
Quantum transport in nonlinear Rudner-Levitov models

Lei Du,1 Jin-Hui Wu,2 M. Artoni,3, ∗ and G. C. La Rocca4, †

1Beijing Computational Science Research Center, Beijing 100193, China
2Center for Quantum Sciences and School of Physics,

Northeast Normal University, Changchun 130024, China
3Department of Engineering and Information Technology and INO-CNR Sensor Lab, Brescia University, 25133 Brescia, Italy

4NEST, Scuola Normale Superiore, 56126 Pisa, Italy
(Dated: September 29, 2022)

Quantum transport in a class of nonlinear extensions of the Rudner-Levitov model is numerically
studied in this paper. We show that the quantization of the mean displacement, which embodies
the quantum coherence and the topological characteristics of the model, is markedly modified by
nonlinearities. Peculiar effects such as a “trivial-nontrivial” transition and unidirectional long-
range quantum transport are observed. These phenomena can be understood on the basis of the
dynamic behavior of the effective hopping terms, which are time and position dependent, containing
contributions of both the linear and nonlinear couplings.

I. INTRODUCTION

The Rudner-Levitov (RL) model [1], which can be
viewed as a simple non-Hermitian extension of the Su-
Schrieffer-Heeger (SSH) model [2], has been predicted
to support quantized quantum transport with topolog-
ical protection [1, 3] has been verified experimentally in
a lattice of optical waveguides [4]. This important fea-
ture not only shows the possibility of accessing nontrivial
topological phases in physical systems where dissipations
are intrinsic and unavoidable, but also provides a direct
way to detect the topology of such systems by monitoring
their bulk properties. Specifically, for a dimerized ladder
of discrete quantum states, with one sublattice lossy and
the other one neutral, the mean displacement of a particle
which is initialized at a neutral site shows well quantized
behaviors, depending on the ratio between the intra- and
inter-cell coupling constants.

Recently, the intersection of nonlinear optics and topo-
logical photonics has unlocked a series of peculiar ef-
fects that have no counterparts in condensed matter
topologies [5], such as magnet-free nonreciprocity [6, 7],
active tunability [8–10], self-induced topological transi-
tions [11–14], topological solitons [15–19], and topological
frequency conversions [20–22]. Most recently, Xia et al.
have considered a nonlinear PT-symmetric optical waveg-
uide lattice to investigate the mutual interplay between
topology, PT symmetry, and nonlinearity [23], demon-
strating that global effects, i.e., topological and PT tran-
sitions, can be actively controlled by the local nonlin-
earity. The RL model has already been generalized by
including on-site Kerr-type nonlinearities, which shows
that the quantized quantum transport is severely affected
by the nonlinearity induced decoherence effects [24] and
that the nonlinear effect becomes pronounced in the PT-
broken region [25]. However, the study of the influence of
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nonlinearity on the quantum transport in the RL model
is still at the initial stage. In particular, work on how
nonlinearities affect the hopping terms, rather than the
on-site energies, is still missing; the latter in fact may
affect quantum transport in the RL model precisely be-
cause its topological properties are dictated by the ratio
between the intra- and inter-cell coupling constants.
In this paper, we consider specific extensions of the

RL model with different types of nonlinear couplings and
numerically study the quantum transport therein. As it
happens for the case of on-site nonlinearities [24, 25],
our results show that the nonlinear coupling generates
departures from the typical quantized behavior of the
particle transport. Our hopping nonlinearities turn out
to be responsible for new effects, such as (i.) a “trivial-
nontrivial” transition, by which the mean displacement
will always take the value of 0 or 1 regardless of the lin-
ear coupling imbalance, and (ii.) a long-range transport,
by which the particle can move unidirectionally across
many unit cells before its decay. These phenomena can
be understood on the basis of the dynamic behavior of
the effective time and position dependent hopping terms
containing contributions of both the linear and nonlinear
couplings. Our findings are relevant to experimental plat-
forms, such as arrays of coupled optical waveguides and
cavities, but may also be adapted to acoustic or electric
circuit resonators as well as superconducting quantum
circuits [26–28].

II. THE RUDNER-LEVITOV MODEL

We start by briefly reviewing the original RL model [1,
3, 4], where each unit cell of the one-dimensional dimer-
ized lattice contains a lossy site A and a neutral site B,
as shown in Fig. 1. The intra- and inter-cell coupling
constants are denoted by µ and ν, respectively, while the
decay rate of each lossy site is denoted by γa. In the
lossless limit γa → 0, such a linear bipartite lattice is
equivalent to the SSH model [2] which shows a topolog-
ical transition depending on the ratio µ/ν [29, 30]. It
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FIG. 1. (Color online) Schematic illustration of the Ruder-
Levitov model, where µ (ν) and γa are the intracell (intercell)
coupling constant and the decay rate of the lossy sites, re-
spectively.

has been shown that the nonvanishing loss in the RL
model plays the key role for observing quantized quan-
tum transport. The real-space Hamiltonian of the RL
model is given by (ℏ = 1 hereafter)

H0 =
∑
m

[
− iγa|m, a⟩⟨m, a| − (ν|m, a⟩⟨m− 1, b|

+ µ|m, a⟩⟨m, b|+H.c.)
]
,

(1)

where m ∈ [−N,N ] labels the unit cells of the lattice;
|m, a⟩ and |m, b⟩ denote the Wannier states of sites A
and B in the mth unit cell, respectively.

Setting |ψ(t)⟩ =
∑

m[am(t)|m, a⟩ + bm(t)|m, b⟩] as a
general eigenstate of the system, with am (bm) the field
amplitude of A (B) in the mth unit cell, it is straightfor-
ward to attain the following dynamic equations

∂am
∂t

= −γaam + iνbm−1 + iµbm,

∂bm
∂t

= iµam + iνam+1.

(2)

Hereafter in this paper, we assume µ = 0.5 − δg and
ν = 0.5 + δg with δg denoting the coupling imbalance
(|δg| ≤ 0.5). Then one can numerically calculate the
mean displacement of a particle before its decay, i.e.,

⟨∆m⟩ =
∑
m

m

∫ ∞

0

2γa|am(t)|2dt. (3)

This is equivalent to the winding number of the rela-
tive phase between components of the Bloch wave func-
tion [i.e., the eigenstate of the Fourier transformation of
H(m)] and is thus topologically protected [1, 3, 29, 30].
Specifically, if one initializes a single particle at a neutral
site, the mean displacement ⟨∆m⟩ takes the value of 0 for
ν < µ and takes the value of 1 for ν > µ, which precisely
predicts the topological phase transition of this model.
Note that the mean displacement always vanishes if the
particle is initialized on a lossy site.

Such an archetype model has been well investigated
both theoretically [1, 3] and experimentally [4], and has
also been extended in many directions [24, 25, 31–39].
In the following, we generalize the RL model to a few
instances with nonlinear hopping terms and study the
quantum transport therein.

FIG. 2. (Color online) Mean displacement ⟨∆m⟩ of the parti-
cle versus coupling imbalance δg for model A [(a)] and model
B [(b)], with initial state |ψ(t = 0)⟩ = |m = 0, b⟩, integral
time γaT = 50, and different values of nonlinear coefficient U .
(c) ⟨∆m⟩ versus δg for model A with |ψ(t = 0)⟩ = |m = 0, b⟩,
U = 0, and different values of integral time T . (d) ⟨∆m⟩
versus δg for model A, with identical parameters to those in
(a) except for µ → −µ and ν → −ν. Other parameters are
µ = 0.5− δg, ν = 0.5 + δg andγa = 2.

III. NONLINEARITY INDUCED
TRIVIAL-NONTRIVIAL TRANSITION

We anticipate that all our nonlinear extensions have
symmetric nonlinear couplings so that the norm of a
quantum state still evolves according to d⟨ψ|ψ⟩/dt =
−
∑

m 2γa|am|2 as in the linear RL model (see Ap-
pendix A); this validates in turn the definition of the
mean displacement in Eq. (3). In the absence of losses,
this assures the conservation of the standard norm of a
quantum state; other nonlinear models, such as those re-
lated to the Ablowitz-Ladik system [40–42], do not have
this property and are outside the scope of this paper.
Moreover, we treat all models below as non-standard
Bose-Hubbard models [41, 43], which can be well de-
scribed by discrete nonlinear Schrödinger equations in
the mean-field limit.

Model A. First, consider the case in which the intercell
coupling terms contain a Kerr-type nonlinear part that
depends on the field amplitudes of both lossy and neu-
tral sites. The relevant dynamics follows the nonlinear
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Schrödinger equations

∂am
∂t

= −γaam + iµbm + i(ν − ξm)bm−1,

∂bm
∂t

= iµam + i(ν − ξm+1)am+1.

(4)

where ξm = U(|am|2 + |bm−1|2) corresponds to the non-
linear part of the intercell coupling between the mth and
(m − 1)th unit cells, the strength of which is described
by the nonlinear coefficient U . Eq. (4) embeds a non-
Hermitian extension of the model in Ref. [11] and can
be employed to describe arrays of coupled optical and
acoustic cavities, as well as circuit resonators.

We plot in Fig. 2(a) the mean displacement ⟨∆m⟩ as a
function of the coupling imbalance δg for model A with
the initial state |ψ(t = 0)⟩ = |m = 0, b⟩. In the ab-
sence of nonlinearities (U = 0), the mean displacement
of the particle before its decay is quantized with two in-
teger values 0 and 1: the particle initially localized at
the central neutral site will hop to the lossy site in the
right (m = 1) unit cell and then decays from the lattice if
ν > µ, or it will hop to the left lossy site within the initial
(m = 0) unit cell and then decays if ν < µ. Note that
the transition from ⟨∆m⟩ = 0 to ⟨∆m⟩ = 1 here is not
perfectly quantized due to the finite integration time. As
shown in Fig. 2(c), the quantization behavior becomes
more and more ideal with the increase of the integration
time T . As the nonlinear coefficient increases from zero,
the mean displacement deviates from the quantized be-
havior gradually. In particular, the original “topological
trivial” region (where ⟨∆m⟩ = 0 in the linear case [1, 3])
almost disappears for upon increasing U , with the values
of ⟨∆m⟩ approaching unity over the whole parametric
range. In other words, the particle always hops to the
right unit cell for large enough U , regardless of the rela-
tive values of µ and ν. As shown in Fig. 2(a), however,
the value of ⟨∆m⟩ changes with U in a non-monotonic
manner: in the nonlinear case, one can observe some dips
of ⟨∆m⟩, which change non-monotonically with U and
tend to vanish for strong enough nonlinearity. Clearly,
the non-monotonic behavior (dip) arises at larger values
of δg as U increases. We will discuss this phenomenon in
detail below.

Model B. We consider next the case in which the in-
tracell coupling is instead modified by a Kerr-type non-
linearity. The dynamics can now be described by,

∂am
∂t

= −γaam + i(µ− ζm)bm + iνbm−1,

∂bm
∂t

= i(µ− ζm)am + iνam+1,

(5)

with ζm = U(|am|2+|bm|2) and the corresponding numer-
ical results are plotted in Fig. 2(b). It can be seen that
the mean displacement for model B shows exactly re-
verse behaviors compared with those for model A: upon
increasing U , the originally “nontrivial” region (where
⟨∆m⟩ = 1 in the linear case) almost disappears. In this

FIG. 3. (Color online) Dynamic evolutions of displacement
∆m(t) (upper) and effective coupling contrast Zm(t) (lower)
for model A, with (a) U = 0.1, (b) U = 0.5, (c) U = 1.5,
and (d) U = 3. (e) Dynamic evolutions of effective coupling
contrast Z1(t) with different values of U . The initial state is
assumed as |ψ(t = 0)⟩ = |m = 0, b⟩. Other parameters are
δg = −0.1 and γa = 2.

case, the particle always hops from a neutral site to the
left lossy one within the same unit cell. As a matter of
fact, the results in Figs. 2(a) and 2(b) can be well under-
stood from a sort of reflection symmetry of models A and
B: the two models can be transformed into each other
via δg → −δg and ⟨∆m⟩ → 1 − ⟨∆m⟩ [i.e., flipping the
x- and y-axes simultaneously in Figs. 2(a) and 2(b)].

The results above can be understood from the effec-
tive inter- and intra-cell couplings which contain the con-
tributions of both the linear and nonlinear parts. As
an example, we define for model A the effective cou-
pling contrast Zm = |νeff,m| − |µ| with νeff,m = ν −
ξm the effective intercell coupling constant, and plot
in Fig. 3 the dynamic evolutions of Zm with differ-
ent values of U . Moreover, we also plot the evolutions
of the time-dependent particle displacement ∆m(t) =∑

mm
∫ t

0
2γa|am(t′)|2dt′ [24] showing how it reaches its

final value. In the absence of nonlinearities, the coupling
contrast Zm reduces to Z = |ν| − |µ|, which is constant
and can be used to predict the transition of ⟨∆m⟩, i.e.,
⟨∆m⟩ = 1 if Z > 0 and ⟨∆m⟩ = 0 if Z < 0. In the
presence of nonlinearities, however, Zm becomes depen-
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dent on m. As shown in Figs. 3(a)-3(d), the value of
Zm=1 exhibits a non-monotonic dependence on U . Such a
non-monotonic behavior can be further seen in Fig. 3(e),
where Z1 first diminishes to a negative minimum be-
fore increasing with U gradually. This is coincident with
the fact that the the mean displacement changes non-
monotonically with U in this case. In Appendix B, we
provide a detailed explanation for the physical meaning
of the positive and negative fractional values of ⟨∆m⟩.
As a consequence, the topology in the “trivial” region
can be effectively modified by the nonlinearity and thus
one can always observe nontrivial quantum transport for
large enough U . In the long-time limit, the particle dis-
placement approaches its final value and the nonlinearity
induced modification vanishes. This makes sense because
the influence of the nonlinear couplings fades as the parti-
cle spreads out and decays from the lattice via the lossy
sites. Similarly, the “nontrivial-to-trivial” transition of
model B can also be understood from the effective cou-
pling contrast.

In Eqs. (4) and (5), we have assumed that the nonlin-
earities are repulsive, i.e., the signs of µ and ν are oppo-
site to that of U . Such an assumption is responsible for
the non-monotonic behavior of ⟨∆m⟩ as U changes: the
non-monotonic behavior is related to a change of sign in
νeff,1 and thus arises at larger values of δg as U increase.
For comparison, we consider attractive nonlinearities by
reversing the signs of sign of µ and ν (i.e., µ → −µ and
ν → −ν) in Eq. (4) and plot in Fig. 2(d) ⟨∆m⟩ versus δg
in this case. It can be seen that the values of ⟨∆m⟩ in the
originally trivial region increase monotonously with U to
approach unity. This is distinct from the non-monotonic
behavior in Fig. 2(a). Such a result is due to the fact
that the effective coupling contrast Zm=1 increases with
U monotonously in this case.

At the end of this section, we would like to point out
that the “trivial-nontrivial” transition can also be ob-
served even if the nonlinear coupling terms only depend
on the field amplitudes of the neutral sites. To prove this,
we consider in Appendix C such a case and demonstrate
the behaviors of the quantum transport therein.

IV. NONLINEARITY INDUCED
UNIDIRECTIONAL LONG-RANGE

DISPLACEMENT

Model {C. & D.} Finally, we consider in this section
the case in which the nonlinear coupling constants are
only dependent on the field amplitudes of the lossy sites.
The relevant dynamic equations take the form (Model
C.),

∂am
∂t

= −γaam + iµbm + i(ν − χm)bm−1,

∂bm
∂t

= iµam + i(ν − χm+1)am+1

(6)

FIG. 4. (Color online) Mean displacement ⟨∆m⟩ of the par-
ticle versus coupling imbalance δg for [(a) and (b)] model C
and (c) model D, with initial state |ψ(t = 0)⟩ = |m = 0, b⟩
and different values of nonlinear coefficient U . We assume
γa = 0.2 for (a) and (c), while γa = 2 for (b).

with χm = U |am|2 describing the nonlinear part of the
intercell couplings in this case. Similarly, when the intra-
cell couplings are modified by the field amplitudes of the
lossy sites in a nonlinear manner one has for the dynamic
equations (Model D.),

∂am
∂t

= −γaam + i(µ− χm)bm + iνbm−1,

∂bm
∂t

= i(µ− χm)am + iνam+1.

(7)

Once again, models C and D can be transformed into
each other by the reflection symmetry in the same way
as models A and B can.
As in the last section, we first examine the mean

displacement ⟨∆m⟩ of the particle versus the coupling
imbalance δg for both models C and D, as shown in
Figs. 4(a)-4(c). Interestingly, we find that long-range
particle displacements, i.e., ⟨∆m⟩ < 0 or ⟨∆m⟩ > 1, are
allowed within these two extensions of the RL model. As
shown in Fig. 4(a), for instance, the value of ⟨∆m⟩ can
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FIG. 5. (Color online) Dynamic evolutions of displacement
∆m(t) (upper) and effective coupling contrast Zm (lower) for
model C, with (a) U = 0.5, (b) U = 3, and (c) U = 5. The
initial state is assumed as |ψ(t = 0)⟩ = |m = 0, b⟩. Other
parameters are δg = −0.4 and γa = 0.2.

be smaller than −1 for large U , implying that the parti-
cle initially located at a neutral site can hop on average
several times to the left before its decay if the nonlin-
earities are strong enough. Note that a relatively small
γa (γa = 0.2) is assumed in this case in order to observe
the such unidirectional long-range displacements, while
for large γa the mean displacement becomes less sensi-
tive to U , as shown in Fig. 4(b). Moreover, model D
displays reverse behaviors of the mean displacement, i.e.,
the particle will move to the right with ⟨∆m⟩ > 1 for
large enough U .

The underlying physics of the above results can be
qualitatively understood as follows. For positive δg the
intercell coupling is stronger than the intracell one, thus
the particle initially localized at a neutral site will hop to
the right lossy site and eventually decay. In this case, the
value of the mean displacement cannot be larger than 1,
because the particle will not keep on moving due to the
weak intracell coupling. In contrast, for negative δg, the
particle will hop to the left lossy site within the initial
unit cell (i.e., the 0th unit cell in Fig. 4). For model C,
the effective intercell coupling between the 0th and −1th
unit cells is enhanced after the particle has moved to
the site |m = 0, a⟩. If the nonlinearity is strong enough,
the particle can keep on moving towards the left and
thereby the mean displacement should increase with U .
Of course, owing to the dissipation at each lossy site, the
mean displacement is still finite since the effective inter-
cell coupling will no longer be stronger than the adjacent
intracell coupling after the particle has moved across sev-
eral lossy sites. This is also why the long-range particle
displacement tends to vanish if the decay rate γa is large
enough. The reverse behaviors in model D can be inter-
preted in a similar way.

Similar to the last section, we plot in Figs. 5(a)-5(c)
the dynamic evolutions of the time-dependent displace-
ment ∆m(t) as well as the effective coupling contrast
Zm = |ν − χm| − |µ| of model C with different values of

FIG. 6. (Color online) Dynamic evolutions of initial state
|ψ(t = 0)⟩ = |m = 0, b⟩ for model C with (a) U = 5 and
δg = −0.4, (b) U = 3 and δg = −0.4, (c) U = 0.5 and
δg = −0.4, and (d) U = 0.5 and δg = 0. In all cases, we take
γa = 0.2.

U . Once again, one can find that the values of Zm in a
certain region increase with U . Unlikely in Fig. 3, how-
ever, where only the nearest-neighbor intercell coupling
(the coupling between the 0th and the 1th unit cells)
is markedly modified by the nonlinearities, here model C
exhibits a larger modification region that extends toward
the left side of the model. This again reflects the origin
of the long-range displacements. For all cases in Fig. 5,
the particle displacement reaches its final value as the
modification region disappears.
The results in Fig. 5 can also be verified by the time

evolutions of the initial state |ψ(t = 0)⟩ = |m = 0, b⟩. As
shown in Figs. 6(a)-6(c), the particle transport tends to
be unidirectional as the nonlinearities strengthen. Note
that for δg = 0, the lattice is homogeneous at the initial
time, such that the particle transport should be almost
symmetric, insensitive to the value of U . As an example,
Fig. 6(d) shows the dynamic evolution of the initial state
for δg = 0 and U = 0.5, which is similar to the symmet-
ric diffusion in a one-dimensional homogeneous lattice.
In Fig. 6(c), however, the excitation is confined within a
narrow region around m = 0 because the effective inter-
cell couplings are extremely weak (both the linear and
nonlinear parts are weak) in this case.

V. SUMMARY AND CONCLUSIONS

In summary, we have extended the Rudner-Levitov
(RL) model allowing for nonlinear hopping and assessed
how nonlinearities affect the mean displacement in quan-
tum transport. At variance with on-site nonlinearities,
dynamic modifications of the ratio between the effective
intra- and inter-cell couplings directly affect the behavior
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of quantum transport related to the topological charac-
teristics of the RL model. Our results encompass differ-
ent extensions of the RL model, which are interpreted
qualitatively in terms of the local and time-dependent
effective coupling contrast function Zm(t). There is one
specific extension (See Sect. IV) whereby for strong non-
linearities and low losses unidirectional long-range quan-
tum transport may emerge.

The interplay of nonlinearity, non-Hermiticity, and
topology has recently attracted much interest (see, e.g.,
Ref. [23]). In this paper, we introduce nonlinear deforma-
tions on a prototype model, i.e., the Rudner and Levitov
non-Hermitian version of the well-known Su-Schrieffer-
Heeger model. In principle, nonlinearities can be intro-
duced either through the on-site energies or the inter-
site couplings. The resulting effect, however, are non-
universal, depending on either the form of the nonlinear-
ity or the model geometry, and we considered here a few
simple cases. Specifically, we carry out a detailed analysis
of how the mean displacement can serve as a manifesta-
tion of the topological characteristics of the RL model
even in the presence of nonlinearities. Our findings shed
light on how the mean displacement is affected by the ef-
fective local dynamical environment induced by the non-
linear inter-site couplings. We would like to stress that
the tight-binding Hamiltonians considered in this paper,
just as the original linear ones, are general and thus have
a broad relevance. Such theoretical models have indeed
been extensively employed in a variety of contexts [44–
46]. Our extended model is thus expected to be a good
benchmark to study the interplay of nonlinearity, non-
Hermiticity, and topology.
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Appendix A: Norm evolution with symmetric
couplings

It has been shown that the norm of a quantum state
should evolve according to

d

dt
⟨ψ|ψ⟩ = −

∑
m

2γa|am|2 (A1)

to guarantee the validity of the definition of the mean
displacement in Eq. (3) [1]. In this appendix, we would
like to prove that Eq. (A1) still holds for nonlinear RL
models with symmetric couplings. For example, accord-
ing to Eq. (4) in the main text, the norm of a quantum

state in model A should follows

d⟨ψ|ψ⟩
dt

= (
d

dt
⟨ψ|)|ψ⟩+ ⟨ψ|( d

dt
|ψ⟩)

=
∑
m

[
(
da∗m
dt

)am + (
db∗m
dt

)bm

+ a∗m(
dam
dt

) + b∗m(
dbm
dt

)
]

=
∑
m

[
− γa|am|2 − igrb

∗
mam − i(gl − ξm)b∗m−1am

+ γa|am|2 + igrbma
∗
m + i(gl − ξm)bm−1a

∗
m

− igra
∗
mbm − i(gl − ξm+1)a

∗
m+1bm

+ igramb
∗
m + i(gl − ξm+1)am+1b

∗
m

]
= −

∑
m

2γa|am|2.

(A2)

Similarly, one can verify that models B, C, and D also
respect the norm evolution in Eq. (A1) due to the sym-
metric couplings.
On the other hand, the RL model could also be ex-

tended to include asymmetric couplings. As an example,
one could consider a model described by the dynamic
equations

∂am
∂t

= −γaam + i(µ− χa,m)bm + i(ν − χa,m)bm−1,

∂bm
∂t

= i(µ− χb,m)am + i(ν − χb,m)am+1

(A3)

with χα,m = U |αm|2 (α = a, b), which might be viewed
as a simple dimerization of the Ablowitz-Ladik equa-
tion [40–42]. For such a model, however, the evolution
of the norm cannot be simply described by a sum over
local decays from each lossy site and the definition of the
mean displacement given in Eq. (3) cannot be applied.

Appendix B: Coherent vs incoherent transport

It has been shown that the mean displacement ⟨∆m⟩
displays continuous dependence on the relative values of
ν and µ in the case of incoherent hopping and in the ab-
sence of nonlinearities [1]. Moreover, similar incoherent
transport behavior has been obtained with on-site non-
linearities due to the interaction-induced decoherence ef-
fect [24]. The underlying physics of such results is quite
useful for understanding the positive and negative frac-
tional values of ⟨∆m⟩ in Fig. 2.
For incoherent hopping, the original RL model exhibits

continuous variation of ⟨∆m⟩ from 0 to 1 and thus can
also take fractional values. This arises from the com-
petition between the probabilities of the particle hop-
ping from the initial site to all other sites. The parti-
cle initially located at site |m = 0, b⟩ can hop to either
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FIG. 7. (Color online) (a) Mean displacement ⟨∆m⟩ of the
particle versus coupling imbalance δg for model E with dif-
ferent values of U . (b) Comparison of ⟨∆m⟩ versus δg for
models A and E with relatively strong nonlinearities. The
initial state is assumed as |ψ(t = 0)⟩ = |m = 0, b⟩. Other
parameters are µ = 0.5− δg, ν = 0.5 + δg and γa = 2.

|m = 0, a⟩ or |m = 1, a⟩, corresponding to ⟨∆m⟩ = 0 and
⟨∆m⟩ = 1, respectively. However, the contributions of all
subsequent hoppings should cancel out in this case (the
hopping probabilities from |m = 0, b⟩ to |m = −1, b⟩ and
to |m = +1, b⟩ are the same). In view of this, the value of
⟨∆m⟩ is determined by the probability of hopping to A1

initially, which is given by ⟨∆m⟩ = ν2/(ν2 + µ2) [1, 24].
For models A and B here considered, the fractional

values of ⟨∆m⟩ can be understood in a similar way. How-
ever, the most significant difference compared with the
linear model above is that the contributions of long-range
hopping processes no longer exactly cancel out due to the
m-dependent effective couplings, i.e., the effective cou-
plings on the left and right sides of the initial site are no
longer symmetric. In particular, also negative fractional
values of ⟨∆m⟩ are allowed, if the left-hand effective cou-
plings are stronger than the right-hand ones.

In Ref. [24], the continuous behavior of ⟨∆m⟩ is in-

terpreted as the breaking of the translational symmetry
of the model arising from the on-site nonlinearity. Such
a picture is also applicable to the nonlinear models in
this paper which do not respect the translational sym-
metry due to the position-dependent effective nonlinear
couplings.

Appendix C: Nonlinear couplings with only
neutral-site contributions

In this appendix, we consider an extended RL model
(model E) where the nonlinear intercell couplings only
depend on the neutral-site field amplitudes, described by
the dynamic equations

∂am
∂t

= −γaam + iµbm + i(ν − ηm−1)bm−1,

∂bm
∂t

= iµam + i(ν − ηm)am+1

(C1)

with ηm = U |bm|2 in this case.
Due to the fact that the particle is initially located at

a neutral site with |ψ(t = 0)⟩ = |m = 0, b⟩, the nearest-
neighbor intercell coupling can still be markedly modified
at the initial time by the local field amplitude b0, similar
to the case of model A. In view of this, Fig. 7(a) shows
qualitatively the same behaviors as those in Fig. 2(a):
as U increases, the curve of ⟨∆m⟩ versus δg tends to
be flat, with the values approaching unity over the whole
parametric range. In other words, the “trivial-nontrivial”
transition in model A can still be achieved even if the
nonlinear intercell couplings only depend on the neutral-
site field amplitudes. As shown in Fig. 7(b), however, the
effective intercell couplings are a bit weaker due to the
absence of the contributions of the lossy sites, such that
the values of ⟨∆m⟩ for model E are smaller than those for
model A, especially in the region of δg < 0. To achieve
similar modification effects, stronger nonlinearities are
required in this case (see for instance the red dashed and
green dotted lines).
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induced topological protection in nonlinear circuit arrays,
Nat. Electronics 1, 178 (2018).

[13] L. J. Maczewsky, M. Heinrich, M. Kremer, S. K. Ivanov,
M. Ehrhardt, F. Martinez, Y. V. Kartashov, V. V. Kono-
top, L. Torner, D. Bauer, and A. Szameit, Nonlinearity-
induced photonic topological insulator, Science 370, 701
(2020).

[14] M. Ezawa, Nonlinearity-induced transition in the nonlin-
ear Su-Schrieffer-Heeger model and a nonlinear higher-
order topological system, Phys. Rev. B 104, 235420
(2021).

[15] Y. Lumer, M. C. Rechtsman, Y. Plotnik, and M. Segev,
Instability of bosonic topological edge states in the pres-
ence of interactions, Phys. Rev. A 94, 021801 (2016).

[16] D. Solnyshkov, O. Bleu, B. Teklu, and G. Malpuech, Chi-
rality of topological gap solitons in bosonic dimer chains,
Phys. Rev. Lett. 118, 023901 (2017).

[17] D. A. Smirnova, L. A. Smirnov, D. Leykam, and Y. S.
Kivshar, Topological edge states and gap solitons in the
nonlinear Dirac model, Laser Photonics Rev. 13, 1900223
(2019).

[18] W. Zhang, X. Chen, Y. V. Kartashov, V. V. Konotop,
and F. Ye, Coupling of edge states and topological Bragg
solitons, Phys. Rev. Lett. 123, 254103 (2019).

[19] L.-J. Lang, S.-L. Zhu, and Y. D. Chong, Non-Hermitian
topological end breathers, Phys. Rev. B 104, L020303
(2021).

[20] S. Kruk, A. Poddubny, D. Smirnova, L. Wang,
A. Slobozhanyuk, A. Shorokhov, I. Kravchenko,
B. Luther-Davies, and Y. Kivshar, Nonlinear light gen-
eration in topological nanostructures, Nat. Nanotechnol.
14, 126 (2019).

[21] Y. Wang, L.-J. Lang, C. H. Lee, B. Zhang, and Y. D.
Chong, Topologically enhanced harmonic generation in a
nonlinear transmission line metamaterial, Nat. Commun.
10, 1102 (2019).

[22] D. Smirnova, S. Kruk, D. Leykam, E. Melik-Gaykazyan,
D.-Y. Choi, and Y. Kivshar, Third-harmonic generation
in photonic topological metasurfaces, Phys. Rev. Lett.
123, 103901 (2019).

[23] S. Xia, D. Kaltsas, D. Song, I. Komis, J. Xu, A. Szameit,
H. Buljan, K. G. Makris, Z. Chen, Nonlinear tuning of
PT symmetry and non-Hermitian topological states, Sci-
ence 372, 72 (2021).

[24] K. Rapedius and H. J. Korsch, Interaction-induced de-
coherence in non-Hermitian quantum walks of ultracold
bosons, Phys. Rev. A 86, 025601 (2012).

[25] A. K. Harter, A. Saxena, and Y. N. Joglekar, Fragile
aspects of topological transition in lossy and parity-time
symmetric quantum walks, Sci. Rep. 8, 12065 (2018).

[26] V. V. Konotop, J. Yang, and D. A. Zezyulin, Nonlinear
waves in PT-symmetric systems, Rev. Mod. Phys. 88,

035002 (2016).
[27] D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar,

Nonlinear topological photonics, Appl. Phys. Rev. 7,
021306 (2020).

[28] Z.-Y. Xue and Y. Hu, Topological Photonics on Su-
perconducting Quantum Circuits with Parametric Cou-
plings, Adv. Quant. Techn. 4, 2100017 (2021).

[29] P. Delplace, D. Ullmo, and G. Montambaux, Zak phase
and the existence of edge states in graphene, Phys. Rev.
B 84, 195452 (2011).

[30] J. K. Asboth, L. Oroszlany, and A. Palyi, A short course
on topological insulators, Lecture Notes in Physics, Vol.
919 (Springer International Publishing, Cham, 2016).

[31] L.-H. Li, Z.-H. Xu, and S. Chen, Topological phases of
generalized Su-Schrieffer-Heeger models, Phys. Rev. B
89, 085111 (2014).

[32] S. Lieu, Topological phases in the non-Hermitian Su-
Schrieffer-Heeger model, Phys. Rev. B 97, 045106 (2018).

[33] S. Longhi, Probing one-dimensional topological phases
in waveguide lattices with broken chiral symmetry, Opt.
Lett. 43, 4639 (2018).

[34] L. Jin and Z. Song, Bulk-boundary correspondence in a
non-Hermitian system in one dimension with chiral in-
version symmetry, Phys. Rev. B 99, 081103(R) (2019).

[35] C. Yuce, Spontaneous topological pumping in non-
Hermitian systems, Phys. Rev. A 99, 032109 (2019).

[36] L. Du, J.-H. Wu, M. Artoni, and G. C. La Rocca, Frac-
tional quantum transport and staggered topological tran-
sition in a lossy trimerized lattice, Phys. Rev. A 100,
052102 (2019).

[37] L. Du, J.-H. Wu, M. Artoni, and G. C. La Rocca,
Phase-dependent topological interface state and spatial
adiabatic passage in a generalized Su-Schrieffer-Heeger
model, Phys. Rev. A 100, 012112 (2019).

[38] H. C. Wu, L. Jin, and Z. Song, Topology of an
anti-parity-time symmetric non-Hermitian Su-Schrieffer-
Heeger model, Phys. Rev. B 103, 235110 (2021).

[39] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Ex-
ceptional topology of non-Hermitian systems, Rev. Mod.
Phys. 93, 015005 (2021).

[40] M. J. Ablowitz and J. F. Ladik, Nonlinear differen-
tial–difference equations and Fourier analysis, J. Math.
Phys. 17, 1011 (1976).

[41] M. Salerno, Quantum deformations of the discrete non-
linear Schrödinger equation, Phys. Rev. A 46, 6856
(1992).

[42] M. Salerno, A new method to solve the quantum
Ablowitz-Ladik system, Phys. Lett. A 162, 381 (1992).

[43] O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.-
S. Lühmann, B. A Malomed, T. Sowiński, and J. Za-
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