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Abstract
Let X be a curve over a field k finitely generated over Q and t an indeterminate.
We prove that, if s is a section of π1(X) → Gal(k) such that the base change sk(t) is
birationally liftable, then s comes from geometry. As a consequence we prove that the
section conjecture is equivalent to the cuspidalization of all sections over all finitely
generated fields.
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14G05 · 14F35

1 Introduction

Given X a geometrically connected, smooth curve over a field k with absolute Galois
group Gal(k), let SX/k be the set of sections of π1(X) → Gal(k) modulo the action of
π1(Xk̄) by conjugation, these are usually called Galois sections. A Galois section is
geometric if it is associated with a k-rational point of X and cuspidal if it is associated
with a k-rational point in the boundary X̄\X, where X̄ is the smooth completion of X.
Grothendieck made the following conjecture, nowadays called the section conjecture,
in a letter to Faltings [11].

Section Conjecture For every smooth, geometrically connected hyperbolic curve X

over a field k finitely generated over Q, every Galois section of X is either geometric
or cuspidal.

A birational version of the conjecture, called the birational section conjecture, has
been studied as it seems more approachable [13, 17, 21]. We can define a set Sk(X)/k

of sections of Gal(k(X)) → Gal(k) analogously to the above, its elements are called
birational Galois sections. A birational section is cuspidal if it comes from a rational
point of X̄.
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Birational Section Conjecture For every smooth, geometrically connected curve X

over a field k finitely generated over Q, every birational Galois section of X is cusp-
idal.

Recall that a Galois section of SX/k is birationally liftable if it’s in the image
of Sk(X)/k → SX/k [21, §2.1.1] (this is slightly different from the definition given
in [20, Definition 266]). Here is an alternative formulation of the birational section
conjecture, see Lemma 26.

Birational Section Conjecture, alternative formulation For every smooth, geometri-
cally connected curve X over a field k finitely generated over Q, every birationally
liftable Galois section of X is either geometric or cuspidal.

In this note we show that, if we strengthen the birationality assumption, we can
obtain the desired result. Namely, we show that if t is an indeterminate and s is a Ga-
lois section such that the base change sk(t) is birationally liftable, then s is geometric
or cuspidal.

1.1 Known results

J. Koenigsmann [13] proved that the birational section conjecture holds over finite
extensions of Qp . Clearly, one would like to pass from local fields to number fields.
Moreover, M. Saïdi and M. Tyler [17] have proved that the birational section conjec-
ture for number fields implies it for finitely generated extensions of Q.

J. Stix [21] obtained partial results about the passage from local fields to number
fields, let us describe them. Fix X a smooth, projective curve over a number field k

and s ∈ Sk(X)/k a Galois section of k(X). Using Koenigsmann’s results, s induces a
point xν ∈ X(kν) for every place ν.

Given an open subset U ⊆ X, choose some spreading out ˜U → Specok,S of U ,
where ok is the ring of integers of k and S is some finite set of places. Let NU be the
set of places of k such that xν is not integral: we have that NU depends on the choice
of ˜U only up to a finite number of places, hence the Dirichlet density of NU is well
defined.

Stix first proves that, if k is a totally real or imaginary quadratic number field, then
NU is infinite for some open subset U ⊆ X [21, Theorem A]. Secondly he proves
that, if NU has strictly positive Dirichlet density for some open subset U ⊆ X, then
s comes from a k-rational point of X \ U [21, Theorem B]. In order to prove the
birational section conjecture for totally real or imaginary quadratic number fields, it
is then sufficient to bridge the gap between Stix’s two results.

1.2 Our main theorem

We study the passage from local fields to number fields, too, but we use a differ-
ent approach. We strengthen the birationality assumption: under this strengthened
hypothesis, we obtain a complete result.
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Definition Let X be a curve over a field k, s ∈ SX/k a Galois section and t an inde-
terminate; consider the base change sk(t) ∈ SXk(t)/k(t) of s to k(t) [20, Definition 27].
We say that s is t-birationally liftable if sk(t) is birationally liftable.

Theorem A Let X be a smooth curve over a field k finitely generated over Q. A Galois
section of X is geometric or cuspidal if and only if it is t-birationally liftable.

A common theme in the study of the section conjecture is the attempt to repli-
cate with Galois sections the geometric constructions we make with points, see
e.g. [20, Chap. 3]. The idea underlying the proof of Theorem A is, given s a Ga-
lois section of P1 \ {0,1,∞}, to define “the polynomial t − s” so that, if s is
geometric associated to a k-rational point x ∈ k \ {0,1}, then “t − s” coincides
with the polynomial t − x. If s is t-birationally liftable then we are able to de-
fine this “polynomial” by using a birational lifting of sk(t) to produce an element

of H1(k(t),̂Z(1)) = k̂(t)∗.
This turns out to be sufficient: if we are over a number field k and, for a place

ν, the Galois section skν is associated with a point xν ∈ kν \ {0,1}, the fact that the
“polynomial t − s = t − xν” is defined over k forces xν to be k-rational and not to
depend on ν.

1.3 Consequences for the section conjecture

One of the main reasons for studying the birational section conjecture is to reduce the
section conjecture to a lifting, or cuspidalization, problem.

The section conjecture easily implies the following statement, which is sometimes
called cuspidalization conjecture in the literature.

Cuspidalization Conjecture For every smooth, geometrically connected hyperbolic
curve X over a field k finitely generated over Q and every non-empty open subset
U ⊂ X, the map SU/k → SX/k is surjective.

By a limit argument, the cuspidalization conjecture holds if and only if every Ga-
lois section of every hyperbolic curve over k is birationally liftable, see Lemma 23.

H. Esnault and P.H. Hai showed that the cuspidalization conjecture reduces the
section conjecture to the case of P1 \{0,1,∞} [9, Proposition 7.9]. For P1 \{0,1,∞}
one may hope to solve the conjecture with explicit computations, such as the n-
nilpotents obstructions introduced by J. Ellenberg and K. Wickelgren [23]. Moreover,
the cuspidalization conjecture reduces the section conjecture to the birational section
conjecture. Neither the case of P1 \ {0,1,∞} nor the birational section conjecture is
needed: the section conjecture is equivalent to the cuspidalization conjecture.

Theorem B Let X be a hyperbolic curve over a field k finitely generated over Q. The
following are equivalent.

• For every finitely generated extension K/k, every Galois section of XK is either
geometric or cuspidal.
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• For every finitely generated extension K/k, every Galois section of XK is bira-
tionally liftable.

As a consequence, the section conjecture is equivalent to the cuspidalization conjec-
ture.

1.4 Consequences for the birational section conjecture

It is well known that it is enough to prove the birational section conjecture for P1 \
{0,1,∞}. Thanks to Theorem A, it is then enough to show that for every birationally
liftable section s of P1 \ {0,1,∞} over a number field k the base change sk(t) lifts
to Gal(k(t)(P1)). We prove that it is enough to find a much simpler lifting, and we
manage to reduce the existence of said lifting to a problem of “interpolation of Galois
sections”, i.e. finding a Galois section with prescribed specializations of some curve
over k(t). Let us explain this.

We say that a morphism X → V is a family of curves if it has the form X̄ \D → V

where X̄ → V is smooth, proper, with geometrically connected fibers of dimension
1, and D ⊂ X̄ is a divisor finite étale over V . Assume that V is an affine curve over a
field of characteristic 0 and let F be a geometric fiber, then the sequence

1 → π1(F ) → π1(X) → π1(V ) → 1

is exact, see Lemma 1 (we stress that we are assuming V affine, otherwise this is
false).

We may define a space SX/V of “global” sections π1(V ) → π1(X) modulo con-
jugation by π1(F ). Let us call these π1 sections, in analogy with Galois sections. If
V is an affine open subset of P1 over a number field k, a π1 section r of X → V is
uniquely determined by its specializations rv ∈ SXv/k , v ∈ V (k), see Lemma 25.

If z ∈ Sk(P1)/k is a birational Galois section of P1, for every open subset U ⊂ P1

denote by ιU (z) the image of z in SU/k . Let � ⊂ P1 × P1 be the diagonal.

Theorem C The following are equivalent.

• The birational section conjecture holds.
• For every number field k, every section z ∈ Sk(P1)/k and every open subset U ⊆ P1,

there exists an open subset V ⊆ U and a π1 section r of U ×V \� → V such that
the specialization rv is equal to ιU\{v}(z) for every v ∈ V (k).

Since a π1 section is uniquely determined by its specializations, the section r in
the statement of Theorem C is a lifting to U × V \ � of the base change (ιU (z))V ∈
SU×V/V .

Notation and conventions Throughout the article, it is tacitly assumed that schemes
do not have points of positive characteristic. In particular, fields are of characteristic
0. Curves are smooth and geometrically connected. If X is a curve, we denote by
X̄ its smooth completion. The letter R always denotes a DVR with fraction field
K and residue field k. If A is an abelian group, we denote by ̂A the projective limit
lim←−n

A/nA. We write b.l. (resp. t-b.l.) as an abbreviation for birationally liftable (resp.
t-birationally liftable).
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2 Étale fundamental gerbes

In addition to the classical language of étale fundamental groups, we use the language
of étale fundamental gerbes [3, §8, §9], [6, Appendix A]. Étale fundamental gerbes
are essentially an alternative point of view on the theory of étale fundamental groups
where groups are replaced by a particular type of algebraic stack, i.e. gerbes. Every-
thing that can be done in one language can be translated into the other one and it is
actually possible to use both languages at the same time, switching back and forth
depending on convenience.

Generally speaking, fundamental groups are better for handling geometric argu-
ments about the original varieties, while fundamental gerbes are better for handling
arguments about Galois sections. The reason is that the étale fundamental gerbe, in
some sense, is the space of Galois sections, but constructed directly without passing
through fundamental groups.

Furthermore, fundamental gerbes are naturally base point free. This is particularly
helpful since we make a lot of specialization arguments involving different fibers of a
single family, and doing so while keeping track of base points would be problematic.
With fundamental gerbes, the problem just doesn’t exist. Moreover, the theory of
non-unique specializations in the classical language requires making non-canonical
choices, while this is not the case from the point of view of gerbes.

If X is geometrically connected over a field k, the étale fundamental gerbe �X/k

is a profinite étale stack over k with a morphism X → �X/k universal among mor-
phisms to finite étale stacks over k. The space of Galois sections SX/k of X is in
natural bijection with the set of isomorphism classes of �X/k(k). Furthermore, the
étale fundamental gerbe behaves well with respect to base change in characteristic 0
[6, Proposition A.18].

Fundamental gerbes are easier to understand when there is a k-rational point. Re-
call that, if G is an affine group scheme over k, the classifying stack BkG is defined
as follows: given a scheme S over k, then BkG(S) is the groupoid of G-torsors for
the fpqc topology over S, see for instance [16, Definition 8.1.14]. If G is of finite
type over k every G-torsor is trivialized by an fppf covering S′ → S, namely S′ = T ,
and hence the fppf topology is sufficient. In general, e.g. if G is pro-finite, we need to
use the fpqc topology, see [3] for details. If X has a rational point x ∈ X(k), the Ga-
lois group Gal(k̄/k) acts continuously on the étale fundamental group π1(Xk̄, x), this
allows us to define an étale fundamental group scheme π1(X,x) which is a twisted
form of π1(Xk̄, x). The étale fundamental gerbe identifies naturally with the classify-
ing stack Bkπ1(X,x), and the k-rational sections of �X/k correspond to π1(X,x)-
torsors over k.

2.1 Relative fundamental gerbes

In order to do specialization arguments, we need to work with families of curves
for which there is a short exact sequence of étale fundamental groups. We identify
very restrictive assumptions under which this works, these are sufficient for our pur-
poses.
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Lemma 1 Let k be a field of characteristic 0 and A a ring which is a localization of
a 1-dimensional regular domain ˜A of finite type over k, write C = SpecA. If X → C

is a family of curves and F is a geometric fiber, then

1 → π1(F ) → π1(X) → π1(C) → 1

is exact.

Proof Assume first that A is a 1-dimensional regular domain of finite type over k.
If k = C, the sequence of topological fundamental groups is exact since the second

homotopy group of C is trivial, and we get an exact sequence of profinite completions
by [2, Proposition 5] and [12, Proposition 3.7].

Assume that k is any field of characteristic 0, it is clearly enough to do the case
in which k is algebraically closed. In this case, since everything is of finite type there
exists an algebraically closed field k′ with embeddings k′ ⊂ k and k′ ⊂ C such that
X → C descends to a family of curves X′ → C′ over k′. Since étale fundamental
groups are invariant under base change of algebraically closed fields [10, Exposé X,
Corollaire 1.8], the statement follows from the case k = C.

If A is a localization of a 1-dimensional regular domain ˜A of finite type over
k, since X is of finite type over C = SpecA then up to localizing a finite number
of elements of ˜A we may assume that X extends to a family of curves ˜X → ˜C =
Spec ˜A. We have that π1(C) 
 lim←−U

π1(U) where U varies among open subsets of ˜C

containing C ⊂ ˜C; this follows from the fact that the category of finite étale covers
of C is the direct limit of the categories of finite étale covers of U for varying U .
Analogously, π1(X) 
 lim←−U

π1(˜XU).

For every open subset C ⊂ U ⊂ ˜C, by the preceding case we have a short exact
sequence

1 → π1(F ) → π1(˜XU) → π1(U) → 1,

hence we obtain a projective system of short exact sequences where the left term is
constant. This implies that

π1(X) 
 lim←−
U

π1(˜X) ×π1(˜C) π1(U) 
 π1(˜X) ×π1(˜C) π1(C),

and the statement follows. �

Let X → C be a family of curves as in Lemma 1. Define the relative fundamental
gerbe �X/C by the 2-cartesian diagram

�X/C �X/k

C �C/k,

there is a structural morphism X → �X/C over C.



On the birational section conjecture with strong birationality. . .

If k′/k is a field extension and c : Speck′ → C is a point, the induced morphism

�Xc/k′ → �X/C ×C Speck′

is an isomorphism: using the fact that the étale fundamental gerbe behaves well un-
der base change [6, Proposition A.18], this is a direct consequence of the exactness of
the sequence of étale fundamental groups. Because of this, the relative fundamental
gerbe is a convenient way of packing the spaces of Galois sections of the fibers with-
out choosing base points. So to speak, it is the “relative family of spaces of Galois
sections”.

Lemma 2 The relative fundamental gerbe �X/C → C is a projective limit lim←−�i of
proper, étale morphisms �i → C which are gerbes over C.

Proof Since �X/k , �C/k are pro-finite étale, then we may write them as projective
limits lim←−i

�i , lim←−i
	i of finite étale gerbes over k with �X/k → �i , �C/k → 	i

locally full [4, Definition 3.4, Proposition 3.9]. Up to re-indexing, we may assume
that �X/k → �C/k induces a morphism �i → 	i for every i; the fact that the fibers
of X → C are geometrically connected implies that �X/k → �C/k is locally full
(i.e. the homomorphism of geometric fundamental groups is surjective), which in
turn implies that �i → 	i is locally full. The morphism �i → 	i is a proper étale
relative gerbe: it is proper étale since �i , 	i are proper étale over k, and it is a
relative gerbe by [4, Proposition 3.10]. The statement then follows by defining �i as
�i ×	i

C. �

3 Non-unique specializations of ramified Galois sections

Classically, the specialization of a Galois section is defined if the original Galois sec-
tion is unramified [20, §8.2], i.e. when the ramification homomorphism is trivial. A
notion of specialization exists always, as long as we don’t require that the specializa-
tion is unique. If the section is unramified, this “generalized specialization” is unique
and coincides with the classical specialization. While a definition of specialization
for ramified sections exists in the literature [20, Corollary 8.9], little else in known
beyond the definition itself.

Let R be a DVR with fraction field K and residue field k, the n-th root stack
n
√

SpecR of SpecR is defined for every n [1, Appendix B]. If π ∈ R is a uniformiz-
ing parameter, then n

√
SpecR is isomorphic to the quotient stack [SpecR( n

√
π)/μn],

but the definition of root stack does not depend on the choice of π . The morphism
n
√

SpecR → SpecR is generically an isomorphism, while the closed fiber with the
reduced structure is non-canonically isomorphic to the classifying stack Bμn.

The infinite root stack ∞√SpecR is the projective limit lim←−n

n
√

SpecR, see [14]

for details. Let c ∈ SpecR be the closed point and S1
c the reduced fiber of ∞√SpecR

over c, it is non-canonically isomorphic to the classifying stack Bk
̂Z(1) of ̂Z(1) over

k. The notation S1
c is meant to be reminiscent of the topological space S1, which is

the classifying space BZ of Z. There is a non-canonical isomorphism between the
isomorphism classes of S1

c (k) and H1(k,̂Z(1)) = lim←−n
k∗/k∗n = ̂k∗.
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Recall that a morphism Y → X of fibered categories over k is constant if there
exists a factorization Y → Speck → X.

Proposition 3 Let X → C be a family of curves as in Lemma 1, c ∈ C a closed point
with local ring R and z : SpecK → �X/C a generic Galois section, where K is the
fraction field of C. Then z extends to a 2-commutative diagram

SpecK ∞√SpecR �X/C

SpecR C.

The extension ∞√SpecR → �X/C is unique up to a unique isomorphism.
We call the induced morphism S1

c → �Xc/k(c) the specializing loop γz(c) of z at
c. An extension SpecR → �X/C exists if and only if the specializing loop is constant.

Proof Using Lemma 2, this is a direct consequence of [8, Theorem 3.1]. �

Definition 4 A specialization of z at c is any Galois section of Xc/k(c) in the es-
sential image of the specializing loop S1

c (k(c)) → �Xc/k(c)(k(c)) of z at c evaluated
on k(c). A specialization always exists, but in general it might be not unique. If the
specializing loop is constant, then the specialization is unique (the converse is false
in general).

If we fix any section s ∈ S1
c (k(c)), the specializing loop γz : S1

c → �Xc/kc is con-
stant if and only if the corresponding homomorphism of group schemes ̂Z(1) =
Aut(s) → Aut(γz(s)) is trivial. Suppose for simplicity that k(c) = k. By the char-
acterization given above, the specializing loop of z at c is constant if and only if the
specializing loop of zk̄(C) is constant at ck̄ : having constant specializing loop in the

closed fiber Xc only depends on the base change to k̄ of the family, nonetheless it
encapsulates arithmetic information over k, i.e. uniqueness of the specialization.

Remark 5 A specialization of a ramified section can be constructed in the language
of étale fundamental groups as follows (see also [20, Corollary 89]). Let R be a DVR
with fraction and residue fields K , k of characteristic 0, denote by Rh a henselian-
ization and Kh the fraction field. We may identify Gal(k̄/k) = π1(SpecRh), and if
X → SpecR is a family of curves then π1(Xk) 
 π1(XRh). Since Rh is henselian,
the Galois group Gal(K̄/Kh) coincides with the decomposition subgroup and hence
it is an extension of Gal(k̄/k) by the inertia subgroup.

Let π ∈ Rh be a uniformizing parameter, choose a n-th root of π for every n in a
compatible way and let Kh( ∞√π) be the corresponding extension of Kh, we have that
Gal(K̄/Kh( ∞√π)) 
 Gal(k̄/k) defines a section of Gal(K̄/Kh) → π1(SpecRh) =
Gal(k̄/k).

If Gal(K̄/K) → π1(XK) is a generic Galois section, it induces a Galois section
Gal(K̄/Kh) → π1(XKh) and a specialization is defined by the composition

Gal(k̄/k) → Gal(K̄/Kh) → π1(XKh) → π1(XRh) 
 π1(Xk).
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Let I ⊂ Gal(K̄/Kh) be the inertia subgroup, by composition we have a map I →
π1(Xk̄) ⊂ π1(Xk) which is called ramification map: unramified Galois sections are
those for which this map is trivial.

If we fix a section of D → Gal(k̄/k), the corresponding specialization induces an
action of Gal(k̄/k) on π1(Xk̄), and the ramification map is Galois-equivariant with
respect to the natural Galois action on I 
 ̂Z(1). The set of specializations is the
image in nonabelian Galois cohomology of the ramification map.

Example 6 Let R be a DVR as in Lemma 1 with fraction field K and valuation v :
K∗ → Z, this extends naturally to an homomorphism ̂K∗ → ̂Z which we still call v.
The morphism Gm = A1

R \ {0} → SpecR is a family of curves.
The section 1 ∈ Gm(R) gives an identification �Gm/R = BR

̂Z(1), in particu-
lar �Gm/R(R) = ̂R∗ and �Gm,K/K(K) = ̂K∗. If z ∈ ̂K∗ is a generic section, by
Proposition 3 the specializing loop γz is constant if and only if z is in the image
of ̂R∗ → ̂K∗, or equivalently if and only if v(z) = 0 ∈ ̂Z.

It can be proved that unramified Galois sections in the sense of [20, Chap. 8] are
those for which the specializing loop is constant, though we don’t need this fact. If
the specializing loop is constant, the specialization is clearly unique; this is coherent
with the fact that unramified Galois sections have a canonical specialization.

The converse is false in general: if the residue field is algebraically closed, the
specialization is unique since there is only one ̂Z(1)-torsor up to equivalence, but the
Galois section might be ramified and the specializing loop not constant. For instance,
we may choose R = C[x](x) in Example 6, the generic Galois section associated with

x ∈ Ĉ(x)∗ \ Ĉ[x]∗(x) has non-constant specializing loop but unique specialization.
Still, in arithmetic situations, it is often the case that uniqueness of specialization

forces a constant specializing loop.

Lemma 7 Let T be a torus over a field k with a surjective valuation ν : k∗ → Z.
Suppose that we have a morphism of gerbes γ : Bk

̂Z(1) → �T/k . If the image of
Bk

̂Z(1)(k) in �T/k(kν) has a finite number of isomorphism classes, then γ is con-
stant.

Proof Using the image of the preferred k-rational section of Bk
̂Z(1) corresponding

to the trivial torsor, we may identify �T/k with Bkπ1(T ), and we reduce to prove
the following: if f : ̂Z(1) → π1(Tk̄) is a Galois equivariant homomorphism such that

the composition H1(k,̂Z(1))
f−→ H1(k,π1(Tk̄))

res−→ H1(kν,π1(Tk̄)) has finite image,
then f is trivial.

Choose k′/k a finite extension such that Tk′ 
 Gn
m, we get an identification

π1(Tk̄) 
 ̂Zn(1) of Galois modules over k′. Let ν′ be an extension of ν to k′, de-
note by r the ramification index of ν′/ν. The valuation ν induces an homomorphism
H1(kν,̂Z(1)) = lim←−i

k∗
ν /k∗i

ν → ̂Z, and similarly for k′
ν′ ; with an abuse of notation, we

denote these homomorphisms by ν, ν′.
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We have a commutative diagram

H1(k,̂Z(1)) H1(kν,̂Z(1)) ̂Z

H1(k′
ν′ ,̂Z(1)) ̂Z

H1(kν,π1(Tk̄)) H1(k′
ν′ ,π1(Tk̄) 
 ̂Z(1)n) π1(Tk̄) 
 ̂Zn

res

res◦H1(f )

res

ν

r

H1(f )

ν′

f

res ν′

where the last identification π1(Tk̄) 
 ̂Zn ignores the Galois action. The hypothesis
implies that the composition

f ◦ r ◦ ν ◦ res = ν′ ◦ res ◦ H1(f ) : H1(k,̂Z(1)) → ̂Zn

has finite image, hence it is 0 since ̂Z has no torsion. Notice that, since ν : k∗ → Z is
surjective, then the upper horizontal arrow ν ◦ res : H1(k,̂Z(1)) = lim←−i

k∗/k∗i → ̂Z

is surjective as well, and hence f ◦ r = rf = 0. Since r = 0, we get that f = 0, as
desired. �

Lemma 8 Let k be a number field with a finite place ν, X a curve over k, γ :
Bk

̂Z(1) → �X/k a morphism of gerbes. If the image of Bk
̂Z(1)(k) in �X/k(kν) has

a finite number of isomorphism classes, then γ is constant.

Proof If by contradiction γ is not constant, i.e. the associated homomorphism ̂Z →
π1(Xk̄) is not trivial, up to replacing X with a finite étale cover we may assume
that the composition Bk

̂Z(1) → �X/k → �ab
X/k is not constant, where �ab

X/k is the
abelianized fundamental gerbe, equivalently we may assume that the induced homo-
morphism ̂Z → π1(Xk̄)

ab is not trivial. We may do so because the map of Galois
sections associated with a finite étale cover has finite fibers, hence the hypothesis
remains true after passing to the covering.

Let J be the semi-abelian Jacobian of X, it is an extension of an abelian variety
A by a torus T and we have a canonical identification �ab

X/k = �J/k . We may use

the images of preferred section of Bk
̂Z(1) to give identifications �J/k = Bk TJ ,

�A/k = Bk TA where TJ = lim←−n
J [n], TA = lim←−n

A[n] are the Tate modules; the

morphisms of gerbes then correspond to homomorphisms ̂Z(1) → TJ , TJ → TA.
By weight reasons, the composition ̂Z(1) → TJ → TA is trivial, hence we have

a factorization ̂Z(1) → TT → TJ . We have a short exact sequence

lim←−
n

A[n](kν) → H1(kν,TT ) → H1(kν,TJ ).

By Mattuck’s theorem [15] A(kν) has finite torsion, thus H1(kν,TT ) → H1(kν,TJ )

is injective. The hypothesis implies that the image of H1(k,̂Z(1)) in H1(kν,TJ ) is
finite, hence the image in H1(kν,TT ) is finite too. By Lemma 7, ̂Z(1) → TT is
trivial, which is contradiction with the fact that Bk

̂Z(1) → �ab
X/k is not constant. �
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4 Properties of t -birationally liftable Galois sections

In order to work with t-b.l. Galois sections, we need to prove a number of facts about
them.

Lemma 9 Let R be a DVR, X → SpecR a family of curves and p ∈ X a closed point
in the closed fiber. There exists a non-empty divisor D ⊂ X finite étale over R with
p ∈ D.

Proof Let K , k be the fraction and residue fields of R. If p is k-rational, this essen-
tially follows from Bertini’s theorem by taking a generic hyperplane section passing
through p. If p is not k-rational, though, this is more subtle. We are going to use
a Bertini-like argument to reduce to the case of P1

R , where we are able to make an
explicit construction.

By definition, X → SpecR has the form X̄ \ D0 → SpecR with X̄ → SpecR

smooth, projective, with geometrically connected fibers of dimension 1, and D0 ⊂
X̄ a divisor finite étale over R. Choose a projective embedding X̄ ⊂ Pn

R and let
p1, . . . , pr be the geometric points over p.

A generic (n − 2)-dimensional linear subspace Lk of Pn
k has the following prop-

erties

• Lk ∩ X̄k = ∅,
• for every i the hyperplane Hi ⊂ Pn

k̄
spanned by Lk and pi has transversal intersec-

tions with X̄k̄ ,
• ∀i : Hi ∩ D0 = ∅.

Let q̄0, q̄1 ∈ k[t0, . . . , tn] two k-linear forms which are equations for Lk , choose
q0, q1 ∈ R[t0, . . . , tn] R-linear forms which lift q̄0, q̄1 and let L ⊂ Pn

R be their van-
ishing locus, the fact that Lk ∩ X̄k = ∅ implies that L ∩ X̄ = ∅ since everything is
proper over R.

The graded homomorphism R[x0, x1] → R[t0, . . . , tn], xi �→ qi defines a mor-
phism

Pn
R \ L = ProjR[t0, . . . , tn] \ L → P1

R = ProjR[x0, x1].
We have simply constructed the projection centered in L: we can do this even though
we don’t have a base field.

Since X ∩ L = ∅, we get a morphism f : X̄ → P1
R over R with X̄k → P1

k surjec-
tive. The morphism f is flat since it is finite and dominant, and both X̄ and P1

R are
regular. Moreover, f is unramified, and hence étale, at Speck(Xk) ⊂ X: notice that
the diagram

X̄k P1
k Speck

X̄ P1
R SpecR
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is cartesian, hence Speck(P1
k) ×

P
1
R

X̄ = Speck(X̄k) is reduced. By purity, it follows

that the branch locus of f is the closure of a finite number of closed points of P1
K . Let

K ′′/K be some finite extension and HK ′′ ⊂ Pn
K ′′ a hyperplane containing LK ′′ and

corresponding to a branch point in P1
K ; equivalently, HK ′′ does not have transversal

intersections with XK ′′ . If Hk′′ ⊂ Pn
k′′ is a specialization of HK ′′ in some finite ex-

tension k′′ of k, then Hk′′ does not have transversal intersections with Xk′′ , it follows
that Hk′′ does not contain pi for every i. This implies that Hk′′ corresponds to a point
of P1(k′′) different from f (p), hence f (p) is not a branch point for f .

Let U0 ⊂ P1
R be the open subset where f is étale, i.e. the complement of the image

of the ramification locus in X̄, and U = U0 \f (D0). Since f (p) is not a branch point
and Hi ∩ D0 = ∅ for every i we get that f (p) ∈ U . Furthermore, f −1(U) → U is
finite étale by construction. It is then enough to find a divisor of U containing f (p)

and which is finite étale over R.
Since we are in characteristic 0, then k(p) 
 k[x]/q̄(x) for some irreducible,

separable polynomial q̄ ∈ k[x], let q ∈ R[x] be any lifting of q̄ . By construction,
R′ = R[x]/q(x) is finite étale over R and has only one closed point, hence it is a
DVR. Let K ′ be the fraction field of R′, there are infinitely many points of P1(K ′)
which specialize to p ∈ P1(k(p)), hence we may choose one in U(K ′); denote by
E ⊂ P1

R its closure, we have an extension SpecR′ → E ⊂ P1
R . By construction, E is

finite and flat over R of degree equal to [K ′ : K]. Furthermore, E contains p, which
satisfies [k(p) : k] = [K ′ : K]. Because of this, E contains only p and a generic point
contained in U , hence E ⊂ U and SpecR′ → E is surjective. Since R′ is étale over
R we get that E is étale over R as well (we have actually proved that SpecR′ → E

is an isomorphism, though we don’t need this).
Notice that if we try to work with R′-sections of X̄ we run into problems: it might

be that X(K ′) does not contain points which specialize to p, and if we try to enlarge
R′ again we might get a semi-local ring with several closed points which we are
not able to control simultaneously. Making a Bertini-like argument over X̄R′ runs
into problems too: while we may find the desired divisor étale over R′, there is no
guarantee that its image in X̄ is étale over R. �

Corollary 10 Let R be a DVR, X → SpecR a family of curves. There exists a direct
system (Di)i of divisors finite étale over R such that Xk \ ⋃

i Di contains only the
generic point of Xk .

Lemma 11 Specializations of b.l. sections are b.l.

Proof Let X → SpecR be a family of curves with R, K , k as above and c ∈ SpecR

the closed point. If z ∈ �XK/K(K) is a generic, b.l. Galois section, we have a spe-
cializing loop γz : S1

c → �Xk/k .
Let Di ⊆ X be a direct system of divisors as in Corollary 10. We have that

Xi = X \ Di is a family of curves for every i, write X∞ = lim←−i
Xi and �X∞/R =

lim←−i
�Xi/R . The closed fiber of X∞ is naturally isomorphic to Speck(Xk).

Since z is b.l. and SpecK(X) ⊆ X∞,K , there exists a lifting z′ ∈ �X∞,K/K(K)

of z to X∞,K . By a limit argument, the specializing loops of z′ in �Xi/R induce a
specializing loop γz′ : S1

c → �X∞,k/k = �k(Xk)/k , and the composition of γz′ with
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�k(Xk)/k → �Xk/k is isomorphic to γz. Hence, every specialization of z lifts to
Speck(Xk). �

Corollary 12 t-b.l. sections are b.l.

Proof Let X be a curve over a field k and s ∈ �X/k(k) a t-b.l. Galois section. Write
R = k[t](t), we have that sk(t) is a generic section of �XR/R and s is a specialization
of sk(t). By hypothesis sk(t) is b.l., hence its specialization s is b.l. by Lemma 11. �

Lemma 13 Specializations of t-b.l. sections are t-b.l.

Proof Let X → SpecR be as above, z ∈ �XK/K(K) a generic, t-b.l. Galois section,
s ∈ �Xk/k(k) a specialization. Let R′ be the local ring of the generic point of the
divisor A1

k ⊆ A1
R . We have that R′ is a DVR with fraction field K ′ = K(t) and residue

field equal k′ = k(t). Consider the family of curves XR′ → SpecR′, then zK(t) =
zK ′ ∈ �XK ′/K ′(K ′) is by hypothesis a b.l. Galois section. We have that sk(t) = sk′ is
a specialization of zK ′ and thus it is b.l. by Lemma 11. �

Lemma 14 Let f : Y → X be a dominant morphism of curves over a field k and
s ∈ �Y/k(k) a Galois section. If s is b.l. then f (s) ∈ �X/k(k) is b.l. If f is finite
étale, the converse holds.

Proof The first statement is obvious. If f is finite étale, the second statement follows
from the fact that Gal(k(Y )) = π1(Y ) ×π1(X) Gal(k(X)). �

Corollary 15 Let f : Y → X be a dominant morphism of curves over a field k and
s ∈ �Y/k(k) a Galois section. If s is t-b.l. then f (s) ∈ �X/k(k) is t-b.l. If f is finite
étale, the converse holds. �

We say that a curve X is parabolic if it has genus 0 and the degree of X̄ \ X is
at most 2. If X is proper of genus 0, then there is a unique Galois section, and it is
geometric if and only if X = P1. If X is parabolic affine, every Galois section of X

is cuspidal (the only non-trivial case is settled by [18, Theorem A]). Because of this,
we can always assume that X is non-parabolic.

If X is a curve over a number field k and s is a b.l. section, by Koenigsmann’s
results [13], [21, Proposition 1] for every finite place ν of k there exists a local point
xν ∈ X̄(kν) such that skν is associated with xν , i.e. if xν ∈ X then sν is the geometric
section associated with xν , otherwise sν is one of the cuspidal sections of the packet
associated with xν ∈ X̄ \ X.

If X is non-parabolic, the local point xν associated with s is unique. To check this,
we can pass to an étale neighbourhood Y of genus ≥ 1 and use the injectivity of the
section map [20, Proposition 75] on Ȳkν .

Lemma 16 Let X be a curve over a number field k, U ⊆ X a non-empty open subset
and s ∈ �X/k(k) a t-b.l. Galois section. There exists a t-b.l. section of U which lifts s.
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Proof We may assume that X is non-parabolic and that s is neither geometric nor
cuspidal, otherwise this is trivial.

By hypothesis, sk(t) lifts to a b.l. Galois section r0 of Uk(t), we are going to show
that r0 is the base change to k(t) of some Galois section of U . Identify k(t) with the
fraction field of A1 and choose c ∈ A1 a closed point with residue field k′.

For every finite place ν of k there is a unique local point xν ∈ X̄(kν) associated
with s. Since s lifts to a b.l. section of U by Corollary 12 and it is not geometric nor
cuspidal, the set of places ν such that xν ∈ U has Dirichlet density 1 by [21, Theorem
B], hence we may choose ν with xν ∈ U and k′ ⊂ kν . If r0,c is a specialization of r0

at c, by construction it is b.l. and lifts s, hence r0,c,kν is geometric associated with xν .
By Lemma 8, the specializing loop S1

c → �Uk′/k′ of r0 at c is constant and hence r0

extends to a section SpecOc → �U×A1/A1 by Proposition 3.
Since we can do this for every closed point c ∈ A1 and we may write �U×A1/A1

as a product �U/k ×k A
1, by [5, Corollary A.3] we get that r0 extends to a section

r̃0 : A1 → �U×A1/A1 . Since �A1/k = Speck, the composition A1 → �U×A1/A1 →
�U/k factorizes through a section r : Speck → �U/k and hence r̃0 = rA1 , r0 = rk(t).
This implies that r is a t-b.l. lifting of s. �

5 The main argument

This section consists of a unique statement. The main theorems will follow easily
from it.

Proposition 17 Let k be a number field, ν a finite place, write U = A1 \{1,2}. Let s ∈
�U/k(k) be a b.l. Galois section and xν ∈ P1(kν) the unique associated local point.
Let δ : Speck(t) → A1 be the “diagonal” point, i.e. the generic one, and assume
that sk(t) lifts to a section of Speck(A1) ⊗k k(t) \ {δ} (e.g. if s is t-b.l.). Then xν is
k-rational.

Proof We may assume that xν ∈ U since otherwise it is clearly k-rational. Let r0 be
the lifting of sk(t) to Speck(A1)⊗k k(t) \ {δ}, and r the image of r0 in Uk(t) \ {δ}. We
divide the proof in three steps.

Step 1. Specializations of r . We are going to prove that, for every k-rational point
c ∈ U(k) different from xν , the specializing loop of r is constant: the idea is to prove
that for any specialization rc of r the base change of rc to kν is the geometric sec-
tion associated with xν ∈ U \ {c}(kν) regardless of the choice of rc , then we apply
Lemma 8.

Write � ⊆ U × U for the diagonal, consider the family of curves U × U \ � →
U and fix a k-rational point c ∈ U(k) with c = xν , we have (U × U \ �)c =
U \ {c}. Consider the scheme W = SpecOc ⊗k Oc \ � over SpecOc, it contains
Speck(A1) ⊗k k(t) \ {δ}. The morphism W → SpecOc is a projective limit of fami-
lies of curves over Oc (it can be obtained from UOc

→ SpecOc by removing divisors
étale over Oc), its generic fiber is SpecOc ⊗k k(t) \ {δ} while the special fiber is
SpecOc \ {c} = Speck(t).
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Choose rc ∈ �U\{c}/k(k) any specialization of r . Let r1 be the image of r0 in
SpecOc ⊗k k(t) \ {δ}. The specializing loop S1

c → �U\{c}/k of r factorizes through
the specializing loop S1

c → �k(t)/k of r1, hence rc is b.l. Furthermore, the image of
rc in U is a specialization of sk(t), i.e. it is s.

Since xν ∈ U \ {c}, rc is b.l. and maps to s, we have that the base change rc,kν is
the geometric section associated to xν , regardless of the choice of rc . By Lemma 8,
the specializing loop of r at c is constant.

Step 2. Change of coordinates. The map y �→ t − y defines an automorphism ϕ :
A1

k(t) → A1
k(t) with ϕ(δ) = 0. Write V = A1

k(t) \ {ϕ(1), ϕ(2)}, we have that ϕ restricts
to an isomorphism ϕ : Uk(t) → V . We thus get a Galois section ϕ(sk(t)) ∈ �V (k(t))

with a lifting ϕ(r) ∈ �V \{0}(k(t)). Since V \ {0} ⊆ Gm, then ϕ(r) induces a section

z ∈ �Gm/k(t)(k(t)) = B̂Z(1)(k(t)) = lim←−
n

k(t)∗/k(t)∗n = k̂(t)∗,

z = λ ·
∏

c

qec
c

where λ ∈ ̂k∗, c varies among closed points of A1, qc ∈ k[t] is the monic, irreducible
polynomial associated with c and ec ∈ ̂Z.1 For every k-rational point c = xν,1,2, the
fact that the specializing loop of r at c is constant implies that the same holds for
ϕ(r) and hence for z, hence ec = 0 by Example 6. Since we can repeat step 1 after
base changing to any finite extension of k, we get that ec = 0 for every closed point
c = xν,1,2.

If xν is algebraic over k, let q be its minimal polynomial and e the exponent of q

as a factor of z, otherwise q = 1 and e = 0. We may thus write

z = λ · qe · (t − 1)e1 · (t − 2)e2 .

We are going to prove that q has degree 1 and thus xν is k-rational.
Step 3. Specializations of z. Fix K a finite extension of k which splits q com-

pletely (if q = 1 choose K = k) and let η be an extension of ν. In the rest of the
proof, we are going to consider many K-rational points c ∈ K (or ci ∈ K). We will
always tacitly assume that c = 1,2 and q(c) = 0.

If we repeat steps 1 and 2 after base changing to K , for every c the base change to
Kη of the unique specialization of ϕ(r) at c is ϕ(xη), hence we obtain the equation

λ · q(c)e · (c − 1)e1 · (c − 2)e2 = c − xη ∈ ̂Kη
∗
,

and by applying η : ̂Kη
∗ → ̂Z we get

η(λ) + eη(q(c)) − η(c − xη) + e1η(c − 1) + e2η(c − 2) = 0 ∈ ̂Z.

Observe that if p ∈ K[t] is a polynomial, c ∈ K an element with p(c) = 0 and
ci = c is a sequence which tends to c in the η-adic topology, then η(p(ci)) = η(p(c))

is constant for i � 0 large enough while η(ci − c) is not constant.

1Notice that, while there is an embedding k̂(t)∗ ⊂ ̂k∗ · ∏c q
̂Z
c , this is not a bijection, since for every n all

but finitely many exponents of an element of k̂(t)∗ are multiples of n.
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Choose a sequence of K-rational points ci which tends to 1. Since 1 is not a root
of the polynomials q , t − 2, t − xη we see that for i � 0 all terms except e1η(ci − 1)

in the equation above are constant. It follows that e1η(ci − 1) is constant, too. Since

ci
i−→ 1 and ci = 1, then η(ci − 1) is not constant, this implies that e1 = 0. With the

same argument we see that e2 = 0, hence

η(λ) + eη(q(c)) − η(c − xη) = 0 ∈ ̂Z.

If xν is transcendental over k and thus q = 1, e = 0, then η(c − xη) = η(λ) does
not depend on c, which is absurd, hence xν is algebraic over k. Since K splits q , we
may write q(t) = (t − xη) · ∏j (t − yj ),

η(λ) + (e − 1)η(c − xη) + e
∑

j

η(c − yj ) = 0 ∈ ̂Z.

Since we are in characteristic 0 and q is irreducible over k, then xν = yj for every j

and yj = yj ′ for j = j ′. Using a sequence ci
i−→ xη and the same argument as above

we see that e = 1 and hence

η(λ) +
∑

j

η(c − yj ) = 0 ∈ ̂Z.

If by contradiction xν is not k-rational and thus degq ≥ 2, using a sequence ci
i−→

yj we see that η(λ) + ∑

j η(c − yj ) = 0 is not constant for i � 0, which is absurd.
�

6 Reduction to number fields

In [17] M. Saïdi and M. Tyler reduced the birational section conjecture to number
fields. We are going to do this for the t-birational version, too. A reader only inter-
ested in number fields may safely skip this section.

Over number fields, we know that we can lift t-b.l. sections to open subsets thanks
to Lemma 16. In order to prove it, we use a theorem of J. Stix [20, Theorem B] which
is only available for number fields. Lifting to open subsets is crucial for the reduction
to number fields, and we can only do it for number fields: this is a problem. In order
to overcome it, we define quasi-t-b.l. sections.

Definition 18 Let X be a geometrically connected curve over a field k. A Galois
section s of X is quasi-t-b.l. if there is an open subset U ⊆ X, a lifting s′ of s to U

and a dominant map f : U → Y where Y is a non-parabolic curve such that s′ is b.l.
and f (s′) is t-b.l.

Since t-b.l. sections are b.l. by Corollary 12, it is immediate to check that t-b.l.
sections are quasi-t-b.l. If s is a quasi-t-b.l. section of X and U ⊆ X is an open
subset, then it is obvious that we can lift s to a quasi-t-b.l. section of U .
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Lemma 19 Let C be a curve with fraction field K , X → C a family of curves and
s ∈ �XK/K(K) a generic section which is quasi-t-b.l. There exists a non-empty open
subset U ⊆ C such that the specializations of X|U → U are quasi-t-b.l.

Proof Up to shrinking both C and X, we may assume that there exists a family of
non-parabolic curves Y → C and a quasi-finite morphism f : X → Y over C such
that f (s) is t-b.l. The specializations of f (s) are t-b.l. by Lemma 13 and the special-
izations of s are b.l. by Lemma 11, it follows that they are quasi-t-b.l., too. �

Lemma 20 Let k be a number field, and assume that t-b.l. sections over k are geo-
metric or cuspidal. Then the same holds for quasi-t-b.l. sections.

Proof Let X be a curve over k and s ∈ �X/k(k) a quasi-t-b.l. section. We may assume
that there exists a non-parabolic curve Y and a dominant morphism f : X → Y such
that f (s) is t-b.l. Since s is b.l., for every finite place ν of k there exists a unique
associated point xν ∈ X̄(kν). Since f (s) is t-b.l., there exists a unique k-rational point
y ∈ Ȳ (k) associated to f (s), in particular f (xν) = y for every ν. Any b.l. lifting of
s to X \ f −1(y) is cuspidal thanks to [21, Theorem B], hence s is geometric or
cuspidal. �

Let us recall a famous result by A. Tamagawa.

Proposition 21 (Tamagawa) Let X be a hyperbolic curve over a field k finitely gen-
erated over Q and let s ∈ �X/k(k) be a Galois section. If s is not geometric nor
cuspidal, there exists a curve Y of genus ≥ 2 with Ȳ (k) = ∅, a finite étale morphism
Y → X and a lifting r ∈ �Y/k(k) of s.

Proof This is essentially [22, Proposition 2.8 (iv)]. �

Proposition 22 Assume that t-b.l. sections of curves defined over number fields are
geometric or cuspidal. Then quasi-t-b.l. sections of curves over fields of finite type
over Q are geometric or cuspidal.

Proof We prove this by induction on the transcendence degree n of the base field
k over Q. The case n = 0 is Lemma 20. Assume n ≥ 1 and that the statement
is proved for fields of transcendence degree n − 1, let h ⊆ k be algebraically
closed in k and of transcendence degree n − 1 over Q. Let X be a curve and
s ∈ �X/k a quasi-t-b.l. section, up to passing to an open subset we may assume
that X is hyperbolic. Assume by contradiction that s is not geometric nor cuspi-
dal, thanks to Tamagawa’s argument (Proposition 21) and Lemma 14 up to passing
to an étale neighbourhood we may assume that X̄(k) = ∅. Clearly the image in s

in X̄ is not geometric, so we may replace X with X̄ and assume that X is projec-
tive.

Choose E any elliptic curve over h, we may find a finite, possibly ramified cover
Y → X with a finite morphism Y → Ek . Let U ⊆ X, V ⊆ Y be open subsets such
that V → U is finite étale. Since s is quasi-t-b.l., by applying Lemma 14 to V → U
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we may find a finite extension k′/k and a quasi-t-b.l. lifting r ∈ �Y/k(k
′) of sk′ .

Thanks to [6, Lemma 6.5, Theorem 7.2], it is enough to prove that r , and thus sk′ ,
is geometric. We may thus replace k, X, s with k′, Yk′ , r and assume that there is a
finite morphism X → Ek .

Let C be an affine curve over h whose function field is k, up to shrinking C

we may extend X to a family of smooth projective curves ˜X → C with a finite
morphism ˜X → E × C over C. The generic section s extends to a global section
s̃ : C → �

˜X/C thanks to [7, Corollary 3.4]. The specializations of s̃ are geometric
thanks to Lemma 19 plus inductive hypothesis. It follows that s is geometric thanks
to [7, Definition 4.1, Corollary 4.9]. �

7 Proof of the main theorems

Theorems A, B and C follow rather easily from Proposition 17.

Theorem A Let X be a smooth curve over a field k finitely generated over Q. A Galois
section of X is geometric or cuspidal if and only if it is t-birationally liftable.

Proof Thanks to Proposition 22, we may assume that k is a number field. Let
s ∈ �X/k(k) be a t-b.l. section, assume by contradiction that s is neither geomet-
ric nor cuspidal. By Lemma 16 we may assume that X is hyperbolic. By Tamagawa’s
argument (Proposition 21) and Corollary 15, up to passing to an étale neighbourhood
of s we may assume that X has genus at least 2 and X̄(k) = ∅. Fix ν any finite place
of k and let xν ∈ X̄(kν) the local point associated with s.

Choose a projective embedding j : X̄ ⊆ Pn such that j (xν) ∈ An ⊆ Pn and let
U = An ∩X, we have that s lifts to a t-b.l. section s′ of U thanks to Lemma 16. Since
X̄(k) = ∅ then j (xν) ∈ An is not k-rational, in particular there exists one coordinate
c : An → A1 such that c(j (xν)) is not k-rational. Up to shrinking U furthermore
we may assume that c(j (U)) ⊆ A1 \ {1,2}. Then c(j (s′)) ∈ �

A
1
k\{1,2}/k(k) is a t-b.l.

section whose base change to kν is associated with a non-k-rational local point, which
is in contradiction with Proposition 17. �

Lemma 23 Let X be a curve over a countable field k. The following are equivalent.

• For every pair of non-empty open subset V ⊂ U ⊂ X, the map SV/k → SU/k is
surjective.

• For every non-empty open subset U ⊂ X, every Galois section of U is birationally
liftable.

Proof The second condition clearly implies the first. Assume that the first holds and
let X′ ⊂ X be a non-empty open subset. Since k is countable, then X′ has a count-
able number of open subsets. Since Sk(X′)/k 
 lim←−U⊂X′ SU/k [20, Lemma 259], the
projective system (SU/k)U is countable and the transition maps are surjective, then
Sk(X′)/k → SX′/k is surjective as well, i.e. every Galois section of X′ is birationally
liftable. �
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Corollary 24 The following are equivalent.

• The cuspidalization conjecture holds.
• For every smooth, geometrically connected hyperbolic curve X over a field k

finitely generated over Q, every Galois section of X is birationally liftable.

Theorem B Let X be a hyperbolic curve over a field k finitely generated over Q. The
following are equivalent.

• For every finitely generated extension K/k, every Galois section of XK is either
geometric or cuspidal.

• For every finitely generated extension K/k, every Galois section of XK is bira-
tionally liftable.

As a consequence, the section conjecture is equivalent to the cuspidalization conjec-
ture.

Proof Follows directly from Theorem A and Corollary 24. �

Lemma 25 Let k be a Hilbertian field, V an open subset of A1, X → V a family of
curves, s1, s2 ∈ �X/V (V ) two sections. If s1, s2 have isomorphic specializations at
k-rational points of V , then s1 
 s2.

Proof For the convenience of the reader, we give proofs in both the language of fun-
damental gerbes and fundamental groups.

With fundamental gerbes Write �X/V = lim←−�i as in Lemma 2, let Wi be the fibered
product V ×�i

V with respect to the two morphisms s1, s2 : V → �X/V → �i , we
have that Isom(s1, s2) = V ×�X/V

V = lim←−i
Wi .

There is a natural map Wi = V ×�i
V → V ×V V = V which coincides with

projection on both coordinates, it is a finite étale cover since �i is a proper étale
gerbe over V . By hypothesis, Isom(s1, s2)(k) → V (k) is surjective, this implies that
Wi(k) → V (k) is surjective too. Since k is Hilbertian and Wi → V is finite étale,
there is a section V → Wi . Let Wi(V ) be the set of sections, it is finite and non-empty.
It follows that Isom(s1, s2)(V ) = lim←−i

Wi(V ) is non-empty since a projective limit
of finite, non-empty sets is non-empty. This gives the desired global isomorphism
s1 
 s2.

With fundamental groups For every v ∈ V (k), choose rv : Gal(k̄/k) → π1(V ) a rep-
resentative of the geometric Galois section associated with V . If S ⊂ V (k) is not thin
in the sense of Serre, the images of the sections rv for v ∈ S generate π1(V ) topolog-
ically: if H ⊂ π1(V ) is an open subgroup containing all of them, the corresponding
finite étale covering C → V is connected and the image of C(k) → V (k) contains S,
hence C = V since S is not thin.

Let F be a geometric fiber of the family, we have that π1(X) is an extension of
π1(V ) by π1(F ). We may write π1(X) as a projective limit lim←−i

Gi of pro-finite
groups such that Gi is an extension of π1(V ) by a finite group Hi and π1(F ) =
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lim←−i
Hi ; this can be done by writing first π1(X) = lim←−i

G0,i = π1(X)/Ni as a projec-
tive limit of finite groups and then defining Gi = G0,i ×π1(V )/Ni

π1(V ). Choose rep-
resentatives t1, t2 : π1(V ) → π1(X) of s1, s2, and let t1,i , t2,i : π1(V ) → π1(X) → Gi

be the compositions.
For every v ∈ V (k) and every i, by hypothesis there exists h ∈ Hi such that

h−1(t1,i ◦ rv)h = t2,i ◦ rv . Since Hi is finite there exists an h ∈ Hi such that the
set Sh ⊂ V (k) of points v for which h−1(t1,i ◦ rv)h = t2,i ◦ rv is not thin. Since
the homomorphisms rv for v ∈ Sh generate π1(V ), this implies that h−1t1,ih = t2,i .
Since a projective limit of finite, non-empty subsets is non-empty, we get an element
g ∈ π1(F ) = lim←−i

Hi such that g−1t1g = t2, i.e. the π1 sections s1, s2 are equal. �

Let us prove that the two forms of the birational section conjecture given in the
introduction are equivalent.

Lemma 26 The following are equivalent.

• The birational section conjecture holds.
• For every curve X over a field k finitely generated over Q, every b.l. Galois section

of X is either geometric or cuspidal.

Proof The first condition clearly implies the second. Assume that the second holds,
let X be a curve over a field k finitely generated over Q and let s ∈ Sk(X)/k be a
birational Galois section, we want to show that s is cuspidal. Up to replacing X with
an open subset, we can assume that X is hyperbolic.

For every open subset U ⊂ X, denote by ιU (s) the image of s in SU/k , by hy-
pothesis it is cuspidal. By [19, Theorem 17 (2)], there exists a unique rational point
x ∈ X̄(k) associated with ιX(s), where X̄ is the smooth completion of X. By unique-
ness, x is associated with ιU (s) for every open subset U as well.

For every open subset U ⊂ X, denote by PU,x ⊂ SU/k the packet of cuspidal sec-
tions associated with x. We have that Sk(X)/k 
 lim←−U

SU/k by [20, Lemma 259], and
the cuspidal birational sections over x identify naturally with lim←−U

PU,x ⊂ Sk(X)/k .
Since ιU (s) ∈ PU,x for every U ⊂ X and s is the limit of the sections ιU (s), we get
that s is cuspidal associated with x too. �

Theorem C The following are equivalent.

• The birational section conjecture holds.
• For every number field k, every section z ∈ Sk(P1)/k and every open subset U ⊆ P1,

there exists an open subset V ⊆ U and a π1 section r of U ×V \� → V such that
the specialization rv is equal to ιU\{v}(z) for every v ∈ V (k).

Proof Thanks to Lemma 26, we may use the alternative formulation of the birational
section conjecture.

Assume that the birational section conjecture holds and let z, U be as in the state-
ment. Up to passing to an open subset, we can assume that U is hyperbolic. By
hypothesis, z is associated with a unique rational point p ∈ P1(k). If p ∈ U , choose
V = U \ {p}, the morphism (p, idV ) : V → U ×V \� defines the desired π1 section.
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If p /∈ U , choose V = U . Since ιU (z)k(t) is cuspidal then it lifts to a cuspidal section
z′ of Uk(t) \ {δ}. Let v ∈ V (k) be a rational point, since z′ is cuspidal it is b.l. and
its specializations at v are b.l. too by Lemma 11. By hypothesis, this implies that all
the specializations of z′ at v are cuspidal liftings of ιU (z), and hence coincide with
ιU\{v}(z) since there is only one cuspidal lifting of ιU (z) by [19, Theorem 17 (2)]. In
particular, the specializing loop at v is constant by Lemma 8. By repeating the argu-
ment after base changing to every finite extension of k, we get that all the specializing
loops of z′ at closed points of U are constant. As a consequence, z′ extends to the
desired section U → �(U×U\�)/U by [5, Corollary A.3].

Assume that the second condition holds. Thanks to [17, Theorem C], it is enough
to consider number fields. Let k be a number field, X a smooth projective curve over
k, s ∈ SX/k a b.l. section with lifting z ∈ Sk(X)/k and ν a place of k, we want to prove
that s is geometric or cuspidal. With an argument analogous to that of Theorem A,
we can reduce to the case in which X = U is an open subset of P1 and to proving that
xν ∈ P1 is k-rational.

Let V ⊆ U , r ∈ S(U×V \�)/V be as given by hypothesis. If U ′ ⊆ U is another open
subset and V ′, r ′ are given analogously, we can shrink V ′ and assume that V ′ ⊆ V ,
then Lemma 25 implies that r ′ = r|V ′ . Passing to the limit along open subsets of
P1 we get a Galois section of Speck(A1) ⊗k k(t) \ {δ} which lifts sk(t), hence xν is
k-rational by Proposition 17. �
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