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83 Işık University (Isikun), Istanbul, Turkey
84 I-Cube Research (I-Cube), Toulouse, France
85 II. Institut für Theoretische Physik, Universität Hamburg (UNITH), Hamburg, Germany
86 ILF Consulting Engineers (ILF), Zurich, Switzerland
87 Indian Institute of Technology Guwahati (IITG), Guwahati, India
88 Indian Institute of Technology Kanpur (IITK), Kanpur, Uttar Pradesh, India
89 Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Barcelona, Spain
90 Institut de Physique Nucléaire d’Orsay (CNRS/IN2P3/IPNO), Orsay, France
91 Institute for Advanced Study (IAS), Princeton, USA
92 Institute for Applied Physics, Goethe University (IAP), Frankfurt, Germany
93 Institute for Astro and Particle Physics, University of Innsbruck (UIBK), Innsbruck, Austria
94 Institute for High Energy Physics of NRC “Kurchatov Institute” (IHEP), Protvino, Russia
95 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University (IMAPP), Nijmegen, The Netherlands
96 Institute for Nuclear Problems of Belarusian State University (INP BSU), Minsk, Belarus
97 Institute of Electrical and Electronic Engineers (IEEE), Piscataway, USA
98 Institute of High Energy Physics, Chinese Academy of Science, Beijing (IHEP CAS), Beijing, China
99 Institute of Machine Components, University of Stuttgart (IMA), Stuttgart, Germany

100 Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN), Kraków, Poland
101 Institute of Physics, Academia Sinica (AS), Taipei, Taiwan
102 Institut Jožef Stefan (IJS), Ljubljana, Slovenia
103 Instituto de Astrofísica de Canarias (IAC), La Laguna, Spain
104 Instituto de Física Corpuscular (CSIC-UV), Paterna, Spain
105 Instituto de Física Corpuscular (CSIC-UV), Valencia, Spain
106 Instituto de Física Teórica, Universidad Autonoma de Madrid (IFT-UAM), Madrid, Spain
107 Instituto de Física, Universitat de València (CSIC), Valencia, Spain
108 Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Mar del Plata, Argentina
109 Instituto Galego de Física de Altas Enxerxías, Universidade de Santiago de Compostela (IGFAE), Santiago de Compostela, Spain
110 International Center for Advanced Studies, Universidad Nacional de San Martin (ICAS-UNSAM), San Martin, Argentina
111 Iowa State University (ISU), Ames, USA
112 Istanbul Aydin University (IAU), Istanbul, Turkey
113 Istanbul University (IÜ), Istanbul, Turkey
114 Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Salerno, Sezione di Napoli (INFN SA), Salerno, Italy
115 Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Gran Sasso (INFN LNGS), Assergi (L’Aquila), Italy
116 Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati (INFN LNF), Frascati, Italy
117 Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN LNLN), Legnaro, Italy
118 Istituto Nazionale di Fisica Nucleare Sezione di Bari (INFN BA), Bari, Italy
119 Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (INFN BO), Bologna, Italy
120 Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari (INFN CA), Cagliari, Italy
121 Istituto Nazionale di Fisica Nucleare, Sezione di Catania (INFN CT), Catania, Italy
122 Istituto Nazionale di Fisica Nucleare, Sezione di Cosenza (INFN CS), Cosenza, Italy
123 Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara (INFN FE), Ferrara, Italy
124 Istituto Nazionale di Fisica Nucleare, Sezione di Firenze (INFN FI), Florence, Italy
125 Istituto Nazionale di Fisica Nucleare, Sezione di Genova (INFN GE), Genoa, Italy
126 Istituto Nazionale di Fisica Nucleare, Sezione di Lecce (INFN LE), Lecce, Italy
127 Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca (INFN MIB), Milan, Italy
128 Istituto Nazionale di Fisica Nucleare, Sezione di Milano (INFN MI), Milan, Italy
129 Istituto Nazionale di Fisica Nucleare, Sezione di Napoli (INFN NA), Naples, Italy
130 Istituto Nazionale di Fisica Nucleare, Sezione di Padova (INFN PD), Padua, Italy

123



Eur. Phys. J. C (2019) 79 :474 Page 7 of 161 474

131 Istituto Nazionale di Fisica Nucleare, Sezione di Pavia (INFN PV), Pavia, Italy
132 Istituto Nazionale di Fisica Nucleare, Sezione di Perugia (INFN PG), Perugia, Italy
133 Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Università di Pisa (INFN PI), Pisa, Italy
134 Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1 (INFN Roma 1), Rome, Italy
135 Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tor Vergata (INFN Roma 2), Rome, Italy
136 Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre (INFN Roma 3), Rome, Italy
137 Istituto Nazionale di Fisica Nucleare, Sezione di Torino (INFN TO), Turin, Italy
138 Istituto Nazionale di Fisica Nucleare, Sezione di Trieste (INFN TS), Trieste, Italy
139 ITER (ITER), Cadarache, France
140 Ivane Javakhishvili T’bilisi State University (TSU), T’bilisi, Georgia
141 Izmir University of Economics (IUE), Izmir, Turkey
142 Johannes-Gutenberg-Universität (JGU), Mainz, Germany
143 John Adams Institute for Accelerator Science, The Chancellor, Masters and Scholars of the University of Oxford (JAI), Oxford, UK
144 Joint Institute for Nuclear Research (JINR), Dubna, Russia
145 Julius-Maximilians-Universität Würzburg (UWUERZBURG), Würzburg, Germany
146 Kahramanmaras Sutcu Imam University (KSU), Kahramanmaras, Turkey
147 Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
148 Katholieke Universiteit Leuven Research & Development (LRD), Leuven, Belgium
149 Key Laboratory of Theoretical Physics, Chinese Academy of Science (SKLTP ITP CAS), Beijing, China
150 King’s College London (KCL), London, UK
151 Kyoto University (Kyodai), Kyoto, Japan
152 Kyungpook National University (KNU), Sankyuk-dong, Republic of Korea
153 Laboratoire d’Annecy-Le-Vieux de Physique des Particules (CNRS/IN2P3/LAPP), Annecy, France
154 Laboratoire de l’Accelerateur Lineaire, Université de Paris Sud (CNRS/IN2P3/UPSUD/LAL), Orsay, France
155 Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Paris, France
156 Laboratoire de Physique Subatomique et de Cosmologie Grenoble (LPSC), Grenoble, France
157 Laboratoire de Physique Théorique et Hautes Energies (CNRS/Sorbonne/LPTHE), Paris, France
158 Laboratoire Leprince-Ringuet, Ecole Polytechnique (LLR), Palaiseau, France
159 Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Lisbon, Portugal
160 Latitude Durable (LD), Geneva, Switzerland
161 Lawrence Berkeley National Laboratory (LBNL), Berkeley, USA
162 Linde Kryotechnik AG (Linde), Pfungen, Switzerland
163 Loughborough University (LBoro), Loughborough, UK
164 Ludwig Maximilians University of Munich (LMU), Munich, Germany
165 Luvata Pori Oy (Luvata), Pori, Finland
166 MAN Energy Solutions Schweiz AG (MAN ES), Zurich, Switzerland
167 Marian Smoluchowski Institute of Physics, Jagiellonian University (UJ), Kraków, Poland
168 Massachusetts Institute of Technology (MIT), Cambridge, USA
169 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
170 Max-Planck-Institut für Physik (MPP), Munich, Germany
171 Ministère de l’Europe et des Affaires étrangères (MEAE), Paris, France
172 Monash University (Monash), Melbourne, Australia
173 MTA Wigner Research Centre for Physics (Wigner), Budapest, Hungary
174 Mustafa Kemal Üniversitesi (MKU), Hatay, Turkey
175 Nankai University (NKU), Tianjin, China
176 Nationaal instituut voor subatomaire fysica (NIKHEF), Amsterdam, The Netherlands
177 National Centre for Scientific Research Demokritos (NCSRD), Athens, Greece
178 National High Magnetic Field Laboratory, Florida State University (MagLab), Tallahassee, USA
179 National Institute of Chemical Physics and Biophysics (NICPB), Tallin, Estonia
180 National Research Center Kurchatov Institute (NRCKI), Moscow, Russia
181 National Research Nuclear University MEPhI (MEPhI), Moscow, Russia
182 National Science Centre Kharkov Institute of Physics and Technology (KIPT), Kharkov, Ukraine
183 National Technical University of Athens (NTUA), Athens, Greece
184 Naturhistorisches Museum Wien (NHM), Vienna, Austria
185 Niels Bohr Institute, Copenhagen University (NBI), Copenhagen, Denmark
186 Nigde Ömer Halisdemir University (OHU), Nigde, Turkey
187 Northern Illinois University (NIU), DeKalb, USA
188 Northwestern University (NU), Evanston, USA
189 Novosibirsk State University (NSU), Novosibirsk, Russia
190 Otto-von-Guericke-Universityät Magdeburg (OVGU), Magdeburg, Germany
191 Oxford University (UOXF), Oxford, UK
192 Paul Scherrer Institute (PSI), Villigen, Switzerland
193 Peking University (PU), Beijing, China
194 Perimeter Institute for Theoretical Physics (PI), Watterloo, Canada
195 Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute” (PNPI), Gatchina, Russia
196 Piri Reis University (PRU), Istanbul, Turkey

123



474 Page 8 of 161 Eur. Phys. J. C (2019) 79 :474

197 Pittsburgh Particle physics, Astrophysics and Cosmology Center, Department of Physics and Astronomy, University of Pittsburgh (PITT PACC),
Pittsburgh, USA

198 Princeton University (PU), Princeton, USA
199 PRISMA Cluster of Excellence, Inst. für Physik, Johannes-Gutenberg-Universität (PRISMA), Mainz, Germany
200 Pusan National University (PNU), Busan, Republic of Korea
201 Queen’s University (Queens U), Kingston, Canada
202 RAMENTOR Oy (RAMENTOR), Tampere, Finland
203 Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Aachen, Germany
204 Riga Technical University (RTU), Riga, Latvia
205 Royal Holloway University (RHUL), London, UK
206 Ruder Boskovic Institute (RBI), Zagreb, Croatia
207 Ruprecht Karls Universität Heidelberg (RKU), Heidelberg, Germany
208 Rutgers, The State University of New Jersey (RU), Piscataway, NJ, USA
209 Sapienza Università di Roma (UNIROMA1), Rome, Italy
210 School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
211 School of Physics and Astronomy, University of Glasgow (SUPA), Glasgow, UK
212 Science and Technology Facilities Council, Daresbury Laboratory (STFC DL), Warrington, UK
213 Science and Technology Facilities Council, Rutherford Appleton Laboratory (STFC RAL), Didcot, UK
214 scMetrology SARL (scMetrology), Geneva, Switzerland
215 Scuola Int. Superiore di Studi Avanzati di Trieste (SISSA), Trieste, Italy
216 Scuola Normale Superiore (SNS), Pisa, Italy
217 Seoul National University (SNU), Seoul, Republic of Korea
218 Sevaplan und Wurm Schweiz AG (WURM), Winterthur, Switzerland
219 Shahid Beheshti University (SBUT), Tehran, Iran
220 Shanghai Jiao Tong University (SJTU), Shanghai, China
221 Shirokuma GmbH (Shirokuma), Wetzikon, Switzerland
222 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University (SINP MSU), Moscow, Russia
223 Southern Federal University (SFU), Rostov, Russia
224 Southern Methodist University (SMU), Dallas, USA
225 Sri Guru Tegh Bahadur Khalsa College, University of Delhi (SGTB Khalsa College), New Delhi, India
226 Stanford National Accelerator Center (SLAC), Menlo Park, USA
227 Stanford University (SU), Stanford, USA
228 Stony Brook University (SBU), Stony Brook, USA
229 Technische Universität Darmstadt (TU Darmstadt), Darmstadt, Germany
230 Technische Universität Dortmund (TU Dortmund), Dortmund, Germany
231 Technische Universität Dresden (TU Dresden), Dresden, Germany
232 Technische Universität Graz (TU Graz), Graz, Austria
233 Technische Universität Wien (TU Wien), Vienna, Austria
234 Tel Aviv University (TAU), Tel Aviv, Israel
235 The Citadel, The Military College of South Carolina (Citadel), Charleston, USA
236 The Pennsylvania State University (PSU), University Park, USA
237 The University of Tokyo (Todai), Tokyo, Japan
238 Thomas Jefferson National Accelerator Facility (JLab), Newport News, USA
239 TOBB University of Economics and Technology (TOBB ETU), Ankara, Turkey
240 Tokyo Institute of Technology (Tokyo Tech), Tokyo, Japan
241 Trinity College Dublin (TCD), Dublin, Ireland
242 Tri-University Meson Facility (TRIUMF), Vancouver, Canada
243 Tsinghua University (THU), Beijing, China
244 Tsung-Dao Lee Institute (TDLI), Shanghai, China
245 Uludag University (ULUÜ), Bursa, Turkey
246 Universidad Autónoma de Sinaloa (UAS), Culiacán, Mexico
247 Universidad de Guanajuato (UGTO), Guanajuato, Mexico
248 Universidad de La Laguna (ULL), La Laguna, Spain
249 Universidad de la República (Udelar), Montevideo, Uruguay
250 Universidad de los Andes (Uniandes), Bogotá, Colombia
251 Universidade de São Paulo (USP), São Paulo, Brazil
252 Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
253 Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
254 Universidade Federal de Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
255 Università degli Studi Roma Tre, Centro Ricerche Economiche e Sociali Manlio Rossi-Doria (EDIRC), Rome, Italy
256 Università della Calabria (UNICAL), Arcavacata, Italy
257 Università del Salento (UNISALENTO), Lecce, Italy
258 Università di Bari (UNIBA), Bari, Italy
259 Università di Bologna (UNIBO), Bologna, Italy
260 Università di Cagliari (UNICA), Cagliari, Italy
261 Università di Catania (UNICT), Catania, Italy

123



Eur. Phys. J. C (2019) 79 :474 Page 9 of 161 474

262 Università di Ferrara (UNIFE), Ferrara, Italy
263 Università di Firenze (UNIFI), Florence, Italy
264 Università di Genova (UNIGE), Genoa, Italy
265 Università di Insubria (UNINSUBRIA), Milan, Italy
266 Università di Lecce (UNILE), Lecce, Italy
267 Università di Milano (UNIMI), Milan, Italy
268 Università di Padova (UNIPD), Padua, Italy
269 Università di Parma (UNIPR), Parma, Italy
270 Università di Pavia (UNIPV), Pavia, Italy
271 Università di Perugia (UNIPG), Perugia, Italy
272 Università di Roma Sapienza (UNIROMA1), Rome, Italy
273 Università di Roma Tor Vergata (UNIROMA2), Rome, Italy
274 Università di Roma Tre (UNIROMA3), Rome, Italy
275 Università di Torino (UNITO), Turin, Italy
276 Università di Udine (UNIUD), Udine, Italy
277 Universität Hamburg (UHH), Hamburg, Germany
278 Universität Heidelberg (HEI), Heidelberg, Germany
279 Universitat Politecnica de Catalunya (UPC), Barcelona, Spain
280 Universität Siegen (U Siegen), Siegen, Germany
281 Universität Tübingen (TU), Tübingen, Germany
282 Université Clermont Auvergne (UCA), Aubière, France
283 Université Grenoble Alpes (UGA), Grenoble, France
284 University College London (UCL), London, UK
285 University of Applied Sciences Technikum Wien (UAS TW), Vienna, Austria
286 University of Arizona (UA), Tucson, USA
287 University of Basel (UNIBAS), Basel, Switzerland
288 University of Belgrade (UB), Belgrade, Serbia
289 University of Bergen (UiB), Bergen, Norway
290 University of Bern (UNIBE), Bern, Switzerland
291 University of Birmingham (UBIRM), Birmingham, UK
292 University of Bristol (UOB), Bristol, UK
293 University of California Berkeley (UCB), Berkeley, USA
294 University of California, Davis (UCD), Davis, USA
295 University of California, Irvine (UCI), Irvine, USA
296 University of California, San Diego (UCSD), San Diego, USA
297 University of California Santa Barbara (UCSB), Santa Barbara, USA
298 University of California Santa Cruz (UCSC), Santa Cruz, USA
299 University of Cambridge (CAM), Cambridge, UK
300 University of Chicago (UCHI), Chicago, USA
301 University of Cincinnati (UC), Cincinnati, USA
302 University of Colorado Boulder (UCB), Boulder, CO, USA
303 University of Edinburgh (ED), Edinburgh, UK
304 University of Florida (UF), Gainesville, USA
305 University of Geneva (UniGE), Geneva, Switzerland
306 University of Illinois at Urbana Champaign (UIUC), Urbana Champaign, USA
307 University of Iowa (UIowa), Iowa City, USA
308 University of Jyväskylä (JYU), Jyväskylä, Finland
309 University of Kansas (KU), Lawrence, USA
310 University of Liverpool (ULIV), Liverpool, UK
311 University of Lund (ULU), Lund, Sweden
312 University of Malta (UM), Msida, Malta
313 University of Manchester (UMAN), Manchester, UK
314 University of Maryland (UMD), College Park, USA
315 University of Massachusetts-Amherst (UMass), Amherst, USA
316 University of Melbourne (UniMelb), Melbourne, Australia
317 University of Michigan (UMich), Ann Arbor, USA
318 University of New Mexico (NMU), Albuquerque, USA
319 University of Notre Dame du Lac (ND), South Bend, USA
320 University of Oregon (UO), Eugene, USA
321 University of Rochester (Rochester), Rochester, USA
322 University of Rostock (U Rostock), Rostock, Germany
323 University of Saskatchewan (USASK), Saskatoon, Canada
324 University of Science and Technology of China (USTC), Hefei, China
325 University of Science and Technology of Mazandaran (USTM), Behshahr, Iran
326 University of Silesia (USKAT), Katowice, Poland
327 University of Stavanger (UiS), Stavanger, Norway

123



















474 Page 18 of 161 Eur. Phys. J. C (2019) 79 :474

Table S.3 Measurement of selected electroweak quantities at the FCC-
ee, compared with the present precision. The systematic uncertainties
are present estimates and might improve with further examination.
This set of measurements, together with those of the Higgs proper-

ties, achieves indirect sensitivity to new physics up to a scale 
 of 70
TeV in a description with dim 6 operators, and possibly much higher in
some specific new physics models

Observable Present value ± error FCC-ee stat. FCC-ee syst. Comment and dominant exp. error

mZ (keV/c2) 91,186,700 ± 2200 5 100 From Z line shape scan Beam
energy calibration

�Z (keV) 2,495,200 ± 2300 8 100 From Z line shape scan beam
energy calibration

RZ

 (×103) 20,767 ± 25 0.06 0.2–1 Ratio of hadrons to leptons

acceptance for leptons

αs (mZ) (×104) 1196 ± 30 0.1 0.4–1.6 From RZ

 above

Rb (×106) 216,290 ± 660 0.3 < 60 Ratio of bb̄ to hadrons stat.
extrapol. from SLD

σ 0
had (×103) (nb) 41,541 ± 37 0.1 4 Peak hadronic cross-section

luminosity measurement

Nν (×103) 2991 ± 7 0.005 1 Z peak cross sections Luminosity
measurement

sin2θeff
W (×106) 231,480 ± 160 3 2–5 From AμμFB at Z peak Beam energy

calibration

1/αQED (mZ) (×103) 128,952 ± 14 4 Small From AμμFB off peak

Ab,0
FB (×104) 992 ± 16 0.02 1–3 b-quark asymmetry at Z pole from

jet charge

Apol,τ
FB (×104) 1498 ± 49 0.15 < 2 τ Polarisation and charge

asymmetry τ decay physics

mW (MeV/c2) 80,350 ± 15 0.5 0.3 From WW threshold scan Beam
energy calibration

�W (MeV) 2085 ± 42 1.2 0.3 From WW threshold scan beam
energy calibration

αs (mW) (×104) 1170 ± 420 3 Small From RW



Nν (×103) 2920 ± 50 0.8 Small Ratio of invis. to leptonic in
radiative Z returns

mtop (MeV/c2) 172,740 ± 500 17 Small From tt̄ threshold scan QCD errors
dominate

�top (MeV) 1410 ± 190 45 Small From tt̄ threshold scan QCD errors
dominate

λtop/λ
SM
top 1.2 ± 0.3 0.1 Small From tt̄ threshold scan QCD errors

dominate

ttZ couplings ± 30% 0.5–1.5% Small From ECM = 365 GeV run

at short distances. The FCC-eh, with precision and energy in between FCC-ee and FCC-hh, integrates their potential well. For
example, its ability to separate individual light quark flavours in the proton, gives it the best sensitivity to their EW couplings.
Furthermore, its high energy and clean environment enable precision measurements of the weak coupling evolution at very
large Q2. More details can be found in volume 1 of the FCC CDR. The FCC EW measurements are a crucial element of, and
a perfect complement to, the FCC Higgs physics programme.

The electroweak phase transition

Explaining the origin of the cosmic matter-antimatter asymmetry is a challenge at the forefront of particle physics. One
of the most compelling explanations connects this asymmetry to the generation of elementary particle masses through
electroweak symmetry-breaking (EWSB). This scenario relies on two ingredients: a sufficiently violent transition to the
broken-symmetry phase, and the existence of adequate sources of CP-violation. As it turns out, these conditions are not
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BSM contributions in box mixing processes, assuming Minimal Flavour Violation, will provide another, independent, test of
BSM physics up to an energy scale of 20 TeV.

Tau physics in Z decays was shown to be extremely precise already at LEP; with 1.7 × 1011 pairs, FCC-ee will achieve
precision of 10−5 or better for the leptonic branching ratios and the charged lepton-to-neutrino weak couplings – this allowing
a measurement of G F and tests of charged-weak-current universality at the 10−5 precision level. Finally, lepton number
violating processes, such Z → τμ/e, τ → 3μ, eγ or μγ, can be detected at the 10−9–10−10 level, offering sensitivity to
several types of neutrino-mass generation models.

1 Introduction

In 10 years of physics at the LHC, the picture of the particle physics landscape has greatly evolved. The legacy of this first
phase of the LHC physics programme can be briefly summarised as follows: (a) the discovery of the Higgs boson, and the
start of a new phase of detailed studies of its properties, aimed at revealing the deep origin of electroweak (EW) symmetry
breaking; (b) the indication that signals of new physics around the TeV scale are, at best, elusive; (c) the rapid advance of
theoretical calculations, whose constant progress and reliability inspire confidence in the key role of ever improving precision
measurements, from the Higgs to the flavour sectors. Last but not least, the LHC success has been made possible by the
extraordinary achievements of the accelerator and of the detectors, whose performance is exceeding all expectations.

The future circular collider, FCC, hosted in a 100 km tunnel, builds on this legacy, and on the experience of previous circular
colliders (LEP, HERA and the Tevatron). The e+e− collider (FCC-ee) would operate at multiple centre of mass energies

√
s,

producing 1013 Z0 bosons (
√

s ∼ 91 GeV), 108 WW pairs (
√

s ∼ 160 GeV), over 106 Higgses (
√

s ∼ 240 GeV), and over
106 tt̄ pairs (

√
s ∼ 350–365 GeV). The 100 TeV pp collider (FCC-hh) is designed to collect a total luminosity of 20 ab−1,

corresponding e.g. to more than 1010 Higgs bosons produced. FCC-hh would also enable heavy-ion collisions, and its 50 TeV
proton beams, with 60 GeV electrons from an energy-recovery linac, would generate ∼ 2 ab−1 of 3.5 TeV ep collisions at the
FCC-eh.

The FCC sets highly ambitious performance goals for its accelerators and experiments, and promises the most far reaching
particle physics programme that foreseeable technology can deliver. For example, in direct relation to the points above, the
FCC will:

(a) Uniquely map the properties of the Higgs and EW gauge bosons, pinning down their interactions with an accuracy order(s)
of magnitude better than today, and acquiring sensitivity to, e.g., the processes that, during the time span from 10−12 and
10−10 s after the Big Bang, led to the creation of today’s Higgs vacuum field.

(b) Improve by close to an order of magnitude the discovery reach for new particles at the highest masses and similarly
increase the sensitivity to rare or elusive phenomena at low mass. In particular, the search for dark matter (DM) at FCC
could reveal, or conclusively exclude, DM candidates belonging to large classes of models, such as thermal WIMPs
(weakly interacting massive particles).

(c) Probe energy scales beyond the direct kinematic reach, via an extensive campaign of precision measurements sensitive to
tiny deviations from the Standard Model (SM) behaviour. The precision will benefit from event statistics (for each collider,
typically several orders of magnitude larger than anything attainable before the FCC), improved theoretical calculations,
synergies within the programme (e.g. precise αs and parton distribution functions provided to FCC-hh by FCC-ee and
FCC-eh, respectively) and suitable detector performance.

This volume of the Conceptual Design Report is dedicated to an overview of the FCC physics potential. It focuses on
the most significant targets of the potential FCC research programme but, for the sake of space, not covering a large body
of science that will nevertheless be accessible (and which is documented in various other reports, listed in the Appendix).
The studies presented here, in addition to setting plausible targets for the FCC achievements, have helped in making the
choice of the colliders’ parameters (energy, luminosity) and their operation plans. Furthermore, these studies contributed to
the definition of the critical detector features and parameters, as described in Volumes 2 and 3 of the CDR. While at first
discussing the targets of each collider separately, the second part of this volume puts their synergy and complementarity in
perspective, underscoring the added benefit to science brought by the unity and coherence of the whole programme.

In addition to summarising the outcome of the work done during this CDR phase of the FCC physics studies, for the benefit
of the whole particle physics community, this document is intended to stimulate an expert discussion of the FCC physics
potential, in the context of the forthcoming review of the European Strategy for Particle Physics. While occasionally technical,
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collision energy during about 15 years of operation, to examine physics at the Z pole, at the WW production threshold, at the
peak of ZH production, and above the tt threshold. Controlling the beam energy at the 100 keV level would allow exquisite
measurements of the Z and W boson masses, whilst collecting samples of up to 1013 Z and 108 W bosons, not to mention
several million Higgs bosons and top quark pairs. The experimental precision would surpass any previous experiment and
challenge cutting edge theory calculations.

FCC-ee would quite literally provide a quantum leap in our understanding of the Higgs. Like the W and Z gauge bosons,
the Higgs receives quantum EW corrections typically measuring a few per cent in magnitude due to fluctuations of massive
particles such as the top quark. This aspect of the gauge bosons was successfully explored at LEP, but now it is the turn of the
Higgs – the keystone in the EW sector of the SM. The millions of Higgs bosons produced by FCC-ee, with its clinically precise
environment, would push the accuracy of the measurements to the per mille level, accessing the quantum underpinnings of
the Higgs and probing deep into this hitherto unexplored frontier. In the process e+e− → HZ, the mass recoiling against the
Z has a sharp peak that allows a unique and absolute determination of the Higgs decay-width and production cross section.
This will provide an absolute normalisation for all Higgs measurements performed at the FCC, enabling exotic Higgs decays
to be measured in a model independent manner.

The high statistics promised by the FCC-ee programme goes far beyond precision Higgs measurements. Other signals
of new physics could arise from the observation of flavour changing neutral currents or lepton-flavour-violating decays,
by the precise measurements of the Z and H invisible decay widths, or by direct observation of particles with extremely
weak couplings, such as right-handed neutrinos and other exotic particles. The precision of the FCC-ee programme on EW
measurements would allow new physics effects to be probed at scales as high as 100 TeV, anticipating what the FCC-hh must
focus on.

1.3 The role of FCC-hh

The FCC-hh would operate at seven times the LHC energy, and collect about 10 times more data. The discovery reach for
high-mass particles – such as Z′ or W′ gauge bosons corresponding to new fundamental forces, or gluinos and squarks in
supersymmetric theories – will increase by a factor five or more, depending on the final statistics. The production rate of
particles already within the LHC reach, such as top quarks or Higgs bosons, will increase by even larger factors. During the
planned 25 years of data taking, a total of more than 1010 Higgs bosons will be created, several thousand times more than
collected by the LHC through Run 2 and 200 times more than will be available by the end of its operation. These additional
statistics will enable the FCC-hh experiments to improve the separation of Higgs signals from the huge backgrounds that afflict
most LHC studies, overcoming some of the dominant systematics that limit the precision attainable at the LHC. While the
ultimate precision of most Higgs properties can only be achieved with FCC-ee, several demand complementary information
from FCC-hh. For example, the direct measurement of the coupling between the Higgs and the top quark requires that they
be produced together, requiring an energy beyond the reach of the FCC-ee. At 100 TeV, almost 109 out of the 1012 top quarks
produced will radiate a Higgs boson, allowing the top-Higgs interaction to be measured at the 1% level – several times better
than at the HL-LHC and probing deep into the quantum structure of this interaction. Similar precision can be reached for
Higgs decays that are too rare to be studied in detail at FCC-ee, such as those to muon pairs or to a Z and a photon. All of
these measurements will be complementary to those obtained with FCC-ee and will use them as reference inputs to precisely
correlate the strength of the signals obtained through various production and decay modes.

One respect in which a 100 TeV proton–proton collider would really come to the fore is in revealing how the Higgs
behaves in private. As the Higgs scalar potential defines the potential energy contained in a fluctuation of the Higgs field,
these self-interactions are neatly defined as the derivatives of the scalar EW potential. Since the Higgs boson is an excitation
about the minimum of this potential, its first derivative is zero. Its second derivative is simply the Higgs mass squared, which
is already known to few per mille accuracy. But the third and fourth derivatives are unknown and, unless access to Higgs
self-interactions is gained, they could remain so. The rate of Higgs pair production events, which in some part occur through
Higgs self-interactions, would grow by a factor of 40 at FCC-hh, with respect to 14 TeV, and enable this unique property of the
Higgs to be measured with an accuracy reaching 5%. Among many other uses, such a measurement would comprehensively
explore classes of models that rely on modifying the Higgs potential to drive a strong first order phase transition at the time
of EW symmetry breaking, a necessary condition to induce baryogenesis.

FCC-hh would also allow an exhaustive exploration of new TeV-scale phenomena. Indirect evidence for new physics can
emerge from the scattering of W bosons at high energy – where the Higgs boson plays a key role in controlling the rate
growth – from the production of Higgs bosons at very large transverse momentum, or by testing the far ‘off-shell’ nature
of the Z boson via the measurement of lepton pairs with invariant masses in the multi-TeV region. The plethora of new
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Fig. 3.1 Top row, left: the Z line shape with the Z and γ exchange
contribution and the Z − γ interference. Top row, right: the muon pair
forward–backward asymmetry has a strong slope around the Z-pole
resulting from the Z -γ interference. Bottom row: relative statistical

accuracy of the αQED determination from the muon forward–backward
asymmetry at the FCC-ee, as a function of the centre-of-mass energy.
The integrated luminosity is assumed to be 80 ab−1 around the Z pole.
The dashed blue line shows the current uncertainty

Among the other asymmetries to be measured at the FCC-ee, the τ polarisation asymmetry in the τ → πντ decay mode
provides a similarly accurate determination of sin2 θeff

W , with a considerably reduced
√

s dependence. In addition, the scattering
angle dependence of the τ polarisation asymmetry provides an individual determination of both Ae and Aτ, which allows, in
combination with the AμμFB and the three leptonic partial width measurements, the vector and axial couplings of each lepton
species to be determined. Similarly, heavy-quark forward–backward asymmetries (for b quarks, c quarks and, possibly s
quarks) together with the corresponding Z decay partial widths and the precise knowledge of Ae from the τ polarisation,
provide individual measurements of heavy-quark vector and axial couplings.

Within the same scan of the Z, cross-sections for hadronic and leptonic final states will be measured with a precision
limited by the luminosity measurement. The design of the luminometer aims for a point-to-point relative precision of 10−5

and absolute normalisation with a precision of 10−4 (limited by the projected hadronic vacuum polarization systematics in
the theoretical calculation of the Bhabha cross section), see FCC-ee CDR Section 7. Several results are expected from the
scan: the Z mass mZ and width �Z will be extracted with a statistical precisions of 5 and 8 keV respectively, and a systematic
uncertainty given by the centre-of-mass uncertainties of 100 keV; the ratio of hadronic to leptonic partial widths RZ


 , from
which αs(mZ) will be derived with a precision better than 0.00016 – one order of magnitude better than today; the peak
cross-section σ 0

had will determine the number of light neutrino species Nν with a precision of 0.001 of a neutrino species.
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