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In the context of higher-spin holography, we compare the classification of cubic interaction vertices for
higher-spin gravity theories in three dimensions to the possible three-point correlation functions of
conserved higher-spin currents in two-dimensional conformal field theories. In both cases, the allowed
structures are governed by triangle inequalities for the involved spins. It is established that higher-order
correlators satisfy similar polygon inequalities and that the same inequalities are valid for higher-order
continuations of cubic vertices in the three-dimensional higher-spin gravity.
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I. INTRODUCTION

Higher-spin (HS) gravity theories [1–3] (for reviews,
see, e.g., Refs. [4–9]) provide interesting extensions of
gravity for which the holographic duality can in principle
be studied perturbatively in contrast to the string theoretic
AdS=CFT duality. They are therefore a promising class of
gravitational theories for which one can hope to under-
stand the AdS=CFT correspondence on the quantum level
and to learn about quantum gravity from the quantum field
theory on the boundary. Higher-spin holography (for a
review, see Ref. [10]) is to a large extent controlled by an
enormous symmetry: the higher-spin gauge symmetry in
the bulk, and the corresponding higher-spin global sym-
metry on the boundary [11]. This symmetry becomes
particularly powerful when the boundary theory is two
dimensional and the asymptotic symmetry algebra of a
higher-spin gauge theory on asymptotically AdS3 space-
times becomes an infinite-dimensional W-algebra [12,13]
(see also Refs. [14–17]). Studying conformal field theories
(CFTs) with such W-algebras as chiral symmetry algebras
has led to a concrete proposal for a holographic duality
between Prokushkin-Vasiliev higher-spin gauge theory [2]

and limits of minimal model CFTs [18] (for a review,
see Ref. [19]).
In all concrete proposals for higher-spin dualities, one of

the problems encountered is that there is no standard action
known for the higher-spin bulk theory, which makes quan-
tization and thus a quantum analysis of holography difficult.
An attempt to construct such an action perturbatively is the
Noether-Fronsdal program, which starts out from the free,
quadratic Fronsdal action [20] of higher-spin gauge fields
and adds interactions order by order while preserving gauge
invariance. Successful implementation of this program may
provide a classification of all possible higher-spin gauge
theories which admit a perturbative formulation. The current
status of the Noether-Fronsdal program in arbitrary dimen-
sions is reviewed in Refs. [21,22].
In three dimensions, a Chern-Simons formulation [23]

is available for HS gravity without matter (see also
Refs. [13,24,25]), allowing an alternative derivation of
the action in metric variables. This approach was taken in
Refs. [26,27] to directly obtain an action in terms of
Fronsdal fields for Chern-Simons spin-3 theories [13].
In three dimensions, the classification of gauge-invariant

cubic interaction vertices has recently been completed
[21,22]. The purpose of this paper is to establish that this
classification matches the structures of three-point func-
tions of conserved currents in a two-dimensional CFT.
In that sense, rather than checking the AdS=CFT corre-
spondence in specific examples, we study the structure of
general higher-spin theories and general CFTs. We thus
extend the known match between cubic bulk vertices and
boundary correlators in (boundary) dimensions three and
higher [28–36] to two dimensions.
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Before we summarize our main results, we briefly
want to explain why the analysis in two dimensions is
different and not just more or less a corollary of the higher-
dimensional case. On the bulk side, the analysis is
complicated by the appearance of many dimension-
dependent identities (Schouten identities) that are special
to three (bulk) dimensions. On the boundary, a particular
feature of two-dimensional CFTs is that the conserved
currents are chiral or antichiral fields. In higher dimensions,
the product of Lorentz-covariant conserved traceless currents

Ĵμ1…μnðxÞ ¼ Jðμ1…μkðxÞJ̃μkþ1…μnÞðxÞ − ðtracesÞ ð1Þ

does not define a conserved current, but in two dimensions
the product of two chiral currents is again chiral and hence
conserved. Therefore, we have a large freedom of nonlinear
redefinitions of the basis fields which can change the
correlators. Contrary to higher dimensions, we therefore do
not just have to analyze the possible structure of correlation
functions from conformal invariance (which is trivial in two
dimensions), but we have to analyze what the independent
structures are modulo nonlinear changes of the basis.
The analysis of Refs. [21,22] has shown that for three-

dimensional higher-spin gauge fields with spins s1, s2,
s3 ≥ 2, there is precisely one parity-even and one parity-
odd cubic vertex whenever the spins satisfy triangle
inequalities:

js1 − s2j < s3 < s1 þ s2; ð2Þ

and none otherwise. The main results of this paper are as
follows:
(1) In any W-algebra, there is a unique basis of quasi-

primary fields for which the r-point correlators
vanish unless the involved spins s1;…; sr satisfy
polygon inequalities:

si <
Xr

j¼1;j≠i
sj − rþ 3: ð3Þ

The name of these inequalities comes from a geo-
metric interpretation: they are equivalent to a state-
ment that r line segments with lengths si − 1 can
form a polygon on a plane. In particular, in this basis
the three-point functions obey the same triangle
inequalities as the higher-spin cubic vertices in three
dimensions.

(2) All higher-order bulk vertices that depend on the
cubic vertices, in the sense that they are needed to
complete the cubic vertices to a consistent theory,
obey the same polygon inequalities (examples of
higher-order couplings that are completions of cubic
ones are the quartic vertex of Yang-Mills theory and
all higher-order vertices in Einstein gravity: they are
needed for the consistency of the cubic deformation,

but do not introduce new parameters and necessarily
vanish when the coefficient of the cubic coupling
goes to zero).

We thus find a perfect match of structures in the bulk and
the boundary at this level. Note that at this point we have
not implemented the consistency of the gauge algebra in the
bulk or the associativity of operator products on the
boundary. These will give additional restrictions on both
sides of the duality.
The outline of the paper is as follows: We start in Sec. II

with a review of the classification of cubic higher-spin
vertices in three dimensions. We then give a short review on
the structure of correlation functions in two-dimensional
CFTs in Sec. III. In the subsequent Sec. IV, we then
describe in detail how one can construct a basis for which
the correlation functions vanish unless the involved spins
satisfy polygon inequalities. This basis necessarily consists
of primary fields (except possibly a quasiprimary spin-2
field), and it is uniquely fixed by demanding that the
polygon inequalities be obeyed. Motivated by the CFT
results, we then show in Sec. V that all dependent higher-
order bulk vertices satisfy the same polygon inequalities.
We end with a brief discussion.

II. CUBIC COUPLINGS IN THREE
DIMENSIONS: REVIEW

The Noether-Fronsdal program is a systematic procedure
to construct possible covariant actions for higher-spin
gravity theories order by order. In this section, we review
the recent results [21,22] on cubic couplings in a three-
dimensional theory.
The starting point is the free quadratic Lagrangian:

Lð2Þ ¼
XN
k¼1

Lð2Þ
sk ½φðkÞ�; ð4Þ

where k is a label counting the fields φðkÞ, and sk ≥ 1 is the

spin of the kth field. For s ≥ 2, theLð2Þ
s is the spin-s Fronsdal

Lagrangian [20], second order in derivatives. For vector
fields, we have two different possibilities for the free action:
The Maxwell action, which is a particular case of the
Fronsdal action for s ¼ 1, and an (Abelian) Chern-
Simons action of the form

R
A ∧ dA. The former is

equivalent to a scalar, while the latter carries no bulk
degrees of freedom (d.o.f.). In a general theory, there may
be both types of fields in the spectrum. Here we consider
only Chern-Simons vector fields, that similarly to HS fields
carry no bulk d.o.f.
A spin s ≥ 1 field is described by a rank-s symmetric

Lorentz tensor φμ1…μs. The number N of all fields involved
can be arbitrary, or even infinite, as it is in the case of
Prokushkin-Vasiliev theory—a theory of HS gravity
coupled to matter [2]. We will sketch the idea of the
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Noether-Fronsdal program here and briefly discuss what is
known so far.
The main assumption is that the theory is given by a local

Lagrangian, nonlinear in the fields φðkÞ, which can be
constructed order by order in a small parameter g. The latter
is usually associated with an overall factor in front of the
cubic Lagrangian:

L ¼ Lð2Þ þ gLð3Þ þ g2Lð4Þ þ � � � : ð5Þ

This assumption may be too strong and leave out interest-
ing theories with HS fields. In particular, it is not clear if
Prokushkin-Vasiliev theory [2] admits a reformulation of
the form (5) in terms of Fronsdal fields φμ1…μs . It is
sufficient for our purposes here to restrict ourselves to
strictly local Lagrangian functionals, since our conclusions
concern the gauge sector of the three-dimensional HS
gravity theories excluding propagating matter.
The Lagrangian (5) should be gauge invariant with

respect to gauge transformations of all fields up to total
derivative terms. The gauge transformations can be
expanded in powers of the fields:

δφðkÞ ¼ δ0φðkÞ þ gδ1φðkÞ þ g2δ2φðkÞ þ � � � ; ð6Þ

where δnφðkÞ is given as a sum of different terms, linear in
one of the gauge parameters and of order n in the number of
fields. The zeroth-order gauge transformation is that of a
free field given by (we use symmetrization with weight 1)

δ0φðkÞ
μ1…μsk

¼ sk∇ðμ1ϵ
ðkÞ

μ2…μsk Þ: ð7Þ

In the following, we will use the shorthand notation ϵðkÞ for
the parameter associated with the field φðkÞ with spin
sk ≥ 1. The higher-order transformation δnφðkÞ ðn > 0Þ
of a field of spin sk can contain gauge parameters of all the
other fields. The simplest examples of such theories are
Yang-Mills theory and gravity with or without matter.
There, the full structure of higher-order interactions is fixed
by the cubic ones. We assume this is true also for the
example under consideration: in the space of all possible
nonlinear theories, we will restrict ourselves to those for
which the full interaction structure is fixed uniquely by the
cubic-order interaction. We will study independent higher-
order interactions elsewhere.
The higher-order consistency of the gauge symmetry

severely constrains the cubic couplings. We assume that
there will remain at least one free parameter. In particular,
since we are discussing a theory of gravity, we can assume
that the coefficient of the Einstein-Hilbert cubic vertex is
nonzero. Hence, we can take its coefficient, the Newton
constant, as the parameter g of the expansion, while
rescaling all the other coupling constants for cubic vertices

by gk;k0;k00 → ggk;k0;k00 to have an overall factor g in front of
the cubic Lagrangian.
The nth-order Lagrangian can be expanded in the basis

of vertices of interactions between fields φðk1Þ;…;φðknÞ:

LðnÞ ¼
X
ki;m

gmk1;…;kn
Vm
k1;…;kn

ðφðk1Þ;…;φðknÞÞ; ð8Þ

where m counts the independent coefficients. Here, the
vertices are by convention symmetric in the field labels, i.e.,
an n-point vertex for n pairwise different fields appears n!
times in the sum.
Gauge invariance of the theory given by the Lagrangian

(5) under the transformation (6) has to hold order by order.
In particular, at cubic order in the fields (first order in the
expansion parameter), we get the cubic Noether equations

δ1Lð2Þ þ δ0Lð3Þ ¼ 0 up to total derivatives

⇒ δ0Lð3Þ ≈ 0: ð9Þ

Here, the last equality is up to terms proportional to the free
equations of motion and up to total derivatives. This can be
understood by considering the contribution of the variation
of the free Lagrangian, which is

δ1Lð2Þ ¼
X
k

δ1φðkÞF ðφðkÞÞ þ ðtotal derivativesÞ ≈ 0; ð10Þ

where F ðφðkÞÞ is the free equation of motion for the
field φðkÞ.
In the Noether procedure, we often have to consider

equivalence classes with respect to ≈, and they enter the
analysis of cubic vertices in two distinct ways: First, they
appear when we consider gauge invariance, as we have just
seen. Second, one can add to the cubic vertex any total
derivative without changing the action, and any local terms
proportional to the free field equations by appropriate
quadratic field redefinitions: φ → φþ gOðφ2Þ. Given that
the free field equations satisfy the lowest-order gauge
invariance, δ0F ðφÞ ¼ 0, the cubic terms induced by these
field redefinitions automatically solve Eq. (9). Fixing this
redundancy is essential for parametrizing the independent
nontrivial cubic deformations.
Inversely, fixing the freedom to add terms proportional to

the free equations of motion to the cubic vertex also fixes
the freedom of field redefinitions at quadratic order in the
fields. Higher-order field redefinitions are, however, still
allowed: at each order n ≥ 2 in the field variables, OðφnÞ,
we have the freedom to redefine φ → φþ gn−1OðφnÞ and,
correspondingly, the freedom to add terms to the (nþ 1)th-
order Lagrangian Lðnþ1Þ that are proportional to the free
field equations.
At cubic order, there is a natural way to fix the freedom

of field redefinitions in a Lorentz covariant manner by
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ruling out all the terms in the traceless-transverse part of the
cubic Lagrangian, where derivatives are contracted to each
other. Details can be found in Ref. [21].
Fixing this field redefinition freedom for any triple of

fields, we are left with two independent deformations—a
parity-even vertex and a parity-odd one—if the spins of the
fields satisfy the triangle inequalities

jsk2 − sk3 j < sk1 < sk2 þ sk3 ; ð11Þ
and none otherwise [21,22]. Exceptions are the cases with
scalar and Maxwell fields, where one has current-type
couplings.
Having found the cubic vertices, one can then go back to

the Noether equations (9) for the gauge symmetry at cubic
order:

δ1Lð2Þ þ δ0Lð3Þ ¼ total derivative: ð12Þ
Explicitly, they can be written as

X
k;k0;k00

�
3
X
m

gmk;k0;k00V
m
k;k0;k00 ðδ0φðkÞ;φðk0Þ;φðk00ÞÞ

þ δ1k;k0φ
ðk00ÞF ðφðk00ÞÞ

�
¼ total derivative; ð13Þ

where δ1k;k0φ
ðk00Þ is the gauge variation of the field φðk00Þ, with

a parameter ϵðkÞ and linear in the field φðk0Þ (we do not need
the explicit form here). The contribution containing a
specific gauge parameter ϵðkÞ and two fields with fixed
labels k0 and k00 has to vanish separately; therefore, we have

δ1k;k0φ
ðk00ÞF ðφðk00ÞÞ þ δ1k;k00φ

ðk0ÞF ðφðk0ÞÞ
þ 6

X
m

gmk;k0;k00V
m
k;k0;k00 ðδ0φðkÞ;φðk0Þ;φðk00ÞÞ

¼ total derivative: ð14Þ

The contribution of the cubic vertex in Eq. (14) can be
compensated by a deformation of the gauge transformation
of the form

δ1k;k0φ
ðk00Þ ¼

X
m

gmk;k0;k00d
m
k;k0;k00 ðϵðkÞ;φðk0ÞÞ; ð15Þ

where dmk;k0;k00 is a differential operator acting on its argu-
ments. Equation (14) shows in particular that the deforma-
tions δ1k;k0φ

ðk00Þ of the gauge transformations can be chosen
to satisfy the same triangle inequalities (11) as the cubic
vertices. Given a vertex Vk;k0;k00 , the induced gauge trans-
formations (15) are unique, up to terms that arise from
either trivial transformations proportional to free equations,
or from field-dependent redefinitions of the gauge param-
eters. Ignoring such trivial terms, the gauge transformations
(15) are always zero when the triangle inequalities

jsk − sk0 j < sk00 < sk þ sk0 ð16Þ

are violated. As explained in Ref. [11], the first-order gauge
transformations δ1k;k0φ

ðk00Þ form the algebra of global sym-
metries of the theory for Killing parameters satisfying
∇ðμ1ϵ

ðkÞ
μ2…μsk Þ ¼ 0.

To summarize, after fixing the freedom of field redefi-
nitions at cubic level as in Refs. [29,37], there are two
vertices—parity-even [21] and parity-odd [22]—for each
triple of fields precisely if the spins of the fields satisfy the
triangle inequalities (11). This is in striking difference to
the situation in higher dimensions, where violations of
triangle inequalities are possible, in particular, through
Bell-Robinson-type current couplings [38]. Such currents
do not define nontrivial couplings in three dimensions due
to on-shell triviality of the de Wit–Freedman curvatures of
Fronsdal fields in d ¼ 3. The precise form of the cubic
vertices is not important for the purpose of this article;
explicit expressions can be found in Refs. [21,22]. Each of
these vertices induces corresponding deformations of the
gauge transformations (15). Since the transformations (15)
stem from cubic vertices, they also vanish for spins sk, sk0 ,
sk00 that violate the triangle inequalities. In Sec. V, we will
use this to prove certain properties of higher-order vertices.

III. CORRELATORS IN TWO-DIMENSIONAL
CFT: REVIEW

One can compare the above analysis of cubic couplings in
a higher-spin gravity theory with the structure of three-point
correlation functions in a two-dimensional conformal field
theory. As explained in Refs. [21,22], even though the
explicit expressions were written down in flat space for
simplicity, the classification of cubic vertices is valid for
arbitrary Einstein spaces, including anti–de Sitter (AdS)
space-times. Via the higher-spinAdS=CFT correspondence,
the results on cubic couplings then imply that for three
higher-spin currents, dual to the corresponding higher-spin
gauge fields, we should find two allowed correlation
functions, one parity-even and one parity-odd, whenever
the spins satisfy triangle inequalities [Eq. (11)]. Indeed, the
conformal invariance constrains the correlators of higher-
spin currents to two structures, but with no sign of a triangle
inequality.
We will review here the well-known structure of corre-

lation functions in a conformal field theory (for a textbook,
see, e.g., Ref. [39]), and we will resolve the apparent
mismatch with the triangle inequalities in the subsequent
section by a suitable choice of basis.
All fields in a two-dimensional conformal field theory

can be obtained from linear combinations of quasiprimary
fields and their derivatives. A quasiprimary field transforms
in a simple way under global conformal transformations: if
we consider the theory on the complex plane (or better, its
compactification by including a point at infinity), the global
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conformal group is the Möbius group PSLð2;CÞ, and a
quasiprimary field ϕ transforms under a conformal trans-
formation z ↦ wðzÞ as

ϕ ↦ ϕ̃; ϕ̃ðw; w̄Þ ¼
�
dw
dz

�
−h
�
dw̄
dz̄

�
−h̄
ϕðz; z̄Þ: ð17Þ

Here, the real numbers h and h̄ are the holomorphic and
antiholomorphic conformal weights of the field, respec-
tively. They are related to the scaling dimension Δ and the
spin s by

Δ ¼ hþ h̄; s ¼ jh − h̄j: ð18Þ

Due to the transformation property, the coordinate
dependence of a three-point function of three quasiprimary
fields is completely fixed:

hϕ1ðz1; z̄1Þϕ2ðz2; z̄2Þϕ3ðz3; z̄3Þi
¼Czh3−h1−h212 zh1−h2−h323 zh2−h1−h313 z̄h̄3−h̄1−h̄212 z̄h̄1−h̄2−h̄323 z̄h̄2−h̄1−h̄313 ;

ð19Þ

where hi, h̄i are the conformal weights of the field ϕi, and
zij ¼ zi − zj. The three-point coefficients C determine the
operator product expansion of the fields and thus encode
the dynamics of the CFT; all higher-point functions are
determined by them.
A spin-s gauge field in the bulk of asymptotically AdS3

space corresponds to a traceless conserved spin-s current
Jμ1…μs of scaling dimension Δ ¼ s in the CFT. Due to the
tracelessness, only two components of J are nonzero,
which in the coordinates z, z̄ correspond to JðsÞ ≔ Jz…z

and J̄ðsÞ ≔ Jz̄…z̄. These are separately conserved:

∂ z̄JðsÞ ¼ 0; ∂zJ̄ðsÞ ¼ 0: ð20Þ

As for general quasiprimary fields, the coordinate depend-
ence of their three-point correlators is completely fixed—
for three holomorphic fields, the form is [see, e.g.,
Eq. (2.50) of Ref. [39] ]

hJðs1Þðz1ÞJðs2Þðz2ÞJðs3Þðz3Þi
¼ Cs1;s2;s3z

s3−s1−s2
12 zs1−s2−s323 zs2−s1−s313 : ð21Þ

For every triple of higher-spin currents, there is thus one
holomorphic and one antiholomorphic structure for the
three-point function, from which one can build one parity-
even and one parity-odd structure by taking linear combi-
nations. This matches the results for the classification of
cubic vertices, except that there is no restriction on the
possible correlators in the form of a triangle inequality:
there is no reason that a correlator of three currents with
s1 ≥ s2 þ s3 should vanish.

The mismatch can be resolved by using field redefini-
tions, as we will explain in the following section. The tools
that we need there for our explanations are briefly reviewed
in the remainder of this section.
The fields in our theory can be realized as operators

acting on a Hilbert space that carries a unitary representa-
tion of the conformal group. In a two-dimensional con-
formal field theory, the conformal algebra can be extended
to two copies of the Virasoro algebra with generators Lm,
L̄m satisfying

½Lm; Ln� ¼ ðm − nÞLmþn þ
c
12

mðm2 − 1Þδmþn;0 ð22Þ

and the analogous commutation relation for L̄m. Here c is
the central charge. In a conformal field theory, there is the
operator-state correspondence that relates a field ϕ to the
vector ϕð0; 0ÞΩ, where Ω is the SLð2;CÞ invariant vacuum
vector. When we only consider holomorphic fields JðsÞ, the
corresponding subspace H of the Hilbert space carries a
representation of the generators Lm of one copy of the
Virasoro algebras.
The holomorphic currents JðsÞ are operators acting onH,

and as holomorphic fields they can be expanded as

JðsÞðzÞ ¼
X
n∈Z

JðsÞn z−n−s ð23Þ

in terms of their modes JðsÞn . The state corresponding to JðsÞ

is JðsÞ−sΩ ∈ H; modes with mode numbers greater than −s
annihilate the vacuum:

JðsÞn Ω ¼ 0 for n > −s: ð24Þ

Due to the transformation properties of the spin-s current,
the commutator of the Virasoro mode L0 with any of the
modes is

½L0; J
ðsÞ
m � ¼ −mJðsÞm : ð25Þ

The mode L−1 corresponds to taking the derivative of the
field, and its action on the modes is

½L−1; J
ðsÞ
m � ¼ ð1 − s −mÞJðsÞm−1: ð26Þ

We assume that we have real fields, JðsÞ† ¼ JðsÞ, such that

JðsÞ†n ¼ JðsÞ−n: ð27Þ

The coefficient Cs1;s2;s3 in the three-point function (21) can
then be computed as an expectation value of some of the
modes,
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Cs1;s2;s3 ¼ lim
z1→∞

z2s11 hJðs1Þðz1ÞJðs2Þð1ÞJðs3Þð0Þi

¼ hΩ; Jðs1Þs1 Jðs2Þs3−s1J
ðs3Þ
−s3Ωi: ð28Þ

The currents form the algebraic structure of aW-algebra:
the operator product expansion of two holomorphic cur-
rents can be expressed in terms of holomorphic currents
and their derivatives; conversely, the commutators of the
modes of the currents can be expressed again in terms of
modes of conserved currents.
The currents dual to the higher-spin gauge fields in the

bulk should form a basis of this W-algebra. In the next
section, we will show that there is a specific choice for a
basis of any W-algebra such that their correlators satisfy
the triangle inequalities that were observed for the higher-
spin bulk vertices.

IV. TRIANGLE AND POLYGON INEQUALITIES
FOR CFT CORRELATORS

When comparing bulk vertices of higher-spin gauge fields
to correlators of currents in the two-dimensional CFT, we
have to be aware that in two dimensions, there is the freedom
to redefine the CFT currents by adding products or deriv-
atives of currents of lower spin. This is in contrast to the
situation in higher dimensions. Fixing this ambiguity
corresponds to specifying a concrete basis. In this section,
we will show how to choose a basis for the W-algebra of
holomorphic currents in the CFT such that the correlators
satisfy triangle inequalities for the spins. We will see that in
this basis also, the higher-point correlators satisfy analogous
polygon inequalities. It is (up to linear transformations) the
only basis of quasiprimary fields with this property.

A. The basis

We start with a W-algebra generated by a set of
elementary fields fJðs;iÞjs ∈ S ⊂ N; 1 ≤ i ≤ msg of defi-
nite spin s. The set of all spins that occur is denoted by S,
and the number of fields of spin s is denoted by ms. The
W-algebra consists of all chiral fields JðzÞ that can be
obtained by taking linear combinations of normal-ordered
products and derivatives of the elementary fields. We
assume that the set of elementary fields is minimal in
the sense that none of the fields can be obtained from the
others by normal-ordered products or derivatives.
We always assume that the W-algebra contains the

holomorphic part T of an energy-momentum tensor (but
not necessarily as one of the elementary fields),

TðzÞ ¼
X
m∈Z

Lmz−m−2; ð29Þ

whose modes satisfy the commutation relations of the
Virasoro algebra [Eq. (22)].

The Hilbert space H generated by all fields is a direct
sum of eigenspaces HðsÞ with eigenvalue s ∈ N0 of the L0

operator,

H ¼ ⨁
∞

s¼0

HðsÞ: ð30Þ

The Hilbert space is generated by acting with the modes of
the elementary fields on the vacuum vector Ω. The sub-
space HðsÞ is then

HðsÞ ¼
�
Jðs1;i1Þ−n1 …Jðsr;irÞ−nr Ω; nj ≥ sj;

Xr

j¼1

nj ¼ s

�
; ð31Þ

where the angle brackets denote the linear span. We assume
that we have chosen a real basis; see Eq. (27).
Inside HðsÞ, we now consider the subspace HðsÞ ⊂ HðsÞ

that is generated by all modes of basis fields of spin less
than s:

HðsÞ ¼
�
Jðs1;i1Þ−n1 …Jðsr;irÞ−nr Ω; nj ≥ sj;

Xr

j¼1

nj ¼ s; sj < s

�
:

ð32Þ

The codimension of HðsÞ in HðsÞ is the number ms of
elementary fields of spin s, which by assumption are
independent of the products or derivatives of the lower-
spin fields. We now consider the orthogonal complement
PðsÞ of HðsÞ in HðsÞ,

HðsÞ ¼ HðsÞ ⊕ PðsÞ; ð33Þ

which is of dimension ms, and choose a basis fj̃ðs;1Þ;
…; j̃ðs;msÞg of PðsÞ. The corresponding fields J̃ðs;iÞ constitute
the basis we are after.
The space HðsÞ in terms of fields is the space of all fields

that are obtained by taking linear combinations, normal-
ordered products, and derivatives of fields with spin lower
than s. It is independent of the original choice of basis fields
Jðs;iÞ, and the construction of the new basis J̃ðs;iÞ is therefore
unique up to linear transformations within the spaces PðsÞ.
To illustrate the construction, we give a simple example.

Consider a CFTwith a chiral algebra that is generated by a
spin-1 current J and the energy-momentum tensor T. At
spin 1, there is only one field, so we just take J̃ð1Þ ¼ J. At
spin 2, we have three linearly independent fields,

T; ðJJÞ; ∂J: ð34Þ

The subspace Hð2Þ is spanned by the states corresponding
to ðJJÞ and ∂J. In terms of modes, it can be written as the
span of two vectors,
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Hð2Þ ¼ hJ−1J−1Ω; J−2Ωi: ð35Þ

The commutation relations of the modes are (here we
choose a specific normalization of the field J)

½Jm; Jn� ¼ mδmþn;0; ½Lm; Jn� ¼ −nJmþn; ð36Þ

and the standard relations for the Virasoro modes Lm. It can
be easily checked that the orthogonal complement of Hð2Þ

in Hð2Þ is the one-dimensional space

Pð2Þ ¼
��

L−2 −
1

2
J−1J−1

�
Ω
�
: ð37Þ

Therefore we choose the basis field at spin 2 to be

J̃ð2Þ ¼ T −
1

2
ðJJÞ; ð38Þ

i.e., the difference of the energy-momentum tensor and the
field obtained by the Sugawara construction for J. Its
modes commute with the modes of J,

½J̃ð2Þm ; Jn� ¼ 0; ð39Þ

therefore, in this basis, e.g., the three-point function of
fields of spin 1, 1, and 2 vanishes:

hJ̃ð2ÞJ̃ð1ÞJ̃ð1Þi ¼ 0: ð40Þ

The corresponding statement in the bulk is that there is no
cubic coupling of Chern-Simons vector fields [40] to
gravity (or any other massless field of spin s ≥ 2) [22].

More sophisticated examples are provided by the WN-
algebras, which have a basis of fields of spin 2; 3;…; N.
For spins 3, 4, and 5, the construction just leads to choosing
the unique primary field at each spin (we show below
that the basis fields J̃ are always primary for spins greater
than 2). At spin 6, there are two independent primary fields,
and just the requirement to choose a primary basis field does
not give a unique procedure. There is one primary field at
spin 6 that is constructed out of derivatives and normal-
ordered products of fields of lower spins. Our construction is
equivalent to choosing a primary field orthogonal to it. Our
choice of basis is therefore equivalent to the orthogonality
condition that was used, e.g., in Ref. [41] in an analysis of
W-algebras generated by fields of spin 2;…; 6, or in
Ref. [42] in an analysis of the W∞-algebra.

B. Correlators

Let us assume that we have chosen a basis as described in
the last section, and we denote the basis as fJðs;iÞg, omitting
the tilde. We now want to discuss correlators of these fields.
Consider the operator product expansion of two fields at the
origin evaluated on the vacuum Ω:

Jðs1;i1ÞðzÞJðs2;i2Þð0ÞΩ ¼
X
n≤s2

z−n−s1Jðs1;i1Þn Jðs2;i2Þ−s2 Ω: ð41Þ

For n > −s1, the mode Jðs1;i1Þn annihilates the vacuum,

whereas for n ≤ −s1, the mode Jðs1;i1Þn generates the
ð−s1 − nÞth derivative of Jðs1;i1Þ from the vacuum (up to
a factor). When we split the sum, we then obtain

Jðs1;i1ÞðzÞJðs2;i2Þð0ÞΩ

¼
Xs2

n¼−s1þ1

z−n−s1 ½Jðs1;i1Þn ; Jðs2;i2Þ−s2 �Ωþ
X
n≤−s1

z−n−s1Jðs1;i1Þn Jðs2;i2Þ−s2 Ω

¼
Xs1þs2

n¼1

z−n½Jðs1;i1Þ−s1þn; J
ðs2;i2Þ
−s2 �Ωþ

X
n≥0

zn

n!
ð∶∂nJðs1;i1ÞJðs2;i2Þ∶Þ−s1−s2−nΩ

∈ ⨁
s1þs2−1

s¼0

HðsÞ ⊕ ⨁
∞

s¼s1þs2

HðsÞ: ð42Þ

The operator product expansion of the two fields Jðs1;i1Þ

and Jðs2;i2Þ thus only contains fields of spin less than s1 þ s2
and normal-ordered products of (derivatives of) Jðs1;i1Þ

and Jðs2;i2Þ. A field Jðs;iÞ with s ≥ s1 þ s2 therefore has
by construction a vanishing two-point function with any
field occurring in the operator product expansion of Jðs1;i1Þ

and Jðs2;i2Þ, and hence the corresponding three-point func-
tion vanishes:

hJðs1;i1Þðz1ÞJðs2;i2Þðz2ÞJðs;iÞðz3Þi ¼ 0 for s ≥ s1 þ s2:

ð43Þ
As the above statement holds for arbitrary spins, the
three-point function also vanishes for s1 ≥ sþ s2 and
s2 ≥ sþ s1. Hence, we get a perfect match with the results
for the cubic vertices in the bulk: all three-point functions
whose spins violate a triangle inequality vanish.
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A similar argument leads to constraints also for higher
correlation functions. We can compute an r-point function
by successively taking operator product expansions—the
fields that occur when we take r − 1 operator products are
fields of spin below s1 þ � � � þ sr−1 − rþ 3, or are normal-
ordered products or derivatives of such fields. Hence,
the corresponding states are orthogonal to Jðs;iÞð0ÞΩ for
s ≥ s1 þ � � � þ sr−1 − rþ 3, and the r-point correlation
function vanishes in this case. The details of the argument
leading to this result are presented in the Appendix.
We conclude that in the specific basis we have chosen,

the higher CFT correlators also satisfy polygon inequal-
ities: an r-point correlation function (r ≥ 3) of fields of
spins s1;…; sr can be nonzero only if

sk < s1 þ � � � þ sk−1 þ skþ1…þ sr − rþ 3

for all k ∈ f1;…; rg; ð44Þ
or equivalently, if

ðsk − 1Þ ≤
Xr

j¼1
j≠k

ðsj − 1Þ for all k ∈ f1;…; rg: ð45Þ

This result suggests that we should be able to make even
stronger statements for the classification of bulk vertices.
Before we study those in Sec. V, we conclude this section
by a short discussion of the specific properties of the basis
that we constructed.

C. Primary basis

It follows from the construction of the new basis that it
consists of quasiprimary fields. To see this, consider a field
Jðs;iÞ and its corresponding state jðs;iÞ ¼ Jðs;iÞð0ÞΩ. To show
that the field is quasiprimary, we have to show that
L1jðs;iÞ ¼ 0. This is equivalent to saying that it is orthogo-
nal to all other states of the same L0 eigenvalue:

for all v ∈ Hðs−1Þ∶ hv; L1jðs;iÞi ¼ 0: ð46Þ
Let v ∈ Hðs−1Þ. Then

hv; L1jðs;iÞi ¼ hL−1v; jðs;iÞi: ð47Þ
But L−1v ∈ HðsÞ, because

L−1J
ðs1;i1Þ
−n1 …Jðsr;irÞ−nr Ω

¼
Xr

j¼1

ð1 − sj þ njÞJðs1;i1Þ−n1 …J
ðsj;ijÞ
−nj−1…Jðsr;irÞ−nr Ω ∈ HðsÞ;

ð48Þ

where all sj ≤ s − 1. Finally, as jðs;iÞ is orthogonal to HðsÞ,
we conclude that hL−1v; jðs;iÞi ¼ 0, hence Jðs;iÞ is
quasiprimary.

We can perform a similar argument to show that the field
is not only quasiprimary, but primary for s ≥ 3. For that, we
have to show that L2jðs;iÞ ¼ 0, or, equivalently, that jðs;iÞ is
orthogonal to all states in L−2Hðs−2Þ. Indeed, we have

L−2Hðs−2Þ ⊂ HðsÞ for s ≥ 3: ð49Þ
This is obvious, because vectors in Hðs−2Þ are constructed
from modes of fields of spin less than or equal to s − 2, and
applying L−2 will result in a vector constructed from modes
of fields of spin less than or equal to s − 2 (and of spin 2).
Thus, it is contained in HðsÞ for s ≥ 3.
For the case of spin 2, we cannot argue like that,

because L−2Ω generically is not contained in Hð2Þ. There
are two cases: if L−2Ω ∈ Hð2Þ, this means that the energy-
momentum tensor is obtained from derivatives or normal-
ordered products (as, e.g., in Wess-Zumino-Witten models
where the energy momentum tensor is obtained by the
Sugawara construction). Then all the elementary spin-2 fields
Jð2;iÞ in the basis constructed above are orthogonal to L−2Ω
and therefore primary. If, on the other hand, L−2Ω ∉ Hð2Þ,
then we can choose one of the spin-2 fields in the basis as the
orthogonal projection of L−2Ω to Pð2Þ (this field is only
quasiprimary), and all others can be chosen to be orthogonal
to L−2Ω (they are then primary fields). For example, in the
CFT dual of colored AdS3 gravity [24], all of the operators
dual to massless spin-2 fields will be primaries except for the
one dual to the singlet spin-2 field—the metric graviton,
whose dual will be quasiprimary—the stress-energy tensor.
To summarize, we have seen that for any W-algebra,

there exists a basis of primary fields (except possibly one
quasiprimary spin-2 field) such that the correlators satisfy
the polygon inequalities [Eq. (44)]. It is not difficult to see
that the basis is already uniquely characterized by this
property: there is only one basis (up to linear transforma-
tions) of quasiprimary fields that satisfies the polygon
inequalities. This can be shown spin by spin: if at any spin s
we choose a field J̃ðsÞ corresponding to a state that is not
orthogonal to all states in HðsÞ, there will be some normal-
ordered product of (derivatives of) r fields of lower spins
(satisfying s1 þ � � � þ sr ≤ s) that has a nonvanishing two-
point function with J̃ðsÞ. This would imply that the
corresponding (rþ 1)-point function does not vanish—
but for r ≥ 2, this would violate the polygon inequalities,
and for r ¼ 1 a nonvanishing two-point function with a
lower-spin field would be in conflict with the field being
quasiprimary. Instead of demanding that the basis fields be
quasiprimary, one can impose the “polygon inequalities”
[Eq. (44)] also for r ¼ 2.

V. POLYGON INEQUALITIES FOR
HIGHER-ORDER VERTICES

Motivated by the CFT results, in particular by the
inequalities [Eq. (44)] for n-point functions, we want to
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see whether in the Noether program we can also make
statements about such polygon inequalities for higher-order
vertices. The corresponding inequalities for vertices of
order n in the fields would be

si ≤ s1 þ s2 þ � � � þ si−1 þ siþ1 þ � � � þ sn − nþ 2

for i ¼ 1;…; n: ð50Þ

For cubic vertices (n ¼ 3), these inequalities are equivalent
to Eq. (11). It is interesting to note that the above
inequalities make sense also for n ¼ 2. There, s1 ≤ s2
and s2 ≤ s1 imply together s1 ¼ s2, which is a statement on
the diagonal nature of the quadratic action.
To show that the polygon inequalities are indeed satisfied

under certain assumptions, we proceed by induction and
first prove the following statement:
“Assume that there is a basis of fields, for which the

action does not involve any interactions of order k ≤ n in
fields that violate the polygon inequalities

si ≤ s1 þ s2 þ � � � þ si−1 þ siþ1 þ � � � þ sk − kþ 2

for i ¼ 1; 2;…; k; k ¼ 3; 4;…; n ð51Þ

between the spins. Then, the same is true for interactions
involving nþ 1 fields, provided that there are no independent
(nþ 1)th-order deformations that violate these inequalities.”
Here, independent deformations of order nþ 1 are

solutions to the Noether equation

δ0Lðnþ1Þ ≈ 0; ð52Þ

where ≈ indicates equality up to the free field equations of
motion and total derivatives.
The proof of the statement above is simple—we need to

study the Noether equations for gauge invariance:

δ0Lðnþ1Þ þ δ1LðnÞ þ � � � þ δn−2Lð3Þ ≈ 0: ð53Þ

Assuming that there are no solutions for the homogeneous
equation (52) that violate the polygon inequalities
(assumption of the statement), we can concentrate on the
particular solution of Eq. (53). There, any term of δ0Lðnþ1Þ

should be canceled by terms of the form δiLðnþ1−iÞ. One
can write any term of the latter variations in the form

δiLðnþ1−iÞ ¼
X
k0

δSðnþ1−iÞ

δφk0 δiφk0 þ ðtotal derivativeÞ; ð54Þ

where Sðnþ1−iÞ is the term in the action that is obtained from
Lðnþ1−iÞ by integration.
We have seen in Sec. II that the triangle inequalities for

the cubic coupling induce the same triangle inequalities for
the deformation δ1 of the gauge transformation (15).
Similarly, the polygon inequalities for the lower-order

Lagrangian terms imply analogous inequalities for the
gauge transformation deformations δi. When we take these
inequalities together, we can deduce that the polygon
inequalities are satisfied for the spins entering in any
variation of the type in Eq. (54).
This can be shown by taking an arbitrary monomial on

the right-hand side of Eq. (54), where δSðnþ1−iÞ

δφk0 contains

fields, say, φk1 ;…φkn−i , and δiφk0 contains fields, say,
φkn−iþ1 ;…;φkn , and a gauge parameter ϵknþ1. Then the
lower-order polygon inequalities (50) for Lðnþ1−iÞ and
for δiφk0 imply in particular

sk1 ≤ sk2 þ � � � þ skn−i þ sk0 − nþ iþ 1; ð55Þ

sk0 ≤ skn−iþ1
þ � � � þ sknþ1

− i: ð56Þ

Using the second inequality in the first, we obtain

sk1 ≤
Xnþ1

i¼2

ski − nþ 1; ð57Þ

a particular instance of the polygon inequalities (50) at
order nþ 1. The analogous inequalities for k2;… follow in
the same way. This concludes the proof.
Our statement above can be rephrased as “Higher-order

completions of lower-order vertices satisfying the polygon
inequalities (50) do obey the same polygon inequalities.”
The classification of cubic vertices in three dimensions

[21,22] shows that they obey triangle inequalities. If there
are no independent higher couplings (or only ones which
satisfy polygon inequalities) in a theory, then we can
conclude by induction that the following statement is true:
“For a HS gravity theory in three dimensions that is fully
determined by its cubic Lagrangian, there exists a basis for
which all vertices obey polygon inequalities (50) for
spins si ≥ 2.”
Note that for the proof, we did not need the explicit

forms of the cubic vertices Vm
k;k0;k00 and the gauge trans-

formations δ1k0;k00φ
ðkÞ. We only used the fact that the

coefficients gmk;k0;k00 are zero for three spins sk; sk0 ; sk00 that
violate the triangle inequalities (11).
We exclude scalar and Maxwell fields from the dis-

cussion, as their interactions do not respect the polygon
inequalities already at the cubic order (but the statement
also holds for Chern-Simons vector fields). We also
exclude higher-order independent deformations that violate
the polygon inequalities in the full nonlinear theory. This is
motivated from the CFT, which suggests that no violation
of the polygon inequalities occurs. Independent deforma-
tions of higher order will be studied elsewhere.
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VI. DISCUSSION

We have compared vertices for higher-spin gauge fields
in three dimensions with the structure of correlators of
conserved currents in a two-dimensional CFT. The classi-
fication of cubic vertices is precisely matched by the
independent three-point functions in the CFT when one
takes into account the possibility of nonlinear basis trans-
formations. The CFTanalysis has even revealed restrictions
on higher correlators: only those for which the spins satisfy
polygon inequalities [Eq. (50)] can be present. This gives
strong predictions for the classification of bulk vertices.
On the one hand, we expect that higher-order couplings

also respect these polygon inequalities. We checked this
explicitly for couplings that are continuations of the cubic
couplings, but the CFT result implies that the same is true
also for independent higher vertices. We will study this
problem elsewhere [43].
On the other hand, the CFT results are full quantum

results, so one expects that in the bulk theory—as long as
higher-spin gauge invariance is preserved—the polygon
inequalities are satisfied even if we take quantum correc-
tions into account. Indeed, it is straightforward to show (by
an argument similar to the one used in Sec. V) that in a
theory of fields of spin greater or equal to 2, any tree-level
Witten diagram built from vertices that satisfy polygon
inequalities will vanish if the spins of the external fields do
not satisfy the polygon inequalities [Eq. (50)]. Similar
conclusions cannot be made for loop diagrams, though.
Whereas from the pure CFT perspective all different

bases appear on equal footing, from the holographic
perspective the basis we identified seems physically the
most sensible choice: it directly reproduces the structure of
cubic on-shell vertices. It is interesting to identify the
significance of this choice directly in a holographic setting.
When we consider as a simple example a Chern-Simons
formulation of higher-spin gravity with a gauge algebra
g ⊕ g, its asymptotic symmetry algebra is a classical W-
algebra that is the Drinfeld-Sokolov reduction [45] of the
affine Lie algebra ĝk ⊕ ĝk (where the level depends on the
level of the Chern-Simons theory). The Drinfeld-Sokolov
reduction can be performed in different gauges; the gauge
fixing determines the basis in which the W-algebra is
realized. Performing the reduction in the highest-weight
gauge [46], one arrives at a primary basis (except for a
quasiprimary spin-2 field). Furthermore, the Poisson brack-
ets (that in the quantum W-algebra turn into commutators
which encode the singular operator products of the fields)
in this basis are constrained by the representation theory of
the embedded slð2Þ algebra (which corresponds to the
gravity part). The Poisson bracket takes the form [15]

fJðs1Þ; Jðs2Þg ¼ cs1δs1;s2 þ
�
fields of spin swith

js1 − s2j < s < s1 þ s2

�
:

ð58Þ

The bound from above on the possible spins appearing
in the bracket is satisfied in any basis, but the bound from
below is special. If it is still present in the quantum
W-algebra, the three-point correlators will satisfy triangle
inequalities. The highest-weight gauge in the Drinfeld-
Sokolov reduction thus leads to the classical version of the
primary basis that we considered in this paper; it seems to
be a preferred gauge choice to discuss holography.
The dictionary established here works for the massless

fields in the bulk that do not carry propagating d.o.f., and
corresponding conserved currents in the dual CFT.
The classification of cubic vertices also involving massive
fields is not available in full generality in three dimensions
except for some examples [50]. There, it is established
that the massless limit is well behaved. Therefore, it would
be interesting to have a classification with massive fields
and see if similar polygon inequalities are governing the
interactions, or how such inequalities emerge in the
massless limit and how they match with correlators in CFT.
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APPENDIX: HIGHER CORRELATORS

In this Appendix, we provide the argument that for r ≥ 2,

Jðs1;i1Þðz1Þ…Jðsr;irÞðzrÞΩ ∈ ⨁
S−rþ1

s¼0

HðsÞ ⊕ ⨁
∞

s¼S−rþ2

HðsÞ;

ðA1Þ

where S ¼ s1 þ � � � þ sr. This can be equivalently stated in
terms of modes as

Jðs1;i1Þ−s1þn1…Jðsr;irÞ−srþnrΩ ∈ ⨁
S−rþ1

s¼0

HðsÞ ⊕ ⨁
∞

s¼S−rþ2

HðsÞ ðA2Þ

for all nk ∈ Z. The idea to prove this is the following: if all
nk’s are negative or zero, we immediately see that the vector
is in the space generated by normal-ordered products of
derivatives of the fields Jðsk;ikÞ; hence, it is a state of L0-
weight S −

P
nk ≥ S that is generated by fields of spin less

than maxðs1;…; srÞ < S. If one or more of the nk’s are
positive, we commute them to the right until they annihilate
the vacuum vector Ω. Using general structures for the
commutation relations (reviewed below), one can see that
the spins of the fields that are generated in this process are
bounded such that no fields of spin S − rþ 2 or higher are
produced.
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We have seen in Sec. IV C that the fields Jðs;iÞ in our
basis are quasiprimary. Commutation relations of general
holomorphic quasiprimary fields always take the form [see,
e.g., Eq. (2.54) of Ref. [39] ]

½ϕðiÞm;ϕðjÞn� ¼
X

k
sk<siþsj

Ck
ijpijkðm; nÞϕðkÞmþn

þ dijδm;−n

�
mþ si − 1

2si − 1

�
; ðA3Þ

where ϕðiÞm denotes the mth mode of a field ϕðiÞ of spin si,
and Ck

ij are structure constants. The pijkðm; nÞ are poly-
nomials inm and n which are completely fixed by the spins
si, sj, and sk. In our case, the basis fields Jðs;iÞ constitute
some of the ϕðjÞ, while the remaining ones are obtained by
quasiprimary combinations of normal-ordered products
and derivatives of the basis fields. The modes ϕðkÞm of

such a nonelementary field can be expressed as sums of
products of modes of the basis fields, where the sum of the
spins of the constituent fields is always lower than or equal
to the spin sk of the field.
Whenever in an expression like (A2) we commute one

mode Jðs1;i1Þ with another one Jðs2;i2Þ, the quantity “sum of
spins of generators − number of generators” is never
increased due to the commutation relations (A3). As on
the other hand, the “sum of spins of generators” is
decreased in the commutator (A3), the process of commut-
ing generators to the right has to stop at some point. The
spin s of a single generator that could remain therefore
satisfies

s − 1 ≤ S − r ⇒ s ≤ S − rþ 1; ðA4Þ

which completes the proof.
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