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1. Introduction

In this paper we consider a class of non-local, non-convex functionals related to the 
total variation. In order to introduce these functionals, let N ≥ 1 be a positive integer, 
let Ω ⊂ RN be an open set and let γ ∈ R and λ ∈ (0, +∞) be two real parameters.

Let νγ be the measure on RN ×RN defined by

νγ(A) :=
¨

A

|y − x|γ−N dx dy,

for every measurable subset A ⊆ RN ×RN .
For every measurable function u : Ω → R let us set

Eγ,λ(u,Ω) :=
{
(x, y) ∈ Ω × Ω : |u(y) − u(x)| > λ|y − x|1+γ

}
.

Now we can set

Fγ,λ(u,Ω) := λνγ(Eγ,λ(u,Ω)). (1.1)

In the case Ω = RN we simply write Eλ,γ(u) and Fγ,λ(u) instead of Eλ,γ(u, RN ) and 
Fγ,λ(u, RN ).

The functionals (1.1) were introduced in [11,12] and generalize some other families 
of functionals previously considered in the literature. In particular, in the case γ = −1, 
the family {F−1,λ} was first studied in [20,21] (see also the more recent developments in 
[3–5,8]). The main results in this case are that

lim
λ→0+

F−1,λ(u) = CN

ˆ

RN

|∇u(x)| dx = CN‖Du‖M ∀u ∈ C1
c (RN ),

where

CN :=
ˆ

SN−1

|x1| dHN−1(x), (1.2)

and that, quite surprisingly,

Γ − lim
λ→0+

F−1,λ(u) = CN log 2 · ‖Du‖M ∀u ∈ L1(RN ),

where ‖Du‖M denotes the total variation of u, which is intended to be equal to +∞ if 
u ∈ L1(RN ) \BV (RN ).

On the other hand, in the case γ = N we recover the quantities considered in [9,10,22], 
since in this case νN is equal to the Lebesgue measure L N and
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[
|u(y) − u(x)|
|y − x|1+N

]
L1,∞(Ω)

= sup
λ>0

FN,λ(u,Ω),

where [·]L1,∞(Ω) denotes the weak L1 quasi-norm.
In this paper, motivated by [7, Section 9], we limit ourselves to the case γ > 0. In 

this case, it is known (see [12, Theorem 1.4]) that there exist two constants c1(N, γ) and 
c2(N, γ) such that

c1(N, γ)‖Du‖M ≤ sup
λ>0

Fγ,λ(u) ≤ c2(N, γ)‖Du‖M, (1.3)

for every u ∈ L1
loc(RN ). In particular, it follows that

sup
λ>0

Fγ,λ(u) < +∞

if and only if u belongs to the space ˙BV (RN ) of the functions in L1
loc(RN ) with globally 

bounded variation.
Moreover, for every γ > 0 it holds that (see [12, Theorem 1.1])

lim
λ→+∞

Fγ,λ(u) = CN

γ

ˆ

RN

|∇u(x)| dx, (1.4)

for every u in the space Ẇ 1,1(RN ) of functions in L1
loc(RN ) with ∇u ∈ L1(RN ), where 

CN is the constant defined in (1.2).
The extension of (1.4) to the case in which u ∈ ˙BV (RN ) is not straightforward. 

Indeed, it was proved in [12, Lemma 3.6] that if u is the characteristic function of a 
bounded convex domain with smooth boundary, then for every γ > 0 it holds that

lim
λ→+∞

Fγ,λ(u) = CN

γ + 1‖Du‖M <
CN

γ
‖Du‖M. (1.5)

This result suggests that the singular part of the derivative contributes to the limit 
of Fγ,λ(u) in a different way with respect to the absolutely continuous part, but anyway 
it seems that it does add a positive contribution in the limit.

This led to the following questions, which were raised in [7, Section 9] and in [12, 
Section 7.2].

Question A. Let γ > 0, and let u : RN → R be a measurable function such that

lim inf
λ→+∞

Fγ,λ(u) = 0.

Can we conclude that u is constant (almost everywhere)?



4 N. Picenni / Journal of Functional Analysis 287 (2024) 110419
Question B. Let γ > 0. Is there a positive constant c(N, γ) > 0 such that

lim inf
λ→+∞

Fγ,λ(u) ≥ c(N, γ)‖Du‖M,

for every measurable function u : RN → R, with the usual understanding that ‖Du‖M =
+∞ if u /∈ ˙BV (RN )?

The main contribution of the present paper is a positive answer to these questions in 
the case u ∈ ˙BV (RN ).

Before stating the result, we recall that for a function u ∈ ˙BV (RN ) we can decompose 
its distributional derivative Du as the sum of three finite RN -valued measures, which 
are supported on disjoint sets: the absolutely continuous part Dau, the jump part Dju, 
and the Cantor part Dcu (see [2, Section 3.9]).

Our first main result is the following.

Theorem 1.1. For every γ > 0 and every u ∈ ˙BV (RN ) it turns out that

lim inf
λ→+∞

Fγ,λ(u) ≥ CN

γ
‖Dau‖M + CN

1 + γ
‖Dju‖M + CN (2γ − 1)

γ(1 + γ)22+γ
‖Dcu‖M. (1.6)

Our second main result shows that the constants appearing in front of the absolutely 
continuous part and the jump part are optimal, and unifies (1.4) and (1.5) in the case 
in which u ∈ ˙SBV (RN ), namely u ∈ ˙BV (RN ) and Dcu = 0.

Theorem 1.2. For every γ > 0 and every u ∈ ˙SBV (RN ) it turns out that

lim
λ→+∞

Fγ,λ(u) = CN

γ
‖Dau‖M + CN

1 + γ
‖Dju‖M.

Remark 1.3. For the sake of simplicity, in this paper we consider only the case in which 
Ω = RN . However, it should not be difficult to extend the main results to the case of 
bounded regular domains. In particular, in the case of convex domains, this should be 
almost straightforward, since all their one-dimensional sections are just open intervals.

Overview of the technique Let us summarize the main ideas in the proofs of our results, 
which are different from those used in [12,22], since we do not exploit the BBM formula 
[6,15].

For both theorems, we first establish the result in the one-dimensional case, and then 
we extend it to the case of higher space dimensions by a sectioning argument. This is a 
standard but quite effective tool in this kind of problems (see [4,17]).

The proof of the one-dimensional version of Theorem 1.1 relies on some measure-
theoretic arguments that allow us to find sufficiently many disjoint rectangles inside 
Eγ,λ on which we can control the difference quotient of u.
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As for Theorem 1.2, in view of Theorem 1.1, it is enough to prove an estimate from 
above for the limsup of Fγ,λ(u). To this end we exploit an argument from [12, Section 3.4]
which basically shows that it is enough to prove such an estimate for a class of functions 
u that is dense in ˙SBV (RN ) with respect to the strong BV topology. In dimension one 
such a class is provided by functions with finitely many jump points that are smooth and 
Lipschitz continuous in every interval that does not contain such points. For functions 
in this class, the limit can be easily computed.

The case p > 1 The functionals considered in the paper [12] actually depend also on a 
parameter p ≥ 1, and can be written as

Fp,γ,λ(u,Ω) := λpνγ(Eγ/p,λ(u,Ω)).

The same is true for the various special cases previously considered in [20,21,4,9,10,22].
This higher generality allows to obtain characterizations of the Sobolev spaces 

W 1,p(RN ) or Ẇ 1,p(RN ), and also for more general types of spaces (see [13,14,23,24]), 
together with estimates on their semi-norms.

In this paper we only consider the case p = 1, which is the most challenging, because 
the gap between Ẇ 1,1(RN ) and ˙BV (RN ) creates additional difficulties, and we refer to 
[12] and to the references therein for the numerous interesting results in the case p > 1.

Recent developments After this work was completed, Lahti in [19] proved with different 
techniques a sharper version of the estimate (1.6), namely

lim inf
λ→+∞

Fγ,λ(u) ≥ CN

γ
‖Dau‖M + CN

1 + γ
‖Dju‖M + CN

1 + γ
‖Dcu‖M, (1.7)

for every u ∈ ˙BV (RN ) and γ > 0.
He also found a Cantor-type function u ∈ BV (0, 1) for which Du = Dcu and

lim inf
λ→+∞

Fγ,λ(u, (0, 1)) = C1

1 + γ
‖Dcu‖M,

thus establishing the optimality of the constant in front of the Cantor part in (1.7).
On the other hand, obtaining good estimates from above for functions with non-

vanishing Cantor part (in order to extend Theorem 1.2) is quite complicated, since there 
is not a nice class of functions which is strongly dense in ˙BV (R). Indeed, it is not possible 
to approximate functions with non-vanishing Cantor part in the strong BV topology with 
functions without a Cantor part. It is also conceivable that for some functions the liminf 
might differ from the limsup or that different functions might produce different constants 
in the limit, since these phenomena occur in some similar contexts (see the pathologies 
in [8]).

We also mention another very recent development obtained in [18], where it is proved 
that
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Γ − lim inf
λ→+∞

Fγ,λ(u) ≥ CN · log 2
2γ+1 − 1 · ‖u‖M,

for every u ∈ L1
loc(RN ) and γ > 0, thus providing a positive answer to Question A and 

Question B also for u ∈ L1
loc(RN ) \ ˙BV (RN ), in which case the right-hand side is infinite.

Structure of the paper The paper is organized as follows. In Section 2, after recalling 
some basic properties of functions of bounded variation in one dimension, we prove the 
main results in the one-dimensional case. Then, in Section 3 we show how the problem 
can be reduced to the one-dimensional setting by a sectioning argument, and we complete 
the proofs in the higher dimensional case.

2. The one-dimensional case

In this section we prove our main results in the one-dimensional case N = 1. We 
observe that in this case in (1.2) we have C1 = 2 and that we can rewrite the functional 
in the following more convenient way

Fγ,λ(u,Ω) = C1λνγ(E′
γ,λ(u,Ω)), (2.8)

where

E′
γ,λ(u,Ω) :=

{
(x, y) ∈ Ω × Ω : x < y and |u(y) − u(x)| > λ|y − x|1+γ

}
.

We also recall that functions of bounded variation in one dimension have some special 
properties, that we list in the following lemma.

Lemma 2.1. Let u ∈ ˙BV (R). Then we can choose a representative, that we still denote 
with u, satisfying the following properties.

• u is differentiable in the classical sense at almost every x ∈ R and Dau = u′ · L 1, 
where L 1 is the one-dimensional Lebesgue measure.

• u admits a left limit u(x−) and a right limit u(x+) at every x ∈ R, and they coincide 
for every x outside a set Ju that is at most countable. With these notations, it holds 
that

Dju =
∑
x∈Ju

(u(x+) − u(x−))δx.

• The Cantor part of the derivative is supported on the set C = C+ ∪ C−, where

C± :=
{
x ∈ R \ Ju : lim u(x + h) − u(x) = ±∞ and lim

+

|Dcu([x, x + h])|
c

= 1
}
.

h→0 h h→0 |D u|([x, x + h])
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Proof. The first two properties are classical (see, for example, [2, Theorem 3.28]).
As for the third property, we first observe that, on the real line, Besicovitch differentia-

tion theorem [2, Theorem 2.22] holds also with one-sided closed intervals instead of closed 
balls. Indeed, the proof is based on a covering argument that in the one-dimensional case 
works also with one-sided intervals. As a consequence, if μ ⊥ ν are two Radon measures 
supported on disjoint sets, it turns out that

lim
h→0+

ν([x, x + h])
μ([x, x + h]) = lim

h→0+

ν([x, x + h))
μ([x, x + h)) = lim

h→0−

ν([x + h, x])
μ([x + h, x]) = lim

h→0−

ν((x + h, x])
μ((x + h, x]) = 0

for μ-almost every x ∈ R.
Now let Dc

+u and Dc
−u denote respectively the positive and negative part in the Hahn 

decomposition of Dcu. If we take the right continuous representative for u, then for every 
x ∈ R \ Ju and h > 0 it holds that

u(x + h) − u(x)
h

= Du([x, x + h])
L 1([x, x + h])

=
Dc

+u([x, x + h])
L 1([x, x + h])

[
1 +

(Dau + Dju−Dc
−u)([x, x + h])

Dc
+u([x, x + h])

]
,

and

|Dcu([x, x + h])|
|Dcu|([x, x + h]) =

|(Dc
+u−Dc

−u)([x, x + h])|
(Dc

+u + Dc
−u)([x, x + h])

=
|1 −Dc

−u([x, x + h])/Dc
+u([x, x + h])|

1 + Dc
−u([x, x + h])/Dc

+u([x, x + h]) ,

while for h < 0 it holds that

u(x + h) − u(x)
h

= Du((x + h, x])
L 1((x + h, x])

=
Dc

+u((x + h, x])
L 1((x + h, x])

[
1 +

(Dau + Dju−Dc
−u)((x + h, x])

Dc
+u((x + h, x])

]
.

Therefore, Besicovitch differentiation Theorem implies that Dc
+u is supported on C+. 

With a similar argument we obtain also that Dc
−u is supported on C−. �

In the proof of Theorem 1.2 we also need a density result for piecewise smooth func-
tions in ˙SBV (R). The precise class of functions that we consider is the following.

Definition 2.2. We denote with X(R) the set of functions u ∈ ˙SBV (R) such that Ju is 
finite, Du is compactly supported and u ∈ C∞((a, b)) ∩Lip((a, b)) for every open interval 
(a, b) such that (a, b) ∩ Ju = ∅.
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The strong density of X(R) into ˙SBV (R) is provided by the following lemma, which 
is elementary in the one-dimensional case (a similar statement in the higher dimensional 
case is proved in [16]).

Lemma 2.3. Let u ∈ ˙SBV (R). Then there exists a sequence of functions {un} ⊆ X(R)
such that ‖Dun −Du‖M → 0 as n → +∞.

Proof. By [2, Corollary 3.33] we can write u = ua + uj , where ua ∈ Ẇ 1,1(R) and uj

is a pure jump function, namely Duj =
∑

i∈I αiδxi
, where I is at most countable, δxi

denotes a Dirac delta in the point xi, and {αi} is a summable sequence (or a finite set) 
of real numbers. Therefore, we have that Du = (ua)′L 1 + Duj .

We can approximate separately the function (ua)′ ∈ L1(R) with a sequence {vn} ⊆
C∞

c (R) and the measure Duj with measures μn =
∑

i∈In
αiδxi

that are finite sums of 
Dirac masses, so that ‖vnL 1 + μn − (ua)′L 1 −Duj‖M → 0.

Now it is enough to choose a sequence of functions {un} such that Dun = vnL 1 +
μn. �
2.1. Proof of Theorem 1.1 when N = 1

Let J = Ju and C = C+ ∪ C− be as in Lemma 2.1 and let us set

A := {x ∈ R : u is differentiable at x and u′(x) �= 0}.

Approximation of the jump part Let us fix a small positive real number ε > 0, and let 
Jε = {s1, . . . , skε

} be a finite subset of J such that

|Du|(J \ Jε) ≤ ε. (2.9)

For every i ∈ {1, . . . , kε} let us fix a positive radius ri > 0 in such a way that the 
following properties hold.

• [si1 − ri1 , si1 + ri1 ] ∩ [si2 − ri2 , si2 + ri2 ] = ∅ for every 1 ≤ i1 < i2 ≤ kε.
• For every i ∈ {1, . . . , kε} it holds that

|u(y) − u(x)| > (1 − ε)|Du|({si}) ∀(x, y) ∈ (si − ri, si) × (si, si + ri).

• If we set

U j
ε :=

kε⋃
i=1

[si − ri, si + ri],

then it holds that

|Dau|(U j
ε ) + |Dcu|(U j

ε ) ≤ ε.
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Now we observe that for every i ∈ {1, . . . , kε} we have that

|u(y) − u(x)| > (1 − ε)|Du|({si}) > λ|y − x|1+γ

for every (x, y) ∈ (si − ri, si) × (si, si + ri) such that

|y − x| <
(

(1 − ε)|Du|({si})
λ

) 1
1+γ

=: δλ,ε(si).

As a consequence, as soon as λ > λj
ε := max{(1 −ε)|Du|({si})/r1+γ

i : i ∈ {1, . . . , kε}}, 
so that δλ,ε(si) < ri for every i ∈ {1, . . . , kε}, we have that

Jλ,ε :=
kε⋃
i=1

{(x, y) ∈ (si − δλ,ε(si), si) × (si, si + ri) : y < x + δλ,ε(si)}

⊆ E′
γ,λ(u) ∩ (U j

ε × U j
ε ). (2.10)

Approximation of the Cantor part Let us set Cε := C \ U j
ε . We observe that

|Dcu|(Cε) ≥ |Dcu|(C) − |Dcu|(U j
ε ) ≥ ‖Dcu‖M − ε. (2.11)

Since U j
ε is a closed set, we can find a neighborhood U c

ε of Cε such that U j
ε ∩ U c

ε = ∅
and

L 1(U c
ε ) ≤ ε, and |Dau|(U c

ε ) ≤ ε. (2.12)

For every λ ≥ 0 and every z ∈ Cε ∩ C+ let us set

rλ,ε(z) := sup
{
r > 0 : u(z + h) − u(z)

h1+γ
≥ 21+γλ and u(z − h) ≤ u(z) ∀h ∈ (0, r),

|Dcu([z, z + r])| ≥ (1 − ε)|Dcu|([z, z + r]), [z − r, z + r] ⊆ U c
ε

}
,

and similarly for z ∈ Cε ∩ C− let us set

rλ,ε(z) := sup
{
r > 0 : u(z + h) − u(z)

h1+γ
≤ −21+γλ and u(z − h) ≥ u(z) ∀h ∈ (0, r),

|Dcu([z, z + r])| ≥ (1 − ε)|Dcu|([z, z + r]), [z − r, z + r] ⊆ U c
ε

}
.

We claim that the number rλ,ε(z) that we have defined satisfies the following proper-
ties.

• rλ,ε(z) ∈ (0, ε/2] for every x ∈ Cε and every λ ≥ 0.
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• The function λ �→ rλ,ε(z) is nonincreasing on [0, +∞) for every z ∈ Cε and

lim
λ→+∞

rλ,ε(z) = 0 ∀z ∈ Cε.

• If rλ,ε(z) < r0,ε(z) for some z ∈ Cε and some λ > 0, then it holds that

21+γλrλ,ε(z)1+γ ≥ |Du([z, z + rλ,ε(z)])|. (2.13)

Indeed, we have that rλ,ε(z) > 0 because all the properties in the definition are verified 
when r > 0 is sufficiently small, thanks to the definition of C± and the fact that U c

ε is a 
neighborhood of Cε, while rλ,ε(z) ≤ ε/2 thanks to (2.12).

The monotonicity of rλ,ε(z) with respect to λ and the limit as λ → +∞ are immediate 
consequences of the first condition in the definition of rλ,ε(z), which is also the only one 
involving λ.

The third property follows from the supremum property of rλ,ε(z), and the fact that 
|Du([z, z+rλ,ε(z)])| = |u((z+rλ,ε(z))+) −u(z)|. In fact all the properties in the definition 
of rλ,ε(z) but the first one hold up to r0,ε(z), because they are independent of λ, so 
if rλ,ε(z) < r0,ε(z) then it means that the first property fails for a sequence of radii 
rn ↘ rλ,ε(z), and this implies (2.13).

Now let us set Cλ,ε := {z ∈ Cε : rλ,ε(z) < r0,ε(z)}, so that (2.13) holds for every 
z ∈ Cλ,ε.

From the second property of rλ,ε(z) we deduce that Cλ1,ε ⊆ Cλ2,ε for every 0 < λ1 <

λ2 and that

⋃
λ>0

Cλ,ε = Cε.

By [1, Lemma 2.1], for every λ > 0 we can find a finite set {z1, . . . , zmλ,ε
} ⊆ Cλ,ε such 

that

[zi1 , zi1 + rλ,ε(zi1)] ∩ [zi2 , zi2 + rλ,ε(zi2)] = ∅ ∀1 ≤ i1 < i2 ≤ mλ,ε,

and

|Dcu|
(mλ,ε⋃

i=1
[zi, zi + rλ,ε(zi)]

)
≥ 1

2 + ε
|Dcu|

( ⋃
z∈Cλ,ε

[z, z + rλ,ε(z)]
)

≥ 1
2 + ε

|Dcu|(Cλ,ε).

(2.14)
Now we observe that if z ∈ Cλ,ε, then for every (x, y) ∈ (z−rλ,ε(z), z) ×(z, z+rλ,ε(z))

we have that

|u(y) − u(x)| ≥ |u(y) − u(z)| ≥ 21+γλ(y − z)1+γ = λ(y − x)1+γ ·
(

2(y − z)
)1+γ

.

y − x
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Therefore, for (x, y) ∈ (z − rλ,ε(z), z) × (z, z + rλ,ε(z)), it holds that

y > 2z − x =⇒ 2(y − z)
y − x

> 1 =⇒ (x, y) ∈ E′
γ,λ(u).

This means that

Cλ,ε :=
mλ,ε⋃
i=1

{(x, y) ∈ (zi − rλ,ε(zi), zi) × (zi, zi + rλ,ε(zi)) : y > 2zi − x}

⊆ E′
γ,λ(u) ∩ (U c

ε × U c
ε ), (2.15)

for every λ > 0.

Approximation of the absolutely continuous part Let us set Aε := A \ (U j
ε ∪ U c

ε ). We 
observe that

|Dau|(Aε) ≥ ‖Dau‖M − |Dau|(U j
ε ) − |Dau|(U c

ε ) ≥ ‖Dau‖M − 2ε. (2.16)

For every λ > 0 let us set

Aλ,ε :=
{
x ∈ Aε : |u(y) − u(x)|

y − x
> (1 − ε)|u′(x)| ∀y ∈

(
x, x +

(
(1 − ε)|u′(x)|

λ

) 1
γ

)}
.

We observe that Aλ1,ε ⊆ Aλ2,ε for every 0 < λ1 < λ2 and that
⋃
λ>0

Aλ,ε = Aε.

Moreover, if x ∈ Aλ,ε, then we have that

|u(y) − u(x)| > (1 − ε)(y − x)|u′(x)| > λ(y − x)1+γ ,

for every

y ∈
(
x, x +

(
(1 − ε)|u′(x)|

λ

) 1
γ

)
.

As a consequence, it turns out that

Aλ,ε :=
{

(x, y) ∈ Aλ,ε ×R : y ∈
(
x, x +

(
(1 − ε)|u′(x)|

λ

) 1
γ

)}
⊆ E′

γ,λ(u)\(U j
ε∪U c

ε )×R,

(2.17)
for every λ > 0.
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Computation of the functional in the three parts From (2.8), (2.10), (2.15) and (2.17)
we deduce that

Fγ,λ(u) ≥ C1λ
(
νγ(Jλ,ε) + νγ(Cλ,ε) + νγ(Aλ,ε)

)
, (2.18)

for every λ > λj
ε.

The three addenda in the right-hand side can be computed as follows.

νγ(Jλ,ε) =
kε∑
i=1

siˆ

si−δλ,ε(si)

dx

x+δλ,ε(si)ˆ

si

(y − x)γ−1 dy

=
kε∑
i=1

δλ,ε(si)1+γ

1 + γ

=
kε∑
i=1

(1 − ε)|Du|({si})
λ(1 + γ)

= 1 − ε

(1 + γ)λ |Du|(Jε).

Recalling (2.9), we obtain that

νγ(Jλ,ε) ≥
1 − ε

(1 + γ)λ (‖Dju‖M − ε). (2.19)

Now we compute the contribution of the Cantor part.

νγ(Cλ,ε) =
mλ,ε∑
i=1

ziˆ

zi−rλ,ε(zi)

dx

2zi−xˆ

zi

(y − x)γ−1 dy

=
mλ,ε∑
i=1

ziˆ

zi−rλ,ε(zi)

2γ − 1
γ

(zi − x)γ dx

=
mλ,ε∑
i=1

2γ − 1
γ(1 + γ)rλ,ε(zi)

1+γ .

Recalling (2.13), (2.9) and (2.12) we obtain that

νγ(Cλ,ε) ≥
mλ,ε∑
i=1

2γ − 1
γ(1 + γ)21+γ

|Du([zi, zi + rλ,ε(zi)])|
λ

≥
mλ,ε∑ 2γ − 1

γ(1 + γ)21+γ

i=1
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× |Dcu([zi, zi + rλ,ε(zi)])| − |(Dju + Dau)([zi, zi + rλ,ε(zi)])|
λ

≥
[mλ,ε∑

i=1

2γ − 1
γ(1 + γ)21+γλ

|Dcu([zi, zi + rλ,ε(zi)])|
]
− |Dju|(R \ Jε) − |Dau|(U c

ε )
λ

≥
[mλ,ε∑

i=1

2γ − 1
γ(1 + γ)21+γλ

|Dcu([zi, zi + rλ,ε(zi)])|
]
− 2ε

λ
.

From the definition of rλ,ε(z) we deduce that

|Dcu([zi, zi + rλ,ε(zi)])| ≥ (1 − ε)|Dcu|([zi, zi + rλ,ε(zi)]),

for every i ∈ {1, . . . , mλ,ε}.
As a consequence, from (2.14) we deduce that

νγ(Cλ,ε) ≥
(2γ − 1)(1 − ε)
γ(1 + γ)21+γλ

|Dcu|
(mλ,ε⋃

i=1
[zi, zi + rλ,ε(zi)]

)
− 2ε

λ

≥ (2γ − 1)(1 − ε)
γ(1 + γ)21+γ(2 + ε)λ |D

cu|(Cλ,ε) −
2ε
λ
. (2.20)

Finally, we compute the contribution of the absolutely continuous part

νγ(Aλ,ε) =
ˆ

Aλ,ε

dx

x+
(

(1−ε)|u′(x)|
λ

) 1
γˆ

x

(y − x)γ−1 dy

= 1 − ε

γλ

ˆ

Aλ,ε

|u′(x)| dx

= 1 − ε

γλ
|Dau|(Aλ,ε). (2.21)

Plugging (2.19), (2.20) and (2.21) into (2.18) we obtain that

Fγ,λ(u) ≥

C1

(
1 − ε

1 + γ
(‖Dju‖M − ε) + (2γ − 1)(1 − ε)

γ(1 + γ)21+γ(2 + ε) |D
cu|(Cλ,ε) − 2ε

+ 1 − ε

γ
|Dau|(Aλ,ε)

)
,

and hence
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lim inf
λ→+∞

Fγ,λ(u) ≥

C1

(
1 − ε

1 + γ
(‖Dju‖M − ε) + (2γ − 1)(1 − ε)

γ(1 + γ)21+γ(2 + ε) |D
cu|(Cε) − 2ε + 1 − ε

γ
|Dau|(Aε)

)
.

Finally, recalling (2.11) and (2.16) we deduce that

lim inf
λ→+∞

Fγ,λ(u) ≥

C1

(
1 − ε

1 + γ
(‖Dju‖M − ε) + (2γ − 1)(1 − ε)

γ(1 + γ)21+γ(2 + ε)‖D
cu‖M − 3ε

+ 1 − ε

γ
(‖Dau‖M − 2ε)

)
.

Letting ε → 0+ we obtain (1.6) when N = 1. �
2.2. Proof of Theorem 1.2 when N = 1

First of all, we observe that it is enough to show that

lim sup
λ→+∞

Fγ,λ(u) ≤ C1

γ
‖Dau‖M + C1

γ + 1‖D
ju‖M, (2.22)

because the opposite inequality is provided by Theorem 1.1, that we have already proved 
in the case N = 1.

We divide the proof of (2.22) into two steps. First we prove the result for functions 
u ∈ X(R), then we exploit Lemma 2.3 to extend the result to all u ∈ ˙SBV (R).

Step 1: u ∈ X(R) Let s1 < s2 < · · · < sn be the jump points of u, namely the 
finitely many elements of Ju, and let (a, b) be an interval such that Du is supported on 
[a + 1, b − 1]. Let us set s0 := a and sn+1 := b.

With these definitions, we also set Ωi := (si, si+1) for every i ∈ {0, . . . , n},

d0 := min
{
|si+1 − si| : i ∈ {0, . . . , n}

}
, and L := max

{
‖u′‖L∞(Ωi) : i ∈ {0, . . . , n}

}
.

Now we observe that |u(y) − u(x)| ≤ ‖Du‖M for every (x, y) ∈ R2, and therefore

E′
γ,λ(u) ⊆

{
(x, y) ∈ R2 : 0 < y − x <

(
‖Du‖M

λ

) 1
1+γ

}
. (2.23)

Let us set

λ0 := ‖Du‖M
1+γ ,
min{d0 , 1}
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so that for every λ > λ0 we have that

(
‖Du‖M

λ

) 1
1+γ

< min{d0, 1}. (2.24)

As a consequence, setting

Ri
λ :=

(
si −

(
‖Du‖M

λ

) 1
1+γ

, si

)
×
(
si, si +

(
‖Du‖M

λ

) 1
1+γ

)
,

for every λ > λ0 we have that

E′
γ,λ(u) ⊆

n⋃
i=0

Ω2
i ∪

n⋃
i=1

Ri
λ. (2.25)

We point out that (2.23) and (2.24) imply that points outside [a, b]2 cannot contribute 
to Eγ,λ(u) when λ > λ0, because u is constant in (−∞, a + 1) and in (b − 1, +∞).

Now let us fix ε > 0 and let us set

Ωi
λ,ε :=

{
x ∈ Ωi : |u(y) − u(x)|

y − x
≤ |u′(x)| + ε ∀y ∈

(
x, x +

(
‖Du‖M

λ

) 1
1+γ

)
∩ Ωi

}
.

We observe that Ωi
λ1,ε

⊆ Ωi
λ2,ε

for every 0 < λ1 < λ2, and that

⋃
λ>0

Ωi
λ,ε ⊇ Ωi.

Moreover, if (x, y) ∈ E′
γ,λ(u) ∩ Ω2

i for some x ∈ Ωi
λ,ε, then we claim that

y < x +
(
|u′(x)| + ε

λ

) 1
γ

.

Indeed, if this is not the case, then from (2.23) and the definition of Ωi
λ,ε we deduce 

that

|u(y) − u(x)| ≤ (y − x)(|u′(x)| + ε) ≤ λ(y − x)1+γ ,

which contradicts the fact that (x, y) ∈ E′
γ,λ(u).

On the other hand, since u is Lipschitz continuous with Lipschitz constant bounded 
by L in each of the intervals Ωi, for every (x, y) ∈ E′

γ,λ(u) ∩ Ω2
i it holds that

y < x +
(
L
) 1

γ

,

λ
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otherwise we would have that |u(y) − u(x)| ≤ (y − x)L ≤ λ(y − x)1+γ .
Hence we obtain the following estimate

νγ(E′
γ,λ(u) ∩ Ω2

i ) ≤
ˆ

Ωi
λ,ε

dx

x+
(

|u′(x)|+ε
λ

) 1
γˆ

x

(y − x)γ−1 dy

+
ˆ

Ωi\Ωi
λ,ε

dx

x+
(
L
λ

) 1
γˆ

x

(y − x)γ−1 dy

= 1
γλ

⎡
⎢⎣ ˆ

Ωi
λ,ε

|u′(x)| dx + εL 1(Ωi
λ,ε) + LL 1(Ωi \ Ωi

λ,ε)

⎤
⎥⎦ . (2.26)

Now we need to estimate the contribution of the rectangles Ri
λ. To this end, let λj

ε > 0
be a positive number large enough so that for every i ∈ {1, . . . , n} and every λ > λj

ε it 
holds that

|u(y) − u(x)| ≤ (1 + ε)|Du|({si}) ∀(x, y) ∈ Ri
λ.

Then we have that

|u(y) − u(x)| ≤ (1 + ε)|Du|({si}) ≤ λ(y − x)1+γ ,

for every (x, y) ∈ Ri
λ such that

y ≥ x +
(

(1 + ε)|Du|({si})
λ

) 1
1+γ

.

Therefore we deduce that

E′
γ,λ(u) ∩Ri

λ ⊆
{

(x, y) ∈ R2 : x ∈
(
si −

(
(1 + ε)|Du|({si})

λ

) 1
1+γ

, si

)
,

y ∈
(
si, x +

(
(1 + ε)|Du|({si})

λ

) 1
1+γ

)}
.

Hence we obtain the following estimate

νγ(E′
γ,λ(u) ∩Ri

λ) ≤
siˆ

si−
(

(1+ε)|Du|({si})
) 1

1+γ

dx

x+
(

(1+ε)|Du|({si})
λ

) 1
1+γˆ

si

(y − x)γ−1 dy
λ
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= (1 + ε)|Du|({si})
(1 + γ)λ . (2.27)

Finally, combining (2.8), (2.25), (2.26) and (2.27), for every λ > max{λ0, λj
ε} we 

obtain that

Fγ,λ(u) ≤
n∑

i=0

C1

γ

⎡
⎢⎣ ˆ

Ωi
λ,ε

|u′(x)| dx + εL 1(Ωi
λ,ε) + LL 1(Ωi \ Ωi

λ,ε)

⎤
⎥⎦

+
n∑

i=1

C1(1 + ε)|Du|({si})
(1 + γ) ,

and hence

lim sup
λ→+∞

Fγ,λ(u) ≤ C1

γ
[‖Dau‖M + ε(b− a)] + C1(1 + ε)‖Dju‖M

(1 + γ) .

Letting ε → 0+, we obtain (2.22).

Step 2: u ∈ ˙SBV (R) We exploit the very same argument used in [12, Section 3.4] to 
reduce the case u ∈ Ẇ 1,1(RN ) to the case in which u is smooth and has compactly 
supported gradient.

So, given u ∈ ˙SBV (R), let {un} be a sequence provided by Lemma 2.3. By the triangle 
inequality for every n ∈ N and every ε ∈ (0, 1) it holds that

E′
γ,λ(u) ⊆ E′

γ,λ(un/(1 − ε)) ∪ E′
γ,λ((u− un)/ε).

Recalling (2.8), it follows that

Fγ,λ(u) ≤ Fγ,λ(un/(1 − ε)) + Fγ,λ((u− un)/ε),

and hence

lim sup
λ→+∞

Fγ,λ(u) ≤ lim sup
λ→+∞

Fγ,λ(un/(1 − ε)) + sup
λ>0

Fγ,λ((u− un)/ε).

Since un ∈ X(R), by Step 1 and the second inequality in (1.3) we conclude that

lim sup
λ→+∞

Fγ,λ(u) ≤
[
C1

γ

‖Daun‖M
1 − ε

+ C1

γ + 1
‖Djun‖M

1 − ε

]
+ c2(N, γ)‖D(u− un)‖M

ε
.

Letting first n → +∞, and then ε → 0+ we obtain (2.22). �
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3. The higher dimensional case

In this section we extend the results of Section 2 to the case N > 1, thus establishing 
Theorem 1.1 and Theorem 1.2 in full generality.

The main tool that we exploit is a representation formula for Fγ,λ(u), which allows 
us to rewrite this functional in terms of its one-dimensional version computed on all 
one-dimensional sections of the function u.

In order to state the formula, let us introduce some notation. For a function 
u : RN → R, a unit vector σ ∈ SN−1 and a point z ∈ σ⊥ let uσ,z : R → R be the 
one-dimensional function coinciding with the restriction of u to the line parallel to σ
passing through z, namely the function

uσ,z(t) := u(z + σt) ∀t ∈ R.

The result is the following.

Lemma 3.1. Let u : RN → R be a measurable function and let us fix γ > 0 and λ > 0.
Then it turns out that

Fγ,λ(u) = 1
C1

ˆ

SN−1

dσ

ˆ

σ⊥

Fγ,λ(uσ,z) dz.

Proof. Let χ : RN ×RN → {0, 1} be the characteristic function of the set Eγ,λ(u). Then 
we have that

Fγ,λ(u) =
ˆ

RN

dx

ˆ

RN

|y − x|γ−Nχ(x, y) dy.

Setting first y = x + σr, with σ ∈ SN−1 and r ∈ (0, +∞), and then x = z + σt, with 
z ∈ σ⊥ and t ∈ R, we obtain that

Fγ,λ(u) =
ˆ

RN

dx

ˆ

SN−1

dσ

+∞ˆ

0

rγ−Nχ(x, x + σr)rN−1 dr

=
ˆ

SN−1

dσ

ˆ

σ⊥

dz

ˆ

R

dt

+∞ˆ

0

rγ−1χ(z + σt, z + σ(t + r)) dr

= 1
2

ˆ

SN−1

dσ

ˆ

σ⊥

dz

ˆ

R

dt

ˆ

R

|r|γ−1χ(z + σt, z + σ(t + r)) dr.

Finally, setting r = s − t and recalling that C1 = 2 we obtain that

Fγ,λ(u) = 1
2

ˆ
dσ

ˆ
dz

ˆ
dt

ˆ
|s− t|γ−1χ(z + σt, z + σs) ds
SN−1 σ⊥ R R
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= 1
C1

ˆ

SN−1

dσ

ˆ

σ⊥

Fγ,λ(uσ,z) dz. �

The second result that we need to perform the sectioning argument is the following 
well-known lemma, that follows from the results in [2, Section 3.11].

Lemma 3.2. Let u ∈ ˙BV (RN ). Then for every σ ∈ SN−1 it holds that uσ,z ∈ ˙BV (R) for 
almost every z ∈ σ⊥ and

ˆ

SN−1

dσ

ˆ

σ⊥

‖Dauσ,z‖M dz = CN‖Dau‖M,

ˆ

SN−1

dσ

ˆ

σ⊥

‖Djuσ,z‖M dz = CN‖Dju‖M,

ˆ

SN−1

dσ

ˆ

σ⊥

‖Dcuσ,z‖M dz = CN‖Dcu‖M.

We can now extend the proofs of our main results to the case N > 1.

Proof of Theorem 1.1. It is enough to apply consecutively Lemma 3.1, Fatou lemma, 
the one-dimensional result and Lemma 3.2, to obtain that

lim inf
λ→+∞

Fγ,λ(u) = lim inf
λ→+∞

1
C1

ˆ

SN−1

dσ

ˆ

σ⊥

Fγ,λ(uσ,z) dz

≥
ˆ

SN−1

dσ

ˆ

σ⊥

1
C1

lim inf
λ→+∞

Fγ,λ(uσ,z) dz

≥
ˆ

SN−1

dσ

ˆ

σ⊥

(
‖Dauσ,z‖M

γ
+ ‖Djuσ,z‖M

1 + γ
+ (2γ − 1)‖Dcuσ,z‖M

γ(1 + γ)22+γ

)
dz

= CN

γ
‖Dau‖M + CN

1 + γ
‖Dju‖M + CN (2γ − 1)

γ(1 + γ)22+γ
‖Dcu‖M. �

Proof of Theorem 1.2. From (1.3) and Lemma 3.2 we deduce that
ˆ

SN−1

dσ

ˆ

σ⊥

sup
λ>0

Fγ,λ(uσ,z) dz ≤
ˆ

SN−1

dσ

ˆ

σ⊥

c2‖Duσ,z‖M dz = c2CN‖Du‖M < +∞.

Therefore, from Lemma 3.1, the dominated convergence theorem, the one-dimensional 
result and Lemma 3.2, we deduce that

lim
λ→+∞

Fγ,λ(u) = lim
λ→+∞

1
C1

ˆ
dσ

ˆ
Fγ,λ(uσ,z) dz
SN−1 σ⊥
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=
ˆ

SN−1

dσ

ˆ

σ⊥

1
C1

lim
λ→+∞

Fγ,λ(uσ,z) dz

=
ˆ

SN−1

dσ

ˆ

σ⊥

(
‖Dauσ,z‖M

γ
+ ‖Djuσ,z‖M

1 + γ

)
dz

= CN

γ
‖Dau‖M + CN

1 + γ
‖Dju‖M. �
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