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Abstract

Training differentially private machine learning models re-
quires constraining an individual’s contribution to the opti-
mization process. This is achieved by clipping the 2-norm of
their gradient at a predetermined threshold prior to averag-
ing and batch sanitization. This selection adversely influences
optimization in two opposing ways: it either exacerbates the
bias due to excessive clipping at lower values, or augments
sanitization noise at higher values. The choice significantly
hinges on factors such as the dataset, model architecture, and
even varies within the same optimization, demanding metic-
ulous tuning usually accomplished through a grid search. In
order to circumvent the privacy expenses incurred in hyper-
parameter tuning, we present a novel approach to dynami-
cally optimize the clipping threshold. We treat this threshold
as an additional learnable parameter, establishing a clean re-
lationship between the threshold and the cost function. This
allows us to optimize the former with gradient descent, with
minimal repercussions on the overall privacy analysis. Our
method is thoroughly assessed against alternative fixed and
adaptive strategies across diverse datasets, tasks, model di-
mensions, and privacy levels. Our results indicate that it per-
forms comparably or better in the evaluated scenarios, given
the same privacy requirements.

Introduction
The widespread adoption of machine learning techniques
has led to increased concerns about user privacy. Users who
share their data with service providers are becoming more
cautious due to the exposure of various privacy attacks,
observed in both academic and industrial contexts (Carlini
et al. 2021, 2023; Papernot et al. 2018). As a result, there is
a growing effort to enhance training methods that can pro-
vide strong and quantifiable privacy guarantees.

In the privacy-preserving machine learning community,
differential privacy (Dwork 2006) has emerged as the pre-
dominant framework for defining privacy requirements and
strategies. Essentially, training a model with differential pri-
vacy requires bounding the contribution of a single individ-
ual to the overall procedure, to guarantee that the trained
model will be probabilistically indistinguishable compared
to the same model trained without including any one specific
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user in the dataset. In the context of gradient-based learning,
this is achieved by introducing a parameter C called the clip-
ping threshold (Abadi et al. 2016). This parameter controls
the magnitude of gradients from each user (or sample) be-
fore they are averaged with contributions from other users.
Subsequently, the result undergoes a process of differential
privacy sanitization, which involves the addition of random
Gaussian noise proportional to the value of C.

The choice of the clipping threshold C is crucial: on the
one hand, large values introduce noise levels that may slow
down or hinder the optimization altogether; on the other
hand, small values introduce a bias in the average clipped
gradient with respect to the true average gradient and may
leave the optimization stuck in bad local minima. Figure
1 exemplifies the issue. Note that the clipping bias is not
only directed toward zero (as bounding the 2-norm may lead
to believe), but depends, in general, on the distribution of
the per-sample gradients around the expectation (Chen, Wu,
and Hong 2020). Achieving an optimal trade-off remains
an ongoing challenge. Historically, researchers have treated
the clipping threshold as a parameter to be optimized, of-
ten through a grid or random search, in order to assess the
performance of privacy preserving models in the ideal con-
ditions in which an oracle provides the optimal values for
the hyperparameters. However, it is worth noting that every
additional gradient-query to the dataset for optimization pur-
poses introduces a certain degree of privacy leakage. Of late
though, the implications of not accounting for privacy leak-
age over multiple runs of a grid search have drawn more at-
tention, leading to different accounting strategies (Papernot
and Steinke 2022; Mohapatra et al. 2022; Liu and Talwar
2019). The inherent challenges of increased privacy leakage
and computational overhead resulting from extensive hyper-
parameter searches persist, necessitating further innovations
to encourage broader adoption of differentially private ma-
chine learning techniques. Therefore, we set out to find a
strategy for the online optimization of the clipping threshold
that is privacy preserving and computationally inexpensive,
while maintaining comparable or better performance on a
set of tasks, datasets, and model architectures.

Our contributions: i) We investigate the sensitivity trade-
off in differentially private learning in terms of cosine simi-
larity between the sanitized and true gradients, showing that
at every iteration it is possible to determine a fairly promi-



Figure 1: The choice of clipping threshold C requires trad-
ing off a higher clipping bias at small values, for larger Gaus-
sian noise at large values. Here the clipped, averaged, noised
gradient of a CNN for character recognition is compared
with the true average gradient at different training iterations
t ∈ {100, 250, 500, 750, 950}. Note that for some values the
sanitized gradient may even have components pointing in
the opposite direction w.r.t the true gradient, corresponding
to negative cosine similarity. The reported figure of cosine
similarity is an average over 20 realizations of the Gaussian
mechanism.

nent optimal value, ii) we elaborate a strategy for the online
optimization of the sensitivity, taking from the literature in
online learning rate optimization and extending it to opti-
mize the clipping threshold, iii) we establish the correspond-
ing techniques for doing so privately, which require allocat-
ing a marginal privacy budget and iv) we provide experi-
mental results to validate our algorithm in multiple contexts
and against a number of relevant state-of-the-art strategies
for private hyperparameter optimization.

Background
Gradient-based optimization of supervised machine learning
models typically implies finding the optimal set of parame-
ters θ ∈ Rn to fit a function fθ : X → Y to a dataset D ∈ D
of pairs zi = (xi, yi) ∈ X×Y , by minimizing an error func-
tion ℓ : Rn×D → R≥0. At time t, the iterative optimization
process computes the cost of mismatched predictions and
updates the parameters towards the nearest local minimum
of ℓ by repeated applications of the (stochastic) gradient de-
scent algorithm θt+1 ← θt − ρgt, with ρ the learning rate,
and

gt =
1

|B|
∑
zi∈B

∇θtℓ(fθt(xi), yi) (1)

being the average gradient of the error function with respect
to the parameters, computed over the samples zi = (xi, yi)
of the minibatch B ⊆ D.

As is now commonplace in the machine learning litera-
ture, privacy guarantees are provided within the framework
of Differential Privacy (DP):
Definition 1 (Differential Privacy (Dwork 2006)) A ran-
domized mechanismM : D → R with domainD and range
R satisfies (ε, δ) differential privacy if for any two datasets
D,D′ ∈ D differing in at most one sample, and for any
outputs S ⊆ R it holds that

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S] + δ (2)

To fit machine learning optimization within the definition
of a differentially private random mechanism (intended here
in a broad sense to also include later generalizations (Dwork
and Rothblum 2016; Mironov 2017)) the average gradient in
Equation (1) is sanitized by means of the Gaussian mecha-
nism (Dwork, Roth et al. 2014). In particular, if h : X → Rn

is a function with 2-norm sensitivity Sh, the DP approxima-
tion h̃(x) of h(x), x ∈ X , can be found as

h̃(x) = h(x) + η, η ∼ N (0, σ2I = S2
hν

2I) (3)

with ν the noise multiplier which depends only on the pri-
vacy parameters, andN being a random normal distribution.
Tuning the additive Gaussian noise implies tuning its stan-
dard deviation proportionally to the 2-norm sensitivity of the
query gt over the minibatch B. As, in general, ∥gt∥2 is not
bounded a priori, the per-sample gradients of the error func-
tion are clipped in norm to a certain value Ct (Song, Chaud-
huri, and Sarwate 2013; Bassily, Smith, and Thakurta 2014;
Shokri and Shmatikov 2015; Abadi et al. 2016) by applying
the transformation

ḡt(zi) =
gt(zi)

max
(
1,

∥gt(zi)∥2

Ct

) (4)

from which follows the sensitivity of the average clipped
gradient, allowing for the sanitization of the query at the tth

iteration. The Gaussian mechanism lends itself to a refined
analysis of the privacy leakage incurred in its repeated ap-
plication, which is essential in practical machine learning
with stochastic gradient descent to keep the overall privacy
expenditure to a minimum over multiple training epochs
(Abadi et al. 2016; Wang, Balle, and Kasiviswanathan
2019). A similar procedure can be utilized to account for
multiple runs with different configurations in a grid search
(Mohapatra et al. 2022).

Related Works
This work draws from two main lines of research, namely
hyperparameter optimization in non-private settings and
sensitivity optimization in differentially private machine
learning.

Hyperparameter Optimization Sub-gradient minimiza-
tion strategies such as SGD iteratively approach the opti-
mal solution by taking steps in the direction of steepest
descent of a cost function. For this heuristic to be effec-
tive, the length of each step needs to be tuned by control-
ling the learning rate, which has been considered the “sin-
gle most important hyperparameter” (Bengio 2012). Many



works have introduced strategies for its adaptive tuning,
such as (Lydia and Francis 2019; Kingma and Ba 2015),
which adjust the per-parameter value w.r.t. a common value
still defined a priori. Conversely, other research has ex-
ploited automatic differentiation to concurrently optimize
the parameters and hyperparameters (Maclaurin, Duvenaud,
and Adams 2015) via SGD. In particular, explicitly deriv-
ing the partial derivative of the cost function with respect to
the learning rate has been demonstrated to be an effective
strategy, and it has been discovered independently at differ-
ent times (Almeida et al. 1999; Baydin et al. 2018). These
works do not explore the private setting and introduce gen-
eral methods that are almost exclusively applied to learn-
ing rate optimization, without addressing the choice of other
hyperparameters. In (Mohapatra et al. 2022) instead, the au-
thors study adaptive optimizers in the differentially private
setting, by analyzing the estimate of the raw second mo-
ment of the gradient at convergence. Their objective is to
reduce the privacy cost of tuning the learning rate in a grid
search, but the clipping threshold is still treated as an addi-
tional hyper-parameter.

Sensitivity Optimization As discussed in the Introduc-
tion and Background sections, establishing the value of
the clipping threshold Ct is critical in differentially pri-
vate machine learning, and treating this value as a hyper-
parameter has largely been the preferred strategy in the liter-
ature (Song, Chaudhuri, and Sarwate 2013; Bassily, Smith,
and Thakurta 2014; Shokri and Shmatikov 2015; Abadi
et al. 2016). Grid searching over the candidate values can be
tricky as gradient norms may span many orders of magni-
tude and the effects of more aggressive clipping are not eas-
ily predicted before running an optimization. Considering
also the increased privacy costs of running multiple config-
urations, hyperparameter selection under privacy constraints
is a thriving research area (Papernot and Steinke 2022; Liu
and Talwar 2019; Mohapatra et al. 2022).

Adaptive clipping strategies have also been considered.
(Andrew et al. 2021) updates Ct during training to match
a target quantile of the gradient norms, which is fixed be-
forehand. Although the optimal quantile is still a hyper-
parameter, its domain is limited to the [0, 1] ⊂ R interval.
Moreover, (Andrew et al. 2021) shows that adaptively up-
dating Ct outperforms even the best fixed-clipping strategy.
Additionally, as DP training has shown to disproportionally
favor majority classes in a dataset (Suriyakumar et al. 2021),
tuning a target quantile instead of a fixed clipping threshold
may help at least in quantifying the issue, if not in solving it.
Note that although this strategy was introduced to train dif-
ferentially private federated machine learning models, the
attacker is still modelled as an honest-but-curious adver-
sary and thus it relies on a central trusted server to provide
DP guarantees. Therefore, the clipping strategy in (Andrew
et al. 2021) can be used to train centralized machine learning
models just by switching from user-level to sample-level dif-
ferential privacy (McMahan et al. 2018b). To further stress
this point, note that although in (Andrew et al. 2021) each
single user clips the update and sends statistics to the central
server, from a differential privacy point of view this is iden-

tical to the server performing these operations itself on the
true per-user gradients.

Method
Inspired by the literature on online hyperparameter opti-
mization discussed in the Related Works, the idea behind
this method is to optimize the clipping threshold based on
the chain rule for derivatives, so that we can find what
change in Ct will induce a decrease in the cost function
ℓ(θt). Although this strategy works in general for sub-
gradient methods, we are going to explicitly derive the re-
sults for DP-SGD. Given the SGD update rule with gradient
clipping:

θt+1 = θt − ρ∇ℓ(θt) (5)

= θt − ρ
1

|Bt|
∑

zi∈Bt

gt(zi)

max(1, ∥gt(zi)∥2 /Ct)
(6)

we want to find

∂ℓ(θt)

∂C
=

∂ℓ(θt)

∂θt

⊤
∂θt
∂Ct

(7)

= ∇ℓ(θt)⊤
∂θt
∂Ct

(8)

= −ρ∇ℓ(θt)⊤
∂∇ℓ(θt−1)

∂Ct−1
(9)

where in the last equality we exploit θt = θt−1−ρ∇ℓ(θt−1)
and assume Ct ≈ Ct−1. To find an explicit form for Equa-
tion (9), we notice that the rightmost term is differentiable
almost everywhere, with:

∂∇ℓ(θt−1)

∂Ct−1
= qt−1 =

1

|Bt−1|
∑

zi∈Bt−1

qt−1(zi) (10)

and

qt−1(zi) =

{
gt−1(zi)

∥gt−1(zi)∥2
if ∥gt−1(zi)∥2 > Ct−1

0 otherwise
(11)

where we highlight that ∥qt−1(zi)∥2 ∈ {0, 1},∀zi ∈ Bt−1

by definition of the clipping function. Thus we find:

∂ℓ(θt)

∂Ct
= −ρ∇ℓ(θt)⊤

1

|Bt−1|
∑

zi∈Bt−1

qt−1(zi) (12)

resulting in the gradient descent update rule for the clipping
threshold:

Ct+1 = Ct + ρcρ∇ℓ(θt)⊤
1

|Bt−1|
∑

zi∈Bt−1

qt−1(zi) (13)

which is the dot product of the current average gradient with
a masked version of last iteration’s average gradient, where
all per-sample gradients have either norm 0 or 1.

Taking into account the coupled dynamics of the learn-
ing rate and the clipping threshold (Mohapatra et al. 2022),
having an adaptive clipping strategy may still slow down
convergence if the learning rate is kept fixed at the starting



value. Thus, we use the same method to derive an update
strategy for the learning rate ρt, as in (Almeida et al. 1999;
Baydin et al. 2018):

∂ℓ(θt)

∂ρt
=

∂ℓ(θt)

∂θt

⊤
∂θt
∂ρt

(14)

= ∇ℓ(θt)⊤∇ℓ(θt−1) (15)

which results in the dot product of the current and past
clipped gradients, yielding:

ρt+1 = ρt + ρrρ∇ℓ(θt)⊤∇ℓ(θt−1) (16)

We do not further expand this result for brevity and be-
cause computing these quantities does not require a dedi-
cated procedure, as they are already a byproduct of SGD to
optimize θt, even in a non-private setting.

Privacy Analysis
When assuming a time-dependent Ct such as in (Andrew
et al. 2021), it is particularly useful to decouple the contribu-
tions of the sensitivity from contributions of the privacy pa-
rameters (ε, δ) to the variance of the Gaussian mechanism,
as in Equation (3). Then, within the framework of Rényi DP
and given the results in (Mironov 2017; Wang, Balle, and
Kasiviswanathan 2019) one can efficiently determine ahead
of training-time the values of noise multiplier to be applied
at each iteration independently of the current value of Ct.
At the tth iteration there may be two sources of differen-
tial privacy leakage: the computation of θt+1 in Equation
(5) and the computation of Ct+1 in Equation (13). Both can
be sanitized with the DP approximation already discussed,
but the latter needs special attention. To sanitize Ct+1 with
the Gaussian mechanism (for reasons detailed in Proposition
1) we may utilize ∇ℓ(θt) ≈ ∇ℓ̃(θt), effectively repurpos-
ing the sanitized gradient with respect to θt. We focus now
on the non-privatized term ∂∇ℓ(θt−1)/∂Ct−1. Naturally, it
still involves the sanitization of a sum of vectors, with the
fortunate benefit of having all the terms in the summation
be of norm either 0 or 1, as shown in Equation (11), result-
ing in the unit sensitivity of the query. Thus, this step does
not introduce the need to develop any further “higher or-
der” (adaptive) clipping strategies. With the considerations
above, from a privacy perspective, the two privatized paral-
lel queries behave as a single query sanitized with the Gaus-
sian mechanism. This result is formalized in Proposition 1,
which follows from the joint clipping strategy described in
(McMahan et al. 2018a).

Proposition 1 The Gaussian approximations q̃t and g̃t of∑
zi∈Bt−1

qt−1(zi) and
∑

zi∈Bt
ḡt(zi) with noise multipli-

ers, respectively, νq and νg , is equivalent (as far as pri-
vacy accounting is concerned) to the application of a sin-
gle Gaussian mechanism with noise multiplier ν if νg =

(ν−2 − ν−2
q )−1/2.

Compared to Theorem 1 in (Andrew et al. 2021), we
lose a factor of 2 in the reduction of the standard deviation
σq = 1 · νq and since νq is used here to sanitize a sum of
vectors in Rn (whereas (Andrew et al. 2021) only need to

Figure 2: The Pareto frontiers of the noise multipliers to san-
itize g̃t and q̃t, and the chosen values given the heuristic
described in the Privacy Analysis section, at different pri-
vacy requirements. This particular instance comes from the
MNIST experiments described in the Experiments section.

sanitize a scalar quantity) we cannot relegate as much differ-
entially private noise to the computation of q̃t. Nonetheless,
we can derive a rule of thumb, which, together with prac-
tical considerations introduced in the next section, allow to
have working estimates of the true ∂ℓ(θt)/∂Ct. In particu-
lar, if we allow a 1% increase in νg over ν, we can rearrange
the result in Proposition 1 to find νq ≈ 7.124 · ν. Figure 2
shows an example of these trade-offs for the MNIST dataset
discussed in Experiments section.

To complete the privacy analysis, we highlight that from a
DP point of view, the updates to the learning rate described
in Equation (16) come with no additional privacy expendi-
ture with respect to DP-SGD, exploiting the sanitized g̃t and
g̃t−1.

The OSO-DPSGD Algorithm
The algorithm keeps track of two sanitized quantities at each
iteration, that is:

q̃t =
1

|Bt|
∑

zi∈Bt

qt(zi) + η, η ∼ N (0, ν2q I) (17)

g̃t =
1

|Bt|
∑

zi∈Bt

ḡt(zi) + η, η ∼ N (0, C2
t ν

2
gI) (18)

from which one can privately compute the parameter update
and ∂ℓ̃(θt)/∂Ct = −ρg̃⊤t q̃t−1, which requires to store q̃t−1

from the last iteration. Note that storing vectors from past it-
erations is a common strategy even in non-privatized learn-
ing, as e.g. it is required by every optimizer with momen-
tum(s). In order to cater to the wide range of values Ct might
take, spanning orders of magnitude (Andrew et al. 2021), in-
stead of relying on the additive update rule in Equation (13),



Algorithm 1: Differentially private optimization with
OSO-DPSGD

1: Inputs Samples zi ∈ D; ρ; T ; C0; θ0; |B|; per-iteration
noise multiplier ν; νq; ρc; ρr; q̃0 = g̃0 = 0.

2: νg ← (ν−2 − ν−2
q )−1/2

3: for t ∈ {1, . . . , T} do
4: Bt ← draw |B| samples uniformly from D
5: for zi ∈ Bt in parallel do
6: gt(zi)← ∇θtℓ(θt, zi)

7: ḡt(zi)← gt(zi)/max(1, ∥gt(zi)∥2

Ct
)

8: qt(zi)← gt(zi)
∥gt(zi)∥2

if ∥gt(zi)∥2 > Ct else 0

9: end for
10: σg ← νgCt

11: g̃t ← 1
|B|

(∑
zi∈Bt

ḡt(zi) +N (0, Iσ2
g)
)

12: θt+1 ← θt − ρĝt
13: q̃t ← 1

|B|
(∑

zi∈Bt
qt(zi) +N (0, Iν2g )

)
14: Ct+1 ← Ctexp(ρcsign(g̃t⊤q̃t−1))
15: ρt+1 ← ρtexp(ρrsign(g̃t⊤g̃t−1))
16: end for

we first consider the scale-invariant Equation (19) proposed
in (Rubio 2017), which converges with a logarithmic num-
ber of steps, instead of linearly

Ct+1 = Ct ·
(
1 + ρc

g̃t
⊤q̃t−1

∥g̃t∥2 ∥q̃t−1∥2

)
(19)

We briefly experimented with Equation (19) and found
the proportional update step g̃t

⊤q̃t−1/
∥∥g̃t⊤q̃t−1

∥∥
2

=

sign(g̃t⊤q̃t−1) to be more robust w.r.t. the Gaussian noise
and less dependent on the particular choice of ρc. Noticing
that 1 + x ≈ ex for small values of x, we converge to an
exponential update rule for the optimization of both Ct and
ρt, similar to (Andrew et al. 2021):

Ct+1 = Ct · exp(ρcsign(g̃t⊤q̃t−1)) (20)

ρt+1 = ρt · exp(ρrsign(g̃t⊤g̃t−1)) (21)

Although we provide the result for vanilla SGD, deriving
the update rule for the case with first order momentum is
trivial and only adds a multiplicative factor to ∂ℓ/∂C, de-
pending on the specific implementation of momentum. The
same analysis for Adam is more involved and most impor-
tantly it results in the summation in ∂∇ℓ(θt−1)/∂Ct−1 to
lose the appealing property of unitary sensitivity. Consid-
ering also the disparate results of Adam as a DP optimizer
(Mohapatra et al. 2022; Andrew et al. 2021), we leave this
analysis for future work. Finally, Algorithm 1 outlines the
online optimization strategy presented above, which we call
OSO-DPSGD.

In Algorithm 1 we list the learning rates of Ct and ρ as
hyperparameters. In practice, especially considering the ex-
ponential update rule in Equations (20) and (21), they can be
set to the same value. After a qualitative exploration of rea-
sonable values for both, we settle on ρc = ρr = 2.5 · 10−3

for all the experiments.

AG News MNIST Fashion MNIST

Dataset
Size 120000 60000 60000

Batch
Size 512 512 512

Model
Size 113156 551322 48705

Table 1: Dataset and model information shared throughout
the experiments.

Experiments
In the following Section we proceed to assess Algorithm 1
on a range of experiments on different datasets, tasks, and
model sizes. In particular, we explore how online sensitivity
optimization can be an effective tool in reducing the privacy
and computational costs of running large grid searches. In an
effort to draw conclusions that can be as general as possible,
we identify three vastly adopted datasets in the literature:
MNIST (LeCun et al. 1998), FashionMNIST (Xiao, Rasul,
and Vollgraf 2017), and AG News (Gulli 2005) (Zhang,
Zhao, and LeCun 2015). They are used to train, respectively,
a convolutional neural network for image classification, a
convolutional autoencoder and a bag of words fully con-
nected neural network for text classification.

Considering the computational burden of benchmarking
multiple grid searches, we devise the following pipeline:

• Define the different learning algorithms; to compare
OSO-DPSGD with relevant strategies, we also in-
clude in our experiments the FixedThreshold of
(Song, Chaudhuri, and Sarwate 2013) (Shokri and
Shmatikov 2015) (Abadi et al. 2016) among others and
FixedQuantile of (Andrew et al. 2021). As reported
by the respective authors, hyperparameter optimization
is performed via grid search over the learning rates and
threshold values for the former and over the learning
rates and the quantiles for the latter. Even though (Moha-
patra et al. 2022) introduce AdamWOSM for the DP adap-
tive optimization of the learning rate, it still tackles the
challenge of reducing the number of hyperparameters in
a privacy-aware grid search, and therefore we include it.

• Establish the corresponding grid search ranges. In all
of our experiments, we fix the ranges of the hyperpa-
rameters to the same values. Considering the variety of
experiments, and without assuming any particular do-
main knowledge of the task at hand, we opt for large
ranges: C ∈ [10−2, 102] for the clipping threshold, ρ ∈
[10−2.5, 101.5] for the learning rate and γ ∈ [0.1, 0.9] for
the target quantile.

• Define grid searches with different granularity. Given
the ranges defined in the last step, DP training intro-
duces possibly yet another hyperparameter. In fact, in-
creasing the granularity inevitably results in more can-
didates, and an additional trade off to consider is that
of increased fine tuning at the cost of additional privacy



leakage. In our experiments, we evaluate 3 grid searches
with different granularity, i.e. from the ρ and C ranges
in the last step we take k ∈ {5, 7, 9} values uniformly
separated in a logarithmic scale. For the experiments
with the FixedQuantile strategy we keep the values
γ ∈ [0.1, 0.3, 0.5, 0.7, 0.9] defined by the authors in (An-
drew et al. 2021), as well a setting the learning rate for
the exponential update rule for C to 0.2. The initial value
for the clipping threshold in both FixedQuantile and
Online is set to C0 = 0.1.

• Execute private hyperparameter optimization at different
privacy levels. For the same δ, we explore with increasing
values of ε. Following (Mohapatra et al. 2022), the pri-
vacy budgets we establish are per-grid, and not per-run.
That is, algorithms that need extra fine-tuning and addi-
tional parameters, resulting in more runs, will effectively
reduce the per-run privacy budget. Although this setting
may not conform to most past literature, we are motivated
by approaching DP machine learning from the practi-
tioner point of view, where an oracle providing the op-
timal hyperparameters may not be a reasonable assump-
tion. As in (Mohapatra et al. 2022), we utilize the mo-
ment accountant to distribute the privacy budget among
the configurations, as we do not have a large number of
candidates.

On top of comparing DP learning strategies, we provide
a baseline in the non-private setting, where we iterate only
over the learning rate values and initial weights. To limit the
contribution of the Gaussian random noise in the DP setting,
each configuration is executed with 5 different seeds, and
the results are averaged. Runs with different seeds are not ac-
counted for in terms of privacy budget. Given the large num-
ber of runs, we validate each model at training time every
50 iterations on the full test set, and pick the model check-
point at the best value as representative of the correspond-
ing configuration. Each configuration runs for 10 epochs re-
gardless of when the best performance is registered. Given
the model size and datasets, the total number of epochs is
enough to have most configurations converge. Nevertheless,
we don’t expect every combination of hyperparameters to
saturate learning, e.g. when training with C and ρ both set
at the lowest value available in the corresponding ranges. In
Tables 2, 3, 4, we list the hyperparameters leading to the
best results in the grid search with granularity k = 7 for the
corresponding datasets and models. For brevity, we include
detailed results only for this specific setting.

Discussion Figure 3 shows the accuracy of the mod-
els in the best configurations, among those tested, on the
MNIST dataset. Even though at higher privacy levels (low ε)
Online and AdamWOSM appear to be equivalent in terms
of results, we can see the former showing better results when
the privacy requirements are relaxed. A possible explanation
may be found in Table 2 by noticing that the best C value for
AdamWOSM is fairly large compared to the other strategies.
We believe that a larger initial value for C may be positive to
take long strides towards the direction of the average gradi-
ent at the early stages of the optimization, but may be detri-
mental towards the end when reducing the Gaussian noise

Online Fixed
Threshold

Fixed
Quantile

Adam
WOSM

ε ρ ρ C ρ∗ γ C
3 0.3162 0.01467 1.0 3.162 0.5 21.54
5 1.467 0.003162 4.64 3.162 0.7 21.54
7 1.467 6.812 0.010 3.162 0.7 21.54
9 1.467 6.812 0.010 3.162 0.7 21.54

Table 2: Best hyperparameters for the MNIST dataset with
grid search granularity k = 7. Values with ∗ are scaled×103
for better readability. Best NoDP result for ρ = 0.003162.

Online Fixed
Threshold

Fixed
Quantile

Adam
WOSM

ε ρ ρ C ρ γ C
1 0.3162 0.0681 0.010 - - 0.01
2 1.467 1.467 0.010 0.3162 0.3 0.01
3 1.467 6.812 0.010 1.467 0.1 0.0464
4 1.467 1.467 0.0464 1.467 0.3 0.01

Table 3: Best hyperparameters for the Fashion MNIST
dataset with grid search granularity k = 7. Best NoDP re-
sult for ρ = 0.01467. All FixedQuantile runs diverge
for ε = 1.

may help the optimization. Nevertheless, we consider both
strategies to be roughly equivalent in this experiment. The
results for FixedThreshold and FixedQuantile are
consistently lower, most likely due to both strategies need-
ing a larger grid search, which in turn limits the per-run pri-
vacy budget. Perhaps more surprisingly, the adaptive strat-
egy FixedQuantile does not seem to show better results
compared to fixing the clipping threshold at the initial value.
The improved results that are found in (Andrew et al. 2021)
in the federated setting do not seem to translate in central-
ized learning, with the experiments we conducted.

Figure 4 shows the best results in terms of mean squared
error on the FashionMNIST dataset, where a model is
trained to encode and decode the input images of clothing
items. The chosen architecture is based on a convolutional
autoencoder, and it has the smallest number of parameters
among those considered in this work, as in Table 1. The pri-

Online Fixed
Threshold

Fixed
Quantile

Adam
WOSM

ε ρ ρ C ρ∗ γ C
3 0.06812 1.467 0.01 3.162 0.5 0.01
5 0.06812 1.467 0.010 3.162 0.5 0.01
7 0.06812 1.467 0.010 3.162 0.7 0.01
9 0.06812 0.03162 0.0464 3.162 0.7 0.01

Table 4: Best hyperparameters for the AG News dataset. Val-
ues with ∗ are scaled×103 for better readability. k = 7. Best
NoDP result for ρ = 0.003162.



Figure 3: Accuracy on the MNIST dataset. Higher is better.

vacy regimes are then chosen accordingly. Firstly, we notice
that for ε = 1 the FixedQuantile strategy does not con-
verge with any of the available hyperparameters. To justify
this result, we highlight how in Table 3 all other strategies
adopt aggressive clipping strategies with small C’s. We thus
believe that for very high privacy regimes even running with
γ = 0.1 (the lowest value for the target quantile) may induce
large swings in the exponential updates of Ct, disrupting the
optimization. Nevertheless, for ε ∈ {2, 3, 4} this strategy
shows the second best results. Conversely, AdamWOSM may
be penalized by the choice of the initial ρ0 = 10−3, as sug-
gested by the authors in (Mohapatra et al. 2022). In fact, we
notice from Table 4 that the optimal clipping threshold is
very small in all competing strategies, and the combination
of small C and small ρ0 may render the optimization ex-
cessively slow to converge within the set number of epochs.
Further, it may suggest that adapting the learning rate on
a per-parameter basis, as in AdamWOSM, can be effective
as long as the base learning rate is itself carefully selected.
Thus, optimizing ρt in the grid search, and then adaptively
tuning it within the same run, as done in Online, seems to
show better results.

Figure 5 plots the accuracy on the AG News dataset,
where a bag of words model with a fully connected neu-
ral network is used to classify a selection of news in one of
four classes. In this experiment we notice that AdamWOSM
performs the best, with Online being marginally below.
Still, as with the MNIST dataset, we take both strategies to
be comparable in these two settings, as the average of one
roughly fits within a standard deviation of the other.

Conclusion
This work studies differentially private machine learning in
the context of hyperparameter optimization, where the pri-
vacy cost of running a grid search is accounted for. Under
these conditions, algorithms that require one less parameter
may be preferable. Thus we explore strategies for the adap-
tive tuning of the clipping threshold C, and derive a result
inspired by online learning rate optimization. With the pro-

Figure 4: Mean Squared Error on the Fashion MNIST
dataset. Lower is better. All runs for ε = 1 of
FixedQuantile result in a diverging optimization and
are therefore not included.

Figure 5: Accuracy on the AG News dataset. Higher is better.

posed strategy, which we incorporate in the OSO-DPSGD
algorithm, the clipping threshold is updated at each iteration
based on the direction of steepest descent of the cost func-
tion. The resulting update rule is particularly clean, and re-
sults in the dot product between two sanitized vector queries:
the average gradient at time t, and the derivative w.r.t. C of
the gradient at time t − 1. With the former already needed
in standard DP-SGD, and the latter resulting in a query with
unitary sensitivity, the additional computational and privacy
burden is minimal. Our range of experiments seems to en-
courage further research in this area, as online sensitivity op-
timization shows comparable results with one less parameter
when assessed against standard state of the art algorithms, if
the privacy guarantees are required at a grid search level, and
not just within a single run. In the future, we hope to refine
our analysis and algorithm, to possibly achieve better results
even in this latter setting of per-run privacy requirements.
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