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Abstract

We present a method for calculating partition functions taking into account anharmonic 

contributions for systems involving both small-amplitude vibrations and hindered rotations. The 

Wang-Landau scheme is used in the first case, while two alternative schemes are used for hindered 

rotation based on imaginary time propagation and fitting of the exact energy levels as a function of 

quantum number. These two schemes are shown to be complementary in their ranges of 

applicability (in terms of the torsional rotational constant and the relevant potential). Partition 

functions for four different molecules are calculated and compared to simpler ones obtained using 

a harmonic model.

Introduction

Molecular partition functions are ubiquitous in physical chemistry as they contain the full 

thermodynamical information on systems in the canonical ensemble. Their use ranges from 

kinetics to thermodynamics of systems of any size. In the kinetics case, transition state 

theory (TST), in any of its many variations,1,2 is the method of choice for the calculation of 

both unimolecular and bimolecular rate constants where exact dynamical calculations are 

unfeasible (as is the case for most reactive systems of interest). The study of systems of 

astrochemical interest, as well as systems of relevance in combustion and atmospheric 

chemistry requires accurate values of rate constants and TST has proven to be a reliable tool 

for their calculation. The TST expression for the rate constant requires partition functions for 

both the reactants and the transition state and it leads to a clear understanding of various 

kinetic aspects such as the isotope effect. The same is true for thermodynamical problems, 

where partition functions can be used to calculate enthalpy and entropy variations, as well as 

equilibrium constants of chemical reactions and thus assess their spontaneity under given 

conditions.

The partition functions for the simple cases of the rigid rotor and the harmonic oscillator are 

well known from elementary statistical thermodynamics and are extensively used in the 

treatment of semi-rigid systems. On the other hand, degrees of freedom involving one or 
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more large amplitude motions (LAM) are more difficult to handle. Examples of such 

motions include hindered rotations.

Obviously, the only way to obtain exact partition functions for hindered rotations is through 

the calculation of the energy spectrum of the Hamiltonian, i.e. through the diagonalization of 

an appropriate matrix. This approach is straightforward for monodimensional internal 

rotations and it has also been applied with Fast Fourier Transform to a series of coupled, 

bidimensional hindered rotors.12 The main problem is the unfavorable scaling of the CPU 

time with the dimensionality of the coupled internal rotations.

On the other hand, no general formula exists for the partition function referring to these 

motions and, as a result, several models have been devised to deal with them.3–11 As 

simplifying assumptions, towards the limit of free rotation, the classical value of the 

hindered rotor partition function6 can be used. Moreover, at low temperatures, the harmonic 

expression can be used for oscillators as the effects of anharmonicity are not expected to be 

appreciable.

Here we present a unified scheme for the calculation of partition functions of molecular 

systems which include one or both of these complications, in the possible presence of a 

number of harmonic oscillators.

For the vibrations, a quadratic formula for the energy is assumed as a function of the 

quantum number (cross terms account for the coupling between oscillators) and we calculate 

the density of states (DOS) of the entire set of vibrational modes numerically via a phase 

space random walk approach, known as Wang-Landau method.13 In this way, the overall 

DOS is obtained through a clever state-counting algorithm. A subsequent Laplace transform 

yields the partition function as a function of the temperature. Thermodynamic properties can 

afterwards be extracted from it using well-known formulae from statistical mechanics.

Currently, the standard scheme for treating vibrations from a thermodynamical statistical 

point of view is to adopt the harmonic model, whereby the energy is expressed as a linear 

function of the relevant quantum number and no coupling between oscillators is assumed. 

Schemes such as the Beyer-Swinehart procedure can be used to convolute the density of 

states of a harmonic oscillator with that of other degrees of freedom.14 In the method 

presented here, we use the Wang-Landau scheme to treat extensive, semi-rigid systems (with 

small amplitude motions) beyond the harmonic model, assuming a quadratic expression for 

the energy with respect to the quantum number and including coupling between different 

vibrational modes. In this work, the largest molecule treated is biphenyl, including 60 

vibrational modes.

Finally, in our work we demonstrate the inclusion of large amplitude motions (LAM) in the 

form of hindered rotations. Even though only one hindered rotation is included in our 

models, any number of them can be treated (assuming complete decoupling from the rest of 

the vibrational motions). For hindered rotations, we employ two alternative schemes to 

calculate the relevant partition function. In one case, we estimate the partition function 

through propagation in imaginary time of a statistically representative sample of initial 

wavepackets. A Chebyshev expansion is used to apply the propagator to the initial 
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wavepacket. This approach is already well established in the theory of time-dependent 

wavepacket propagation.15–19 The main differences from the use of the Chebyshev 

expansion in time-dependent propagation are:

1. The use of imaginary as opposed to real time.

2. Our interest lies only in the trace of the operator rather than its detailed effect.

Alternatively, we obtain a (reasonably small) subset of hindered rotor eigenvalues using a 

variational scheme and we subsequently fit all eigenvalues from a minimum quantum 

number onwards to a polynomial formula, while keeping the ones below minimum to their 

exact values. Afterwards, the Wang-Landau scheme is used to calculate the density of states 

and the partition function.

We illustrate our strategy by calculating partition functions for realistic systems which 

combine anharmonicity (treated perturbatively) and hindered rotation. In all cases, the 

partition function is assumed to be defined as the trace of the Boltzmann operator 

(see below) and thus all partition functions include a zero-point contribution, being 

calculated with respect to the potential minimum. In terms of thermodynamic quantities, this 

implies that quantities such as internal energy, enthalpy, free energy etc. are displaced by the 

zero-point energy whereas quantities such as entropy, heat capacity etc. remain unchanged.

The partition functions obtained are compared with the ones where hindered rotation has 

been treated variationally, as well as the ones where all vibration has been treated as 

harmonic. In section 2 the relevant theory is presented, whereas section 3 is devoted to the 

presentation of results for specific molecules. Section 4 concludes.

Theory

The Wang-Landau scheme

The Wang-Landau scheme is a highly successful method for calculating densities of states 

for anharmonic oscillators. As it has been amply discussed in the literature13,20,21 we will 

only give a brief overview here.

In the Wang-Landau scheme, as it is most commonly used, it is assumed that a set of N 
anharmonic oscillators described by a corresponding N-uplet of quantum numbers has an 

energy level manifold described by the quadratic form

(1)

where ωi denotes the frequency of the i-th oscillator and χij is the anharmonic coupling 

constant between oscillators i and j. In order to build up its density of states, an initial N-

uplet of vibrational quantum numbers is chosen randomly and, subsequently, the vibrational 

quantum numbers are varied in a random fashion until the whole manifold has been 

adequately explored. In all cases, the derivative of the energy with the quantum number is 
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also obtained in order to ensure that the dissociation limit is not exceeded (where the turning 

point of the quadratic polynomial is reached). Dividing the energy range into small intervals, 

the number of levels within each gives the density of states ρ(E). Subsequently, a Laplace 

transform yields the partition functions

(2)

where β = 1/(kBT), kB being the Boltzmann constant and T the absolute temperature. It is to 

be noted that the Wang-Landau scheme can be used with any sequence assigning an energy 

value to a running integer which represents a quantum number. As will be shown later, the 

Wang-Landau scheme can also be used to calculate the density of states for a hindered rotor 

along with the anharmonic oscillators (thus avoiding the need of computing convolution 

functions for the overall density function).

Treatment of hindered rotors by Chebyshev expansion

The partition function is written as the trace of the Boltzmann operator e−βH

(3)

where H is the Hamiltonian of the system. Following a similar expression for the time 

propagator e−iHt,22 we write the operator e−βH in terms of a Chebyshev expansion as

(4)

(E0 and ΔE are defined below). In this expression δn0 is a Kronecker delta and In denotes a 

modified (hyperbolic) Bessel function of the first kind (as opposed to the ordinary Jn Bessel 

function used in the case of the time propagator), while Tn is a Chebyshev polynomial of the 

first kind with the property

(5)

The argument of the Chebyshev polynomial is a scaled Hamiltonian operator

(6)

where the parameters E0 and ΔE are chosen so that the spectrum of Hs lies in the interval 

[−1, 1]. These parameters are determined from approximate values of the extrema of the 

kinetic and potential energies. In the case of a one-dimensional hindered rotor, described by 
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a discrete variable representation (DVR) basis set of 2N + 1 points (corresponding to angular 

values θk, 1 ≤ k ≤ N, we determine the spectrum using

(7)

(the minimum value of the potential) and

(8)

(the sum of the maximum value of the potential and the maximum representable kinetic 

energy on the grid), where A is the torsional rotational constant, assuming the standard 

angular coordinate is used (see later for the generalized coordinate). From these two values, 

we calculate

(9)

and

(10)

The Chebyshev polynomials of the scaled Hamiltonian are calculated according to the 

recurrence relation

(11)

(12)

As is well known,22 the sequence of Bessel functions converges exponentially as n → ∞ 
and the convergence is faster the smaller βΔE is. As a result, we expect the expansion to 

converge with relatively few terms in the case of high temperatures and low-width spectra of 

the Hamiltonian (low torsional rotational constants and potential variations), i.e. the closer 

one finds oneself to the free-rotor limit. Moreover, omitting the exponential factor e−βE0 

from the expansion and using the exponentially scaled modified Bessel functions e−xIn(x) 

instead of simply In(x) amounts to automatically shifting the potential minimum to 0 and 

this is what we choose to do, exploiting the boundedness of the exponentially scaled 

functions which simplifies the numerical aspect of the calculations.
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We approximate the partition function by randomly choosing initial wavefunctions ψi and 

subsequently calculating (through the Chebyshev expansion) the expectation values 〈ψi | e
−βH | ψi〉. If one were to calculate the trace of the Boltzmann operator exactly, one would 

have to evaluate the expectation values for 2N + 1 linearly independent functions. 

Alternatively, one would have to diagonalize the Hamiltonian operator (an operation which, 

in terms of CPU time, scales as N3 where N is the basis size). However, if one uses 

wavefunctions that adequately (in a statistical sense) sample the phase space, an excellent 

approximation to the true partition function can be reached with only a fraction of initial 

wavepackets. Here, following the recipe of Manthe and coworkers,23 we propagate initial 

real wavefunctions, whose overlap with the corresponding DVR function at each point 

around the 1-D rotor configuration space is either 1 or −1 (chosen randomly). This way, the 

wavepacket norm is equal to N and the trace can be approximated by the formula

(13)

where a number of n initial wavepackets is assumed. Such an approach also lends itself 

naturally to parallelization, whereby multicore processors can handle propagations of 

different wavepackets independently. The sample sizes used in all cases are shown in Table 

1.

Generalized coordinate approach

Hindered rotations as a rule cannot be adequately treated by a local expansion of the 

potential energy surface (PES) such as a Taylor series approach, because of the slow 

convergence of such an expansion. As a first approximation, one can fit the hindered rotor 

potential to a specific model function (such as a trigonometric function, transforming the 

Schrödinger equation to a Mathieu-like one7). However, in general, this mode will be 

coupled to other intramolecular motions, rendering the behavior of the PES complicated. 

This is especially true when the molecule shows low symmetry along the path of internal 

rotation.

Our priority is to employ a single approach that can handle internal rotational modes for 

molecules of more than 10 atoms. Therefore, we have chosen to perform a fully relaxed ab 
initio scan of the rotational PES along the internal rotation, whereby the dihedral angle of 

the rotating units spans the interval [0,2π]. This, essentially, entails an adiabatic separation 

of this particular DOF with respect to the others.

A well known problem regarding the identification and separation of different DOFs of a 

molecule is their coupling due to kinetic energy terms in the Hamiltonian, which leads to 

kinetic energy terms with variable effective mass.24 This can introduce theoretical and 

numerical problems. A vast literature is focused on this argument due to its applications to a 

wide variety of different fields (see, as example,25,26 and references therein).

A promising approach is based on the work of Fukui27,28 on the definition of the Intrinsic 

Reaction Coordinate (IRC). The same formalism can be used to generate a closed curve that, 
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instead of connecting different points of the configuration space passing through a saddle 

point, represent the minimum energy path (MEP) in the mass-weighted Cartesian space X of 

the motion along the internal rotation.29,30 In the space X, the coordinates of a point x are 

the elements of the set {xi}, where i = [1, 2 . . . 3N].

The closed curve x(s) with respect to s, the parameter corresponding to our generalized 

coordinate, is defined by the differential equation

(14)

where g is the energy gradient in mass-weighted Cartesian coordinates31 and whose 

elements, labeled as gi, are defined as

(15)

Equation 14 becomes indeterminate at any extremum point along the closed curve s, but it 

can be shown31 that even at these points the solution can be deduced from the knowledge of 

the second and third coefficients of the Taylor expansion of the PES, that we can perform 

automatically in the frame of VPT2.32

Now, we need a practical way to evaluate the map a(s) that associates for each values of s a 

point x in X: we first note that Eq. 14 has six solutions that are identically zero, related to 

traslations and external rotations, plus another one related to the curve itself, because we 

expect that the energy along the internal rotation varies slowly (otherwise, it should be 

treated as a vibration).

These considerations, implicit in the Reaction Path Hamiltonian (RPH) approach of Miller 

and co-workers,33 lead to the following equation for the components ai(s) of the map a(s) 

(Eq. 4.13 in33)

(16)

where Lk(s) are the eigenvectors of the non-zero eigenvalues of the Hamiltonian (i.e. the 

vibrations) and Qk are the normal modes.

Imposing the Eckart conditions to two consecutive optimized geometries and then 

superimposing their Eckart frames, we are able to minimize the rototranslational 

displacement between them. If the two geometries, actually two points x in the 

configurational space X, are close enough, the vibrational displacement (i.e. the second part 

of the RHS in Eq. 16, see33 for the notation) is negligible and we can calculate pointwise 

a(s) as the distance in mass-weighted coordinate between the two points x
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(17)

In this scheme, the reduced mass is equal to unity and any information about kinematic 

coupling is stored in the discrepancy between the closed curve s, parametrized pointwise by 

the map a(s), and its geometrical counterpart, i.e. the dihedral angle that defines the internal 

rotation.

These previous equations represent a numerical solution for the problem of a 

monodimensional Hamiltonian with a variable effective mass, based, as shown before, on 

the approximation in Eq. 16.

Least squares fitting of eigenvalues

Another approach we are using in this work is to fit the discrete energies for the hindered 

rotor as a function of the quantum number (interpreted as a running integer spanning the 

Hamiltonian eigenvalues). For a free rotor, as well as a Morse oscillator, the energy is a 

quadratic function of the quantum number. Thus, if the fitting starts from a given quantum 

number n0 onwards, it is expected to follow a convex quadratic function with increasing n0 

(as the levels tend to resemble those of a free rotor). However, for low energies, a 

polynomial performs rather poorly in reproducing the energies as a result of the (quasi)-

degeneracies arising from tunnelling across the torsional potential maxima. Thus, for all 

systems, we define two limits:

1. The minimum quantum number n0, below which all energies are taken to have 

their exact (variational) values.

2. A limiting quantum number nr, above which the free rotor limit is assumed to 

have been reached and the energies are assumed to follow a quadratic expression.

The intermediate region (between n0 and nr) is fit to a quartic polynomial expression and is 

chosen so that nr is minimal. As the quantum number n0 corresponds semiclassically to a 

certain value of the action around the torsional loop, it is chosen to be proportional to the 

curvilinear semiclassical integral

(18)

where Vmax is the maximum value of the potential. The integral is taken around the closed 

path in configuration space corresponding to a complete torsional loop. Thus, the quantum 

number n0 will be higher for more massive systems (where the generalized parameter s 
spans a higher range) and systems with higher torsional variation of the potential. However, 

whenever the semiclassical integral should give a value less than 10 we have chosen to 

assume n0 = 10 in order to avoid numerical difficulties associated with a large state spacing. 

In Table 1 is shown the minimum quantum number used for the specific molecules we have 

dealt with. In all cases, we have found that a good value for the limiting quantum number nr 

is 3n0. Thus, between n0 and 3n0 the eigenvalues were fitted using a quartic polynomial and 
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above 3n0 the free rotor limit is assumed to have been reached and a quadratic polynomial 

(obtained through fitting of the last three doubly-degenerate state pairs below 3n0).

In all cases, we compare our results to results based on a variationally obtained set of energy 

levels. In particular, we calculate variationally the spectrum of the Hamiltonian by 

diagonalization on a DVR basis set.35 In order to be sure that the eigenvalues thus obtained 

are converged, we have performed stability tests with an increasing number of DVR basis 

functions. We subsequently calculate the average deviation 〈δ𝜖〉 of two sets of eigenvalues 

  obtained using two sets with n and 2n DVR functions respectively, using the 

equation

(19)

obtaining always a 〈δ𝜖〉 ≈ 10−4 or less. It is interesting that, when a DVR diagonalization is 

performed with enough basis functions to reach the free rotor limit, even the maximum 

eigenvalues are found to be converged, while the maximum deviation is found at the lowest 

energy levels. This effect can, in our opinion, be traced to the sensitivity of the bottom levels 

to the number of DVR functions found in high-potential, classically forbidden regions 

whereas at high energies no such dependence is expected.

Outline of method

As already mentioned, our objective is to calculate densities of states and partition functions 

for molecules involving anharmonic vibrations and/or hindered rotations. The main features 

of the calculation strategy presented here are:

• Vibrational densities of states are calculated by the Wang-Landau scheme. The 

scheme can include both harmonic and anharmonic vibrational motion. As an 

option, some of the vibrational modes of the molecule can be designated as 

harmonic. In this case, their density of states can be easily convoluted with the 

rest through a Beyer-Swinehart scheme.

• Hindered rotor densities of states are calculated using the imaginary time 

propagation scheme described above, with subsequent convolution with the rest 

of the degrees of freedom. Alternatively, the energy levels (as obtained 

variationally) are fitted to a function of the quantum number n and subsequently 

included in the overall Wang-Landau scheme.

• Free rotor densities of states are calculated using well-established classical 

formulas.

In all cases, the numerical results are shown together with exact ones (as obtained through 

variational methods) and a comparison is made between the two. Moreover, the partition 

function resulting from treating all vibrational modes as harmonic is also shown in order to 

assess the effect of anharmonicity as well as to serve as a "baseline" for the different 

methods.
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Specific Molecules

Our objective is to examine a few test cases that illustrate a representative subset of various 

combinations of torsional rotational constants and hindering potentials. The molecules 

chosen for this purpose are biphenyl, 1,2-dichloroethane, methanol and fluoromethanol as 

they illustrate the four relevant combinations. Thus, biphenyl and 1,2-dichloroethane have a 

low torsional rotational constant (due to the large size of the molecule and/or the masses of 

the atoms involved) while methanol and fluoromethanol where, for the most part, it is 

hydrogen atoms that move torsionally, exhibit a high rotational constant. On the other hand, 

looking at the torsional potential, 1,2-dichloromethane and fluoromethanol exhibit a high 

torsional potential variation while biphenyl and methanol have a much lower one. Thus, 

these four cases span the entire spectrum of relevant conditions. In all cases, when plotting 

the torsional potentials, an angle of 0° is chosen to represent the global minimum of the 

potential and its features are subsequently explained.

In Table 1 we present the minimum quantum number needed for the fitting, the size of the 

Monte Carlo (MC) sample in the Chebyshev propagation and the minimum number of 

eigenvalues that we have to use to obtain a fully convergent partition function, truncating the 

spectrum when the Boltzmann factor 𝜖i/kBT > 10. For 2000K, this occurs around 20000 cm
−1

All the electronic calculations have been performed at the DFT level, using the B3LYP 

functional and the SNSD basis set;32 in the case of biphenyl, dispersion contributions have 

been evaluated using the empirical correction proposed by Grimme.36 The anharmonic 

corrections have been obtained using VPT2 as implemented in the quantum chemistry 

package GAUSSIAN09.37 Each point along the internal rotation coordinate has been 

adiabatically relaxed.

In all cases, the partition function has been calculated using four different schemes:

1. Wang-Landau full anharmonic treatment of vibrations and hindered rotations, 

with fitting of the hindered rotation quantum numbers

2. Wang-Landau full anharmonic treatment of vibrations with imaginary time 

propagation of hindered rotation

3. Wang-Landau full anharmonic treatment of vibrations with exact (variational) 

treatment of hindered rotation

4. Harmonic treatment of all vibrations

Biphenyl

In Fig. 1 is shown the torsional potential for the biphenyl molecule. Despite the twofold 

torsional symmetry, the potential surface of biphenyl has four peaks: the interaction of 

hydrogen atoms in the coplanar configuration causes the first and the third ones, while the 

second and the fourth peaks (corresponding to a perpendicular configuration of the phenyl 

rings) are related to the repulsion of π molecular orbitals.
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Due to the combination of a low torsional rotational constant (≈ 1.7 × 10−6 hartree) and a 

difference between maximum and minimum value of hindering potential of ≈ 0.0037 hartree 

(i.e. ≈ 800 cm−1), the biphenyl molecule is a quantum system very close to the classical 

hindered rotor limit.

In Fig. 2 is shown the partition function of biphenyl, calculated in the four different modes 

shown previously. As expected, the harmonic treatment underestimates the total partition 

function (due to the higher spacing of the vibrational manifold). On the other hand, both line 

where the the time-propagation and the fitting schemes do an excellent job of approximating 

the variational results, although they slightly appear to overestimate and underestimate the 

partition function respectively. The underestimation by the fitting scheme can conceivably 

be traced to an overestimation of the quadratic "free rotor" torsional rotational constant by 

the fitting, a residue of the influence of the torsional potential. It is more difficult to assess 

the precise effect of the time-propagation convergence because of its fundamentally 

stochastic nature. Nevertheless, all methods appear to perform excellently at all temperatures 

considered.

The minimum fitting quantum number for biphenyl was found to be 37. Its relatively high 

value can be traced to the high torsional rotational constant, which confines a large number 

of states in the torsional potential. On the other hand, the torsional free rotor limit was 

assumed to be reached after around 110 states.

1,2-dichloroethane

The potential energy profile in Fig. 3 shows a global minimum for the anti conformation of 

the two Cl atoms and two symmetric local minima for the two gauche rotamers. The 

presence of the two vicinal chlorine atoms in the syn configuration produces a single peak in 

the torsional profile of about 3200 cm−1 or 0.0145 hartree, that corresponds to an equivalent 

temperature of about 4000 K.

However, the other two peaks have a height of 0.007 hartree. This kind of torsion can be 

viewed as a large amplitude motion with a single barrier due to eclipsing repulsion of the 

two chlorine atoms.

Figure 4 shows the canonical partition functions. The agreement with exact results is seen to 

be excellent again. The only appreciable deviation at high temperatures is due to the time-

propagation treatment of the hindered rotation (which still, nevertheless, is essentially 

coincident with the exact results). As the deviation at low temperatures is essentially zero, 

the slight high-T deviation is probably due to incomplete Monte Carlo sampling of the 

configuration space.

Interestingly, at low temperatures the harmonic partition function appears to be slightly 

higher than the other ones. Presumably this is due to a negative anharmonicity coefficient 

and/or coupling between modes which serves to increase the anharmonic spacing of some 

low-lying states.

The minimum fitting quantum number in this case is 56, with the free rotor limit reached 

around 160. Even though the torsional rotational constant of 1,2-dichloroethane is higher, 
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the torsional potential is so much higher than in the case of biphenyl that more states need to 

be taken into account variationally. We remind that this is all indicated by the semiclassical 

integral shown previously.

Methanol

The methanol molecule has been extensively studied38,39 and, moreover, represents a 

prototype of hindered rotation. The small potential barrier, of about 360 cm−1 (or 0.0015 

hartree), corresponding to the eclipsed H atom configuration, suggests that the free rotor 

limit is reachable even for medium temperatures, as shown in Fig. 5.

On the other hand, at lower temperatures (50-100 K) quantum effects become strong and the 

classical and harmonic partition functions underestimate the exact one: the ground state is a 

quasi-degenerate triplet because of the threefold symmetry of the torsional potential. The 

high torsional rotational constant of methanol means that, at moderate temperatures, even 

though the phase space is adequately sampled with only a few wavefunctions, these have a 

relatively high spatial "wavelength". The case of methanol, therefore, is among the ones 

least amenable to a Monte Carlo approach (where the phase of the sample wavefunctions is 

randomly distributed) and more to an exact one.

At high temperatures, both hindered rotation schemes approximate the variational partition 

function rather well, if slightly overestimating it. On the other hand, at low temperatures, the 

time propagation approach seriously underestimates the partition function. As mentioned 

before, this can be traced to the highly "quantum", delocalized nature of methanol low 

torsional levels. On the other hand, the fitting scheme does excellently at low temperatures 

(as expected, since low levels are taken with their variational values).

The minimum fitting quantum number for methanol was found to be 3 by the semiclassical 

integral and, as mentioned before, we have taken it to be 10 in order to avoid numerical 

problems. This is both an effect of the low torsional potential and the high torsional 

rotational constant.

Fluoromethanol

In order to assess the effect of a high torsional barrier (1750 cm−1, ≈ 0.0076 hartree) on a 

hindered rotor with a high torsional rotational constant, we have also studied 

fluoromethanol.

Even though the molecular structure suggests the presence of three asymmetrical minima 

(Fig. 5 and Fig. 7), the potential energy surface shows only two minima associated with the 

two gauche rotamers. The anti conformation (where the F-C-C-H angle is 180°) is actually 

the highest maximum (the second peak in Fig. 7) and the syn conformation (where the F-C-

C-H angle is 0°) is the lower maximum, i.e. the first peak.

This behavior is presumably associated to an interplay between eclipsing interactions 

between the O-H and the C-H and C-F bonds and an intramolecular O-H…F hydrogen bond.
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The fluoromethanol partition function converges relatively slowly with the number of initial 

wavepackets. An explanation for this fact lies in the higher torsion potential profile: the 

resulting eigenfunctions have a relatively localized structure and are therefore less easily 

represented with sample eigenfunctions whose amplitude is uniform throughout the 

configuration space. This is also reflected in the fact (as in the case of methanol) that, at low 

temperatures, the time-propagation partition function seriously underestimates the 

variational one. On the other hand, the fitting partition function does well at all temperatures.

From the interplay of a medium torsional rotational constant and a relatively high torsional 

potential, a minimum fitting quantum number of 8 is calculated (therefore, again, the value 

of 10 is adopted).

The computational cost of our method can be assessed from Table 2. It can be seen that the 

cost of the variational method is essentially negligible to the Monte Carlo cost. In the case of 

the variational approach, the cost is higher for the bulkier molecules (owning to their high 

density of rotational levels and hence the higher number of levels to fit). The trend is 

essentially reversed in the Monte Carlo case where, methanol aside (which requires twice 

the number of sampling wavefunctions), the propagation time is higher where the torsional 

potential is higher (leading to a higher spectral width of the Hamiltonian).

Conclusions

We have presented numerical partition functions for a series of molecules. Both the 

harmonic and the Wang-Landau anharmonic scheme have been used for the vibrations, 

whereas, for the hindered rotations, two alternative schemes have been used: a scheme based 

on Monte Carlo sampling followed by propagation in imaginary time and a scheme based on 

polynomial fitting of high torsional levels ("high" being defined through the calculation of a 

classical action integral).

It can be seen that the harmonic model can be very inadequate and, for accurate results, 

anharmonicity as well as coupling between normal vibrational modes is indispensable. 

Moreover, the two hindered rotor schemes turn out to be complementary in their range of 

applicability. The time propagation scheme performs nicely in the case of large, classical-

like molecules where, on the one hand, the quantum phase space is efficiently sampled by a 

Monte Carlo scheme and, on the other hand, the calculation (and subsequent fitting) of a 

large number of discrete levels would be cumbersome. The main drawback of this approach, 

as is common with all Monte Carlo approaches, where random sampling of a large 

population is involved, is the absence of a unique way to determine the error when the exact 

solution is not available. However, we expect that its advantages far outweigh the 

disadvantages in the treatment of the thermodynamics of large systems. Instead, the fitting 

scheme does well for smaller, quantum-like molecules where only a small number of 

discrete levels needs to be taken into account and Monte Carlo sampling tends to perform 

poorly, especially at low temperatures.

In this work we have presented some test cases of specific molecules. In all cases, 

anharmonicity was fully taken into account within the VPT2 scheme and only one hindered 
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rotation dimension was involved. However, the approach is expected to be work equally well 

in multidimensional hindered rotation cases, at least when the coupling between the 

hindered rotors is negligible. We draw attention to various possibilities of a massive 

parallelization of the code, where propagation of the Monte Carlo wavepackets and/or 

different hindered rotors are treated separately by different cores. The latter feature is very 

useful in multi-dimensional cases when thousands of wavefunctions may need to be 

propagated. Moreover, this method is expected to have a considerable advantage over a 

traditional diagonalization technique in cases of systems with low torsional rotational 

constants, a steep torsion potential profile and high temperatures, where many 

eigenfunctions would be needed for an accurate calculation. The final aim is to fully 

incorporate this scheme into the Gaussian suite of programs in order to obtain a reliable and 

functional tool for the calculation of statistical thermodynamics information from electronic 

data.
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Figure 1. 
Biphenyl potential: the first and the third peak are around 780 cm–1 (0:0034 hartree) while 

the second and the fourth about 810 cm–1 (0:0037 hartree).
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Figure 2. 
Biphenyl partition functions. The continuous line refers to the variational results, the dashed 

line where hindered rotation has been treated through imaginary time propagation, the dotted 

line where hindered rotation eigenvalues have been fitted and the dot-dashed line where the 

harmonic vibrational scheme has been used.
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Figure 3. 
1,2-dichloroethane potential: the first and the third peaks lie at 1600 cm–1 while the second 

one lies at 3200 cm–1
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Figure 4. 
As in Fig. 2 for 1,2-dichloroethane.
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Figure 5. 
Methanol potential: the three degenerate maxima have a value of 360 cm–1.
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Figure 6. 
As in Fig. 2 for methanol.
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Figure 7. 
Fluoromethanol potential: the two maxima correspond to 1000 cm–1 and 1750 cm–1.
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Figure 8. 
As in Fig. 2 for fluoromethanol
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Table 1

Minimum rotational quantum number, Monte Carlo sample size and number of DVR basis functions for each 

molecule

Molecule Min. quant. num. MC sample Min. DVR basis set

Methanol 3 160 56

Fluoromethanol 8 80 59

Biphenyl 37 80 456

1,2-Dichloroethane 56 80 252
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Table 2

CPU time cost (in seconds) of the Variational and Monte Carlo approach (in parenthesis the number of 

sampling wavefunctions used)

Molecule Variational Monte Carlo

Methanol 0.052 3418.95 (160)

Fluoromethanol 0.060 2927.79 (80)

1,2-Dichloroethane 0.24 537.76 (80)

Biphenyl 2.75 228.39 (80)
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