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Abstract
We consider the problem of approximating the von Neumann entropy of a large,
sparse, symmetric positive semidefinite matrix A, defined as tr( f (A)) where f (x) =
−x log x . After establishing someuseful properties of thismatrix function,we consider
the use of both polynomial and rationalKrylov subspace algorithmswithin two types of
approximationsmethods, namely, randomized trace estimators and probing techniques
based on graph colorings.We develop error bounds and heuristics which are employed
in the implementation of the algorithms. Numerical experiments on density matrices
of different types of networks illustrate the performance of the methods.

Mathematics Subject Classification Primary 65F60 · 15A16

1 Introduction

The von Neumann entropy [56] of a symmetric positive semidefinite matrix A with
tr(A) = 1 is defined as S(A) = tr(−A log A), where log A is the matrix logarithm.
With the usual convention that 0 · log 0 = 0, the von Neumann entropy is given by

S(A) = −
n∑

i=1

λi log λi ,

where λ1, . . . , λn are the eigenvalues of the n×nmatrix A. The vonNeumann entropy
plays an important role in several fields including quantum statistical mechanics [42],
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quantum information theory [5], and network science [15]. For example, computing
the von Neumann entropy is necessary in order to determine the ground state of many-
electron systems at finite temperature [1]. The von Neumann entropy of graphs is
also an important tool in the structural characterization and comparison of complex
networks [22, 36].

If the size of A is large, the computation of S(A) by means of explicit diagonaliza-
tion can be too expensive, so it becomes necessary to resort to cheaper methods that
compute approximations of the entropy. In recent years, a few papers have appeared
devoted to this problem; see, e.g., [17, 31, 44, 59]. These papers investigate different
approaches based on quadratic (Taylor) approximants, the global Lanczos algorithm,
Gaussian quadrature and Chebyshev expansion. In general, the problem of computing
the von Neumann entropy of a large matrix is difficult because the underlying matrix
function is not analytic in a neighbourhood of the spectrum when the matrix is sin-
gular; difficulties can also be expected when A has eigenvalues close to zero, which
is usually the case. In particular, polynomial approximation methods may converge
slowly in such cases.

In this paper we propose to approximate the von Neumann entropy using either the
probing approach developed in [29] or a stochastic trace estimator [39, 47, 49]. The
main contributions of this work are outlined in the following.

In Sect. 2.1 we obtain an integral expression for the entropy function f (x) =
−x log x that relates it with a Cauchy-Stieltjes function [58, Chapter VIII], and we use
it to derive error bounds for the polynomial approximation of f , which in turn lead
to a priori bounds for the approximation of S(A) with probing methods. In order to
also have a practical stopping criterion alongside the theoretical bounds, in Sect. 5.1
we propose some heuristics to estimate the error of probing methods, and in Sect. 6.2
we demonstrate their reliability with numerical experiments. In Sect. 3.1 we also use
properties of symmetric M-matrices to show that, in the case of the graph entropy, the
approximation obtained with a probing method is a lower bound for the exact entropy.

Both probing methods and stochastic trace estimators require the computation of
a large number of quadratic forms with f (A), which can be efficiently approximated
using Krylov subspace methods [30, 35]. In Sect. 4.2 we propose to combine polyno-
mial Krylov iterations with rational Krylov iterations that use asymptotically optimal
poles for Cauchy-Stieltjes functions [45]. In Sect. 4.3 we obtain new a posteriori error
bounds and estimates for this task, building on the ones presented in [34], and we
discuss methods to compute them efficiently. For the case of the graph entropy, we
make use of a desingularization technique introduced in [11] that exploits properties
of the graph Laplacian to compute quadratic forms more efficiently.

The resulting algorithmcanbe seen as a black boxmethod that only requires an input
tolerance ε and computes an approximation of S(A) with relative accuracy ε. While
this accuracy is not guaranteed when the rigorous bounds are replaced by heuristics,
we found the algorithm to be quite reliable in practice.

Our implementation of the probing algorithm is compared to a state-of-the-art
randomized trace estimator developed in [49] with several numerical experiments in
Sect. 6, in which we approximate the graph entropy of various complex networks.

The rest of the paper is organized as follows. In Sect. 2 we recall some properties
of the von Neumann entropy and we obtain bounds for the polynomial approxima-
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tion of f (x) = −x log x , which we use in the subsequent sections. In Sect. 3 we
give an overview of probing methods and stochastic trace estimators and we derive
bounds for the convergence of probing methods. In Sect. 4 we describe the compu-
tation of quadratic forms using Krylov subpsace methods and we derive a posteriori
error bounds and estimates. In Sect. 5 we summarize the overall algorithm and we
discuss heuristics and stopping criteria, and in Sect. 6 we test the performance of the
methods on density matrices of several complex networks. Finally, Sect. 7 contains
some concluding remarks.

2 Properties of the von Neumann entropy

A density matrix ρ is a self-adjoint, positive semi-definite linear operator with unit
trace acting on a complex Hilbert space. In quantum mechanics, density operators
describe states of quantum mechanical systems. Here we consider only finite dimen-
sional Hilbert spaces, so ρ is an n×n Hermitian matrix. For simplicity, here we focus
on real symmetric matrices; all the results are easily extended to the complex case.

Recall that the von Neumann entropy of a system described by the density matrix
ρ [56] is given by

S(ρ) = −
∑

λ∈σ(ρ)

λ log(λ) = − tr(ρ log ρ), (2.1)

where σ(ρ) denotes the spectrum of ρ, under the convention that 0 · log(0) = 0. Here
log(x) is the natural logarithm. Note that in the literature the entropy is sometimes
defined using log2(x) instead, but since log2(x) = log(x)/ log(2) the two definitions
are equivalent up to a scaling factor. We also mention that in the original definition
the entropy includes the factor κB (the Boltzmann constant), which we omit.

A straightforward way to compute S(ρ) is by diagonalization. However, this
approach is unfeasible when the dimension is very large. Here we propose some
approaches to compute approximations to the von Neumann entropy based on the
trace estimation of matrix functions.

Note that the formula (2.1) is well defined even without the hypothesis of unit trace.
Moreover, if ρ is given in the form ρ = γ A with γ > 0, we have the relation

S(ρ) = −γ tr(A log(A)) − γ log(γ ) tr(A) = γ S(A) − γ log(γ ) tr(A). (2.2)

In quantum mechanics, the von Neumann entropy of a density matrix gives a mea-
sure of how much a density matrix is distant from being a pure state, that is a rank-1
matrix with only one nonzero eigenvalue equal to one [57]. For any density matrix of
size n, we have 0 ≤ S(ρ) ≤ log(n). Moreover, S(ρ) = 0 if and only if ρ is a pure
state and S(ρ) = log(n) if and only if ρ = 1

n I [56, 57].
The von Neumann entropy also has applications in network theory. Recall that a

graph G is given by a set of nodes V = {v1, . . . , vn} and a set of edges E ⊂ V × V .
The graph is called undirected if (vi , v j ) ∈ E if and only if (v j , vi ) ∈ E for all i �= j .
A walk on the graph of length � is a sequence of � + 1 nodes where two consecutive
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nodes are linked by an edge, for a total of � edges. We say that G is connected if there
exists a directed path from node i to node j for any pair of nodes (i, j). The adjacency
matrix of a graph is a matrix A ∈ R

n×n such that [A]i j = 1 if (vi , v j ) ∈ E , and 0
otherwise. The degree of a node deg(vi ) is the number of nodes that are linked with
vi by an edge. It can be expressed in the form deg(vi ) = [A1]i , where 1 is the vector
of all ones. Finally, the graph Laplacian is given by

L = D − A, D = diag((deg vi )
n
i=1) = diag(A1). (2.3)

Note that L is a singular positive semidefinite matrix and the eigenvalue 0 is simple if
and only if G is connected, in which case the associated one-dimensional eigenspace
is spanned by 1. Given the density matrix ρ = L/ tr(L), the von Neumann entropy of
G is defined as S(ρ) [15, 17].

It should be mentioned that, strictly speaking, the graph entropy defined in this
manner is not a “true” entropy, since it does not satisfy the sub-additivity requirement.
In other words, the graph entropy could decrease when an edge is added to the graph,
see [23]. For this reason, different notions of graph entropy have been proposed in the
literature; see, e.g., [32, 33]. These entropies still have the form of a von Neumann
entropy, S = − tr(ρ log ρ), but with a different definition of the density matrix ρ

which, however, is still expressed as a function of a matrix (Hamiltonian) associated
to the graph. Therefore, the techniques developed in this paper are still applicable, at
least in principle.

2.1 Polynomial approximation

Denote the set of all polynomials with degree atmost k with	k . For a continuous func-
tion f : [a, b] → R, define the error of the best uniform polynomial approximation
in 	k as

Ek( f , [a, b]) = min
p∈	k

max
x∈[a,b]| f (x) − p(x)|. (2.4)

If A is a symmetric (or Hermitian) matrix with σ(A) ⊂ [a, b], estimating or bounding
this quantity is crucial in the study of polynomial approximations of thematrix function
f (A) [4] and for establishing decay bounds for the entries of f (A) [8, 24, 27].
An important case is the inverse function f (x) = 1/x for x ∈ [a, b], 0 < a < b,

for which we have

Ek(1/x, [a, b]) = (
√

κ + 1)2

2b

(√
κ − 1√
κ + 1

)k+1

, (2.5)

where κ = b/a; see, e.g., [46].
In general, an inequality of the form

Ek( f , [a, b]) ≤ Cqk (2.6)
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for some fixed constants C > 0 and 0 < q < 1, is equivalent to the fact that f is
analytic over an ellipse containing [a, b]; see [46, Theorem 73] for more details.

The function f (x) = x log(x) is not analytic on any neighborhood of 0, so we
cannot expect to find a geometric decay as in (2.6) if we consider [0, b], b > 0, as the
interval of definition. However, since f is continuous, by the Weierstrass Approxima-
tion Theorem Ek( f , [0, b]) must go to 0 as k → ∞. A more precise estimate is the
following [59], derived by computing the coefficients of the Chebyshev expansion of
f (x):

Ek( f , [0, b]) ≤ b

2k(k + 1)
for all k ≥ 1. (2.7)

This shows that the decay rate of the error is algebraic in k. Our approach is based on
an integral representation and leads to sharper bounds.

Recall that a Cauchy-Stieltjes function [10, 45] has the form

f (z) =
∫ ∞

0

dμ(s)

s + z
, z ∈ C \ [0,+∞), (2.8)

where μ is a (possibly signed) real measure supported on [0,+∞) and the integral is
absolutely convergent. An example is given by the function log(1 + z)/z that has the
expression

log(1 + z)

z
=

∫ ∞

1

1

s(s + z)
ds.

It is easy to check that the above identity also holds for z ∈ (−1, 0). With the change
of variable x = 1+ z and some simple rearrangements, we get the following integral
expression for the entropy:

− x log(x) =
∫ ∞

1

x(1 − x)

s(s + x − 1)
ds, x ∈ [0, 1]. (2.9)

With the additional change of variable s = t + 1, we can rewrite (2.9) in the form

− x log(x) = x(1 − x)
∫ ∞

0

1

(t + x)(t + 1)
dt, x ∈ [0, 1]. (2.10)

Note that the above identities also hold for x = 0 and x = 1, because of the factor x(1−
x) in front of the integral. This shows that although the entropy function −x log(x) is
not itself a Cauchy-Stieltjes function, we can recognize a factor with the form (2.8) in
its integral representation. This observation will be important later for the selection of
poles in a rational Krylov method; see Sect. 4.2.

Integral representations have proved useful for many problems related to polyno-
mial approximations and matrix functions; see e.g. [9, 10, 27]. The following result
shows that we can derive explicit bounds for Ek( f , [a, b]).
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Lemma 2.1 Let f (x) be defined for x ∈ [a, b] by

f (x) =
∫ ∞

0
gt (x) dt, (2.11)

where gt (x) is continuous for (t, x) ∈ (0,∞) × [a, b] and the integral (2.11) is
absolutely convergent. Then

Ek( f , [a, b]) ≤
∫ ∞

0
Ek(gt (x), [a, b]) dt, (2.12)

for all k ≥ 0.

Proof For all t ∈ (0,∞) and for any degree k ≥ 0, since gt (x) is continuous over the
compact interval [a, b] there exists a unique polynomial p(t)

k (x) ∈ 	k such that

Ek(gt (x), [a, b]) = max
x∈[a,b]|gt (x) − p(t)

k (x)|.

For all x ∈ [a, b] we can define

pk(x) :=
∫ ∞

0
p(t)
k (x) dt .

This is well defined: for all x ∈ [a, b], the mapping t 
→ p(t)
k (x) is continuous for

all t ∈ (0,∞) in view of [46, Theorem 24], since gt (x) is uniformly continuous for
(t, x) in the compact sets contained in (0,∞)×[a, b]. Moreover, the integral is finite
since

∫ ∞

0
|p(t)

k (x)|dt ≤
∫ ∞

0
|gt (x)|dt +

∫ ∞

0
|gt (x) − p(t)

k (x)|dt

≤
∫ ∞

0
|gt (x)|dt +

∫ ∞

0
Ek(gt (x), [a, b])dt < +∞.

We want to show that pk(x) is also a polynomial. Consider the expression

p(t)
k (x) =

k∑

i=0

ai (t) x
i ,

which defines the coefficients ai (t) as functions of t . Formally, we have

pk(x) =
k∑

i=0

(∫ ∞

0
ai (t) dt

)
· xi =

k∑

i=0

āi x
i ,
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where āi := ∫ ∞
0 ai (t) dt . To conclude, we need to show that this expression is

well defined, that is, the functions ai (t) are integrable in t . Consider k + 1 dis-
tinct points x0, . . . , xk in the interval [a, b] and let a(t) = [a0(t), . . . , ak(t)]T ,
p(t) = [p(t)

k (x0), . . . , p
(t)
k (xk)]T . We have that V a(t) = p(t), where

V =

⎡

⎢⎢⎢⎢⎣

1 x0 x20 · · · xk0
1 x1 x21 · · · xk1
...

...
...

. . .
...

1 xk x2k · · · xkk

⎤

⎥⎥⎥⎥⎦

is a Vandermonde matrix. Since V is nonsingular, we have that a(t) = V−1 p(t).
Then, if we let V−1 = (ci j )ki, j=0, we obtain the expression

ai (t) =
k∑

j=0

ci j p
(t)
k (x j ), i = 0, . . . , k,

where ci j is independent of t for all i, j . This shows that, for all i , ai (t) is continuous
for t ∈ (0,∞), and we have

|āi | ≤
∫ ∞

0
|ai (t)| dt ≤

k∑

j=0

|ci j |
∫ ∞

0

∣∣∣p(t)
k (x j )

∣∣∣ dt < +∞, i = 0, . . . , k,

hence āi is well defined for i = 0, . . . , k and pk(x) is a polynomial of degree at most k.
Finally, we have

Ek( f , [a, b]) ≤ max
x∈[a,b]| f (x) − pk(x)|

≤ max
x∈[a,b]

∫ ∞

0
|gt (x) − p(t)

k (x)| dt

≤
∫ ∞

0
Ek(gt (x), [a, b]) dt .

This concludes the proof. ��
The following result gives a new bound for Ek(x log x, [a, b]).

Theorem 2.2 Let 0 ≤ a < b and γ = a/b. We have

Ek(x log(x), [a, b]) ≤ b (1 − √
γ )

1 + γ + 2k
√

γ

4(k2 − 1)

(
1 − √

γ

1 + √
γ

)k

, (2.13)

for all k ≥ 2.
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Proof Let f (x) = x log(x). Notice that f (x) = b f (b−1x) + log(b)x , so

Ek( f (x), [a, b]) = Ek(b f (b
−1x), [a, b]) = b Ek( f (x), [γ, 1])

since k ≥ 2 and we can ignore terms of degree 1 for the polynomial approximation.
For x ∈ [γ, 1] we can use the representation (2.10). Let gt (x) := x(1−x)

(1+t)(x+t) be the
integrand in (2.10) for all t > 0. Note that gt (x) is a continuous fuction in the variables
(t, x) ∈ (0,∞) × [a, b], so we can apply Lemma 2.1. Then we can write gt (x) as

gt (x) = x

x + t
− x

1 + t
= 1 − t

x + t
− x

1 + t
, (2.14)

and since k ≥ 2 and 1 − x
1+t has degree 1, we get

Ek(gt (x), [γ, 1]) = Ek(t/(x + t), [γ, 1]) = t Ek(1/x, [γ + t, 1 + t]).

Hence, by using (2.5) and Lemma 2.1 we get

Ek(x log(x), [a, b]) ≤ b
∫ ∞

0

t
(√

κ(t) + 1
)2

2(1 + t)

(√
κ(t) − 1√
κ(t) + 1

)k+1

dt, (2.15)

where κ(t) = (1 + t)/(γ + t). In order to bound the integral, consider the identities

√
κ(t) − 1√
κ(t) + 1

=
(√

1 + t − √
γ + t

)2

1 − γ
,

(√
κ(t) + 1

)2 =
(√

1 + t + √
γ + t

)2

γ + t
.

We have

∫ ∞

0

t
(
1 + √

κ(t)
)2

2(1 + t)

(√
κ(t) − 1√
κ(t) + 1

)k+1

dt

= 1

2

∫ ∞

0

t

(γ + t)(1 + t)
·
(√

1 + t + √
γ + t

)2 (√
1 + t − √

γ + t
)2k+2

(1 − γ )k+1 dt

≤ 1

2(1 − γ )k−1

∫ ∞

0

(√
1 + t − √

γ + t
)2k

dt . (2.16)

By checking the derivative, it can be shown that

F(t) =
√
1 + t

√
γ + t

(√
1 + t − √

γ + t
)2k

((√
1+t−√

γ+t
)4

2k+2 − (1−γ )2

2k−2

)

2
(√

1 + t
√

γ + t − γ − t
) (
1 + t − √

1 + t
√

γ + t
)
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Fig. 1 Comparison of the bounds (2.7) and (2.13) with the error of the polynomial approximation of the
entropy function x log x on the interval [10−6, 10−2]

is an antiderivative of
(√

1 + t − √
γ + t

)2k
. Since limt→∞ F(t) = 0, we deduce that

∫ ∞

0

(√
1 + t − √

γ + t
)2k

dt =
√

γ
(
1 − √

γ
)2k

(
(1−γ )2

2k−2 − (1−√
γ )

4

2k+2

)

2
(
1 − √

γ
) (√

γ − γ
)

= (1 − √
γ )2k

1 + γ + 2
√

γ k

2(k2 − 1)
.

This, combined with (2.16), concludes the proof. ��
Remark 2.3 The result of Theorem 2.2 is an improvement of (2.7). When a > 0, the
right-hand side in (2.13) is the product of an algebraic and a geometric factor, so the
decay is asymptotically faster. When a = 0, we have γ = 0 and (2.13) becomes

Ek(x log(x), [0, b]) ≤ b

4(k2 − 1)
,

which is better than (2.7) for all k ≥ 2. The new bound (2.13) is compared with (2.7)
in Fig. 1.

3 Trace estimation

Recall that a function f (A) of a symmetricmatrix A ∈ R
n×n can be defined via a spec-

tral decomposition A = U
UT , whereU is orthogonal and 
 = diag(λ1, . . . , λn) is

123



386 M. Benzi et al.

the diagonal matrix containing the eigenvalues. Then

f (A) := U f (
)UT , f (
) := diag( f (λ1), . . . , f (λn)),

provided that f is defined on the eigenvalues of A. A matrix function can be computed
via diagonalization, using polynomial or rational approximants, or with algorithms
tailored to specific matrix functions, such as scaling and squaring for the matrix expo-
nential. We direct the reader to [38] for more details on these methods. In this section
we present algorithms to estimate the trace of f (A) that do not require the explicit
computation of the diagonal entries of f (A). It is necessary to resort to this class of
algorithms whenever the size of A is too large to make the computation of f (A) (or its
diagonal) feasible. In the sections that follow, we use the notation A to denote general
matrices and ρ to denote density matrices, since most of our results are applicable in
general for symmetric positive semidefinite matrices and not only to density matrices.

3.1 Probingmethods

Let us summarize the approach described in [29] to compute the trace of a matrix
function f (A), where A ∈ R

n×n is a sparse matrix. Recall that the graph G(A)

associated with A has nodes V = {1, . . . , n} and edges E = {(i, j) : [A]i j �= 0, i �=
j}, and the geodesic distance d(i, j) between i and j is the shortest length of a walk
that starts with i and ends with j , and is ∞ if no such walk exists or 0 if i = j .

Let V1, . . . , Vs be a coloring (i.e. a partitioning) of the set {1, . . . , n}. We write
col(i) = col( j) if and only if i and j belong to the same set. We have a distance-
d coloring if col(i) �= col( j) whenever d(i, j) ≤ d, where d(i, j) is the geodesic
distance between i and j in the graph G(A) associated with A. The associated probing
vectors are

v� =
∑

i∈V�

ei ∈ R
n, � = 1, . . . , s, (3.1)

where ei is the i-th vector of the canonical basis. The induced approximation of the
trace is

T d( f (A)) :=
s∑

�=1

vT� f (A)v�. (3.2)

The problem of finding the minimum number s of colors, or sets, in the partition
needed to get a distance-d coloring for a fixed d is NP-complete for general graphs
[41]. It is important to keep s as small as possible since, in view of (3.2), it is the number
of quadratic forms needed to compute T d( f (A)). A greedy and efficient algorithm to
get a quasi optimal distance-d coloring is given by Algorithm 1 [53, Algorithm 4.2].

One can obtain different colorings depending on the order of the nodes; sorting
the nodes by descending degree usually leads to a good performance [41, 53]. The
number of colors obtained with this algorithm is at most �d +1, where � is the
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Algorithm 1 Greedy algorithm for a distance-d coloring
Input: Graph G = (V , E) with V = {1, . . . , n} and distance d
Output: Distance-d coloring col
1: col(1) = 1
2: for i = 2 : n do
3: Wi = { j ∈ {1, . . . , i − 1} : d(i, j) ≤ d}
4: col(i) = min{k > 0 : k �= col( j) for all j ∈ Wi }
5: end for

maximum degree of a node in the graph induced by A, and the cost is at mostO(n �d)

if the d-neighbors Wi of each node i are computed with a traversal of the graph.
Alternatively, the greedy coloring can be obtained by computing Ad , which can be done
using at most 2log2 d�matrix-matrix multiplications [38, Section 4.1]. In our Matlab
implementation of the probing method, we construct the greedy distance-d coloring
by computing Ad , since we found it to be faster than the graph-based approach; this is
likely due to the more efficient Matlab implementation of matrix-matrix operations.

If A is β-banded, i.e. if [A]i j = 0 for |i − j | > β, a simple distance-d coloring is
given by

col(i) = (i − 1) mod (dβ + 1) + 1, i = 1, . . . , n. (3.3)

This coloring is optimal with s = dβ + 1 if all the entries within the band are
nonzero. Note that to diagonalize a symmetric banded matrix one must first reduce it
to a tridiagonal form, and this costs O(βn2) [54]. On the other hand, if we assume
that quadratic forms with f (A) can be approximated with a fixed number of Krylov
iterations, the computation of each quadratic form costs O(βn), and the cost for
T d( f (A)) is approximatively O(dβ2n) and this can be much less than the cost for
the diagonalization provided that the requested accuracy is not too high. For a general
sparsematrix A, as an alternative toAlgorithm1one can use the reverseCuthill-McKee
algorithm [20] to reorder the nodes and reduce the bandwidth, and then use (3.3) to
find a distance-d coloring [29]. Depending on the structure of the graph induced by A
this can yield good results, but in many cases better colorings are obtained by using
Algorithm 1; see Example 3.4.

Regarding the accuracy of the approximation of tr( f (A)) by T d( f (A)) we have
the following result [29, Theorem 4.4].

Theorem 3.1 ([29]) Let A ∈ R
n×n be symmetric with spectrum σ(A) ⊂ [a, b]. Let

f (x) be defined over [a, b] and let T d( f (A)) be the approximation (3.2) of tr( f (A))

induced by a distance-d coloring. Then

|tr( f (A)) − T d( f (A))| ≤ 2n Ed( f , [a, b]). (3.4)

If f (x) = −x log(x), so that tr( f (A)) = S(A), we have the following result.
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Corollary 3.2 Let A ∈ R
n×n be symmetric with σ(A) ⊂ [a, b], 0 ≤ a < b, and put

γ = a/b. Then

|S(A) − T d(−A log(A))| ≤ n b (1 − √
γ )

1 + γ + 2d
√

γ

2(d2 − 1)

(
1 − √

γ

1 + √
γ

)d

, (3.5)

for all d ≥ 2. In particular, if a = 0, we have

|S(A) − T d(−A log(A))| ≤ nb

2(d2 − 1)
, (3.6)

for all d ≥ 2.

Proof The inequality (3.5) follows fromTheorem 2.2 and Theorem 3.1. The inequality
(3.6) follows from (3.5) with γ = a/b = 0. ��
Remark 3.3 The bound (3.5) can be pessimistic in practice, especially for large values
of d. We will see this in Example 3.4 and in Sect. 6.2. A priori bounds based on
polynomial approximations often fail to catch the exact convergence behavior in many
problems related to matrix functions since a minimization problem over the spectrum
of a matrix is relaxed to the whole spectral interval. This occurs in the convergence of
polynomial Krylovmethods [43, Section 5.6] and in the decay bounds on the entries of
matrix functions [9, 28]. Also, the coloring we get via Algorithm 1 can return far more
colors than needed for a distance-d coloring, and this can benefit the convergence in
a way that is not predicted by the bound. We will see in Sect. 5.1 a more practical
heuristic to predict the error with higher accuracy.

Example 3.4 Let us see how the bound and the convergence of the probing method
perform in practice. We use the density matrix ρ = L/ tr(L), where L is the Lapla-
cian of the graph minnesota from the SuiteSparse Matrix Collection [21]. More
precisely, we consider the biggest connected component whose graph Laplacian has
size n = 2640 and 9244 nonzero entries.

For several values of d, we compute the approximation T d(−ρ log ρ) associated
with two different distance-d colorings: the first is obtained by the greedy coloring
(Algorithm 1) after sorting the nodes by descending degree, while for the second we
use the reverse Cuthill-McKee algorithm to get a 67-banded matrix and then (3.3).

In Fig. 2 we compare T d(−ρ log(ρ)) with the value of S(ρ) obtained by diagonal-
izing ρ, considered as exact. The left plot shows the error in terms of the number of
colors (i.e. the number of probing vectors) associated with the distance-d colorings.
In the right plot the errors are shown in terms of d together with bound (3.6), where
b = λmax(ρ).

For a fixed value of d, the coloring based on the bandwidth provides a smaller error
than the greedy one, but it also uses a larger number of colors. Indeed, we can see
from the left plot that with the same computational effort the greedy algorithm obtains
a smaller error. On the right we can observe that bound (3.6) is close to the error given
by the greedy coloring for small values of d, while it fails to catch the convergence
behavior for large values of d.
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Fig. 2 Absolute errors of the probing approximation of S(ρ) where the distance-d coloring is obtained
either by the greedy procedure (Algorithm 1) or with the reverse Cuthill-McKee algorithm and the coloring
(3.3) for banded matrices. On the left the abscissa represents the number of colors used for the coloring.
On the right the errors are compared with bound (3.6) in terms of d

For the graph entropy, i.e. when ρ = L/ tr(L) andL is a graph Laplacian of a graph
G, we can show that − T d(ρ log ρ) is a lower bound for S(ρ). In the proof we use
the fact that ρ is a symmetric M-matrix [14, Chapter 6], i.e. it can be written in the
form ρ = θ I − B where θ > 0 and B is a nonnegative matrix such that λ ≤ θ for all
λ ∈ σ(B).

Lemma 3.5 Let A = θ I − B be a symmetric M-matrix. Let d(i, j) be the geodesic
distance in the graph associated with A. Then [−A log(A)]i j ≤ 0 whenever d(i, j) ≥
2. If θ < exp(−1), then [−A log(A)]i j ≤ 0 for i �= j and −A log A is an M-matrix.

Proof Suppose that θ > ‖B‖2 = λmax(B), so A is nonsingular. Then f (x) = −x log x
is analytic for |x − θ | < ‖B‖2 and it can be represented by the power series

f (x) =
∞∑

k=0

f (k)(θ)

k! (x − θ)k .

Since σ(A) ⊂ (θ − ‖B‖2, θ + ‖B‖2), the series expansion holds for f (A):

f (A) =
∞∑

k=0

f (k)(θ)

k! (A − θ I )k = −θ log θ I + (1 + log θ)B −
∞∑

k=2

θ−(k−1)

k(k − 1)
Bk .

If d(i, j) ≥ 2 we have [B]i j = [−A]i j = 0, and Bk is nonnegative for all k ≥ 0, so
[ f (A)]i j ≤ 0. If θ < exp(−1), then (1 + log θ)B is nonpositive so [ f (A)]i j ≤ 0 for
i �= j , and it is an M-matrix since it is positive semidefinite [14, Theorem 4.6].

If A is singular, consider the nonsingular M-matrix A + ε I for ε > 0. Then the
results hold for f (A + ε I ) (we impose θ + ε < exp(−1) if θ < exp(−1)) and
notice that f (A) = limε→0 f (A + ε I ). This concludes the proof, since the limit of
nonsingular M-matrices is an M-matrix. ��
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Proposition 3.6 Let A ∈ R
n×n be a symmetric M-matrix, and let T d(−A log(A)) be

the approximation (3.2) of S(A) induced by a distance-d coloring of G(A)with d ≥ 1.
Then T d(−A log(A)) ≤ S(A).

Proof If V1, . . . , Vs is the graph partitioning associated with a distance-d coloring,
the error of the approximation can be written as

S(A) − T d(−A log(A)) = −
s∑

�=1

∑

i, j∈V�
i �= j

[−A log(A)]i j ; (3.7)

see [29] for more details. By definition of a distance-d coloring, for all i, j ∈ V�,
i �= j , we have d(i, j) ≥ d + 1 ≥ 2. Then, in view of Lemma 3.5, the right-hand side
of (3.7) is nonnegative. ��
Remark 3.7 In this work we only consider the entropy of sparse density matrices.
However, an important case is given by ρ = g(H), where H is the Hamiltonian
of a certain quantum system and g is a function defined on the spectrum of H .
Notable examples are the Gibbs state [19, 57] and the Fermi-Dirac state [1]. Despite ρ

being a dense matrix in general, a sparse structure of H implies that ρ exhibits decay
properties and can be well approximated by a sparse matrix [6, 7]. Moreover, since
S(ρ) = −g(H) log(g(H)) one can apply the techniques described in this section to
the composition −g(x) log(g(x)). Although the investigation of this problem is out-
side the scope of this work, it represents an interesting direction for future research.
These considerations also hold for the randomized techniques discussed below.

3.2 Stochastic trace estimation

Let us consider the problem of computing tr(B), where B ∈ R
n×n is a matrix that

is not explicitly available but can be accessed via matrix–vector products Bx and
quadratic forms xT Bx, for x ∈ R

n . The case of B = f (A) can be seen as an instance
of this problem, since f (A) is expensive to compute, but f (A)x and xT f (A)x can
be efficiently approximated using Krylov methods, as we recall in Sect. 4.

Stochastic trace estimators compute approximations of tr(B) by making use of
the fact that, for any matrix B and any random vector x such that E[xxT ] = I , we
have E[xT Bx] = tr(B), where E denotes the expected value. Hutchinson’s trace
estimator [39] is a simple stochastic estimator that generates N vectors x1, . . . , xN

with i.i.d. random N (0, 1) entries and approximates tr(B) with

trHutchN (B) = 1

N

N∑

j=1

xTj Bx j = 1

N
tr(XT BX), X = [x1, . . . , xN ]. (3.8)

An algorithm that improves the convergence properties of Hutchinson’s estimator
has been proposed in [47] with the name of Hutch++. It samples � ∈ R

n×Nr with
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random i.i.d.N (0, 1) entries, then computes B� and an orthonormal basis Q ∈ R
n×Nr

of range(B�). Then the estimator is given by

trHutch++Nr ,NH
(B) := tr(QT BQ) + trHutchNH

((I − QQT )B(I − QQT )). (3.9)

This estimator computes the trace of a rank Nr approximation of B and estimates the
trace of the remaining part using the Hutchinson estimator with NH samples, so its
total cost is Nr matrix–vector products and Nr + NH quadratic forms with B. It has
been proven in [47, Theorem 4.1] that the complexity of Hutch++ is optimal up to
logarithmic factors amongst algorithms that access a positive semidefinite matrix B
via matrix–vector products.

The implementation of Hutch++ proposed in [18] allows to prescribe a target accu-
racy ε > 0 and a failure probability δ ∈ (0, 1) in input and then choose adaptively the
parameters Nr and NH in order to get the tail bound

P
[|trHutch++Nr ,NH

(B) − tr(B)| ≥ ε
] ≤ δ (3.10)

with as little computational effort as possible. This implementation goes under the
name of adaptive Hutch++ and will be our stochastic estimator of choice for the von
Neumann entropy in view of its flexibility and optimal convergence properties. Note
that most of our theory for Krylov methods in Sect. 4 can be used in combination with
any other stochastic estimator based on matrix–vector products and quadratic forms
with B = f (A). For instance, we mention [52] where a low rank approximation of
A constructed using powers of A is used to get a good approximation in case of fast
decaying eigenvalues or large spectral gaps, and the paper [16] in which a Krylov
subspace projection is integrated with the low rank approximation. Furthermore, our
theory in Sect. 4 also applies to the techniques presented in the recent preprint [25]
which improves on standard Hutch++ but does not allow an adaptive choice of the
parameters as in adaptive Hutch++.

4 Computation of quadratic forms with Krylovmethods

As shown in Sect. 3, the approximate computation of tr( f (A)) with probing methods
or stochastic trace estimators can be reduced to the computation of several quadratic
forms with f (A), i.e. expressions of the form bT f (A)b. In this section, we briefly
describe how they can be efficiently computed using polynomial and rational Krylov
methods.

A polynomial Krylov subspace associated to A and b is given by

Pm(A, b) = span
{
b, Ab, . . . , Am−1b

}
= {p(A)b : p ∈ 	m−1}.

More generally, given a sequence of poles {ξ j } j≥1 ⊂ (C∪ {∞})\σ(A) ∪ {0}, we can
define a rational Krylov subspace as follows,
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Qm(A, b) = qm−1(A)−1Pm(A, b)

=
{
r(A)b : r(z) = pm−1(z)

qm−1(z)
,with pm−1 ∈ 	m−1

}
, (4.1)

where qm−1(z) =
∏m−1

j=1
(1− z/ξ j ). If all poles are equal to∞, we have qm−1(z) ≡ 1

andQm(A, b) coincides with the polynomial Krylov subspacePm(A, b), soPm(A, b)
can be considered as a special case ofQm(A, b). Note that this definition of qm−1 does
not allow us to have poles ξ j = 0; this can be fixed by changing the definition of qm−1
but it is not required in our case, since we are only going to use real negative poles
and poles at ∞.

Let us denote by Vm = [v1 . . . vm] a matrix whose orthonormal columns span
the Krylov subspace Qm(A, b), and by Am = V T

m AVm the projection of A onto
the subspace. We can then project the problem on Qm(A, b) and approximate ψ =
bT f (A)b in the following way,

ψ ≈ ψm = bT Vm f (Am)V T
m b.

If the basis Vm is constructed incrementally using the rational Arnoldi algorithm [51],
we have v1 = b/‖b‖2 and therefore

ψm = ‖b‖22eT1 f (Am)e1. (4.2)

Note that the approximationψm is closely related to the rational Krylov approximation
of f (A)b, which is given by

f (A)b ≈ Vm f (Am)V T
m b = ‖b‖2Vm f (Am)e1, (4.3)

and is known to converge with a rate determined by the quality of rational approx-
imations of f [35, Corollary 3.4]. We refer to [34, 35] for an extensive discussion
on rational Krylov methods for the computation of matrix functions. The approxima-
tion (4.2) can be also interpreted in terms of rational Gauss quadrature rules, see for
instance [2, 50].

Remark 4.1 The standard Arnoldi algorithm is inherently sequential since the compu-
tation of the new vector of the Krylov basis vm+1 requires the previous computation
of vm . It is possible to parallelize it by solving several linear systems simultaneously
and expanding the Krylov basis with blocks of vectors, with one of the strategies
presented in [13], at the cost of lower numerical stability. Since in this work we are
expected to compute several quadratic forms bT f (A)b, we can easily achieve par-
allelization by assigning the quadratic forms to different processors and thus we can
neglect parallelism inside the computation of a single quadratic form.

Remark 4.2 We mention that for symmetric A it is possible to construct the Krylov
basis Vm using a method based on short recurrences such as rational Lanczos [48].
This has the advantage of reducing the orthogonalization costs, which can become
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significant ifm is large, and also avoids the need to store the matrix Vm when approxi-
mating the quadratic form bT f (A)b, see (4.2). However, the implementation in finite
arithmetic of short recurrence methods can suffer from loss of orthogonality, which
in turn can lead to a slower convergence. In order to avoid this potential problem,
we use the rational Arnoldi method with full orthogonalization. Since we expect to
attain convergence in a small number of iterations, the orthogonalization costs remain
modest compared to the cost of operations with A.

4.1 Convergence

By [35, Corollary 3.4], the accuracy of the approximation (4.3) for f (A)b is related
to the quality of rational approximations to the function f of the form r(z) =
qm−1(z)−1 pm−1(z), where pm−1 ∈ 	m−1 and qm−1 is determined by the poles of
the rational Krylov subspace (4.1).

In the case of quadratic forms we can prove a faster convergence rate using the fact
that ψm = ψ for rational functions of degree up to (2m − 1, 2m − 2).

Lemma 4.3 Assume that A is symmetric. Let p2m−1 ∈ 	2m−1 and define the rational
function r(z) = qm−1(z)−2 p2m−1(z). Then we have

bT r(A)b = bT Vmr(Am)V T
m b.

Proof It is sufficient to prove this fact for p2m−1(z) = zk , for k = 0, . . . , 2m − 1.
Assuming for the moment that k = 2 j + 1 is odd, we have

bT r(A)b = bT s(A)As(A)b, with s(z) = qm−1(z)
−1z j , j < m.

Now using [35, Lemma 3.1], we obtain

bT r(A)b = (
bT Vms(Am)V T

m

)
A
(
Vms(Am)V T

m b
) = bT V T

m r(Am)V T
m b.

The case of pm−1(z) = zk with k even can be proved in the same way, by writing

bT r(A)b = bT s(A)2b, with s(z) = qm−1(z)
−1z j , j < m.

��
Lemma 4.3 leads to the following convergence result for the approximation of

quadratic forms, with the same proof as [35, Corollary 3.4].

Proposition 4.4 Let A be symmetric with spectrum contained in [λmin, λmax], ψ =
bT f (A)b and denote by ψm the approximation (4.2). We have

|ψ − ψm | ≤ 2‖b‖22 min
p∈	2m−1

‖ f − q−2
m−1 p‖[λmin,λmax],

By comparing Proposition 4.4 with [35, Corollary 3.4], we can expect the conver-
gence for quadratic forms to be roughly twice as fast as the one for matrix–vector
products with f (A).
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4.2 Poles for the rational Krylov subspace

Recall that the function f (z) = x log x has the integral expression (2.10), which
corresponds to a Cauchy-Stieltjes function multiplied by the polynomial x(1 − x).
This implies that we can expect that a pole sequence that yields fast convergence for
Cauchy-Stieltjes functions will be also effective in our case, especially if we add two
poles at ∞ to account for the degree-two polynomial.

The authors of [45] consider the case of a positive definite matrix A with spectrum
in [a, b] and a Cauchy-Stieltjes function f , and relate the error for the computation of
f (A)bwith a rational Krylov method to the third Zolotarev problem in approximation
theory. The solution to this problem is known explicitly and it can be used to find
poles on (−∞, 0) that provide in some sense an optimal convergence rate for the
rational Krylov method [45, Corollary 4]. However, the optimal Zolotarev poles are
not nested, so they cannot be used to expand the Krylov subspace incrementally,
and they are practical only if one knows in advance how many iterations to perform,
for instance by relying on an a priori error bound. This drawback can be overcome
by constructing a nested sequence of poles that is equidistributed according to the
limit measure identified by the optimal poles, which can be done with the method
of equidistributed sequences (EDS) described in [45, Section 3.5]. These poles have
the same asymptotic convergence rate as the optimal Zolotarev poles and are usually
better for practical purposes. To be computed, they require the knowledge of [a, b] or
a positive interval � such that [a, b] ⊂ �.

As an alternative, one can also use poles obtained from Leja-Bagby points [3, 35].
These points can be computed with an easily implemented greedy algorithm and they
have an asymptotic convergence rate that is close to the optimal one. See [35, Section 4]
and the references therein for additional information.

Remark 4.5 For the function f (x) = x log x , the first few iterations of a polynomial
Krylov method have a fast convergence rate that is close to the convergence rate
of rational Krylov methods, even if it becomes asymptotically much slower for ill
conditioned matrices. The faster initial convergence can be explained by the algebraic
factor in the bound (2.13) for polynomial approximations of x log x . Since polynomial
Krylov iterations are cheaper than rational Krylov iterations, this suggests the use of a
mixed polynomial-rational method, that starts with a few polynomial Krylov steps and
then switches to a rational Krylov method with, e.g., EDS poles to achieve a higher
accuracy. These methods are compared numerically in Example 4.10, where we also
test the performance of the a posteriori error bound that we prove in Sect. 4.3.

Remark 4.6 Note that in the context of the graph entropy the matrix A is a graph
Laplacian, which is a singular matrix. Therefore in principle it is not possible to use
the poles described in this section, since here we assume that A is positive definite.
However,we can use one of the desingularization strategies described in [11] to remove
the 0 eigenvalue of the graph Laplacian, obtaining a matrix with spectrum contained
in [λ2, λn], where λ2 is the second smallest eigenvalue of A and λn is the largest one.
In our implementation we use the approach that is called implicit desingularization
in [11], which consists in replacing the initial vector b for the Krylov subspace with

c = b− 1T b
n 1, where1 is the vector of all ones. Since c is orthogonal to the eigenvector
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1 associated to the eigenvalue 0, it can be shown that the convergence of a Krylov
subspace method with starting vector c is the same as for a matrix with spectrum
in [λ2, λn]. An approximation of f (A)b can be then cheaply recovered from f (A)c
using the fact that f (A)1 = f (0)1, and similarly for bT f (A)b. See [11] for more
details.

4.3 A posteriori error bound

In this section we prove an a posteriori bound for the error in the computation of the
quadratic form bT f (A)b with a rational Krylov method. This bound is a variant of
the one described in [34, Section 6.6.2] for f (A)b, modified in order to account for
the faster convergence rate in the case of quadratic forms.

We recall that after m iterations the rational Arnoldi algorithm yields the rational
Arnoldi decomposition [12, Definition 2.3]

AVm+1Km = Vm+1Hm, (4.4)

where span Vm+1 = Qm+1(A, b) and Km , Hm are (m + 1) × m upper Hessenberg
matrices with full rank. Let us consider the situation when ξm = ∞: in this case the
last row of Km is zero, and the decomposition simplifies to

AVmKm = VmHm + vm+1hTm+1,

where Hm and Km denote the m ×m leading principal blocks of Hm and Km , respec-

tively, and hTm+1 = hm+1,meTm denotes the last row of Hm . Note that Km is nonsingular
since Km has full rank, so we can rewrite the decomposition as

AVm = Vm Am + vm+1hTm+1K
−1
m , where Am = V T

m AVm = HmK
−1
m . (4.5)

Remark 4.7 To derive the bound, we assume that ξm = ∞ because it simplifies
the rational Arnoldi decomposition and hence the expression of the bound. Such an
assumption is not restrictive, since the value of ξm does not have any impact on Vm
and Am , but only on vm+1 and the last column of Hm and Km . As we shall see later,
we can use a technique described in [34, Section 6.1] to compute the bound for all
m, without having to set the corresponding poles ξm = ∞. Note that if ξm �= ∞,
then (4.5) does not hold, and in particular V T

m AVm �= HmK−1
m .

By using the Cauchy integral formula for f , we can obtain the following expression
for the error [34, Section 6.2.2]:

f (A)b − Vm f (Am)V T
m b = 1

2π i

∫

�

f (z)(z I − A)−1rm(z)dz, (4.6)
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where � is a contour contained in the region of analyticity of f that encloses the
spectrum of A, and

rm(z) = b − (z I − A)xm(z), with xm(z) = Vm(z I − Am)−1V T
m b,

which can be seen as a residual vector of the shifted linear system (z I − A)x = b. It
turns out that [34, Section 6.2.2]

rm(z) = ‖b‖2ϕm(z)vm+1, with ϕm(z) = hTm+1K
−1
m (z I − Am)−1e1.

Observe that we have

bT (z I − A)−1rm(z) = rm(z)T (z I − A)−1rm(z) + xm(z)T rm(z)

= rm(z)T (z I − A)−1rm(z),

where we exploited the fact that xm(z) ∈ Qm(A, b) ⊥ rm(z).
By using this property in conjunction with (4.6), we can write the error for the

quadratic form bT f (A)b as

ψ − ψm = 1

2π i

∫

�

f (z)rm(z)T (z I − A)−1rm(z)dz

= 1

2π i
‖b‖22

∫

�

f (z)ϕm(z)2vTm+1(z I − A)−1vm+1dz. (4.7)

We can now follow the same steps used in [34, Section 6.2.2] to bound the integral
in (4.7). Assume that Am has the spectral decomposition Am = UmDmUT

m , with Um

orthogonal and Dm = diag(θ1, . . . , θm), and define the vectors

[α1, . . . , αm] = hTm+1K
−1
m Um and [β1, . . . , βm]T = UT

m e1,

so that we have

ϕm(z) = hTm+1K
−1
m Um(z I − Dm)−1UT

m e1 =
m∑

j=1

α jβ j
1

z − θ j
,

and

ϕm(z)2 =
m∑

j=1

α2
jβ

2
j

1

(z − θ j )2
+ 2

m∑

j=1

α jβ jγ j
1

z − θ j
,
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where we defined γ j =
∑

� : � �= j

α�β�

1

θ j − θ�

. By plugging this expression into (4.7) we

get

1

‖b‖22
(ψ − ψm)

= 1

2π i

∫

�

f (z)ϕm(z)2vTm+1(z I − A)−1vm+1dz

=
m∑

j=1

α2
jβ

2
j

1

2π i

∫

�

f (z)

(z − θ j )2
vTm+1(z I − A)−1vm+1dz

+ 2
m∑

j=1

α jβ jγ j
1

2π i

∫

�

f (z)

z − θ j
vTm+1(z I − A)−1vm+1dz

=
m∑

j=1

α2
jβ

2
j v

T
m+1

(
( f (A) − f (θ j )I )(A − θ j I )

−2 − f ′(θ j )(A − θ j I )
−1

)
vm+1

+ 2
m∑

j=1

α jβ jγ jv
T
m+1( f (A) − f (θ j )I )(A − θ j I )

−1vm+1,

where for the last equality we used the residue theorem [37, Theorem 4.7a].
Let us define

gm(z) =
m∑

j=1

⎧
⎪⎨

⎪⎩

α2
jβ

2
j

(
f (z) − f (θ j )

(z − θ j )2
− f ′(θ j )

z − θ j

)
+ 2α jβ jγ j

f (z) − f (θ j )

z − θ j
if z �= θ j ,

1

2
α2
jβ

2
j f

′′(θ j ) + 2α jβ jγ j f ′(θ j ) if z = θ j ,

(4.8)

where the expression for z = θ j is obtained by taking the limit for z → θ j in the
definition for z �= θ j . The above computations immediately lead to the following a
posteriori bound for the quadratic form error.

Theorem 4.8 Let A be a symmetric matrix with spectrum σ(A) ⊂ [λmin, λmax]. Using
the same notation as above, we have

‖b‖22 min
z∈[λmin,λmax]

|gm(z)| ≤ |ψ − ψm | ≤ ‖b‖22 max
z∈[λmin,λmax]

|gm(z)|. (4.9)

Remark 4.9 We are mainly interested in the upper bound in (4.9) to have a reliable
stopping criterion for the rational Krylov method, although the lower bound can also
be of interest. We also mention that other bounds and error estimates can be obtained,
such as the other ones described in [34, Section 6.6], but we found that the one derived
in this section worked well enough for our purposes. Under certain assumptions, it is
also possible to obtain upper and lower bounds for the quadratic form bT f (A)b using
pairs of rational Gauss quadrature rules, such as Gauss and Gauss-Radau quadrature
rules. We refer to [2] for more details.
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Fig. 3 Accuracy of error bounds and estimates for the relative error in the computation of bT f (A)b with
Krylov methods, where b is a random vector, f (x) = x log(x) and A is a 2000 × 2000 matrix with
eigenvalues that are Chebyshev points in the interval [10−3, 103]. Left: polynomial Krylov and rational
Krylov with EDS poles for Cauchy-Stieltjes function. Right: 10 poles at ∞ and 10 EDS poles for Cauchy-
Stieltjes functions

Example 4.10 In this examplewe test the accuracy of the lower and upper bounds given
in (4.9) for polynomial and rational Krylov methods. We consider the computation of
bT f (A)b, for a 2000×2000matrix Awith eigenvalues given by the Chebyshev points
for the interval � = [10−3, 103], a random vector b and f (x) = x log(x). The upper
and lower bounds are computed numerically by evaluating gm on a discretization of
the interval [λmin, λmax]. In addition to the lower and upper bounds, we also consider
a heuristic estimate of the error given by the geometric mean of the upper and lower
bound in (4.9), i.e.

estm = ‖b‖22
√
min
z∈�

|gm(z)|max
z∈�

|gm(z)| (4.10)

The results are shown in Fig. 3. On the left plot we show the convergence for the poly-
nomial Krylov method and for a rational Krylov method with poles from an EDS for
Cauchy-Stieltjes functions, and on the right plot a mixed polynomial-rational method
that uses 10 poles at ∞ (which correspond to polynomial Krylov steps) followed by
10 EDS poles (see Remark 4.5). The upper and lower bounds match the shape of
the convergence curve quite well, although they are less accurate when polynomial
iterations are used. Rather surprisingly, the geometric mean of the bounds gives a very
accurate estimate for the error, even in the case when the bounds themselves are less
accurate.

Remark 4.11 We do not have a rigorous explanation for the accuracy of the estimate
based on the geometric mean of the bounds in (4.9), but from further experiments it
seems to be very accurate also for other functions.Unfortunately, if the spectral interval
� is known only approximately, the bounds become less tight and the geometric mean
estimate usually ends up underestimating the actual error by one or two orders of
magnitude.
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4.3.1 Computation of the bound

Recall that the a posteriori bounds in (4.9) hold after them-th iteration only if ξm = ∞.
In a practical scenario, i.e. when using the bounds as a stopping criterion for a rational
Krylovmethod, it is desirable to evaluate the bounds after each iteration, without being
forced to set the corresponding pole to ∞. As anticipated in Remark 4.7, we provide
here two approaches to evaluate the bounds in (4.9) even when ξm �= ∞.

One way to avoid setting poles to ∞, proposed in [34, Section 6.1], is to use
an auxiliary basis vector v∞, which is initialized as v

(1)∞ = Av1 at the beginning
of the rational Arnoldi algorithm, and maintained orthonormal to the basis vectors
{v1, . . . , v j } at each iteration j , at the cost of only one additional orthogonalization per

iteration. The basis [Vj v
( j)∞ ] is an orthonormal basis of the rational Krylov subspace

Q j+1(A, b)with poles {ξ1, . . . , ξ j−1,∞}, and it is associated to the auxiliary Arnoldi
decomposition

AVj K̃ j = [Vj v
( j)∞ ]H̃ j ,

where K̃ j e j = e1 and the last columnof H̃ j contains the orthogonalization coefficients

for v( j)∞ . This decomposition can be used to compute the bound (4.9) since the last row
of K̃ j is zero by construction.

Remark 4.12 We point out that if ξ j = ∞ for some j , then the approach described
above will not work from iteration j + 1 onward, since Av1 ∈ Q j+1(A, b) and

therefore v
( j+1)∞ = 0 after orthogonalization. This is easily fixed by switching to a

different auxiliary vector at iteration j+1, such as v∞ = Av j+1, or by setting directly
at the start v∞ = A�+1v1, where � is the number of poles at ∞ used to construct the
rational Krylov subspace.

In our experience, the technique described above can be sometimes subject to
instability due to a large condition number of thematrix K̃ j . We therefore also propose
another approach, which is inspired by the methods for moving the poles of a rational
Krylov subspace presented in [12, Section 4]. The idea is to add a pole at ∞ at the
beginning of the pole sequence, and reorder the poles at each iteration in order to
always have the last pole equal to ∞.

First of all, we recall how to swap poles in a rational Arnoldi decomposition. This
procedure is a special case of the algorithm described in [12], but we still describe it in
some detail for completeness. Recall that the poles of a rational Krylov subspace are
the ratios of the entries below the main diagonals of Hj and K j [12, Definition 2.3],
i.e. ξ j = h j+1, j/k j+1, j . In other words, the poles {ξ1, . . . , ξ j } are the eigenvalues
of the upper triangular pencil (Ĥ j , K̂ j ), where we denote by Ĥ j the bottom j × j
block of Hj , and similarly for K̂ j . So we can obtain a transformation that swaps two
adjacent poles in the same way as orthogonal transformations that reorder eigenvalues
in a generalized Schur form [40]. Let Uj and Wj be j × j orthogonal matrices such
that the pencil UT

j (Ĥ j , K̂ j )Wj is still in upper triangular form and has the last two
eigenvalues in reversed order; the matrices Uj and Wj only involve 2 × 2 rotations,
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and they can be computed and applied cheaply as described in [40]. Defining Û j =
blkdiag(1,Uj ) ∈ R

( j+1)×( j+1), we have the new rational Arnoldi decomposition

AṼj+1 K̃ j = Ṽ j+1 H̃ j ,

where

Ṽ j+1 = Vj+1Û j , K̃ j = Û T
j K jW j and H̃ j = Û T

j HjW j .

This decomposition has the same poles as AVj+1K j = Vj+1Hj , with the difference
that the last two poles ξ j−1 and ξ j are now swapped. In particular, if ξ j−1 = ∞, the
last pole of the new decomposition is now ∞, and hence the last row of K̃ j is equal
to zero.

Given the pole sequence {ξ1, ξ2, . . . }, let us consider the rational Krylov subspace
associated to the modified pole sequence {∞, ξ1, ξ2, . . . }. Clearly, after the first itera-
tion both pole sequences identify the same subspace Q1(A, b), but the last (and first)
pole of the modified sequence is ∞, so the last row of K1 is zero and we can use
the decomposition AV1K1 = V2H1 to compute the bound (4.9). After the second
iteration, if ξ1 �= ∞, we can swap the poles ξ1 and ∞ with the procedure outlined
above to obtain the decomposition AV2K2 = V3H2 associated to the poles {ξ1,∞},
where again the last row of K2 is equal to zero (for simplicity we still use the notation
K j instead of K̃ j , and similarly for Vj and Hj ). If ξ1 = ∞, there is no need to swap
poles and we can proceed to the next iteration.

By repeating the same steps at each iteration, we can ensure that after j iterationswe
have a decomposition AVj K j = Vj+1Hj , associated to the poles {ξ1, . . . , ξ j−1,∞}
in this order, so that the last row of K j is equal to zero and it can be used to compute
the bound (4.9).

Remark 4.13 Note that Vj is a basis of Q j (A, b), which is the same subspace that
we would have obtained if we had run the rational Arnoldi algorithm with poles
{ξ1, . . . , ξ j−1}; so the method described in this section actually computes the approxi-
mationψ j and the bound associated to the poles {ξ1, . . . , ξ j−1}, and not to themodified
pole sequence {∞, ξ1, . . . , ξ j−2}. The initial pole at ∞ is only added to enable the
computation of the bound and it is never used in the actual approximation.

5 Implementation aspects

In this section we outline the algorithm used to compute the entropy obtained by con-
necting the different components presented in the previous sections, and we briefly
comment on some of the decisions that have to be taken in an implementation, espe-
cially concerning stopping criteria. Given a symmetric positive semidefinite matrix
A with tr(A) = 1 and a target relative accuracy ε, the algorithm should output an
estimate trest of tr( f (A)), where f (x) = −x log x , such that

|tr( f (A)) − trest| ≤ ε tr( f (A)),
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using either the probing approach of Sect. 3.1 or a stochastic trace estimator from
Sect. 3.2. Observe that the entropy of an n × n density matrix is always bounded form
above by log n, but it may be in principle very small, so we prefer to aim for a certain
relative accuracy rather than an absolute accuracy. Quadratic forms and matrix–vector
products with f (A) are computed using Krylov methods, specifically using a certain
number of poles at ∞ followed by the EDS poles described in Sect. 4.2.

Remark 5.1 In the following, we are going to use ε̂ to denote an absolute error, to
distinguish it from the target relative accuracy ε. Note that we can easily transform
absolute inequalities for the error into relative inequalities if we know in advance an
estimate or a lower bound for tr( f (A)). Recall that if A is an M-matrix, T d( f (A)) is
actually a lower bound for tr( f (A)) (Proposition 3.6). In the general case, any rough
approximation of the entropy can be used for this purpose, since the important point
is determining the order of magnitude of tr( f (A)).

Remark 5.2 The error in the approximation of S(A) can be divided into the error in the
approximation of the trace using a probing method or a stochastic estimator, and the
error in the approximation of the quadratic forms with f (A) using a Krylov subspace
method. For simplicity, in the following we impose that the relative error associated
to each of these two components is smaller than ε/2.

5.1 Probingmethod implementation

We begin by observing that it is not possible to cheaply estimate the error of a prob-
ing method a posteriori, since error estimates are usually based on approximations
with different values of the distance d, which in general lead to completely different
colorings that would require computing all quadratic forms from scratch.

For this reason, it is best to find a value of d that ensures a relative accuracy ε a
priori when using a distance-d coloring. This can be done using one of the bounds in
Corollary 3.2, but it can often lead to unnecessary additional work, since the bounds
usually overestimate the error by a couple of orders ofmagnitude; see Fig. 2. Therefore
we also provide a heuristic criterion for choosing d that does not have the same
theoretical guarantee as the bounds, but appears to work quite well in practice. In view
of Corollary 3.2, we can expect the absolute error to behave as

|tr( f (A)) − T d( f (A))| ∼ C

dk
qd , (5.1)

for k = 2 and some parameters C > 0 and q ∈ (0, 1). However, we found that
sometimes the actual error behavior is better described with a different value of k,
such as k = 3, so we do not impose that k = 2. To estimate the values of the
parameters, we compute T d( f (A)) for d = 1, 2, 3 and use the estimate

|tr( f (A) − T d( f (A))| ≈ |T d+1( f (A)) − T d( f (A))|, d = 1, 2.
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Fig. 4 Absolute error of the probing method with greedy coloring (Algorithm 1) compared with the
theoretical bound (3.5) using a = λ2, the heuristic error estimate (5.1) and the simple error estimate
|tr( f (A) − T d ( f (A))| ≈ |T d+1( f (A)) − T d ( f (A))|. Left: Laplacian of the largest connected compo-
nent of the graph minnesota, with 2640 nodes. Right: Laplacian of the largest connected component of
the graph eris1176, with 1174 nodes

Assuming that (5.1) holds exactly and fixing the value of k, we can determine C and
q by solving the equations

|Td+1( f (A)) − Td( f (A))| = C

dk
qd , d = 1, 2.

We can check when the resulting estimate is below ε̂ to heuristically determine d, i.e.,
we select d as

d� = min
{
d : C

dk
qd ≤ ε̂

}
,

in order to have the approximate absolute error inequality

∣∣tr( f (A)) − Td� ( f (A))
∣∣ � ε̂

We found that the best results are obtained for k = 2 and k = 3, so in our implementa-
tion we use the maximum of the two corresponding estimates. Variants of this estimate
include using other values of d to estimate the parameters instead of d = 1, 2, 3, and
using four different values in order to also estimate the parameter k. However, they
usually give results that are similar or sometimes worse than the estimate presented
above, so they are often not worth the additional effort required to compute them. In
particular, using four values of d raises the risk of misjudging the value of q, causing
the estimate to be inaccurate for large values of d. The error estimate (5.1) is compared
to the actual error and the theoretical bound (3.5) for two different graphs in Fig. 4. The
figure also includes a simple error estimate based on consecutive differences, which
requires the computation of T d+1( f (A)) to estimate the error for T d( f (A)).

Remark 5.3 The heuristic criterion for selecting d requires the computation of
T d( f (A)) for d = 1, 2, 3, so it is more expensive to use than the theoretical
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bound (3.5). However, this cost is usually small compared to the cost of computing
T d( f (A)) for the selected value of d, especially if the requested accuracy is small.
Note also that the heuristic criterion always computes T 3( f (A)), so it does more work
than necessary when d ≤ 2 would be sufficient. Nevertheless, in such a situation the
theoretical bound (3.5) may suggest to use an even higher value of d (see Fig. 4).

After choosing d such that

|tr( f (A)) − T d( f (A))| ≤ ε̂, (5.2)

using either the a priori bound (3.5) or the estimate (5.1), a distance-d coloring can
be computed with one of the coloring algorithms described in Sect. 3.1, depending on
the properties of the graph. The greedy coloring [53, Algorithm 4.2] is usually a good
choice for general graphs.

Let us now determine the accuracy required in the computation of the quadratic
forms. Assume that we have

T d( f (A)) =
s∑

�=1

vT� f (A)v�,

where {v�}s�=1 are the probing vectors used in the distance-d coloring. Let ψ̂� denote
the approximation of vT� f (A)v� obtained with a Krylov method. Recall that ‖v�‖2 =
|V�|1/2, where V� denotes the set of the partition associated to the �-th color. If we
impose the conditions

∣∣∣vT� f (A)v� − ψ̂�

∣∣∣ ≤ ε̂ · |V�|
n

� = 1, . . . , s, (5.3)

where we normalized the accuracy requested for each quadratic form depending on
‖v�‖2, we obtain the desired absolute accuracy on the probing approximation

∣∣∣ T d( f (A)) −
s∑

�=1

ψ̂�

∣∣∣ ≤ ε̂. (5.4)

If we are aiming for a relative accuracy ε, we should select ε̂ = 1
2 ε tr( f (A)) in

(5.2) and (5.4). In practice, tr( f (A)) will be replaced by a rough approximation (see
Remark 5.1).

The overall probing algorithm is summarized in Algorithm 2.

5.2 Adaptive Hutch++ implementation

We use the Matlab code of [49, Algorithm 3] provided by the authors, modified to use
Krylov methods for the computations with f (A). This algorithm requires an absolute
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Algorithm 2 Probing method for S(A)

Input: A ∈ R
n×n density matrix, ε relative error tolerance

Output: trest ≈ S(A) such that |tr − S(A)|/S(A) � ε

1: Select d such that |T d ( f (A)) − S(A)|/S(A) � ε/2, using either the bound (3.5) or the heuristic (5.1).
The heuristic (5.1) requires the computation of T d ( f (A)) for d = 1, 2, 3, which can be done by running
steps 2 – 4.

2: Compute a distance-d coloring of G(A) with, e.g., Algorithm 1 and the associated probing vectors
{v1, . . . , vs }.

3: For � = 1, . . . , s, compute ψ̂� ≈ vT
�
f (A)v� such that (5.3) holds, using a rational Krylov method with

either the upper bound (4.9) or the estimate (4.10) as stopping criterion.

4: return trest =
s∑

�=1

ψ̂�, satisfying
∣∣∣

s∑

�=1

ψ̂� − S(A)

∣∣∣/S(A) � ε.

tolerance ε̂ and a failure probability δ, and outputs an approximation tradap( f (A))

such that

P
[|tr( f (A)) − tradap( f (A))| ≥ ε̂

] ≤ δ.

To obtain an approximation within a relative accuracy ε, we can use ε̂ ≈ ε tr( f (A)),
using a rough approximation of tr( f (A)). Similarly to the probing method, in order
to have a final relative error bounded by ε, in our implementation we use a tolerance
ε̂ ≈ 1

2ε tr( f (A)) for adaptive Hutch++, and we set the accuracy for the computation
of matrix–vector products and quadratic forms in order to ensure that the total error
due to the Krylov approximations remains below 1

2ε tr( f (A)). We omit the technical
details to simplify the presentation.

5.3 Krylovmethod implementation

Quadratic forms with f (A) are approximated using a Krylov method with some poles
at ∞ followed by the EDS poles of Sect. 4.2, using as a stopping criterion either the a
posteriori upper bound (4.9) or the estimate shown in Example 4.10.

The number of poles at ∞ is chosen in an adaptive way, switching to finite poles
when the error reduction in the last few iterations of the polynomial Krylov method
is “small”. Specifically, we decide to switch to EDS poles after the k-th iteration if on
average the last � ≥ 1 iterations did not reduce the error bound or estimate err_est
by at least a factor c ∈ (0, 1), i.e. if

err_estk

err_estk−�

≥ c�.

In our implementation we use � = 3 and c = 0.75, usually leading to at most 10
polynomial Krylov iterations.

Since EDS poles are contained in (−∞, 0), each rational Krylov iteration involves
the solution of a symmetric positive definite linear system, which can be computed
eitherwith a directmethod using a sparseCholesky factorization, or iterativelywith the
conjugate gradient method using a suitable preconditioner. Note that the same EDS
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poles can be used for all quadratic forms, so the number of different matrices that
appear in the linear systems is usually small and independent of the total number of
quadratic forms. Although this depends on the accuracy requested for the entropy, the
number of EDS poles used is almost always bounded by 10, and often much smaller
than that: see the numerical experiments in Sect. 6 for some examples. This is a great
advantage for direct methods, especially when the Cholesky factor remains sparse,
since we can compute and store a Cholesky factorization for each pole and then reuse
it for all quadratic forms. If the fill-in in the Cholesky factor is moderate, the cost of
a rational iteration can become comparable to the cost of a polynomial one, leading
to large savings when computing many quadratic forms. Of course, for large matrices
with a general sparsity structure the computation of even a single Cholesky factor may
be unfeasible, so the only option is to use a preconditioned iterative method. In such a
situation, it is still possible to benefit from the small number of different matrices that
appear in linear systems by storing and reusing preconditioners, but the gain is less
evident compared to direct methods.

The matrix–vector products with f (A) in the Hutch++ algorithm are approximated
with the sameKrylov subspace method, with the difference that we use the a posteriori
upper and lower bounds from [34, eq. (6.15)]. A geometric mean estimate similar to
the one used in Example 4.10 can be also used in this context. For the computation of
the a posteriori bounds we use the pole swapping technique with an auxiliary pole at
∞ described in Sect. 4.3.1.

6 Numerical experiments

The experiments were done in Matlab R2021b on a laptop with operating system
Ubuntu 20.04, using a single core of an Intel i5-10300H CPU running at 2.5 GHz,
with 32 GB of RAM. Since we are using Matlab, the execution times may not reflect
the performance of a high performance implementation, but they are still a useful
indicator when comparing different methods.

6.1 Test matrices

We consider a number of symmetric test matrices from the SuiteSparseMatrix Collec-
tion [21]. All matrices are treated as binarymatrices, i.e. all edgeweights are set to one.
For each matrix, we extract the graph Laplacian associated to the largest connected
component and we normalize it so that it has unit trace. We report some information
on the resulting matrices in Table 1. For the four smallest matrices, the eigenvalues
were computed via diagonalization, while for the larger matrices the eigenvalues λ2
and λn were approximated using eigs. The cost of solving a linear system with a
direct method is highly dependent on the fill-in in the Cholesky factorization; the col-
umn labelled fill-in in Table 1 contains the ratios nnz(R)/nnz(ρ), where ρ is
the test matrix and R is the Cholesky factor of any shifted matrix ρ + α I , for α > 0
(nnz(M) denotes the number of nonzeros of a matrix M). All matrices have been

123



406 M. Benzi et al.

Table 1 Information on the matrices used in the experiments

Test matrix n nnz(ρ) Fill-in λ2 λn Entropy

Yeast 2224 15442 3.6 4.54e−06 4.96e−03 7.055

Minnesota 2640 9244 1.3 1.28e−07 1.04e−03 7.607

ca-HepTh 8638 58250 7.5 4.92e−07 1.33e−03 8.540

bcsstk29 13830 618678 2.9 7.22e−08 1.25e−04 9.440

Cond-mat-2005 36458 379926 21.7 5.63e−08 8.13e−04 9.958

Loc-Brightkite 56739 482629 32.6 7.10e−08 2.67e−03 9.896

ut2010 115406 687472 1.2 2.72e−10 3.44e−04 11.361

usroads 126146 450046 1.4 2.39e−11 2.54e−05 11.478

Com-Amazon 334863 2186607 105.9 6.69e−10 2.97e−04 12.400

ny2010 350167 2059711 1.8 4.67e−12 3.63e−05 12.541

RoadNet-PA 1087562 4170590 1.6 5.54e−13 3.37e−06 13.628

ordered using the approximate minimum degree reordering option available in Matlab
before factorization.

6.2 Probing bound vs. estimate

In this experiment, we fix a relative error tolerance ε = 10−3 and we compare the
choice of d given by the theoretical bound (3.5) with the one provided by the heuristic
estimate (5.1). We report in Table 2 the error, the execution time, the value of d
and the number of colors used in the two cases. When the theoretical bound is used,
the selected value of d is significantly higher compared to the one chosen by the
heuristic estimate, but in both cases the overall error remains below the tolerance ε.
Moreover, for certain graphs using the theoretical bound leads to greedy coloringswith
a number of colors equal to the number of nodes in the graph, completely negating
the advantage of using a probing method. Observe that the errors obtained with the
larger value of d are not much smaller than the ones for the smaller value of d,
because in both cases the quadratic forms are computed with target relative accuracy
ε, so the probing error for the larger value of d is dominated by the error in the
quadratic forms. In the case of the heuristic estimate, the execution time includes the
time required to run the probing method for d = 1, 2, 3 in order to evaluate (5.1).
The stopping criterion for the Krylov subspace method uses the upper bound (4.9).
The execution time can be further reduced by using the estimate (4.10) for the Krylov
subspacemethod, as the following experiment shows. The diagonalization time for the
matrices used in this experiment can be found in the last column of Table 4. Note that
for smaller matrices, diagonalization is often the fastest method, but the advantage of
approximating the entropywith a probingmethod is already evident formatrices of size
n ≈ 10000.
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Table 2 Comparison of the theoretical bound (3.5) against the heuristic estimate (5.1) for choosing d, using
relative tolerance ε = 10−3 in the probing method. Top row: heuristic estimate. Bottom row: theoretical
bound

Test matrix n Error d Colors Time (s)

Yeast 2224 3.062e−04 3 222 0.952

3.733e−05 25 2224 4.464

Minnesota 2640 4.456e−04 5 24 0.196

3.173e−05 18 255 0.779

ca-HepTh 8638 2.974e−04 3 252 2.273

3.161e−05 27 8638 42.078

bcsstk29 13830 4.912e−05 3 176 2.292

8.497e−05 12 2095 17.849

Table 3 Comparison of the upper bound (4.9) against the geometric mean estimate (4.10) for Krylov
methods used in the probing method, using relative tolerance ε = 10−5 for the probing method. Top row:
geometric mean estimate. Bottom row: upper bound

Test matrix n Error Poly iter Rat iter Time (s)

Yeast 2224 4.405e−06 16140 748 7.095

6.023e−06 16419 2237 8.231

Minnesota 2640 5.728e−07 2983 289 1.535

2.490e−06 2987 598 1.734

ca-HepTh 8638 8.195e−07 39481 2442 40.240

2.395e−06 39747 6389 50.133

bcsstk29 13830 6.133e−06 4704 0 12.093

7.545e−06 6363 44 16.047

6.3 Krylov bound vs. estimate

We fix an error tolerance ε = 10−5 and compare the performance of the geometric
mean error estimate (4.10) with the theoretical upper bound (4.9) for the Krylov
subspace method. The value of d for the probing method is selected using the heuristic
estimate (5.1). The entropy error, execution time, and total number of polynomial and
rational Krylov iterations are reported in Table 3. We can see that using the estimate
instead of the theoretical bound moderately reduces the computational effort, while
still attaining the requested accuracy ε on the entropy. In particular, observe that the
number of rational Krylov iterations is significantly higher when using the upper
bound (4.9). In this experiment, all linear systems are solved with direct methods and
Cholesky factorizations are stored and reused.
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Table 4 Results for Hutch++ applied to some test matrices. For each matrix, the first and second row show
the results for ε = 10−2 and ε = 10−3, respectively. The failure probability is δ = 10−2 in both cases.
The last column contains the diagonalization times

Test matrix Avg error Worst error Nr Nr + NH Time (s) eig (s)

Yeast 2.55e−03 9.94e−03 3 282 0.421 0.508

3.56e−04 1.16e−03 1228 2160 19.735

Minnesota 3.46e−03 1.07e−02 3 154 0.111 0.819

4.53e−04 1.26e−03 1854 2684 35.721

ca-HepTh 2.83e−03 9.92e−03 3 81 0.205 22.170

3.55e−04 9.14e−04 635 3968 66.350

bcsstk29 1.84e−03 6.97e−03 3 38 0.171 86.696

2.39e−04 8.24e−04 3 1883 13.276

6.4 Adaptive Hutch++

Here we test the performance and the accuracy of the adaptive implementation of
Hutch++ [49, Algorithm 3]. A relative accuracy ε is achieved by setting the absolute
tolerance to εS(ρ), where S(ρ) is computed via diagonalization and considered as
exact. The computational effort of Hutch++ is determined by the parameters Nr and
NH described in Sect. 3.2. In particular, the number of matrix–vector products is equal
to Nr and the number of quadratic forms is equal to Nr +NH .We used ε = 10−2, 10−3

as target tolerances and δ = 10−2 as failure probability. Matrix–vector products and
quadratic forms are computed using the Krylov subspace method with the geometric
mean estimate as a stopping criterion (4.10). In Table 4 we compare the results for the
two tolerances, obtained as an average of 100 runs of the algorithm, including both
the average and worst relative error. In the majority of cases, the worst error is below
the input tolerance ε. We see that for ε = 10−2 the computation with Hutch++ is very
fast for all test matrices; on the other hand, the cost becomes significantly higher for
ε = 10−3, showing that the stochastic estimator quickly becomes inefficient as the
required accuracy increases. Observe that for ε = 10−2 adaptive Hutch++ uses only
3 matvecs for all tests problems, which is the minimum amount that can be used by
the implementation in [49]. This means that the internal criteria of the algorithm have
determined that spendingmorematvecs in the low rank approximation is not beneficial,
and hence the convergence of the method is roughly the same as for Hutchinson’s
estimator. A similar behavior can be observed in Table 7, and can be linked to the fact
that for these test matrices ρ, the matrix function−ρ log ρ does not exhibit eigenvalue
decay and hence cannot bewell-approximated by low rankmatrices.On the other hand,
for problems where low rank approximation is more effective, stochastic estimators
that exploit it such as Hutch++ can have much faster convergence.
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Table 5 Results for the probing method applied to test matrices with large-world sparsity structure, using
relative tolerance ε = 10−4

Test matrix n d Colors Poly iter Rat iter Time (s)

ut2010 115406 4 504 7070 919 79.60

usroads 126146 8 77 626 0 6.30

ny2010 350167 5 329 3914 15 111.39

RoadNet-PA 1087562 8 106 827 0 84.46

6.5 Larger matrices

In this section we test the probing method and the adaptive Hutch++ algorithm on
larger matrices, for which it would be extremely expensive to compute the exact
entropy. In light of the results shown in Tables 2 and 3, we select the value of d for
the probing method using the heuristic estimate (5.1) and we use the geometric mean
estimate (4.10) for the Krylov subspace method. The results are reported in Tables 5
and 6 for the probing method, and in Table 7 for Hutch++. Figure5 contains a more
detailed breakdown of the execution time for the probing method used on the matrices
of Table 5.We separate the time in preprocessing, where we evaluate the heuristic (5.1)
to select d, and the main run of the algorithm with the chosen value of d. The time
for the main run is further divided in coloring, and polynomial and rational Krylov
iterations. The time for the Cholesky factorizations refers to the whole process, since
the factors are computed and stored when a certain pole for a rational Krylov iteration
is encountered for the first time.

In Table 5, we consider matrices with a “large-world” sparsity structure, such as
road networks, and we use a relative tolerance of ε = 10−4. For these matrices, for
which the diameter and the average path length are relatively large, it is possible to
compute distance-d colorings with a relatively small number of colors, and there-
fore probing methods converge quickly. Moreover, Cholesky factorizations can be
computed cheaply and have a small fill-in, so it is possible to rapidly solve linear
systems using a direct method. On the other hand, in Table 6 we consider matrices
with a “small-world” sparsity structure, more typical of social networks and scientific
collaboration networks. These matrices require a much larger number of colors to
construct distance-d colorings, even for small values of d. The cost of probing meth-
ods is thus significantly higher on this kind of problem. In Table 6, only polynomial
Krylov iterations are used due to the low relative tolerance ε = 10−2, so it is never
necessary to solve linear systems. Recall that these matrices also have a high fill-in
in the Cholesky factorizations (see Table 1), so the conjugate gradient method with
a suitable preconditioner is likely to be much more efficient than a direct method for
solving a linear system.

In Table 7 we show the results for the adaptive Hutch++ algorithm, using relative
tolerance ε = 10−2. The results are obtained as an average of 100 runs of the algorithm.
We can observe that the stochastic trace estimator works well for both large-world and
small-world graphs, in contrast to the probing method.
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Table 6 Results for the probing method applied to test matrices with small-world sparsity structure, using
relative tolerance ε = 10−2

Test matrix n d Colors Poly iter Time (s)

cond-mat-2005 36458 3 1221 3883 13.809

loc-Brightkite 56739 3 3946 18765 90.564

Com-Amazon 334863 3 625 1285 47.458

Table 7 Results for Hutch++ applied to large test matrices, with relative tolerance ε = 10−2 and failure
probability δ = 10−2. The parameters Nr and NH are defined in Sect. 3.2

Test matrix n Nr Nr + NH Time (s)

ny2010 350167 3 10 0.490

usroads 126146 3 14 0.190

ny2010 350167 3 10 0.487

roadNet-PA 1087562 3 8 1.126

cond-mat-2005 36458 3 34 0.448

loc-Brightkite 56739 3 42 4.576

Com-Amazon 334863 3 11 1.171

Fig. 5 Breakdown of the execution time of the probing method for the test matrices in Table 5

6.6 Algorithm scaling

To investigate how the complexity of the algorithms scales with the matrix size, we
compare the scaling of the probing method and the stochastic trace estimator on two
different test problems with increasing dimension. The first one is the graph Laplacian
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Fig. 6 Execution times for the probing method (left, ε = 10−4) and the adaptive Hutch++ algorithm (right,
ε = 10−2) on the graph Laplacian of a 2D regular grid and a Barabasi-Albert random graph, as a function
of the number of nodes n

of a 2D regular square grid, and the second one is the graph Laplacian of a Barabasi-
Albert random graph, generated using the pref function of the CONTEST Matlab
package [55]. For the probing method on the 2D grid, we use the optimal distance-d
coloring with

⌈ 1
2 (d + 1)2

⌉
colors described in [26]. For both test problems, we use a

relative tolerance ε = 10−4 for the probing method, and a relative tolerance ε = 10−2

and failure probability δ = 10−2 for adaptive Hutch++, averaging over 100 runs. The
results are summarized in Fig. 6, for graphs with a number of nodes from n = 210 to
n = 220. As expected, the probing method is much more efficient in the case of the
2D grid, since the number of colors used in the distance-d colorings remains constant
as n increases. On the other hand, for the Barabasi-Albert random graph, which has
a small-world structure, the number of colors used in a distance-d coloring increases
with the number of nodes, and hence the scaling for the probingmethod is significantly
worse. The adaptive Hutch++ algorithm also has a better performance for the 2D grid,
but the scaling in the problem size is good for both graph categories, since the number
of vectors used in the trace approximation does not increasewith thematrix dimension.
However, the stochastic approach is only viable with a loose tolerance ε for this kind
of problem since low rank approximation is not effective, as discussed in Sect. 6.4.
The initial decrease in the execution time for Hutch++ as n increases is caused by the
fact that the adaptive algorithm uses a larger number of vectors for the graphs with
fewer nodes.

7 Conclusions

In this paperwe have investigated two approaches for approximating the vonNeumann
entropy of a large, sparse, symmetric positive semidefinite matrix. The first method
is a state-of-the-art randomized approach, while the second one is based on the idea
of probing. Both methods require the computation of many quadratic forms involving
the matrix function f (A) with f (x) = −x log x , an expensive task given the lack
of smoothness of f (x) at x = 0. We have examined the use of both polynomial and
rational Krylov subspace methods, and combinations of the two. Pole selection and
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several implementation aspects, such as heuristics and stopping criteria, have been
investigated. Numerical experiments in which the entropy is computed for a variety of
networks have been used to test the various approximation methods. Not surprisingly,
the performance of the methods is affected by the structure of the underlying network,
especially for the method based on the probing idea. Our main conclusion is that the
probing approach is better suited than the randomized one for graphs with a large-
world structure, since they admit distance-d colorings with a relatively small number
of colors. Conversely, for complex networks with a small-world structure, the number
of colors required for distance-d colorings is larger, so the probing approach becomes
more expensive. For this type of graphs, the randomized method is more competitive
than the one based on probing, since it is less affected by the structure of the graph;
however, for matrices in which low rank approximation cannot be exploited such as
the graph Laplacians that we consider, randomized trace estimators are best suited
for computing approximations with a relatively low accuracy, since their cost quickly
grows as the requested accuracy is increased.
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