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Abstract: We study the perturbative stability of four settings that arise in String Theory,

when dilaton potentials accompany the breaking of Supersymmetry, in the tachyon-free

USp(32) and U(32) orientifold models, and also in the heterotic SO(16) × SO(16) model.

The first two settings are a family of AdS3×S7 vacua of the orientifold models and a family

of AdS7 × S3 vacua of the heterotic model, supported by form fluxes, with small world-

sheet and string-loop corrections within wide ranges of parameters. In both cases we find

some unstable scalar perturbations, as a result of mixings induced by fluxes, confirming for

the first class of vacua a previous result. However, in the second class of vacua they only

affect the ` = 1 modes, so that a Z2 projection induced by an overall parity in the internal

space suffices to eliminate them, leading to perturbative stability. Moreover, the constant

dilaton profiles of these vacua allow one to extend the analysis to generic potentials, thus

exploring the possible effects of higher-order corrections, and we exhibit wide nearby regions

of perturbative stability. The solutions in the third setting have nine-dimensional Poincaré

symmetry. They include regions with large world-sheet or string-loop corrections, but we

show that these vacua have no perturbative instabilities. Finally, the last setting concerns

cosmological solutions in ten dimensions where the “climbing” phenomenon takes place:

they have bounded string-loop corrections but large world-sheet ones close to the initial

singularity. In this case we find that perturbations generally decay, but homogeneous tensor

modes exhibit an interesting logarithmic growth that signals a breakdown of isotropy. If

the Universe then proceeds to lower dimensions, milder potentials from other branes force

all perturbations to remain bounded.
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1 Introduction

When Supersymmetry is broken in String Theory [1–7], one is inevitably confronted with

stability issues. These are particularly severe when tachyons emerge, but even in the

few cases when this does not occur runaway dilaton potentials destabilize the original ten-

dimensional Minkowski vacua. Supergravity [8–12] is the key tool to analyze these systems,

within its limits of applicability.
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There are three ten-dimensional string models with broken Supersymmetry and no

tachyons, and two of them are orientifolds [13–22] of closed-string models. The first of

these is the USp(32) model [23] with “Brane Supersymmetry Breaking” (BSB) [24–27], a

peculiar type-IIB orientifold which combines the presence of a gravitino in the low-energy

Supergravity with a non-linearly realized Supersymmetry [28–30]. The second has no

Supersymmetry at all, and is the U(32) 0′B model [31, 32], a non-tachyonic orientifold of

the tachyonic 0B model [33, 34]. In both cases, an exponential dilaton potential emerges at

the (projective–)disk level, which reflects the residual tension of the branes and orientifolds

that are present in ten dimensions. In the Einstein frame it reads

V = T e
3
2
φ . (1.1)

There is finally a heterotic model of this type [33, 35], with an SO(16) × SO(16) gauge

group. Its torus amplitude gives a contribution that in the string frame is independent of

the dilaton, but in the Einstein frame this translates into the dilaton potential [36]

V = T e
5
2
φ . (1.2)

In the first case there is a class of AdS3×S7 vacua [37], which are sustained by three-form

(electric) fluxes that permeate AdS3, and where the dilaton has constant profiles. In the

second case similar steps lead to a class of AdS7 × S3 vacua [37], which are sustained by

three-form (magnetic) fluxes that permeate the internal S3, and where the dilaton has

again constant profiles.1 In both cases there are wide corners of parameter space where

large radii and small string couplings are possible.

In this paper we investigate perturbative stability in the presence of broken Supersym-

metry in four types of settings. The first two concern these AdS vacua for the orientifold

and heterotic models, where fluxes counteract the effects of gravity. The third concerns

the Dudas-Mourad solutions with nine-dimensional Poincaré symmetry [38], the first that

were found for the low-energy equations of String Theory when the potentials (1.1) or (1.2)

arise. No form fluxes are present in this case, and the resulting vacua include corners where

the string coupling is large or curvature corrections are expected to be important. The

fourth concerns cosmological solutions with nine-dimensional Euclidean symmetry, which

were also first found in [38] and where the string coupling has an upper bound, so that

string corrections are in principle under control, while curvature corrections are still large

close to the initial singularity. Some generalizations of this solution were found later in [44],

and were elaborated upon in detail in [45], where they were associated to the picture of

a “climbing scalar”. Amusingly, the orientifold potential in eqs. (1.1) corresponds indeed

to a “critical” logarithmic slope where the scalar (the dilaton in ten dimensions or, in

lower dimensions, a mixing of it with the breathing mode of the internal space [46, 47])

becomes compelled to climb up the potential when emerging from the initial singularity.

In the subsequent descent the potential energy thus collected can give the initial impulse

to start inflation [48–61]. This is the case if milder potentials, which could arise from

1There are also descriptions in terms of dual potentials, which involve seven-form fluxes in internal space

for the orientifold models and in spacetime for the heterotic one.
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lower-dimensional branes, are taken into account [62–66]. The generic indication of these

scenarios, if a short inflation happened to have left us some glimpses of its inception, res-

onates with the lack of power displayed by the first CMB multipoles [67–69]. Our discussion

will make these considerations a bit more concrete from a top-down perspective.

There is an extensive activity aimed at identifying and cutting out, within the vacua

that arise in Supergravity, wide subsets that should not admit ultraviolet completions, and

therefore should not pertain to String Theory proper [70–74]. There is also a widespread

feeling that instabilities show up generically in non-supersymmetric contexts. When this

is the case perturbations, even if initially small, grow generically in time, and a pathology

of this type is precisely what the negative squared masses of tachyons signal in flat space.

In AdSd vacua matters are a bit subtler, and the proper stability conditions, which are

called Breitenlohner-Freedman (BF) bounds [75], allow for finite ranges of negative squared

masses, in ways that depend on the dimension d and on the nature of the fields. Hence, one

can study perturbative stability in AdS backgrounds analyzing the eigenvalues of (properly

defined) squared mass matrices for the available modes. This will be a primary task of this

paper, and in particular we shall confirm the instability found in [76, 77] for the AdS3×S7

family of vacua, which were actually first considered there, and we shall also present a

similar result for the AdS7 × S3 heterotic vacua of [37]. The instabilities present in both

cases comply with the general expectations in [70–74], but the relative simplicity of these

settings allows us to move further.

In the AdS × S vacua of [37, 76, 77] the dilaton has constant profiles. This makes it

possible to scan the behavior of perturbations in a wide class of systems simply modifying

three constants, the vacuum value V0 of the potential and those of its first derivative V ′0
and of its second derivative V ′′0 . One can explore, in this fashion, whether perturbative

instabilities are generic within the potentials that give rise to similar AdS × S flux vacua.

The lesson that we shall gather is clearcut: close to the actual values, and as soon as

V0 becomes negative, there are wide regions of perturbative stability. This interesting phe-

nomenon occurs both in the AdS3 × S7 orientifold vacua and in the AdS7 × S3 heterotic

ones, and the nearby regions could play a role when string corrections are taken into ac-

count, although we are unable to justify dynamically the emergence of such deformations

via quantum corrections. Moreover, in the AdS7×S3 heterotic vacua the instability affects

only the ` = 1 scalar modes, so that it can be eliminated by an antipodal projection in the

internal sphere. We also explored similar, albeit more complicated, operations for the ori-

entifold vacua. In particular, in the simpler case of an internal S3 one could work with unit

quaternions, removing all unwanted spherical harmonics with ` = 2, 3, 4 via projections

based on the symmetry group of the cube in R3. This would leave no fixed sub-varieties,

and therefore constitutes an alternative option for the heterotic case. Its direct counterpart

in S7, however, appears much more complicated, since it would rest on octonions. We thus

explored, as an alternative, a construction based on three quaternion pairs, which does

eliminate all unwanted spherical harmonics but unfortunately fixes some sub-varieties.

The following sections deal with the nine-dimensional vacua with Poincaré symmetry

and the cosmological solutions that were discovered in [38], and also with the linear-dilaton

systems of [39–43] and other generalizations. As we shall see, the nine-dimensional vacua
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are perturbatively stable solutions of Einstein’s equations although, from the vantage point

of String Theory, they include regions of high curvature and strong coupling, where cor-

rections to Supergravity are expected to play an important role. Some features of these

higher-derivative couplings were explored in [66]. In the spirit of the preceding extensions

and in view of their potential applications, we also analyze the cosmological solutions that

arise, in lower dimensions, with similar potentials eγ̃ φ, for different values of γ̃. These

potentials were first studied in [44], and this will also connect the present analysis to the

work in [45]. The resulting indications are that perturbations are well-behaved, up to an

intriguing behavior of the homogeneous, k = 0 mode that manifests itself, in ten dimen-

sions, with the potentials of eqs. (1.1) and (1.2) in the absence of milder terms, to which

we shall return in section 7.1.

The contents of this paper are as follows. In section 2 we define the low-energy La-

grangians of interest and we explain our conventions. In section 3 we review the AdS3×S7

orientifold vacua of [37, 76, 77] and extend them in the most general way that is of inter-

est with constant dilaton profiles, allowing for generic values of the potential V0, its first

derivative V ′0 and its second derivative V ′′0 . In section 3.1 we linearize the field equations

and set up the perturbative analysis, which is carried out in section 3.2 for tensor and

vector perturbations. No instabilities are found in these sectors. The lowest tensor modes

arise from metric perturbations, while the lowest vector modes are the expected massless

Kaluza-Klein vectors for the internal S7, which here arise from mixings of metric and form

contributions. In section 3.3 we analyze scalar perturbations. Here we confirm the results

in [76, 77]: there are no instabilities in the ` = 0 sector, where the available modes arise

from the metric tensor and the dilaton, while there are instabilities for ` = 2, 3, 4, where

also the form field comes into play. However, we display a wide corner of modified poten-

tials, which lie close to the lowest-order one in eq. (1.1) but have a negative V0, where no

unstable modes are present. At the end of the section we point out how the instabilities

could be removed via projections in the internal sphere for the original potential (1.1),

although all examples that we have constructed feature fixed sub-varieties. In section 4

we review the AdS7 × S3 heterotic vacua of [37] and extend them in the most general

way that is of interest with constant dilaton profiles, allowing again for generic values of

the potential V0, its first derivative V ′0 and its second derivative V ′′0 . In section 4.1 we

linearize the field equations and set up the perturbative analysis, which is carried out in

section 4.2 for tensor and vector perturbations. Again, no instabilities are found in these

sectors. The lowest tensor and vector modes are massless spin-two excitations and the

expected massless Kaluza-Klein vectors for the internal S7, which here arise, again, from

mixed metric and form contributions. In section 4.3 we analyze scalar perturbations and

show that there are no instabilities in the ` = 0 sector, where only the metric tensor and

the dilaton enter, while there is again an instability when the form field comes into play.

Here it only affects the ` = 1 modes, and could be removed by an antipodal Z2 orbifold

projection in the internal manifold, along with all odd-` harmonics. As for the orientifold

vacua, we display however a wide corner of modified potentials that lie close to the lowest-

order one in eq. (1.1) and have a negative V0, where again no unstable modes are present.

In section 5 we review the vacua with nine-dimensional Poincaré symmetry of [38], and in
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section 5.1 we set up the perturbative analysis. Then in section 5.2 we show that there are

no perturbative instabilities in the scalar sector for the potentials in eqs. (1.1) and (1.2),

and in section 5.3 we show that the same is true for vector and tensor perturbations. This

background is therefore a perturbatively stable solution of Einstein’s equations, although

from the vantage point of String Theory it includes strong-coupling regions. In section 6

we analyze the stability of the linear-dilaton vacua that originate, below the critical dimen-

sion of String Theory, from [39, 40, 78, 79]. In section 7 we review the salient features of

the climbing scalar cosmologies that arise with the potentials of eqs. (1.1) and (1.2), and

in sections 7.1 and 7.2 we analyze the corresponding perturbations. We show that there

is a logarithmic instability for the homogeneous k = 0 tensor mode, but there are none

for other modes. In section 8 we consider the behavior of a class of milder exponential

potentials, which can arise in lower dimensions, in the presence of branes, and we show

that there are no instabilities for them. Finally, in section 9 we analyze a special class

of potentials related to the linear-dilaton cosmologies of [41–43], while section 10 contains

a short summary of our results and some indications on possible further developments.

There are also four appendices. In appendix A we discuss some differential equations that

are encountered in sections 3.3 and 4.3, while in appendix B we review some properties of

tensor spherical harmonics that are used extensively in sections 3.1 and 4.1. In appendix C

we collect some useful results on BF bounds, along with a sketchy derivation of them, and

finally in appendix D we collect some observations on cosmic and conformal time that are

relevant for section 8.

2 The models

In this paper we explore the low-energy dynamics of the three ten-dimensional string models

with broken Supersymmetry and no tachyons in their spectra. The first two models are

the USp(32) orientifold with BSB of [24–27] and the U(32) orientifold of [31, 32], whose

low-energy effective field theories are identical, insofar as the vacua addressed here are

concerned, while the third is the SO(16) × SO(16) heterotic model of [33, 35]. In all cases

we shall account for their exponential dilaton potentials, whose origin is however different

in the orientifold and heterotic examples. In the former it reflects residual brane/orientifold

tensions, and is thus an open-string (projective)disk-level effect, while in the latter it arises

from the torus and is therefore a standard first quantum correction. As we have shown

in [37], these potentials allow AdS3 × S7 flux vacua in the two orientifold models and

AdS7 × S3 flux vacua in the heterotic model. In both classes of vacua the dilaton acquires

constant values, which can be tuned into regions of small string coupling.

We use the “mostly plus” signature and the following definition of the Riemann cur-

vature in terms of the Christoffel connection (M,N = 0, . . . 9):

RABMN (Γ) = ∂N ΓABM − ∂M ΓABN + ΓANC ΓCBM − ΓAMC ΓCBN . (2.1)

Moreover

RBN = RABAN (Γ) (2.2)
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is the Ricci tensor. Notice that with this definition the curvature of a sphere is negative,

and that the relation to RMN
AB(ω), the curvature in the frame formalism, is

RMN
AB(ω) = −RABMN (Γ) . (2.3)

Here we refer to the curvature defined in terms of Γ, and in our conventions

[∇M ,∇N ]VQ = RPQMN (Γ)VP . (2.4)

The low-energy dynamics of the systems of interest is captured by a class of Lagrangians

involving the metric tensor, a scalar field φ and a two-form gauge field of field strength H3.

In the Einstein frame, these read

S =
1

2 k2
10

∫
d10x
√
−g
[
−R− 1

2
(∂φ)2 − 1

12
eβ φH2 − V (φ)

]
, (2.5)

where in the orientifold examples, which we shall study with reference to the USp(32)

model with BSB and to the U(32) model, β = 1 and

V = T e
3
2
φ . (2.6)

On the other hand, in the heterotic SO(16) × SO(16) model β = −1 and

V = T e
5
2
φ . (2.7)

The equations of motion read, in general,

RMN −
1

2
gMN R = −1

2
∂Mφ∂Nφ−

1

4
eβ φ

(
H2
)
MN

+
1

2
gMN

[
1

2
(∂φ)2 +

eβ φ

12
H2 + V (φ)

]
,

�φ =
β

12
eβ φ H2 + V ′(φ) , (2.8)

d
(
eβ φ ∗H

)
= 0 .

Equivalently, one can combine the Lagrangian Einstein equation with its trace and

work with

RMN +
1

2
∂Mφ∂Nφ+

1

4
eβ φ

(
H2
)
MN
− gMN

[
1

48
eβ φH2 − 1

8
V (φ)

]
= 0 . (2.9)

The orientifold AdS3 × S7 vacua of interest are supported by a flux of the three-form field

strength Hµνρ in the AdS factor, while their heterotic counterparts are supported by a flux

of the three-form field strength Hijk in the S3 factor.

Actually, it proved very instructive to allow generic values, in the vacuum, of the

potential V0 and of its first and second derivatives V ′0 and V ′′0 . As we shall see, while

instabilities are present, among the available scalar perturbations, in the uncorrected vacua

corresponding to eqs. (2.6) and (2.7), nearby interesting regions of stability exist with

– 6 –
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V0 < 0. We also extended the discussion to more general systems, allowing generic values

of β, but this did not add significant novelties to the picture.

The ensuing sections are devoted to the study of perturbations of the two classes

of AdS × S backgrounds described in the Introduction. In the following, we shall thus

refer all covariant derivatives to the corresponding background metrics. Moreover, we

shall distinguish space-time d’Alembertians, denoted as usual by �, and internal Laplace

operators, here denoted by ∇2, since we shall decompose all perturbations in the proper sets

of internal spherical harmonics, on which ∇2 has the eigenvalues discussed in appendix B.

3 The (generalized) AdS3 × S7 orientifold flux vacua

The background manifold is in this case AdS3 × S7, with metric

ds 2 (0) = R2
AdS λµν dx

µ dxν +R2 γij dy
i dyj . (3.1)

Here λ and γ are AdS3 and S7 metrics of unit radius, while RAdS and R denote the actual

AdS3 and S7 radii. Greek indices run from 0 to 2, while Latin indices run from 1 to 7, the

dilaton has a constant vacuum value φ0, and finally there is three-form flux in AdS, with

Hµνρ
0 = εµνρ

h̃√
−λ

. (3.2)

Here h̃ is a constant and ε012 = 1 = −ε012, while all other components of HMNP vanish in

the vacuum.

For maximally symmetric spaces, in terms of R(Γ),

R(0)
µνρσ =

1

R2
AdS

[
λµρ λνσ − λµσ λνρ

]
,

R(0)
ijkl = − 1

R2

[
γik γjl − γjk γil

]
, (3.3)

where R and RAdS are the radii of the sphere and AdS factors. Moreover, the preceding

conventions imply that

[
∇µ , ∇ν

]
Vρ =

1

R2
AdS

(
λνρ Vµ − λµρ Vν

)
,

[
∇i , ∇j

]
Vk = − 1

R2

(
γjk Vi − γik Vj

)
, (3.4)

where, here and in the following section 3.3, covariant derivatives are computed referring

the AdS3 × S7 background. In addition, the zeroth-order dilaton equation gives

V ′0 =
β

2
h̃ 2 eβ φ0 , (3.5)

which links the three-form flux, sized by h̃, to the derivative of the scalar potential. Notice

that the allowed signs of V ′0 and β must coincide, a condition that holds for the perturbative

– 7 –
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orientifold vacuum, where β = 1. The Einstein equations translate into

21

R2
− 1

R2
AdS

=
1

4
eβ φ0 h̃2 +

1

2
V0 , (3.6)

15

R2
− 3

R2
AdS

= −1

4
eβ φ0 h̃2 +

1

2
V0 , (3.7)

and it is convenient to define the two variables

σ3 =
R2

AdS

2β
V
′

0 = 1 + 3
R2

AdS

R2
, τ3 = R2

AdS V
′′

0 , (3.8)

which will often appear in the next section. Notice that σ3 ≥ 1 and

R2
AdS V0 = 12

(
σ3 −

4

3

)
, (3.9)

so that the value σ3 = 4
3 separates negative and positive values of V0 for these generalized

AdS3 × S7 vacua, and for the (projective)disk-level orientifold potential

σ3 =
3

2
, τ3 =

9

2
. (3.10)

3.1 Perturbations of the generalized AdS3 × S7 orientifold flux vacua

We can now discuss perturbations in these vacua, letting

gMN = g
(0)
MN + hMN , φ = φ0 + ϕ , BMN = B0MN + e−β φ0

bMN

h̃
, (3.11)

and linearizing the resulting equations of motion. The perturbed tensor equations are

�10bµν−∇µ
(
∇M bMν

)
−∇ν

(
∇M bµM

)
+

2

R2
AdS

bµν

+4

(
1

R2
AdS

+
3

R2

) √
−λ εµνρ

(
β∇ρϕ−∇ihiρ−

1

2
∇ρλ·h+

1

2
∇ρ γ ·h

)
= 0 ,

�10bµi−∇µ
(
∇M bMi

)
−∇i

(
∇M bµM

)
+
( 2

R2
AdS

− 6

R2

)
bµi (3.12)

+4

(
1

R2
AdS

+
3

R2

) √
−λ εαβµ∇αhβi = 0 ,

�10bij−∇i
(
∇M bMj

)
−∇j

(
∇M biM

)
− 10

R2
bij = 0 ,

where, here and in the following,

�10 = � +∇2 , (3.13)

in terms of the AdS and sphere contributions. In a similar fashion, the perturbed dilaton

equation is

�10 ϕ− V ′′0 ϕ+ 2

(
1

R2
AdS

+
3

R2

)(
β2 ϕ− β λ · h

)
− β

2

εµνρ√
−λ
∇µ bνρ = 0 . (3.14)

– 8 –
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Finally, the perturbed metric equations that follow from eq. (2.9) rest on the linearized

Ricci tensor

RNR = R
(0)
NR +

1

2

[
�hNR −∇N (∇ · h)R −∇R (∇ · h)N +∇N∇R hLL

]
+

1

2
R (0)A

N hAR +
1

2
R (0)A

R hAN −R (0)A
N
B
R hAB , (3.15)

and read

�10 hµν +
2

R2
AdS

hµν −∇µ (∇ · h)ν −∇ν (∇ · h)µ +∇µ∇ν (λ · h+ γ · h)

+ λµν

[
−5β

2

(
1

R2
AdS

+
3

R2

)
ϕ+ 3λ · h

(
− 1

R2
AdS

+
3

R2

)
− 3

4

εαβγ√
−λ
∇α bβγ

]
= 0 ,

�10 hµi + hµi

(
2

R2
AdS

+
6

R2

)
−∇µ (∇ · h)i −∇i (∇ · h)µ +∇µ∇i (λ · h+ γ · h)

+
1

2
√
−λ

εαβγ λµγ (∇i bαβ +∇α bβi +∇β biα) = 0 , (3.16)

�10 hij −
2

R2
hij −∇i (∇ · h)j −∇j (∇ · h)i +∇i∇j (λ · h+ γ · h)

+ γij

[
2

R2
γ · h+

(
1

R2
AdS

+
3

R2

)(
3

2
β ϕ− λ · h

)
−
εαβγ ∇α bβγ

4
√
−λ

]
= 0 .

In all cases, perturbations depend on the AdS coordinates xµ and on the sphere coor-

dinates yi, and will be expanded in corresponding spherical harmonics, whose structure is

briefly reviewed in appendix B. For instance, for internal scalars this will always result in

expressions of the type

hµν(x, y) =
∑
`

hµν, I1...I`(x)YI1...I`(8) (y) , (3.17)

where Ii = 1, . . . , 8 and hµν, I1...I`(x) is totally symmetric and traceless in the Euclidean

Ii labels. However, the eigenvalues of the internal Laplace operator ∇2 will only depend

on `. Hence, for the sake of brevity, and at the cost of being somewhat sketchy, we shall

leave the internal labels implicit, although in some cases we shall refer to their ranges when

counting multiplicities.

For tensors in internal space there are some additional complications. For example,

for mixed metric components the expansion reads

hµi(x, y) =
∑
`

hµJ, I1...I`(x) YI1...I`;J(8) i (y) (3.18)

where hµJ, I1...I`(x) corresponds to a “hooked” Young tableau of mixed symmetry and ` ≥ 1,

as explained in appendix B. Here the Y(8) i are vector spherical harmonics, and we shall

drop all internal labels, for brevity, also for the internal tensors that we shall consider.

3.2 Tensor and vector perturbations

Following standard practice, we classify perturbations referring to their behavior under the

isometry group SO(2, 2)×SO(8) of the AdS3×S7 background. In this fashion, the possible
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unstable modes violate the BF bounds, which depend on the nature of the fields involved

and correspond, in general, to finite negative values for (properly defined) squared AdS

masses. Indeed, as reviewed in appendix C with reference to forms, care must be exercised

to identify the proper masses to which the bound applies, since in general they differ from

the eigenvalues of the corresponding AdS d’Alembertian. In particular, aside from the case

of scalars, massless field equations always exhibit gauge symmetries.

Let us begin by considering tensor perturbations, which result from transverse traceless

hµν , with all other perturbations vanishing. The corresponding dynamical equation

�hµν −
`(`+ 6)(σ3 − 1)

3R2
AdS

hµν +
2

R2
AdS

hµν = 0 (` ≥ 0) , (3.19)

where we have replaced the internal radius R with the AdS radius RAdS using eq. (3.8),

obtains when the first of (3.16) is combined with the results summarized in appendix B

on general spherical harmonics. These harmonics are eigenvectors of the internal Laplace

operator in eq. (3.13), whose eigenvalues on SO(8) scalars are − `(`+6)
R2 , with ` = 0, 1, . . . an

integer number. In order to properly interpret this result, however, it is crucial to notice

that the massless tensor equation in AdS is the one determined by gauge symmetry. In fact,

the linearized Ricci tensor determined by eq. (3.15) is not gauge invariant under linearized

diffeomorphisms of the AdS background, but

δ Rµν =
2

R2
AdS

(∇µ ξν +∇ν ξµ) . (3.20)

However, the fluxes present in eq. (2.9) endow, consistently, its r.h.s. with a similar behav-

ior, and ` = 0 in eq. (3.19) corresponds precisely to massless modes. Thus, as expected

from Kaluza-Klein theory, eq. (3.19) describes a massless field for ` = 0, and an infinity

of massive ones for ` > 0. These perturbations are all consistent with the BF bound, and

therefore no instabilities are present in this sector.

There are also scalar excitations resulting from the traceless part of hij that is also

divergence-free, which are tensors with respect to the internal rotation group. They satisfy

(see appendix B)

�hij −
`(`+ 6)(σ3 − 1)

3R2
AdS

hij = 0 (` ≥ 2) , (3.21)

so that their squared masses are all positive. Finally, there are massive bij perturbations,

which are divergence-free and satisfy

� bij −
[`(`+ 6) + 8](σ3 − 1)

3R2
AdS

bij = 0 (` ≥ 2) . (3.22)

Vector perturbations are a bit more involved, due to mixings between hµi and bµi
induced by fluxes. The relevant equations are

�10 bµi +
( 2

R2
AdS

− 6

R2

)
bµi + 4

(
1

R2
AdS

+
3

R2

) √
−λ εαβµ∇α hβi = 0 ,

�10 hµi +
( 2

R2
AdS

+
6

R2

)
hµi +

1

2
√
−λ

εαβγ λµγ (∇α bβi +∇β biα) = 0 , (3.23)

– 10 –



J
H
E
P
0
1
(
2
0
1
9
)
1
7
4

where hµi and bµi are divergence-free in both indices. It is now possible to write

bµi =
√
−λ εαβµ∇α F βi , (3.24)

but this does not determine F βi uniquely, since the redefinitions

F βi → F βi +∇β Λi (3.25)

do not affect bµi. The divergence-free bµi of interest obtain, in particular, provided F βi is

divergence-free in its internal index i, and divergence-free Λi do not affect this condition.

One is thus led to the system2

�Fi
µ +

[
2

R2
AdS

− `(`+ 6) + 5

R2

]
Fi
µ + 4

(
1

R2
AdS

+
3

R2

)
hi
µ = 0 ,

�hi
µ +

` (`+ 6) + 5

R2
Fi
µ −

[
2

R2
AdS

+
`(`+ 6) + 5

R2

]
hi
µ = 0 , (3.26)

and the first of eqs. (3.26) could in principle accommodate a source term of the type ∇µ Λ̃i.

However, its contribution can be absorbed by a gauge redefinition of the type (3.25), and

from now on we shall ignore it. Similar arguments apply to the ensuing analysis of scalar

perturbations in this section and to some cases in section 4.

In terms of the combination σ3 of eq. (3.8) this system becomes

R2
AdS �Fi

µ +

[
2− ` (`+ 6) + 5

3
(σ3 − 1)

]
Fi
µ + 4σ3 hi

µ = 0 , (3.27)

R2
AdS �hi

µ +
` (`+ 6) + 5

3
(σ3 − 1) Fi

µ −
[
2 +

`(`+ 6) + 5

3
(σ3 − 1)

]
hi
µ = 0 .

The eigenvalues of the mass matrix are thus

(σ3 − 1)
`(`+ 6) + 5

3
± 2

√
1 + σ3(σ3 − 1)

`(`+ 6) + 5

3
. (3.28)

In order to refer to the BF bound in appendix C, one should add 2 to these expressions

and compare the result with zero. All in all, there are no modes below the BF bound in this

sector. The vector modes lie above it for ` > 1 in the region σ3 > 1, while they are massless

for ` = 1 and all allowed values of σ3 > 1, and also, for all `, in the singular limit σ3 = 1,

which would translate into a seven-sphere of infinite radius. For ` = 1 there are 28 massless

vectors arising from one of the eigenvalues above. Indeed, according to appendix B they

build up a second-rank antisymmetric tensor in internal vector indices, and therefore an

adjoint multiplet of SO(8) vectors. This counting is consistent with Kaluza-Klein theory

and reflects the internal symmetry of S7, although the massless vectors originate here from

mixed contributions of the metric and the two-form field.

2In all these expressions that refer to vector perturbations ` ≥ 1, as described in appendix B.
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3.3 Scalar perturbations

Let us now focus on scalar perturbations of the complete system. To begin with, bµν
contributes to scalar perturbations, as can be seen letting

bµν =
√
−λ εµνρ∇ρB , (3.29)

an expression that satisfies identically

∇µ bµν = 0 . (3.30)

On the other hand, they do not arise from bµi and bij , since the corresponding contri-

butions would be pure gauge. On the other hand, scalar metric perturbations can be

parametrized as

hµν = λµν A ,

hµi = R2∇µ∇iD , (3.31)

hij = γij C ,

up to a gauge transformation with independent parameters along AdS3 and S7 directions.

The linearized bµν tensor equation yields

�10B + 4

(
1

R2
AdS

+
3

R2

)(
β ϕ−R2∇2D − 3

2
A+

7

2
C

)
= 0 , (3.32)

where we use the decomposition of eq. (3.13), so that ∇2 denotes the internal back-

ground Laplacian. After expanding in internal spherical harmonics, so that ∇2 → − `(`+6)
R2 ,

eq. (3.32) becomes finally (an AdS derivative of)

�B − `(`+ 6)

R2
B + 4

(
1

R2
AdS

+
3

R2

)(
β ϕ+ `(`+ 6)D − 3

2
A+

7

2
C

)
= 0 . (3.33)

Notice that a redefinition B → B+f(y), where f(y) depends only on internal coordinates,

would not affect bµν in eq. (3.29). As a result, while eqs. (3.32) and (3.33) could in

principle contain a source term, this can be eliminated taking this fact into account. Similar

considerations will apply for the B field in section 4.3.

In a similar fashion, the dilaton equation becomes

�ϕ− `(`+ 6)

R2
ϕ− V ′′0 ϕ+ 2

(
1

R2
AdS

+
3

R2

)(
β2 ϕ− 3β A

)
+ β�B = 0 , (3.34)

or, after combining it with eq. (3.33),

�ϕ − `(`+ 6)

R2
ϕ− V ′′0 ϕ+ β

`(`+ 6)

R2
B

−
(

1

R2
AdS

+
3

R2

)(
2β2 ϕ+ 4 `(`+ 6)β D + 14β C

)
= 0 . (3.35)
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Finally, after eliminating �B with eq. (3.33), the metric equations (3.16) read

λµν

[
�A−

(
4

R2
AdS

+
`(`+ 6)

R2

)
A+

(
1

R2
AdS

+
3

R2

)(
7

2
β ϕ+ 21C + 6 `(`+ 6)D

)
− 3 `(`+ 6)

2R2
B

]
+∇µ∇ν [A+ 7C + 2 `(`+ 6)D] = 0 ,

∇µ∇i (12D −B + 2A+ 6C) = 0 ,

γij

{
�C − C

(
7

R2
AdS

+
9

R2
+
`(`+ 6)

R2

)
− `(`+ 6)

2

[
4

(
1

R2
AdS

+
3

R2

)
D − B

R2

]
− 1

2
β ϕ

(
1

R2
AdS

+
3

R2

)}
+∇i∇j

(
3A+ 5C − 2R2 �D

)
. (3.36)

These equations have an unfamiliar form, and for this reason in appendix A we prove

that the terms involving gradients must vanish separately. One ought nonetheless to dis-

tinguish two cases.

For ` = 0 nothing depends on internal coordinates, the terms involving ∇µ∇i and

∇i∇j become empty and D also disappears. According to appendix A, in this case one is

thus led to the reduced system

�B + 4

(
1

R2
AdS

+
3

R2

)
(β ϕ+ 14C) = 0 ,

�ϕ− V ′′0 ϕ−
(

1

R2
AdS

+
3

R2

)(
2β2 ϕ+ 14β C

)
= 0 ,

�C − C
(

7

R2
AdS

+
9

R2

)
− 1

2
β ϕ

(
1

R2
AdS

+
3

R2

)
= 0 , (3.37)

to be supplemented by the linear relation

A = −7C . (3.38)

Using the definitions of σ3 and τ3, eqs. (3.37) can be recast in the form

R2
AdS �A− (4 + 3σ3)A+

7β σ3

2
ϕ = 0 ,

R2
AdS �ϕ+ 2β σ3A−

(
τ3 + 2β2 σ3

)
ϕ = 0 ,

R2
AdS �B − 8σ3A+ 4σ3 β ϕ = 0 , (3.39)

and the last column of the resulting mass matrix vanishes, so that there is a vanishing

eigenvalue whose eigenvector is proportional to B. This perturbation is however pure

gauge, since eq. (3.29) implies that the corresponding field strength vanishes identically.

Leaving it aside, one can work with the reduced mass matrix (in our (�−M2) convention)

determined by the other two equations,

R2
AdSM2 =

(
4 + 3σ3 −7β σ3

2

−2β σ3 τ3 + 2β2 σ3

)
, (3.40)

whose eigenvalues are

β2σ3+
3σ3

2
+
τ3

2
+2± 1

2

√
4β4σ3

2+16σ3

(
σ3+

τ3

4
−1
)
β2+9

(
σ3−

τ3

3
+

4

3

)2

. (3.41)
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There are regions of instability as one varies the parameters, but for the actual orien-

tifold potential, where (β, σ3, τ3) =
(
1, 3

2 ,
9
2

)
, the two eigenvalues,

λ2 =
12

R2
AdS

, λ3 =
4

R2
AdS

, (3.42)

are positive, and thus lie well above the Breitenlohner-Freedman bound. To reiterate, there

are no unstable scalar modes for the BSB flux vacuum in the ` = 0 sector for the internal

S7. In view of the ensuing discussion, let us add that the stability persists for convex

potentials, with τ3 > 0, independently of σ3.

For ` 6= 0 the system becomes more complicated, since it now includes the two algebraic

constraints

A+ 7C + 2 `(`+ 6)D = 0 ,

12D −B + 2A+ 6C = 0 , (3.43)

and the five dynamical equations

�A −
(

4

R2
AdS

+
`(`+ 6)

R2

)
A+

(
1

R2
AdS

+
3

R2

)(
7

2
β ϕ− 3A

)
− 3 `(`+ 6)

2R2
B = 0 ,

�C − C

(
7

R2
AdS

+
9

R2
+
`(`+ 6)

R2

)
− `(`+ 6)

2

[
4

(
1

R2
AdS

+
3

R2

)
D − B

R2

]
− β

2
ϕ

(
1

R2
AdS

+
3

R2

)
= 0 ,

�D − 3

2R2
A− 5

2R2
C = 0 , (3.44)

�B − `(`+ 6)

R2
B + 4

(
1

R2
AdS

+
3

R2

)
(β ϕ− 2A) = 0 ,

�ϕ − `(`+ 6)

R2
ϕ− V ′′0 ϕ+ β

`(`+ 6)

R2
B

−
(

1

R2
AdS

+
3

R2

)(
2β2 ϕ− 2β A

)
= 0 .

Let us first notice that this set of seven equations for the five unknowns (A,B,C,D, ϕ)

is consistent: one can indeed verify that eqs. (3.44) respect identically the algebraic con-

straints of eqs. (3.43). One can thus concentrate on the three equations for (A,ϕ,B), which

do not involve other fields and read

R2
AdS�A−

[
4 + 3σ3 +

L3

3
(σ3 − 1)

]
A+

7

2
β σ3 ϕ−

L3

2
(σ3 − 1)B = 0 ,

R2
AdS�ϕ+ 2β σ3A−

[
2β2 σ3 + τ3 +

L3

3
(σ3 − 1)

]
ϕ+ β

L3

3
(σ3 − 1)B = 0 ,

R2
AdS�B − 8σ3A+ 4β σ3 ϕ−

L3

3
(σ3 − 1)B = 0 , (3.45)
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Figure 1. Violation of the BF bound in the BSB flux vacuum for β = 1. The dangerous eigenvalue

is displayed in units of 1
R2

AdS
, and the BF bound is -1 in this case. Notice the peculiar behavior,

already spotted in [76, 77], whereby the squared masses decrease initially, rather than increasing,

as ` increases between 1 and 3.

where we have introduced the shorthand notation

L3 = `(`+ 6) , (3.46)

to then determine C and D via the algebraic constraints.

The mass matrix of interest is therefore

R2
AdSM2 =

L3

3
(σ3 − 1) 13 +


4 + 3σ3 −7

2 β σ3
L3
2 (σ3 − 1)

−2β σ3 2β2 σ3 + τ3 −β L3

3 (σ3 − 1)

8σ3 −4β σ3 0

 , (3.47)

where now L3 6= 0. In all cases one is to compare the squared mass eigenvalues with the

Breitenlohner-Freedman (BF) bound for scalar perturbations, which in this AdS3 × S7

case reads

M2 ≥ − 1

R2
AdS

. (3.48)

For the BSB case, one is thus led, in agreement with [76, 77], to the simple results

1

R2
AdS


`(`+6)

6 + 4
(`+6)(`+12)

6
`(`−6)

6

 , (3.49)

and the BF bound is thus violated by the third eigenvalue for ` = 2, 3, 4. Decreasing the

value of β could remove the problem for ` = 4, but the instability would still be present for

` = 2, 3. On the other hand, increasing the value of β instabilities show up also for higher

values of `.

The issue of interest is now whether there exist regions within the parameter space

spanned by σ3 and τ3 where the violation does not occur. We did find them, for all
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Figure 2. Comparison between the lowest eigenvalue of R2
AdSM2 and the BF bound, which is -1

in this case. There are regions of stability for values of σ3 close to 1, which correspond to R2

R2
AdS

> 9

and negative values of V0. The example displayed here refers to ` = 3, which corresponds to the

minimum in the orientifold case of figure 1, and the peak identifies the point corresponding to the

tree-level values σ3 = 3
2 , τ3 = 9

2 .

Figure 3. A different view. Comparison between the lowest eigenvalue of R2
AdSM2 and the BF

bound, which is -1 in this case, as a function of ` and σ3, for τ3 = 9
2 . There are regions of stability

for values of σ3 close to 1, which correspond to large values for the ratio R2

R2
AdS

and to negative

values of V0.

dangerous values of `, for values of σ3 that are close to one, and therefore for negative V0,

and for positive τ3, i.e. for potentials that are convex close to the vacuum configuration.

These results are displayed in figures 2 and 3.

One can try to eliminate the unstable modes present for ` = 2, 3, 4 by projections in

the internal S7, which can be embedded in C4 constraining its four complex coordinates

Zi to satisfy
4∑
i=1

Zi Zi = R2 . (3.50)

According to appendix B, scalar spherical harmonics of order ` are harmonic polynomials
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of degree ` in the Zi and their complex conjugates, so that the issue is how to project out

the dangerous ones. The three-sphere, which can be embedded in C2 demanding that

2∑
i=1

Zi Zi = R2 , (3.51)

provides an instructive simpler case. One can indeed associate each point on S3 to a

quaternion of unit norm

Q =

(
Z1 i Z2

i Z2 Z1

)
(3.52)

on which the SU(2) rotations

Ri = e i
π
4
σi , R8

i = 1 (i = 1, 2, 3) (3.53)

act freely. One can verify that these rotations, when composed in all possible ways, build

the symmetry group of the cube in the three-dimensional Euclidean space associated to

the three generators σi
2 . One can also show that these operations suffice to eliminate all

harmonic polynomials of degrees ` ≤ 4, while leaving no fixed sub-varieties on account

of their free action on quaternions by left multiplication. One would naturally expect

octonions of unit norm to play a similar role for S7, but have just taken a cursory look

at this construction. Alternatively, and more simply, one could consider the transforma-

tions generated by the Ri in eq. (3.53) acting simultaneously on complementary pairs of

(Zi, Zj) coordinates. This would suffice to eliminate all unwanted spherical harmonics, but

unfortunately it would also generate fixed sub-varieties.

At any rate, one should eventually exclude non-perturbative instabilities of the type

discussed in [86], and we leave to future work the analysis of all these issues. String

corrections, which could drive the potential to a nearby stability domain, provide in our

opinion an interesting alternative for these AdS3 × S7 orientifold vacua.

4 The (generalized) AdS7 × S3 heterotic vacua

In these vacua there are a few novelties with respect to the orientifold case, since, which

will have nonetheless some relevant effects. In the notation of section 2, now β = −1, while

V = T e
5
2
φ . (4.1)

With this proviso, the equations of motion are again (2.8) and (2.9), but in this case the

flux is in the internal sphere. Therefore eq. (2.8) becomes

∂i

[
eβ φ
√
−g H ijk

]
= 0 , (4.2)

which is solved by

H ijk =
εijk
√
γ
h̃ . (4.3)
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Consequently, the scalar equation gives again

V ′0 = −β
2
eβ φ0

(
h̃
)2

, (4.4)

while the Einstein equations translate into

− 1

β
V ′0 =

1

2
eβ φ0

(
h̃
)2

= 2

(
3

R2
AdS

+
1

R2

)
, (4.5)

V0 = − 36

R2
AdS

+
4

R2
. (4.6)

Notice that this solution demands that β V ′0 < 0, and for later convenience we also define

σ7 = 3 +
R2

AdS

R2
,

τ7 = RAdS V
′′

0 . (4.7)

For these vacua σ7 ≥ 3, while the sign of τ7 is a priori arbitrary. Moreover,

R2
AdS V0 = 4 (σ7 − 12) , (4.8)

which changes sign at σ7 = 12, and finally for the torus-level heterotic potential

σ7 = 15 , τ7 = 75 . (4.9)

4.1 Perturbations of the generalized AdS7 × S3 heterotic flux vacua

In this case the perturbed tensor equations take the form

�10bij −∇i
(
∇M bMj

)
−∇j

(
∇M biM

)
− 2

R2
bij

+ 4

(
1

R2
+

3

R2
AdS

)
√
γ εijk

(
β∇k ϕ−∇α hαk −

1

2
∇k γ · h+

1

2
∇k λ · h

)
= 0 ,

�10biµ −∇i
(
∇M bMµ

)
−∇µ

(
∇M biM

)
−
( 2

R2
− 6

R2
AdS

)
biµ (4.10)

+ 4

(
1

R2
+

3

R2
AdS

)
√
γ εkli∇k hlµ = 0 ,

�10bµν −∇µ
(
∇M bMν

)
−∇ν

(
∇M bµM

)
+

10

R2
AdS

bµν = 0 ,

while the perturbed dilaton equation is now

�10 ϕ− V ′′0 ϕ− 2

(
1

R2
+

3

R2
AdS

)(
β2 ϕ− β γ · h

)
− β

2

ε ijk
√
γ
∇i bjk = 0 . (4.11)
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Finally, the perturbed metric equations that follow from eq. (2.9) rest on eq. (3.15) and read

�10 hij −
2

R2
hij −∇i (∇ · h)j −∇j (∇ · h)i +∇i∇j (λ · h+ γ · h)

+ γij

[ 5β

2

(
1

R2
+

3

R2
AdS

)
ϕ+ 3 γ · h

( 1

R2
− 3

R2
AdS

)
− ε klm

4
√
γ
∇k blm

]
+

1

2
√
γ

[
ε klm γim(∇j bkl +∇k blj +∇l bjk) + (i↔ j)

]
= 0 ,

�10 hiµ −
( 2

R2
+

6

R2
AdS

)
hiµ −∇i (∇ · h)µ −∇µ (∇ · h)i +∇i∇µ (λ · h+ γ · h)

+
1

2
√
γ
ε klm γim (∇µ bkl +∇k blµ +∇l bµk) = 0 , (4.12)

�10 hµν +
2

R2
AdS

hµν −∇µ (∇ · h)ν −∇ν (∇ · h)µ +∇µ∇ν (λ · h+ γ · h)

+ λµν

[
− 2

R2
AdS

λ · h−
(

1

R2
+

3

R2
AdS

)(
3

2
β ϕ− γ · h

)
−
ε ijk∇i bjk

4
√
γ

]
= 0 .

In all cases, perturbations depend on the AdS coordinates xµ and on the sphere coordinates

yi, and will be expanded in the corresponding spherical harmonics, whose structure is briefly

reviewed in appendix B, proceeding as in section 3.1.

4.2 Tensor and vector perturbations

To begin with, let us notice that tensor perturbations, which result from transverse traceless

hµν when all other perturbations vanish, satisfy in these AdS7 vacua the equation

�hµν −
`(`+ 2)

R2
hµν +

2

R2
AdS

hµν = 0 (` ≥ 0) . (4.13)

For ` = 0, this describes a massless graviton field, which is accompanied by a tower of

Kaluza-Klein states for higher `. Hence, there are no instabilities in this sector.

There are massive scalar excitations resulting from the traceless part of hij that is also

divergence free, which is a tensor with respect to the internal rotation group. They satisfy

�hij −
`(`+ 2)(σ7 − 3)

R2
AdS

hij = 0 (` ≥ 2) , (4.14)

so that the results in appendix B imply that no instabilities are present also in this sector.

There are also no unstable modes from transverse bµν excitations, which satisfy,

� bµν +
[10− `(`+ 2)(σ7 − 3)]

R2
AdS

bµν = 0 (` ≥ 0) , (4.15)

so that the lowest ones, corresponding to ` = 0, are massless.

Vector perturbations are more involved, since there are mixings between hiµ and biµ.

In order to study them, one can proceed in analogy with section 3.2, letting3

biµ =
√
γ ε ipq∇p Fµq , (4.16)

3The function F qµ is not uniquely defined, and the resulting freedom makes it possible to eliminate source

terms that could in principle affect some of the following equations.
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which is transverse in internal space. The resulting system reads

R2
AdS �Fµi + [6− (`+ 1)2(σ7 − 3)]Fµi + 4σ7 hµi = 0 ,

R2
AdS �hµi + (`+ 1)2(σ7 − 3)Fµi − [6 + (`+ 1)2(σ7 − 3)]hµi = 0 , (4.17)

and the eigenvalues are

(`+ 1)2(σ7 − 3) ± 2
√
σ7(σ7 − 3)(`+ 1)2 + 9 . (4.18)

In order to refer to the BF bound in appendix C one should add 6 to these expressions

and compare the result with −4. All in all, there are no modes below the BF bound in

this sector. The vector modes are massive for ` > 1 in the region σ7 > 3, while they

become massless for ` = 1 and all allowed values of σ7 > 3, and for all values of ` in

the singular limit σ7 = 3, which would correspond to a three-sphere of infinite radius.

All in all, for ` = 1 there are 6 massless vectors arising from one of the two eigenvalues

above in the heterotic vacuum. According to appendix B, they build up an antisymmetric

tensor in internal vector indices, and therefore an adjoint multiplet of SO(4) vectors. The

counting is consistent with Kaluza-Klein theory and with the internal symmetry of S3,

although the massless vectors originate here from mixed contributions of the metric and

the two-form field.

4.3 Scalar perturbations

Proceeding as in the preceding sections, let us now concentrate on scalar perturbations

starting from

gMN = g
(0)
MN + hMN , φ = φ0 + ϕ , BMN = B0MN + e−β φ0

bMN

h̃
. (4.19)

One can describe scalar perturbations letting

bµν = 0 , bµi = 0 , bij =
√
γ εijk∇k B , (4.20)

a choice that also satisfies

∇M bMN = 0 . (4.21)

In addition, let us parametrize scalar metric perturbations as

hµν = γµν A , hµi = R2
AdS∇µ∇iD , hij = γij C , (4.22)

along the lines of what we did in the preceding sections.

In this fashion, the first of eqs. (4.10) turns into(
�− `(`+ 2)

R2

)
B − 4σ7

R2
AdS

(
−β ϕ+R2

AdS �D +
1

2
(3C − 7A)

)
= 0 , (4.23)

which is now present only for l 6= 0, while the complete scalar equation reads

�ϕ+
`(`+ 2)

R2
(β B − ϕ)− 2σ7

R2
AdS

(
β2 ϕ+ 3β C

)
− V ′′0 ϕ = 0 . (4.24)
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Figure 4. Violation of the BF bound in heterotic flux vacua. The dangerous eigenvalue is displayed

in units of 1
R2

AdS
and the BF bound is -9 in this case.

For scalar perturbations one can thus obtain

�A−
(

12

R2
AdS

+
`(`+2)

R2

)
A+

3σ7

R2
AdS

(
−β

2
ϕ+C

)
+
`(`+2)

2R2
B= 0 ,

5A+3C+2`(`+2)(σ7−3)D= 0 ,

6A+2C+B−12D= 0 , (4.25)

7A+C−2R2
AdS�D= 0 ,

�C− `(`+2)

R2
C− 5σ7+12

R2
AdS

C+
5βσ7

2R2
AdS

ϕ− 3`(`+2)

2R2
B= 0 ,

�ϕ+
`(`+2)

R2
(βB−ϕ)− 2σ7

R2
AdS

(
β2ϕ−3βC

)
−V ′′0 ϕ= 0 ,

�B− `(`+2)

R2
B− 4σ7

R2
AdS

(−βϕ+2C) = 0 ,

where we have eliminated �D from the tensor equation. Although there are seven equa-

tions for five unknowns, one can verify that the system is consistent. All in all, one can

thus work with (C,ϕ,B), restricting the attention to

R2
AdS �C −

[
L7(σ7 − 3) + 5σ7 + 12

]
C +

5β σ7

2
ϕ− 3L7

2
(σ7 − 3) B = 0 ,

R2
AdS �ϕ+ 6β σ7C −

[
L7(σ7 − 3) + 2β2 σ7 + τ7

]
ϕ+ L7 β (σ7 − 3) B = 0 , (4.26)

R2
AdS �B − 8σ7C + 4β σ7 ϕ− L7 (σ7 − 3) B = 0 ,

which are here expressed in terms of the two variables σ7 and τ7 of section 4, to then

determine A and D algebraically, and where for brevity we have let

L7 = `(`+ 2) . (4.27)
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To begin with, let us notice that for ` = 0 B decouples, so that the system reduces to

R2
AdS �C − (5σ7 + 12

)
C +

5β σ7

2
ϕ = 0 ,

R2
AdS �ϕ+ 6β σ7C − (2β2 σ7 + τ7)ϕ = 0 . (4.28)

In terms of the σ7 and τ7 variables of section 4, the mass matrix thus reads

R2
AdSM2 =

(
5σ7 + 12 −5

2 β σ7

−6β σ7 2β2 σ7 + τ7

)
, (4.29)

and its eigenvalues are

β2σ7 +
5σ7

2
+
τ7

2
+6 ± 1

2

√
(4β4 + 40β2 + 25)σ7

2 + 4 (τ7 − 12) (β2 − 5/2)σ7 + (τ7 − 12)2 .

(4.30)

They are both positive for the tree-level effective Lagrangian, and for the heterotic poten-

tial, for which

σ7 = 15 , τ7 = 75 , β = −1 , (4.31)

they read

λ1,2 =
24

R2
AdS

(
4 ±

√
6
)
. (4.32)

We can now move on to the ` 6= 0 case, where the three functions (C, φ,B) all con-

tribute, so that one is led to the mass matrix

R2
AdSM2 = L7(σ7 − 3)13 +

 5σ7 + 12 −5β
2 σ7

3
2 L7(σ7 − 3)

−6β σ7 2β2 σ7 + τ7 −β L7(σ7 − 3)

8σ7 −4β σ7 0

 . (4.33)

In most of the parameter space, two eigenvalues are not problematic, but there is one

bad eigenvalue in the tree-level heterotic potential, which corresponds to σ7 = 15 and

τ7 = 75. It obtains for ` = 1 and k = 0 from

4

[
16 + 3L7 − 4

√
34 + 15L7 cos

(
δ − 2π k

3

)]
(k = 0, 1, 2) , (4.34)

where

δ = Arg
(

152− 45L7 + 3 i
√

3(5L7 + 3)[(5L7 + 14)2 + 4]
)
. (4.35)

Still, there is again a stability region for values of σ7 that are close to 12, for negative

V0, and typically for positive τ7, i.e. for potentials that are convex close to the vacuum

configuration.. These results are displayed in figures 5 and 6.

In this case one could eliminate the bad eigenvalue by a Z2 antipodal projection in the

internal sphere S3, which can be identified with the SU(2) group manifold. This operation

has no fixed points, and reduces the internal space to the SO(3) group manifold, without

affecting the massless vectors with ` = 1 that we have identified. Alternatively, one could

resort to the symmetry group of the sphere related to the action on unit quaternions that
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Figure 5. Comparison between the lowest eigenvalue of R2
AdSM2 and the BF bound, which is -9

in this case. There are regions of stability for values of σ7 close to 3, which correspond to R2

R2
AdS

> 9,

and to negative values of V0. The example displayed here refers to β = −1 and ` = 1, which

corresponds to the minimum in the heterotic case of figure 4, and the peak identifies the point

corresponding to the tree-level values σ7 = 15, τ7 = 75.

Figure 6. A different view. Comparison between the lowest eigenvalue of R2
AdSM2 and the BF

bound, which is -9 in this case, as a function of ` and σ7, for τ7 = 75. There are regions of stability

for values of σ3 below 12, which correspond to relatively large values for the ratio R2

R2
AdS

and to

negative values of V0.

we have described for the orientifold vacua. The resulting settings, however, resonate again

with the discussion in [86], and non-perturbative instabilities are in principle relevant to

the story, so that we leave an analysis of this problem to future work. String corrections

would also deserve a closer look, since they could drive the potential to a nearby stability

domain, providing an interesting alternative for these AdS7 × S3 heterotic vacua.
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5 The 9D Dudas-Mourad non-supersymmetric vacua

Our starting point is now provided by the classical solutions of [38] for the ten-dimensional

Sugimoto orientifold [23], which in the Einstein frame read

φ =
3

4
αOy

2 +
1

3
ln
∣∣αOy2

∣∣+ Φ0 ,

ds2
O =

∣∣αO y2
∣∣ 1
18 e−αO

y2

8 ηµνdx
µdxν + e−

3
2

Φ0
∣∣αOy2

∣∣− 1
2 e−

9
8
αOy

2
dy2 , (5.1)

where the absolute values would not be needed here, since y ∈ (0,∞), but this notation

will be convenient in the following section. The corresponding Einstein-frame expressions

for the SO(16)× SO(16) heterotic model of [33, 35] read

φ =
1

2
ln sinh |

√
αHy|+ 2 ln cosh |

√
αHy|+ Φ0 ,

ds2
H = |sinh (

√
αHy)|

1
12 |cosh (

√
αHy)|−

1
3 ηµνdx

µdxν

+ e−
5
2

Φ0 |sinh (
√
αHy)|−

5
4 |cosh (

√
αHy)|−5 dy2 . (5.2)

These two vacua have nine-dimensional Poincaré symmetry, while their internal spaces

are actually intervals of finite length in the metrics of eqs. (5.1) and (5.2). It is convenient

to recast the two solutions in terms of conformally flat metrics, so that one is led to consider

expressions of the type

ds2 = e2 Ω(z)
(
ηµν dx

µ dxν + dz2
)
,

φ = φ(z) . (5.3)

In detail, in the orientifold case the coordinate z is obtained integrating the relation

dz =
∣∣αO y2

∣∣− 5
18 e−

3
4

Φ0 e−
αO
2
y2 dy , (5.4)

while

e2 Ω(z) = |
√
αO y|

1
9 e−

αO
8
y2 . (5.5)

On the other hand, in the heterotic case

dz = e−
5
4

Φ0 |sinh (
√
αHy)|−

2
3 |cosh (

√
αHy)|−

7
3 dy , (5.6)

and

e2 Ω(z) = |sinh (
√
αHy)|

1
12 |cosh (

√
αHy)|−

1
3 . (5.7)

Notice that one is confronted with an interval whose finite length is proportional to
1√
αO,H

in the two cases, but which hosts a pair of metric singularities at its two ends

y = 0 and y = +∞, with a string coupling that is weak at the former and strong at the

latter. Moreover, the parameters αO and αH are proportional to the residual tension, and

therefore the supersymmetric case corresponds to the singular limit as they tend to zero,

where the internal length diverges.
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5.1 Perturbations of the 9D vacua

The equations of interest are now

�φ− ∂V

∂φ
= 0 ,

RMN +
1

2
∂Mφ∂Nφ+

1

8
gMN V (φ) = 0 , (5.8)

and the corresponding perturbed fields take the form

ds2 = e2 Ω(z)
(
ηMN + hMN (x, z)

)
dxM dxN ,

φ = φ(z) + ϕ(x, z) . (5.9)

As a result, the perturbed Ricci curvature can be extracted from

RMN = 8∇M ∇N Ω + (ηMN + hMN )∇A∇A Ω

− 8
(
∇M Ω∇N Ω− (ηMN + hMN )∇A Ω∇A Ω

)
+

1

2

[
(� + ∂2

z )hMN −∇M (∇ · h)N −∇N (∇ · h)M +∇M ∇N hLL
]
, (5.10)

an expression where covariant derivatives do not involve Ω, and thus refer to ηMN + hMN ,

which is also used to raise and lower indices. Up to first order the metric equations of

motion thus read

RMN +
1

2
∂Mφ∂Nφ+

1

2
∂Mϕ∂Nφ +

1

2
∂Mφ∂Nϕ

+
1

8
e2Ω
[
(ηMN + hMN )V + ηMNVφ ϕ

]
= 0 , (5.11)

and combining this result and the scalar equation in (5.8) yields the unperturbed equations

of motion

Ω′′ + 8 (Ω′)2 +
e2Ω

8
V (φ) = 0 , (5.12)

9 Ω′′ +
e2Ω

8
V (φ) +

1

2
(φ′)2 = 0 , (5.13)

φ′′ + 8 Ω′φ′ − e2Ω Vφ(φ) = 0 , (5.14)

where V and Vφ denote the potential and its derivative computed on the classical vacuum.

Notice that the first two equations can be equivalently recast in the form

72(Ω′)2 − 1

2
(φ′)2 + e2Ω V (φ) = 0 , (5.15)

8
[
Ω′′ − (Ω′)2

]
+

1

2
(φ′)2 = 0 , (5.16)

and that the equation for φ is a consequence of these.
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All in all, (5.11) finally leads to

−1

8
e2Ω ηµνVφ ϕ = −4(∂µhν9 + ∂νhµ9 − h′µν)Ω′

− ηµν
[
h99[Ω′′ + 8(Ω′)2] + (∂αh

α9 − 1

2
[h′α

α − h′99])Ω′
]

+
1

2

[
�hµν + h′′µν − ∂µ

(
∂αh

α
ν + h′9ν

)
− ∂ν

(
∂αh

α
µ + h′9µ

)
+ ∂µ∂ν(hα

α + h99)
]
, (5.17)

−1

2
∂µϕφ

′ = −4 ∂µh99 Ω′

+
1

2

[
�hµ9 − ∂µ∂αhα9 − ∂αh′αµ + ∂µh

′
α
α
]
, (5.18)

−ϕ′ φ′ − 1

8
e2Ω
[
h99V + Vφ ϕ

]
= −4h′99Ω′ −

[
∂αh

α9 − 1

2
[h′α

α − h′99]

]
Ω′

+
1

2

[
�h99 − 2 ∂αh

′α
9 + h′′α

α
]
. (5.19)

5.2 Scalar perturbations

For scalar perturbations

hµν = ηµν e
ip.xA(z) , hµ9 = i pµD(z)eip.x , h99 = eip.xC(z) , (5.20)

with pµpνηµν = −m2 and p.x = pµxνηµν , so that the Einstein equations become

−1

8
e2Ω
[
AV + Vφϕ

]
ηµν = 4(2 pµ pνD +A′ηµν)Ω′ + ηµνA[Ω′′ + 8(Ω′)2]

− ηµν
[
C[Ω′′ + 8(Ω′)2] + (m2D − 1

2
[9A′ − C ′])Ω′

]
+

1

2

[
ηµν(A′′ +m2A)− pµ pν(7A+ C − 2D′)

]
, (5.21)

−1

2
ϕφ′ − 1

8
e2ΩDV = −4C Ω′ +D [Ω′′ + 8(Ω′)2] + 4A′ (5.22)

−ϕ′ φ′ − 1

8
e2Ω
[
CV + Vφϕ

]
= −4C ′Ω′ −

[
m2D − 1

2
(9A′ − C ′)

]
Ω′

+
1

2

[
m2(C − 2 D′) + 9A′′

]
, (5.23)

while the perturbed scalar equation reads

�ϕ+ϕ′′+8Ω′ ϕ′+φ′
[

1

2
(hµµ)′ − 1

2
(h9

9)′ − ∂µhµ9 − 8Ω′h99

]
−φ′′h99−e2ΩVφφ ϕ = 0 . (5.24)

Substituting the preceding expressions and using the background equations now gives

m2ϕ+ ϕ′′ + 8Ω′ ϕ′ + φ′
[

9

2
A′ − 1

2
C ′ −m2D

]
− C e2ΩVφ − e2ΩVφφ ϕ = 0 , (5.25)
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and altogether the four scalars A, C, D and φ obey the linearized equations

−1

8
e2ΩVφ ϕ = −

[
m2D − 1

2

(
17A′ − C ′

)]
Ω′

+
1

2
(m2A+A′′)− C

[
Ω′′ + 8(Ω′)2

]
,

7A+ C − 2D′ − 16DΩ′ = 0 ,

4C Ω′ − 4A′ − 1

2
ϕφ′ = 0 , (5.26)

−ϕ′ φ′ − 1

8
e2Ω [C V + Vφ ϕ] = −

[
m2D − 9

2
(A′ − C ′)

]
Ω′

+
1

2

[
m2(C − 2D′) + 9A′′

]
.

Notice that some of the metric equations, the second one and the third one above, are

constraints, and that there is actually another constraint that obtains combining the first

and the last so as to remove A′′. Moreover, eq. (5.25) is a consequence of these.

The system, however, has a residual local gauge symmetry, a diffeomorphism of

the type

z′ = z + ε(xµ, z) , (5.27)

which is available in the presence of a single internal dimension and implies

dz = dz′
(

1− dε

dz′

)
− dxµ∂µ ε . (5.28)

Taking into account the original form of the metric in eq. (5.9), which in terms of our

perturbations reads

ds2 = e2Ω(z)
[
(1 +A) dxµ dxµ + 2 dxµ dz ∂µD + (1 + C) dz2

]
, (5.29)

one can thus identify the transformations

A → A− 2 Ω′ ε ,

C → C − 2 Ω′ ε− 2 ε′ ,

D → D − ε ,
ϕ → −φ′ ε . (5.30)

Notice that D behaves as a Stückelberg field, and can be gauged away, leaving only one

scalar degree of freedom after taking into account the constraints, as expected from Kaluza-

Klein theory.

After gauging away D the second of eqs. (5.26) implies that

C = −7A , (5.31)

while the third of eqs. (5.26) implies that

ϕ = − 8

φ′
(
A′ + 7AΩ′

)
. (5.32)
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Substituting these expressions in the first of eqs. (5.26) finally leads to a second-order

eigenvalue equation for m2:

A′′ +A′
(

24 Ω′ − 2

φ′
e2Ω Vφ

)
+A

(
m2 − 7

4
e2Ω V − 14 e2Ω Ω′

Vφ
φ′

)
= 0 . (5.33)

There is nothing else, since differentiating the third of eqs. (5.26) and using the background

equations gives

ϕ′ φ′ = −8A′′ − 120A′Ω′ + 8 e2Ω Vφ
φ′

A′ + 56 e2Ω Vφ
φ′

Ω′A+ 7 e2Ω V A . (5.34)

Taking this result into account, one can verify that the last of eqs. (5.26) also leads to (5.33),

whose properties we now turn to discuss.

The issue at stake is again the stability of the solution, which in this case reflects

itself in the sign of m2: a negative value would signal a tachyonic instability in the nine-

dimensional Minkowski space. Changing parameters in the potential is more complicated

in this case, since the background values depend on z, but nonetheless we can show that

the solution corresponding the lowest-order level potentials is stable, in both the orientifold

and heterotic models. To this end, let us recall that a generic second-order equation of

the type

f ′′(z) + a(z) f ′(z) +
[
m2 − b(z)

]
f(z) = 0 , (5.35)

can be turned into a Schrödinger-like form via the transformation

f(z) = Ψ(z) e−
1
2

∫
a dz . (5.36)

One is thus led to
d2Ψ

dz2
+

(
m2 − b− a′

2
− a2

4

)
Ψ = 0 , (5.37)

and tracing the preceding steps one can see that Ψ is in L2. Eq. (5.37) can be conveniently

discussed connecting it to a more familiar problem of the type

m2 Ψ = HΨ , (5.38)

where

H = b+A†A , (5.39)

with

A = − d

dz
+
a

2
, A† =

d

dz
+
a

2
. (5.40)

Once these relations are supplemented with Neumann or Dirichlet conditions at each end

in z, one can conclude that in all these cases

A†A ≥ 0 . (5.41)

All in all, positive values of b then imply positive values of m2, and this condition is

indeed realized for the 9D orientifold vacuum, since

b =
7

4
e2Ω

(
V + 8 Ω′

Vφ
φ′

)
, (5.42)
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and the corresponding V ∼ e
3
2
φ, so that

b =
7

4
e2Ω V

(
1 + 12

Ω′

φ′

)
. (5.43)

The ratio of derivatives can be simply computed in terms of the y coordinate using eqs. (5.1)

and (5.5), which yields the manifestly non-negative expression

b = 7 e2Ω V
1

1 + 9
4 αO y

2
. (5.44)

To reiterate, the 9d orientifold vacuum is a perturbatively stable solution of the Einstein-

dilaton system for all allowed choices of boundary conditions at the ends of the interval.

In the heterotic case V ∼ e
5
2
φ, and

b =
7

4
e2Ω V

(
1 + 20

Ω′

φ′

)
. (5.45)

Making use of the explicit solutions in eqs. (5.2) and (5.7), one thus finds

b =
8

3
e2Ω V

1− 1
2 tanh2

(√
αHy

)
1 + 4 tanh2

(√
αHy

) , (5.46)

which is again non negative, so that the heterotic vacuum is also a perturbatively stable

solution of the Einstein-dilaton system for all allowed choices of boundary conditions at the

ends of the interval. The presence of regions where world-sheet or string loop corrections

are large, however, makes the lessons of these results less evident for String Theory.

5.3 Tensor and vector perturbations

Tensor perturbations are simpler to study, and to this end one only allows a transverse

traceless hµν . After a Fourier transform one is thus led to

h′′µν + 8 Ω′ h′µν +m2 hµν = 0 , (5.47)

which defines a Schrödinger problem along the lines of eq. (5.35), with b = 0 and a = 8Ω′.

Hence, with Dirichlet or Neumann boundary conditions the argument of section 5.2 applies,

and one gets a discrete spectrum of masses. Moreover, one can verify that there is a

normalizable zero mode with hµν independent of z, which signals that at low energies

gravity is effectively nine dimensional.

As in previous cases, vector perturbations entail some mixings, because in this case

they originate from transverse hµ9 and from the traceless combination

hµν = ∂µ Λν + ∂ν Λµ , (5.48)

so that

∂µ Λµ = 0 . (5.49)

The relevant vector is

Cµ = hµ9 − Λ′µ , (5.50)
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which satisfies the two equations

(pµCν + pν Cµ)′ + 8 Ω′ (pµCν + pν Cµ) = 0 ,

m2Cµ = 0 , (5.51)

the first of which is clearly solved by

Cµ = C(0)
µ e−8 Ω , (5.52)

with a constant C
(0)
µ . In analogy with the preceding discussion, one might be tempted

to identify a massless vector. However, one can verify that, contrary to the case of ten-

sors, this is not associated to a normalizable zero mode. The result is consistent with

standard expectations from Kaluza-Klein theory, since the internal manifold has no trans-

lational isometry.

6 The linear-dilaton vacua

Variants of this setting encompass the case of non-critical strings, lower-dimensional com-

pactifications of the ten-dimensional models that we are analyzing in the presence of an

internal breathing mode, and also the very important case of cosmological perturbations

in four dimensions. In particular, one can describe non-critical strings starting from

S =
1

2 k2
s

∫
ddx
√
−g
[
−R− 4

d− 2
(∂φ)2 − V (φ)

]
, (6.1)

where

V = T eγ̃ φ , (6.2)

with α > 0 for d > 10 and α < 0 for d < 10. Moreover

γ̃ =
4

d− 2
(6.3)

for the potentials arising from the Polyakov measure [78, 79].

The equations of motion read

�φ− d− 2

8

∂V

∂φ
= 0 ,

RMN +
4

d− 2
∂Mφ∂Nφ+

1

d− 2
gMN V (φ) = 0 , (6.4)

and the corresponding perturbed fields take again the form

ds2 = e2 Ω(z)
[
ηMN + hMN (x, z)

]
dxM dxN ,

φ = φ(z) + ϕ(x, z) , (6.5)

while the perturbed Ricci curvature can be extracted from

RMN = (d− 2)∇M ∇N Ω + (ηMN + hMN )∇A∇A Ω

− (d− 2)
(
∇M Ω∇N Ω− (ηMN + hMN )∇A Ω∇A Ω

)
+

1

2

[
(� + ∂2

z )hMN −∇M (∇ · h)N −∇N (∇ · h)M +∇M ∇N hLL
]
. (6.6)
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The unperturbed equations of motion then read

Ω′′ + (d− 2) (Ω′)2 +
e2Ω

d− 2
V = 0 ,

(d− 1) Ω′′ +
e2Ω

d− 2
V +

4

d− 2
(φ′)2 = 0 ,

φ′′ + (d− 2) Ω′φ′ − (d− 2)

8
e2Ω Vφ(φ) = 0 , (6.7)

where, as in the preceding section, V and Vφ denote the potential and its derivatives,

computed on the classical vacuum. The background solution that we are after in this

section is the linear-dilaton vacuum discussed in [39, 40], which is an exact classical solution

of String Theory, to all orders in α′. The corresponding field profiles are

Ω = a z , φ = −a
2

(d− 2) z , (6.8)

where the parameter a is determined by the potential in eq. (6.1) according to

e2Ω V0 = −(d− 2)2 a2 . (6.9)

Proceeding as in the preceding section, one is thus led to the equation of scalar per-

turbations

A′′ + A′
[
3(d− 2) Ω′ − (d− 2)

4φ′
e2Ω Vφ

]
+ A

[
m2 − 2(d− 3)

(d− 2)
e2Ω V − (d− 2)(d− 3)

4
e2Ω Ω′

Vφ
φ′

]
= 0 , (6.10)

where the relations between C, A and ϕ are now

C = −(d− 3)A ,

ϕ = −(d− 2)2

8φ′
[
A′ + (d− 3)AΩ′

]
. (6.11)

In a similar fashion, tensor perturbations are described by

h′′µν + (d− 2)Ω′ h′µν +m2 hµν = 0 . (6.12)

For the linear dilaton solution of eqs. (6.8) and (6.9), eqs. (6.10) and (6.12) become identical

and take the simple form

A′′ +A′ (d− 2) a+m2A = 0 . (6.13)

Retracing the preceding steps one is thus led to define

A(z) = Ψ(z) e−
d−2
2
a z , (6.14)

and then
d2Ψ

dz2
+

[
m2 − a2(d− 2)2

4

]
Ψ = 0 , (6.15)
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which admits bounded solutions only if

m2 >
(d− 2)2 a2

4
. (6.16)

Therefore, this linear-dilaton background is stable. However, it has several problems. To

begin with, although eqs. (6.8) and (6.9) correspond to an exact solution of tree-level String

Theory to all orders in α′, there is a region of strong coupling for large negative values of

z, and moreover the preceding argument shows that there are no massless scalar or tensor

modes around this vacuum. In addition, from a lower-dimensional perspective there is a

continuum of massive excitations.

7 The Dudas-Mourad cosmological solutions in ten dimensions

Our starting point is now the analytic continuation under y → it, and consequently under

z → iη, of the classical solutions of section 5. For the ten-dimensional Sugimoto orien-

tifold [23] one thus obtains, in the Einstein frame,

φ = −3

4
αOt

2 +
1

3
ln
∣∣αOt2∣∣+ Φ0 ,

ds2
O =

∣∣αO t2∣∣ 1
18 eαO

t2

8 dx · dx− e−
3
2

Φ0
∣∣αOt2∣∣− 1

2 e
9
8
αOt

2
dt2 , (7.1)

where the parametric time t takes values, as usual for a decelerating Cosmology with an

initial singularity, in (0,∞). The corresponding Einstein-frame solution for the SO(16) ×
SO(16) heterotic model of [33, 35] reads

φ =
1

2
ln sin |

√
αHt|+ 2 ln cos |

√
αHt|+ Φ0 ,

ds2
H = |sin (

√
αHt)|

1
12 |cos (

√
αHt)|−

1
3 dx · dx

− e−
5
2

Φ0 |sin (
√
αHt)|−

5
4 |cos (

√
αHt)|−5 dt2 , (7.2)

where 0 <
√
αHt <

π
2 . Both cosmologies have a nine-dimensional Euclidean symmetry, and

in both cases, as shown in [45], the dilaton is forced to emerge from the initial singularity

climbing up the potential. In this fashion it reaches an upper bound, which translates into

an upper limit on the string coupling, before it begins its descent.

It is convenient to recast these expressions in conformal time according to

ds2 = e2 Ω(η)
(
dx · dx− dη2

)
,

φ = φ(η) . (7.3)

In the orientifold case the conformal time η is obtained integrating the relation

dη = |
√
αO t|−

5
9 e−

3
4

Φ0 e
αO
2
t2 dt , (7.4)

and

e2 Ω(η) = |
√
αO t|

1
9 e

αO
8
t2 , (7.5)
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while in the heterotic case

dη = |sin (
√
αHt)|−

2
3 |cos (

√
αHt)|−

7
3 e−

5
4

Φ0 dt , (7.6)

and

e2 Ω(η) = |sin (
√
αHt)|

1
12 |cos (

√
αHt)|−

1
3 . (7.7)

In both models one can choose the range of η to be (0,∞), with the initial singularity

at the origin. Moreover, as we have stressed, in both cases the dilaton, and thus the

string coupling, is bounded from above, so that string loops are in principle under control.

However, there is still a singularity at t = 0 where string world-sheet corrections, which

are not taken into account in this Supergravity approximation, are expected to play an

important role [66].

7.1 Tensor perturbations

The issue at stake, here and in the following sections, is whether or not solutions determined

by arbitrary initial conditions provided some time after the initial singularity can grow in

the future evolution of the Universe. This can be done relatively simply at large times,

which translate into large values of the conformal time η, where many expressions simplify.

Moreover, for finite values of η the geometry is regular and the coefficients in eq. (7.8) are

bounded, so that the solutions are also not singular. However, an O(1) growth is relevant

for perturbations, and therefore we shall begin with the asymptotics and then, at the end

of the section, we shall also take a global look at the problem.

In the ten-dimensional orientifold and heterotic models of interest, using spatial Fourier

transforms and proceeding as in the preceding section, one can show that tensor perturba-

tions evolve according to

h′′ij + 8 Ω′ h′ij + k2 hij = 0 , (7.8)

where “primes” denote derivatives with respect to the conformal time η. Let us begin by

noting that, for all exponential potentials

V = T eγE φ (7.9)

with γE ≥ 3
2 , and therefore for the orientifold potentials of [24–27] and [31, 32], which have

γE = 3
2 and are “critical” in the sense of [45], but also for the SO(16) × SO(16) heterotic

string of [33, 35], which has γE = 5
2 and is “super-critical” in the sense of [45], the solutions

of the background equations

Ω′′ + 8(Ω′)2 − e2Ω

8
V = 0 ,

9Ω′′ − e2Ω

8
V +

1

2
(φ′)2 = 0 , (7.10)

φ′′ + 8Ω′φ′ + γE e
2Ω V = 0

are dominated, for large values of η, by

φ ∼ −3

2
log(
√
αH η) , Ω ∼ 1

8
log(
√
αH η) , e2Ω V ∼ 0 . (7.11)
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In the picture of [45], in this region the scalar field has overcome the turning point and

is descending the potential, so that the supergravity approximation is expected to be

reliable, but the potential contribution is manifestly negligible only for the “super-critical”

heterotic potential (1.2), where e2Ω V decays faster than 1
η2

for large η. However, the result

also applies for γE = 3
2 , which marks the onset of the “climbing behavior”. This can be

appreciated retaining subleading terms, which results into

φ ∼ −3

2
log (
√
αOη)− 5

6
log (log (

√
αOη)) , Ω ∼ 1

8
log (
√
αOη) +

1

8
log (log (

√
αOη)) ,

(7.12)

so that the potential decays as

e2 Ω V ∼ T(√
αOη

)2
[2 log(

√
αOη)]

, (7.13)

which is faster than 1
η2

.

Notice that a similar behavior, but with the scalar climbing up the potential,

φ ∼ 3

2
log(
√
αO,H η) , Ω ∼ 1

8
log(
√
αO,H η) , e2Ω V ∼ 0 , (7.14)

also emerges for small values of η, for all γE ≥ 3
2 , and thus in all orientifold and heterotic

models of interest. However, these expressions are less compelling, since they concern the

onset of the climbing phase. The potential is manifestly subdominant for small values of η,

but curvature corrections, which would be important in this region, are not simply taken

into account.

In conclusion, for γE ≥ 3
2 and for large values of η eq. (7.11) holds and eq. (7.8), which

describes tensor perturbations, therefore approaches

h′′ij +
1

η
h′ij + k2 hij = 0 . (7.15)

Consequently, for k 6= 0

hij ∼ Aij J0(kη) +Bij Y0(kη) . (7.16)

and the oscillations are damped for large times, so that no instabilities arise. On the other

hand, an intriguing behavior emerges for k = 0, which is worthy of some attention in our

opinion. In this case the solution of eq. (7.15) implies that

hij ∼ Aij +Bij log

(
η

η0

)
, (7.17)

and therefore spatially homogeneous tensor perturbations experience in general a logarith-

mic growth. This result indicates that homogeneity is preserved while isotropy is generally

violated in the ten-dimensional “climbing-scalar” cosmologies [45] that emerge, in String

Theory, in the presence of supersymmetry breaking.

One can actually get a global picture of the phenomenon: eq. (7.15) can be simply

solved in terms of the parametric times of [38] for k = 0, and

hij = Aij +Bij log (
√
αOt) , (7.18)
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Figure 7. The scale factor eΩ (red, dotted), the unstable homogeneous tensor mode (blue) and

the scalar field φ (green, dashed) as a function of
√
αot, where the parametric time t is defined in

section 7.

for the USp(32) and U(32) orientifold models, while (in this case 0 <
√
αHt <

π
2 )

hij = Aij +Bij log [tan (
√
αHt)] , (7.19)

for the SO(16)×SO(16) heterotic model. These results are qualitatively similar, if one takes

into account the limited range of t in the heterotic potential (1.2), and typical behaviors

related to eq. (7.18) are displayed in figure 7. The general lesson is that perturbations

acquire quickly O(1) variations toward the end of the climbing phase, where curvature

corrections to Supergravity do not dominate the scene anymore, providing some additional

support to the present analysis. We are therefore inclined to speculate that the violation

of isotropy that we are exhibiting could have left behind some space-time dimensions at

a very Early Epoch, opening the way to an effective four-dimensional Universe.4 While

perturbation theory is at most a clue to this effect, the resulting picture is clearly enticing,

and moreover, as we shall see shortly, the dynamics becomes potentially richer and stable

in lower dimensions, where other branes that become space filling can inject an inflationary

phase devoid of this type of instability.

These amusing properties apply to all “(super)critical” exponential potentials5

V = T eγE φ (7.20)

with γE ≥ 3
2 , where the climbing phenomenon occurs. In all these cases, the potential

energy becomes subdominant in the large-η descending phases, so that some aspects of

these systems are captured by fluids with an equation of state

p = γ ρ , (7.21)

4This result is implied by the “(super)critical” potentials of eqs. (1.1) and (1.2), and resonates at least

with some previous investigations [87, 88] of matrix models for the type-IIB theory [89].
5Notice that the exponent γ in [45] reflects non-conventional normalizations that set the transition to

this type of behavior at γ = 1 for all dimensions d.
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with a parameter γ that approaches one from below. This limiting behavior emerges

whenever a positive potential becomes subdominant, since in general for a scalar field

p

ρ
=
T − V
T + V

, (7.22)

with T and V the corresponding kinetic and potential energies. It is thus instructive to take

a cursory look at corresponding Freedman-Robertson-Walker cosmologies in d dimensions,

for which

ds2 = −dt2 +

(
t

t0

) 4
(d−1)(1+γ)

dx · dx , (7.23)

so that in conformal time

ds2 =

(
η

η0

) 4
(d−1)(1+γ)−2 [

− dη2 + dx · dx
]
. (7.24)

Tensor perturbations would evolve in this background according to eq. (8.5), a slight modifi-

cation of eq. (7.8), as we shall see in section 8, and the result for homogeneous perturbations

would be

hij = Aij +Bij η
(d−1)(γ−1)

(d−1)(γ+1)−2 . (7.25)

Therefore, in the standard region γ < 1 one would always end up with bounded perturba-

tions at large times, even for k = 0. On the other hand, the behavior in eq. (7.17) would

always present itself for γ = 1, while negative potentials would give rise to γ > 1, and thus

to worse instabilities.

To reiterate, the instability in the homogeneous tensor modes that we have exhibited

for climbing scalars with γE ≥ 3
2 signals a problem with isotropy that is common to all

ten-dimensional string models with broken supersymmetry. As we have already stressed,

this points naturally to an awaited tendency toward lower-dimensional space times, albeit

without a selection criterion for the resulting dimension d < 10. Hence, if the picture

that we are advocating were correct, the selection of a four-dimensional Universe in String

Theory would be an accident, no more and no less than in other contexts, but with hints

from the breaking of Supersymmetry that point to its inevitable emergence. Before pro-

ceeding to examine lower-dimensional settings, let us take a look at scalar perturbations

in ten dimensions.

7.2 Scalar perturbations

Scalar perturbations exhibit a very different behavior in the presence of the exponential

potentials (7.20) with γE ≥ 3
2 , and in particular of those in eqs. (1.1) and (1.2) that reflect

the breaking of Supersymmetry in ten-dimensional String Theory. Our starting point is

the analytic continuation of eq. (5.33) under z → i η, which reads

A′′ +

(
24 Ω′ +

2

φ′
e2Ω Vφ

)
A′ +

(
k2 +

7

4
e2Ω V + 14 e2Ω Ω′

Vφ
φ′

)
A = 0 . (7.26)

As in eq. (7.8), m2 was also replaced with −k2, which originates from a spatial Fourier

transform, and “primes” denote again derivatives with respect to the conformal time η.
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As we have stressed in the preceding section, the potential is subdominant in eq. (7.26)

for γE ≥ 3
2 , which leads to the asymptotic behaviors of eqs. (7.14) during the climbing

phase, and of eqs. (7.11) during the descending phase. As a result, during the latter

eq. (7.26) reduces to

A′′ +
3

η
A′ + k2A = 0 , (7.27)

whose solution is

A = A1
J1(k η)

η
+A2

Y1(k η)

η
. (7.28)

For k 6= 0 the amplitude always decays proportionally to (η)−
3
2 , while for k = 0 the two

independent solutions of eq. (7.26) are dominated by

A = A3 +A4
1

η2
. (7.29)

Therefore, scalar perturbations do not grow in time, even for the homogeneous mode with

k = 0, for γE ≥ 3
2 , and thus, in particular, for the USp(32) and U(32) orientifold models

of [24–27] and [31, 32], and also for the SO(16)× SO(16) heterotic model of [33, 35].

8 A family of cosmologies in d dimensions

In section 7.1 we have noticed that homogeneous tensor perturbations develop an instability

in the ten-dimensional potentials of eqs. (1.1) and (1.2), and we have emphasized that this

breakdown of isotropy could have ignited the transition to a four-dimensional Universe.

Here we would like to explore cosmological perturbations in the richer dynamical settings

that become available for d < 10. The picture that we have in mind is that these more

general potentials could have driven the scalar field along them during its descent, and in

this spirit we shall explore whether instabilities arise in this dynamical regime.

We have actually in mind two types of action principles. The first is the naive extension

to d < 10 of eq. (2.5),

S =
1

2 k2
d

∫
ddx
√
−g
[
−R− 4

d− 2
(∂φ)2 − T eγ̃ φ

]
, (8.1)

considered however for a “mild” (in a sense to be specified shortly) positive exponential

potential characterized by a parameter γ̃. In contrast, the ten-dimensional models con-

tained two types of “hard” potentials, which we first met in eqs. (1.1) or (1.2). We shall

leave these contributions implicit here: their main lesson, the inevitable presence of an

early climbing phase, was already taken into account. The second type of action,

S =
1

2 k2
d

∫
ddx
√
−g
[
−R− 1

2
(∂χ)2 − T eγd χ

]
, (8.2)

captures lower-dimensional mixings between the dilaton and the breathing mode of the in-

ternal manifold [46, 47]. This second option is relevant after the compactification, up to an-

other orthogonal mixing of dilaton and breathing mode that, as in [46, 47], we shall assume
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to be somehow stabilized and foreign to the dynamics. Clearly, we cannot nearly claim full

control of all this interesting dynamics, not even within Supergravity, but we shall attempt

nonetheless to extract potentially useful indications from it, within this assumption.

Notice also that the two actions of eqs. (8.1) and (8.2) can be simply turned into one

another by a redefinition of φ, which also connects γd to γ̃ according to6

γd = γ̃

√
d− 2

8
. (8.3)

One can thus explore their indications simultaneously, starting from the background equa-

tions, which in these lower-dimensional settings read

Ω′′ + (d− 2) (Ω′)2 − e2Ω

d− 2
V = 0 ,

(d− 1) Ω′′ − e2Ω

d− 2
V +

4

d− 2
(φ′)2 = 0 ,

φ′′ + (d− 2) Ω′φ′ +
(d− 2)

8
e2Ω Vφ(φ) = 0 . (8.4)

Starting from the results of section 6, one can also show that the tensor perturbations of

the Lagrangian (8.1) satisfy

h′′µν + (d− 2)Ω′ h′µν + k2 hµν = 0 , (8.5)

while the corresponding scalar perturbations satisfy

A′′ + A′
[
3(d− 2) Ω′ +

(d− 2)

4φ′
e2Ω Vφ

]
+ A

[
k2 +

2(d− 3)

(d− 2)
e2Ω V +

(d− 2)(d− 3)

4
e2Ω Ω′

Vφ
φ′

]
= 0 . (8.6)

As we have anticipated, we shall focus on dynamics that are dominated by a single

“mild” exponential term, so that

Vφ = γ̃ V . (8.7)

Letting

γ` =
4

d− 2
, γ(c) =

4
√
d− 1

d− 2
, (8.8)

the asymptotic solutions of eqs. (8.4) for large values of η, in the region where the scalar

descends the potential, are quite different from what we saw in preceding sections, and

Ω′ =
1(

γ̃
γ`

)2
− 1

1

η
,

φ′ = − γ̃
8

(d− 2)2(
γ̃
γ`

)2
− 1

1

η
,

e2Ω V =
(d− 2)3

16

γ(c) 2 − γ̃2[(
γ̃
γ`

)2
− 1

]2

1

η2
. (8.9)

6This redefinition, determined by eq. (8.2), refers to a “string-normalized” scalar and affects the values

of γ` and γ(c) below. For a canonically normalized scalar one should include another factor
√

2 kd in γ(c)

and also in γ` below.
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These results describe the Lucchin-Matarrese attractor [90, 91] in d dimensions, a special

solution that captures the large-time behavior of all solutions of the gravity-scalar system

in the presence of “mild” positive exponential potentials7 This qualification, as we can now

see, translates into the condition

γ̃ < γ(c) , (8.10)

since the solutions in eq. (8.9) exist, for positive potentials, only within this range.

Making use of these results in eqs. (8.5) and (8.6) leads to two very similar equations,

h′′µν +
aT
η
h′µν + k2 hµν = 0 . (8.11)

A′′ +
aS
η
A′ + k2A = 0 , (8.12)

where

aT =
(d− 2)(
γ̃
γ`

)2
− 1

, (8.13)

aS =
(d− 4) + 2

(
γ̃
γ`

)2

(
γ̃
γ`

)2
− 1

= 2 + aT . (8.14)

Denoting the corresponding fields collectively as Y , the solutions can be presented in

the form

Y (η) = C1 |η|
1−a
2 J| 1−a2 | (k |η|) + C2 |η|

1−a
2 Y| 1−a2 | (k |η|) (8.15)

for k 6= 0, and

Y (η) = D1 |η|1−a +D2 (8.16)

for k = 0, with a = aT for tensor perturbations and a = aS for scalar ones. Notice that

for γ̃ > γ` the Universe undergoes a decelerated expansion, and therefore we are interested

in the behavior as η → ∞, while if γ̃ < γ` it undergoes an accelerated expansion, and

therefore we are interested in the behavior as η → 0.

Leaving aside momentarily the case γ̃ = γ`, to which we shall return in the next

section, one can simply verify that perturbations never grow (when d > 2) if eq. (8.10),

which is instrumental for the existence of the Lucchin-Matarrese attractor with positive

potentials, holds. To reiterate, no instabilities arise, even for homogeneous perturbations,

in the presence of a “mild” exponential potential. Notice also that, in the picture subsumed

by eq. (8.2), γ(c) becomes the “critical” value of [46, 47].

As in section 7.1, one can get a simple global view of the homogenous solutions of

eq. (8.5). This is determined by the first integral of eqs. (8.11) and (8.12)

dhij = Cij e
−(d−2)Ω dη , (8.17)

7Exponential potentials in Cosmology have a long history, and some relevant previous work can be found

in [92–103].

– 39 –



J
H
E
P
0
1
(
2
0
1
9
)
1
7
4

where Cij is a constant matrix, an equation that can be simply integrated working in terms

of the parametric time of [38]. The starting point in this case is provided, in the notation

of [45], by

e2Ω =
∣∣∣sinh

(τ
2

√
1− γ2

)∣∣∣ 2
(1+γ)(d−1)

∣∣∣cosh
(τ

2

√
1− γ2

)∣∣∣ 2
(1−γ)(d−1)

(8.18)

dη =
dτ

M

√
d− 2

d− 1
e−2γϕ0

∣∣∣sinh
(τ

2

√
1− γ2

)∣∣∣− γ(d−1)+1
(1+γ)(d−1)

∣∣∣cosh
(τ

2

√
1− γ2

)∣∣∣ γ(d−1)−1
(1−γ)(d−1)

,

but the scalar field and the parametric time were redefined there in such a way that the

transition to the “climbing behavior” occurred, for any value of the dimension d, for γ = 1.

The translation into the present notation rests on the redefinitions

τ −→ t
√
αO,H

√
2(d− 1)

d− 2
, M −→ αO,H

√
2 , γ −→ γ̃

γ(c)
, (8.19)

and taking them into account leads, for homogeneous tensor perturbations, to the result

hij = Aij +Bij log

tanh

√αO,H t
√

d− 1

2(d− 2)

√
1−

(
γ̃

γ(c)

)2
 , (8.20)

where αO,H stands for αO in the orientifold case and for αH in the heterotic case. This

expression displays clearly that during the descent, the region of interest for the present

considerations, this homogeneous perturbation does not grow appreciably, so that no insta-

bilities arise in homogenous tensor perturbations for γ̃ < γ(c). This is as expected, due to

the attractor nature of the Lucchin-Matarrese solution.

What are the relevant values of γd
γ(c)

that result from lower-dimensional branes? This

was discussed in [46, 47], under the assumptions that were spelled out after eq. (8.2). In

our current notation the answer in four dimensions is

γd
γ(c)

=
1

12
(p+ 9− 6σ) , (8.21)

for a p-brane that couples to the dilaton proportionally to e−σφ. Lower-dimensional non-

BPS branes in the string models of interest were discussed in [120], and for instance in

four dimensions there is a non-BPS D3 brane of this type, with γd
γ(c)

= 1
2 . In general,

there is a whole zoo of branes in d < 10, which were studied in detail by Bergshoeff,

Riccioni and others [105–109], so that there are in principle many options for this type of

stable dynamics.

Leaving aside the need for further contributions to the potential that are needed to

comply with well-known bounds on the tensor-to-scalar ratio r [104], when combining in

four dimensions a “hard” exponential with a “mild” term one stumbles on some amusing

numerology. The values of γ̃ translate indeed into the spectral index for primordial scalar

perturbations, according to

nS =
γ(c) 2 − 9 γd

2

γ(c) 2 − 3 γd2
, (8.22)
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and γd
γ(c)

= 1
12 would yield nS ' 0.96. According to eq. (8.21), this result would obtain for

α = 2 and p = 4, i.e. for an NS five-brane wrapped around a small defect in the extra

dimensions, which would make it effectively look like a four-dimensional extended object.

This would be naturally available only for the SO(16)×SO(16) heterotic string of [33, 35],

which motivates us to take a closer look at dualities for these non-supersymmetric strings,

starting from the original work in [121–123].

9 Linear-dilaton cosmologies

In the preceding section we left out the special case γ̃ = γ`, in which the solutions in

eqs. (8.9) become singular. As explained in appendix D, the solutions in cosmic time are

not singular, and the problem arises merely from the definition of conformal time at the

transition between accelerated and decelerated cosmologies. The correct procedure to deal

with this issue is to look for a different class of solutions of the system (8.4), with φ′ and

Ω′ constant. These describe the linear-dilaton cosmology of [41–43] and read

Ω = a η , φ = −a
2

(d− 2) η , (9.1)

where the parameter α is related to the overall strength of the potential in eq. (6.1) ac-

cording to

e2Ω V0 = (d− 2)2 a2 . (9.2)

As a result the equations for scalar and tensor perturbations become identical, and

reduce to the simple form

A′′ +A′ (d− 2) a+ k2A = 0 , (9.3)

whose solutions clearly decay in an expanding Universe for all values of k.

This linear-dilaton background is an exact solution of tree-level String Theory to all

orders in α′ [41–43], with a strong-coupling region in the infinite past, for large negative

values of η, at the initial singularity of the Einstein-frame metric. It is conceivable that

string corrections involving higher powers of gs could cure the problem, and the fact that

these solutions correspond to string-frame Minkowski metrics appears encouraging to this

effect. Once more, the behavior of cosmological solutions of String Theory in the presence

of broken supersymmetry appears encouraging.

10 Conclusions

In this paper we have explored the perturbative stability of four classes of backgrounds

that arise when the low-energy effective action of String Theory is supplemented by the

dilaton potentials that are by the breaking of Supersymmetry. Our results are as follows.

1. In the AdS3 × S7 vacua of the USp(32) and U(32) orientifolds of [37]

(a) no instabilities are present in AdS tensor and vector modes, and also in the

(anti)symmetric tensors in internal space hij and bij ;
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(b) instabilities are present in scalar modes that draw their origin from the dilaton,

the metric tensor and the two-form, as explained in section 3.1. These expand

into totally symmetric and traceless SO(8) tensors, and the problem is present

for angular momenta corresponding to the three values ` = 2, 3, 4, in agreement

with [76, 77], but have also explored projections of the internal sphere that

remove them, perhaps at the price of fixing some sub-varieties. However, even

leaving aside the issue of sub-varieties, one ought to investigate vacuum bubbles,

which typically occur in Kaluza-Klein theory [85], and vacuum bubbles were

indeed shown to destabilize vacua with similar projections in [86]. We leave this

problem for future work;

(c) wide stability regions exist, however, close to the values of V0, V ′0 and V ′′0 for the

(projective–)disk potential of eq. (1.1). These regions, where V0 < 0, could be

relevant if corrections are taken into account.

2. The AdS7 × S3 vacua of the SO(16) × SO(16) heterotic string display a similar be-

havior, but:

(a) instabilities are present in scalar modes only for ` = 1, but if the internal

sphere is replaced with an orbifold determined by an antipodal Z2 projection,

the unstable modes of the tree-level potential disappear. We leave the problem

of vacuum bubbles for future work also in this case;

(b) wide stability regions exist again, close to the values of V0, V ′0 and V ′′0 for the

torus-potential of eq. (1.2). These regions, where V0 < 0, could again be relevant

if corrections are taken into account;

3. the vacua of [38] with nine-dimensional Poincaré symmetry are perturbatively stable,

for both the orientifold and heterotic models. Or, more precisely, they are pertur-

batively stable solutions of Einstein-dilaton systems, since from the vantage point of

String Theory they include regions of strong coupling;

4. the non-homogeneous perturbations of the cosmological solution of [38] are stable for

large times, while a logarithmic growth, which points to a breaking of isotropy, is

present for the homogeneous tensor mode. We could not resist to notice that bro-

ken supersymmetry in String Theory, with its steep runaway lowest-order potentials,

points in this fashion to an awaited origin for compactification to d < 10. Inter-

estingly, however, this would not select the final value of d, at variance with the

indications of [87, 88];

5. more general exponential potentials, whose cosmologies were first discussed in [44] and

are central to the “climbing scalar” picture of [45], display a sharp change of behavior,

in ten dimensions, when the parameter γE of section 8 reaches the value 3
2 , where the

climbing behavior sets it. Below this “critical” value γ(c) the cosmological solutions
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approach at large times the d-dimensional counterparts of the Lucchin-Matarrese at-

tractor of [90, 91], and then perturbations do not grow ;8

6. the special case γ̃ = γ` must be treated separately in conformal time, but all pertur-

bations are stable and have a simple behavior. This special value also corresponds to

the linear-dilaton cosmologies of [41–43], which arise above the critical dimension of

String Theory and are exact tree-level solutions to all orders in α′ where supersym-

metry is broken at the sphere level.

A fair summary of the indications of this work for String Theory is that, while prob-

lems emerge in non-supersymmetric flux vacua, the situation appears more natural and

promising in evolving cosmological settings. Taking seriously the hint that we gathered in

section 7.1, there would be even clues for the origin of compactification. This all brings

to our mind the time-honored case of Newtonian interactions, where static instability can

leave way to dynamical stability, with a wealth of manifestations that underlie the Universe

up to the largest scales that we have explored to date. Or, for that matter, the case of

static Coulomb instabilities, with all they contributed to our understanding of Nature via

Quantum Mechanics. Time will tell whether these insights, together with many others that

are starting to surface [70–74], will converge into a main hidden lesson from String Theory.

There are some possible extensions of this work, some of which are under investigation:

1. the general solutions in [37] also included internal gauge fields. These complicate the

vacua, and seem not to improve matters for stability, but it may be interesting to

complete the analysis;

2. bubble formation can introduce non-perturbative instabilities when internal orbifold

projections remove perturbative ones, as in [85]. Taking a closer look at this problem

would be particularly relevant for the heterotic AdS7 × S3 vacua, where a simple Z2

internal projection can remove all unstable modes;

3. in lower dimensions, one could combine Brane Supersymmetry Breaking with Scherk-

Schwarz reductions [110], along the lines of what was done for closed strings in [111–

116] and for open strings in [117–119], and it would be interesting to explore the

stability of corresponding vacua;

4. it would be interesting to see how dilaton potentials deform the Dp-branes of the

models at stake. Without taking these deformations into account, their world-sheet

description was presented in [120];

5. finally, the duality between heterotic and orientifold models becomes perturbative for

d < 6, and has already displayed some interesting consequences in the supersymmetric

case [125]. The considerations at the end of section 8, and the apparently richer

options allowed for the heterotic SO(16) × SO(16) model, motivate a closer look at

8As we have explained in section 8, in [45] we used dimension-dependent normalizations for the scalar

field and the parametric time of [38], in such a way that the onset of the climbing behavior always took

place at γ = 1. The conversions to the present notation are collected in eq. (8.19).
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the string duality web with broken supersymmetry in d < 10, relying on the steps

made in [121–123].

A An equation relevant for scalar perturbations

Let us consider an equation of the form

λµν A+∇µ∇ν B = 0 , (A.1)

or

γij A+∇i∇j B = 0 , (A.2)

which appeared recurrently, in the analysis of scalar perturbations, in sections 3.3, 4.3

and 5.2. Referring for definiteness to the first form, we would like to prove that this type

of equation implies that A and B must both vanish.

To begin with, one can take a trace, and if the AdS space is of dimension n1 this gives

n1A+ �B = 0 . (A.3)

Next one can take the divergence, obtaining finally

A + �B +
1− n1

R2
AdS

B = 0 . (A.4)

Subtracting from this eq. (A.3) one now finds

A+
1

R2
AdS

B = 0 , (A.5)

and consequently the original eq. (A.1) can be recast in the form

∇µ∇ν B =
1

R2
AdS

λµν B . (A.6)

If one now assumes that B 6= 0, letting C = logB, this result can be turned into

∇µ∇ν C +∇µC∇ν C =
1

R2
AdS

λµν . (A.7)

Redefining the background metric by a coordinate transformation, one can remove the first

term, but the resulting equation

∇µC∇ν C =
1

R2
AdS

λµν , (A.8)

is inconsistent, since the l.h.s. is clearly a matrix of lower rank. Hence B = 0 and therefore,

a fortiori, A = 0.
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B On tensor spherical harmonics in n dimensions

In this appendix we review some results that were needed in our analysis in sections 3.1

and 4.1, starting from an ambient Euclidean space [80]. The results agree with the con-

structions presented in [81–83]. If Y 1, . . . Y n+1 are Cartesian coordinates of Rn+1, so that

the unit sphere Sn is described by the quadratic constraint

δIJ Y
I Y J = 1 , (B.1)

the scalar spherical harmonics on Sn can be conveniently constructed starting from har-

monic polynomials of degree ` in the embedding Euclidean space Rn+1. A harmonic poly-

nomial of degree `

H`
(n)(Y ) = αI1...I` Y

I1 . . . Y I` (B.2)

is determined by a totally symmetric and traceless tensor αI1...I` of rank `, as can be clearly

seen applying to it the Laplace operator

∇2 =

n+1∑
I=1

∂2

∂ Y 2
I

(B.3)

in Cartesian coordinates.

The scalar spherical harmonics YI1...I`(n) are defined restricting the H`
(n)(Y ) to the unit

sphere Sn, or equivalently as

H`
(n)(Y ) = r` αI1...I` Y

I1...I`
(n)

(
yi
)

= r` αI1...I` Ŷ
I1 . . . Ŷ I` , (B.4)

in terms of the radial coordinate

r2 = δIJ Y
I Y J , (B.5)

and of the Ŷ I , where

Y I = r Ŷ I(yi) . (B.6)

Here i = 1, . . . , n, and the yi are a set of coordinates on Sn. As a result, the metric takes

the form

ds2 = δIJ dY
I dY J = dr2 + r2 ds2

Sn , (B.7)

and the Laplacian on scalars decomposes according to

0 =
(
∇2
)
Rn+1 H

`
(n)(Y ) =

1

rn
∂

∂ r

(
rn
∂ H`

(n)(Y )

∂r

)
+

1

r2

(
∇2
)
Sn
H`

(n)(Y ) , (B.8)

where
∂H`

(n)(Y )

∂r
=
`

r
H`

(n)(Y ) (B.9)

for the homogeneous polynomials H`
(n)(Y ). All in all(

∇2
)
Sn
YI1...I`(n) = −`(`+ n− 1) YI1...I`(n) , (B.10)
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and the degeneracy of the scalar spherical harmonics for any given ` is the number of

independent components of a corresponding totally symmetric traceless tensor, i.e.

(n+ 2`− 1)(n+ `− 2)!

`!(n− 1)!
. (B.11)

In discussing more general tensor harmonics, it is convenient to notice that, in the

coordinate system of eq. (B.7), the non-vanishing Christoffel symbols Γ̃KIJ for the ambient

Euclidean space read

Γ̃rij = −r gij , Γ̃ijr =
1

r
δ ji , Γ̃kij = Γkij . (B.12)

The labels i, j, k refer, as above, to the n-sphere, whose Christoffel symbols are denoted

by Γkij .

The construction extends nicely to tensor spherical harmonics, which can be defined

starting from generalized harmonic polynomials, with one proviso. The relation (B.6)

and its differentials imply that the actual spherical components of tensors carry additional

factors of r, one for each covariant tensor index, with respect to those naively inherited from

the Cartesian coordinates of the Euclidean ambient space, as we shall now see in detail. To

begin with, vector spherical harmonics obtain starting from one-forms in ambient space,

built from harmonic polynomials of the type

H`
(n); J(Y ) = αI1...I` ; J Y

I1 . . . Y I` , (B.13)

where the coefficients αI1...I` , J are totally symmetric and traceless in any pair of I-indices.

They are also subject to the condition

Y J H`
(n); J(Y ) = 0 , (B.14)

since the radial component, which does not pertain to the sphere Sn, ought to vanish. This

implies that the total symmetrization of the coefficients vanishes identically,

α(I1...I` ; I) = 0 , (B.15)

and on account of the total symmetry in the I-labels is H`
n , J(Y ) is thus transverse in the

ambient space:

∂J H`
(n); J(Y ) = 0 . (B.16)

Moreover, any Cartesian vector V such that VI Y
I = 0 couples with differentials according

to the general rule inherited from eq. (B.6),

VI dY
I = VI r dŶ

I , (B.17)

so that the actual sphere components, which are associated to the dŶ I , include an addi-

tional power of r, and the vector spherical harmonics YI1...I`;J(n) i are thus obtained from

r`+1 YI1...I`;J(n) i αI1...I`;J dy
i = r H`

(n); J(Y ) dŶ J . (B.18)
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As a result,

∇r∇r
(
r H`

(n);I(Y )
)

=

(
∂

∂r
− 1

r

)2 (
r H`

(n);J(Y )
)

=
`(`− 1)

r
H`

(n);I(Y ) , (B.19)

while the remaining contributions to the Laplacian give

1

r2

(
∇2
)
Sn

(
r H`

(n);I(Y )
)

+
n(`+ 1)− n− 1

r

(
r H`

(n);I(Y )
)
, (B.20)

taking into account the Christoffel symbols in eq. (B.12). Since the total Euclidean Lapla-

cian vanishes by construction, adding eqs. (B.19) and (B.20) gives finally(
∇2
)
Sn
YI1...I`;J(n) i = −

[
`(`+ n− 1)− 1

]
YI1...I`;J(n) i , (B.21)

with ` ≥ 1.

In a similar fashion, the spherical harmonics YI1...I`;J1...Jp(n) i1...ip
corresponding to generic

higher-rank transverse tensors, which are also traceless in any pair of symmetric I-indices,

can be described starting from harmonic polynomials of the type H`
(n);I1...Ip

(Y ), and satisfy(
∇2
)
Sn
YI1...I`;J1...Jp(n) i1...ip

= −
[
`(`+ n− 1)− p

]
YI1...I`;J1...Jp(n) i1...ip

, (B.22)

with ` ≥ p.
In Young tableaux language, the scalar harmonics correspond to traceless single-row

diagrams of the type

I1 I2 . . . Il
, (B.23)

while the independent vectors associated to vector harmonics correspond to two-row trace-

less hooked diagrams of the type

I1 I2 . . . Il

J
, (B.24)

as we have explained. In a similar fashion, the independent tensor metric perturbations in

the internal space correspond to traceless diagrams of the type

I1 I2 . . . Il

J1 J2

, (B.25)

while the independent perturbations associated to a (p+1)-form gauge field in the internal

space correspond, in general, to multi-row diagrams of the type

I1 I2 . . . Il

J1

...

Jp+1

. (B.26)
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The degeneracies of these representations can be related to the corresponding Young

tableaux, for instance, as in [84]. The structure of the various types of harmonics, which

are genuinely different for large enough values of n, reflects nicely the generic absence of

mixings between different classes of perturbations.

C Some Breitenlohner-Freedman bounds

In this appendix we collect some Breitenlohner-Freedman (BF) bounds [75] that play a role

in the preceding sections. To this end, it is convenient to work in conformally flat Poincaré

coordinates, so that the AdSd metric takes the form

ds2 = R2
AdS gMN dx

M dxN = R2
AdS

dz2 + ηµν dx
µ dxν

z2
, (C.1)

where (µ, ν = 0, . . . , d− 2). The non-vanishing Christoffel connections are then

Γzzz = −1

z
, Γµνz = −1

z
δµν , Γzµν =

1

z
ηµν . (C.2)

In this coordinate system the scalar Klein-Gordon equation

gMN ∇M ∇N Φ− (M RAdS)2 Φ = 0 (C.3)

takes the form

f ′′ +
2− d
z

f ′ −

(
k2 +

(M RAdS)2

z2

)
f = 0 , (C.4)

where “primes” denote z-derivatives and we are focussing on plane waves of the type

φ(x, z) = eik·x f(z) . (C.5)

Letting now

f(z) = Ψ(z) z
d
2
−1 (C.6)

reduces the field equation to the Schrödinger-like form[
− d2

dz2
+

4 (M RAdS)2 + d (d− 2)

4 z2

]
Ψ = −k2 Ψ , (C.7)

so that the operator acting on φ can be presented as in section 5.1,

− k2 Ψ = A†AΨ , (C.8)

where now

A = − d

dz
+
a

z
, A† =

d

dz
+
a

z
, (C.9)

and (
a+

1

2

)2

= (M RAdS)2 +
(d− 1)2

4
. (C.10)
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Requiring that −k2 > 0, i.e. the absence of tachyonic excitations, and thus of modes

potentially growing in time, in the Minkowski sections at constant z, translates into the

condition that a be real, and hence into the BF bound

(M RAdS)2 +
(d− 1)2

4
≥ 0 . (C.11)

One can treat the case of a massive vector in a similar fashion, starting from

S =

∫
ddx
√
−g
[
−1

4
FM1M2 FN1N2 g

M1N1 gM2N2 − M2

2
AM AN g

MN

]
. (C.12)

To begin with, let us recall that the massive Proca equation implies the divergence-free

condition, which in Poincaré coordinates reads

∂ ·A+
2− d
z

Az + ∂z Az = 0 , (C.13)

and that, after letting

AM = e i k·x fM (z) , (C.14)

the resulting dynamical equation,

R2
AdS �AN +

[
d− 1− (M RAdS)2

]
AN = 0 (C.15)

translates into

∂2
z Az +

2− d
z

∂z Az +

[
−k2 +

d− 2− (M RAdS)2

z2

]
Az = 0 ,

∂2
z Aµ +

4− d
z

∂z Aµ −
[
k2 +

(M RAdS)2

z2

]
Aµ =

2

z
∂µAz . (C.16)

Changing variable as was done for the scalar, one can see that the first of these leads

to the condition (
a+

1

2

)2

= (M RAdS)2 +
(d− 3)2

4
, (C.17)

from which one can infer the bound in AdSd,

(M RAdS)2 +
(d− 3)2

4
≥ 0 . (C.18)

Let us stress that this bound refers to the mass term in the Lagrangian, since we have

subtracted the contribution arising from commutators, which is also present in the massless

case. The second of eqs. (C.16) is apparently more complicated, since it contains Az as a

source. However, one can now distinguish in it the longitudinal and transverse portions of

Aµ. The former can be related to Az via eq. (C.13), and one is lead again, for it, to the

first of eqs. (C.16). The latter satisfies the same equation as the scalar field, but for the

replacement of d with d− 2. All in all, one is thus led again to the BF bound (C.18).
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One can also study rather simply the general case of form potentials Bp+1, starting

from their action principles

S =

∫
ddx
√
−g
[
− 1

2(p+ 2)!
HM1...Mp+2 HN1...Np+2 g

M1N1 · · · gMp+2Np+2

− M2

2(p+ 1)!
BM1...Mp+1 BN1...Np+1 g

M1N1 · · · gMp+1Np+1

]
, (C.19)

and for a transverse B the equation of motion can be recast in the form

�BM1...Mp+1 +

[
(p+ 1)(d− p− 1)

R2
AdS

−M2

]
BM1...Mp+1 = 0 . (C.20)

Moreover, in Poincaré coordinates the action takes the form

S =

∫
ddx

1

zd

[
− 1

2(p+ 2)!
z2(p+2)H2 − z2(p+1) M2

2(p+ 1)!
B2

]
, (C.21)

where indices are raised and lowered with a d-dimensional flat metric. Extending the

preceding discussion, one can thus conclude that the BF bounds in AdSd on the mass M

for (p+ 1)-form gauge fields are

(M RAdS)2 +
(d− 3− 2p)2

4
≥ 0 , (C.22)

a result that applies insofar d > p + 2. Notice that this relation, which refers again

to the mass term in the Lagrangian, is invariant under the “massive duality” (see, for

instance, [124]) between (p+ 1)-form and (d− p− 2)-form fields.

D The attractor solutions in cosmic and conformal time

It is instructive to take a look at the attractor solutions of section 8 in cosmic time, which

seem singular for γ̃ = γ` in conformal time. In section 8 we were led to eqs. (8.9), and the

first of them, with a suitable choice of integration constant, determines indeed the metric

ds2 =

(
η

λ+ 1

)2λ [
− dη2 + dx · dx

]
, (D.1)

where

λ =
1[(

γ̃
γ`

)2
− 1

] . (D.2)

The corresponding expression in cosmic time reads

ds2 = −dt2 + t
2λ
λ+1 dx · dx , (D.3)

and is regular as λ→∞, a limit where the Universe evolves in time with no acceleration.

Here

t =

(
η

λ+ 1

)λ+1

, (D.4)
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and moreover, expressing the third of eqs. (8.9) in terms of cosmic time also leads to a

regular expression,

e2Ω V =
(d− 2)3

16

[
γ(c) 2 − γ̃2

]
t

2
λ+1

(
γ`
γ̃

)4

, (D.5)

which tends to a constant as λ→∞, consistently with the discussion in section 9.
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