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OVERLAP SYNCHRONISATION IN MULTIPARTITE RANDOM ENERGY MODELS

GIUSEPPE GENOVESE AND DANIELE TANTARI

Abstract. In a multipartite random energy model, made of a number of coupled GREMs, we determine
the joint law of the overlaps in terms of the ones of the single GREMs. This provides the simplest example
of the so-called overlap synchronisation.

MSC: 82B44, 60G55, 60K35.

1. Introduction

The overlap synchronisation phenomenon was recently introduced by Panchenko in [1] for multipartite
spin glasses [2]. The study of such systems is of primary interest, because of the applications in neural
network theory and statistical inference [3, 4]: e.g. the Hopfield model, the restricted Boltzmann machine
and the perceptron are examples of bipartite spin glasses. The lack of convexity prevents to apply directly
to multipartite spin-glasses some useful techniques developed for the Sherrington-Kirpatrick model (i.e.
interpolation bounds [5]), calling for new ideas.

In this note we investigate a multipartite random energy model, originally studied for the bipartite case
in [6], obtained coupling each level of M distinct generalised random energy models (GREMs). We show
the joint law of the overlaps to have a direct expression in terms of the ones of the single GREMs. This
provides a simple example of overlap synchronisation.

The model is defined as follows. Let N,M ∈ N, κ ∈ {1, . . . ,M} and Nκ ∈ N with
∑

κ Nκ = N ,

α(κ) := Nκ/N . For each configuration σ ∈ ΣN := {1, . . . , 2N} we can identify σ = (µ(1), . . . , µ(M)),

µ(κ) ∈ {1, . . . , 2Nκ}. We divide each part respectively into K1, . . .KM hierarchical levels. For each level

j of the hierarchy, each group of configurations is divided in 2Nκ,j further subgroups indexed by µ(κ,j),
with of course

∑

j Nκ,j = Nκ and ςκ,j := Nκ,j/Nκ, j ∈ {1, . . . ,Kκ}. Each configuration can be thought of

as a M -ple σ = (µ(1), . . . , µ(M)) or as a (
∏

κ Kκ)-ple σ = (µ(1,1) . . . µ(1,K1), . . . , µ(M,1), . . . µ(M,KM)). This
multipartite setting brings a somewhat heavy notation. To lighten it a little we let

ℓκ,j := µ(κ,1) . . . µ(κ,j) (note ℓκ,1 = µ(κ,1) and ℓκ,Kκ
= µ(κ))

label the configurations in the j-th level of the κ-th tree. With a slight abuse of notation we will denote
with the same symbol also the set of such configurations (the correct meaning will be always clear from

the context). We attach to each couple of levels Gaussian centred r.vs J
(κ,j)
ℓκ,j

, and J
(κ1,j1)(κ2,j2)
ℓκ1,j1 ℓκ2,j2

with

E
[

J
(κ,j)
ℓκ,j

J
(κ,j)
ℓ′
κ,j

]

= δℓκ,j ,ℓ′κ,j
,

E
[

J
(κ1,j1)(κ2,j2)
ℓκ1,j1 ℓκ2,j2

J
(κ1,j1)(κ2,j2)
ℓ′
κ1,j1

ℓ′
κ2,j2

]

= δℓκ1,j1 ,ℓ
′

κ1,j1
δℓκ2,j2 ,ℓ

′

κ2,j2
.

The levels interact via the following Hamiltonian

HN (σ) := −
√

N

2





M
∑

κ=1

α(κ)
Kκ
∑

j=1

a
(κ)
j J

(κ,j)
ℓκ,j

+
√

2α(1) . . . α(M)
∑

(κ1,κ2)

Kκ1
∑

j1=1

Kκ2
∑

j2=1

c
(κ1,κ2)
j1,j2

J
(κ1,j1)(κ2,j2)
ℓκ1,j1 ℓκ2,j2



 , (1.1)

with
Kκ
∑

j

a
(κ)
j =

Kκ1
∑

j1=1

Kκ2
∑

j2=1

c
(κ1,κ2)
j1,j2

= 1 , ∀ κ, κ1, κ2 ∈ {1, . . . ,M} .

We can introduce M different partial overlaps between two different configurations σ 6= σ′ as

τκ = τκ(σ, σ
′) := inf

{

j ≥ 0 : µ(κ,j+1) 6= µ′
(κ,j+1)

}

, κ = 1 . . . ,M , (1.2)
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and τκ = Kκ if σ = σ′. Then a direct computation gives

E[HN (σ)HN (σ′)] =
N

2

M
∑

κ=1

α(κ)2
τκ
∑

j=1

a
(κ)
j

2
+ 2α(1) . . . α(M)

min(τκ1 ,τκ2)
∑

j1,j2=1

c
(κ1,κ2)
j1,j2

2
.

It is somehow convenient to set the overlaps in [0, 1]: we introduce M sequences of numbers in [0, 1]

0 = q
(κ)
0 < q

(κ)
1 < · · · < q

(κ)
Kκ

= 1 , κ ∈ {1, . . . ,M}

and put qκ = qκ(σ, σ
′) := q

(κ)
τκ . We also define the total overlap to be qtot :=

∑M
κ=1 ακqκ. As customary

for β > 0 (− 1
β ) the free energy is given by

AN (β) :=
1

N
log

∑

σ

e−βHN (σ) , A(β) := lim
N

AN (β) . (1.3)

Of course as a consequence of Talagrand inequality AN (β) is self-averaging as N → ∞, so we can always
take the expectation w.r.t. the disorder, when needed. Here and further we denote by PN,β the Gibbs
distribution associated to the model and by 〈·〉N,β the quenched average of observables (we drop the

subscript N in the thermodynamic limit) and xκ(q) := Pβ (qκ ≤ q), xtot(q) := Pβ (qtot ≤ q).
Our main result is

Theorem. Let υ be a random variable uniformly distributed in [0, 1]. Then

(q1, . . . , qM )
d
= (x−1

1

(

υ), . . . , x−1
M (υ)

)

. (1.4)

This result can be given also in terms of the total overlap (as in [1]):

(q1, . . . , qM )
d
=

(

x−1
1 ◦ xtot(qtot), . . . , x

−1
M ◦ xtot(qtot)

)

. (1.5)

A larger class of non-hierarchical random energy models including the one under consideration was
studied by Bolthausen and Kistler in [7, 8]. We shall make use of some crucial ideas from those two
papers, in which the so-called Parisi picture is proved. A more precise formulation of the results in [7, 8]
will be given below.

2. More on the Model

Prior to give the proof, it is convenient to discuss a little more the model. What follows is in a good
part heuristics and rigorous proofs can be found in [7, 8].

For M = 1 and K1 = 1, we simply recover the usual REM. We shortly summarise some basic features
of this well-known model. The model has a phase transition at βc := 2

√
log 2, so that x(q) = 1 for β ≤ βc

and x(q) = βc/β otherwise. The free energy reads

AREM (β) := 1{β≤βc} log 2

(

1 +
β2

β2
c

)

+ 1{β>βc}2 log 2
β

βc
.

Next consider for simplicity the bipartite model (M = 2) with K1 = K2 = 1, defined by the Hamiltonian

(we set a
(1)
1 = a, a

(2)
1 = b and α(1) = α)

HN (σ) := −
√

N

2

[

αaJ (1,1)
µ(1)

+ (1 − α)bJ (2,1)
µ(2)

+
√

2α(1 − α)cJ (1,1)(2,1)
µ(1)µ(2)

]

(2.1)

(this was analysed also in [9] by a slightly different perspective). If we assume for definiteness αa2 >
(1 − α)b2, there are two possibilities: either αa2 ≤ (1 − α)b2 + 2αc2 or αa2 > (1 − α)b2 + 2αc2. The first
case is less interesting and we focus on the second one. At very high temperature everything is ergodic
and the free energy coincides with the annealed one. As β > β1 := 2

√
log 2/a

√
α, the µ(1)-subset freezes,

i.e. its relative entropy goes to zero (as in the first transition in a GREM [10]) and one can show that

P
(1)
N,β(µ(1);β) := Z−1

∑

µ(2)

e−βHN (σ) ⇀ PD(0, β1/β) ,

where Z is a normalisation factor and PD(0, x) denotes the law of a normalised Poisson point process with
intensity ρ(t) = xt−x−1 or Poisson-Dirichlet distribution. In this regime for any q, p > 0 x1(q) = β1/β,
while Pβ(q2 ≥ p) = Pβ(q1 ≥ q, q2 ≥ p) = 0. The free energy is a convex combination (with α) of two REMs,
one on the µ(1) subset at low temperature and the other on the rest of the system at high temperature.
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As β increases further, the total entropy vanishes for β > β2 := 2
√
log 2/

√

(1 − α)b2 + 2αc2 and the whole
Gibbs measure converges toward a Poisson-Dirichlet process

PN,β(σ;β) ⇀ PD(0, β2/β) ,

The free energy is the convex combination of two REMs at low temperature. x1(q) is unchanged, but
1− x2(p) = Pβ(q1 ≥ q, q2 ≥ p) = 1− β2/β. Note

Pβ (q1 ≥ q, q2 ≥ p) = min (Pβ(q1 ≥ q) , Pβ(q2 ≥ p))

for any β. We remark that, since the overlaps take value in {0, 1} in this simple case, Pβ(q1 ≥ q) =
Pβ(q1 = 1) and Pβ(q2 ≥ p) = Pβ(q2 = 1) (as q, p > 0). Therefore the first system starts freezing at higher
temperature: if the second system is frozen, then also the first one is so (as in a two-level GREM [10]).
The whole picture is summarised as follows

β A(β)
〈

q1
〉

β

〈

q2
〉

β

[0, β1] log 2
(

1 + αβ2

β2
1
+ (1 − α)β

2

β2
2

)

0 0

(β1, β2) log 2
(

2α β
β1

+ (1− α)
(

1 + β2

β2
2

))

1− β1

β 0

[β2,∞) 2 log 2
(

α β
β1

+ (1− α) β
β2

)

1− β1

β 1− β2

β

Therefore, albeit not inbuilt in the model, a GREM-like hierarchical structure naturally emerges. A
way to visualise that in the general model defined by the Hamiltonian (1.1) is as follows. Recall that the
ℓκ,j, κ ∈ {1, . . . ,M}, j ∈ {0, . . . ,Kκ}, denote the configurations up to the j-th level of the κ-th GREM.

Then the phase space is naturally coarse-grained by the class of sets {ℓκ1,j1 , ℓκ2,j2}
j1=1,...,Kκ1

j2=1,...,Kκ2
. We think

of each level now as an atom and we can consider the power set

℘ := ℘{ℓ1,1, . . . , ℓ1,K1 , . . . , ℓM,1, . . . , ℓM,κM
} .

According to [7, 8] a chain Γ is defined to be an increasing (finite) sequence of K ≤ ∑

κ Kκ sets in ℘
Γ = {Γn}n=0,...,K so that

Γn ∈ ℘ , Γn ⊂ Γn+1 , Γ0 = ∅ , ΓK = {ℓ1,0, . . . , ℓ1,K1, . . . , ℓM,1, . . . , ℓM,κM
} .

To each Γ we associate two sequences {αn}n=1,...,K and γ := {γn}n=1,...,K . The αn represent the relative
sizes of the Γn

αn :=
log2

∣

∣

∣

⋃

i,j:ℓi
j
∈Γn\Γn−1

ℓij

∣

∣

∣

N
,

easily computed from the numbers α(κ) and ςκ,j ; the γn are variances defined by

γ2
n :=

M
∑

κ=1

α(κ)2
∑

j : ℓκ,j∈Γn\Γn−1

(a
(κ)
j )2 +

∑

(κ1,κ2) , (j1,j2) :

: {ℓκ1,j1 ,ℓκ2,j2}∈Γn\Γn−1

2ακ1ακ2(c
(κ1,κ2)
j1,j2

)2 . (2.2)

From αn and γn we can build another sequence of critical inverse temperatures {βn}n=1,...,K , βn :=√
αn log 2γ

−1
n . In general {βn}n=1,...,K is not monotone, but we can conveniently confine our attention to

those chains for which β1 ≤ β2 ≤ . . . ≤ βK . We denote by T the set of such chains.
To fix the ideas, let us consider again a bipartite REM with K1,K2 levels. The Hamiltonian reads as

HN (σ) = −
√

N

2



α

K1
∑

j=1

a
(1)
j J

(1,j)
ℓ1,j

+ (1− α)

K2
∑

j=1

a
(2)
j J

(2,j)
ℓ2,j

+
√

2α(1− α)

K1
∑

j1=1

K2
∑

j2=1

cj1,j2J
(1,j1)(2,j2)
ℓ1,j1 ℓ2,j2



 (2.3)

For a given Γ ∈ T of length K, we set for n = 1, . . . ,K

Hn := −
√

N

2



α
∑

j : ℓ1,j∈Γn/Γn−1

a
(1)
j J

(1,j)
ℓ1,j

+ (1− α)
∑

j : ℓ2,j∈Γn/Γn−1

a
(2)
j J

(2,j)
ℓ2,j

+
√

2α(1− α)
∑

(j1,j2) : ℓ1,j1 ,ℓ2,j2∈Γn\Γn−1

cj1,j2J
(1,j1)(2,j2)
ℓ1,j1 ℓ2,j2



 ,
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so that we can decompose the Hamiltonian (2.3) according to

HN (σ) =

K
∑

n=1

Hn , (2.4)

and the partition function can be written as

ZN (β) =
∑

{Γ1}

e−βH1

∑

{Γ2/Γ1}

e−βH2 · · ·
∑

{Γn/Γn−1}

e−βHn .

Now we see the following scenario. At β small enough the annealed approximation holds and the overlaps
are set to zero. Then β increases, β > β1, and the configurations in Γ1 freeze. In fact H2 depends on
configurations in Γ2/Γ1, i.e. H1 and all the other addenda in the r.h.s. of (2.4) become independent as
N → ∞. Thus the partition function asymptotically factorises

ZN(β) ≃
∑

{Γ1}

e−βH1

∑

{Σ/Γ1}

e−β(H−H1)

as two independent REMs: the first one on the space of configurations Γ1 is at low temperature, the second

one on the remaining configuration space is at high temperature (with the right variance
√

∑

n≥2 γ
2
n).

The free energy is a convex combination w.r.t. α1 (i.e. the relative size of Γ1) of these two REMs. As
in the previous example, we have convergence of the marginalised Gibbs measure to a Poisson-Dirichlet
distribution

P
(1)
N,β(Γ1;β) := Z−1

1

∑

Σ/Γ1

e−βH(σ) ⇀ PD(0, β1/β) ,

with Z1 an opportune normalisation. Since H1 and H2 remain independent for all β > β1 we can iterate
this procedure: for instance as β > β2 also Γ2 freezes and H2 becomes asymptotically independent on H3;
thus the partition function is factorised as

ZN(β) ≃
∑

{Γ1}

e−βH1

∑

{Γ2/Γ1}

e−βH2

∑

{Σ/Γ2}

e−β(H−H1−H2) .

These are three independent REMs on configurations Γ1, Γ2/Γ1 and Σ/Γ2, the associated free energy
is given by a convex combination of the low-temperature free energies of the first two REMs and the
high-temperature free energy of the third one and

P
(2)
N,β(Γ2;β) := Z−1

2

∑

Σ/Γ2

e−βH(σ) ⇀ PD(0, β2/β) ,

Z2 is a normalisation factor. Going on this way we recover the free energy and the Gibbs measure as
a GREM-like structure along the chain. At zero temperature the free energy of the model is just the
convex combination of those of REMs at low temperature, each defined on an element of the chain.
This construction can be made for every chain in T . Of course for fixed β, the more REMs are at low
temperature, the higher is the free energy. According to this criterion one can select the chain along which
the free energy is maximal. By the above construction it should be clear that such a chain, here denoted
by Γ∗, is unique.

The results of [7, 8] (for the case of our interest) can be precisely formulated as follows. Here Γ ∈ T
and AGREM (Γ;β) denotes the GREM pressure computed along Γ:

AGREM (Γ;β) :=
K
∑

n=1

1{β≤βn}αn log 2

(

1 +
β2

β2
n

)

+ 1{β>βn}2αn log 2
β

βn
. (2.5)

Theorem (Bolthausen and Kistler). The following holds:

i) limN AN (β) = limN E[AN (β)] = A(β) = minγ∈T (AGREM (γ;β)) .

ii) Ultrametricity: there is a β∗ such that for each triad of configurations (σ, σ′, σ′′) ∈ Σ3

lim
N

PN,β (dist(σ, σ
′) ≤ max{dist(σ, σ′′), dist(σ′, σ′′)}) = 1 , ∀β > β∗ .

For a thorough discussion of point ii) we refer to the original work, but is worth mentioning it comes

from Theorem 3 in [8], on which we roughly report: for β > βn P
(n)
N,β ⇀ PD(0, βn/β) and the overlap

converges in distribution to the Bolthausen-Sznitman coalescence along the optimal chain Γ∗ (the βn’s
being associated to Γ∗); moreover the overlap and the Gibbs measure are asymptotically independent.
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3. Proof

Now we are ready to give the proof of our statement. For simplicity we keep working mostly in the
bipartite case. We convey to fix the optimal chain Γ∗ once for all. The sequences {αn}, {γn} and {βn}
will be always referred to Γ∗.

A direct computation from (1.1) and (1.3) yields

PN,β

(

q1 ≥ q
(1)
j

)

=
〈

1{ℓ1,j=ℓ′1,j}

〉

N,β
= 1− 2

a
(1)
j β2α2

∂
a
(1)
j

AN ,

PN,β

(

q2 ≥ q
(2)
j

)

=
〈

1{ℓ2,j=ℓ′2,j}

〉

N,β
= 1− 2

a
(2)
j β2(1− α)2

∂
a
(2)
j

AN ,

PN,β

(

q1 ≥ q
(1)
j1

, q2 ≥ q
(2)
j2

)

=
〈

1{(ℓ1,j1 , ℓ2,j2 )=(ℓ′1,j1
, ℓ′2,j2

)}
〉

N,β
= 1− 1

cj1j2β
2α(1− α)

∂cj1j2
AN .

On the other hand the limiting free energy is a convex combination of REM ones along Γ∗, thus its
derivatives can be explicitly computed. We set

n1(j) := min{n : ℓ1,j ∈ Γ∗
n} , n2(j) := min{n : ℓ2,j ∈ Γ∗

n} , n(j1, j2) := max(n1(j), n2(k)) .

Then

∂
a
(1)
j

A =







β2 α2a
(1)
j

2 β < βn1(j)

β
√

αn1(j) log 2α
2 a

(1)
j

γn1(j)
β ≥ βn1(j) ,

(3.1)

∂
a
(2)
j

A =







β2 (1−α)2a
(2)
j

2 β < βn2(j)

β
√

αn2(j) log 2(1− α)2
a
(2)
j

γn2(j)
β ≥ βn2(j) ,

(3.2)

∂cjkA =

{

β2α(1 − α)cjk β < βn(j1,j2)

β
√

αn(j1,j2) log 22α(1− α)
cjk

γn(j1,j2)
β ≥ βn(j1,j2) .

(3.3)

As N → ∞ the two expressions for the derivatives must be equal (the exchange of the limit and the
derivative can be justified for instance using Theorem 3 in [8] and the concavity of the free energy). Hence
if n1(j1) = n2(j2) = n̄

Pβ

(

q1 ≥ q
(1)
j

)

= Pβ

(

q2 ≥ q
(2)
j

)

= Pβ

(

q1 ≥ q
(1)
j1

, q2 ≥ q
(2)
j2

)

=

{

0 β < βn̄

1− βn̄

β β ≥ βn̄ .
(3.4)

Otherwise we have

Pβ

(

q1 ≥ q
(1)
j

)

=

{

0 β < βn1(j)

1− βn1(j)

β β ≥ βn1(j) ,
(3.5)

Pβ

(

q2 ≥ q
(2)
j

)

=

{

0 β < βn2(j)

1− βn2(j)

β β ≥ βn2(j)

(3.6)

and

Pβ

(

q1 ≥ q
(1)
j1

, q2 ≥ q
(2)
j2

)

=

{

0 β < βn(j1,j2)

1− βn(j1,j2)

β β ≥ βn(j1,j2) .
(3.7)

As 1− βn/β is decreasing in n, formulas (3.4) and (3.5), (3.6), (3.7) establish directly

Pβ

(

q1 ≥ q(1), q2 ≥ q(2)
)

= min
(

Pβ(q1 ≥ q(1)) , Pβ(q2 ≥ q(2))
)

. (3.8)

Let now υ ∼ U(0, 1). We have

Pβ

(

q1 ≥ q(1), q2 ≥ q(2)
)

= min
[

Pβ(q1 ≥ q(1) ) , Pβ(q2 ≥ q(2) )
]

= Pβ

(

υ ≤ min
[

Pβ(q1 ≥ q(1) ) , Pβ(q2 ≥ q(2) )
])

= Pβ

(

x−1
1 (1− υ) ≥ q(1), x−1

2 (1− υ) ≥ q(2)
)

,

from which (1.4) is readily deduced for M = 2.
The generalisation to the multipartite case is immediate. We have for every (κ1, κ2) ∈ {1, . . . ,M}2

Pβ

(

qκ1 ≥ q(κ1), qκ2 ≥ q(κ2)
)

= min
(

Pβ(qκ1 ≥ q(κ1)) , Pβ(qκ2 ≥ q(κ2))
)

, (3.9)
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whence, proceeding as above, (qκ1 , qκ2)
d
= (x−1

1 (υ), x−1
2 (υ)), υ ∼ U(0, 1). Therefore we have mutual

synchronisation for every couple (κ1, κ2), which is enough to obtain (1.4) for any M . Moreover a simple
computation from (3.9) also gives

Pβ (qκ ≥ q, qtot ≥ Q) = min (Pβ(qκ ≥ q) , Pβ(qtot ≥ Q)) ,

for any κ = 1, . . . ,M , thus for υ ∼ U(0, 1)

(q1, . . . , qM , qtot)
d
= (x−1

1 (υ), . . . , x−1
M (υ), x−1

tot(υ)) ,

where we note x−1
tot(z) =

∑M
κ=1 ακx

−1
κ (z). Then (1.5) easily follows.
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