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Abstract

We propose a new methodology based on Fourier analysis to estimate the fourth power
of volatility function (spot quarticity) and, as a byproduct, the integrated function. We
prove consistency of the proposed estimator of integrated quarticity. Further we analyze
its efficiency in the presence of microstructure noise, both from a theoretical and empirical
viewpoint. Extensions to higher powers of volatility and to the multivariate case are also
discussed.
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1 Introduction

In the last decade many empirical and theoretical studies have shown that using high frequency
intradaily returns allows to get more efficient measures of volatility than classical estimates
obtained through daily data. Nevertheless, the efficiency of all the methodologies proposed in
accurately estimating the volatility must cope with the fact that observed asset prices are con-
taminated by market microstructure effects, such as price discreteness, separate trading prices for
buyers and sellers and other contaminations; as a consequence, observed asset prices diverge from
their efficient values and any volatility measure is rapidly swamped by noise [Roll, 1984]. Dif-
ferent methods have been proposed to obtain unbiased estimators of the true integrated volatility,
e.g. [Zhou, 1996, Andersen et al., 2001, Zhang et al., 2005, Mancino and Sanfelici, 2008, Barndorff-Nielsen et al., 2008a].

In order to produce feasible central limit theorems for all these estimators, and hence feasible
confidence intervals, it is necessary to obtain efficient estimators of the so called quarticity, which
appears as conditional variance in the central limit theorems. Nevertheless, the studies about
estimation of quarticity are still few. In fact, [Barndorff-Nielsen et al., 2008a] remark that esti-
mating integrated quarticity reasonably efficiently is a tougher problem than estimating the inte-
grated volatility, as the effect of noise is magnified up. [Barndorff-Nielsen and Shephard, 2004a,
Barndorff-Nielsen et al., 2006] proposed an estimator of quarticity which is consistent in the
absence of noise; this is the mostly used estimator of quarticity and sparse sampling is usually
employed to face microstructure noise problems (see also [Bandi and Russell, 2006]). Finally,
[Mykland, 2007] proposed an improved estimator of quarticity, based on a local pre-averaging
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technique, which generalizes the estimator by [Barndorff-Nielsen and Shephard, 2002]. However,
the issue of microstructure effects is not considered. [Schulz, 2010] proposes an approach to ro-
bustify any estimator in order to cope with flat prices and no trading, both frequently occurring
stylized facts in financial high-frequency data sets, which can cause a considerable bias in each
considered method. Very recently, [Andersen et al., 2011] provide an in-depth look at robust esti-
mation of integrated quarticity based on high frequency data, document the empirical challenges
posed by data sampling imperfections and propose a new family of neighborhood truncation es-
timators, that generalizes existing nearest neighbor estimators based on the minimum of two
adjacent absolute returns or on the median of three adjacent absolute returns. These estimators
perform very well in the presence of jumps but are less efficient for diffusive processes.

In this paper we propose a new method to estimate quarticity, which is based on the
Fourier volatility estimation proposed in [Malliavin and Mancino, 2002]. The Fourier method-
ology allows to reconstruct the instantaneous volatility as a series expansion with coefficients
gathered from the Fourier coefficients of the price variation. The consistency in probability
uniformly in time and the asymptotic properties of the Fourier estimator of instantaneous
volatility have been proved in [Malliavin and Mancino, 2009] in the absence of microstructure
noise. Moreover the efficiency of the Fourier method to estimate the integrated volatility in
the presence of microstructure noise has been analyzed in comparison with other estimators in
[Mancino and Sanfelici, 2008]. The authors find that the Fourier estimator needs no correction
in order to be statistically efficient and robust to some kind of market frictions at the same
time. This result is due to the following properties of the Fourier estimator: on one side it uses
all available data by integration, therefore incorporating not only the squared increments of
the prices but also the auto-covariances of all orders along the time window; on the other side
the high-frequency noise or short-run noise is ignored by cutting the highest frequencies in the
construction of the estimator.

In order to construct an estimator of quarticity we employ the Fourier coefficients of volatil-
ity obtained through the Fourier methodology in [Malliavin and Mancino, 2009] and the product
formula. Note that our methodology allows to compute the fourth power of volatility function
(spot quarticity) and not only the integrated function. We compute analytically the mean square
error (MSE) of the Fourier estimator of quarticity and prove its consistency in the absence of
noise. In the presence of microstructure effects, we propose an efficient corrected Fourier esti-
mator which has lower sensitivity to the noise component. Further we address the problem of
constructing an optimal MSE-based Fourier quarticity estimator, which renders our method-
ology feasible with real data on finite samples. In fact, when using high frequency data, the
efficiency of the Fourier estimator largely depends on the choice of two parameters M and N ,
which define the highest frequency Fourier coefficients taken into account by the estimator.

The new methodology is tested in realistic Monte Carlo experiments and in an empirical
application to S&P 500 index futures. We make a comparative analysis of the performance of
most of the estimators existing in the literature. Our analysis shows that a very attractive feature
of the Fourier methodology is its ability to cope with microstructure effects. More precisely, our
estimator is robust to increasing noise effects as a consequence of its property of ignoring high-
frequency noise components by cutting the highest frequencies of the observed process.

The paper is organized as follows. In Section 2 the computation of the quarticity function
through Fourier analysis is proposed. Section 3 proves the consistency of the Fourier quarticity
estimator. In Section 4 the properties of the Fourier quarticity estimator in the presence of
microstructure noise are analyzed. Extension to the multivariate case is sketched in Section 5.
Section 6 contains the simulation results and an application to S&P 500 index futures. Section
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7 concludes. The technical proofs are contained in the Appendix.

2 Computation of the fourth power of spot volatility

Let p(t) be the logarithm of an asset price, observed at time t over a fixed time period (e.g.
a trading day), say [0, T ]. We assume p(t) to be a continuous semi-martingale satisfying the
stochastic differential equation

(A.I) dp(t) = σ(t) dW (t) + b(t) dt,

where W is a Brownian motion on a filtered probability space (Ω, (Ft)t∈[0,T ], P ), σ and b are
adapted stochastic processes such that

E[
∫ T

0
σ8(t)dt] < ∞ , E[

∫ T

0
b4(t)dt] < ∞.

We aim at computing the fourth power of the volatility function σ(t). To this end, we
propose a methodology which allows to compute its Fourier coefficients from the asset prices
observations and therefore to recover its Fourier expansion.

The Fourier method for spot variance estimation was first introduced in [Malliavin and Mancino, 2002].
In contrast with the realized volatility type estimators, the peculiarity of Fourier approach is
that it allows to reconstruct the variance as a stochastic function of time in the univariate and
multivariate case, not only the integrated variance. In this paper we will exploit this property:
in fact by our methodology all the Fourier coefficients of the variance function can be obtained,
which allows us to compute the fourth power of the volatility function, namely the spot quar-
ticity. In the following, we will assume that, up to a translation and a scaling in time, the time
window is [0, 2π].

For any integer k, define the Fourier transform of dp by

F(dp)(k) :=
1
2π

∫

]0,2π[
exp(−ikt) dp(t).

The first step of our method consists in the computation of the Fourier coefficients of the
function σ2(t)

F(σ2)(k) :=
1
2π

∫ 2π

0
e−iktσ2(t)dt.

This can be obtained using the following result: the variance function is computed by estab-
lishing a connection between the Fourier transform of the price process and the Fourier trans-
form of the variance process. This link is provided by the next theorem, which is proved in
[Malliavin and Mancino, 2009]. For simplicity, we can assume b = 0 because the drift term gives
no contribution to the estimation of the Fourier coefficients of the volatility (see [Malliavin and Mancino, 2009]).

Theorem 2.1 Consider a semi-martingale p satisfying assumption (A.I). The following con-
vergence in probability holds

F(σ2)(k) = lim
N→∞

2π

2N + 1

∑

|s|≤N

F(dp)(s)F(dp)(k − s), for all k ∈ Z. (1)
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The second step consists in the computation of the k-th Fourier coefficient of σ4(t). To this
end, the Fourier series of a product can be applied.

Proposition 2.2 Under assumption (A.I) the k-th Fourier coefficient of the function σ4(t) is
obtained as the following limit in probability

F(σ4)(k) = lim
M→∞

∑

|s|≤M

F(σ2)(s)F(σ2)(k − s). (2)

Finally the fourth power of volatility function can be reconstructed by means of its Fourier
coefficients (2) as the following limit in probability

σ4(t) = lim
N→∞

∑

|k|<N

(1− |k|
N

)F(σ4)(k) exp(ikt) for all t ∈ (0, 2π). (3)

Remark 2.3 The Fourier methodology presented in this section can be easily accommodated to
obtain unbiased estimators of higher power function of volatility: in fact by using as building
blocks the Fourier coefficients of the variance function and the product formula, we can compute
the Fourier coefficients of any positive even power of the volatility function.

Remark 2.4 We observe that in particular it holds
∫ 2π

0
σ4(t)dt = 2πF(σ4)(0),

therefore the integrated quarticity can be obtained from equation (2) by setting k = 0.

We stress the point that in order to compute the quarticity, that is the integrated fourth
power of volatility function, the knowledge of the integrated volatility is not sufficient, but (all)
the Fourier coefficients of the volatility are needed. We will discuss again this issue in Remark
3.2.

3 Fourier estimator of quarticity

In this section an estimator of quarticity is constructed through a two steps procedure: firstly,
given the discrete observations of the price process, an estimator of the Fourier coefficients of
the spot variance process is obtained; secondly, using the product formula and the estimated
Fourier coefficients of the variance process, we propose an estimator of quarticity.

Suppose that the asset log-price p(t), satisfying assumption (A.I), is observed at discrete,
irregularly spaced points in time: {0 = t0,n ≤ . . . ti,n . . . ≤ tn,n = 2π}. For simplicity we will
omit the second index n. Denote ρ(n) := max0≤h≤n−1 |th+1 − th| and suppose that ρ(n) → 0
as n →∞.

Consider the following interpolation formula

pn(t) :=
n−1∑

i=0

p(ti)I[ti,ti+1[(t).

and denote the returns by δi(p) := p(ti+1)− p(ti). For any integer k, |k| ≤ 2N , set

ck(dpn) :=
1
2π

n−1∑

i=0

exp(−ikti)δi(p). (4)
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For any |k| ≤ N , define

ck(σ2
n,N ) :=

2π

2N + 1

∑

|s|≤N

cs(dpn)ck−s(dpn) (5)

as the discrete counterpart of (1). Finally define

σ2
n,N (t) :=

∑

|k|<N

(1− |k|
N

)ck(σ2
n,N )eikt. (6)

The random function σ2
n,N (t) will be called the Fourier estimator of the instantaneous variance

σ2(t).
In the sequel we will suppose that σ(t) is a continuous function and satisfies:

(A.II) ess sup ‖σ2‖L∞ < ∞, where ‖σ2‖L∞ := sup
t
|σ2(t)|.

The following result states the consistency of the Fourier estimator of instantaneous vari-
ance. The proof can be found in [Malliavin and Mancino, 2009].

Theorem 3.1 (i) For any integer k, if ρ(n)N → 0, then the following convergence in probability
holds

lim
n,N→∞

ck(σ2
n,N ) = F(σ2)(k).

(ii) Further, it holds in probability

lim
n,N→∞

sup
t∈(0,2π)

|σ2
n,N (t)− σ2(t)| = 0.

Relying on Proposition 2.2 and Remark 2.4, we define the Fourier estimator of quarticity
by

σ4
n,N,M := 2π

∑

|s|<M

(1− |s|
M

)cs(σ2
n,N )c−s(σ2

n,N ), (7)

where the c∗(σ2
n,N ) are explicit functions of the log-returns δi(p) (i = 1, . . . , n) as defined by (5).

In (7) we have chosen the Fourier-Fejer summation by adding a Barlett kernel, which improves
the behavior of the estimator for very high observation frequencies.

Remark 3.2 Notice that when M = 1 the Fourier estimator of quarticity is simply the squared
Fourier estimator of integrated volatility. Indeed, recognizing the considerable imprecision of
quarticity estimators, other authors such as [Jiang and Oomen, 2008] opted for simply squaring
integrated variance estimators. In this regard, higher order Fourier coefficients cs(σ2

n,N ) for s ≥ 1
contribute to increase the precision of the quarticity estimator with respect to that naive approach.

The main result of this section is the following theorem which proves the consistency of
estimator (7).

Theorem 3.3 Let σ4
n,N,M be defined in (7). If ρ(n)NM → 0 and M2

N → 0 as M, N, n → ∞,
then the following convergence in probability holds

lim
n,N,M→∞

σ4
n,N,M =

∫ 2π

0
σ4(t)dt.
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This result establishes a link between the number of observations n and the parameters M ,
N . However, in practical situations the number of observations n is finite and fixed. In order to
obtain a feasible finite sample estimator of the integrated quarticity, we compute analytically
an upper bound for the MSE of the Fourier quarticity estimator. This result will provide a
practical way to optimize the finite sample performance of the Fourier estimator as a function of
the number of frequencies M and N by the minimization of the estimated mean squared error,
for a given number of intra-daily observations n. Thus, it can be effectively used to build optimal
MSE-based estimators.

Corollary 3.4 Under assumptions (A.I) and (A.II) then

E[|σ4
n,N,M −

∫ 2π

0
σ4(t)dt|2] ≤

≤ 25π2

3
M2ess sup ‖σ2‖4

L∞

(
C

1/2
1 ρ(n)2[N2 + M2] +

C
1/2
2

2N + 1

)
+ (2π)2 ess sup ‖σ2‖2

L∞(ωσ2(
4
M

))2,

where C1 = 26 · 7, C2 = 9 · 27

π and ωσ2(λ) denotes the modulus of continuity of the variance
function.

4 Fourier quarticity estimator in the presence of noise

It is widely recognized that in the presence of microstructure noise the realized volatility es-
timator fails to converge to the integrated volatility of the underlying price process, e.g. see
[Andersen and al., 1999]. Therefore, many ad hoc procedures have been proposed to correct the
bias caused by the microstructure noise frictions. This problem is even magnified up when the
integrated quarticity is estimated through the realized quarticity, which essentially involves the
fourth order return moments.

The finite sample properties of the Fourier estimator of integrated volatility in the presence
of market microstructure noise have been studied in [Mancino and Sanfelici, 2008], both in the
case of independent noise and in the case where the noise is correlated with the efficient returns.
In particular the authors find that, even without any bias correction of the estimator, the bias
of a finite sample can be made negligible by suitably cutting the highest frequencies in the
Fourier expansion. Moreover, they prove that the mean squared error of the Fourier estimator is
substantially unaffected by the presence of microstructure noise by choosing in an appropriate
way the number of Fourier coefficients to be included in the estimation, as indicated explicitly
by the mean squared error computation.

In this section we claim the effectiveness of Fourier estimation method when applied to
compute the quarticity in the presence of microstructure noise, due to the intrinsic robustness
of the Fourier estimator of volatility.

Following a large literature in this field (e.g. [Hansen and Lunde, 2006]), we suppose that
the logarithm of the observed price process is given by

p̃(t) = p(t) + η(t), (8)

where p(t) is the efficient log-price process satisfying (A.I) and η(t) is the microstructure noise.
We can think of p(t) as the log-price in equilibrium, that is the price that would prevail in the
absence of market microstructure frictions.
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We make the following assumptions:

(A.III) The random shocks η(tj,n), for 0 ≤ j ≤ kn and for all n, are independent and
identically distributed with mean zero and bounded fourth moment.

(A.IV) The true return process δj,n(p) := p(tj+1,n) − p(tj,n) is independent of η(tj,n) for
any j, n.

To simplify the notation, in the sequel we will write δj(p) and ηj instead of δj,n(p) and η(tj,n)
respectively. Denote δj(p̃) := p̃(tj+1)− p̃(tj), where p̃ is given in (8), and define εj := ηj+1 − ηj

as the j-th noise return.
As in (7), the Fourier estimator of quarticity given noisy observations is given by

σ̃4
n,N,M := 2π

∑

|s|<M

(1− |s|
M

)cs(σ̃2
n,N )c−s(σ̃2

n,N ) (9)

where the Fourier coefficients cs(σ̃2
n,N ) are now computed using Fourier methodology from the

noisy returns δj(p̃), namely

cs(σ̃2
n,N ) :=

2π

2N + 1

∑

|k|≤N

ck(dp̃n)cs−k(dp̃n). (10)

In the following theorem we investigate the asymptotic properties of the estimator (9). It
turns out that the estimator is not consistent in its original form (9); nevertheless we compute
the bias induced by the microstructure noise and we propose a correction which renders the
Fourier estimator of quarticity more efficient in the presence of microstructure effects. As we
will see in Section 6, this noise correction makes the estimator less sensitive to the choice of the
parameter M and, in general, allows to use larger values of M , thus including in the expansion
(9) a larger number of coefficients than in the uncorrected version. Nevertheless, we stress the
fact that, although not consistent, the uncorrected estimator (9) is rather efficient as well, as it
will be evident from the simulation results.

The definition of the Fourier estimator does not require evenly spaced data. Anyway for
simplicity, in the following theorem we will suppose that the observations are equidistant in time
and that ρ(n) = 2π/n is the distance between two subsequent observations, where [0, 2π] is the
trading period.

Theorem 4.1 Under the assumptions (A.I) - (A.IV), then

E[σ̃4
n,N,M − σ4

n,N,M ] = Λn,N,M (σ, η) + Ψn,N,M (η),

where σ̃4
n,N,M is defined in (9), σ4

n,N,M in (7), Λn,N,M (σ, η) goes to 0 under the conditions
MN2

n → 0 and M3

N → 0, as n, N, M →∞, and

Ψn,N,M (η) =
2
π

(E[η4] + 3E[η2]2)nMD2
N (

2π

n
), (11)

with DN (t) denoting the rescaled Dirichlet kernel defined by

DN (t) :=
1

2N + 1
sin[(N + 1

2)t]
sin t

2

. (12)
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Remark 4.2 The growth conditions needed in Theorem 4.1 imply the two conditions NMρ(n) →
0 and M2

N → 0 required to ensure consistency of the estimator in the absence of noise.

In order to obtain feasible optimal estimators it is useful to have the explicit expression for
the asymptotically vanishing term Λn,N,M (σ, η):

Λn,N,M (σ, η) = αn,N,M (σ, η) + n βn,N,M (σ, η) + n2 γn,N,M (η), (13)

where

αn,N,M (σ, η) = ess sup ‖σ2‖L∞ 8 E[η2]
(

M(1− VM (
2π

n
)) + MVM (

2π

n
)(1−DN (

2π

n
))

)
+ o(1),

βn,N,M (σ, η) = ess sup ‖σ2‖L∞ 8 E[η2]
(

2
π

M

2N + 1
(1− VM (

2π

n
)) +

1
4π

(1−DN (
2π

n
))

)
+

+
1
π

(E[η4] + 3E[η2]2)
(

M(1− VM (
2π

n
)) + 2MVM (

2π

n
)(1−DN (

2π

n
))

)
+ o

(
1
n

)
,

γn,N,M (η) =
1
π

E[η2]2
(

(1−DN (
2π

n
))2 + 8

M

2N + 1
(1− VM (

2π

n
))

)
,

where VM (t) is the Fejer kernel defined as VM (t) := ( sin Mt
Mt )2.

We observe that term (11) is equal to 1
πE[ε4]nMD2

N (2π
n ). In [Bandi and Russell, 2005] it is

proved that 1
n

∑n
j=1 δj(p̃)4 is a consistent estimator of the fourth moment of the noise E[ε4] as

n →∞. Thus we correct the Fourier estimator of quarticity as follows

σ̂4
n,N,M := σ̃4

n,N,M − Ψ̂n,N,M , (14)

where we have defined

Ψ̂n,N,M :=
M

π
D2

N (
2π

n
)

n∑

j=1

δj(p̃)4.

We call (14) the corrected Fourier estimator. We remark that (14) is still not consistent in the
presence of noise, but less biased, as it will be confirmed in the numerical applications of Section
6.

5 Multivariate extension

The Fourier method was originally proposed in [Malliavin and Mancino, 2002] for estimating
multivariate volatility in order to overcome the difficulties arising by applying the quadratic
covariation formula to the true return data, due to the non-synchronicity of observed prices
for different assets. In fact, the quadratic covariation formula is not well suited to provide a
good estimate of cross-volatilities, because it requires synchronous observations, while in reality
they are not available. The non-synchronicity trading problem has been studied for quite a
long time in empirical finance, e.g. [Lo and MacKinlay, 1990]. The bias (Epps effect) caused by
non-synchronicity and random sampling for the cross-correlations estimation has been recently
highlighted in [Renó, 2003, Hayashi and Yoshida, 2005, Zhang, 2006].

The Fourier methodology is immune from these difficulties due to its own definition since,
being based on the integration of “all” data for each asset prices, it does not need any adjustment
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to fit to asynchronous observations. Thus we can extend without essential changes the univariate
theory proposed in the previous sections, in order to obtain a high frequency estimator of the mul-
tivariate counterpart of quarticity. To the best of our knowledge, the only paper which proposes
a consistent estimator of multivariate quarticity is [Barndorff-Nielsen and Shephard, 2004b],
where the issue of microstructure noise and asynchronicity is not considered.

For simplicity, we illustrate the methodology in the bivariate case. Assume that p(t) =
(p1(t), p2(t)) are Brownian semi-martingales satisfying Itô stochastic differential equations

dpj(t) =
d∑

i=1

σj
i (t) dW i + bj(t) dt, j = 1, 2, (15)

where W 1,W 2 are independent Brownian motions, and σ∗∗ and b∗ are adapted random processes
satisfying hypothesis (A.I).

From the representation (15) define the volatility matrix, which in our hypothesis depends
upon time, whose entries are

Σjk(t) =
d∑

i=1

σj
i (t)σ

k
i (t) j, k = 1, 2. (16)

We show how to obtain an estimator of the bivariate quarticity, namely
∫ 2π

0
[Σ11(t)Σ22(t) + (Σ12(t))2]dt.

Our theory contains the general result: in the first step the Fourier coefficient of Σij are computed
by means of the following convergence in probability, which is proved in [Malliavin and Mancino, 2009]

F(Σij)(k) = lim
N→∞

2π

2N + 1

N∑

s=−N

F(dpi)(s)F(dpj)(k − s) for any integer k.

Once the Fourier coefficients of the functions Σij have been estimated, the product formula
contained in Proposition 2.2 applies.

By virtue of the efficiency properties of the covariance Fourier estimator even in the presence
of microstructure noise, which has been investigated in [Mancino and Sanfelici, 2010], we expect
a good performance of the multivariate version of Fourier quarticity estimator.

6 Empirical Analysis

We conduct realistic Monte Carlo experiments aiming to compare the performance of the Fourier
quarticity estimator and of most of the estimators existing in the literature. Finally, we show an
empirical application to S&P 500 index futures.

6.1 Numerical simulations

In this section we simulate discrete data from a continuous time stochastic volatility model
with and without microstructure contaminations. From the simulated data, Fourier estimates
of the integrated quarticity can be compared to the value of the true quantity and to esti-
mates obtained with other methods proposed in the literature. To our best knowledge, although
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the fourth power of volatility has many important applications in Econometrics, only very re-
cently the literature has been focused specifically on the analysis of estimators for integrated
quarticity [Andersen et al., 2011, Schulz, 2010, Mykland, 2007]. For the reader’s convenience, in
the following we recall the main integrated quarticity estimators that can be drawn from the
literature.

[Barndorff-Nielsen and Shephard, 2002] provide an estimator of the integrated quarticity
that is consistent in the absence of microstructure frictions

RQ :=
n

3T

n−1∑

i=0

δi(p)4.

To obtain roughly unbiased and valid estimates of quarticity when microstructure effects play a
role, we can resort to low frequency sampling. To reduce the estimation error, [Ghysels and Sinko, 2007]
combine the realized quarticity estimator with the averaging over subsamples approach proposed
by [Zhang et al., 2005], where the returns span several ticks. While less efficient in the absence
of noise, it reduces the variance due to noise and has a bias reducing effect. This estimator can
be written as

RQsub :=
1
S

S∑

s=1

RQ(s),

where the RQ(s)’s are computed on different non overlapping subgrids using only the skip-S
returns for the asset. Alternatively, the integrated quarticity may be estimated from the bipower
variation measure of [Barndorff-Nielsen and Shephard, 2004a]

BQ :=
n

T

n−1∑

i=1

|δi(p)|2|δi−1(p)|2. (17)

In [Barndorff-Nielsen and Shephard, 2004b] a possible combination of power and bipower quar-
ticity is provided

Q :=
n

2T

(
n−1∑

i=0

δi(p)4 −
n−1∑

i=1

|δi(p)|2|δi−1(p)|2
)

.

[Barndorff-Nielsen et al., 2008a] propose a subsampled version of the bipower quarticity (17),
which can be defined as follows. For some h̃ > 0, define the subsampled squared returns x2

j =
1
S

∑S−1
s=0

(
ph̃(j+ s

S
) − ph̃(j−1+ s

S
)

)2
, j = 1, 2, . . . , ñ, where ñ = bT/h̃c. The subsampled bipower

quarticity estimator may be given by

BQsub :=
T

ñ

ñ∑

j=1

h̃−2(x2
j − 2ω2)(x2

j−2 − 2ω2),

where ω2 = V ar(ηt). Detailed calculations show that for large S and small h̃ the conditional
variance of BQsub is approximately 72ω8ñ3/S2, so that h̃3/2S →∞ leads to consistency.

A possible generalization of the realized bipower variation measure can be obtained by
summing products of adjacent absolute returns raised to powers less than two, as in, e.g., the
following standardized realized tripower quarticity measures

TQ1 := µ−3
4/3

n2

(n− 2)T

n−1∑

i=2

|δi(p)|4/3|δi−1(p)|4/3|δi−2(p)|4/3, (18)
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TQ2 := µ−3
4/3

n

T

n−1∑

i=2

|δi(p)|4/3|δi−1(p)|4/3|δi−2(p)|4/3,

where µp = E(|Z|p) and Z denotes a standard normally distributed random variable. These
estimators are consistent in the absence of microstructure noise and robust to jumps and hence
they allow for the construction of feasible tests for the presence of jumps. Motivated by the
desire for robustness against i.i.d. noise, a staggered version of the tripower quarticity measure
(18) is defined by [Andersen et al., 2006]

TQ(k) := µ−3
4/3

n2

(n− 2− 2k)T

n−1∑

i=2+2k

|δi(p)|4/3|δi−(1+k)(p)|4/3|δi−2(1+k)(p)|4/3,

where k is any positive but finite integer. However, in practice, if k is large then the staggered
estimator is likely to have a large finite sample bias.

A further generalization is given by multipower variation measures, such as the realized
quadpower quarticity proposed by [Barndorff-Nielsen and Shephard, 2006]

QQ := µ−4
1

n

T

n−1∑

i=3

|δi(p)||δi−1(p)||δi−2(p)||δi−3(p)|.

Recently, [Jacod et al., 2009] proposed a pre-averaging technique as an alternative to sub-
sampling in order to reduce the microstructure effects. The idea is that if one averages a number
of observed log-prices, one is closer to the latent process p(t). This approach, when well im-
plemented, gives rise to rate optimal estimators of power variations. In particular, a consistent
estimator of the integrated quarticity can be constructed as

Qav =
1

3θ2ψ2
2

n−kn+1∑

i=0

(p̄n
i )4− ρ(n)ψ1

θ4ψ2
2

n−2kn+1∑

i=0

(p̄n
i )2

i+2kn−1∑

j=i+kn

(δj(p))2 +
ρ(n)ψ2

1

4θ4ψ2
2

n−3∑

i=0

(δi(p))2(δi+2(p))2,

where the pre-averaged price process is given by

p̄n
i =

1
kn




kn−1∑

j=kn/2

pi+j −
kn/2−1∑

j=0

pi+j


 ,

θ = kn

√
ρ(n), ψ1 = 1 and ψ2 = 1/12, corresponding to a “hat” weight function, and kn is a

suitable integer.
Finally, our analysis is not extended to the Nearest Neighbor Truncation estimators recently

proposed by [Andersen et al., 2011] because these estimators are specifically designed to cope
with jumps but are less efficient than the multipower variation statistics in scenarios without
jumps.

We simulate second-by-second return and variance paths over a daily trading period of
T = 6 hours, for a total of 252 trading days and n = 21600 observation per day. The infinitesimal
variation of the true log-price process and spot volatility is given by the CIR square-root model
[Cox et al., 1985]

dp(t) = σ(t) dW1(t)
dσ2(t) = α(β − σ2(t))dt + νσ(t) dW2(t),

(19)
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where W1, W2 are independent Brownian motions. The parameter values used in the simulations
are taken from the unpublished Appendix to [Bandi and Russell, 2005] and reflect the features
of IBM time series: α = 0.01, β = 1.0, ν = 0.05. The initial value of σ2 is set equal to one,
while p(0) = log 100. Moreover, when microstructure effects are considered, we assume that the
logarithmic noises η are Gaussian i.i.d. and independent from p; this is typical of bid-ask bounce
effects in the case of exchange rates and, to a lesser extent, in the case of equities. We consider
a noise-to-signal ratio of ζ = 2 or ζ = 4.

The sampling frequency and the other parameters contained in the definition of the estima-
tors above must be chosen conveniently, especially in the presence of noise. One possible criterion
is the minimization of the true MSE. Another possible choice is the minimization of the expected
asymptotic error variance. However, both these procedures are unfeasible when applied to em-
pirical data, where the actual volatility path is not observed. Feasible finite sample MSE-based
optimal rules for choosing the sampling frequency and the number of subgrids S for subsampling
are discussed in [Bandi and Russell, 2006] and [Zhang et al., 2005] with regards to the corre-
sponding integrated variance estimators, while a specific study of optimally designed quarticity
estimators in the presence of microstructure effects is still lacking. Hence, for each quarticity
estimator, our choice is to employ the optimal sampling frequency and other parameter values im-
plied by the rules of thumb available for the corresponding integrated volatility estimators. This
entails the choice n∗ = (T

∫ T
0 σ4

t dt/(4(E[η2])2))1/3 for any power and multipower quarticity-type
estimator and the optimal value S = n/n̄∗, with n̄∗ = (T

∫ T
0 σ4

t dt/(6(E[η2])2))1/3 for the sub-
sampled power and bipower quarticity. Preliminary estimates of the population moment E[η2]
can be obtained from quote-to-quote return data according to [Bandi and Russell, 2005], while∫ T
0 σ4

t dt can be preliminarily estimated by computing Q = n/(3T )
∑n

j=1(δj(p̃))4 using 2-minute
returns. In the case of the Pre-averaging estimator, we apply the optimal mean square error
bandwidth selection suggested by [Barndorff-Nielsen et al., 2008b] and choose kn = c∗ξ4/5n3/5,
where c∗ = (144/0.269)1/5, ξ2 = E[η2]/

√
Q and Q is the integrated quarticity estimated by

means of 2-minute returns. We stress the fact that these criteria may be suboptimal with re-
spect to the optimal design of quarticity estimators.

In the case of the Fourier estimator, the theoretical results provided in the previous sections
highlight the importance of the cutting parameters N and M . Indeed, the definition of the
Fourier estimator of quarticity requires that the econometrician make a choice regarding the
highest frequency coefficients ck(dpn) and cs(σ2

n,N ) to be included in the expansion (7). The
results in Theorems 3.3 and 4.1 provide asymptotic growth conditions on the parameters N , M
and n required to build efficient estimators. However, given n, operatively the optimal parameter
values N, M can be easily obtained by direct minimization of the true MSE or, conversely, of an
estimate or upper bound of the true MSE. Contrary to the minimization of the true MSE, the
second procedure is feasible, in the sense that it relies only on measurable quantities. Therefore,
in the absence of microstructure effects a feasible procedure for optimizing the Fourier estimator
consists explicitly in minimizing with respect to N , M the upper bound of the MSE provided by
Corollary 3.4. In the presence of noise, we can provide only a suboptimal strategy for the choice
of N and M since Theorem 4.1 quantifies the difference between the noise affected quarticity
estimator and the consistent one σ4

n,N,M . From a practical point of view, after correcting for
the bias due to noise effects as in (14), efficient Fourier estimators having small MSE can be
obtained by minimizing a linear combination of the upper bound for the MSE given in Corollary
3.4 and of Λ2

n,N,M (σ, η) with respect to M and N . Hence, for the Fourier methodology we choose
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to minimize the functional
2Θ2

n,N,M (σ) + 2Λ2
n,N,M (σ, η), (20)

where

Θ2
n,N,M (σ) := (4π)2

2
3
M2ess sup ‖σ2‖4

L∞

(
(C1)

1
2 ρ(n)2[N2 + M2] + (C2)

1
2

1
2N + 1

)

+(2π)2 ess sup ‖σ2‖2
L∞(ωσ2(

4
M

))2

and Λ2
n,N,M (σ, η) is given in (13). Usually, the optimal N turns out to be much smaller than the

Nyquist frequency (i.e. N ¿ n/2) both in the absence and in the presence of noise. Moreover,
in complete agreement with the theory developed in Sections 3 and 4, the optimal M is very
small.

Taking into account the considerations above, it is important to analyze the sensitivity of
the estimator to this choice, with particular regard to the uncorrected version. In Figure 1, we
plot the real MSE of σ̃4

n,N,M averaged over the 252 days as a function of M and N , respectively,
and of any combination (M,N) both in the presence and in the absence of microstructure effects.
We notice that the Fourier estimators turns out to be on average quite robust to the choice of
M . As regards to N , except for the lowest values up to about N = 100 and depending on
M , the MSE exhibits small variability as well but on a larger scale. Thus, N turns out to be
the most critical parameter in the design of the Fourier estimator, especially in the presence of
noise. The motivation is twofold: (i) the choice of N is crucial for an efficient computation of
the coefficients cs(σ2

n,N ), which are the bricks used to build the quarticity estimate; (ii) the role
of M is attenuated by the smoothing Fejer kernel in (7). Hence, most of the microstructure is
filtered out by truncating the volatility coefficients (5) up to N , thus neglecting the noisy highest
frequency return coefficients.

Nevertheless, we want to stress the different behavior of the MSE in the absence or in
the presence of noise. In the absence of noise (left column), the MSE is almost unaffected by
the choice of M and seems to be decreasing with respect to N , at least in the range plotted
in the picture. Notice that, as predicted by the theory, in the absence of noise the MSE tends
to zero as n, M, N → ∞ such that MN/n, M2/N → 0. On the contrary, when microstructure
effects are taken into account, stronger growth conditions on M and N must be fulfilled, namely
MN2/n,M3/N → 0. Indeed, on the second column of the figure we can see that the MSE of
the non corrected Fourier estimator σ̃4

n,N,M tends to increase for large values of M and N , the
minimum of the MSE surface being attained at M = 1, N = 250. Hence the need for the noise
correction (14) to further reduce the growth of the MSE with respect to M and for an accurate
choice of N to filter out the microstructure effects.

In Figure 2, we show the effect of the noise correction (14) on the real MSE and BIAS. We
notice that, as expected, the main scope of this correction is to reduce the growing rate of both
MSE and BIAS with respect to M , by subtracting an estimate of the term (11). This is clear
from the figure, where we see that the most evident effect of correction is the reduction of the
variability of MSE and BIAS with respect to M . This is very important, because the correction
makes the Fourier estimator less sensitive to the choice of M in the presence of noise, so that N
becomes the crucial parameter in the estimator design.

In Tables 1-5, we provide a comparative analysis of the efficiency of the different estimators
of quarticity for the model (19). All the estimators have been optimized as described above, on
average over the 252 days. The label “Unfeasible” stands for the non feasible minimization of the
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Figure 1: Real MSE of σ̃4
n,N,M averaged over the whole dataset (252 days) as a function of M

and N , for the purely diffusive price process (19) and in the presence of microstructure effects,
with ζ = 4.
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Figure 2: Effect of the noise correction on the real MSE and BIAS of σ̃4
n,N,M . The dotted line

refers to σ̃4
n,N,M , while the solid line refers to the corrected estimator σ̂4

n,N,M . Noise-to-signal
ratio ζ = 2.

14



Unfeasible Feasible
MSE BIAS MSE BIAS

σ4
n,N,M 5.95e-4 1.42e-4 6.18e-4 1.80e-3

RQ 7.11e-5 3.96e-4 7.90e-4 -7.11e-4
BQ 7.88e-5 7.35e-4 8.12e-4 -1.91e-3
Q 9.83e-5 2.27e-4 1.19e-3 -1.09e-4
TQ1 8.51e-5 2.81e-5 9.51e-4 -1.94e-3
TQ2 8.51e-5 1.70e-5 9.49e-4 -2.57e-3
TQ(k) 9.40e-5 -3.12e-4 1.06e-3 -1.76e-3
QQ 9.54e-5 1.02e-4 1.07e-3 -2.60e-3
RQsub 4.95e-5 5.18e-4 4.84e-4 -1.20e-3
BQsub 7.24e-4 -1.36e-2 8.15e-4 -1.88e-2
Qav 2.97e-4 -7.54e-3 3.22e-4 -1.12e-2

Table 1: No noise. “Unfeasible” stands for the “non feasible minimization of the real MSE”
over the whole dataset. “Feasible” stands for “feasible MSE-based optimization”, based on the
minimization of the functional (20) for the Fourier estimator and on the rules of thumb provided
by the literature for the other estimators.

real MSE, while “Feasible” refers to the suboptimal feasible procedures of MSE minimization
summarized above and based on the minimization of the functional (20) for the Fourier estimator
and on the rules of thumb provided by the literature for the other estimators and described above.

Table 1 refers to the ideal case of a purely diffusive price process, with uniformly distributed
observations. In this case, the realized quarticity-type estimators RQ, BQ, Q, TQ1, TQ2, TQ(k)

and QQ perform best when data are sampled at the highest frequency (second-by-second). Hence,
in this case all the unfeasible estimators are confronted over the same dataset, at the highest
frequency. However, the feasible selection of the sampling interval for the realized quarticity-
type estimators provides a frequency of 0.47 min, which is suboptimal. The best estimate is
given by RQsub, where the number of subgrids S selected by the unfeasible minimization is 2.
These results make sense, because under the Itô paradigm there is no need for subsampling or
pre-averaging. The Fourier estimator σ4

n,N,M is in line with these last estimators, but less biased.

One of the most attractive features of the Fourier methodology is its ability to cope with
microstructure effects. In fact, a convenient choice of the cutting frequencies M and N makes
the Fourier estimator invariant to high frequency noise. In Table 2, we introduce Gaussian
i.i.d. microstructure effects of medium intensity (ζ = 2). Both the feasible and unfeasible pro-
cedures provide an efficient Fourier estimator σ̃4

n,N,M and corrected version σ̂4
n,N,M . Only the

pre-averaging estimator Qav performs better, thus confirming the ability of the Fourier approach
to filter out microstructure effects. The optimal parameter values selected by the unfeasible pro-
cedure are N = 357, M = 2, while the values selected by the feasible procedure are N = 350,
M = 3. The optimal unfeasible sampling interval for the realized quarticity-type estimators
ranges from 1.55 to 2.19 min, while the optimal interval provided by the rule-of-thumb is 1.94
min. Therefore, we stress the fact that, unlike for σ̃4

n,N,M , σ̂4
n,N,M ,RQsub, BQsub and Qav, the

realized quarticity-type estimators work on subsets of available data, using sparse sampling to
reduce microstructure effects.

In Table 3, the noise-to-signal ratio is raised to ζ = 4. In this case, the realized quarticity-
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Unfeasible Feasible
MSE BIAS MSE BIAS

σ̃4
n,N,M 6.71e-4 6.72e-3 7.21e-4 8.09e-3

σ̂4
n,N,M 6.65e-4 6.27e-3 7.01e-4 6.75e-3

RQ 4.48e-3 4.08e-2 5.44e-3 3.18e-2
BQ 4.71e-3 2.29e-2 5.67e-3 3.01e-2
Q 5.46e-3 3.96e-2 7.45e-3 3.26e-2
TQ1 5.45e-3 2.36e-2 7.34e-3 3.75e-2
TQ2 5.19e-3 2.03e-2 6.99e-3 3.44e-2
TQ(k) 5.89e-3 3.89e-2 8.41e-3 3.90e-2
QQ 5.38e-3 2.07e-2 7.21e-3 3.34e-2
RQsub 3.16e-3 2.90e-2 3.17e-3 2.78e-2
BQsub 7.59e-4 -1.43e-2 2.41e-3 -9.56e-3
Qav 3.39e-4 -6.81e-3 4.36e-4 -3.37e-3

Table 2: Microstructure effects (ζ = 2). Same format as Table 1.

Unfeasible Feasible
MSE BIAS MSE BIAS

σ̃4
n,N,M 1.18e-3 1.62e-2 1.31e-3 1.71e-2

σ̂4
n,N,M 7.43e-4 1.14e-4 1.03e-3 -9.57e-4

RQ 1.05e-2 1.11e-2 1.38e-2 5.79e-2
BQ 1.21e-2 3.17e-2 1.68e-2 6.05e-2
Q 1.36e-2 3.23e-2 1.74e-2 5.66e-2
TQ1 1.49e-2 3.14e-2 2.07e-2 6.77e-2
TQ2 1.35e-2 2.25e-2 1.91e-2 6.04e-2
TQ(k) 1.36e-2 3.81e-2 1.90e-2 6.64e-2
QQ 1.37e-2 1.52e-2 1.87e-2 5.51e-2
RQsub 7.08e-3 3.35e-2 7.35e-3 4.80e-2
BQsub 8.37e-4 -1.55e-2 4.96e-3 -1.48e-2
Qav 5.05e-4 -3.59e-3 7.55e-4 -1.83e-3

Table 3: Microstructure effects (ζ = 4). Same format as Table 1.
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Unfeasible Feasible
MSE BIAS MSE BIAS

σ4
n,N,M 6.62e-4 -2.60e-3 7.01e-4 3.52e-4

RQ 1.06e-3 9.03e-3 2.52e-3 -2.21e-3
BQ 8.69e-4 -1.25e-2 2.42e-3 -6.19e-3
Q 1.69e-3 5.47e-3 3.80e-3 -2.21e-4
TQ1 1.12e-3 -1.63e-2 2.72e-3 -6.64e-3
TQ2 1.13e-3 -1.69e-2 2.71e-3 -8.45e-3
TQ(k) 1.02e-3 -1.05e-2 2.66e-3 -2.96e-3
QQ 1.32e-3 -1.94e-2 3.10e-3 -8.47e-3
RQsub 7.85e-4 1.03e-2 1.86e-3 -4.85e-3
BQsub 3.31e-3 -3.76e-2 3.81e-3 -4.83e-2
Qav 7.93e-4 -5.95e-3 8.79e-4 -7.67e-3

Table 4: Irregular trading times and no noise. Same format as Table 1.

type estimators provide poor estimates of quarticity and the optimal unfeasible sampling interval
ranges from 4.69 to 7.05 min, while the optimal interval provided by the rule-of-thumb is 4.09
min. In this setting of marked noise, the noise correction to the Fourier estimator becomes
effective and σ̂4

n,N,M becomes the second best estimator after Qav and less biased. The optimal
parameter values selected by the unfeasible procedure for σ̃4

n,N,M are N = 250, M = 1, while the
values selected by the feasible procedure are N = 242, M = 3. Notice, however, that the optimal
unfeasible corrected estimator is given by the larger values N = 343, M = 5. We note that the
feasible corrected estimator σ̂4

n,N,M is more efficient in terms of both MSE and BIAS than the
unfeasible version of σ̃4

n,N,M . This means that further coefficients cs(σ2
n,N ) are actually required

in σ̂4
n,N,M to provide a more efficient quarticity estimate than simply squaring the integrated

variance estimate (see Remark 3.2).
On the whole, we can conclude that both the feasible and unfeasible procedures provide an

efficient Fourier estimator. Only the pre-averaging estimator Qav performs better, although it is
slightly more biased.

Finally, [Andersen et al., 2011] point out that, unlike volatility estimators, integrated quar-
ticity estimators are badly affected by irregular trading. This occurs because all the considered
estimators, except Fourier, assume equal spacing and involve a multiplication by n/T . In order
to highlight this issue, we simulate a scenario with Poisson irregular trading times with dura-
tions between observations drawn from an exponential distribution with means λ = 5 sec. See
Tables 4 and 5. Indeed, in the scenario of Table 4 the most efficient quarticity estimate is given
by σ4

n,N,M , immediately followed by Qav, both in the unfeasible and in the feasible variant. The
remaining estimators are less efficient. Notice that, although no microstructure effects are taken
into account, the optimal sampling interval for the realized quarticity-type estimators ranges
from 0.4 to 0.69 min.

Finally, in Table 5 we introduce moderate microstructure effects. The corrected Fourier
estimator σ̂4

n,N,M is indisputably the most efficient estimator, at least in its unfeasible version
with the optimal parameter values N = 354, M = 17. The feasible optimization of the estimator
leads to the same efficiency as for Qav, with N = 327, M = 5. This suboptimality may be caused
also by the fact that our feasible MSE minimization procedure assumes uniform distribution of
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Unfeasible Feasible
MSE BIAS MSE BIAS

σ̃4
n,N,M 1.79e-3 1.93e-2 4.87e-3 6.14e-2

σ̂4
n,N,M 9.36e-4 -1.31e-3 2.45e-3 3.72e-2

RQ 4.94e-3 3.96e-2 6.23e-3 3.06e-2
BQ 4.74e-3 3.72e-2 6.12e-3 2.43e-2
Q 6.68e-3 3.95e-2 8.66e-3 3.38e-2
TQ1 5.42e-3 3.32e-2 7.10e-3 2.72e-2
TQ2 5.16e-3 3.05e-2 6.75e-3 2.36e-2
TQ(k) 5.50e-3 2.69e-2 8.39e-3 2.93e-2
QQ 5.40e-3 2.96e-2 7.24e-3 2.36e-2
RQsub 3.26e-3 2.41e-2 3.30e-3 2.19e-2
BQsub 2.88e-3 -2.81e-2 3.32e-3 -2.54e-2
Qav 1.75e-3 1.43e-2 1.92e-3 2.46e-2

Table 5: Irregular trading times and microstructure effects (ζ = 2). Same format as Table 1.

Variable Mean Std. Dev. Min Max
S&P 500 index futures 893.97 366.24 295.60 1574.00
N. of ticks per minute 7.0433 3.5276 1 56

Table 6: Summary statistics for the sample of the traded CME S&P 500 index futures in the
period January 2, 1990 to December 29, 2006 (11,611,297 trades). “Std. Dev.” denotes the
sample standard deviation of the variable.

trades. Deeper analysis in more general settings is in order.
In conclusion, our discussion shows that the Fourier quarticity estimator is robust to mi-

crostructure effects of increasing extent and to non uniform trading data. In particular, cutting
the highest frequencies of the observed process makes this estimator almost invariant to the
presence of high-frequency noise components.

6.2 An application to S&P 500 index futures

Our empirical application is based on tick-by-tick data of S&P 500 index futures recorded at the
Chicago Mercantile Exchange (CME). The sample covers the period from January 2, 1990 to
December 29, 2006, a period of 4,274 trading days, having 11,611,297 tick-by-tick observations.
Table 6 describes the main features of our data set.

High frequency returns are contaminated by transaction costs, bid-and-ask bounce effects,
etc., leading to biases in the variance measures. Computation of quarticity amplifies both noise
and errors, so that data filtering is necessary. Days with trading period shorter than 5 hours
have been removed. Jumps have been identified and measured using the Threshold Bipower
Variation method (TBV) of [Corsi et al., 2010], which is based on the joint use of bipower
variation and threshold estimation [Mancini, 2009]. This method provides a powerful test for
jump detection, which is employed at the significance level of 99.9%. This procedure allows to
identify a percentage of days with jumps around 27%. Since the TBV estimator is not robust to
microstructure noise, we compute the TBV measure of the integrated volatility using 2-minute
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returns, which is optimal given the high liquidity of the S&P 500 index futures market. The
number of days remaining after jump removal and filtering is 3,078, for a total of 8,575,527
tick-by-tick data. The contribution coming from overnight returns is neglected.

Sparse sampling needed for the realized quarticity-type estimators can be performed either
in calendar time, which is the most widely used for instance with prices sampled every 5 or 15
minutes, or in transaction time, where prices are recorded every m-th transaction. When we
sample in calendar time, the x-minute returns are constructed using the nearest neighbor to the
x-minute tag. Since trading times are not uniformly distributed along time, quarticity measures
are more unstable under transaction time sampling because a given number m of ticks may
correspond to quite different time intervals. This non-uniformity of data distribution affects
the realized quarticity-type measure, as shown in Figure 3 depicting the average integrated
quarticity over the full sample period constructed for different frequencies in calendar (Panel
A) and transaction time (Panel B). The quarticity signature plots clearly indicate that the bias
induced by market microstructure effects is relatively small for the highly liquid S&P 500 index
futures, and dies out very quickly. Note that with a transaction taking place on average about
every 8.57 seconds, the average quarticity measure based on 1-minute intervals corresponds to
around the 7-th tick presented in the figure, with large variability across the whole dataset.
The impact of market microstructure effects on the five-minute realized volatility measure for
the S&P 500 index futures over the period from 1990 to 2006 can therefore be regarded as
negligible. For sampling frequency lower than 15 min, i.e. for sampling intervals larger than
100 ticks, the different realized quarticity measures start to depart from each other and, when
sampled in transaction time, become more variable. We can state that BQ, TQ1, TQ2 and QQ
remain flat at higher frequencies in calendar time than the other estimators, which are more
severely upwards biased at the highest frequencies. On the contrary, for frequencies lower than
15 minutes these same estimators become more downwards biased together with TQ(k).

In Figure 4, we plot the quarticity signature plot, as computed by means of σ̂4
n,N,M , RQsub,

BQsub and Qav , using tick-by-tick data as a function of their main parameters N , S, ñ and
kn respectively. In the Fourier estimator, the value of the parameter M is set to 6, which
is the optimal value obtained by our feasible procedure. The sample moments of the noise
necessary for the optimization have been computed using quote-to-quote return data, according
to E[η2] =

∑n−1
i=0 δi(p)2/(2(n − 1)), E[ε4] =

∑n−1
i=0 δi(p)4/n. The quarticity signature plot is

displayed as a function of the other parameter N . In Panel A, we plot both the corrected
estimator σ̂4

n,N,M (solid line) and the non corrected one σ̃4
n,N,M (dotted line). We can see that

for N larger than 100 both estimates become much stable. Taking into account the mathematical
properties of the Fourier estimator, when the trading period is T = 6.5 hours, a parameter value
of say N = 400 corresponds to sampling frequencies of T/(2N) = 390/800 = 0.4875 min, in
the sense that the spectral decomposition in the frequency space allows to detect phenomena
happening at the frequency of about half a minute, much higher than with the realized quarticity-
type estimators. The remaining estimators provide slightly lower quarticity estimates. Since
ñS = n in a day, the two parameters ñ and S play an opposite role. In particular, the interval
50 ≤ ñ ≤ 60 roughly corresponds to the interval 20 ≤ S ≤ 30. Moreover, Qav seems to be quite
stable for kn ≥ 20. Finally, by comparing results in Figure 4 with those in Figure 3, we notice
that the realized quarticity-type estimates are slightly upper biased.
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Figure 3: Quarticity signature plot of the S&P 500 index futures constructed over the full sam-
ple period. The graph shows average integrated quarticity constructed for different frequencies
measured minutes (Panel A) and in number of ticks (Panel B). Note that there are about 8.57
seconds on average between trades, so that the average annualized 5-minute based realized
volatility corresponds to around the 35th tick. RQ solid blue line; BQ red line; Q dashed blue
line; TQ1 green line; TQ2 magenta line; TQ(k) black line; QQ yellow line.
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Figure 4: Quarticity signature plot of the S&P 500 index futures constructed over the full sample
period. The graph shows average integrated quarticity computed by means of σ̂4

n,N,M , RQsub,
BQsub and Qav , using tick-by-tick data, as a function of their main parameters.

7 Conclusions

We propose a new methodology based on Fourier analysis to estimate the fourth power of
volatility function (spot quarticity) and, in particular, the integrated quarticity. The Fourier
methodology allows to reconstruct the latent instantaneous volatility as a series expansion with
coefficients gathered from the Fourier coefficients of the observable price variation and can be
easily extended to higher even powers of volatility and to the multivariate case.

We prove that the Fourier estimator of integrated quarticity is consistent in the absence
of noise. Moreover, we propose a corrected version which is more efficient in the presence of
microstructure effects. The efficiency of the Fourier estimator largely depends on the choice of
two parameters M and N , which define the highest frequency Fourier coefficients taken into
account by the estimator. This choice is partly related to the extent of the microstructure effects
present in the data. Therefore, we address the problem of constructing an optimal MSE-based
Fourier quarticity estimator, which renders our methodology feasible with real data on finite
samples.

The new methodology is tested in realistic Monte Carlo experiments and in an empirical
application to S&P 500 index futures. We make a comparative analysis of the performance
of most of the estimators existing in the literature. Our analysis shows that a very attractive
feature of the Fourier methodology is its ability to cope with microstructure effects and with
non uniformity of trading data.
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the impact of jumps on volatility forcasting. Journal of Econometrics, 159 (2), 276-288.

[Cox et al., 1985] Cox, J.C., Ingersoll, J.E. and Ross, S.A. (1985). A theory of the term structure
of interest rates. Econometrica, 53, 385–408.

[Ghysels and Sinko, 2007] Ghysels, E. and Sinko, A. (2007). Volatility forecasting and mi-
crostructure noise, Working Paper.

[Gatheral and Oomen, 2010] Gatheral, and Oomen, R.C.A. (2010) Zero intelligence realized
variance estimation. Finance and Stochastics, 14 (2), 249–283.

[Hayashi and Yoshida, 2005] Hayashi, T. and Yoshida, N. (2005) On covariance estimation of
nonsynchronously observed diffusion processes. Bernoulli, 11 (2), 359–379.

[Hansen and Lunde, 2006] Hansen, P.R. and Lunde, A. 2006. Realized variance and market
microstructure noise (with discussions). Journal of Business and Economic Statistics, 24,
127–218.

[Jacod et al., 2009] Jacod, J., Li. Y., Mykland, P.A., Podolskij, M. and Vetter, M. (2009). Mi-
crostructure noise in the continuous case: the pre-averaging approach. Stochastic Processes
and their Applications, 119, 2249-2276.

[Jiang and Oomen, 2008] Jiang, G.J. and Oomen, R.C. 2008. Testing for jumps when asset
prices are observed with noise - a “swap variance” approach. Journal of Econometrics, 144
(2), 352-370.

[Lo and MacKinlay, 1990] Lo, A. and MacKinlay, C. (1990) The econometric analysis of non-
synchronous trading. Journal of Econometrics, 45, 181–211.

[Malliavin, 1995] Malliavin, P. (1995). Integration and Probability, Springer Verlag.

[Malliavin and Mancino, 2002] Malliavin, P. and Mancino, M.E. (2002). Fourier series method
for measurement of multivariate volatilities. Finance and Stochastics, 4, 49–61.

[Malliavin and Mancino, 2009] Malliavin, P. and Mancino, M.E. (2009). A Fourier transform
method for nonparametric estimation of multivariate volatility. Annals of Statistics, 37 (4),
1983–2010.

[Mancini, 2009] Mancini, C. (2009) Non-parametric threshold estimation for models with
stochastic diffusion coefficient and jumps. Scandinavian Journal of Statistics, 36, 270–296.

[Mancino and Sanfelici, 2008] Mancino, M.E. and Sanfelici, S. (2008) Robustness of Fourier
Estimator of Integrated Volatility in the Presence of Microstructure Noise. Computational
Statistics and Data Analysis, 52(6), 2966–2989.

[Mancino and Sanfelici, 2010] Mancino, M.E. and Sanfelici, S. (2010) Estimating covariance via
Fourier method in the presence of asynchronous trading and microstructure noise. Journal of
Financial Econometrics .

23



[Mykland, 2007] Mykland, P.A. (2007). A Gaussian calculus for inference from high frequency
data. Working Paper, University of Chicago.

[Podolskij and Vetter, 2009] Podolskij, M. and Vetter, M. (2009) Estimation of Volatility Func-
tionals in the Simultaneous Presence of Microstructure Noise and Jumps. Bernoulli, 15,
634–658.
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8 Appendix: Proofs

For simplicity in the proofs we will write ck(σ2) := F(σ2)(k).

Proof. of Proposition 2.2.
Denote σ2

M (t) :=
∑
|k|≤M eiktck(σ2). Consider the square integrable process σ4(t), by assumption

(A.I). By orthogonality argument it holds:

cn(σ4
M ) =

∑

|k|≤M

cn−k(σ2)ck(σ2).

Then as σ4
M converges to σ4 in L2-norm, it follows that limM

∑
|k|≤M cn−k(σ2)ck(σ2) = cn(σ4)

in probability. ¤
In order to prove Theorem 3.3 we show two preliminary Lemmas.

Lemma 8.1 For any |s| ≤ M it holds

E[| 2π

2N + 1

∑

|k|≤N

ck(dpn)cs−k(dpn)−ck(dp)cs−k(dp)|4] ≤ C1ess sup ‖σ2‖4
L∞ρ(n)4(N4+(N +M)4),

(21)
where C1 = 26 · 7.
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Proof. of Lemma 8.1
For any |k| ≤ N we have:

E[|ck(dpn)cs−k(dpn)− ck(dp)cs−k(dp)|4] ≤

≤ 23
{

E[|ck(dp)|8] 1
2 E[|ck−s(dpn)− ck−s(dpn)|8] 1

2 + E[|ck−s(dpn)|8] 1
2 E[|ck(dpn)− ck(dpn)|8] 1

2

}
.

By Burkholder-Davis-Gundy inequality, for any |k| ≤ N

E[|ck(dpn)− ck(dpn)|8] ≤ 56
(2π)4

ess sup ‖σ2‖4
L∞k8ρ(n)8.

Thus

E[|ck(dpn)cs−k(dpn)− ck(dp)cs−k(dp)|4] ≤ 23 56
(2π)4

ess sup ‖σ2‖4
L∞ρ(n)4(N4 + (N + M)4).

Then (21) follows. ¤

Lemma 8.2 For any |s| ≤ M it holds

E[| 2π

2N + 1

∑

|k|≤N

ck(dp)cs−k(dp)− cs(σ2)|4] ≤ C2 ess sup ‖σ2‖4
L∞

1
(2N + 1)2

, (22)

where C2 = 9 · 27

π .

Proof. of Lemma 8.2
By Itô formula:

E[| 2π

2N + 1

∑

|k|≤N

ck(dp)cs−k(dp)− cs(σ2)|4] =
1
π4

E[|
∫ 2π

0
dp(u)AN (u)|4]

where
AN (u) :=

∫ u

0
eikvDN (u− v)dp(v).

By Burkholder-Davis-Gundy inequality and Holder inequality we have

E[|
∫ 2π

0
dp(u)AN (u)|4] ≤ 12 · 2π ess sup ‖σ2‖2

L∞E[
∫ 2π

0
A4

N (t)dt]

≤ (12)2(2π)3 ess sup ‖σ2‖4
L∞(

1
2N + 1

)2.

¤
Proof. of Theorem 3.3

E[|σ4
n,N,M −

∫ 2π

0
σ4(t)dt|2]

≤ 2



E[|2π

∑

|s|<M

(1− |s|
M

){cs(σ2
n,N )c−s(σ2

n,N )− cs(σ2)c−s(σ2)}|2] (23)
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+ E[|2π
∑

|s|<M

(1− |s|
M

)cs(σ2)c−s(σ2)−
∫ 2π

0
σ4(t)dt|2]



 . (24)

Consider (23). For any |s| < M it holds

E[|cs(σ2
n,N )c−s(σ2

n,N )− cs(σ2)c−s(σ2)|2]

≤ 2{E[|cs(σ2
n,N )|4] 1

2 E[|c−s(σ2
n,N )− c−s(σ2)|4] 1

2 + E[|c−s(σ2)|4] 1
2 E[|cs(σ2

n,N )− cs(σ2)|4] 1
2 }.

By Minkowski inequality and applying Lemma 8.1 and Lemma 8.2:

E[|cs(σ2
n,N )− cs(σ2)|4] 1

2 ≤

≤ 2(C1)
1
2 ess sup ‖σ2‖2

L∞ρ(n)2(N4 + (N + M)4)
1
2 + 2(C2)

1
2 ess sup ‖σ2‖2

L∞
1

2N + 1
.

Therefore for any |s| < M it holds

E[|cs(σ2
n,N )c−s(σ2

n,N )− cs(σ2)c−s(σ2)|2] ≤

≤ 22 ess sup ‖σ2‖4
L∞

(
(C1)

1
2 ρ(n)2(N4 + (N + M)4)

1
2 + (C2)

1
2

1
2N + 1

)
.

Finally (23) is less than

(4π)2M
∑

|s|<M

(1− |s|
M

)2ess sup ‖σ2‖4
L∞

(
(C1)

1
2 ρ(n)2[N2 + (N + M)2] + (C2)

1
2

1
2N + 1

)
,

which goes to 0 under the hypothesis: ρ(n)NM → 0 and M2

N → 0.
Consider (24). For any |k| ≤ M , we have

E[|2π
∑

|s|<M

(1− |s|
M

)cs(σ2)c−s(σ2)−
∫ 2π

0
σ4(t)dt|2]

≤ 4π ess sup ‖σ2‖2
∞E[sup

t
|σ2(t)−

∑

|k|<M

expikt ck(σ2)|2] ≤ 4π ess sup ‖σ2‖2
∞(ωσ2(

4
M

))2,

where the last inequality follows by [Zamansky, 1949] and we denoted by ωσ2(λ) the modulus of
continuity of the variance function. ¤

Proof. of Corollary 3.4.
It follows by the estimations obtained in the proof in Theorem 3.3. ¤

Proof. of Theorem 4.1.
We have:

σ̃4
n,N,M − σ4

n,N,M =

=
1
2π

∑

|s|<M

(1− |s|
M

)



2

∑

j

e−istjδ2
j (p)

(∑

h

eisthε2
h + 2

∑

h

DN (th+1 − th)eisthεhεh+1

)
(25)

26



+


∑

j

e−istj (ε2
j + 2δj(p)εj)




(∑

h

eisth(ε2
h + 2δh(p)εh)

)
(26)

+4


∑

j<j′
DN (tj′ − tj)e−istj′ (εjεj′ + 2δj(p)εj′)




(∑

h<h′
DN (th′ − th)eisth′ (εhεh′ + 2δh(p)εh′)

)

(27)

+2


∑

j

e−istj (ε2
j + 2δj(p)εj)

∑

h<h′
DN (th′ − th)eisth′ (εhεh′ + 2δh(p)εh′)






 . (28)

Using the assumptions (A.II) and (A.III):

E[ε4
∗] = 2E[η4] + 6E[η2]2, E[δ∗(p)2ε2

∗] = E[δ∗(p)2]2E[η2],

E[ε2
jε

2
h] = 4E[η2]2 if |j − h| > 1, E[ε2

jε
2
h] = E[η4] + 3E[η2]2 if |j − h| = 1,

E[ε3
jεh] = −(E[η4] + 3E[η2]2) if |j − h| = 1.

Consider (25). Except for the sum in the s index, its expectation is equal to:

2
∑

j

e−istjE[δ2
j (p)]

(∑

h

eisth2E[η2] + 2
∑

h

DN (
2π

n
)eisth(−E[η2])

)

= 4E[η2] (1−DN (
2π

n
))

∑

j,h

e−is(tj−th)E[δ2
j (p)].

We can write (26) as
∑

j

(ε4
j + 4δj(p)2ε2

j + 2e−is(tj−tj+1)ε2
jε

2
j+1) + 2

∑

j+1<h

e−is(tj−th)ε2
jε

2
h,

therefore we get the following expectation

2n(1 + e−is 2π
n )(E[η4] + 3E[η2]2) + 8E[η2]

∑

j

E[δj(p)2] + 2
∑

j+1<h

e−is(tj−th)4E[η2]2. (29)

Consider (27). This is equal to

8D2
N (

2π

n
)
∑

j<h

e−is(tj+1−th+1)εjεj+1εhεh+1 + 4
∑

j<j′
D2

N (tj′ − tj)ε2
jε

2
j′ (30)

+8
∑

j<j′
DN (tj′ − tj)DN (tj′+1 − tj)e−is(tj′−tj′+1)ε2

jεj′εj′+1

+16
∑

j<h′,j′
DN (tj′ − tj)DN (th′ − tj)e−is(tj′−th′ )δj(p)2εj′εh′ .

Finally the expectation of (27) is computed as

8 E[η2]2
∑

j,h

DN (tj+1 − tj)DN (th+1 − th)e−is(tj+1−th+1) (31)
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+4(E[η4] + 3E[η2]2)
∑

j

D2
N (tj+1 − tj) + 16 E[η2]2

∑

j′>j+1

D2
N (tj′ − tj)

−16E[η2]2
∑

j<j′
DN (tj′ − tj)DN (tj′+1 − tj)e−is(tj′−tj′+1)

+16E[η2]
∑

j<j′

(
D2

N (tj′ − tj)−DN (tj′ − tj)DN (tj′+1 − tj)e−is(tj′−tj′+1)
)

2E[δ2
j (p)].

Consider (28).

4
∑

j<h

e−is(tj−th+1)DN (th+1 − th)ε2
jεhεh+1 + 4

∑

j<h

e−is(tj−th)DN (th − tj)ε3
jεh+ (32)

+8
∑

j

e−is(tj−tj+1)DN (tj+1 − tj)δ2
j (p)εjεj+1

Thus its mean is

−8E[η2]2
∑

j<h

e−is(tj−th+1)DN (th+1 − th)− 4(E[η4] + 3E[η2]2)
∑

j

e−is(tj+1−tj)DN (
2π

n
)

−8
∑

j

e−is(tj−tj+1)DN (tj+1 − tj)E[η2]E[δ2
j (p)].

Therefore, rearranging terms and summing up on |s| < M , we can write

E[σ̃4
n,N,M − σ4

n,N,M ] = A1 + A2 + A3

where

A1
∼= ess sup ‖σ2‖L∞ 8E[η2]

(
M(1− VM (

2π

n
)) + MVM (

2π

n
)(1−DN (

2π

n
))

+
2
π

nM

2N + 1
(1− VM (

2π

n
)) +

1
4π

n(1−DN (
2π

n
))

)
.

The last terms goes to zero with the same conditions as in the theorem without noise.

A2 =
2
π

E[η2]2(
n

2π
)2M

[
2π2

M
2

(
1− 2DN (

2π

n
) + D2

N (
2π

n
)
)

+
(2π)2

2N + 1

(
4− 4VM (

2π

n
)
)]

=
1
π

E[η2]2n2

(
(1−DN (

2π

n
))2 + 8

M

2N + 1
(1− VM (

2π

n
))

)
.

This term goes to zero as N2

n → 0 and M3

N → 0.
Finally

A3 =
1
π

(E[η4] + 3E[η2]2) nM

(
1 + VM (

2π

n
) + 2D2

N (
2π

n
)− 2DN (

2π

n
)VM (

2π

n
)
)

=
1
π

(E[η4] + 3E[η2]2)
(

nM(1− VM (
2π

n
)) + 2nMVM (

2π

n
)(1−DN (

2π

n
))

)
(33)

+
1
π

(E[η4] + 3E[η2]2)
(

nM2D2
N (

2π

n
)
)

. (34)

The term (33) goes to zero as M3

n → 0 and MN2

n → 0, while (34) diverges. Finally, except for
a diverging term (34), we have proved that E[σ̃4

n,N,M − σ4
n,N,M ] converges to 0 under the given

growth conditions. ¤
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