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Abstract

Explainable AI (XAI) aims to address the human need for
safe and reliable AI systems. However, numerous surveys
emphasize the absence of a sound mathematical formaliza-
tion of key XAI notions—remarkably including the term “ex-
planation” which still lacks a precise definition. To bridge
this gap, this paper presents the first mathematically rig-
orous definitions of key XAI notions and processes, using
the well-funded formalism of Category theory. We show
that our categorical framework allows to: (i) model exist-
ing learning schemes and architectures, (ii) formally define
the term “explanation”, (iii) establish a theoretical basis for
XAI taxonomies, and (iv) analyze commonly overlooked as-
pects of explaining methods. As a consequence, our categor-
ical framework promotes the ethical and secure deployment
of AI technologies as it represents a significant step towards
a sound theoretical foundation of explainable AI.

1 Introduction
Explainable AI (XAI) has emerged as a critical research field
to address ethical (Durán and Jongsma 2021; Lo Piano 2020)
and legal (Wachter, Mittelstadt, and Russell 2017; EUGDPR
2017) concerns related to the safe deployment of AI tech-
nologies. However, several domain surveys remark that key
fundamental XAI notions still lack a formal definition, and
that the whole field is still missing a unifying and sound for-
malism (Adadi and Berrada 2018; Palacio et al. 2021).

The notion of explanation itself still lacks a proper math-
ematical formalization, as demonstrated by the attempts to
define the concept in the current literature: “An explanation is
an answer to a ‘why?’ question” (Miller 2019) or “An explanation
is additional meta information, generated by an external algorithm
or by the machine learning model itself, to describe the feature im-
portance or relevance of an input instance towards a particular
output classification” (Das and Rad 2020).

We argue that the absence of a rigorous formalization
of key explainable AI notions may significantly undermine
progress in the field by leading to ill-posed questions, an-
noying clutter in taxonomies, and narrow perspectives on
future research directions. In contrast, a sound mathemati-
cal definition would provide a solid foundation for XAI no-
tions and taxonomies, leading to a more organized and effi-
cient research field. This way, researchers could easily iden-

tify knowledge gaps and promising research directions—
including the exploration of the (currently overlooked) the-
oretical side of explainable AI.

Contributions. We propose a theoretical framework al-
lowing a unified, comprehensive and rigorous formalization
of foundational XAI notions and processes (Section 3). To
the best of the authors’ knowledge, this is the first work in-
vestigating this research direction in the XAI field. To this
objective, we use Category theory as it represents a sound
mathematical formalism centered around processes, and for
this reason, it is widely used in theoretical computer sci-
ence (Abramsky and Coecke 2004; Selinger 2001; Stein
and Staton 2021; Swan et al. 2022; Turi and Plotkin 1997),
and, more recently, in AI (Aguinaldo and Regli 2021; Crut-
twell et al. 2022; Ong and Veličković 2022; Shiebler, Gavra-
nović, and Wilson 2021; Sprunger and Katsumata 2019). In
particular, we show that our categorical framework enables
us to: model existing learning schemes and architectures
(Section 4.1), formally define the term “explanation” (Sec-
tion 4.2), establish a theoretical basis for XAI taxonomies
(Section 4.3), and analyze commonly overlooked aspects of
explaining methods (Section 4.4).

2 Explainable AI Theory: Requirements
In order to build a sound theory, we first need to iden-
tify (i) a set of relevant notions, objects, and processes,
and (ii) a proper language to formalize them. To formalize
objects—such as explanations—we rely on Institution The-
ory (Goguen and Burstall 1992) as it provides an abstract
framework for formal languages’ syntax and semantics (Sec.
2.1). To formalize explainable AI algorithms and their dy-
namics instead, we rely on Category Theory (Eilenberg and
MacLane 1945) as it provides a mathematical framework
specifically designed to analyze processes and their dynam-
ics (Sec. 2.2).

2.1 Institution Theory: A Framework for
Explanations

To provide a formal definition of “explanation” (Section 4.2)
we rely on institution theory (Goguen and Burstall 1992).
Institution theory offers an ideal platform for formaliz-
ing explanations—whether expressed through symbolic lan-
guages or semantic-based models—as it enables a thorough
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analysis of both the structure (syntax) and meaning (seman-
tics) of explanations across diverse languages (Tarski 1944),
thus facilitating a deeper understanding of their nature.

More rigorously, an institution I consists of (i) a category
SignI whose objects are signatures (i.e. vocabularies of sym-
bols), (ii) a functor Sen : SignI 7→ Set which provides sets
of well-formed expressions (Σ-sentences) for each signature
Σ ∈ SignoI , and (iii) a functor Mod : SignopI 7→ Set1 that as-
signs a semantic interpretation (i.e. a world) to the symbols
in each signature (Goguen 2005).

A typical example of institution is First-Order Logic
(FOL), where the category of signatures is given by sets
of relationsas objects and arity-preserving functions as mor-
phisms. Sentences and models are defined by standard FOL
formulas and structures.

2.2 Category Theory: A Framework for XAI
Processes

(X)AI processes all share three basic properties: (i) they map
(multiple) inputs to (multiple) outputs via a composition of
parametric operations (see monoidal categories), (ii) they
update the parameters of such operations based on some er-
ror function (see feedback categories), and (iii) they keep
updating such parameters over time until convergence (see
cartesian streams). In the following paragraphs we formal-
ize these (X)AI properties using a categorical language.

A primer on categories: Intuitively, a category is a col-
lection of objects and morphisms satisfying specific compo-
sition rules.
Definition 2.1 (Eilenberg and MacLane (1945)). A category
C consists of a class of objects Co and, for every X,Y ∈ Co,
a set of morphisms hom(X,Y ) with input type X and output
type Y . A morphism f ∈ hom(X,Y ) is written f : X → Y ,
and for all morphisms f : X → Y and g : Y → Z there is
a composite morphisms f ; g : X → Z, with composition
being associative. For each X ∈ Co there is an identity mor-
phism 1X ∈ hom(X,X) that makes composition unital.

Well-known examples are the categories Set, whose ob-
jects are sets and morphisms are functions, and Vec, whose
objects are vector spaces and morphisms are linear maps.
Different categories can be connected using special opera-
tors called functors i.e., mappings of objects and morphisms
from one category to another (preserving compositions and
identity morphisms). For instance, there is a functor F from
Vec to Set that simply ignores the vector space structure.

Monoidal Categories: compose multi-input/output pro-
cesses In this work we are mainly interested in monoidal
categories as they offer a sound formalism for processes
with multiple inputs and outputs (Coecke and Kissinger
2017; Fritz 2020). Monoidal categories (Mac Lane 1978)
are categories with additional structure, namely a monoidal
product × and a neutral element, enabling the compo-
sition of morphisms in parallel (cf. Appendix A.1). No-
tably, monoidal categories allow for a graphical represen-
tation of processes using string diagrams (Joyal and Street

1Given a category C, Cop denotes its opposite category, formed
by reversing its morphisms (Mac Lane 1978).

1991). String diagrams enable a more intuitive reasoning
over equational theories, and we will use them through-
out the paper to provide illustrative, yet formal, defini-
tions of XAI notions. The Coherence Theorem for monoidal
categories (Mac Lane 1978) guarantees that string dia-
grams are a sound and complete syntax for monoidal cat-
egories. Thus all coherence equations for monoidal cate-
gories correspond to continuous deformations of string di-
agrams. For instance, given f : X → Y and g : Y →
Z, the morphisms f ; g : X → Z and 1X are repre-

sented as ; the
equation f ; 1Y = f = 1X ; f as

;
the morphism h with multiple inputs X1, X2, X3 and out-

puts Y1, Y2 (left), and the parallel composition of two mor-
phisms f1 : X1 → Y1 and f2 : X2 → Y2 (right) can be rep-
resented as follows:

Feedback Categories: update process states A common
process in machine learning involves the update of the pa-
rameters of a function, based on the feedback of a loss func-
tion. To model this process, we can use feedback monoidal
categories.

Definition 2.2 ((Katis, Sabadini, and Walters 2002; Di La-
vore et al. 2021)). A feedback monoidal category is a sym-
metric (cf. Appendix A.2) monoidal category C endowed
with a functor F : C → C, and an operation ⟲S : hom(X×
F(S), Y × S) → hom(X,Y ) for all X,Y, S in Co, which
satisfies a set of axioms (cf. Appendix A.3).

Cartesian Streams: dynamic update of processes over
time In learning processes, optimizing the loss function
often involves a sequence of feedback iterations. Follow-
ing Sprunger and Katsumata (2019), we use Cartesian
streams (cf. Appendix A.4) to model this kind of processes.
Cartesian streams form a feedback Cartesian monoidal cat-
egory, i.e are equipped, for every object X , with morphisms
νX : X → X × X and ϵX : X → e that make it possi-
ble to copy and discard objects (cf. Appendix A.2). This
makes them the ideal category to formalize (possibly infi-
nite) streams of objects and morphisms.

Definition 2.3 ((Sprunger and Katsumata 2019; Uustalu
and Vene 2008)). Let C be a Cartesian category. We call
StreamC the category of Cartesian streams over C, whose
objects X = (X0, X1, . . . ) are countable lists of objects
in C, and given X,Y ∈ Streamo

C, the set of morphisms
hom(X,Y) is the set of all f : X → Y, where f is a family
of morphisms in C, fn : X0 × · · · ×Xn → Yn, for n ∈ N.

In Cartesian streams, a morphism fn represents a
process that receives a new input Xn and produces
an output Yn at time step n. We can compute the
outputs until time n by combining f0, . . . , fn to get



f̃n : X0 × · · · × Xn → Y0 × · · · × Yn as follows:

• f̃0 := f0

• f̃n+1 := (1Xn+1
× νX0×···×Xn

) ; (fn+1 × f̃n)

We denote by XN the object X ∈ Streamo
C such that X =

(X,X, . . .), for some X ∈ Co. Notably, Cartesian streams
form a feedback monoidal category (Di Lavore, de Felice,
and Román 2022) and thus are capable to model dynamic
processes with feedback—such as learning processes, as we
will show in Theorem 4.1 and 4.2.

3 Categorical Framework of Explainable AI
We use feedback monoidal categories and institutions to
formalize fundamental (X)AI notions. To this end, we first
introduce the definition of “abstract learning agent” (Sec-
tion 3.1) as a morphism in free feedback monoidal cat-
egories, and then we describe a functor instantiating this
concept in the concrete feedback monoidal category of
StreamSet (Section 3.2). Intuitively, a free category serves
as a template for a class of categories (e.g., feedback
monoidals). To generate a free category, we just need to
specify a set of objects and morphisms generators. Then we
can realize “concrete” instances of a free category F through
a functor from F to another category C that preserves the
axioms of F (cf. Appendix A.5).

3.1 Abstract Learning Agents
We formalize the abstract concept of an explaining learn-
ing agent drawing inspiration from (Cruttwell et al. 2022;
Sprunger and Katsumata 2019; Wilson and Zanasi 2021).
At a high level, learning can be characterized as an itera-
tive process with feedback. This process involves a function
(known as model or explainer in a XAI method) which up-
dates its internal states (e.g., a set of parameters) guided by
some feedback from the environment (often managed by an
optimizer). Formally, we define an abstract learning agent as
a morphism in the free feedback Cartesian monoidal cate-
gory XLearn generated by:

• the objects X,Y, Y ∗, P , and E representing input, out-
put, supervision, parameter, and explanation types;

• the model/explainer morphism η : X × P → Y × E
which produces predictions in Y and explanations in E;

• the optimizer morphism ∇Y : Y ∗×Y ×P → P produc-
ing updated parameters in P given supervisions in Y ∗,
model/explainer predictions in Y , and parameters in P .

Definition 3.1. XLearn is the free feedback Cartesian cat-
egory generated by the objects X,Y, Y ∗, P, E and by the
morphisms η : X×P → Y ×E and ∇Y : Y ∗×Y ×P → P .

The introduction of these morphisms allows us to estab-
lish a formal definition of an abstract learning agent.
Definition 3.2. An abstract learning agent is the mor-
phism in XLearn given by the morphisms’ composition: ⟲P

((1Y ∗×X × νP ); (1Y ∗ × η × 1P ); (1Y ∗×Y × ϵE);∇Y )

3.2 Concrete Learning and Explaining Agents
The free category XLearn allows us to highlight the key fea-
tures of learning agents from an abstract perspective. How-
ever, we can instantiate explaining learning agents in “con-
crete” forms using a feedback functor from the free category
XLearn to the category of Cartesian streams over Set, i.e.
StreamSet. This functor can establish a mapping from our
abstract construction to any concrete setting, involving di-
verse explainers (e.g., decision trees, logistic regression), in-
put data types (e.g., images, text), supervisions, outputs, pa-
rameters, or explanations. Achieving this mapping requires
the definition of a specific functor we call translator.

Definition 3.3. An agent translator is a feedback Cartesian
functor T : XLearn → StreamSet.

Among translators, we distinguish two significant classes:
those that instantiate learning agents and those that instanti-
ate explainable learning agents (Definitions 3.4 and 3.5 re-
spectively). Intuitively, a concrete learning agent is an in-
stance of an abstract learning agent that does not provide
any explanation while a concrete explaining learning agent
does output an (non-empty) explanation.

Definition 3.4. Given an agent translator T with T (E) =
{∗}N, where {∗} is a singleton set. A learning agent (LA) is
the image T (α), being α the abstract learning agent.

The set {∗}N denotes the neutral element of the monoidal
product in StreamSet and conveys the absence of explana-
tions. In this case, T (η) will be simply called model, and
we will remove the explicit dependence on {∗} in the out-
put space as T (Y ) × {∗}N ∼= T (Y ). To instantiate ex-
plaining learning agents instead, we introduce two distinct
types of translators: the semantic and the syntactic trans-
lator. This choice is motivated by the foundational ele-
ments of institution theory, namely sentences and models:
Sentences correspond to well-formed syntactic expressions,
while models capture the semantic interpretations of these
sentences (Goguen and Burstall 1992). We refer to concrete
instances of both syntactic and semantic explaining learning
agents as “explaining learning agents” (XLA).

Definition 3.5. Let T be an agent translator, I an institution
and α the abstract learning agent. The image T (α) is said a
syntactic explaining learning agent if T (E) = Sen(Σ)N

and a semantic explaining learning agent if T (E) =
Mod(Σ)N, for some signature Σ of I .

The high degree of generality in this formalization en-
ables the definition of any real-world learning setting and
learning agent (to the author knowledge). Indeed, using
Cartesian streams as the co-domain of translators, we can
effectively model a wide range of learning use cases, includ-
ing (but not limited to) those involving iterative feedback.



To simplify the notation, in the following sections we use
the shortcuts: X = T (X), Y = T (Y ), Y∗ = T (Y ∗),
P = T (P ), E = T (E), η̂ = T (η), ∇̂Y = T (∇Y ), and
Y = Y∗ when not specified.

4 Impact on XAI and Key Findings
4.1 Finding #1: Our framework models existing

learning schemes and architectures
As a proof of concept, in the following examples we show
how the proposed categorical framework makes it possible
to capture the structure of some popular learning algorithms
such as neural networks.
Example 4.1. A classic multi-layer perceptron
(MLP, (Rumelhart, Hinton, and Williams 1985)) clas-
sifier with Adam optimizer (Kingma and Ba 2014) is an
instance of an abstract learning agent whose translator
functor is defined as follows (Section 4.1): X = (Rn)N,
Y = Y∗ = ([0, 1]m)

N, η̂i being an MLP for all i, P the
space of the MLP parameters, e.g. P = (Rp)N, ∇̂Yi

being
e.g. the Adam optimizer, and E = {∗}N.

In Example 4.1 we successfully model an MLP by con-
straining the components of the morphism η to have constant
values η̂i = MLP (independent of the first i − 1 inputs).
However, by removing this constraint, we can instantiate
a broader class of learning agents including e.g. recurrent
neural networks (Hochreiter and Schmidhuber 1997; Hop-
field 1982) and transformers (Vaswani et al. 2017). In these
scenarios, the neural functions become dependent on previ-
ous inputs, effectively capturing the input stream. Addition-
ally, we can also model learning settings where a model’s
architecture changes over time, as in neural architecture
search (Elsken, Metzen, and Hutter 2019).
Example 4.2. A classical Neural Architecture Search algo-
rithm (Elsken, Metzen, and Hutter 2019) is an instance of an
abstract learning agent whose translator functor is defined
as follows: X = (Rn)N, Y = Y∗ = ([0, 1]m)N, η̂i = MLPi

being a different neural architecture for every step, P the
space of the MLPs parameters, e.g. P = (Rp)N, ∇̂Yi

being
the Adam optimizer, and E = {∗}N.

To the best of our knowledge, the proposed formalism is
general enough to potentially encompass any known learn-
ing process providing or not providing explanations. Indeed,
the objects X,Y, Y ∗, E can be instantiated through a suit-
able translator functor to have the desired characteristics,
e.g. T (Y ) could include the explanations space, making the
explanations optimizable, or T (Y ∗) = {∗}N, giving an un-
supervised model. Further examples showing the flexibility
of our framework can be found in the Appendix A.7.

4.2 Finding #2: Our framework enables a formal
definition of “explanation”

Our theoretical framework allows us to provide the first for-
mal definition of the term “explanation”, which embodies
the very essence and purpose of explainable AI. Our for-
malization goes beyond a mere definition of “explanation”,
as it highlights a natural distinction between different forms

of explanations. Indeed, institution theory allows a straight-
forward characterization of syntactic and semantic expla-
nations. While both forms of explanations are prevalent in
the current XAI literature, their distinctions are often over-
looked, thus limiting a deep understanding of the true nature
and intrinsic limitations of a given explanation.

Definition 4.3. Given an institution I , an object Σ of SignI ,
and a concrete explainer η̂ = T (η) : X × P → Y × E ,
an explanation E = T (E) in a language Σ is a set of Σ-
sentences (syntactic explanation) or a model of a set of Σ-
sentences (semantic explanation).

We immediately follow up our definition with a concrete
example to make it more tangible.

Example 4.4. Let IPL be the institution of Propo-
sitional Logic and Σ a signature of IPL such that
{xflies, xanimal, xplane, xdark color, . . .} ⊆ Σ and with the stan-
dard connectives of Boolean Logic, i.e. ¬,∧,∨,→. For in-
stance, η̂ could be an explainer aiming at predicting an out-
put in Y = {xplane, xbird, . . .} given an input in X . Then
a syntactic explanation could consist of a Σ-sentence like
ε = xflies ∧ ¬xanimal → xplane, a semantic explanation could
be the truth-function of ε.

Our definition of explanation not only generalizes and for-
malizes existing definitions in the literature but also encom-
passes key aspects discussed by different researchers. For
instance, according to Miller (2019), an explanation is “an
answer to a ’why?’ question”; Das and Rad (2020) define ex-
planation as “additional meta information, generated by an
external algorithm or by the machine learning model itself,
to describe the feature importance or relevance of an input
instance towards a particular output classification”; while
Palacio et al. (2021) describe explanation as “the process of
describing one or more facts, such that it facilitates the un-
derstanding of aspects related to said facts”. Our definition
of explanation incorporates all these notions, as Σ-sentences
and their models can provide any form of statement related
to the explaining learning agent and its inputs/outputs. This
encompasses additional meta information and feature rele-
vance (Das and Rad 2020), description of facts related to a
learning process (Palacio et al. 2021), or insights into why a
specific output is obtained from a given input (Miller 2019).

Furthermore, Tarski (1944) and Goguen and Burstall
(1992) proved how the semantics of “truth” is invariant un-
der change of signature. This means that we can safely use
signature morphisms to switch from one “notation” to an-
other, inducing consistent syntactic changes in a Σ-sentence
without conditioning the “meaning” or the “conclusion” of
the sentence (Goguen and Burstall 1992). As a result, signa-
ture morphisms can translate a certain explanation between
different signatures, hence paving the way to study “com-
munication” as well as “understanding” between XLAs.

4.3 Finding #3: Our framework provides a
theoretical foundation for XAI taxonomies

Using our categorical constructions, we can develop a
theory-grounded taxonomy of XAI methods that goes be-
yond current ones and catalogues existing approaches in
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a systematic and rigorous manner. We recognize the im-
portance of such a foundation due to the ongoing de-
bates and challenges faced by current taxonomies in com-
prehensively encompassing all existing XAI methods. In-
deed, existing approches in the XAI literature have only
provided subjective viewpoints on the field, distinguish-
ing methods according to controversial criteria such as:
the scope/methodology/usage of explanations (Das and
Rad 2020); the how/what/why of explanations (Palacio
et al. 2021); the relationship between explainers and
systems being explained, e.g., intrinsic/post-hoc, model-
specific/agnostic, local/global (Molnar 2020); or the spe-
cific data types, such as images (Kulkarni, Shivananda,
and Sharma 2022), graphs (Li et al. 2022), natural lan-
guage (Danilevsky et al. 2020), and tabular data (Di Mar-
tino and Delmastro 2022). However, these taxonomies lack
a solid and grounded motivation and rely primarily on sub-
jective preferences. As a result, they are unable to draw uni-
versal conclusions and provide a general understanding of
the field. On the contrary, our taxonomy aims to fill this gap
by providing a comprehensive classification of XAI meth-
ods grounded in our theoretical framework. As an example,
we use the proposed categorical framework to explicitly de-
scribe the following macro-categories of XAI methods (Das
and Rad 2020; Molnar 2020; Palacio et al. 2021), where we
distinguish between an LA instantiated by a translator T ,
with T (η) = µ̂, and an XLA instantiated by T ′. We will re-
fer to the objects of the latter using prime, e.g. T ′(Y ) = Y ′.

Post-hoc and Intrinsic. XAI surveys currently distinguish
between intrinsic and post-hoc explainers. Informally, the
key difference is that intrinsic XAI methods evolve model
parameters and explanations at the same time, whereas post-
hoc methods extract explanations from pre-trained mod-
els (Das and Rad 2020; Molnar 2020).

Post-hoc explainer. Given a trained LA model µ̂ : X ×
P → Y , a post-hoc explainer is an XLA explainer instan-
tiated by T ′ such that η̂ : X ′ × P ′ → Y ′ × E ′, with
X ′ = Y × X × P:

Intrinsic explainer. An intrinsic explainer is an XLA ex-
plainer η̂ whose input objects are parameters P ′ and a set of
entries of a database X ′:

Common intrinsic explainers are logic/rule-based (Barbi-
ero et al. 2023; Breiman et al. 1984; Ciravegna et al. 2023;
Friedman and Popescu 2008; Manhaeve et al. 2018; Schmidt
and Lipson 2009; Yang, Rudin, and Seltzer 2017), lin-
ear (Doshi-Velez, Wallace, and Adams 2015; Hastie 2017;
Nelder and Wedderburn 1972; Santosa and Symes 1986;
Tibshirani 1996; Verhulst 1845), and prototype-based (Fix
and Hodges 1989; Kaufmann 1987) approaches; while well-
known post-hoc explainers include saliency maps (Selvaraju
et al. 2017; Simonyan, Vedaldi, and Zisserman 2013), surro-
gate models (Lundberg and Lee 2017; Ribeiro, Singh, and
Guestrin 2016a, 2018), and concept-based approaches (Es-
pinosa Zarlenga et al. 2022; Ghorbani, Abid, and Zou 2019;
Ghorbani et al. 2019; Kim, Khanna, and Koyejo 2016).

Model-Agnostic and Model-Specific Intuitively, model-
agnostic explainers extract explanations independently from
the architecture and/or parameters of the model being ex-
plained, whereas model-specific explainers depend on the
architecture and/or parameters of the model.

Model-agnostic explainer. Given an LA model µ̂ : X ×
P → Y , a model-agnostic explainer is an XLA explainer
η̂ : X ′ × P ′ → Y ′ × E ′, such that X ′ = Y × X .

Model-specific explainer. A model-specific explainer
simply differentiates from a model-agnostic, as the XLA ex-
plainer η̂ : X ′ × P ′ → Y ′ × E ′ has X ′ = Y × X × P .
Typical examples of model-agnostic explainers include sur-

rogate models (Lundberg and Lee 2017; Ribeiro, Singh,



and Guestrin 2016a, 2018) and some concept-based ap-
proaches (Ghorbani, Abid, and Zou 2019; Ghorbani et al.
2019; Kim, Khanna, and Koyejo 2016). Among renowned
model-specific explainers instead we can include all model-
intrinsic explainers (Molnar 2020) and some post-hoc ex-
plainers such as saliency maps (Selvaraju et al. 2017; Si-
monyan, Vedaldi, and Zisserman 2013) as they can only ex-
plain gradient-based systems.

Forward and Backward. Another relevant difference
among XAI methods for gradient-based models is whether
the explainer relies on the upcoming parameters (Petsiuk,
Das, and Saenko 2018; Zeiler and Fergus 2014; Zintgraf
et al. 2017) or the gradient of the loss on the parameters
in the learning optimizer (Selvaraju et al. 2017; Simonyan,
Vedaldi, and Zisserman 2013).

Forward-based explainer. Given a gradient-based LA
model µ̂ : X × P → Y , a forward-based explainer is an
XLA explainer η̂ : X ′ ×P ′ → Y ′ × E ′ with X ′ = X ′′ ×P .

Backward-based explainer. Given a gradient-based LA
model µ̂ : X × P → Y and an optimizer ∇̂Y : Y × Y ×
P → P , a backward-based explainer is an XLA explainer
η̂ : X ′ × P ′ → Y ′ × E ′ where, X ′ = X ′′ × h(P), being
h(P) = ∂L(Y,Y)

∂P the gradient of the loss function L on P .
A case study: Concept bottleneck models. Concept bot-

tleneck models (CBM) (Koh et al. 2020) are recent XAI ar-
chitectures which first predict a set of human-understandable
objects called “concepts” and then use these concepts to
solve downstream classification tasks. Our framework al-
lows to formally define even these advanced XAI structures
as follows: A CBM is an XLA such that η̂ is composed of
a concept predictor µ̂ : X × P → Y and a task predictor
η̂′ : Y×P → Y×E , Y is the set of classes and P = P ′×P ′′

is the product of the parameter space of the two models.

Overall these examples give a taste of the flexibility and
expressive power of our categorical framework demonstrat-
ing how it can successfully encompass existing XAI ap-
proaches and taxonomies.

4.4 Finding #4: Our framework emphasizes
commonly overlooked aspects of explanations

Current XAI taxonomies often neglect the distinction be-
tween syntactic and semantic approaches. On the contrary,
our Definition 3.5 provides a natural distinction between
these two forms of XLAs, thus introducing a novel per-
spective to analyze XAI methods. On the one hand, syn-

Figure 1: Saliency map.

tactic approaches work on the structure of symbolic lan-
guages and operate on Σ-sentences. Notable examples of
syntactic approaches are proof systems such as natural de-
duction (Prawitz 2006) and sequent calculi (Takeuti 2013)
which are designed to operate on formal languages such as
first-order logic. On the other hand, semantic approaches
provide explanations related to the meaning or interpreta-
tion of sentences as a model of a language. Most XAI tech-
niques actually fall into this class of methods as semantic ex-
planations establish a direct connection with specific prob-
lem domains (Karasmanoglou, Antonakakis, and Zervakis
2022; Lundberg and Lee 2017; Ribeiro, Singh, and Guestrin
2016a; Simonyan, Vedaldi, and Zisserman 2013). The fol-
lowing examples show the relation between a syntactic and a
semantic technique emphasizing connections between XAI
methods that often slip unnoticed.
Example 4.5. The Gradient-weighted Class Activation
Mapping (Grad-CAM), (Simonyan, Vedaldi, and Zisserman
2013) is a classic example of a semantic (backward) XLA,
whose institution can be defined as a fragment of FOL with
all the signatures’ objects consisting of a single predicate
and a finite set of constants. Intuitively, in a classification
task the constants represent the pixels of an image and the
relation represents the saliency degree of each pixel for the
class prediction. Sentences and models are defined as in
FOL by using the provided signature. A general syntactic ex-
planation in this institution can be easily expressed by taking
a signature Σ = {S, p1, p2, . . .} with S the unary saliency
predicate and pi the constant for the i-th pixel. Assuming to
collect the most “salient” pixels in the set SalPix, the syn-
tactic explanation may be expressed by:

∧
p∈SalPix S(p). Fig-

ure 1 instead represents a semantic explanation where Grad-
CAM interprets predicates and constants in the syntactic for-
mula assigning them a meaning (i.e., concrete values).

Example 4.6. Another classic example of semantic XLAs
are feature importance methods (Wei, Lu, and Song 2015),
such as LIME, (Ribeiro, Singh, and Guestrin 2016b). As
saliency maps, LIME relies on the institution Iun, as their
signatures consist on a set of constants fi (each for ev-
ery considered feature) and a single predicate R to ex-
press their relevance. Syntactic explanations have the form∧

f∈ImpFeat R(f) where the set ImpFeat collects the most
“relevant” features for a task. Figure 2 shows an example of
a semantic explanation of LIME, where the length of each
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bar represents the relevance of the corresponding feature.

Comparing the expressive power of explanations. The
Grad-CAM and LIME examples offer the ideal setting to
show how our framework can formally assess the expressive
power of different forms of explanations, drawing connec-
tions between apparently different XLAs. Indeed, provided
that both Grad-CAM and LIME signatures contain the same
number of pixels/features, these two forms of explanations
syntactically possess the same expressive power (while dif-
fering in their semantic models and generating algorithms
for the explanations). Consequently, we can convert any
saliency map into an equivalent feature importance repre-
sentation and vice versa (using an arity-preserving function),
without compromising their meaning/truth value (Tarski
1944). This is generally true, whenever it is possible to de-
fine an arity-preserving mapping between different signa-
tures in the same institution. This observation underscores
an often overlooked aspect in XAI literature: evaluating the
expressive power of explanations requires comparing their
signatures and syntax, not the way these explanations are
visualized. User studies that compare different forms of vi-
sualization essentially assess the visualization’s expressive
power, which relates to human understanding, rather than
the expressive power of an explanation itself.

Limitations of semantic explanations. The connection
between a semantic explanation and a specific context (e.g.,
an image) may stimulate human imagination, but it often
limits the scope and robustness of the explanation, hinder-
ing human understanding in the long run (Ghorbani, Abid,
and Zou 2019; Rudin 2019). On the contrary, symbolic
languages such as first-order logic or natural language are
preferable for conveying meaningful messages as explana-
tions as suggested by Kahneman (2011); Marcus (2020). For
this reason, a promising but often overlooked research di-
rection consists in accurately lifting semantic explanations
into a symbolic language in order to provide a syntactic ex-
planation (Breiman et al. 1984; Letham et al. 2015; Costa
et al. 2018; Guidotti et al. 2018; Ribeiro, Singh, and Guestrin
2018; Ciravegna et al. 2023). By recognizing the importance
of this distinction, our formalization can provide a suitable
basis to gaining deeper insights into the limitations of differ-
ent forms of explanations.

5 Discussion
Significance and relations with other XAI foundational
works. The explainable AI research field is growing at
a considerable rate (Minh et al. 2022) and it now has
a concrete impact on other research disciplines (Cranmer
et al. 2019; Davies et al. 2021; Jiménez-Luna, Grisoni,
and Schneider 2020) as well as on the deployment of AI
technologies (Durán and Jongsma 2021; Lo Piano 2020;
Wachter, Mittelstadt, and Russell 2017). This rising interest
in explainable AI increases the need for a sound foundation
and taxonomy of the field (Adadi and Berrada 2018; Palacio
et al. 2021). Indeed, existing reviews and taxonomies sig-
nificantly contribute in: (i) describing and clustering the key
methods and trends in the XAI literature (Molnar 2020), (ii)
proposing the first qualitative definitions for the core XAI
terminology (Das and Rad 2020), (iii) relating XAI method-
ologies, aims, and terminology with other scientific disci-
plines (Miller 2019), and (iv) identifying the key knowl-
edge gaps and research opportunities (Das and Rad 2020).
However, most of these works acknowledge the need for a
more sound mathematical foundation and formalism to sup-
port the field. Our framewok arises to fill this gap. In par-
ticular our methodology formalizes key XAI notions for the
first time, using the category of Cartesian streams and the
category of signatures. Our work also draws from Sprunger
and Katsumata (2019) who propose Cartesian streams to
model gradient-based learning, and Cruttwell et al. (2022)
who model gradient-based learning using the category of
lenses (Riley 2018). The categorical formalisms of lenses
and streams are closely related (Di Lavore, de Felice, and
Román 2022). Intuitively, lenses can be used to encode one-
stage processes, while streams can encode processes with
time indexed by natural numbers, i.e. providing a more suit-
able description of the dynamic process of learning. How-
ever, our work opens to more general AI systems which are
not necessarily gradient-based by generalizing the category
of lenses with Cartesian streams.

Limitations In this work we face the challenging task of
formalizing (previously informal) notions such as “explana-
tion”, while acknowledging the ongoing debate over their
meaning, not only within the AI community but also in phi-
losophy, epistemology, and psychology. Our formalization
offers a robust theory-grounded foundation for explainable
AI, but it does require readers to engage with abstract cate-
gorical structures. However, embracing this initial challenge
brings a substantial payoff by enabling us to achieve a com-
prehensive and unified theory of the field, encompassing all
the pertinent instantiations of XAI notions, structures, expla-
nations, and paradigms.

Conclusion This work presents the first formal theory of
explainable AI. In particular, we formalized key notions and
processes that were still lacking a rigorous definition. We
then show that our categorical framework enables us to: (i)
model existing learning schemes and architectures, (ii) for-
mally define the term “explanation”, (iii) establish a theo-
retical basis for XAI taxonomies, and (iv) emphasize com-
monly overlooked aspects of XAI methods, like the compar-
ison between syntactic and semantics explanations. Through



this work, we provide a first answer to the pressing need
for a sound foundation and formalism in XAI as advocated
by the current literature (Adadi and Berrada 2018; Palacio
et al. 2021). While our taxonomy provides guidance to nav-
igate the field, our formalism strengthens the reputation of
explainable AI encouraging a safe and ethical deployment
of AI technologies. We think that this work may contribute
in paving the way for new research directions in XAI, in-
cluding the exploration of previously overlooked theoreti-
cal side of explainable AI, and the mathematical definition
of other foundational XAI notions, like “understandability”
and “trustworthiness”.
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A Elements of Category Theory
A.1 Monoidal Categories
The process interpretation of monoidal categories (Coecke and Kissinger 2017; Fritz 2020) sees morphisms in monoidal cate-
gories as modelling processes with multiple inputs and multiple outputs. Monoidal categories also provide an intuitive syntax
for them through string diagrams (Joyal and Street 1991). The coherence theorem for monoidal categories (Mac Lane 1978)
ensures that string diagrams are a sound and complete syntax for them and thus all coherence equations for monoidal categories
correspond to continuous deformations of string diagrams. One of the main advantages of string diagrams is that they make
reasoning with equational theories more intuitive.

Definition A.1 (Eilenberg and MacLane (1945)). A category C is given by a class of objects Co and, for every two objects
X,Y ∈ Co, a set of morphisms hom(X,Y ) with input type X and output type Y . A morphism f ∈ hom(X,Y ) is written
f : X → Y . For all morphisms f : X → Y and morphisms g : Y → Z there is a composite morphisms f ; g : X → Z. For
each object X ∈ Co there is an identity morphism 1X ∈ hom(X,X), which represents the process that “does nothing” to the
input and just returns it as it is. Composition needs to be associative, i.e. there is no ambiguity in writing f ; g ; h, and unital,
i.e. f ; 1Y = f = 1X ; f (Figure 3, bottom).

f gX Z X X

fX Y = fX Y = fX Y

Figure 3: String diagrams for the composition of two morphisms (top, left), the identity morphism (top, right), and the unitality
condition (bottom).

Monoidal categories (Mac Lane 1978) are categories endowed with extra structure, a monoidal product and a monoidal unit,
that allows morphisms to be composed in parallel. The monoidal product is a functor × : C × C → C that associates to two
processes, f1 : X1 → Y1 and f2 : X2 → Y2, their parallel composition f1 × f2 : X1 ×X2 → Y1 × Y2 (Figure 4, center). The
monoidal unit is an object e ∈ Co, which represents the “absence of inputs or outputs” and needs to satisfy X×e ∼= X ∼= e×X ,
for each X ∈ Co. For this reason, this object is often not drawn in string diagrams and a morphism s : e → Y , or t : X → e, is
represented as a box with no inputs, or no outputs.

s Y and tX

A.2 Cartesian and Symmetric Monoidal Categories
A symmetric monoidal structure on a category is required to satisfy some coherence conditions (Mac Lane 1978), which ensure
that string diagrams are a sound and complete syntax for symmetric monoidal categories (Joyal and Street 1991). Like functors
are mappings between categories that preserve their structure, symmetric monoidal functors are mappings between symmetric
monoidal categories that preserve the structure and axioms of symmetric monoidal categories.

A monoidal category is symmetric if there is a morphism σX,Y : X × Y → Y ×X , for any two objects X and Y , called the
symmetry. The inverse of σX,Y is σY,X :

h
X1
X2
X3

Y1

Y2

f1

f2

X1 Y1

X2 Y2

X

Y

Y

X

Figure 4: A morphism with multiple inputs and outputs (left), the parallel composition of two morphisms (center), and the
symmetry (right) in a monoidal category.
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Moreover, the symmetries are a natural transformation, i.e. morphisms can be swapped,

f

g

X

Z

W

Y
=

f

gX

Z

W

Y
.

Some symmetric monoidal categories have additional structure that allows resources to be copied and discarded (Fox 1976).
These are called Cartesian categories. It is customary to indicate with × the monoidal product given by the cartesian structure
and with e the corresponding monoidal unit. Cartesian categories are equipped, for every object X , with morphisms νX : X →
X ×X and ϵX : X → e:

X
X

X
and X

These need to be natural transformations, i.e. morphisms can be copied and discarded,

fX
Y

Y
=

f

f
X

Y

Y

fX = Y

be coherent with the monoidal structure

X × Y
X × Y

X × Y
=

X

Y

X

Y

X
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and satisfy the equations of a cocommutative comonoid.
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A.3 Feedback Monoidal Categories
Definition A.2. A feedback monoidal category is a symmetric monoidal category C endowed with an endofunctor F : C → C,
and an operation ⟲S : hom(X × F (S), Y × S) → hom(X,Y ) for all objects X,Y, S in C, which satisfies the following
axioms:

(Tightening) ⟲S ((g × 1FS) ; f ; (h× 1S)) = g; ⟲S (f) ; h;
(Joining) ⟲S×T (f) =⟲S (⟲T (f));
(Vanishing) ⟲1 (f) = f ;
(Strength) ⟲S (g × f) = g× ⟲S (f);
(Sliding) ⟲T (f ; (1Y × g)) =⟲S ((1X × g) ; f).

Feedback monoidal functors are mappings between feedback monoidal categories that preserve the structure and axioms of
feedback monoidal categories.

Feedback monoidal categories are the syntax for processes with feedback loops. When the monoidal structure of a feed-
back monoidal category is cartesian, we call it feedback cartesian category. Their semantics can be given by monoidal
streams (Di Lavore, de Felice, and Román 2022). In cartesian categories, these have an explicit description. We refer to
them as cartesian streams, but they have appeared in the literature multiple times under the name of “stateful morphism se-
quences” (Sprunger and Katsumata 2019) and “causal stream functions” (Uustalu and Vene 2005).



Learning schemes T (X) T (Y ) T (Y ∗) T (E) T (η)
Gen. unsup. model ⋄N ⋄N {∗}N {∗}N ⋆
Gen. sup. model ⋄N ⋄N ⋄N {∗}N ⋆
Gen. continual lear. model ⋄N ⋄N ⋄N {∗}N ⋆
Gen. explaining model ⋄N ⋄N ⋄N ⋄N ⋆

Table 1: General learning schemes. In the table the input, output are supposed to be arbitrary but of fixed type (i.e. ⋄N). The
architecture is supposed to be potentially variable over the time (i.e. ⋆). To express a fixed architecture with fixed domain is
sufficient to add the constraint T (η)i = T (η)i+1.

A.4 Cartesian Streams
A cartesian stream f : X → Y, with X = (X0, X1, . . . ) and Y = (Y0, Y1, . . . ), is a family of functions fn : Xn×· · ·×X0 → Yn

indexed by natural numbers. Cartesian streams form a category StreamSet.
Each fn gives the output of the stream at time n. We can compute the outputs until time n by combining f0, . . . , fn to get

f̂n : Xn × · · · ×X0 → Yn × · · · × Y0 as follows:

• f̂0 := f0

• f̂n+1 := (1Xn+1
× νXn×···×X0

) ; (fn+1 × f̂n)

fn+1

f̂n

Xn+1

Xn × · · · ×X0

Yn+1

Yn × · · · × Y0

The composition of two cartesian streams f : X → Y and g : Y → Z has components (f ; g)n := f̂n ; gn, and the identity stream
has projections as components (1X)n := πXn .

A.5 Free Categories
We generate “abstract” categories using the notion of free category (Mac Lane 1978). Intuitively, a free category serves as a
template for a class of categories (e.g., feedback monoidals). To generate a free category, we just need to specify a set of objects
and morphisms generators. Then we can realize “concrete” instances of a free category F using a functor from F to another
category C that preserves the axioms of F. If such a functor exists then C is of the same type of F (e.g., the image of a free
feedback monoidal category via a feedback functor is a feedback monoidal category).

A.6 Institutions
An institution I is constituted by:

(i) a category SignI whose objects are signatures (i.e. vocabularies of symbols);
(ii) a functor Sen : SignI 7→ Set providing sets of well-formed expressions (Σ-sentences) for each signature Σ ∈ SignoI ;
(iii) a functor Mod : SignopI 7→ Set providing semantic interpretations, i.e. worlds.

Furthermore, Satisfaction is then a parametrized relation |=Σ between Mod(Σ) and Sen(Σ), such that for all signature mor-
phism ρ : Σ 7→ Σ′, Σ′-model M ′, and any Σ-sentence e,

M ′ |=Σ ρ(e) iff ρ(M ′) |=Σ e

where ρ(e) abbreviates Sen(ρ)(e) and ρ(M ′) stands for Mod(ρ)(e).

A.7 Expressive power of abstract learning agents
Abstract explaining learning agents have the capability of encode a wide range of known learning processes given a suitable
translator functor. Indeed, Definition 3.5 allows to encode any learning scheme with an input (X), an optimized output (Y ),
a supervision (Y ∗), and an unoptimized output (E) of any conceivable type. It is important to note that there is no restriction
in how X,Y, Y ∗, E can be instantiated by a translator functor since, as object in a free category, they act as empty boxes
concretely filled by the given translator. The following Tables 1 and 2 we show the fundamental characteristics of translator
functors instantiating various type of learning processes with or without explanations as output of the model. We will use the
symbol ⋄ as wildcard of dataspace meaning any type of data and ⋆ as a wildcard for the type of functions and we denote with
T ′ an additional generic LA.



Learning models T (X) T (Y ) T (Y ∗) T (E) T (η)
MLPs ⋄N ⋄N ⋄N {∗}N T (η)i = T (η)i+1

RNNs XN ×HN Y N ×HN Y N {∗}N T (η)i = T (η)i+1

nural arch. search ⋄N ⋄N T (Y ) {∗}N ⋆
CBMs ⋄N ⋄N T (Y ) ⋄N (µ̂× 1P ); η̂

′

Post-hoc exps T ′(Y )× T ′(X)× T ′(P ) ⋄N T (Y ) ⋄N T (η)i = T (η)i+1

Intrin. exps ⋄N ⋄N T (Y ) ⋄N T (η)i = T (η)i+1

Model-agn. exps T ′(Y )× T ′(X) ⋄N T (Y ) ⋄N T (η)i = T (η)i+1

Model-spc. exps T ′(Y )× T ′(X)× T ′(P ) ⋄N T (Y ) ⋄N T (η)i = T (η)i+1

Backw.-base exps ⋄N × T ′(P ) ⋄N T (Y ) ⋄N T (η)i = T (η)i+1

Forw.-base exps ⋄N × h(T (P )) ⋄N T (Y ) ⋄N T (η)i = T (η)i+1

Table 2: Standard learning models. In the table H is the space of the state vector. For the explainers, T ′ is a translator instanti-
ating an LA to be explained, h(P) = ∂L(Y,Y)

∂P is the gradient of the loss function L on P , and T (η)i = T (η)i+1 represents a
fixed architecture with fixed domain.


