by Corollary 1.23.
Without loss of generality, we restrict to the case of a single smooth

divisor D on X and show the remaining properties of MD-stacks for the
stack ν : X ′ = r

√

D/X → X .
By [10, Thm. 3.1.1] we have the following pushout-diagram for the Picard

groups:

1
❴

��

Z

��

·r
// Z

��

O(D) Pic(X )
ν∗

// Pic(X ′)
∼ Pic(X )⊕Z/Z·(O(D),−r)

The line bundle T on X ′ corresponding to (O, 1) is called the tautological

line bundle. Moreover, there is an isomorphism σ : T r ∼
−→ ν∗O(D) and a

tautological section τ of T such that σ(τ r) = ν∗(s), where s is the section
cutting out D.

Consequently, for any line bundle L′ on X ′, there exists a line bundle L
on X , unique up to isomorphism, and a unique integer 0 ≤ k < r, such that
L′ ∼= ν∗L ⊗ T k. Moreover by [10, Cor. 3.1.3], the multiplication by τk gives
an isomorphism between global sections:

H0(X ,L)
∼
−→ H0(X ′, ν∗L)

∼
−−→
·τk

H0(X ′,L′).

By [10, Thm. 3.1.1(3)], there is an isomorphism ν∗OX ′
∼= OX , therefore

H0(X ′,O∗
X ′) = H0(X ,O∗

X ) = k∗.
Next we show that the Cox ring R(X ′) is finitely generated. Choose line

bundles L1, . . . ,Lk on X and isomorphisms σi : L
si
i

∼
−→ OX to define the

algebra structure on the Cox ring of X . Since Pic(X ′) is generated by ν∗L

and T , we can use ν∗σi and σ : T
r ∼
−→ ν∗O(D) to obtain the algebra structure

on R(X ′). With these data the Cox Ring of X ′ is R(X ′) = R(X )[z]/(zr−s).
Hence X ′ is indeed an MD-stack. �

Theorem 2.10. Let X be a stack and ν : X ′ → X an H-gerbe on X , where
H is an abelian group scheme. Then X is an MD-stack if and only if X ′ is
an MD-stack. Moreover in this case, their Cox rings are isomorphic.

Proof. The local triviality of gerbes ensures that X is smooth if and only if
X ′ is smooth.
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As in (♠), the Leray spectral sequence for ν : X ′ → X yields the long
exact sequence:

0 → Pic(X )
ν∗
−→ Pic(X ′) → Pic(BH) → H2(X ,Gm)

and Pic(X ′) turns out to be an extension of Pic(X ) with a subgroup of the
finitely generated group Pic(BH). Therefore, if one of the Picard groups of
X and X ′ is finitely generated as a Z-module, the other is, too.

Locally, let X = SpecA. Since X ′ is an H-gerbe on X , it is locally
trivial, and, without loss of generality, we can assume that X ′ ×X SpecA ∼=
BH × SpecA. Locally, the exact sequence above becomes

0 → Pic(X )
ν∗
−→ Pic(X ′) → Pic(BH) → 0.

The line bundles on X ′ of the form L′ = ν∗L, with L ∈ Pic(X ), correspond
to graded A-modules concentrated in degree zero, and for them we have
H0(X ,L) = H0(X ′,L′). Let now L′ be a line bundle on X ′ which is not
mapped to zero in Pic(BH). Thus it corresponds to a graded A-module
with trivial degree zero part and therefore H0(X ′,L′) = 0.

Let π : X → X and π′ = π◦ν : X ′ → X be the natural maps to the coarse
moduli space. Since π∗(OX ) ∼= π′∗(OX ′) ∼= π∗(ν∗(OX ′)) and by Proposition
1.7(4) the functors π∗ and π′∗ are exact, it follows that ν∗OX ′

∼= OX , so
H0(X ,O∗

X ) = H0(X ′,O∗
X ′).

Moreover R(X ′) = R(X ) as a k-algebra. Indeed, since only the line bun-
dles pulled back from X have non-trivial sections, to calculate the Cox Ring
of X ′ one can use the pullback of the line bundles and of the isomorphisms
to define the Cox ring of X . Note that the grading of R(X ′) is obtained
from the grading of R(X ) via the pullback ν∗.

Hence, X is an MD-stack if and only if X ′ is. �

Corollary 2.11. Let X be a stack and X ′ be a stack obtained by root con-
structions with line bundles on X . Then X is an MD-stack if and only if X ′

is an MD-stack.

Theorem 2.12. Let X be an MD-quotient stack. Then any stack X ′ ob-
tained by root constructions along simple normal crossing divisors and with
line bundles from X is again an MD-quotient.

Proof. Let ν : X ′ → X be the induced map and

X =
[

SpecR(X ) \ V (Jirr)
/

Hom(Pic(X ),k∗)

]

be the MD-quotient description of X . By the Lemmata 1.20 and 1.12, the
line bundle ν∗L is still ample and the ideal J ′

irr =
√

〈H0(X ′, ν∗L)〉 in R(X ′)
gives the irrelevant ideal of X ′. The desired description of X ′ as an MD-
quotient follows directly from Proposition 1.16, after taking into account the
results about the Cox rings and the Picard groups of the stacks obtained as
roots from X given in Theorems 2.9 and 2.11, . �

3. Characterisation of Mori dream stacks

In this section, we give a characterisation of MD-stacks among smooth
Deligne-Mumford stacks and study the conditions under which an MD-stack
can be obtained by roots from its canonical stack which turns out to be an
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MD-stack, too. The representation of MD-stacks as MD-quotient stacks will
be our main focus.

We start our analysis of the relations between MD-stacks and their moduli
spaces with the following result.

Theorem 3.1. Let X be an MD-stack and let X be its coarse moduli scheme.
Then X is an MD-space.

Proof. Let X be an MD-stack and π : X → X the map to its coarse moduli
space. Since X is a smooth Deligne-Mumford stack, its coarse moduli space
X is normal and has at most quotient singularities.

We prove that Cl(X) is finitely generated. Since Cl(X) = Cl(X can) =
Pic(X can), we have just to compare Pic(X can) and Pic(X ). The Leray spec-
tral sequence applied to the map πcan : X → X can and to the sheaf O∗

X gives
the exact sequence:

0 → H1(X can, πcan∗O
∗
X ) → H1(X ,O∗

X ) → H0(X can, R1πcan∗O
∗
X ) → . . .

and then the injective morphism H1(X can, πcan∗O
∗
X ) = H1(X can,O∗

X can) =
Pic(X can) →֒ H1(X ,O∗

X ) = Pic(X ). Since X is an MD-stack, Pic(X ) is
finitely generated and the same is true for Cl(X).

From Proposition 1.7(5), π∗OX
∼= OX , soH0(X,O∗

X ) = H0(X ,O∗
X ) = k∗.

Let us prove that the Cox ring of X is a finitely generated k-algebra.
Since H0(X can,L) = H0(X , π∗canL) and since the tensor product commutes
with pullback, R(X) = R(X can) is a subalgebra of R(X ).

Note that by [21, Lem. 3.2], for any homogeneous r ∈ R(X ) there is a
d > 0 such that rd ∈ R(X). Actually there exists a d > 0 which works for
all homogeneous elements in R(X ). Choose a finite set of homogeneous gen-

erators r1, . . . , rm of R(X ). Then B = {
∏

i r
ji
i | 1 ≤ ji < d} generates R(X )

as an R(X)-module. Indeed, write any element of R(X ) as a polynomial in
the ri with coefficients in k. We can write any factor rai of a monomial as
rbdi · rci with 0 ≤ c < d. Note that rbdi is already in R(X). So the polynomial
becomes a linear combination of elements in B with coefficients in R(X).

So we have a chain of inclusions k →֒ R(X) →֒ R(X ) with R(X ) finitely
generated as a R(X)-module. Hence we can apply [6, Prop. 7.8], so R(X)
is finitely generaded as a k-algebra. �

For the characterisation of MD-orbifolds the following general theorem
plays a crucial role.

Proposition 3.2 ([13, Thm. 6.1]). Let X be a smooth Deligne-Mumford
orbifold, whose ramification divisor has simple normal crossing components.
Then X can be obtained by roots from its canonical stack X can.

To avoid confusion, we want to note that [13, Thm. 6.1] is actually formu-
lated for arbitrary ramification divisors. In such a case the root constructions
with these divisors may yield a singular stack, which is then approximated
with a smooth stack. This additional step is not necessary here.

Lemma 3.3 ([13, Lem. 5.4]). Let U be a smooth algebraic space and G a
diagonalisable group scheme (e.g., subgroup of a torus) which acts properly
on U with finite stabilisers. Then the ramification divisor on [U/G] has
simple normal crossing components.
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Theorems 2.9 and 3.1 and Proposition 3.2 imply that smooth Deligne-
Mumford orbifolds whose ramification divisor has simple normal crossing
components are MD-orbifolds exactly when their coarse moduli spaces are
MD-spaces. In combination with Example 1.28 and Theorem 2.10 we have
the following result, which characteriseMD-stacks among the smooth Deligne-
Mumford stacks.

Corollary 3.4. Let X be a smooth Deligne-Mumford stack with abelian
generic stabiliser, whose ramification divisor has simple normal crossing
components. Then X is an MD-stack if and only if its coarse moduli space
X is an MD-space.

Our last aim is to understand when an MD-stack can be obtained by roots
from its canonical stack.

Theorem 3.5. Let X =

[

SpecR(X ) \ V (Jirr)
/

Hom(Pic(X ),k∗)

]

be an
MD-quotient stack. Then it can be obtained by roots from its canonical
stack X can, which is itself an MD-quotient stack.

Proof. Let Z = SpecR(X ) \ V (Jirr) and G = Hom(Pic(X ),k∗). Since X is
smooth, Z is also smooth and by Lemma 3.3, the ramification divisor of X
has simple normal crossing components.

Let ν : X → X rig be the natural map from X to its rigidification. Since
the rigidification preserves the ramification divisor, by Proposition 3.2 the
orbifold X rig is obtained by roots of divisors from its canonical stack X can.

Let us prove that X rig is indeed an MD-quotient stack. Note that, by
Theorem 2.10, we have also Z = SpecR(X rig) \ V (Jirr). By Corollary 1.23,
the smoothness of Z implies the smoothness of SpecR(X can) \ V (Jirr) and
then of SpecR(X) \ V (Jirr), where X is the coarse moduli space of these
stacks. Therefore, X can is an MD-quotient stack.

By Theorems 2.7 and 2.12, the stack X rig is the MD-quotient X rig =
[Z/Grig ], where we denote by Grig = Hom(Pic(X rig),k∗).

Hence we only need to show that X is indeed obtained by root construc-
tions with line bundles on X rig. By construction, the map ν : X → X rig

is a H-gerbe, where H is an abelian group scheme. As in (♠), the Leray
spectral sequence for ν assures the existence of the following exact sequence

0 → Pic(X rig)
ν∗
−→ Pic(X ) → Pic(BH) → H2(X rig,Gm).

We can write coker ν∗ =
⊕n

i=1 Z/riZ, so we get the following short exact
sequence

0 → Pic(X rig) → Pic(X ) →
n

⊕

i=1

Z/riZ → 0

and, dualizing it, the short exact sequence:

0 →

n
∏

i=1

µri → G→ Grig → 0.

Choose now line bundles Mi ∈ Pic(X ) which are mapped to a primitive
generator in 1̄ ∈ Z/riZ, and to 0 otherwise. Then Mri = Li for a line
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bundle Li ∈ Pic(X rig). By construction, G fits in the following diagram
with exact rows:

0 // H ′ // G //

χ(M)
��

Grig //

χ(L)
��

0

0 // H ′ // (k∗)n
∧r

// (k∗)n // 0,

where H ′ =
∏n

i=1 µri and χ indicates the characters of line bundles. This
implies that the right square in the diagram is cartesian.

Recall that the G-action on Z is given by the Pic(X )-grading on R(X ).
The proof of Theorem 2.10 shows that the grading of R(X ) = R(X rig) are
related through the pullback ν∗ : Pic(X rig) → Pic(X ), i.e., G acts on Z via
the map G→ Grig given by the dual of the pullback.

Thus, by Proposition 1.16, X = [Z/G] is canonically isomorphic to the

stack r
√

L/X rig, where r = (r1, . . . , rn) and L = (L1, . . . ,Ln). �

4. Mori dream stacks and smooth toric Deligne-Mumford

stacks

The following propositions are generalisations of [18, Cor. 2.10] and [18,
Prop. 2.11]. We want to remind the reader that a smooth toric Deligne-
Mumford stack X is a smooth seperated Deligne-Mumford stack with an
action of a Deligne-Mumford torus T , which is contained as an open dense
orbit; see [12]. Here a Deligne-Mumford torus T means that T is isomorphic
to T × BG, where T is an ordinary torus and G a finite abelian group.

Proposition 4.1. Let X be an MD-quotient stack. Then X is a smooth
toric Deligne-Mumford stack if and only if its Cox ring is a polynomial ring.

Proof. First we assume that R(X ) = k[x1, . . . , xn]. Therefore T = (k∗)n

acts naturally on SpecR(X ) = An by componentwise multiplication. Fix
the presentation Zn

։ Pic(X ) where ei is sent to the divisor class [Di] given
by {xi = 0}. By applying Hom( – ,k∗) to this surjection, we get an inclusion
of G = Hom(Pic(X ),k∗) into T . Note that the action of G is given as a
subgroup of T .

Furthermore, the locus V (Jirr) is cut out by some of the hyperplanes
{xi = 0}, since we can choose the ample line bundle to be given as O(D)
with D =

∑

aiDi, so the global sections of O(D) have a basis consisting of
mononials in xi. Therefore, V (Jirr) is T -invariant and consequently T acts
on Z = SpecR(X ) \ V (Jirr).

This action descends to an action of [T/G] on [Z/G]. [T/G] has again
a torus T ′ as its coarse moduli space (of dimension n − rkG), so by [12,
Sec. 6.1] [T/G] is a Deligne-Mumford torus, i.e., [T/G] = T ′ ×BH for some
finite abelian group H. Moreover, since T is open and dense in Z, the same
holds true for [T/G] inside [Z/G]. Hence [Z/G] is a smooth toric Deligne-
Mumford stack.

The converse direction was shown in [12, Thm. 7.7]. �

Proposition 4.2. Let X be an MD-quotient stack such that divisor class
group of its coarse moduli space is free. Then there is a closed embed-
ding ι : X →֒ Y with Y a smooth toric Deligne-Mumford stack such that
ι∗ : Pic(Y)

∼
−→ Pic(X ) is an isomorphism.
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Proof. First we note that X can be obtained by roots from its canonical
stack X can, by Theorem 3.5.

Let X be the coarse moduli space of X . For the Cox ring R(X) choose a
presentation R(X) = k[x1, . . . , xm]/I where I is a Cl(X)-homogeneous ideal
and where {xi = 0} define divisors Di on X. Moreover, we assume that
among these divisors Di there are those with which the root constructions
are performed to obtain X (after pulling them back to X can).

Since Cl(X) is assumed to be free, by [7, Prop. 5.2], there is a toric vari-

ety Y and a closed embedding X →֒ Y inducing an isomorphism Cl(Y )
∼
−→

Cl(X) by pullback. The inclusion X →֒ Y is induced by the presentation
R(Y ) = k[x1, . . . , xm] ։ R(X). The inclusion X →֒ Y gives also an in-

clusion X can →֒ Ycan with Pic(Ycan)
∼
−→ Pic(X can), by Theorems 2.7 and

3.5.
Now we perform the root constructions on X can along the divisors to

obtain X rig. By performing the analogous root constructions on Ycan, we
get a smooth toric Deligne-Mumford orbifold which we denote by Yrig. It
is clear that the inclusion lifts to X rig →֒ Yrig and Pic(Yrig)

∼
−→ Pic(X rig).

Finally, we perform the root constructions with line bundles to obtain X
from X rig. If we do the same constructions starting with Yrig, we arrive at
the statement. �
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