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Abstract. The motion of electrons and nuclei in photochemical events often involve
conical intersections, degeneracies between electronic states. They serve as funnels for
nuclear relaxation—on the femtosecond scale—in processes where the electrons and nu-
clei couple nonadiabatically. Accurate ab initio quantum chemical models are essential
for interpreting experimental measurements of such phenomena. In this paper we resolve
a long-standing problem in coupled cluster theory, presenting the first formulation of the
theory that correctly describes conical intersections between excited electronic states
of the same symmetry. This new development demonstrates that the highly accurate
coupled cluster theory can be applied to describe dynamics on excited electronic states
involving conical intersections.

Conical intersections, or electronic degeneracies, are widely recognized as central to the
motion of nuclei and electrons in photochemical events1,2. They have been implicated
in a range of chemical reactions, from the ring-opening reaction of 1,3-cyclohexadiene3

and the proton transfer reaction in hydroxybenzaldehyde4 to the cis-trans isomerization
thought to be the primary photochemical event in human vision5. Our understanding of
nuclear dynamics is firmly rooted in the often accurate Born-Oppenheimer approximation,
where the motion of the electrons create potential energy surfaces to which the nuclei in
turn respond6. However, the approximation breaks down completely when a molecule ap-
proaches a conical intersection, giving rise to femtosecond (10−15 s) processes that involve
an intricate interplay between nuclear and electronic motion7. Pump-probe techniques
have made these ultrafast processes increasingly amenable to experimental investigation8 .

Rapid developments in ab initio quantum chemistry was spurred by the realization that
nonadiabaticity is the norm in photochemistry. These include assessments of the potential
energy surfaces close to electronic degeneracies9,10, attempts to incorporate nonadiabatic-
ity in dynamics simulations by solving the time-dependent Schrödinger equation explic-
itly7,11, and implementations of the nonadibatic coupling elements predicted by various
ab initio models12–14. A major overarching goal of this research is the reliable prediction
of nonadiabatic dynamics, which will enable one to monitor, in real-time, processes—
such as electron density fluctuations7—not directly accessible by experiment1. Since the
Schrödinger equation cannot be solved exactly for many-electron molecular systems, such
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2 CONICAL INTERSECTIONS FOR COUPLED CLUSTER DYNAMICS

predictions must neccessarily be grounded in approximate treatments of electronic corre-
lation, or electron-electron interactions15.

The most successful treatment of electronic correlation is provided by coupled cluster
theory16,17, a model now routinely applied to chemically interesting systems in spite of its
steep computational scaling18. Nevertheless, as is true for all quantum chemical models,
the theory is not globally accurate and may fail to describe certain regions of the potential
energy surfaces. For instance, the accuracy of its ground state wavefunction diminishes in
regions of nuclear space where the exact wavefunction has multireference character (e.g.,
when a molecule dissociates into fragments)19. In the following, we restrict ourselves to
the excited electronic states, where multireference character is not an issue20, but where
other problems have hindered its successful application to conical intersections. About
a decade ago, Hättig21 argued that matrix symmetry—a property that coupled cluster
theory does not have—is necessary to properly describe conical intersections between
states of the same symmetry. The unphysical complex energies predicted to exist due to
nonsymmetry21 were later reported in coupled cluster singles and doubles (CCSD)22 and
triples (CCSDT)23,24 calculations25. More recently, complex energies were encountered
in dynamics simulations using the perturbative doubles (CC2)26 model, illustrating the
relevance of these issues in realistic applications27. Moreover, since same-symmetry conical
intersections represent the vast majority of degeneracies2, coupled cluster theory has been
of limited use for conical intersections in general.

The state-of-the-art theories for conical intersections are complete active space (CAS)
models, such as CASSCF and CASPT228. Although they give a physically correct de-
scription of conical intersections by their matrix symmetry (see, e.g., Ben-Nun et al.11),
their ability to account for dynamic correlation is limited29. The same can be said for
the algebraic diagrammatic construction (ADC)30 theory advocated by some groups21,31.
The ground state wavefunction in ADC, obtained by Møller-Plesset perturbation theory,
is known to have a limited domain of validity32,33. For large systems, computational
chemists often resort to density functional theory (DFT), which is less computationally
demanding than ab initio theories, but also less accurate34,35. On the other hand, cou-
pled cluster theory accurately accounts for dynamic correlation effects and multireference
character in excited states. A formulation of the theory able to treat conical intersections
will therefore be a highly desirable addition to current methodologies.

For instance, theoretical investigations by various methods have provided inconsistent
predictions for the ππ∗ nuclear relaxation in thymine36. Some simulations predict that
relaxation proceeds first to a local minimum of the ππ∗ state within 100 femtoseconds,
followed by slow internal conversion from the ππ∗ state to the nπ∗ state (CASPT2)37

or to the ground state (CASSCF)38; others predict fast barrierless ππ∗/nπ∗ relaxation
(TD-DFT)35 or direct ππ∗/ground state relaxation within a few hundred femtoseconds
(CASPT2)39. Evidently, accurate quantum chemical predictions are essential for reliable
predictions in dynamics simulations. The accuracy of coupled cluster theory was recently
shown in experiments confirming ultrafast ππ∗/nπ∗ conversion40. This study emphasizes
the need for highly accurate methods in excited state dynamics.

In a recent paper, we showed that nonsymmetric theories provide a correct description
of conical intersections if they are nondefective, a mathematical property that ensures
nonparallel eigenstates41. Here we demonstrate that coupled cluster theory can be con-
strained to be nondefective, thereby resolving the long-standing intersection issues21. The



CONICAL INTERSECTIONS FOR COUPLED CLUSTER DYNAMICS 3

modified formulation of the theory, named similarity constrained coupled cluster theory,
provides a correct description of same-symmetry conical intersections. In particular, we
illustrate numerically that this is the case for a conical intersection in hypofluorous acid.
This new development shows that coupled cluster theory can be applied to nonadiabatic
photochemical processes.

Theory

The coupled cluster ground state wavefunction is written |Ψ〉 = eT |Φ0〉 for the Hartree-
Fock state |Φ0〉, where T =

∑
tµ τµ, the cluster operator, consists of excitation operators,

τµ, weighted by amplitudes, tµ
17,42. The nth excitation energy and electronic state, ωn

and rn, are determined from

Arn = ωn rn, Aµν = 〈Φµ |(Ĥ − E0) |Φν〉, |Φµ〉 = τµ |Φ0〉, τ0 = I, (1)

where E0 = 〈Φ0 |Ĥ |Φ0〉 and Ĥ = e−TH eT is the similarity transformed Hamiltonian43,44.
In the CCSD model, the cluster operator is restricted to one- and two-electron excitations,
with amplitudes determined by projection onto the corresponding excited determinants22.

Complex pair of energies
in the interior of the cylinder

Intersection seam
of dimension N − 2

Intersection cylinder
of dimension N − 1

Apparent intersection seam
of dimension N − 2

Unconstrained

coupled cluster theory

Constrained

coupled cluster theory

Figure 1. Conical intersections in coupled cluster theory. The illustrated shapes
are for three vibrational degrees of freedom (N = 3), appropriate for hypofluorous acid
and other three-atomic molecules. Superimposed on the illustrated vibrational space are
potential energy surfaces in the plane orthogonal to the seams at a point of intersection.

The origin of intersection artifacts. We recently traced the unphysical artifacts, ob-
served using coupled cluster methods at same-symmetry conical intersections25, to defects
in the nonsymmetric matrix A41. Matrices are known as defective when they are impos-
sible to diagonalize, i.e. when two or more of their eigenvectors are parallel45.

Considering a representation of A in a basis of the intersecting states, Jij(R), i, j = 1, 2,
where R is a nuclear coordinate, Hättig21 argued that at a degeneracy of a nondefective
and nonsymmetric J,

J11 = J22, J12 = 0, J21 = 0, (2)
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and concluded, as others have since9,25, that the intersections of coupled cluster theory are
qualitatively wrong. This is because equation (2) has one more condition than in quantum
mechanics46,47, and may be expected to give intersections of the dimension N−3, where N
is the number of vibrational degrees of freedom. These three conditions are redundant for
nondefective matrices, however. It can be shown that the R satisfying them are expected
to inhabit a space of the correct dimension41 N − 2.

In practice, A is defective with intersections where (J11 − J22)
2 + 4J12 J21 = 0, an

equation obeyed in a space of dimension21 N − 1. While this dimensionality is incorrect,
the degeneracy is folded on itself. The intersection is a cylinder instead of a curve for
N = 3, for instance, resembling a seam of dimension N − 2. See Figure 1. Inside the
cylinder the excitation energies are complex and on its surface A is defective25,41.

Similarity constrained coupled cluster theory. When the cluster operator is com-
plete (i.e. includes every excitation), A+E0 I is mathematically similar to a representation,
H, of the clamped-nuclei Hamiltonian H. It can be shown that if cn is an eigenvector of
H, then cn = Qrn, where Qµν = 〈Φµ |e

T |Φν〉. The orthogonality of the cn, implied by
the Hermiticity of H, translates to a generalized orthogonality for the rn:

cTk cl = rTkQ
TQrl = 0, k 6= l. (3)

As this relation is only satisfied for a complete cluster operator, some of the eigenvectors
{rk}k may and indeed do become parallel at same-symmetry intersections in truncated
coupled cluster methods. In the full space limit, the left eigenvectors lk and ll are similarly
orthogonal over the inverse, (QTQ)−1, of the above metric.

The wavefunction of similarity constrained CCSD (SCCSD) is defined by including an
additional triple excitation in cluster operator T :

T =
∑

ai

tai τ
a
i +

1

2

∑

aibj

tabij τ
ab
ij + ζ τABC

IJK . (4)

The amplitudes tai , t
ab
ij , and ζ are determined such that i) equation (3) is valid for the two

intersecting states, and ii) the projected equations of the CCSD model are satisfied. This
leads to a coupled set of equations that may be solved self-consistently.

Since QTQ is positive definite, parallel eigenvectors cannot satisfy equation (3), and
thus the theory is nondefective. For detailed descriptions of the implementation, we refer
to the Supporting Information.

Results and Discussion

The 2 1A1/3
1A1 intersection in formaldehyde. As first shown by Köhn and Tajti25,

the lowest singlet excited states of A1 symmetry in formaldehyde have a defective conical
intersection. Here we reproduce their findings, and compare them with the predictions of
the similarity constrained theory. The results are shown in Figure 3, where we have used
the same geometry as in the original study25.

The unphysical behavior of CCSD is evident. The states become degenerate at 1.3515 Å
and 1.3570 Å, giving a complex pair of energies in-between (E± = Ereal ± iEimag). Such
artifacts are absent in the constrained model, where the defective intersection becomes an
avoided crossing. If it exists, the conical intersection of the theory is located elsewhere in
nuclear space.
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Figure 2. A plot of a branching plane in hypofluorous acid (SCCSD/aug-cc-pVDZ)
between the 2 1A′ and 3 1A′ excited states.

The 2 1A′/3 1A′ intersection in hypofluorous acid. The lowest singlet excited states of
A′ symmetry in hypoclorous acid intersect48. We investigate this conical intersection in the
related hypofluorous acid. This three-atomic molecule (H−O−F) provides a pedagogical
illustration of the model, allowing direct comparisons with Figure 1. After locating a point
of intersection, we performed a scan in the branching plane, the plane orthogonal to the
intersection seam49. The results are given in Figure 2.

In a recent paper, we showed that nondefective coupled cluster models exhibit the first-
order branching plane energy gap linearity41, that is, they are conical49. From Figure 2, we
see that energy gap linearity is obeyed, as the energy surfaces exhibit the physically correct
conical appearance. Note the contrast to calculations on formaldehyde using CCSD, where
the energy gradient changes more rapidly close to the intersection; this can be seen from
Figure 3 in the vicinity of the CO bond distances 1.3515 Å and 1.3570 Å.

The cluster operator. In this initial development, we have used a conceptually simple
and size-intensive50 cluster operator T , adding only one additional triple excitation. As
we are aiming for a small correction of the wavefunction |Ψ〉 = eT |Φ0〉, the excitation is
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Figure 3. The 2 1A1 and 3 1A1 excited states of formaldehyde using CCSD (red) and
SCCSD (blue) with an aug-cc-pVDZ basis. The real part of the CCSD energies is shown.
An imaginary pair of energies is obtained for the C−−O bond distances 1.3515–1.3570 Å.

selected, from the dominant single and double excitations contributing to the two states,
such that the ζ parameter is sufficiently small (we used 2 as a threshold). The excitation
is selected at a particular geometry and kept unchanged in subsequent calculations. This
selection procedure can easily be made black-box; in the initial geometry of the simulation,
an appropriate excitation is identified from an automated test of several excitations.

We have considered variations in the energies for twelve choices of triple excitation, see
Table 1 in the Supporting Information. The energies are found to differ from CCSD by
less than five milliHartrees for all excitations, and the energy gaps are similar to the CCSD
and CC3 gaps (but different from the CC2 gap). In terms of quality and the location of
the intersection seam, the constrained model is thus similar but not identical to CCSD.
This behavior is as expected this close to seam, given the proximity to the unphysical
cylinder (see Figure 1). A detailed numerical illustration of the cylinder is reported in our
recent paper41.

Other formulations are indeed possible where the cluster operator is both orbital and
state invariant. For instance, orbital invariance is obtained if the triples contribution in
T is the product of the singles and doubles contributions in one of the states. This also
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guarantees continuity of the potential energy surfaces. Let rµ1
and rµ2

denote the singles
and doubles contributions in the state r. The cluster operator is then defined as

T = T1 + T2 + ζ
∑

µ1µ2

rµ1
rµ2

τµ1
τµ2

, (5)

where the ζ parameter is used to enforce orthogonality. In this equation, only one of the
intersecting states is selected. However, both can be included to give a balanced, or state
invariant, operator. Alternatively, the states can provide two parameters, ζ1 and ζ2, which
will allow generalized orthogonality to be enforced between the left and right eigenvectors
simultaneously. For the theory to be nondefective, however, orthogonality between either
sets of eigenvectors is sufficient.

Future outlook and conclusions. Similarity constrained coupled cluster theory (SCCSD)
gives a physically correct description of an 2 1A′/3 1A′ same-symmetry conical intersection
in hypofluorous acid, with both the proper dimensionality of the intersection seam as well
as the correct energy gap linearity in the branching plane2. Confirming our predictions
from a recent paper41 and resolving a long-standing problem in coupled cluster theory21,
this finding demonstrates that the model can properly describe, with minor modifications,
same-symmetry conical intersections between electronic excited states.

Nonadiabatic coupling elements and energy gradients govern the dynamics close to a
conical intersection51. Implementing these quantities in the similarity constrained theory
is thus necessary for it to be applied in ab initio dynamics simulations. These developments
are within reach in the near future, although some controversies for the nonadiabatic
coupling elements remains to be settled14,52. On the other hand, techniques for energy
gradients are well-established50,53. For use in dynamics simulations on larger systems, the
model should be extended to the lower levels in the coupled cluster hierarchy. Particularly
relevant is a perturbative doubles model (SCC2, analogous to CC226), which should scale
as N5, where N is the number of orbitals. As the approach is further developed, we will
also implement the cluster operators which ensure state and orbital invariance.

As a closing remark, we note that the approach adopted in this paper, namely to enforce
a feature of the exact wavefunction (i.e., nondefectiveness), could potentially have more
wide-reaching applications. The standard philosophy in ab initio quantum chemistry is to
solve ever more accurate representations of the Schrödinger equation (the coupled cluster
hierarchy results by expanding the subspace onto which the equation is projected). Yet
many desirable features of the wavefunction—such as gauge invariance, the related origin
invariance54, and the correct scaling of molecular properties and transition moments50,55—
are only valid for a complete cluster operator, and in some cases a complete one-electron
basis. Constraining the approximate wavefunction to satisfy exact properties by adding
extra correlation (e.g., triple excitation operators in a CCSD formalism) may turn out to
be very useful.

Methods

Calculations were carried out using the Dalton quantum chemistry program56. We converged ener-
gies and residuals to within 10−8. The orthogonality in equation (3) was converged to within 10−6,
giving energies correct to approximately 10−6 Hartrees. The energies in Figures 2 and 3 are obtained by
τABC
IJK = τ 10,2,2

7,5,8 and τABC
IJK = τ 7,2,3

8,8,7 , respectively, where the canonical orbitals are ordered according to their

energy, from low to high. Complex energies were converged with a modified Davidson algorithm25.
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A branching plane in hypofluorous acid was identified as follows. First we located a point of intersection.
By searching along three orthonormal vibrational coordinates, we then found the intersection seam vector
s, the direction in which the degeneracy is preserved. To obtain an orthogonal basis of the branching plane
(the orthogonal complement to s), we chose the direction in which the energy difference increased most
(denoted g, where g ⊥ s) and the vector orthogonal to s and g (denoted h). The normal modes used in
the above procedure, as well as cartesian coordinates of s, g, h, and of the intersection geometry R0, are
given in the Supporting Information.

For formaldehyde, we performed the scan RCO = 1.3450 : 0.0005 : 1.3550 Å. Some additional points
were included for CCSD. For hypofluorous acid (where gscan = g g and hscan = hh), g = −0.010 : 0.001 :
0.010 and h = −0.1160 : 0.0016 : 0.1160. Interpolated values are shown in both figures.

The triples excitations used are as follows. In formaldehyde, the excitation is the product of the second-
largest singles and the largest doubles excitations in the lower state at 1.3450 Å. In hypofluorous acid, the
excitation is the product of the largest singles and doubles excitations in the lower states at the geometry
given by ROH = 1.1400 Å, ROF = 1.3184 Å, and ϑHOF = 91.06◦.
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17. J. Č́ıžek, J. Chem. Phys. 45, 4256 (1966).
18. R. J. Bartlett and M. Musia l, Rev. Mod. Phys. 79, 291 (2007).
19. D. I. Lyakh, M. Musia l, V. F. Lotrich, and R. J. Bartlett, Chem. Rev. 112, 182 (2012).
20. A. I. Krylov, Annu. Rev. Phys. Chem. 59, 433 (2008).
21. C. Hättig, in Response Theory and Molecular Properties (A Tribute to Jan Linderberg and Poul

Jørgensen), Adv. Quantum Chem., Vol. 50, edited by H. Jensen (Academic Press, 2005) pp. 37 –
60.

22. G. D. Purvis III and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).
23. J. Noga and R. J. Bartlett, J. Chem. Phys. 86, 7041 (1987).
24. J. Noga and R. J. Bartlett, J. Chem. Phys. 89, 3401 (1988).
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Derivation of the generalized orthogonality in the full space limit. The energies of the coupled
cluster model equal the eigenvalues of the matrix

(A + E0 I)µν = 〈Φµ |e
−T H eT |Φν〉, E0 = 〈Φ0 |e

−T H eT |Φ0〉, (6)

where T has been determined from the amplitude equations (see, e.g., Purvis and Bartlett22), and where
µ, ν ≥ 0. In the limit where µ and ν runs over all excitations, the identity operator can be written
I =

∑

µ≥0
|Φµ〉〈Φµ|, where we assume that {|Φµ〉}µ is an orthonormal basis. Inserting this resolution of I

before and after H leads to the following expression for A + E0 I:

(A + E0 I)µν =
∑

τσ≥0

〈Φµ |e
−T |Φτ 〉〈Φτ |H |Φσ〉〈Φσ |e

T |Φν〉

=
∑

τσ≥0

Q−1
µτ Hτσ Qσν

= (Q−1
HQ)µν .

(7)

That Q−1 is the inverse of Q is straightforwardly verified:

(Q−1
Q)µν =

∑

τ≥0

〈Φµ |e
−T |Φτ 〉〈Φτ |e

T |Φν〉 = 〈Φµ |e
−T eT |Φν〉 = δµν . (8)

It follows from equation (7) that the left and right eigenvectors of A + E0 I, and therefore of A, satisfy
(up to normalization)

l
T
k (QT

Q)−1
ll = δkl, r

T
k Q

T
Qrl = δkl, (9)

because the eigenvectors of H are orthogonal due to its Hermiticity.

Implementation. The model was implemented in a local version of the Dalton quantum chemistry
suite56, and a local coupled cluster program currently in the initial phases of development.

The projection vector and the coupled cluster Jacobian. In similarity constrained CCSD (SCCSD), an addi-
tional triple excitation and amplitude is added to the cluster operator, T . With this cluster operator, both
the projection vector, Ωµ = 〈Φµ |e

−T H eT |Φ0〉, and the Jacobian matrix, Aµν = 〈Φµ |e
−T [H, τν ] eT |Φ0〉,

are modified relative to CCSD. We refer to the literature for detailed expressions of Ω and A in CCSD22,43.
First we introduce a spin-adapted biorthonormal excitation manifold in which to express our matrices.

We use the elementary basis (see p. 691-692 in Helgaker et al.33)

∣

∣

∣

a
i

〉

= Eai |Φ0〉,
∣

∣

∣

ab
ij

〉

= Eai Ebj |Φ0〉 (10)

as the right basis, where Eai = a†
aαaiα + a†

aβaiβ , and

〈 a
i

∣

∣

∣ =
1

2
〈Φ0|E

†
ai,

〈 ab
ij

∣

∣

∣ =
1

1 + δai,bj

(1

3
〈Φ0|E

†
aiE

†
bj +

1

6
E†

ajE
†
bi

)

(11)

as the left basis.
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We may now list explicit expressions for the projection vector and the transformation by the coupled
cluster Jacobian, as well as its transpose: Ω, ρ = Ac, and σ = AT b. Let T = T1 + T2 + T3, where T3 is
general for now:

T1 =
∑

ai

tai Eai, T2 =
1

2

∑

aibj

tabij Eai Ebj , T3 =
1

6

∑

aibjck

tabcijk Eai Ebj Eck. (12)

For ρ = Ac we have ρai = ρCCSD
ai and

ρaibj − ρCCSD
aibj =

1

1 + δai,bj
P

ab
ij

(

∑

ck

(tabcijk − tabcikj )Xkc −
∑

ckl

(2 tbacjkl − tbaclkj − tbacjlk )Ylcki

+
∑

cdk

(2 tbcdjik − tbcdkij − tbcdjki)Zackd

)

,
(13)

where

Xld =
∑

ck

Lkcld cck, Ykclj =
∑

d

gkcld cdj , Zacld = −
∑

k

gkcld cak. (14)

In the above, we have introduced P
ab
ij , whose effect is to add all permutations of the index pairs (ai) and

(bj), and gpqrs, the two-electron T1 transformed integrals associated with the T1 transformed Hamiltonian

Ĥ. The projection vector has the singles contribution

Ωai − ΩCCSD
ai =

∑

bjck

(tabcijk − tcbaijk )Ljbkc, Ljbkc = 2 gjbkc − gjckb. (15)

The doubles contribution is identical to that of ρ, except that the X, Y , and Z intermediates assume the
altered definitions

Xkc = Fkc, Ylcki = glcki, Zackd = gackd. (16)

We have denoted by Fpq the elements of the T1 transformed Fock operator, which is defined as the ordinary
Fock operator but with T1 transformed integrals. For σ = AT b we have σaibj = σCCSD

aibj and, finally,

σck − σCCSD
ck =

∑

dlemfn

(tdeflmn − tdeflnm) bdlem Lkcnf

+
∑

dlemfn

(tdefmln + tdeflnm − 2 tdeflmn) bdlcn gmekf

+
∑

dlemfn

(tdeflnm + tdefnml − 2 tdeflmn) bdlek gmcnf .

(17)

The expressions listed above are those of coupled cluster singles doubles triples (CCSDT) and are also
found in the literature57. In the simiarity constrained formalism, one particular triple excitation (τABC

IJK )
is selected to be non-zero. We can therefore write

tabcijk = ζ P
ABC
IJK δaibjck,AIBJCK , (18)

where ζ is the magnitude of the chosen triple amplitude, and substitute this tabcijk in the above expressions.

Here we have introduced P
ABC
IJK , which permutes the index pairs (AI), (BJ), and (CK). Doing the

substitution results in

Ωai − ΩCCSD
ai = ζ P

ABC
IJK (δai,AI LJBKC − δai,CI LJBKA) (19)

for the singles part of Ω. The doubles part Ω is equal to that of ρ (with redefined X, Y , and Z). For ρ,
we find ρai = 0 and

ρaibj − ρCCSD
aibj =

ζ

1 + δai,bj
P

ab
ij P

ABC
IJK

(

δAIBJ
aibj XKC − δAIBK

aibj XJC

− (2 δAIB
bja YKCJi − δABK

baj YICJi − δAIB
bja YJCKi)

+ 2 δAIJ
bji ZaBKC − δAJK

bij ZaBIC − δAIK
bji ZaBJC

)

.

(20)
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Algorithm 1 The SCCSD algorithm

1: Select two states k and l and a triple excitation τABC
IJK .

2: Set tABC
IJK = 0.

3: For the given tABC
IJK , solve Ωµ1

= 0 and Ωµ2
= 0 for tµ1

and tµ2
.

4: Solve the multiplier equation t
T
A = −η

T for the multipliers t.
5: Solve the eigenvalue equation Ari = ωi ri for the excited states ri.
6: Evaluate the generalized overlap f(T ).
7: if f(T ) = 0 then

8: Stop.
9: else

10: Estimate ∂f(T )/∂tABC
IJK by numerical differentiation.

11: Perform a Newton-Raphson step: tABC
IJK = tABC

IJK − f(T )/(∂f(T )/∂tABC
IJK ).

12: Go to 3.
13: end if

Finally, for σ we find σaibj = σCCSD
aibj and

σck − σCCSD
ck = ζ PABC

IJK (bAIBJLkcKC − bAIBKLkcJC

+ bAJcKgIBkC + bAIcJgKBkC − 2 bAIcKgJBkC

+ bAIBkgKcJC + bAKBkgJcIC − 2 bAIBkgJcKC).

(21)

The equations we have implemented are (19), for Ω1, (20), for Ω2 and ρ, and (21), for σ. For completeness,
we note that expressions for energy E and the η vector are unchanged:

E = 〈Φ0 |e
−T H eT |Φ0〉 = ECCSD, (22)

ην = 〈Φ0 |e
−T [H, τν ] eT |Φ0〉 = ηCCSD

ν . (23)

The generalized overlap. For notational purposes, we denote full space quantities (i.e., with µ, ν ≥ 0) by
caligraphic font, X , reserving X for the excited-excited block (µ, ν > 0). Then we can write

A =

(

0 η
T

0 A

)

(24)

and

Q =

(

1 0
q Q

)

, qµ = 〈Φµ |e
T |Φ0〉, Qµν = 〈Φµ |e

T |Φν〉. (25)

Note that since we use a biorthonormal basis for Q and A, the elementary overlap matrix S (the overlap
of the |Φµ〉) enters the expression for the generalized overlap f :

A + E0 I = Q
−1

S
−1

H Q, (26)

where H is H expressed in the elementary basis (the kets |Φµ〉). With this notation, the generalized
overlap f between the state vectors Rk and Rl reads

f(T ) = R
T
kQ

T
SQRl, (27)

an overlap over the positive definite matrix QTSQ. In block-form, we moreover have

S =

(

1 0
0 S

)

. (28)

To derive a useful expression for f , we separate the reference and excited contributions. Note that the
left and right excited states satisfy

ARn = ωn Rn, L
T
nA = ωn L

T
n , (29)

where the the left ground state vector is determined from the multiplier equation43

L
T
0 = (1 t

T
), t

T
A = −η

T . (30)



CONICAL INTERSECTIONS FOR COUPLED CLUSTER DYNAMICS 13

From this it is straight-forward to show that

L
T
n = (0 l

T
n ), Rn =

(

−t
T
rn

rn

)

, Arn = ωn rn, l
T
n A = ωn l

T
n , n > 0. (31)

Substituting the block forms of Q and Rn into the expression for f gives

f(T ) = r
T
k (N t t

T
+ Q

T
S Q−Q

T
S q t

T
− t q

T
S Q) rl = 0, (32)

where N = 1 + qTS q. This is the implemented expression for the generalized overlap. The vector q can
be evaluated as

qai = tai , qaibj =
1

1 + δai,bj
(tabij + tai t

b
j). (33)

The transformation y = Qx is

yai = xai, yaibj = xaibj +
1

1 + δai,bj
(tbj xai + tai xbj). (34)

The transformation y = QT x can be written

yai = xai +
∑

ck

tck xaick, yaibj = xaibj . (35)

Finally, y = Sx can be written

yai = 2xai, yaibj = 2 (1 + δai,bj)(2xaibj − xajbi). (36)

Implementation tests. The following tests of were performed.

• For a given value of ζ, the excitation energies ωn derived from the left and right eigenvalue
problems are identical. Thus, A and AT are internally consistent.

• For a given value of ζ, the identity43

Aµν =
∂Ωµ

∂tν
, (37)

evaluated by numerical differentiation and by transformation of elementary basis vectors, is sat-
isfied for the LiH molecule. Thus, Ω and A are internally consistent. Moreover, by the previous
test, Ω, A, and AT are internally consistent.

• We confirmed that

t
T

=
qTSQ

1 + qT Sq
, (38)

is satisfied for H2, indicating that the implementation of q and Q are correct. This identity can
be shown to be valid from the completeness of T = T1 + T2.

• For two states of the same symmetry in H2, we confirmed that

R
T
k Q

T
SQRl = 0 (39)

is correct to the accuracy that the amplitudes and eigenvectors are converged.
• Noting that

Qµν = Qµν(T ) = 〈Φµ |e
T |Φν〉, Q−1

µν = 〈Φµ |e
−T |Φν〉 = Qµν(−T ), (40)

we confirmed that Q(T )Q(−T ) and QT (T )QT (−T ) equal the identity matrix I for the imple-
mented Q and QT transformations.

• We confirmed that qTSQx and xTQTSq are equal, indicating that Q and QT are internally
consistent.

The algorithm. We adopt a self-consistent approach. For a fixed triple amplitude, tµ3
, the ground state

amplitude equations, Ω = 0, are first solved for tµ1
and tµ2

. Given the converged singles and doubles
amplitudes, the excited states ri are found and the overlap f(T ) evaluated. A Newton-Raphson algorithm,
designed to locate a zero of the overlap function f(T ), then provides the next triple amplitude tµ3

. These
steps are repeated until both the ground state equations are satisfied and f(T ) = 0. See Algorithm 1.

The cluster operator. In the similarity constrained theory, a particular triple excitation is used. In
Table 1, we list the energies obtained for hypofluorous acid using twelve different triple excitations.
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Table 1. Energies obtained by various triple excitations τABC
IJK for the geometry

ROH = 1.14 Å, ROF = 1.32 Å, and ϑHOF = 91.0◦. We list CC2, SCCSD, CCSD, and
CC3 energies given in Hartrees and the aug-cc-pVDZ basis. Dashes (–) denote that we
were unable to converge the SCCSD equations. The first excitation listed in the table
was used in the paper.

(

A B C
I J K

)

E0 E1 E2 ω1 ω2 ζ

(

10 2 2
7 5 8

)

−175.1605 −174.8452 −174.8440 0.3153 0.3165 1.6688

(

10 2 8
7 5 8

)

−175.1619 −174.8445 −174.8435 0.3174 0.3184 −0.6551

(

10 2 10
7 5 8

)

−175.1611 −174.8467 −174.8431 0.3144 0.3180 2.2880

(

8 2 2
7 5 8

)

−175.1605 −174.8448 −174.8434 0.3157 0.3170 1.6531

(

8 2 8
7 5 8

)

– – – – – –

(

8 2 10
7 5 8

)

−175.1613 −174.8448 −174.8436 0.3165 0.3176 0.4853

(

3 1 1
8 8 5

)

−175.1623 −174.8455 −174.8430 0.3168 0.3193 2.7638

(

10 1 1
7 5 8

)

−175.1639 −174.8445 −174.8416 0.3195 0.3223 −1.3795

(

10 1 2
7 5 8

)

−175.1616 −174.8451 −174.8441 0.3165 0.3175 −0.4178

(

10 1 3
7 5 8

)

−175.1639 −174.8438 −174.8428 0.3201 0.3211 −1.0914

(

8 1 1
7 5 8

)

−175.1597 −174.8469 −174.8453 0.3127 0.3144 1.7677

(

8 1 2
7 5 8

)

– – – – – –

CC2 −175.1590 −174.8600 −174.8440 0.2990 0.3150 –
CCSD −175.1619 −174.8451 −174.8437 0.3168 0.3181 –
CC3 −175.1745 −174.8585 −174.8558 0.3160 0.3187 –

Left generalized orthogonality. We have chosen to enforce orthogonality of the right eigenvectors in
the present study, but, for completeness, we list the equations necessary to enforce orthogonality among
the left eigenvectors here. The left overlap fL can be written

fL(T ) = L
T
k (QT

SQ)−1
Ll. (41)

By block inversion of Q and S, we have

Q
−1 =

(

1 0
−Q−1q Q−1

)

, S
−1 =

(

1 0
0 S−1

)

. (42)
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and therefore

(QT
SQ)−1 =

(

1 0
−Q−1q Q−1

)(

1 0
0 S−1

)(

1 −qTQ−T

0 Q−T

)

=

(

1 −qTQ−T

−Q−1q Q−1(S−1 + qqT )Q−T

)

.

(43)

Now, because the reference term of Lk is zero (it is orthogonal to R0), we can write

fL(T ) = l
T
k Q

−1(S−1 + qq
T )Q−T

ll. (44)

Hypoflorous acid: intersection point, normal modes, seam, and branching plane vectors.

Intersection point. The studied intersection geometry hypofluorous acid is

ROH = 1.1400000 Å, ROF = 1.3184215 Å, ϑHOF = 91.0585000◦ , (45)

where the triple amplitude is ζ = 1.6178960762. For this geometry and amplitude, the overlap is below
10−6 and the energies degenerate to 10−6:

ω1 = 0.3163264850 Hartrees, ω2 = 0.3163274291 Hartrees. (46)

Normal modes. We specify the nuclear cartesian coordinates as

R = (Ox, Oy, Oz,Hx,Hy, Hz, Fx, Fy , Fz) (47)

in the following. From a vibrational Hartree-Fock calculation using the Cfour program58, we obtained a
set of normal modes,

Q1 = (0.7370,−0.0071, 0.0000,−0.0070, 0.0211, 0.0000,−0.6750, 0.0017, 0.0000), (48)

Q2 = (0.0749,−0.2371, 0.0000,−0.7773, 0.5604, 0.0000, 0.1103, 0.0885, 0.0000), (49)

Q3 = (0.0773, 0.1431, 0.0000,−0.5890,−0.7874, 0.0000, 0.0647, 0.0500, 0.0000). (50)

The cartesian coordinate vector at the intersection point is

R0 = ( − 1.308090861096777, 0.135129007453069, 0.000000000000000,

− 1.470679327231972, −2.013015024947860, 0.000000000000000,

1.179309062794356, −0.006980060310293, −0.000000000000000).

(51)

The seam and branching plane vectors. By performing small displacements in the normal modes Qi, we
found the basis {g,h} of the branching plane and the seam s. In the basis of the normal modes,

g = (0.972636,−0.160489, 0.167996), (52)

s = (0.220983, 0.407941,−0.885862), (53)

h = (0.073639, 0.898745, 0.432243). (54)

Note that these vectors are expected to have some numerical imprecision, arising from the finite number of
fixed-point calculations on which they are based (s and g are nearly but not perfectly orthogonal, 89.96◦)
and that the Qi is given to four decimal places.


