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SPHERICAL ANALYSIS ON HOMOGENEOUS VECTOR BUNDLES

FULVIO RICCI AND AMIT SAMANTA

Abstract. Given a Lie group G, a compact subgroup K and a representation τ ∈ K̂, we assume
that the algebra of End(Vτ )-valued, bi-τ -equivariant, integrable functions on G is commutative.
We present the basic facts of the related spherical analysis, putting particular emphasis on the rôle
of the algebra of G-invariant differential operators on the homogeneous bundle Eτ over G/K. In
particular, we observe that, under the above assumptions, (G,K) is a Gelfand pair and show that
the Gelfand spectrum for the triple (G,K, τ ) admits homeomorphic embeddings in Cn.

In the second part, we develop in greater detail the spherical analysis for G = K ⋉ H with
H nilpotent. In particular, for H = Rn and K ⊂ SO(n) and for the Heisenberg group Hn and

K ⊂ U(n), we characterize the representations τ ∈ K̂ giving a commutative algebra.

Introduction

Let (G,K) be a Gelfand pair with G a Lie group and K a compact subgroup of it. Recent work
has put attention on the fact that the spherical analysis on the bi-K-invariant algebra L1(K\G/K)
gains new interesting aspects from the fact that its Gelfand spectrum Σ, i.e., the space of bounded
spherical functions with the compact-open topology, can be naturally embedded into some Eu-
clidean space as a closed set [8].

Such an embedding ρ is defined by choosing a generating k-tuple (D1, . . . ,Dk) in the algebra of
G-invariant differential operators on G/K and assigning to the spherical function φ on G/K the
vector ρ(φ) =

(
λD1(φ), . . . , λDk

(φ)
)
∈ Ck whose entries λDj

(φ) are the eigenvalues of φ under the
Dj ’s.

This allows to introduce a notion of smoothness for functions defined on Σ, and to pose the
problem, classical in Fourier analysis, of relating smoothness of the spherical transform of a given bi-
K-invariant function on G with properties of the function itself. This question has been investigated
in detail for nilpotent Gelfand pairs, in which G = K ⋉H is a motion group on a nilpotent group
H [9, 10, 11].

In this paper we extend the basic framework for such analysis to the spherical transform of type
τ , where τ is an irreducible unitary representation of K for which the appropriate commutativity
assumptions are satisfied.

The notion of spherical transform of type τ goes back to [15]. In most of the existing literature
the accent is on the case where (G,K) is a symmetric pair. For the general case we refer to [25,
Ch. 6] and [22, 5].

There are two equivalent ways to introduce the objects of our analysis on a triple (G,K, τ),

where G is a Lie group, K a compact subgroup of it and τ ∈ K̂ as above.
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2 F. RICCI AND A. SAMANTA

In the first (or matrix-valued) picture one considers the homogeneous bundle Eτ = G ×τ Vτ
with basis G/K and linear operators on sections of Eτ commuting with the action of G. The
Schwartz kernel theorem implies that, under mild continuity assumptions, any such operator can
be represented by convolution with an End(Vτ )-valued

1 distributional kernel F on G satisfying the
identity

(0.1) F (k1xk2) = τ(k−1
2 )F (x)τ(k−1

1 ).

The commutativity condition imposed on τ is that the algebra of End(Vτ )-valued integrable
functions F on G satisfying the above identity is commutative with respect to the convolution
defined in (1.4) below.

In the second (scalar-valued) picture one considers the algebra of integrable scalar-valued func-
tions f on G which are K-central and satisfy the identity

f ∗ χτ = f,

and the requirement on τ is that this algebra be commutative.
We say that (G,K, τ) is a commutative triple if either of these conditions is satisfied.
In the first part of the paper we recall definitions and basic facts about commutative triples and

analyze in detail the relevant algebras of invariant differential operators in the two pictures, proving
that they are finitely generated (Sections 2).

It is proved in [7] that Thomas’s characterization [21] of Gelfand pairs admits the appropriate
extension to commutative triples (G,K, τ) with (G,K) a symmetric pair. This means that (G,K, τ)
is commutative if and only if the algebra D(Eτ ) of G-invariant differential operators on Eτ is
commutative. In Theorem 3.1 we provide a proof of this property which applies to general triples,
under the assumption that G/K is connected. Then the spherical functions of a commutative triple
coincide with the joint eigenfunctions of these operators which satisfy (0.1) and take unit value at
the identity of G.

From this equivalence we derive the following conclusion, which does not seem to appear in the
literature: if (G,K, τ) is a commutative triple, then (G,K) is a Gelfand pair. In particular, G must
be unimodular and the pair (G,K) must fall in the classification of Lie Gelfand pairs [23, 26, 27].

Since our proof is based on the analysis of D(Eτ ), this result is limited to Lie groups G,K with
G/K connected. It would be interesting to know if the same statement holds for commutative
triples where G is not a Lie group.

In Section 4 we describe the embeddings of the Gelfand spectrum of the algebra of integrable
functions satisfying (0.1) into Euclidean spaces, extending the result in [8] to general τ .

In Section 5 we comment on the special case of a strong Gelfand pair (G,K), defined by the

condition that (G,K, τ) is commutative for every τ ∈ K̂. Since (G,K) is a strong Gelfand pair
if and only if (K ⋉ G,K) is a Gelfand pair (with K acting on G by inner automorphisms), it is
natural to compare the Gelfand spectrum of this pair with those of the individual triples (G,K, τ).
We show that the former is the topological disjoint union of the latter ones.

In the second part of the paper we analyze the case where G = K ⋉H is a motion group on a
Lie group H. The sections of Eτ are then identified with the End(Vτ )-valued functions on H and
the algebra of integrable functions satisfying (0.1) with the algebra of End(Vτ )-valued integrable
functions on H which transform according to τ under K:

F (k · x) = τ(k)F (x)τ(k−1).

1For V,W finite dimensional complex vector spaces, Hom(V,W ) denotes the space of linear operators from V to
W . If V = W , we write End(V ) instead of Hom(V, V ).
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In this context, the representation theoretical criterion for having a commutative triple can be
reduced to conditions on the representations of H rather than of G. At the same time, the spherical
functions can be defined directly on H and their properties described without lifting them to G,
cf. Sections 6 and 7.

In Section 8 we show that the Gelfand spectrum Σ1 of the pair (G,K) is identified in a natural
way with a quotient of the spectrum Στ of the triple (G,K, τ), and that the quotient map becomes
a canonical projection onto a coordinate subspace of Ck when the two spectra are embedded in a
compatible way in complex Euclidean spaces.

From Section 9 on we further restrict ourselves to the case where H is nilpotent. We first extend
to this kind of commutative triples the proof in [3] that all bounded spherical functions are of
positive type.

In Section 10 we characterize the commutative triples with H = Rn as those for which τ decom-
poses without multiplicities when restricted to the stabilizer of any point in Rn, and the commu-
tative triples with H equal to the Heisenberg group Hn as those for which the tensor product of τ
and the metaplectic representation restricted to K decomposes without multiplicities.

This allows to easily recognize the known fact that
(
SO(n) ⋉ Rn, SO(n)

)
,
(
U(n) ⋉ Hn, U(n)

)

are strong Gelfand pairs, and in addition to classify the representations τ for which the triples(
SU(n)⋉Cn, SU(n), τ

)
, (SU(n)⋉Hn, SU(n), τ) are commutative.

In Section 11 we give general formulas for the bounded spherical functions and finally, in Section
12 , we explicitely compute them in the special case H = Rn, K = SO(n) and τ the natural
representation on Cn.

1. Commutative triples and spherical functions of type τ

Let G be a locally compact group, K be a compact subgroup of G and τ a finite dimensional
unitary representation of K on the space Vτ .

By C∞(G,Vτ ) we denote the space of Vτ -valued smooth functions on G and by C∞
τ (G,Vτ ) we

denote the subspace of functions u satisfying the identity

(1.1) u(xk) = τ(k−1)u(x), ∀k ∈ K.

Then C∞
τ (G,Vτ ) is naturally identified with the space of smooth sections of the homogeneous

bundle Eτ = G ×τ Vτ . Similar notation will be used with C∞ replaced by other function (or
distribution) spaces, like D(= C∞

c ),D′, Ck, Lp etc.
It follows from the Schwartz kernel theorem that every linear operator, continuous with the

respect to the standard topologies, mapping D-sections of Eτ into D′-sections of Eτ and commuting
with the action of G on Eτ , can be represented in a unique way as2

Tu(x) =

∫

G

F (y−1x)u(y)dy, u ∈ Dτ (G,Vτ ),(1.2)

with F ∈ D′
τ,τ

(
G,End(Vτ )

)
, i.e.,

F (k1xk2) = τ(k−1
2 )F (x)τ(k−1

1 ).(1.3)

Conversely, any F ∈ D′
τ,τ

(
G,End(Vτ )

)
defines a continuous G-invariant operator T on D-sections

of Eτ via formula (1.2).

2The integral notation in (1.2) and the pointwise identity (1.3) must be appropriately interpreted when F is not
a function.
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In particular, operators T = TF as in (1.2) with F ∈ L1
τ,τ

(
G,End(Vτ )

)
can be composed with

each other (e.g., because they are bounded on L1-sections) and TF1TF2 = TF1∗F2 , where

F1 ∗ F2(x) =

∫

G

F2(y
−1x)F1(y)dy.(1.4)

Definition. (G,K, τ) is a commutative triple if the algebra L1
τ,τ (G,End(Vτ )) is commutative.

The following well-known theorem ([25], Vol. II, Page-9, Prop. 6.1.1.6) gives a characterization

of commutative triples in terms of representation of G. By Ĝ we denote the set of all equivalence
classes of irreducible unitary representations of G.

Theorem 1.1. (G,K, τ) is a commutative triple if and only if, for any π ∈ Ĝ, the multiplicity of
τ in π|K is at most 1.

To an End(Vτ )-valued function F we associate the scalar-valued function

(1.5) SτF = dτTrF.

The following statement is also well known [25, vol. II].

Proposition 1.2. An End(Vτ )-valued function function F satisfies (1.3) if and only if f = SτF is
K-central, i.e.,

f(kxk−1) = f(x), ∀ k ∈ K,(1.6)

and of type τ , i.e.,

f ∗ (dτ χ̄τmK) := dτ

∫

K

f(xk)χτ (k)dk = f(x),(1.7)

where mK denotes the normalized Haar measure on K.
Under these assumptions on F and f , Sτ is bijective and the inverse map is given by

(1.8) S−1
τ f(x) =

∫

K

τ(k)f(kx)dk.

By Lp
τ (G)intK we denote the space of K-central Lp functions of type τ . For p = 1, L1

τ (G)
intK is

closed under convolution. It is easy to verify that

S−1
τ (f1 ∗ f2) = f1 ∗ (S

−1
τ f2) = (S−1

τ f1) ∗ (S
−1
τ f2) ,

which leads to the following conclusion.

Proposition 1.3. The map Sτ establishes an algebra isomorphism between L1
τ,τ

(
G,End(Vτ )

)
and

L1
τ (G)

intK .

Definition. Let (G,K, τ) be a commutative triple. A non-trivial function Φ ∈ L∞
τ,τ (G,End(Vτ )) is

said to be a τ -spherical function if the map

F → F̂ (Φ) :=
1

dτ

∫

G

Tr
[
F (x)Φ(x−1)

]
dx =

1

dτ
Tr

[
F ∗ Φ(e)

]

is a homomorphism of L1
τ,τ (G,End(Vτ )) into C.
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Definition. Let (G,K, τ) be a commutative triple. A non trivial function φ ∈ L∞
τ (G)intK is said

to be a trace τ -spherical function if the map

f → f̂(φ) :=

∫

G

f(x)φ(x−1)dx = f ∗ φ(e)

is a homomorphism of L1
τ (G)

intK into C.

Observe that our definition of trace spherical function differs from that in [25] by a factor of dτ .
The following theorem characterizes the τ -spherical functions in terms of functional equations.

We refer to [14] and [5, Thm. 3.6] for the proof.

Theorem 1.4. For Φ ∈ L∞
τ,τ (G,End(Vτ )) and φ = 1

d2τ
Sτ (Φ) the following are equivalent:

(i) Φ is a τ -spherical function.
(ii) φ is a trace τ -spherical function.
(iii) Φ ∈ L∞

τ,τ (G,End(Vτ )) is nontrivial and satisfies the functional equation

(1.9) dτ

∫

K

Φ(xky)χτ (k)dk = Φ(y)Φ(x).

(iv) φ ∈ L∞
τ (G)intK is nontrivial and satisfies the functional equation∫

K

φ(xkyk−1)dk = φ(x)φ(y).(1.10)

A τ -spherical function Φ satisfies Φ(e) = I.

2. Differential operators on homogeneous bundles

Let D(G) be the algebra of left-invariant differential operator on G. The action of D(G) on
C∞(G) induces an action of D(G)⊗ End(Vτ ) on C

∞(G,Vτ ) = C∞(G)⊗ Vτ given by

(2.1) (D ⊗ T )u := D(Tu).

With an abuse of notation, we will write D for the “scalar” operator D ⊗ I.
The elements of D(G) ⊗ End(Vτ ) which preserve C∞

τ (G,Vτ ) are the ones which are invariant
under all operators µ(k), k ∈ K given by

(2.2) µ(k)(D ⊗ T ) = DAdk ⊗ τ(k−1)Tτ(k),

where, for an automorphism ϕ of G and D ∈ D(G),

Dϕf =
(
D(f ◦ ϕ)

)
◦ ϕ−1,

cf. [24, p. 120].

Denote by
(
D(G) ⊗ End(Vτ )

)K
the algebra of operators which are invariant under µ in (2.2),

and by λ : S(g) −→ U(g) ∼= D(G) the symmetrization operator. The following statement is pretty
obvious.

Lemma 2.1. The operator

Λ := λ⊗ I : S(g)⊗ End(Vτ ) −→ D(G)⊗ End(Vτ )

is a linear bijection from the space
(
S(g) ⊗ End(Vτ )

)K
of End(Vτ )-valued polynomials P on g

satisfying the identity
P ◦ Ad(k) = τ(k)−1Pτ(k),
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onto
(
D(G)⊗ End(Vτ )

)K
.

The algebra D(Eτ ) of G-invariant differential operators acting on smooth sections of the homo-
geneous bundle Eτ is then the quotient

D(Eτ ) =
(
D(G)⊗ End(Vτ )

)K/(
D(G)⊗ End(Vτ )

)K
0
,

of
(
D(G)⊗ End(Vτ )

)K
modulo the ideal of those operators which are trivial on C∞

τ (G,Vτ ).
In fact, we have the relations obtained by differentiating (1.1) with respect to k: for X ∈ k and

u ∈ C∞
τ (G,Vτ ),

(2.3) Xu = −dτ(X)u .

The following statement, proved in [17], essentially says that the full ideal
(
D(G) ⊗ End(Vτ )

)K
0

is generated by the relations (2.3).

Theorem 2.2. Let p be an Ad(K)-invariant complement of k in g. Then Λ is a linear bijection

from
(
S(p)⊗ End(Vτ )

)K
onto D(Eτ ).

Another consequence of (2.3), combined with the identity End(Vτ ) = dτ
(
U(k)

)
, is that any

D ∈ D(Eτ ) acts on C
∞
τ (G,Vτ ) in the same way as a (scalar) element of

DK(G) := {D ∈ D(G) : DAd(k) = D} = {D ∈ D(G) : DRk = D}.

To be more precise, for a polynomial P (x, y) ∈ S(g) on g (x ∈ k, y ∈ p), define the modified
symmetrization λ′(P ) ∈ D(G) as

(
λ′(P )f

)
(g) = P (∂x, ∂y)|x=y=0

f(g exp y expx).

It is quite obvious that λ′ : S(g) → D(G) is the linear bijection uniquely defined by the require-
ment that, if P (x, y) = p(x)q(y), then

(2.4) λ′(P ) = λ(q)λ(p).

Moreover, λ′(u) ∈ DK(G) if and only if u is Ad(K)-invariant. We set p−(x) = p(−x).

Corollary 2.3. For D = λ′
(∑

pj(x)qj(y)
)
∈ DK(G), set

Aτ (D) = Λ
(∑

j

qj ⊗ dτ
(
λ(p−j )

))
=

∑

j

λ(qj)⊗ dτ
(
λ(p−j )

)
.

Then Aτ is well defined, it maps DK(G) linearly onto D(Eτ ) and Aτ (D)u = Du for every
u ∈ C∞

τ (G,Vτ ).
The identity Aτ (D)F = DF also holds for End(Vτ )-valued smooth functions satisfying the iden-

tity F (xk) = τ(k)−1F (x), in particular for F ∈ Cτ,τ

(
G,End(Vτ )

)
.

Proof. Well defined-ness follows from the linearity of λ and dτ ; ontoness follows from Theorem 2.2.
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For u ∈ C∞
τ (G,Vτ ), we have

Du(g) =
∑

j

qj(∂y)|y=0
pj(∂x)|x=0

u(g exp y expx)

=
∑

j

qj(∂y)|y=0
pj(∂x)|x=0

τ
(
exp(−x)

)
u(g exp y)

=
∑

j

qj(∂y)|y=0
dτ

(
λ(p−j )

)
u(g exp y)

=
∑

j

dτ
(
λ(p−j )

)
λ(qj)u(g)

= Aτ (D)u(g).

The last part of the statement is an obvious consequence of the fact that the space of smooth
End(Vτ )-valued functions F satisfying the identity F (xk) = τ(k)−1F (x) can be identified with
C∞
τ (G,Vτ )⊗ V ′

τ . �

From the above corollary we can conclude the following :

• Ker(Aτ ) =
{
D ∈ DK(G) : D |C∞

τ (G,Vτ )

}
=

{
D ∈ DK(G) : D |C∞

τ (G)intK

}

• Let Sτ and its inverse S−1
τ be the operators defined in (1.5) and (1.8). For F ∈ C∞

τ,τ (G,End(Vτ ),

f ∈ C∞
τ (G)intK and D ∈ DK(G), Corollary 2.3 gives the identities

Sτ
(
Aτ (D)F

)
= Sτ (DF ) = D(SτF ) , S−1

τ (Df) = D(S−1
τ f) = Aτ (D)(S−1

τ f).

Let (S(p) ⊗S(k))K denotes the AdK invariant elements in S(p ⊗S(k) = S(g).

Proposition 2.4. The diagram
(
S(p) ⊗S(k)

)K
DK(G)

D(Eτ )
(
S(p) ⊗ End(Vτ )

)K

λ′

AτI ⊗ (dτ ◦ λ)

Λ

is commutative, the horizontal arrows indicate bijections and the vertical ones surjections. More-
over, conjugation by Sτ establishes an isomorphism of algebras between D(Eτ ) and

DK,τ (G) = DK(G)/ kerAτ .

Corollary 2.5. D(Eτ ) and DK,τ (G) are finitely generated algebras.

Proof. It suffices to prove that DK,τ (G) is finitely generated. By the Hilbert basis theorem, the space
I(g) of Ad(K)-invariant polynomials on g is finitely generated. Let u1, . . . , um be a Hilbert basis,
with deguj = dj . Then λ′(ujuk) ≡ λ′(uj)λ

′(uk) modulo elements of degree strictly smaller than
dj + dk. This implies, by induction on the degree, that DK(G) is generated by λ′(u1), . . . , λ

′(um).
Being a quotient of DK(G), DK,τ(G) is also finitely generated. �
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3. Characterization of spherical functions as eigenfunctions

Like for the standard case of a pair (G,K) [21, 24], commutativity of convolution algebras is
equivalent to commutativity of algebras of invariant differential operators, under the assumption
that G/K is connected. We remark that this statement is usually formulated under the stronger
assumption that G is connected.

Theorem 3.1. Consider the following statements:

(i) (G,K, τ) is a commutative triple,
(ii) D(Eτ ) is commutative,
(iii) DK,τ (G) is commutative.

Then (i)⇒(ii)⇔(iii). If G/K is connected, they are all equivalent.

Proof. The equivalence of (ii) and (iii) follows from Proposition 2.4.
To prove that (i)⇒(iii), let D ∈ DK(G), f ∈ C∞

τ (G)intK , u ∈ C∞
c (G)intK .

With uτ = u ∗ (dτ χ̄τmK), we have

• Df ∈ C∞
τ (G)intK ,

• Duτ = (Du)τ ∈ C∞
τ (G)intK ,

• u ∗ f = uτ ∗ f = f ∗ uτ = f ∗ u.

Hence, given D1,D2 ∈ DK(G),

u ∗ (D1D2f) = D1D2(u ∗ f) = D1D2(uτ ∗ f)

= D1D2(f ∗ uτ ) = D1

(
f ∗ (D2uτ )

)

= D1

(
(D2uτ ) ∗ f

)
= (D2uτ ) ∗ (D1f)

= (D1f) ∗ (D2uτ ) = D2

(
(D1f) ∗ uτ

)

= (D1f) ∗ (D2uτ ) = uτ ∗ (D2D1f)

= u ∗ (D2D1f) .

Applying this identity to an approximate identity {uj} ⊂ C∞
c (G)intK , we conclude that D1D2f =

D2D1f , hence D1D2 = D2D1 in the quotient algebra Dk,τ (G).
We consider now the opposite implication (iii)⇒(i) assuming first that G is connected.
Let u be any K-central analytic function. The function

U(x, y) =

∫

K

uτ (kxk
−1y)dk.

is analytic in (x, y) ∈ G × G, K-central in each variable and satisfies the identity U(k1, k2) =
U(k2, k1) for all k1, k2 ∈ K.

Let D1,D2 ∈ D(G). Defining D0
i :=

∫
K
DAdK

i dk, for any K-central function g, D0
i g is K-central.

Then, for every k1, k2 ∈ K,

D1,xD2,yU(k1, k2) = D0
1,xD

0
2,yU(k1, k2)

=

∫

K

D0
1,x

(
D0

2uτ (kxk
−1k2)

)
|x=k1 dk

=

∫

K

D0
1,x

(
D0

2uτ (k
−1k2kx)

)
|x=k1 dk

=

∫

K

D0
1D

0
2uτ (k

−1k2kk1)
)
dk
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=

∫

K

D0
2D

0
1uτ (k

−1k2kk1)
)
dk

=

∫

K

D0
2D

0
1uτ (kk1k

−1k2)
)
dk

= D2,xD1,yU(k2, k1)

= D1,yD2,xU(k2, k1).

Denote by Ge the connected component of e in G. By the analyticity of U , it follows that
U(k1x, k2y) = U(k2y, k1x) for all k1, k2 ∈ K and x, y ∈ Ge. Since G/K is connected, every
connected component of G contains an element of K. Hence U(x, y) = U(y, x) for all x, y ∈ G.

This implies that, for any f, g ∈ L1
τ (G)

intK and compactly supported,
∫

G

g ∗ f(x)u(x)dx =

∫

G

g ∗ f(x)uτ (x)dx =

∫

G

∫

G

f(y)g(x)U(x, y)dxdy

and similarly
∫

G

f ∗ g(x)u(x)d =

∫

G

∫

G

g(y)f(x)U(x, y)dxdy =

∫

G

∫

G

g(x)f(y)U(y, x)dxdy.

Therefore
∫
G
g ∗ f(x)u(x)dx =

∫
f ∗ g(x)u(x) for all K-central analytic functions u. Since analytic

integrable functions are dense in L1(G), the same is true for L1(G)intK , hence f ∗ g = g ∗ f . �

Theorem 3.2. Let (G,K, τ) be a commutative triple, with G/K connected. For Φ ∈ L∞
τ,τ (G,End(Vτ ))

and φ = dτTrΦ ∈ L∞
τ (G)int(K), the following are equivalent :

(i) Φ is a τ -spherical function;

(ii) Φ is a joint eigenfunction for all D ∈
(
D(G)⊗ End(Vτ )

)K
and Φ(e) = I.

(iii) Φ is a joint eigenfunction for all D ∈ DK(G) and Φ(e) = 1.
(iv) φ is a trace τ -spherical function;
(v) φ is a joint eigenfunction for all D ∈ DK(G) and φ(e) = 1.

In particular, both kinds of spherical functions are analytic.

Proof. The equivalence of (ii) and (iii) follows from Corollary 2.3. To complete the proof, it suffices
to prove the equivalence of (iv) and (v).

Lifting K-central functions on G to bi-K♯-invariant functions on K⋉G, with K♯ = diag(K), one
can see that condition (1.10) is equivalent to the functional equation

∫
K
φ♯(gkg′)dk = φ♯(g)φ♯(g′)

for the lifted function φ♯.
The proof in [16, Ch. IV, Prop. 2.2] can then be adapted to prove that a non trivial K-central

bounded function φ satisfies (1.10) if and only if it is an eigenfunction of all D ∈ DK(G).
Analiticity of φ follows from the existence of a K-central left-invariant Laplacian on G, and that

of Φ by Theorem 1.4. �

Corollary 3.3. Let (G,K, τ) be a commutative triple with G/K is connected. Then (G,K) is a
Gelfand pair. In particular, G is unimodular.

Proof. By Theorem 3.1, D(Eτ ) is commutative. Let I(p) denote the space of all Ad(K)-invariant

polynomials on p. Then clearly I(p) ⊗ I ⊂
(
S(p) ⊗ End(Vτ )

)K
. Therefore, in view of Theorem

2.2, it follows that λ(I(p)) is commutative. But this implies, by [16, Thm. 4.9], that D(G/K) is
commutative. Hence (G,K) is a Gelfand pair. �
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4. Gelfand spectrum and embeddings into Euclidean spaces

The following theorem says that the τ -spherical functions are uniquely determined by the set of
their eigenvalues.

Theorem 4.1. Let (G,K, τ) be a commutative triple. Let φ1 and φ2 be two trace τ -spherical
function so that Dφi = µi(D)φi (i=1,2) for all D ∈ DK(G). If µ1(D) = µ2(D) for all D ∈ DK(G),
then φ1 = φ2.

Proof. By the given conditions we have, Dφ1(e) = Dφ2(e) for all D ∈ DK(G). Now let D ∈ D(G).
Define D0 =

∫
K
DAdkdk which clearly belongs to DK(G). Since φi are K-central, it follows that

D0φi(e) = Dφi(e). Therefore Dφ1(e) = Dφ2(e) for all D ∈ D(G). But φ1, φ2 being analytic, they
must coincide on whole of G. �

Let Στ be the set of all trace τ -spherical function. By Corollary 2.5, we can fix a finite set
D = (D1, · · · ,Dk) of generators of DK,τ (G). Then the map ρD which assigns to a φ ∈ Στ the
k-tuple

ρD(φ) =
(
λD1(φ), · · · , λDk

(φ)
)
∈ Ck

of its eigenvalues is injective, by Proposition 4.1. Assume that Στ is endowed with the weak*-
topology.

Theorem 4.2. On Στ , the weak*-topology and the compact-open topology coincide. The map ρD
is a homeomorphism from Στ to its image in Ck, and ρD(Στ ) is closed.

Proof. Introducing coordinates t = (t1, · · · , tn) on g according to the exp map, let |t| an Ad(K)-
invariant norm on g. The operator △ := λ(|t|2) is in DK(G) and is elliptic (a Laplacian). Being an
eigenfunction of △, any φ ∈ Στ is real-analytic. The rest of the proof goes as in [8, Thm. 10 and
Cor. 11]. �

5. Strong Gelfand pairs

Given a pair (G,K), with K a compact subgroup of G, there may be several τ ∈ K̂ such that
(G,K, τ) is a commutative triple. We have already seen that if a nontrivial τ gives a commutative
triple and G/K is connected, then also the trivial representation does.

The extreme situation occurs when (G,K, τ) is a commutative triple for all τ ∈ K̂. When this
occurs, one says that (G,K) is a strong Gelfand pair.

Lemma 5.1. The following are equivalent:

(i) (G,K) is a strong Gelfand pair,
(ii) (K ⋉G,K) is a Gelfand pair, with K acting on G by inner automorphisms,
(iii) L1(G)intK is commutative,
(iv) (for G connected) DK(G) is commutative.

This follows easily from the identities

L1(G)intK =
∑

τ∈K̂

L1
τ (G)

intK , L1
τ (G)

intK ∗ L1
σ(G)

intK = {0} , τ 6∼ σ .
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Definition. Let (G,K) be a strong Gelfand pair. A non zero φ ∈ L∞(G)intK is said to be a
L1(G)intK-spherical function if the map

f →

∫

G

f(g)φ(g−1)dg

is an an algebra homomorphism of L1(G)intK onto C.

The following statement follows directly from (ii) in Lemma 5.1.

Theorem 5.2. Let (G,K) be a strong Gelfand pair. The following are equivalent:

(i) φ is a L1(G)intK-spherical function,
(ii) φ is nonzero, bounded and satisfies the functional equation

∫

K

φ(xkyk−1)dk = φ(x)φ(y),(5.1)

(iii) (if G is connected) φ(e) = 1, φ is K-central, analytic and is a joint eigenfunction of all
D ∈ DK(G).

If φ is a L1(G)intK-spherical function, then, by the functional equation (5.1), φ(e) = 1 6= 0.
Therefore, in view of Theorem 5.2 (iii) and Proposition 3.2, we have the following proposition.

Proposition 5.3. Let (G,K) be a strong Gelfand pair. Let φ be a L1(G)intK-spherical function.

Then there is unique τ ∈ K̂ such that φ ∈ L∞(G)intKτ . Hence φ is an trace τ -spherical function.

Proof. Since φ is nonzero, there is τ ∈ K̂ such that φτ := φ ∗ (dτ χ̄τmK) is nonzero. By (5.1), we
obtain that, for all x, y ∈ G,

φτ (x)φ(y) = φ(x)φτ (y) .

With y = e, this gives that φτ = φτ (e)φ. Hence φτ (e) 6= 0, φ ∈ L∞(G)intKτ , and finally
φ = φτ . �

Corollary 5.4. Let Σ denote the spectrum of the Gelfand pair (K ⋉G,K). Then Σ is the disjoint

union of the spectra Στ of the triples (G,K, τ), τ ∈ K̂. Each Στ is open and closed in Σ.

Proof. For each τ ∈ K̂, the map ρτ which assigns to a bounded spherical function φ ∈ Σ the value

ρτ (φ) = φ ∗ (dτ χ̄τmK)(e) =

∫

K

φ(k)χτ (k)dk ,

is continuous on Σ and only takes values 0 or 1. This implies that Στ = ρ−1
τ (1) is closed. On the

other hand, if a sequence of functions ϕn ∈ Σ converges to φ ∈ Στ , then ρτ (φn) must be eventually
be equal to 1. Then φn ∈ Στ eventually. This proves that Στ is open. �

6. K-homogeneous bundles over a Lie group H

In this section we consider the special case where G = K ⋉ H, H being a Lie group and K a
compact group of automorphisms of H, and (τ, Vτ ) is an irreducible unitary representation of K.
We denote by k · x the action of k ∈ K on x ∈ H. The product on K ⋉H is given by

(k, x)(k′, x′) =
(
kk′, x(k · x′)

)
.
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The sections of Eτ , i.e., the Vτ -valued functions u onG satisfying the identity u(gk) = τ(k)−1u(g),
are naturally identified with Vτ -valued functions u0 on H, via the map T given by

(6.1) T : u0(x) 7−→ u(k, x) = τ(k)−1u0(x).

The action of H on u0 is given by left translations and that of an element k ∈ K by

(6.2) k : u0(x) 7−→ τ(k)u0(k
−1 · x).

Similarly, the integral operators on Vτ -valued functions on H commuting with the action of G
are given, in analogy with (1.2), by

u(x) 7−→

∫

H

F (y−1x)u(y)dy,

where F : H → End(Vτ ) satisfies the identity

F (k · x) = τ(k)F (x)τ(k−1).(6.3)

This is equivalent to saying that

TF (k, x) = τ(k)−1F (x) ∈ L1
τ,τ (G).

Composition of integral operators corresponds to convolution of F1, F2 ∈ L1
τ (H), defined as

F1 ∗ F2(x) =

∫

H

F2(y
−1x)F1(y)dy.

Then, under this convolution, L1
τ (H) becomes an algebra.

Therefore (K ⋉ H,K, τ) is a commutative triple iff L1
τ (H) is commutative. In this case H is

unimodular.
As for Gelfand pairs, here too we have a reformulation of Theorem 1.1. Let Ĥ be the dual object

of H, i.e., the set of equivalence classes [π] of irreducible unitary representations π of H. The group

K acts on Ĥ in the following way: given k ∈ K and π irreducible and unitary, πk(x) = π(k−1 · x)
defines an irreducible and unitary representation of H, which may or may not be equivalent to π.
Note that if π1 ∼ π2 then πk1 ∼ πk2 . So we can set k · [π] = [πk].

Let Kπ be the stabilizer of [π], which is clearly compact. For k ∈ Kπ, there exists a (unique
up to a unitary factor) unitary operator δ(k) on Hπ (the Hilbert space where π is realized) which
intertwines π with πk, i.e., πk(x) = δ(k−1)π(x)δ(k) for all x ∈ H. This defines a projective unitary
representation δ of Kπ on Hπ. Consider the representation δ ⊗ (τ |Kπ) of Kπ on Hπ ⊗ Vτ . Since
Kπ is compact, δ ⊗ (τ |Kπ) is completely reducible. Then we have the following theorem giving a
characterization for (G,K, τ) to be a commutative triple, in analogy with [6].

Theorem 6.1. (K⋉H,K, τ) is a commutative triple iff for each π ∈ Ĥ, δ⊗ (τ |Kπ) is multiplicity
free.

To prove the Theorem we need the following lemma. Let L(Hπ) denote the set of all bounded
operators on Hπ. For F ∈ L1(H)⊗ End(Vτ ), define π(F ) ∈ L(Hπ)⊗ End(Vτ ) ∼= L(Hπ ⊗ Vτ ) by

π(F ) =

∫

H

π(x)⊗ F (x)dx.

Lemma 6.2. Let F ∈ L1
τ (H). Then π(F ) intertwines δ ⊗ (τ |Kπ) with itself.
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Proof. We have, for k ∈ Kπ,

π(F )
(
δ(k) ⊗ τ(k)

)
=

∫

H

(
π(x)δ(k)

)
⊗

(
F (x)τ(k)

)
dx

=

∫

H

(
δ(k)πk(x)

)
⊗

(
τ(k)F (k−1 · x)

)
dx

=

∫

H

(
δ(k)π(k−1 · x)

)
⊗

(
τ(k)F (k−1 · x)

)
dx

=
(
δ(k) ⊗ τ(k)

)
π(F ). �

Now we prove Theorem 6.1. For the proof of ’only if’ part, we follow [6], cf. also [3, Thm.3.5]

Proof of Theorem 6.1. Let (G,K, τ) be a commutative triple and let π ∈ Ĥ. If σ is the multiplier

of the associated projective representation δ of Kπ, let K̂π

σ
denote the set of equivalence classes of

unitary irreducible projective representation of Kπ with multiplier σ. Then

δ =
⊕

ρ∈K̂π
σ

c(ρ, δ)ρ,

where c(ρ, δ) is the multiplicity if ρ in δ. For ρ ∈ K̂π

σ
, let ρ′ be its contragredient representation,

with multiplier σ̄. Then R(k, x) := ρ′(k) ⊗ π(x)δ(k) defines an irreducible linear representation of

Kπ ⋉H and the induced representation IndK⋉H
Kπ⋉HR is irreducible. Also,

(IndK⋉H
Kπ⋉HR) |K⋍ IndKKπ

(R |Kπ) = IndKKπ
(ρ′ ⊗ δ).

By Frobenius reciprocity,

c
(
τ, (IndK⋉H

Kπ⋉HR) |K
)
= c(τ |Kπ , ρ

′ ⊗ δ).

Since (K ⋉H,K, τ) is a commutative triple, so is (K ⋉H,K, τ ′). Therefore

c
(
τ ′, (IndK⋉H

Kπ⋉HR) |K
)
= 0 or 1,

and hence c(τ ′ |Kπ , ρ
′ ⊗ δ) = 0 or 1. But

c(τ ′ |Kπ , ρ
′ ⊗ δ) = c

(
1, ρ′ ⊗ δ ⊗ (τ |Kπ)

)
= c

(
ρ, δ ⊗ (τ |Kπ)

)
.

Hence it follows that δ ⊗ (τ |Kπ) is multiplicity free.

Conversely, assume that the Kπ-action on Hπ ⊗ Vτ is multiplicity free for all π ∈ Ĥ. Then it
follows from Lemma 6.2 that π(F ) and π(G) commutes whenever F,G ∈ L1

τ (H). Since this is true

for all π ∈ Ĥ, by uniqueness of the Fourier transform we can conclude that F ∗G = G ∗ F . �

Definition. Let (K ⋉H,K, τ) be a commutative triple. A non-trivial function Ψ ∈ L∞
τ (H) is said

to be a τ -spherical function if the map

F → F̂ (Ψ) :=
1

dτ

∫

H

Tr[Ψ(x−1)F (x)]dx

is a homomorphism of L1
τ (H) into C. Here dτ is the dimension of Vτ .

Recall the definition of T from 6.1.

Theorem 6.3. The following are equivalent:

(i) Ψ is a τ -spherical function on H;
(ii) Φ = T (Ψ) is a τ -spherical function on K ⋉H;
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(iii) Ψ ∈ L∞
τ (H) is non-trivial and, for all h, h′ ∈ H, satisfies the identity

dτ

∫

K

τ(k−1)Ψ
(
h(k · h′)

)
χτ (k)dk = Ψ(h′)Ψ(h).(6.4)

Proof. An easy calculation shows that T̂ (F )(Φ) = F̂ (Ψ) for all F ∈ L1
τ (H). This proves the

equivalence of (i) and (ii).
In view of Theorem 1.4, it is enough to show that (1.9) is equivalent to (6.4). If x = (e, h)

and y = (e, h′) then Φ(xky) = Φ(k, hk · h′) = τ(k−1)Ψ(hk · h′). Therefore, putting x = (e, h) and
y = (e, h′) in (1.9) we get (6.4). Conversely, if x = (k1, h1) and y(k2, h2) then

dτ

∫

K

Φ(xky)χτ (k)dk = dτ

∫

K

Φ
(
k1kk2, h1(k1k · h2)

)
χτ (k)dk

= dτ

∫

K

τ(k1kk2)
−1Ψ

(
h1(k1k · h2)

)
χτ (k)dk

= dτ

∫

K

τ(k1kk2)
−1τ(k1)Ψ

(
(k−1

1 · h1)(k · h2)
)
τ(k−1

1 )χτ (k)dk

= τ(k−1
2 ) dτ

∫

K

τ(k−1)Ψ
(
(k−1

1 · h1)(k · h2)
)
χτ (k)dk τ(k

−1
1 )

= τ(k−1
2 )Ψ(h2)Ψ(k−1

1 · h1)τ(k
−1
1 ) = Φ(y)Φ(x). �

7. Differential operators on K-homogeneous bundles over H

Once the sections of Eτ have been identified with Vτ -valued functions on H, we can also realize
the elements of D(Eτ ) as differential operators on Vτ -valued functions on H which are left-invariant
and commute with the action (6.2) of K.

We denote the algebra of such operators by
(
D(H)⊗ End(Vτ )

)K
.

Keeping Theorem 2.2 in mind, we can choose p, the Ad(K)-invariant complement of k in g, to
be h, the Lie algebra of H, and define the map

Λ′ = λh ⊗ I :
(
S(h) ⊗ End(Vτ )

)K
−→

(
D(H)⊗ End(Vτ )

)K
.

The two maps Λ of Lemma 2.1 and Λ′ are conjugate of each other under the map T in (6.1).
This gives the following theorem.

Theorem 7.1. The algebras D(Eτ ) and
(
D(H)⊗ End(Vτ )

)K
are isomorphic. In particular, (K ⋉

H,K, τ) is a commutative triple if and only if
(
D(H)⊗ End(Vτ )

)K
is commutative.

Corollary 7.2. Let (K ⋉ H,K, τ) be a commutative triple and Ψ ∈ L∞
τ (H). The following are

equivalent:

(i) Ψ is a τ -spherical function.

(ii) Ψ is a joint eigenfunction for all D ∈
(
D(H)⊗ End(Vτ )

)K
.

It must be noticed that we have no analogue of Corollary 2.3 for differential operators on H,

i.e., the effective action of
(
D(H) ⊗ End(Vτ )

)K
on C∞ Vτ -valued functions includes the action of

DK(H) properly. However, we have the following proposition.

Proposition 7.3.
(
D(H)⊗ End(Vτ )

)K
is a finite module over DK(H).
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Proof. Given P ∈
(
S(h) ⊗ End(Vτ )

)K
, consider the characteristic polynomial

det
(
P (x)− λI

)
= ±

(
λd + q1(x)λ

d−1 + · · ·+ qd(x)
)
,

where qj ∈ S(h)K for j = 1, . . . , d. It follows from the Cayley-Hamilton theorem that

P (x)d = −q1(x)P (x)
d−1 − · · · − qd(x)I .

Combining this with Corollary 2.5, we obtain the conclusion. �

8. Relations among the spectra Στ and Σ1

It follows from Corollary 3.3 that, if (K⋉H,K, τ) is a commutative triple, the same is true with
τ replaced by the trivial representation, i.e., (K ⋉H,K) is a Gelfand pair. We establish relations
between the two spectra, Στ and Σ1 respectively, also in terms of their embeddings into complex
spaces as introduced in Section 4. We start from the following statement.

Lemma 8.1. Given an τ -spherical function Ψ, the function ψ = d−1
τ TrΨ is a usual spherical func-

tion for the Gelfand pair (K ⋉H,K). For D ∈ D(H)K , the following relation between eigenvalues
holds:

λD(ψ) = λD⊗I(Ψ) .

The map d−1
τ Tr is continuous from Στ to Σ1.

Proof. Since Ψ satisfies (6.3), TrΨ is K-invariant. Moreover, ψ(e) = 1 and, for D ∈ D(H)K ,

Dψ =
1

dτ
D(TrΨ) =

1

dτ
Tr

(
(D ⊗ I)Ψ

)
= λD⊗I(Ψ)ψ.

Continuity of the map Ψ 7→ ψ with respect to the topologies of uniform convergence on compact
sets is obvious. �

Reformulating the results of Section 3 in terms of End(Vτ )-valued spherical functions and dif-
ferential operators, and specializing to the present situation where G = K ⋉H, such embeddings

depend on the choice of a finite generating system D = {Dj} ⊂
(
D(H)⊗ End(Vτ )

)K
.

It is convenient to consider systems D formed by a generating system D0 = {D1, . . . ,Dh} of

DK(H), completed with Dh+1, . . . ,Dd generating
(
D(H)⊗End(Vτ )

)K
as a DK(H)-module. Then

every element D ∈
(
D(H)⊗ End(Vτ )

)K
can be expressed in the form

D = L0 ⊗ I +

d∑

j=h+1

LjDj ,

with L0, Lh+1, . . . , Ld ∈ D(H)K , it follows that, setting Dj = Dj ⊗ I for j = 1, . . . , h,
(
D(H) ⊗

End(Vτ )
)K

is generated by

D = {D1, . . . ,Dd}.

Simultaneously, the generating system D0 = {D1, . . . ,Dh} of DK(G) induces an embedding ρD0

of the spectrum Σ1 of the Gelfand pair (G,K) into Ch.
With π1 denoting the canonical projection of Ch×Cd−h onto its first factor, we have the following

commutative diagram:
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Στ ρD(Στ )

ρD0(Σ1)Σ1

ρD

π1d−1
τ Tr

ρD0

In particular, π1 maps ρD(Στ ) into ρD0(Σ1) and, if ψ = d−1
τ TrΨ, ρD0(ψ) = π1 ◦ ρD(Ψ).

9. Spherical functions of positive type

Let V be a finite dimensional Euclidean complex space, i.e., endowed with a positive definite
Hermitean product. A continuous End(V )-valued function F is of positive type on a group G if
any of the following equivalent conditions holds, for every finite choice of elements x1, . . . , xn ∈ G:

(1) for every v1, . . . , vn ∈ V ,

∑

j,k

〈F (xjx
−1
k )vk, vj〉 ≥ 0.(9.1)

(2) for every v1, . . . , vn ∈ V , the matrix
(
〈F (xjx

−1
k )vk, vj〉

)
jk

is positive semi-definite;
(3) for every B1, . . . , Bn ∈ End(V ),

∑

j,k

B∗
jF (xjx

−1
k )Bk ∈ End(V )

is positive semi-definite;
(4) for any E ∈ C∞

c (G,End(V )))∫

G

Tr
[
(E∗ ∗E)(x)F (x−1)

]
dx ≥ 0.(9.2)

Moreover any measurable function F satisfying condition (4) is continuous and of positive type.

Proposition 9.1. Let F be of positive type. The following properties hold.

(i) F (e) is positive semi-definite;
(ii) for every x ∈ G, F (x−1) = F (x)∗;
(iii) fore every v ∈ V , ψv(x) = 〈F (x)v, v〉 is of positive type;
(iv) kerF (e) ⊆ kerF (x) and imF (x) ⊆ imF (e) for every x ∈ G;
(v) for every x ∈ G, F (x)∗F (x) ≤ F (e)2.

Proof. To prove (i), apply (9.1) with n = 1.
To prove (ii), apply (9.1) with n = 2, x1 = x, x2 = e. Then, for every v1, v2,

(9.3) 〈F (e)v1, v1〉+ 〈F (x)v1, v2〉+ 〈F (x−1)v2, v1〉+ 〈F (e)v2, v2〉 ≥ 0 .

Then
Im

(
〈F (x)v1, v2〉+ 〈F (x−1)v2, v1〉

)
= 0 ,
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i.e., Im〈F (x)v1, v2〉 = Im〈F (x−1)∗v1, v2〉. Replacing v1 by iv1, we find that also the real parts are
equal, and (ii) follows.

(iii) follows from condition (2) with vj = v for all j.
To prove (iv), apply (9.1) with n = 2, x1 = x, x2 = e, v1 = v1, v2 = λv2, where λ is real. Then

we get
〈F (e)v1, v1〉+ λ2〈F (e)v2, v2〉+ λ〈F (x−1)v2, v1〉+ λ〈F (x)v1, v2〉 ≥ 0 .

If v1 ∈ KerF (e),

λ2〈F (e)v2, v2〉+ 2λRe〈F (x)v1, v2〉 ≥ 0

which implies that
|λ|〈F (e)v2, v2〉 ≥ |Re〈F (x)v1, v2〉|

for all real λ. Taking λ → 0, we deduce that Re〈F (x)v1, v2〉 = 0. Replacing v2 = iv2, we also
get that imaginary part of 〈F (x)v1, v2〉 is zero, so that 〈F (x)v1, v2〉 = 0. Since this is true for any
v1 ∈ KerF (e), v2 ∈ V , we conclude that KerF (x) ⊂ KerF (e).

(v) is equivalent to the condition ‖F (x)v‖ ≤ ‖F (e)v‖ for all v ∈ V . By (iv), it is sufficient to

take v ∈
(
kerF (e)

)⊥
. So we may assume that F (e) is invertible. In this case, replacing F (x) by

F (e)−
1
2F (x)F (e)−

1
2 , which remains of positive type, we may assume that F (e) = I. Applying (9.3)

with v2 replaced by eiθF (x)v2, we have

‖v1‖
2 + 2Re

(
e−iθ〈F (x)v1, F (x)v2〉

)
+ ‖F (x)v2‖

2 ≥ 0 ,

which gives, by the arbitrarity of θ,

2
∣∣〈v1, F (x)∗F (x)v2〉

∣∣ ≤ ‖v1‖
2 + ‖F (x)v2‖

2 .

Passing to the supremum over v1 of unit norm, we obtain the inequality

2‖F (x)∗F (x)v2‖ ≤ 1 + ‖F (x)v2‖
2 .

For ‖v2‖ = 1, this imples that

2‖F (x)v2‖
2 = 2〈F (x)∗F (x)v2, v2〉 ≤ 2‖F (x)∗F (x)v2‖ ≤ 1 + ‖F (x)v2‖

2 ,

whence ‖F (x)v2‖ ≤ 1. �

The proofs of the following result can be found in [20], [25, vol. II p. 15-16 and Remark].

Theorem 9.2. Let (G,K, τ) be a commutative triple. Given π ∈ Ĝ such that τ ⊂ π|K , (say, with
Vτ ⊂ Hπ), the function Φ given by

(9.4) 〈Φ(x)u, v〉 = 〈π(x)u, v〉 ,

with u, v ∈ Vτ , is τ -spherical and of positive type. Conversely, every spherical function of positive
type arises in this way.

Consider now the case where G = K ⋉H.

Proposition 9.3. Let F be an End(Vτ )-valued measurable function on H. Then F is of positive
type if and only if T (F ), defined according to (6.1), is of positive type on G.

This leads us to the following description of the L1
τ (H)-spherical functions of positive type only

in terms of irreducible unitary representations of H, instead of representations of K ⋉H.

Fix π ∈ Ĥ. Let Hπ ⊗ Vτ = ⊕αWα(π) be the multiplicity-free decomposition into irreducible
invariant subspaces under the action of δ ⊗ τ , where α runs over an index set Λ = Λ(π). Let Pα =
Pα(π) denote the orthogonal projection onto Wα = Wα(π). If F ∈ L1

τ (H), π(F ) ∈ LKπ(Hπ ⊗ Vτ )
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by Lemma 6.2. Therefore π(F ) = ⊕αF̂ (π, α)Pα for some constants F̂ (π, α). Since π(F ∗ G) =

π(F )π(G), it follows that, for each α, F → F̂ (π, α) defines a multiplicative linear functional of
L1
τ (H).
Since for F ∈ L1

τ (H), π(F ) can be written as

π(F ) =

∫

K

∫

H

[
I ⊗ τ(k−1)

][
π(k−1 · x)⊗ F (x)

]
[I ⊗ τ(k)]dxdk,

we have

F̂ (π, α) =
1

dα
Tr[π(F )Pα]

=
1

dα
Tr

[ ∫

K

∫

H

[
π(k−1 · x)⊗ F (x)

]
[I ⊗ τ(k)]Pα

[
I ⊗ τ(k−1)

]
dxdk

]
,

Defining TrHπ as the partial trace of an element of L(Hπ ⊗ Vτ ) relative to Hπ, and setting

Φπ,α(x) =
dτ
dα

TrHπ

[ ∫

K

[
π(k−1 · x)⊗ I

]
[I ⊗ τ(k)]Pα

[
I ⊗ τ(k−1)

]
dk

]
,(9.5)

we then have

F̂ (π, α) =
1

dα
Tr

[ ∫

H

[
I ⊗ F (x)

] ∫

K

[
π(k−1 · x)⊗ I

]
[I ⊗ τ(k)]Pα

[
I ⊗ τ(k−1)

]
dkdx

]

=
1

dτ
Tr

[ ∫

H

F (x)Φπ,α(x)dx

]
.

This is true for all F ∈ L1
τ (H). Also, note that Φπ,α ∈ L∞

τ (H). Therefore Φπ,α is a τ -spherical
function.

In general, not all bounded spherical functions are of positive type. The following case where
the two classes coincide is particularly relevant in view of Vinberg’s structure theorem for Gelfand
pairs [23, Thm. 5]. The method of proof is taken from [3] and adapted to the nonscalar case.

Theorem 9.4. Let (K ⋉H,K, τ) be a commutative triple, with H nilpotent. Then all bounded τ
-spherical functions on H are of positive type.

Proof. Let Ψ be a bounded τ -spherical function on H i.e. the linear map λΨ : F → F̂ (Ψ) is a
non-trivial homomorphism of L1

τ (H) onto C. Since H is a locally compact nilpotent lie group, by
Corollary 6 in [19], L1(H,End(Vτ )) is symmetric Banach ∗-algebra. By Theorem 1 in [18] (page-
305), it follows that, there is an irreducible representation (π,Hπ) of L

1(H,End(Vτ )) together with
a one dimensional subspace HΨ of Hπ such that

(
π |L1

τ (H),HΨ

)
is equivalent to (λΨ,C). Therefore,

there is a vector v0 ∈ HΨ such that F̂ (Ψ) = 〈π(F )v0, v0〉 for all F ∈ L1
τ (H). Now, we use

Proposition 9.3 to prove that Ψ is of positive type. Let G ∈ C∞
c (H,End(Vτ )). Define

G#(x) :=

∫

K

τ(k−1)F (k · x)τ(k)dk.

Then ∫

H

Tr
[
(G∗ ∗G)(x)Ψ(x−1)

]
dx =

∫

H

Tr
[
(G∗ ∗G)#(x)Ψ(x−1)

]
dx

=

∫

H

Tr
[
((G#)∗ ∗G#)(x)Ψ(x−1)

]
dx

= dτ
〈
π((G#)∗ ∗G#)v0, v0

〉
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= dτ
〈
π(G#)v0, π(G

#)v0
〉
≥ 0.

Therefore Ψ is of positive type. �

10. The case where H = Rn or the Heisenberg group Hn. Commutativity criteria

Let K be a compact subgroup of O(n) acting naturally on Rn, and (τ, Vτ ) be an irreducible
unitary representation of K.

The following theorem gives a criterion for (Rn,K, τ) to be a commutative triple.

Theorem 10.1. Let Kx = {k ∈ K : k · x = x} be the stabilizer of x ∈ Rn. Then (K ⋉Rn,K, τ) is
a commutative triple if and only if, for all x ∈ Rn, Kx action on Vτ is multiplicity free.

The condition “for all x ∈ Rn” can be replaced by “for generic x ∈ Rn”. Theorem 10.1 can be
shown to be a consequence of Theorem 6.1, but it admits a direct proof, based on following lemma.
We denote by EndKx0

(Vτ ) the elements of End(Vτ ) which commute with τ|Kx0
.

Lemma 10.2. Let x0 ∈ Rn and A ∈ EndKx0
(Vτ ). Then there is a compactly supported function

F ∈ Cτ (R
n) such that F (x0) = A.

Proof. Let Sx0 be a slice at x0. For the existence of slices, cf. [4, Ch. 2, Section 5]. By definition,
Sx0 is an open and Kx0-invariant neighborhood of 0 in the normal space Nx0 to the orbit K · x0 at
x0, such that the K-equivariant map

σ : K ×Kx0
Sx0 → Rn,

given by σ(k, x) = k(x0 + x), is a diffeomorphism of K ×Kx0 Sx0 onto the open neighborhood
K(x0+Sx0) of K ·x0. Here the notation K×Kx0

Sx0 stands for the quotient of K×Sx0 modulo the

action of Kx0 , i.e., (kk
′, x) is equivalent to (k, k′x) for all k′ ∈ Kx0 , x ∈ Sx0 . Also, cf. [11, Corollary

5.3], for every x ∈ Sx0 , we have the inclusion Kx ⊂ Kx0 , more explicitly Kx = (Kx0)x.
Fix a Kx0-invariant scalar-valued function ψ ∈ Cc(Sx0) with ψ(x0) = 1, and define

F : K ×Kx0
Sx0 → End(Vτ )

by

F (k, x) = ψ(x)τ(k)Aτ(k−1).

This is well defined because, for k ∈ K, k′ ∈ Kx0 , x ∈ Sx0 , F (kk
′, x) = F (k, k′x), since

A ∈ EndKx0
(Vτ ) and ψ is Kx0-invariant. Clearly, F is continuous. Also note that F (k1k2, x) =

τ(k1)F (k2, x)τ(k1)
−1. �

Proof of Theorem 10.1. For F ∈ L1(Rn) ⊗ End(Vτ ), define its Fourier transform FF = F̂ ∈
C0(R

n)⊗ End(Vτ ) via the ordinary Fourier integral. Then

F : L1
τ (R

n) −→
(
C0(R

n)⊗ End(Vτ )
)K

:= (C0)τ (R
n) ,

with dense image. Moreover, F̂1 ∗ F2 = F̂1F̂2. So, it is enough to show that (C0)τ (R
n) is commuta-

tive under pointwise product if and only if, for each x ∈ Rn, Kx acts on Vτ without multiplicities.
Assume that, for each x, Kx acts on Vτ without multiplicities. Then EndKx(Vτ ) is commutative.

If F ∈ (C0)τ (R
n), F (k · x) = τ(k)F (x)τ(k−1) for all k ∈ K, which implies that F (x) ∈ EndKx(Vτ ).

Hence (C0)τ (R
n) is commutative.
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Conversely, suppose that (C0)τ (R
n) is commutative. Given x ∈ Rn and A,B ∈ EndKx(Vτ ),

by Lemma 10.2 there exist F,G ∈ (Cc)τ (R
n) with F (x) = A, G(x) = B. This implies that

AB = BA. �

Let now Hn be the (2n+1) dimensional Heisenberg group, identified with Cn ×R with product

(z, t)(z′, t′) =
(
z + z′, t+ t′ +

1

2
〈z, z′〉

)
,

where 〈z, z′〉 denotes the natural Hermitian product on Cn. For k ∈ U(n),

k · (z, t) = (kz, t)

is an automorphism of Hn, and, up to conjugation, U(n) is the unique maximal compact and
connected subgroup of Aut(Hn).

Given a compact subgroup K of U(n) and τ ∈ K̂, we have the following necessary and sufficient
condition for (K ⋉ Hn,K, τ) to be a commutative triple. By Phol(C

n) = C[z1, . . . , zn] we denote
the space of holomorphic polynomials on Cn and by σ be the representation of U(n) on Phol(C

n)
given by σ(k)P = P ◦ k−1.

Proposition 10.3. Given a compact subgroup K of U(n) and τ ∈ K̂, the triple (K ⋉Hn,K, τ) is
commutative if and only if σ|K ⊗ τ and σ′|K ⊗ τ decompose without multiplicities.

Proof. In applying Theorem 6.1 to our case, it suffices to restrict oneself to the infinite-dimensional

representations πλ ∈ Ĥ associated to nontrivial characters eiλt of the center of Hn.
In the Fock-Bargmann model, the representation space consists of holomorphic functions on Cn

which are square integrable with respect to the measure e−|λ||z|2dzdz̄; and polynomials are dense
in it. Moreover, the stabilizer Kπλ

is the full group K and the representation δ described in the
proof of Theorem 6.1 is linear and coincides with σ|K for λ > 0 and with σ′|K for λ < 0.

The conclusion is then immediate. �

Corollary 10.4. The triples
(
SO(n) ⋉ Rn, SO(n), τ

)
,
(
U(n) ⋉Hn, U(n), τ

)
are commutative for

every τ ∈ K̂.
For the triples

(
SU(n)⋉Cn, SU(n), τ

)
,
(
SU(n)⋉Hn, SU(n), τ

)
the following are equivalent:

(i) it is commutative,

(ii) the highest weight µ of τ ∈ ŜU(n) is singular, i.e. is annihilated by some root,
(iii) condition (6.3) on an integrable End(Vτ )-valued function F implies the identity F (eiθz) =

F (z), resp. F (eiθz, t) = F (z, t), i.e., the SU(n)-action on the bundle extends to U(n).

Proof. The first part is a restatement of the well-known fact that
(
SO(n)⋉ Rn, SO(n)

)
,
(
U(n)⋉

Hn, U(n)
)
are strong Gelfand pairs [27, Thm. 3]. On the other hand, the first case follows directly

from Theorem 10.1 applying the branching rules for restrictions of representations of classical groups
[13], and the second can be proved by modifying slightly the argument below.

To prove the part of the statement concerning H = Hn and K = SU(n), we disregard the trivial
case n = 1 and assume that n ≥ 2. We have

(10.1) σ|SU(n)
⊗ τ =

∞∑

m=0

σm ⊗ τ,

where σm(k) denotes the restriction of σ|SU(n)
(k) to the space Pm

hol(C
n) of holomorphic polynomial

homogeneous of degree m.
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Let λ1, . . . , λn−1 the simple positive roots in decreasing order. The highest weight µ is identified
by the (n − 1)-tuple a = (a1, . . . , an−1) with aj = λj(µ) ≥ 0. We then write µ = µa. By Pieri’s
formula [13],

σm ⊗ µa =
∑

b∈Bm

µb,

where Bm is the set of (n− 1)-tuple b = (b1, . . . , bn−1) with

bj = aj + cj − cj+1 ,

n∑

1

cj = m , 0 ≤ cj+1 ≤ aj for j = 1, . . . , n− 1.

Assume that the same b is obtained from two choices c1, . . . , cn with
∑
cj = m, and c′1, . . . , c

′
n

with
∑
c′j = m′. This is equivalent to saying that the differences cj − c′j do not depend on j.

If τ is singular, at least one of the aj is 0 and this forces the equalities c′j = cj for every j,

m′ = m. Hence σ|SU(n)
⊗ τ splits without multiplicities. Moreover, τ ′ is also singular and the same

conclusion holds for σ′|SU(n)
⊗ τ = (σ|SU(n)

⊗ τ ′)′.

On the other hand, if τ is regular, then aj ≥ 1 for every j, and the choices m = cj = 0 and
m′ = n, c′j = 1 show that τ is contained both in σ0 ⊗ τ and in σn ⊗ τ . This gives the equivalence

between (i) and (ii).
Assume now that (i) holds. By Proposition 10.3 and formula (10.1), each irreducible component

of σ|SU(n)
⊗ τ is contained in σm ⊗ τ . On the other hand, condition (ii) implies that, if χ is any

character of U(1) which extends τ from the center of SU(n), for every F ∈ L1
τ (Hn), πλ(F ) commutes

with σ(eiθI)⊗ χ for λ > 0, and with σ′(eiθI)⊗ χ for λ < 0. Since σ(eiθI) = eimθI on Pm
hol(C

n), we
have that, denoting by τ̃ the representation of U(n) given by

τ̃(eiθk) = χ(eiθ)τ(k) , k ∈ SU(n),

for every k ∈ U(n), πλ(F ) commutes with σ ⊗ τ̃ for λ > 0 and with σ′ ⊗ τ̃ for λ < 0. Hence
F ∈ L1

τ̃ (Hn) and, in particular,

F (eiθz, t) = τ̃(eiθI)F (z, t)τ̃ (e−iθI) = F (z, t).

This argument can be easily reversed to give the opposite implication.
Finally, if H = Cn and K = SU(n), the stabilizer of any z 6= 0 is SU(n− 1).
Assume that the highest weight µ of τ is regular, so that aj = λj(µ) > 0 for every j. Let τ ♯ be

the extension of τ to Un with highest weight

µ♯ = (µ1, µ2, . . . , µn−1, 0) = (a1 + · · ·+ an−1 , a2 + · · · + an−1 , . . . , an−1, 0) .

Another application of Pieri’s formula, cf. [13, p. 80], shows that τ ♯|U(n−1)
contains both repre-

sentations with highest weights

(µ1, µ2, . . . , µn−1) , (µ1 − 1, µ2 − 1, . . . , µn−1 − 1) ,

which have equivalent restrictions to SU(n − 1). By Theorem 10.1, the triple is not commutative
for such τ .

Conversely, assume that the highest weight of τ is singular. Given two functions F1, F2 ∈ L1
τ (C

n),
let Gj(z, t) = Fj(z)η(t), j = 1, 2, with η ∈ L1(R) with integral 1. Then G1, G2 ∈ L1

τ (Hn), so that
G1 ∗G2 = G2 ∗G1. But ∫

R

Gi ∗Gj(z, t) dt = Fi ∗ Fj(z) ,

hence F1 and F2 commute. �
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Notice that the implication (i)⇒(iii) holds for every K ⊂ U(n), with U(n) replaced by KU(1).

11. The case where H = Rn or Hn. Spherical functions

Let (Rn,K, τ) be a commutative triple. For fixed ξ ∈ Rn, let Vτ = ⊕
l(ξ)
j=1Vj,ξ be the multiplicity-

free decomposition of Vτ under the action of Kξ. Let Pj,ξ denote the projection onto Vj,ξ with

respect to this decomposition, and dj the dimension of Vj,ξ. If F ∈ L1
τ (R

n) then F̂ ∈ (C0)τ (R
n),

and hence F̂ (ξ) ∈ HomKξ
(Vτ ). Therefore F̂ (ξ) = ⊕

l(ξ)
j=1F̂j(ξ)Pj,ξ for some scalars F̂j(ξ). Since

F̂ ∗G = F̂ Ĝ, it follows that, for each j, F → F̂j(ξ) defines a multiplicative linear functional of
L1
τ (R

n). But

F̂j(ξ) =
1

dj
Tr

[
Pj,ξF̂ (ξ)

]

=
1

dj
Tr

[
Pj,ξ

∫

Rn

eiξ·xF (x)dx

]

=
1

dj

∫

Rn

Tr

[
eiξ·xPj,ξF (x)

]
dx

=
1

dj

∫

K

∫

Rn

Tr

[
eiξ·(k·x)Pj,ξF (k · x)

]
dxdk.

Since F (k · x) = τ(k)F (x)τ(k)−1 and Tr(AB) = Tr(BA), we get

(11.1)

F̂j(ξ) =
1

dj

∫

K

∫

Rn

Tr

[
eiξ·(k·x)τ(k−1)Pj,ξτ(k)F (x)

]
dxdk

=
1

dτ

∫

Rn

Tr[Φξ,j(−x)F (x)]dx,

where

Φξ,j(x) =
dτ
dj

∫

K

e−iξ·(k·x)τ(k−1)Pj,ξτ(k)dk.(11.2)

Since Φξ,j ∈ L∞
τ (Rn), Φξ,j is a bounded τ -spherical function. We call it a Bessel function of type τ .

Theorem 11.1.

(a) {Φξ,j : ξ ∈ Rn, j = 1, 2, · · · l(ξ)} is the set of all bounded τ -spherical functions.
(b) Two spherical functions Φξ1,j1 ,Φξ2,j2 coincide if and only if the following conditions hold:

(i) ξ1 and ξ2 lie on the same K-orbit;
(ii) if ξ2 = kξ1, then Vj2,ξ2 = τ(k)

(
Vj1,ξ1

)
(this condition is independent of the choice of

k).

Proof. Let Ψ be a bounded spherical function. By Theorem 9.4, Ψ is of positive type. Applying
Theorem 9.2 and Proposition 9.3, there is an irreducible unitary representation π of G = K ⋉ Rn

such that τ ⊂ π|K (say, with Vτ ⊂ Hπ, uniquely determined by the multiplicity-free condition) and
〈
Ψ(x)u, v

〉
=

〈
π(e, x)u, v

〉
,

for all u, v ∈ Vτ .
The irreducible unitary representations of G are those induced from irreducible representations

of Gξ = Kξ × Rξ for some ξ ∈ Rn. By Frobenius reciprocity, for a given σ ∈ K̂ξ and λ ∈ R,

τ ⊂ IndGGξ
(σ ⊗ eiλ·) if and only if σ ⊂ τ|Kξ

. Hence Ψ determines an element λξ ∈ Rn, unique up to

the action of K, and a unique invariant subspace Vj,ξ of Vτ .
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The rest of the proof follows from the properties of induced representations. �

Corollary 11.2. Let Φξ,j be one of the spherical functions in (11.2) and D ∈
(
D(Rn)⊗End(Vτ )

)K
,

D = Q(∂x) , Q ∈
(
S(Rn)⊗ End(Vτ )

)K
.

Then the eigenvalue λD(Φξ,j) of Φξ,j under the action of D is the eigenvalue of Q(−iξ) on Vj,ξ.

Proof. Since Q(−iξ) commutes with τ|Kξ
, it is a scalar multiple of the identity, say λI, on Vj,ξ.

Hence Q(−iξ)Pj,ξ = λPj,ξ. Therefore,

D
(
e−iξ·xPj,ξ

)
= Q(−iξ)e−iξ·xPj,ξ = λe−iξ·xPj,ξ.

By the invariance of D, the same holds for e−iξ·(k·x)τ(k−1)Pj,ξτ(k) and all k ∈ K. Hence,
by (11.2),

DΦξ,j = λΦξ,j. �

Consider now a commutative triple (K ⋉Hn,K, τ) with K ⊆ U(n) and τ ∈ K̂. Let

Phol(C
n)⊗ Vτ =

∑

α

W+
α , Phol(C

n)⊗ Vτ =
∑

β

W−
β

be the decompositions into irreducibleK-invariant subspaces under σ|K ⊗τ and σ′|K ⊗τ respectively.

Since, for λ 6= 0, Kπλ
= K, the general formula (9.5) for spherical functions gives

(11.3)

Φ+
λ,α(z, t) =

dτ
dα
eiλtTrPhol

(
(πλ(z, 0) ⊗ I)Pα

)

Φ−
λ,β(z, t) =

dτ
dβ
eiλtTrPhol

(
(πλ(z, 0) ⊗ I)Pβ

)
,

for λ > 0 and λ < 0 respectively. We call these the Laguerre-type τ -spherical functions, because
the matrix entries of πλ(z, 0) contain Laguerre functions in |z|2, cf. [12].

To the Laguerre τ -spherical functions one should add those corresponding to the 1-dimensional
representations of Hn (i.e., to λ = 0), which are Bessel functions of type τ .

Theorem 11.3. The bounded spherical functions for (K ⋉ Hn,K, τ) are the functions Φ+
λ,α and

Φ−
λ,β in (11.3) and the functions Φ0

ξ,j(z, t) = Φξ,j(z), where the Φξ,j are the Bessel functions of type

τ (11.2) for the commutative triple (K ⋉Cn,K, τ).

12. An example

We give the explicit form of generating differential operators and of the spherical functions in
the case

H = Rn , K = SO(n) , Vτ = Cn,

where τ is the defining n-dimensional representation of SO(n).
Let ξ ∈ Rn \ {0}. It n = 2, Kξ = {I}. Therefore Vτ decomposes with multiplicity under the

action of Kξ. Hence, if n = 2, (Rn,K, τ) is not a commutative triple.
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On the other hand, for n ≥ 3 and ξ = ρe1 6= 0, Kξ
∼= SO(n − 1) and Vτ decomposes under the

action of Kξ as

(12.1) Vτ =

{
Ce1 ⊕ C(e2 + ie3)⊕ C(e2 − ie3) = Ve1,1 ⊕ Ve1,2 ⊕ Ve1,3 if n = 3,

Ce1 ⊕ e⊥1 = Ve1,1 ⊕ Ve1,2 if n > 3,

in both cases without multiplicities. Hence for any n ≥ 3, (Rn,K, τ) is a commutative triple.

We describe a system D of generators of
(
D(Rn) ⊗ End(Vτ )

)K
. To this purpose, we investigate

the structure of the algebra of K-invariant elements in S(Rn)⊗ End(Vτ ).
We denote by σ the representation of K on the space P(Rn,Mn,n) ∼= S(Rn) ⊗ End(Vτ ) of

matrix-valued polynomials, given by
(
σ(k)P

)
(x) = kP (k−1x)k−1.

For a σ-invariant space W ⊂ P(Rn,Mn,n), let W
τ denote the space of all σ(k)-fixed elements in

W . Note that a polynomial P : Rn →Mn,n is σ-invariant iff

P (k · x) = kP (x)k−1 ∀ k ∈ K.

Let I = C
[
|x|2

]
be the space of all K-invariant scalar-valued polynomials on Rn, H(Rn) the space

of all harmonic polynomials, Hm(Rn) be the space of all homogeneous harmonic polynomials of
degree m. Then

(12.2)

(
P(Rn,Mn,n)

)τ
= I

(
H(Rn,Mn,n)

)τ

= I

∞⊕

m=0

(
Hm(Rn,Mn,n)

)τ

Let δm and π ∼ τ⊗τ ′ denote the natural representations of K on Hm(Rn) andMn,n respectively:

δm(k)h(x) = h(k−1x) , π(k)A = kAk−1 ,

so that the restriction of σ to Hm(Rn,Mn,n) is equivalent to δm ⊗ π.
Under π, Mn,n decomposes into irreducibles as:

Mn,n = C I ⊕M skew
n,n ⊕M sym,0

n,n ,

where M skew
n,n is the space of n × n skew-symmetric matrices, and M sym,0

n,n is the space of n × n
symmetric matrices with zero trace. Then, for every m,

(12.3)
(
Hm(Rn,Mn,n)

)τ
=

(
Hm(Rn,C I)

)τ ⊕(
Hm(RnM skew

n,n )
)τ ⊕(

Hm(RnM sym,0
n,n )

)τ
.

Let us introduce the following elements of
(
P(Rn)⊗ End(V )

)τ
.

I3,1(x) =




0 −x3 x2
x3 0 −x1
−x2 x1 0


 ∈

(
H1(R

3,M skew
3,3 )

)τ
,

In,2(x) = x tx−
1

n
|x|2I ∈

(
H2(R

n),M sym,0
n,n

)τ
) n ≥ 3.

Theorem 12.1. Let P ∈
(
P(Rn,Mn,n)

)τ
. Then

P (x) =

{
p0
(
|x|2

)
+ p1

(
|x|2

)
J3,1(x) + p2

(
|x|2

)
J3,2(x) if n = 3

p0
(
|x|2

)
+ p2

(
|x|2

)
Jn,2(x) if n > 3

for some p0, p1, p2 ∈ I.
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Proof. Clearly, (
H(Rn,C I)

)τ
=

(
H(Rn) ∩ I)⊗ I = C I.

Let U1 = M skew
n,n , U2 = M sym,0

n,n . By Schur’s lemma it follows that
(
Hm(Rn) ⊗ Uj

)τ
contains a

non-zero element iff δm ∼ π′|Uj

∼ π|Uj
; and in that case it is unique up to a scalar multiple.

A simple check of dimensions shows that this equivalence can only hold for j = m = 2 if n ≥ 3,
and for j = m = 1 if n = 3. �

Theorem 12.1 implies that
(
PK(Rn) ⊗ End(V )

)τ
is generated as an I-module by I, I3,1, I3,2 if

n = 3, and by I, In,2 if n > 3.

Corollary 12.2. {I, I3,1} (resp. {I, In,2}) is a set of independent generators for the algebra(
P(Rn)⊗ End(V )

)τ
when n = 3 (resp. n > 3).

For F : Rn −→ Cn, let

DF =

{
I3,1(∂x)F = curlF if n = 3

(In,2(∂x) +
1
n
∆I)F = grad divF if n > 3.

Then D = {∆I,D} generates the algebra
(
D(Rn)⊗ End(Vτ )

)K
.

Proof. We just need to mention that, for n = 3, I3,2 = |x|2I + I23,1 (equivalently, grad divF =
∆F − curl curlF ). Moreover, I, I3,1 are algebraically independent when n = 3 (resp. I, In,2 when
n > 3). �

According to Theorem 11.1, the bounded spherical function are given by formula (11.2).
For ξ = 0, we have a unique spherical function Φ0,1(x) = I. We can then take ξ = se1 with

s > 0. By (6.3), it suffices to compute Φse1,j = Φs,j for x = re1 with r > 0, as we already know
that Φs,j(0) = I.

Factoring the integral in (11.2) modulo Kξ =
{(

1 0
0 h

)
: h ∈ SO(n − 1)

}
, we reduce ourselves

to an integral over the sphere Sn−1,

Φs,j(re1) =
n

dj

∫

Sn−1

eisry·e1Pj,y dσn−1(y) ,

where σn−1 is the normalized surface measure on Sn−1, y = k−1e1 and Pj,y = k−1Pj,e1k.

12.0.1. The case n > 3.

Referring to the decomposition (12.1), we have

P1,y = k−1e1
te1k = y ty , P2,y = In − P1,y = In − y ty.

Hence, for each s > 0 we have two spherical functions,

Φs,1(re1) = n

∫

Sn−1

eisry·e1y ty dσ(y)

Φs,2(re1) =
n

n− 1

∫

Sn−1

eisry·e1(In − y ty) dσ(y) =
n

n− 1

(∫

Sn−1

eisry·e1 dσ(y)
)
In −

1

n− 1
Φs,1(re1) .

Setting y = (cos t, (sin t)z), with z ∈ Sn−2,

Φs,1(re1) = nc−1
n

∫ π

0

∫

Sn−2

eisr cos t
(

cos2 t (cos t sin t) tz
(cos t sin t)z (sin2 t)z tz

)
dσn−2(z) sin

n−2 t dt,
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with

cn =

∫ π

0
sinn−2 t dt = π

1
2
Γ(n−1

2 )

Γ(n2 )
.

Integration in z annihilates the off-diagonal terms zj and zjzk with j 6= k, while
∫
Sn−2 z

2
j dσn−2(z) =

1
n−1 for symmetry reasons. Hence

Φs,1(re1) = nc−1
n

∫ π

0
eisr cos t

(
cos2 t 0

0 sin2 t
n−1 In−1

)
sinn−2 t dt

= nc−1
n

∫ π

0
eisr cos t sinn−2 t dt

(
1 0
0 0

)

+ nc−1
n

∫ π

0
eisr cos t sinn t dt

(
−1 0
0 1

n−1In−1

)
.

From the identity
∫ π

0
eiu cos t sink t dt = 2

k
2 π

1
2Γ

(k + 1

2

)Jk
2
(u)

u
k
2

we obtain that

Φs,1(re1) = n2
n
2
−1Γ

(n
2

)(Jn
2
−1(sr)

(sr)
n
2
−1

(
1 0
0 0

)
+
Jn

2
(sr)

(sr)
n
2

(
−(n− 1) 0

0 In−1

))
.

For general x = rke1, we have

k

(
1 0
0 0

)
k−1 = (ke1)

t(ke1) = |x|−2x tx,

k

(
0 0
0 In−1

)
k−1 = In − |x|−2x tx,

so that

Φs,1(x) = n2
n
2
−1Γ

(n
2

)( Jn
2
−1(s|x|)

s
n
2
−1|x|

n
2
+1
x tx+

Jn
2
(s|x|)

s
n
2 |x|

n
2
+2

(
|x|2In − nx tx

))

Similarly,

Φs,2(re1) =
n2

n
2
−1

n− 1
Γ
(n
2

)( Jn
2
−1(s|x|)

s
n
2
−1|x|

n
2
+1

(n|x|2In − x tx)−
Jn

2
(s|x|)

s
n
2 |x|

n
2
+2

(
|x|2In − nx tx

))
.

By Corollary 11.2, the map ρD of Section 4 relative to the system D = (∆I, grad div) is given by

ρD(Φs,1) = (−s2,−s2) , ρD(Φs,2) =
(
− s2, 0

)
.

12.0.2. The case n = 3.

For y ∈ S2, we have

P1,y = y ty

P2,y =
1

2
k−1(e2 + ie3)

t(e2 − ie3)k =
1

2

(
I3 − y ty + iI3,1(y)

)

P3,y =
1

2
k−1(e2 − ie3)

t(e2 + ie3)k =
1

2

(
I3 − y ty − iI3,1(y)

)
.
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For each s > 0 we now have three spherical functions,

Φs,1(re1) = 3

∫

S2

eisry·e1y ty dσ(y)

Φs,2(re1) =
3

2

∫

S2

eisry·e1
(
In − y ty + iI3,1(y)

)
dσ(y)

Φs,3(re1) =
3

2

∫

S2

eisry·e1
(
In − y ty − iI3,1(y)

)
dσ(y).

The only new computation that is needed concerns the integral

I(u) =

∫

S2

eiuy·e1I3,1(y) dσ(y).

In the polar coordinates y = (cos t, sin t cosϕ, sin t sinϕ), this becomes

I(u) =
1

4π

∫ π

0

∫ 2π

0
eiu cos t




0 − sin t sinϕ sin t cosϕ
sin t sinϕ 0 − cos t

− sin t cosϕ cos t 0


 sin t dϕdt

=
1

2

( ∫ π

0
eiu cos t cos t sin t dt

)
I3,1(e1)

=

√
π

2

J 3
2
(u)

u
1
2

iI3,1(e1).

Proceeding as for the case n > 3, we obtain

Φs,1(x) = 3

√
π

2

(J 1
2
(s|x|)

s
1
2 |x|

5
2

x tx+
J 3

2
(s|x|)

s
3
2 |x|

7
2

(
|x|2I3 − 3x tx

))

Φs,2(x) =
3

2

√
π

2

(J 1
2
(s|x|)

s
1
2 |x|

5
2

(3|x|2I3 − x tx)−
J 3

2
(s|x|)

s
3
2 |x|

7
2

(
|x|2I3 − 3x tx+ s|x|2I3,1(x)

))

Φs,2(x) =
3

2

√
π

2

(J 1
2
(s|x|)

s
1
2 |x|

5
2

(3|x|2I3 − x tx)−
J 3

2
(s|x|)

s
3
2 |x|

7
2

(
|x|2I3 − 3x tx− s|x|2I3,1(x)

))
.

Taking D = (∆I, curl), we have

ρD(Φs,1) = (−s2, 0) , ρD(Φs,2) =
(
− s2,−s

)
, ρD(Φs,3) =

(
− s2, s

)
.
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