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A GAP THEOREM FOR α-HARMONIC MAPS

BETWEEN TWO-SPHERES

TOBIAS LAMM, ANDREA MALCHIODI, AND MARIO MICALLEF

Abstract. In this paper we consider approximations introduced by Sacks-
Uhlenbeck of the harmonic energy for maps from S2 into S2. We continue
the analysis in [7] about limits of α-harmonic maps with uniformly bounded
energy. Using a recent energy identity in [8], we obtain an optimal gap theorem
for the α-harmonic maps of degree −1, 0 or 1.

1. Introduction

Given a compact Riemannian manifold (Nn, h), the energy functional on the
space of smooth closed curves γ : S1 → N is defined by

(1.1) E(γ) :=
1

2

∫ 1

0

h(γ̇, γ̇)(t) dt .

(Here we are viewing S1 as R/Z, i.e., as the circle of length 1.) It is closely related
to the length functional, but it has the advantage to select not only curves that
extremize length but also their parameterization, namely one of constant speed.

It is easy to prove that there exists ε > 0, depending only on N and h, such
that if γ is a critical point of E and E(γ) < ε then γ is constant. Indeed, ε = 1

2ℓ
2

where ℓ is the length of the shortest closed geodesic in (Nn, h) (ε = +∞ if (Nn, h)
contains no closed geodesics).

This is one of the simplest examples of a gap theorem in Geometric Analysis.
More significant gap theorems, just to name a few, have been established in minimal
surface theory, the study of Willmore surfaces, Yang-Mills theory and conformal
geometry. A selection of such theorems can be found in [15], [11], [13], [2], [5] and
many others in the literature.

Let now (M2, g) be a compact Riemannian surface without boundary. As a
natural generalization of (1.1) one can consider the Dirichlet energy E(u) defined
for every u ∈ W 1,2(M,N) by

(1.2) E(u) =
1

2

∫

M

|∇u|2 dAM =

∫

M

e(u) dAM ,

with e(u) = 1
2 |∇u|2 the energy density of u.

While (1.1) enjoys nice compactness properties, this is not the case for (1.2). For
example, if (M2, g) is the standard 2-sphere then the Dirichlet energy is invariant
under composition on the right with Möbius maps. To deal with this issue, a
regularization of the following form was considered in [14]. For α > 1 and u ∈
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W 1,2α(M,N),

(1.3) Eα(u) :=
1

2

∫

M

(2 + |∇u|2)α dAM

(indeed in [14] the integrand was (1+|∇u|2)α but it is convenient for our purposes to
choose this equivalent variant). The functional Eα has the advantage of satisfying
the Palais-Smale compactness condition, and hence critical points can be found in
every homotopy class. Critical points of Eα are called α-harmonic maps. They are
smooth and, if (N, h) is embedded isometrically into Rk with second fundamental
form A, they satisfy

(1.4) ∆u+A(u)(∇u,∇u) = −2(α− 1)(2 + |∇u|2)−1〈∇2u,∇u〉∇u.

Of course, a sequence of solutions with uniformly bounded Eα-energy might still
develop blow-ups as α tends to one, but in [14] it was shown that, after proper
rescaling, it would form a finite number of bubbles (i.e., non-trivial harmonic maps
from S2 to N).

Theorem 3.3 in [14] is the gap theorem for α-harmonic maps that is analogous
to the gap theorem for geodesics stated at the beginning of this Introduction.

Theorem 1.1. ([14]) There exists ε > 0 and α0 > 1 such that if E(u) < ε, 1 <
α < α0 and u is a critical map of Eα, then u is constant.

From now on, (M2, g) and (Nn, h) will both be (S2, gS2), the standard 2-sphere
isometrically embedded in R3. For u : S2 → S2, its Jacobian is J(u) = u · e1(u) ∧
e2(u) and its energy density is 1

2 |∇u|2, where (e1, e2) stands for a local oriented

orthonormal frame of TS2. The degree of u is then

(1.5) deg(u) =
1

4π

∫

S2

J(u) dAS2 .

In our previous paper ([7], Proposition 7.1) we improved the gap theorem above for
maps of degree zero.

Proposition 1.2. Fix η > 0.Then there exists α − 1 > 0 small, α depending only
on η, such that if 1 < α 6 α and u : S2 → S2 is α-harmonic, of degree zero and
E(u) 6 8π − η, then u is constant.

While there exist α-harmonic maps of degree zero whose energy converges from
above to 8π as α ց 1, see Theorem 1.5 below, it is an interesting question to un-
derstand whether the convergence of the energies might be from below. We have
preliminary numerical evidence that this somewhat unexpected phenomenon may,
in fact, occur.

If u ∈ W 1,2α(S2, S2) has degree one, we have

8π =

∫

S2

(1 + J(u)) dAS2

6

∫

S2

(1 + e(u)) dAS2(1.6)

6
1

2
(2Eα(u))

1

α (4π)
α−1

α ,

which implies

(1.7) Eα(u) > 4α2π.
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We have equality if and only if u is conformal with constant energy density equal
to one, which happens only if u is a rotation. In [7] we proved the following result
which is again an extension of the gap theorem 1.1 to this special setting.

Theorem 1.3. ([7]) There exists ε > 0 and α − 1 > 0 small such that the only
critical points uα of Eα which satisfy Eα(uα) 6 4α2π+ε and α 6 α are the constant
maps and the maps of the form uR(x) = Rx with R ∈ O(3).

Since the only minimizers of E among maps from (S2, gS2) to itself of degree one
are rational (see [4]), it is natural to expect that the functions uα as in Theorem
1.3 are close in W 1,2(S2) to a rational map. Indeed, in [7] this is proved in stronger
norms and for specific rational maps (which are of Möbius type, the degree being
equal to 1). A finite-dimensional reduction of the form in [1], together with refined
asymptotic expansions then yields Theorem 1.3. It is somehow natural to expect
the above result, since the α-energy breaks the Möbius symmetry and penalizes
functions with large gradients.

In this paper, exploiting some bubbling estimates of new type from [8], we are
able to quantitatively and optimally improve Theorem 1.3 in order to obtain a
result which resembles the one obtained in Proposition 1.2. This is our result.

Theorem 1.4. Fix η > 0. Then there exists α − 1 > 0 so that the only critical
points uα of Eα of degree ±1 which satisfy Eα(uα) 6 8α2π − η and 1 < α 6 α are
maps of the form uR(x) = Rx with R ∈ O(3).

In the final section of this paper we shall show that Proposition 1.2 is optimal
in the following sense.

Theorem 1.5. For every ε > 0, there exists α0 > 1 which depends only on ε such
that, if 1 < α < α0 there exists an α-harmonic map uα : S

2 → S2 with deg(uα) = 0
and 6α2π 6 Eα(uα) < 6α2π + ε.

The α-harmonic map in Theorem 1.5 is produced by the methods of Section 8 in
[7] where we constructed an example of an α-harmonic map uα of degree one with
Eα(uα) > 8α2π. We believe that this degree 1 example is also optimal in a sense
similar to that in Theorem 1.5, i.e., Eα(uα) is close to 8α2π if α is close to 1.

It would be interesting to understand whether one could replace the energy
bounds in Theorem 1.4 by Morse-index estimates as in [12], [16]).
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2. Proof of Theorem 1.4

Without loss of generality, we assume that uα is a critical point of Eα with
deg(uα) = 1 and

Eα(uα) 6 8α2π − η.
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It then follows from Hölder’s inequality that

E(uα) =

∫

S2

(1 + e(uα)) dAS2 − 4π

6
1

2
(2Eα(uα))

1

α (4π)
α−1

α − 4π

6 12π − η̃(2.1)

where η̃ > 0.
We claim that for (α− 1) small enough all these critical points have to be of the

form uα(x) = Rx with R ∈ SO(3).
Assume, for a contradiction, that there exists a sequence αk ց 1 and a sequence

uk := uαk
of critical points of Ek := Eαk

with deg(uk) = 1 and Ek(uk) 6 8αk2π−η
which are not of the form uk = Rkx with Rk ∈ SO(3). It follows from Theorem
1.1 in [8] that, for a subsequence (which we still denote by uk), the energy identity

12π > lim
k→∞

E(uk) =
m
∑

i=1

E(ωi) = 4π
m
∑

i=1

| deg(ωi)|,

where m ∈ N and the ωi : S2 → S2, 1 6 i 6 m, are non-trivial harmonic maps,
holds true. More precisely, the authors show that limk→∞ r1−αk

k = 1 (see equation
(4.9) in [8]), where rk is an energy concentration radius on which a bubble forms.
This is precisely the information which is needed in [6] (the entropy condition in
this paper was only used in order to obtain the same limiting relation between αk

and the concentration radius) or [9] in order to conclude the even stronger energy
identity

lim
k→∞

Ek(uk) = 4π +

m
∑

i=1

E(ωi) = 4π(1 +

m
∑

i=1

| deg(ωi)|).(2.2)

Note that these results rely crucially on the assumption that the target manifold is
a round sphere since it is known that the energy identity is not true in general for
a sequence of α-harmonic maps; see [10]. Finally, it follows from Theorem 2 in [3]
that we have the decomposition

1 = deg(uk) =

m
∑

i=1

deg(ωi).

Now we get from the above estimates that
m
∑

i=1

| deg(ωi)| < 3 and

m
∑

i=1

deg(ωi) = 1.

Since deg(ωi) 6= 0, the first inequality gives m = 1 or 2 and the second equality
then only allows m = 1 and deg(ω1) = 1. Looking back at (2.2) we see that, for
every δ > 0 there exists k large enough so that

Ek(uk) < 8π + δ 6 4αk2π + δ/2.

Hence it follows from Theorem 1.3 that we get a contradiction to the fact that uk

is not a map of the form described in this Theorem.

Remark 2.1. Here we want to highlight that the above arguments for maps of
degree one also yield a new proof of Proposition 1.2.
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Namely, by following the same contradiction argument as above, we obtain a
sequence αk ց 1 and a sequence of non-constant αk-harmonic maps uk with
deg(uk) = 0 and finitely many non-trivial harmonic maps ωi : S2 → S2, 1 6 i 6 m,
so that

8π > lim
k→∞

E(uk) = 4π

m
∑

i=1

| deg(ωi)|,

lim
k→∞

Ek(uk) = 4π(1 +
m
∑

i=1

| deg(ωi)|) and deg(uk) = 0 =
m
∑

i=1

deg(ωi).

It follows that m = 1, deg(ω1) = 0 which contradicts the fact that ωi is supposed to
be non-constant.

3. Proof of Theorem 1.5

3.1. Construction of a non-constant α-harmonic map of degree zero. As
in Section 8 in our paper [7], we construct the desired map as a minimizer of the
α-energy in a certain class of co-rotationally symmetric maps. More precisely, we
consider the parameterisation

(r, θ) 7→ (sin r cos θ, sin r sin θ, cos r)

of S2, where n ∈ N, r ∈ [nπ, (n + 1)π] and θ ∈ [0, 2π]. We are then interested in
maps uf : S

2 → S2 such that

(r, θ) 7→ (sin(f(r)) cos θ, sin(f(r)) sin θ, cos(f(r)))

with

f : [0, π] → R, f(0) = 0, f(π) = 2π.

Such a map uf has degree zero and for

X := {f : [0, π] → R : uf ∈ W 1,2α(S2,R3), f(0) = 0, f(π) = 2π}

the infimum Λ := inff∈X I(f), where

I(f) := Eα(uf ) = π

∫ π

0

(

2 + (f ′)2 +
(sin f)2

(sin r)2

)α

sin r dr

is attained by a map f∗ ∈ X as was shown in [7]. (Note that the argument given
there trivially extends to the case considered here.) Moreover, setting u∗ := uf∗ ,
one estimates

Eα(u
∗) = π

∫ π

0

(

2 + (f∗′)2 +
(sin f∗)2

(sin r)2

)α

sin r dr

> π

(
∫ π

0

(

2 + (f∗′)2 +
(sin f∗)2

(sin r)2

)

sin r dr

)α (∫ π

0

sin r dr

)1−α

> 21−απ

(
∫ π

0

(2 sin r + 2|f∗′(sin f∗)|) dr

)α

.
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Now there exists r1 ∈ (0, π) such that f∗(r1) = π and hence
∫ π

0

|f∗′(sin f∗)| dr >

∫ r1

0

f∗′(sin f∗) dr −

∫ π

r1

f∗′(sin f∗) dr

= − cos f∗(r)|
r1
0 + cos f∗(r)|

π
r1

= 4

which implies Eα(u
∗) > 6α2π.

Remark 3.1. If we minimize I(f) among maps f : [0, π] → [0, 2kπ] then we get
an α-harmonic map of degree 0 and alpha-energy at least (4k + 2)α2π and if we
minimize I(f) among maps f : [0, π] → [0, (2k + 1)π] then we get an α-harmonic
map of degree 1 and alpha-energy at least (4k + 4)α2π.

In what follows we shall rename the map u∗ constructed above as uα, to indicate
its dependence on α.

3.2. An upper bound for Eα(uα).

Proposition 3.2. There exists C > 0 universal such that, for 1 < α < 5
4 ,

(3.1) Eα(uα) < 6α2π + C(α− 1)1/2.

Proof. For λ > 1, let f(r) := 2 arctan(λ tan r), r ∈ [0, π] with arctan also taking
values in [0, π]. Then as r increases from 0 to π/2, f(r) increases from 0 to π,
i.e., uf maps the upper hemisphere to the full sphere with the equator being all
mapped to the South Pole (0, 0,−1). The requirement that arctan takes values
between 0 and π forces f(r) to increase from π to 2π as r increases from π/2 to π,
i.e., uf maps the lower hemisphere to the full sphere again but with the opposite
orientation (which confirms that uf has degree zero). Furthermore, uf ∈ X .

In §8.1 of [7], we showed that the energy density e(uf) is given by

e(uf) =
1

2

(

(f ′)2 +
(sin f)2

(sin r)2

)

.

So we calculate

f ′(r) =
2λ

cos2 r + λ2 sin2 r
, sin(f(r)) =

2λ tan r

1 + λ2 tan2 r
= (sin r)(cos r)f ′(r).

Therefore,

(3.2) e(uf ) = 2λ2 1 + cos2 r

(λ2 − (λ2 − 1) cos2 r)2

and

(3.3) Eα(uf ) = 2απ

∫ π

0

(1 + e(uf ))
α(sin r) dr = 2α+1π

∫ π/2

0

(1 + e(uf ))
α(sin r) dr,

where we have used the even symmetry of cos2 r and sin r about π/2. We shall use
the inequality

(3.4) (1 + x)α 6 1 + αx + (α− 1)x2, α ∈ [1, 2], x > 0
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and therefore, we need to estimate the integrals

I1 :=

∫ π/2

0

1 + cos2 r

(λ2 − (λ2 − 1) cos2 r)2
(sin r) dr(3.5)

I2 :=

∫ π/2

0

(1 + cos2 r)2

(λ2 − (λ2 − 1) cos2 r)4
(sin r) dr.(3.6)

We make the change of variables t = cos r and set a2 := 1 − λ−2. Then (3.5) and
(3.6) become

I1 := λ−4

∫ 1

0

1 + t2

(1− a2t2)2
dt(3.7)

I2 := λ−8

∫ 1

0

(1 + t2)2

(1− a2t2)4
dt.(3.8)

To estimate (3.7) we use

1 + t2

(1 − a2t2)2
<

1

2a2

(

1

(1− at)2
+

1

(1 + at)2

)

and note that
∫ 1

0

(

1

(1 − at)2
+

1

(1 + at)2

)

dt =
2

1− a2
= 2λ2.

Therefore,

(3.9)

∫ π/2

0

e(uf ) (sin r) dr = 2λ2I1 <
2

a2
=

2λ2

λ2 − 1
.

To estimate (3.8) we use

(1 + t2)2

(1− a2t2)4
<

1

a4(1− at)4

and note that

1

a4

∫ 1

0

1

(1 − at)4
dt =

1

3a5

(

1

(1 − a)3
− 1

)

<
1

a4(1− a)3
.

Now
1

a4(1− a)3
=

(1 + a)3

a4(1 − a2)3
< 8λ6a−4

and therefore, if λ2 > 2 so that a2 > 1
2 we have that I2 < 32λ−2. It follows that

(3.10)

∫ π/2

0

(

e(uf)
)2

(sin r) dr = 4λ4I2 < 128λ2.

Using (3.4) in (3.3) we get

Eα(uf) 6 2α+1π

(

1 + α

∫ π/2

0

e(uf ) (sin r) dr + (α− 1)

∫ π/2

0

(

e(uf )
)2

(sin r) dr

)

from which it follows that

Eα(uf ) < 2α+1π

(

1 +
2αλ2

λ2 − 1
+ 128(α− 1)λ2

)

.
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Still assuming that λ2 > 2 we have λ2

λ2−1 < 1 + 2λ−2 and therefore,

Eα(uf ) < 2α+1π

(

3 +
4α

λ2
+ 2(α− 1) + 128(α− 1)λ2

)

.

By choosing λ = (α− 1)−(1/4) (with α ∈ (1, 5
4 ) so that λ2 > 2) we obtain

Eα(uf ) < 2α+1π
(

3 + C(α− 1)1/2
)

< 6α2π + C(α − 1)1/2.

Finally, since uα minimizes I among maps in X , we have that

Eα(uα) < Eα(uf ) < 6α2π + C(α− 1)1/2,

namely, (3.1). �

3.3. Completion of Proof of Theorem 1.5.

Proof. Given ε > 0 choose 5
4 > α0 > 1 so that C(α0−1)1/2 < ε. Then, by Theorem

1.4 and Proposition 3.2, for 1 < α < α0 we have

6α2π 6 Eα(uα) < 6α2π + C(α − 1)1/2 < 6α2π + ε,

which concludes the proof. �

Remark 3.3. The map uf constructed above with f(r) = 2 arctan(λ tan r) can also
be written as

uλ(z) =
2λz

1− |z|2
, z ∈ C ∪ {∞},

where S2 is identified with C ∪ {∞} via stereographic projection from the South
Pole. The calculations seemed to us somewhat more messy in this representation
of S2. However, this representation suggests the following example for proving the
optimality of the degree 1 example referred to just after Theorem 1.5:

uε(z) :=
z(1− ε2|z|2)

(ε2 − |z|2)
, 0 < ε ≪ 1, depending on α.

As ε ↓ 0, uε develops a holomorphic bubble at 0 and also at ∞ and, on compact
subsets of 0 < |z| < ∞, uε(z) converges smoothly to 1

z̄ . It is straightforward to
check that the corresponding fε : [0, π] → [0, 3π] is given by

fε(r) := 2 arctan

(

(tan(r/2))(1 − ε2 tan2(r/2))

ε2 − tan2(r/2)

)

.

(The values taken by arctan in the vicinity of tan(r/2) = ε and tan(r/2) = 1/ε
have to be chosen appropriately so as to make fε continuous.) This example shows
how the weak limit of degree 1 α-harmonic maps may have degree −1.
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