
Classe di Scienze
Corso di perfezionamento in

Metodi computazionali e modelli matematici per le scienze e la
finanza
35° ciclo

Spot volatility and covariance estimation on high
frequency data using the Fourier methodology:

microstructure noise, Limit Order Book and positive
semi-definiteness

Settore Scientifico Disciplinare SECS-S/06

Candidato
dr. Tommaso Mariotti

Relatrice

Prof.ssa Maria Elvira Mancino

Supervisione interna

Prof. Fabrizio Lillo

Anno accademico 2022–2023



Contents

1 Introduction 1

2 The Fourier spot volatility estimator in the presence of noise 5
2.1 Fourier estimator of the spot volatility . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Asymptotic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Asymptotic Normality in the absence of microstructure noise . . . . . . . . . 9
2.2.2 Proof of Theorem 2.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Asymptotic Normality in the presence of microstructure noise . . . . . . . . . 17
2.2.4 Proof of Theorem 2.2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Finite-sample properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Simulation design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 Performance sensitivity to N and M . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 Feasible method for selecting N and M . . . . . . . . . . . . . . . . . . . . . 34
2.3.4 Performance comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Empirical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Appendix 43
2.A Properties of the Dirichlet and Féjèr kernels . . . . . . . . . . . . . . . . . . . . . . . 43

3 Volatility estimation over the LOB and optimal execution 45
3.1 Limit-order-book models: zero-intelligence vs queue-reactive . . . . . . . . . . . . . . 47

3.1.1 Model descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.2 Calibration procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.3 Comparison of volatility and noise features . . . . . . . . . . . . . . . . . . . 51

3.2 Volatility estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.1 Integrated volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.2 Spot volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.3 Feasible selection of tuning parameters . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Comparative performance study of volatility estimators . . . . . . . . . . . . . . . . 60
3.3.1 Constant θref and θreinit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.2 Variable θref and θreinit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 The impact of efficient volatility estimates on optimal execution . . . . . . . . . . . . 67



Contents

Appendices 70
3.A Additional results for variable θref and θreinit . . . . . . . . . . . . . . . . . . . . . . 70
3.B Sample daily volatility trajectories of spot variance estimates for micro-price and

trade-price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 The positive semi-definite Fourier estimator of spot covariance matrix 77
4.1 The positive semi-definite estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1.1 Proof of Theorem 4.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.1 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.2 Selection of frequencies N and M . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2.3 The impact of introducing asynchronicity in covariance estimation . . . . . . 89
4.2.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.5 Alternative volatility models . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3.1 Accuracy and speed of execution . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Conclusions 107

References 114



Chapter 1

Introduction

The field of non-parametric volatility estimation1 attracted a huge interest in the recent literature
on financial econometrics, in particular since the availability of high frequency data paved the way
to the study of daily measures of volatility and intra-day volatility patters (see, e.g., Andersen and
Bollerslev (1997)), focusing on quantities such as the integrated and, more recently, the spot (or
instantaneous) volatility. The interest was accompanied by the discovery that, while offering new
opportunities, high-frequency data also pose new challenges to the well-studied topic of volatility
estimation. In particular the presence of market microstructure noise, i.e., a disturbance component
originated by the features of trading in financial markets that renders traditional non-parametric
estimators inconsistent (see, e.g., Bandi and Russell (2008)). While the market microstructure
has been extensively studied in the last decades of the past century focusing on centralized forms of
exchange with different competing classes of market participants (see Hasbrouck (2007) for a review),
with the advent of electronic exchanges the interest shifted towards the widespread Limit Order Book
structure, i.e. a double auction mechanism in which orders are queued and executed according to
a price priority. Independently of the different approaches, both the classical agent-based models
and the newer models for the LOB dynamics are characterize by the presence of features that drive
the observed price away from the usual assumptions of stochastic modeling, being influenced for
example by bid-ask spread, rounding and sequential and strategic trading of market participants. In
addition to this microstructure friction, the presence of irregularly spaced and, most importantly, in
a multivariate setting, possibly asynchronous observations, creates additional difficulties that need
to be solved. To address the main issues raised by the use of high-frequency data2, a variety of
methods have been proposed in the literature (see, e.g., Jacod (2019) for a review), many of whom
are briefly recalled in this work, in particular in Section 3.2, while other issues, such as the positive
semi-definiteness of estimated spot volatility matrix, have not been fully addressed so far.

Among the several techniques proposed to reconstruct the intra-day volatility path, this work
focus in particular on the Fourier method for spot volatility estimation, originally presented in
Malliavin and Mancino (2002) and Malliavin and Mancino (2009). In comparison to other proposed
estimators, the Fourier one may offer some advantages: its theoretical foundation lies on well known

1See, e.g., Andersen et al. (2010) for an introduction to the topics of integrated and spot volatility, and for the
distinction between the parametric and non-parametric approach.

2Other than microstructure noise, another aspect that attracted the attention of the literature is the presence of
jumps, i.e. discontinuities in the price and/or volatility process, but this aspect will not be addressed in the present
work. Moreover, a new strand of literature is born, that tends to question the presence of intra-day discontinuities at
ultrahigh-frequencies, see, e.g. Christensen et al. (2014).
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Chapter 1. Introduction

results of Fourier analysis, empirical evidence shows that it does not require pre-manipulation of
the data to be applied to noisy price series, it is able to manage irregularly spaced observations
without any adjustment and it is expression of a more general method that may be applied not
only to volatility, but also to estimate other relevant financial quantities, such as the quarticity,
the volatility of volatility and the leverage (see Mancino et al. (2017) for an in dept discussion of
the topic). The Fourier estimator reconstructs the instantaneous volatility as a series expansion,
with coefficients estimated from the Fourier coefficients of the log-price increment. Specifically, for
a given sample size n, the efficient implementation of the Fourier spot volatility estimator requires
the balancing of only two parameters: N , the cutting frequency in the convolution formula that
reconstructs the Fourier coefficients of the volatility, and M , the number of Fourier coefficients of
the volatility to be used in the Fourier inversion formula, which yields the estimated spot volatility
path.

This work aims at further developing the literature on the Fourier estimator, analyzing in partic-
ular the spot estimator with high-frequency data which are contaminated by microstructure noise,
an aspect that was only partially addressed by previous works, such as Mancino and Recchioni
(2015). The advances that this work presents with respect to the existing literature are related to
three outstanding issues, involving both theoretical and practical aspects of spot volatility estima-
tion. The first point considered is the need, from a theoretical point of view, of providing a Central
Limit Theorem in presence of noise for the Fourier spot estimator, thus obtaining a convergence rate
and an asymptotic error, which are still unknown, for the estimator under specific assumptions for
the noise. A side quest related to the findings of the above mentioned CLT is to establish a feasible
procedure to optimize the parameters involved in the estimator itself, together with the assessment
of its performance. As second point, considering the needs of the applications, we stress the rele-
vance, in presence of a vast literature on volatility estimation, of a broad analysis of the finite sample
performance of both the Fourier and competing volatility estimators proposed in other works, with
the accuracy of estimations evaluated in a setting that should be as realistic as possible and in re-
lation to applications that might be of real interest for finance practitioners. Finally, as third pillar
of this work, we also underline the interest of considering a multivariate setting for spot volatility
estimation, that could be of paramount importance in the rising field of principal-component anal-
ysis with high-frequency data, focusing in particular on the need, both theoretical and practical, of
obtaining, in the context of irregularly spaced and asynchronous observations, positive semi-definite
estimations of the spot volatility matrix using a Fourier-type estimator. These three open problems,
and the methods and techniques employed to solve them, are at the core of the three main chapters
in which this work is divided.

In Chapter 2 first the definition of the Fourier spot estimator is recalled, then the results of
our asymptotic study are presented. In particular the asymptotic normality of the estimator is
derived in presence of i.i.d. noise when the underlying price follows a continuous Itô semimartingale,
with an optimal convergence rate of n1/8, together with a Central Limit Theorem in absence of
noise, where the optimal convergence rate of n1/4 is attained, refining the results of Mancino and
Recchioni (2015); moreover an additional version of the previous results, with slightly suboptimal
convergence rate but smaller asymptotic variance, is provided. The analysis shows that, in the
presence of noise, efficiency is achieved by carefully reducing N , that is, by cutting out the highest
frequencies in the construction of the Fourier coefficients of the volatility. This way, the Fourier
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Chapter 1. Introduction

method allows obtaining a noise-robust estimator of the instantaneous volatility without the need
for any manipulation of the original observations or any bias correction. Building on the asymptotic
result, a feasible procedures to fine tune the frequencies N and M involved in the computation of
the estimator is presented, based on a minimization of the asymptotic variance of the estimation
error, which can be deemed observable as it depends on quantities that can be consistently estimated
with high-frequency prices, namely, the integrals of the volatility, the quarticity and the volatility
of volatility (all of which can be estimated with Fourier-type estimators) along with the variance
of the noise. While the introduction of a feasible estimation strategy, rooted in asymptotic theory,
represents the main innovation of the finite-sample study conducted in this chapter, the study
is extended by a detailed finite-sample study of the performance of the spot Fourier estimator
when the proposed tuning procedure is applied, both with simulated and real data. In both of the
cases the results show the satisfactory accuracy of the estimation using price series with different
microstructure characteristics, and it is shown that the estimator may have an edge with respect to
some competitors proposed in the literature.

To extend and deepen the assessment of the finite-sample performances of alternatives volatility
estimators in the presence of microstructure noise is one of the main aims of Chapter 3. Here,
however, we notice that having the best asymptotic properties, such as the optimal rate of conver-
gence and the minimum asymptotic error variance, do not guarantee the best performance of the
estimator in finite-sample applications. To gain a more realistic comparison of the performances of
the estimators we chose to use a Limit Order Book generator as a model to produce simulations, and
under this point of view we extend the study by Gatheral and Oomen (2010) in two directions: first,
by considering the more realist queue-reactive model for the LOB, proposed by Huang et al. (2015),
and second by including in the analysis an enlarged collection fo both integrated and spot volatility
estimators. For what concerns the first point indeed we show that, when calibrated to real data, the
queue-reactive model is able to better reproduce the feature of high-frequency data with respect to
the zero-intelligence model used in Gatheral and Oomen (2010), in particular when looking at the
average spread and at the noise accumulation pattern produced. For the second point it is worth
underlying that we consider three price series for the exercise: the mid-price, that is, the average
between the best bid and best ask quotes; the micro-price, i.e., the volume-weighted average of the
best bid and best ask quotes; the trade price, namely the price at which a market order is executed,
all extracted from the simulated LOB. The analysis is conducted on different scenarios, in which
the novelty of time-varying parameters for the model is introduced, and shows that for the spot
volatility the Fourier estimators seems confirm its edge in accuracy, while for integrated volatility
the best estimator may be different depending on the considered price series, with the Fourier still
performing satisfactory. The second goal of the chapter is to study the impact of the availability of
efficient volatility estimates on optimal execution. Specifically, being able to include the strategy of
execution directly in the simulation of the LOB, we show the significance of the deviations between
the predictions of the variance of a VWAP execution when different spot estimator are employed.

In Chapter 4 the focus of the analysis is enlarged, shifting from the estimation of the volatility
of a single asset to the estimation of a volatility matrix in a multivariate setting that, considering
also the correlations between assets, is of great interest in applications with high-frequency data.
To guarantee symmetry and positive semi-definiteness of the estimated matrix in presence of asyn-
chronous observations a new estimator, called PDF (positive definite Fourier), is introduced, and its
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Chapter 1. Introduction

positive semi-definiteness is proved. The introduction of the new estimator is necessary, since the
Fourier spot estimator, in this setting, has problems of symmetry, thus leading to possibly complex
eigenvalues of the volatility matrix. The difficulties of obtaining positive semi-definite estimated spot
volatility matrices is not limited to Fourier estimator, but, on the contrary of what established for
integrated volatility (see, e.g., Mancino and Sanfelici (2011)), is a widespread issue for spot volatility
estimator (see, e.g., Bibinger et al. (2019)). The finite-sample performances are evaluated starting
with a sensitivity analysis of the estimation error to the choice of N and M , and it is found out
that the preferable level of the cutting frequency N is lower than in the original case, this being
influenced by the asynchronicity in the observation scheme. The accuracy of the estimator and its
ability to produce positive estimations is then evaluated in an extensive numerical study, that in-
clude a variety of noise specification and different models for the efficient price process. In this study,
its seems that the PDF estimator is able to obtain a gain in efficiency with respect to competing
estimators able to manage asynchronous observations, while always producing the desired positive
semi-definite estimations; at the same time, the influence of noise shape and intensity on the ability
of the other estimators to produce positive estimations is analyzed. The chapter is concluded by
introducing an alternative implementation of the estimator that, being based on a randomization
technique, may reduce the required computational time, while maintaining positivity. Analyzing
the impact of the different parameters on the performances of the two algorithms is found out that,
however, this alternative approach entails, in the conducted simulated exercise, a trade-off between
execution speed and accuracy, where the former can be increased at the sacrifice of the latter.

Finally, Chapter 5 summarizes the results of the work and concludes, while supplementary and
auxiliary materials are presented, when needed, in the appendices of each chapter.

The results that constitute Chapter 3 have been published on Quantitative Finance, see Mariotti
et al. (2023), while the results presented in Chapters 2 and 4 have been collected in two papers that
are both currently submitted to peer-reviewed journals.
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Chapter 2

Asymptotic normality and finite-sample ro-
bustness of the Fourier spot volatility es-
timator in the presence of microstructure
noise

Even though the non-parametric estimation of the time-varying volatility of financial assets has long
been recognized as a relevant topic (see, e.g., Andersen et al. (2003) and the references therein)
in the last couple of decades, the increasing availability of high-frequency market data has given
an enormous impulse to the investigation of novel estimation methodologies and the exploration of
their applications. Besides, the focus has shifted from the estimation of the volatility accumulated
over a given time horizon, i.e., the integrated volatility, to the reconstruction of the trajectory of
the volatility process, i.e., the instantaneous (or spot) volatility. We refer to Aït-Sahalia and Jacod
(2014) for an extensive review of the literature.

The benchmark for estimating the integrated volatility of an asset on a fixed time interval with
high-frequency prices is given by the sum of the squared log-returns, i.e., the realized volatility.
In the limit as the time between two consecutive observations tends to zero, the realized volatility
converges to the quadratic variation of the asset log-price process, and its derivative provides the
instantaneous volatility thereof. However, the differentiation of the quadratic variation may generate
appreciable numerical instabilities. Moreover, high-frequency prices are affected by the presence of
the noise due to market microstructure, which causes a discrepancy between asset pricing theory,
based on semimartingales, and the actual price observations, sampled at very fine intervals.

In order to reduce the numerical instabilities due to the differentiation of the quadratic variation,
authors have extensively adopted kernel-smoothing procedures, see Kristensen (2010) for a study of
the asymptotic properties of kernel-based spot estimators. Moreover, modifications of realized spot
estimators have been proposed to correct for the bias introduced by the presence of microstructure
noise. Such modifications, which rely on the pre-processing of price observations, include the Two-
Scale sub-sampling method by Zu and Boswijk (2014) and the Pre-Averaging method for kernel-based
estimators by Aït-Sahalia and Jacod (2014) and Figueroa-López and Wu (2022). This chapter studies
the asymptotic error normality and the finite-sample robustness, in the presence of microstructure
noise, of an alternative non-parametric estimator of the instantaneous volatility, namely, the Fourier
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Chapter 2. The Fourier spot volatility estimator in the presence of noise

estimator introduced by Malliavin and Mancino (2002).
The asymptotic properties of the Fourier volatility estimator in the absence of noise have been

investigated by several papers. The weak convergence of the asymptotic error distribution of the
Fourier spot covariance estimator was first derived in Malliavin and Mancino (2009), with a sub-
optimal rate. Clement and Gloter (2011) then proved the asymptotic normality of the Fourier
integrated covariance estimator with the optimal rate of convergence and asymptotic-error variance,
under the assumption of irregular and non-synchronous observations. A Central Limit Theorem for
the Fourier spot volatility estimator was proved in Mancino and Recchioni (2015), with a slightly
sub-optimal rate of convergence. Besides, Cuchiero and Teichmann (2015) proposed a spot covari-
ance estimator based on a modification of the classical Fourier method and studied its asymptotic
normality of in the presence of jumps.

In the presence of microstructure noise, several studies have investigated the finite-sample per-
formance of the Fourier method. For what concerns the Fourier estimator of the integrated variance,
see, e.g., Barucci and Reno (2002), Hansen and Lunde (2006), Nielsen and Frederiksen (2008), Man-
cino and Sanfelici (2008). As for the Fourier spot volatility estimator, its robustness to noise was first
investigated in Mancino and Recchioni (2015), where the authors performed a thorough simulation
study that included auto-correlated and price-dependent noise patterns.

The previous studies have explored the finite-sample efficiency and robustness of the Fourier
estimator of the volatility in the presence of noise, without investigating the asymptotic properties
of the estimator, namely the rate of convergence and the asymptotic-error variance. This work fills
this gap and provides novel results on the asymptotic normality of the Fourier estimator, which
show that the latter reaches the optimal rate of convergence and asymptotic-error variance in the
presence of additive microstructure noise. Specifically, in the novel asymptotic study presented in
this chapter, under the assumption that the volatility process is also a continuous Itô semimartingale,
we prove that the Fourier spot volatility estimator attains the optimal rate of convergence in the
absence of noise, that is, n1/4. Then, we prove that the Fourier estimator attains the optimal
rate of convergence also in the presence of additive microstructure noise, that is, n1/8. This is the
convergence rate of the spot volatility estimators in Aït-Sahalia and Jacod (2014, Section 8.7) and
Figueroa-López and Wu (2022, Theorem 2.2), while the Two-scale estimator in Zu and Boswijk
(2014, Theorem 2) attains the convergence rate n1/12. However, while all these estimators require a
preliminary manipulation of price observations and a bias correction, it is worth remarking that the
Fourier estimator does not need any modification to be efficient in the presence of noise. Indeed,
as mentioned, it only requires a proper reduction of the cutting frequency N . Precisely, in the
absence of noise, the choice of N that optimizes the rate of convergence and the asymptotic-error
variance is the Nyquist frequency n/2 (see Theorem 2.2.1); instead, in the presence of noise, the
cutting frequency N has order n1/2 (see Theorem 2.2.7). The optimal convergence rate is obtained
by choosing M = O(N1/2) both in the absence and the presence of noise.

The convolution formula (2.3) exploits the contribution of weighted realized auto-covariances to
deal with the presence of noise, with N determining the weight. The role of realized auto-covariances
has been studied in the early work by Zhou (1996) and, later, in Barndorff-Nielsen et al. (2008).
In this spirit, the Fourier spot volatility estimator can be related to a local version of the infinite-
lag realized kernel estimator, see Barndorff-Nielsen et al. (2008). A different but related study is
present in Park et al. (2016), where the authors prove the consistency and asymptotic normality for a
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class of Fourier-type estimators of the Fourier coefficients of the covariance, named Fourier Realized
Kernels. The Central Limit Theorem for any Fourier coefficient is derived under some general
conditions that allow for microstructure noise effects and asynchronicity. The rate of convergence
depends on the relative liquidity between assets and reaches n1/5 if the assets are synchronous. The
rate of convergence of the spot Fourier Realized Kernel estimator is not obtained. Moreover, the
estimator studied in Mancini et al. (2015), Proposition 4.2, even if referred to by the authors as a
Fourier-type estimator, substantially differs from the Fourier spot volatility estimator, in that it is
actually a Féjèr-kernel based realized estimator. In fact, the authors get rid of the cross products
of the log-returns (which are the main by-product of the original convolution formula, see Malliavin
and Mancino (2009)), thereby loosing the robustness to microstructure noise.

For the selection of the cutting frequencies N and M in the presence of noise, we introduce
a feasible adaptive method that minimizes the asymptotic-error variance of the Fourier estimator.
Specifically, this method relies on the gradient-descent algorithm and optimizes the conditional mean
integrated squared error, which is approximated, at high-frequencies, by the integrated asymptotic-
error variance (see Zu and Boswijk (2014, Section 3.4)). This improves the finite-sample analysis
provided in Mancino and Recchioni (2015, Section 4), where the authors adopt an indirect inference
procedure for selecting N and M , based on the testing of the empirical distribution of the log-returns
standardized by volatility estimates.

We evaluate the robustness of the feasible adaptive method for selecting N and M in four
simulated scenarios, which generate incrementally more realistic noise patterns. Additionally, in the
different simulated scenarios, we compare the finite-sample performance of the Fourier estimator
with that of alternative noise-robust spot volatility estimators. The results of the simulation study
support the robustness of the feasible method for selecting N and M and the relative finite-sample
efficiency of the Fourier estimator. We begin by simulating a stylized scenario, which assumes an
i.i.d. Gaussian noise, a constant leverage effect, a perfect positive correlation between the volatility of
volatility and the volatility, and an equally-spaced price sampling grid. Then we progressively allow
for stochastic leverage and volatility of volatility, auto-correlated and price-dependent noise with
Student-t innovations and, finally, random sampling. obtaining numerical evidence that suggests
that the feasible procedure is satisfactorily accurate and robust to the more realistic scenarios.
Finally, we test of the feasible method for selecting N and M in an empirical exercise, conducted
with tick-by-tick prices of three US stocks with different liquidity, sampled over the period December
1, 2022 - December 30, 2022. The results of the test suggest that the feasible method is satisfactorily
accurate with real market prices, for the different liquidity levels considered, and the same results
are obtained using a stock index, namely the S&P500 index.

The chapter is organized as follows. Section 2.1 contains the definition of the Fourier estimator
of the instantaneous volatility. Novel asymptotic results are detailed in Section 2.2. Section 2.3
illustrates the simulation study, while Section 2.4 contains the empirical exercise. The Appendix
2.A contains some auxiliary results on the Dirichlet and Féjèr kernels.

2.1 Fourier estimator of the spot volatility

The Fourier estimator of the spot volatility was originally proposed in Malliavin and Mancino (2002).
Its implementation consists in three steps. As a first step, one computes the discrete Fourier coeffi-
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cients of the log-price increment. The second step then entails computing the convolution of these
coefficients, which yields the Fourier coefficients of the volatility. Finally, the last step involves the
reconstruction of the volatility path via the Fourier-Féjèr inversion formula.

For simplicity, we consider the estimation interval [0, 2π]. By scaling the unit of time, one can
immediately obtain the arbitrary interval [0, T ]. Suppose that the asset log-price, denoted by p, is
observed at discrete, irregularly-spaced points in time: {0 = t0,n ≤ . . . ti,n . . . ≤ tn,n = 2π}. For
brevity, we will omit the second index n. Define ρ(n) := max0≤h≤n−1 |th+1 − th| and suppose that
ρ(n) → 0 as n → ∞.

Consider the following interpolation formula

pn(t) :=
n−1∑︂
i=0

ptiI[ti,ti+1[(t)

and define the discrete Fourier coefficients of the log-price increment as

ck(dpn) := 1
2π

n−1∑︂
j=0

e−itjkδj(p), (2.1)

with δi(p) := p(ti+1) − p(ti). According to Malliavin and Mancino (2009), for any t ∈ (0, 2π),
the spot volatility estimator is defined as

ˆ︁σ2
nNM (t) :=

∑︂
|k|≤M

(︃
1 − |k|

M + 1

)︃
eitkck(σ2

nN ), (2.2)

where ck(σ2
nN ) is an unbiased estimator of the k-th Fourier coefficient of the volatility process,

obtained through the following convolution formula:

ck(σ2
nN ) := 2π

2N + 1
∑︂

|h|≤N

ch(dpn)ck−h(dpn). (2.3)

The estimator in (2.2) is a consistent estimator of σ2(t) for t ∈ (0, 2π), as proved in Theorem 2.2.1.
On the contrary, for t = 0 or t = 2π, which represent fixed times of discontinuity, the estimator
converges to (σ2(t−) + σ2(t))/2.

By means of the rescaled Dirichlet kernel, defined as

DN (x) := 1
2N + 1

∑︂
|k|≤N

eikx = 1
2N + 1

sin((2N + 1)x/2)
sin(x/2) , (2.4)

it is possible to express (2.3) as

ck(σ2
nN ) = 1

2π

n−1∑︂
i=0

n−1∑︂
j=0

DN (tj − ti)e−iktjδi(p)δj(p).

Therefore, the Fourier spot volatility estimator (2.2) can be rewritten, using two kernels, as

ˆ︁σ2
nNM (t) = 1

2π

n−1∑︂
i=0

n−1∑︂
j=0

FM (t− tj)DN (tj − ti)δi(p)δj(p), (2.5)
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where

FM (x) :=
∑︂

|k|≤M

(︃
1 − |k|

M + 1

)︃
eikx = 1

M + 1

(︃
sin((M + 1)x/2)

sin(x/2)

)︃2
(2.6)

is the Féjèr kernel.

Remark 2.1.1. If the auto-covariances in the convolution formula (2.3) are ignored, the Fourier
estimator in (2.5) becomes a kernel-type spot volatility estimator (with the kernel specified as the one
by Féjèr), namely it reduces to

ˆ︁σ2
nM (t) = 1

2π

n−1∑︂
j=0

FM (t− tj)(δj(p))2. (2.7)

As the inversion formula in definition (2.2) can be obtained with different kernels, the Fourier spot
volatility estimator generalizes kernel-type estimators for the joint presence of two kernels. Kernel-
type spot volatility estimators are studied, in the absence of noise, in Kristensen (2010), Mancini
et al. (2015), Figueroa-López and Li (2020). However, kernel-type estimators are not robust in
the presence of noise, as shown in Mancino and Recchioni (2015): therefore, the authors need to
employ the pre-averaging technique and introduce a bias correction, see Zu and Boswijk (2014),
Figueroa-López and Wu (2022).

On the contrary, in Section 2.2.3 we will prove that the presence of the cross-products, arising
from the convolution formula in the original definition of the Fourier estimator (2.2), is crucial to
ensure the robustness of the estimator in the presence of microstructure noise, without the need of
any manipulation of data, such as sparse sampling or preaveraging, and without resorting to any
bias correction. The contribution of auto-covariances has early been considered by Zhou (1996) and,
later, by Barndorff-Nielsen et al. (2008) to correct for the bias of realized-variance-type estimators
of the integrated volatility in the presence of noise. The Fourier estimator remains unbiased and
efficient with an appropriate choice of the cutting frequency N , which controls the convolution that
estimates the Fourier coefficients of the volatility.

Remark 2.1.2. The definition of the Fourier spot volatility estimator does not require to consider
equidistant observations. However, for simplicity, in Section 2.2 we will refer to the latter sampling
scheme to derive the asymptotic theory. The general case with irregular observations can be obtained
as in Malliavin and Mancino (2009).

2.2 Asymptotic theory

2.2.1 Asymptotic Normality in the absence of microstructure noise

In Mancino and Recchioni (2015), the authors show that the estimator defined in (2.2) achieves a
slightly sub-optimal rate of convergence, under the hypothesis that the volatility process is a random
function with Hölder-continuous paths. In this section, we fine-tune this result by proving that the
estimator can reach the optimal rate of convergence, n1/4, as well as the efficient asymptotic-error
variance, under the assumption that the volatility process is a Brownian semimartingale.

The following assumptions are made.
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Chapter 2. The Fourier spot volatility estimator in the presence of noise

(A.I) The price process p is a continuous Itô semimartingale satisfying

dp(t) = σ(t) dWt + b(t) dt

where W is a standard Brownian motion on a filtered probability space (Ω, (Ft)t∈[0,2π], P ),
which satisfies the usual conditions.

(A.II) The spot volatility1 process σ2 is an Itô semimartingale satisfying

dσ2(t) = γ(t)dZt + bv(t)dt,

where Z is a standard Brownian motion adapted to the filtration F and such that d⟨W,Z⟩t =
ϕdt, with constant ϕ.

(A.III) The processes σ, b, γ and bv are continuous and adapted stochastic processes defined on the
same probability space (Ω, (Ft)t∈[0,T ], P ) and such that, for any p ≥ 1,

E

[︄∫︂ T

0
σp(t)dt

]︄
< ∞ , E

[︄∫︂ T

0
bp(t)dt

]︄
< ∞ , E

[︄∫︂ T

0
γp(t)dt

]︄
< ∞ , E

[︄∫︂ T

0
bpv(t)dt

]︄
< ∞.

The processes are specified in such a way that σ and γ are a.s. positive.

Theorem 2.2.1. Let assumptions (A.I), (A.II) and (A.III) hold. Moreover, assume that limn,N→∞ N/n =
c > 0. Then, for any fixed t ∈ (0, 2π), the following stable convergence in law holds, as n,N,M → ∞:

- if limn,M→∞ Mn−1/τ = a > 0, for 1 < τ < 2,

n1/2M−1/2 (︁ˆ︁σ2
nNM (t) − σ2(t)

)︁
→ N

(︃
0, 4

3(1 + 2K(2c))σ4(t)
)︃

; (2.8)

- if limn,M→∞ Mn−1/2 = a > 0,

n1/2M−1/2 (︁ˆ︁σ2
nNM (t) − σ2(t)

)︁
→ N

(︃
0, 4

3(1 + 2K(2c))σ4(t) + 2π
3a2 γ

2(t)
)︃
, (2.9)

with
K(c) := 1

2c2 r(c)(1 − r(c)), (2.10)

where r(x) = x− [x] and [x] is the integer part of x.

Remark 2.2.2. (Convergence Rate)
The asymptotic result in (2.8) is in line with the one obtained in Mancino and Recchioni (2015),
where the rate is n1/4(logn)−1/2, which is optimal up to a logarithmic correction. In Mancino and
Recchioni (2015) it is assumed that N/n ∼ c > 0 and Mn−1/τ ∼ a > 0, for 1 < τ < 2. Note
that in this case Mn−1/2 → ∞. It is worth noting that the Central Limit Theorem in Mancino and
Recchioni (2015) has been proved for a volatility process σ2 belonging to a more general class, that
is, under the assumption that σ2 is a.s. Hölder continuous in [0, 2π] with parameter α ∈ (0, 1/2).
Therefore, rough volatility models are also included.

1We follow the relevant econometric literature and use the term volatility as a synonym of variance, thus we refer
to σ2(t) as the volatility process.
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Chapter 2. The Fourier spot volatility estimator in the presence of noise

Letting β =
√

2π/a, compared to Theorem 8.6 in Aït-Sahalia and Jacod (2014), the asymptotic
result in (2.8) corresponds to the case β = 0, where the rate is sub-optimal, while the asymptotic
result in (2.9) corresponds to the case β ∈ (0,∞), which instead attains the optimal rate n1/4. An
analogous result is obtained in Theorem 2.1 of Figueroa-López and Wu (2022), where alternative
localization kernels are considered.

Remark 2.2.3. (Asymptotic Variance)
The function K(c) is obtained in Clement and Gloter (2011) and arises from the behavior of the
discretized Dirichlet kernel, in the case when N has the same order of the sample size n (see Lemma
2.A.4). The choice c = 1/2 in (2.10) gives K(2c) = 0. Note that K(2c) is nonnegative for any
positive c and equal to zero if c = (1/2)k, k = 1, 2, . . .. If k = 1, i.e., c = 1/2, then N = n/2, that
is, N is equal to the Nyquist frequency, which reppresents the natural choice for N . Moreover, if
N = n/2, one achieves the optimal asymptotic variance with regards to the term (4/3)σ4(t), which is
smaller than its counterpart 2σ4(t) in Theorem 8.6 by Aït-Sahalia and Jacod (2014); besides, letting
β =

√
2π/a, even the second addend of the asymptotic variance in the efficient-rate case (2.9), that

is, 2π/(3a2)γ2(t), is smaller than the corresponding term 2π/a2γ2(t). This is due to the presence of
the Féjèr kernel in the Fourier-Féjèr inversion formula, see also Cuchiero and Teichmann (2015).

Note that, with the choice c = 1/2 (equivalently, N = n/2), the Fourier estimator has the
same rate of convergence and asymptotic variance of the Féjèr-kernel based spot volatility estimator
in (2.7), studied in Kristensen (2010), Mancini et al. (2015). However, the estimator in (2.7) is
not robust to market microstructure and thus a pre-averaging procedure and a bias correction are
needed. In summary, with an appropriate choice of N/n, the effect of adding the cross terms in
(2.5), which is essential in order to get an noise-robust estimator, is also non-detrimental in view of
the asymptotic efficiency.

Based on the previous remarks, the following result easily follows.

Corollary 2.2.4. Let assumptions (A.I), (A.II) and (A.III) hold. Moreover, assume that limn,N→∞ N/n =
1/2 and limn,M→∞ Mn−1/τ = a > 0, for 1 < τ < 2. Then, for any fixed t ∈ (0, 2π), the following
stable convergence in law holds, as n,N,M → ∞:

n1/2M−1/2 (︁ˆ︁σ2
nNM (t) − σ2(t)

)︁
→ N

(︃
0, 4

3 σ
4(t)

)︃
.

2.2.2 Proof of Theorem 2.2.1

Remark 2.2.5. As every continuous process is locally bounded, thus all processes appearing are.
Moreover, standard localization procedures (see, e.g., Aït-Sahalia and Jacod (2014)) allow to assume
that any locally bounded process is actually bounded and almost surely positive processes can be
considered as bounded away from zero.

Remark 2.2.6. Given the discrete time observations 0 = t0 ≤ . . . tj . . . ≤ tn = 2π, we use the
notation in continuous time by letting φn(t) := sup{tj : tj ≤ t} for the sake of simplicity.

The proof follows the lines of Theorem 3.1 in Mancini et al. (2015), thus we highlight only the
main differences.
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Chapter 2. The Fourier spot volatility estimator in the presence of noise

According to Lemma 2.2 Malliavin and Mancino (2009), we can assume that b = 0 and bv = 0.
Using the Itô formula we can rewrite (2.5) as

ˆ︁σ2
nNM (t) = 1

2π

∫︂ 2π

0
FM (t− φn(v))σ2(v)dv + F1(t) + F2(t), (2.11)

where
F1(t) := 1

2π

∫︂ 2π

0
FM (t− φn(v))

∫︂ v

0
DN (φn(v) − φn(u))σ(u)dWu σ(v)dWv, (2.12)

F2(t) := 1
2π

∫︂ 2π

0

∫︂ v

0
FM (t− φn(u))DN (φn(v) − φn(u))σ(u)dWu σ(v)dWv, (2.13)

and using the decomposition in (2.11) we write√︃
n

M
(ˆ︁σ2
nNM (t) − σ2(t))

=
√︃

n

M

(︃
1

2π

∫︂ 2π

0
FM (t− φn(v))σ2(v)dv − σ2(t)

)︃
+
√︃

n

M
(F1(t) + F2(t)).

The proof follows Jacod (1997), Jacod and Protter (1998) and is divided into three steps.

I) In the first step we consider the term:√︃
n

M

(︃
1

2π

∫︂ 2π

0
FM (t− φn(v))σ2(v)dv − σ2(t)

)︃
. (2.14)

The term (2.14) is decomposed into two addends:√︃
n

M

(︃
1

2π

∫︂ 2π

0
FM (t− φn(v))σ2(v)dv − 1

2π

∫︂ 2π

0
FM (t− v)σ2(v)dv

)︃
(2.15)

+
√︃

n

M

(︃
1

2π

∫︂ 2π

0
FM (t− v)σ2(v)dv − σ2(t)

)︃
. (2.16)

Observe that the term (2.15) converges to zero in probability, in fact:√︃
n

M
E

[︃⃓⃓⃓⃓
1

2π

∫︂ 2π

0
FM (t− φn(v))σ2(v)dv − 1

2π

∫︂ 2π

0
FM (t− v)σ2(v)dv

⃓⃓⃓⃓]︃

=
√︃

n

M
E

[︃⃓⃓⃓⃓
1

2π

∫︂ 2π

0
(FM (t− φn(v)) − FM (t− v))σ2(v)dv

⃓⃓⃓⃓]︃

≤ ess sup ∥σ2∥∞

√︃
M

n
→ 0,

by Lemma 2.A.1 i).
Consider now the term (2.16), which we denote by (n/M)1/2G(t). G(t) splits into two terms:

G1(t) := 1
2π

∫︂
[0,2π]∩{|t−v|≤ 2π

M+1 }
FM (t− v) (σ2(v) − σ2(t))dv (2.17)
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and
G2(t) := 1

2π

∫︂
[0,2π]∩{|t−v|> 2π

M+1 }
FM (t− v) (σ2(v) − σ2(t))dv. (2.18)

As for the term G2(t) in (2.18), it is shown that

√︃
n

M
E

[︄⃓⃓⃓⃓
⃓ 1
2π

∫︂
[0,2π]∩{|t−v|> 2π

M+1 }
FM (t− v) (σ2(v) − σ2(t))dv

⃓⃓⃓⃓
⃓
]︄

≤ C

√︃
n

M

1
M
,

as in Mancino and Recchioni (2015), eq. (31). So, it converges to zero in probability.
Consider G1(t) in (2.17), which is equal to:

∑︂
|k|≤M

(︃
1 − |k|

M + 1

)︃
eikt 1

2π

∫︂
[0,2π]∩{|t−v|≤ 2π

M+1 }
e−ikv(σ2(v) − σ2(t))dv. (2.19)

First, we prove that the term corresponding to k = 0 in (2.19) is asymptotically negligible. It splits
into

1
2π

∫︂ t

t− 2π
M+1

(σ2(v) − σ2(t)) dv + 1
2π

∫︂ t+ 2π
M+1

t

(σ2(v) − σ2(t)) dv.

For the first addend, applying the integration by parts, it holds:

1
2π

∫︂ t

t− 2π
M+1

(σ2(v) − σ2(t))dv = 1
2π [v (σ2(v) − σ2(t))]tt− 2π

M+1
− 1

2π

∫︂ t

t− 2π
M+1

v dσ2(v)

= 1
2π

∫︂ t

t− 2π
M+1

(︃
t− 2π

M + 1 − v

)︃
dσ2(v).

Then, we compute the convergence in probability of2:

n

M

⟨︄
1

2π

∫︂ t

t− 2π
M+1

(︃
t− 2π

M + 1 − v

)︃
dσ2(v), 1

2π

∫︂ t

t− 2π
M+1

(︃
t− 2π

M + 1 − v

)︃
dσ2(v)

⟩︄

= n

M

1
(2π)2

∫︂ t

t− 2π
M+1

(︃
t− 2π

M + 1 − v

)︃2
γ2(v)dv

= n

M

1
(2π)2

∫︂ t

t− 2π
M+1

(︃
t− 2π

M + 1 − v

)︃2
dv

(︃
γ2
(︃
t− 2π

M + 1

)︃
+Op

(︃
1

M + 1

)︃)︃

= n

M

1
(2π)2

1
3

(︃
2π

M + 1

)︃3 (︃
γ2
(︃
t− 2π

M + 1

)︃
+Op

(︃
1

M + 1

)︃)︃
= Op

(︂ n

M4

)︂
→ 0.

The second addend is analogous.

Thus, we consider (2.19) for k ̸= 0. Using the integration by parts, it is equal to:

∑︂
0<|k|≤M

(︃
1 − |k|

M + 1

)︃
eikt 1

2π

[︃
i
k
e−ikv(σ2(v) − σ2(t))

]︃t+ 2π
M+1

t− 2π
M+1

(2.20)

2The notation ⟨, ⟩ denotes the quadratic variation on [0, 2π].
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+
∑︂

0<|k|≤M

(︃
1 − |k|

M + 1

)︃
eikt 1

2π
i
k

∫︂
[0,2π]∩{|t−v|≤ 2π

M+1 }
e−ikvdσ2(v). (2.21)

Consider (2.20). It is equal to:

∑︂
0<|k|≤M

(︃
1 − |k|

M + 1

)︃
eikt 1

2π
i
k

(︃
e−ik(t+ 2π

M+1 )
(︃
σ2
(︃
t+ 2π

M + 1

)︃
− σ2(t)

)︃
− e−ik(t− 2π

M+1 )
(︃
σ2
(︃
t− 2π

M + 1

)︃
− σ2(t)

)︃)︃

=
∑︂

0<|k|≤M

(︃
1 − |k|

M + 1

)︃
1

2π
i
k

(︄
e−ik 2π

M+1

∫︂ t+ 2π
M+1

t

dσ2(v) + eik 2π
M+1

∫︂ t

t− 2π
M+1

dσ2(v)
)︄
. (2.22)

For the first integral (the second one is analogous), we study the convergence in probability of:

n

M

1
(2π)2

⟨︄ ∑︂
0<|k|≤M

(︃
1 − |k|

M + 1

)︃
i
k
e−ik 2π

M+1

∫︂ t+ 2π
M+1

t

dσ2,
∑︂

0<|k|≤M

(︃
1 − |k|

M + 1

)︃ (︃
− i
k

)︃
eik 2π

M+1

∫︂ t+ 2π
M+1

t

dσ2

⟩︄
.

The dominant term is studied as follows

n

M

1
(2π)2

∑︂
0<|k|≤M

(︃
1 − |k|

M + 1

)︃2 1
k2

∫︂ t+ 2π
M+1

t

γ2(s)ds

= 1
2π

1
M + 1

n

M

∑︂
0<|k|≤M

(︃
1 − |k|

M + 1

)︃2 1
k2

(︃
γ2(t) +Op

(︃
1

M + 1

)︃)︃
. (2.23)

It is easily seen that

lim
M

∑︂
0<|k|≤M

(︃
1 − |k|

M + 1

)︃2 1
k2 = lim

M

∑︂
0<|k|≤M

(︃
1 − |k|

M + 1

)︃
1
k2 = lim

M

∑︂
0<|k|≤M

1
k2 = π2

3 .

Further, by the condition Mn−1/2 ∼ a, and the continuity of γ(t), we conclude that (2.23) converges
to

1
a2
π

6 γ
2(t).

Finally, noting that the covariance between the two stochastic integrals in (2.22) is zero, the contri-
bution of (2.20) is equal to

1
a2
π

3 γ
2(t).

Similarly, we deal with the term (2.21), which is equal to:

1
2π

∑︂
0<|k|≤M

(︃
1 − |k|

M + 1

)︃
eikt i

k

(︄∫︂ t

t− 2π
M+1

e−ikvdσ2(v) +
∫︂ t+ 2π

M+1

t

e−ikvdσ2(v)
)︄
.

The convergence in probability for the bracket of the first addend, that is,

n

M

1
(2π)2

⟨︄ ∑︂
0<|k|≤M

(︃
1 − |k|

M + 1

)︃
eikt i

k

∫︂ t

t− 2π
M+1

e−ikvdσ2(v),
∑︂

0<|k|≤M

(︃
1 − |k|

M + 1

)︃
e−ikt

(︃
− i
k

)︃∫︂ t

t− 2π
M+1

eikvdσ2(v)
⟩︄
,
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reads as follows:
n

M

1
(2π)2

∑︂
0<|k|≤M

(︃
1 − |k|

M + 1

)︃2 1
k2

∫︂ t

t− 2π
M+1

γ2(v)dv

= n

M

1
(2π)2

∑︂
0<|k|≤M

(︃
1 − |k|

M + 1

)︃2 1
k2

2π
M + 1

(︃
γ2
(︃
t− 2π

M + 1

)︃
+Op

(︃
1

M + 1

)︃)︃
→ 1

a2
π

6 γ
2(t),

given the condition Mn−1/2 ∼ a and the fact that γ(t) is continuous. The second addend is
analogous.
Finally these four terms contribute to the variance with

2π
3

1
a2 γ

2(t).

We remark that these terms converge to 0 if Mn−1/τ ∼ a for 1 < τ < 2 (thus n/M2 → 0). Therefore,
under this condition, the volatility of volatility component does not appear in the asymptotic variance
in (2.8).

II) The study of the bracket⟨︃√︃
n

M
(F1(t) + F2(t)),

√︃
n

M
(F1(t) + F2(t))

⟩︃
is analogous to the one in Mancini et al. (2015). It is composed of four terms and each of them leads
to the same limit. We give details of the proof only for the first one.

Using the Itô formula, it holds that⟨︃√︃
n

M
F1(t),

√︃
n

M
F1(t)

⟩︃

= n

M

1
(2π)2

∫︂ 2π

0
F 2
M (t− φn(v))

(︃∫︂ v

0
DN (φn(v) − φn(s))σ(s)dWs

)︃2
σ2(v)dv

= n

M
(F11(t) + F12(t)),

where
F11(t) := 1

(2π)2

∫︂ 2π

0
F 2
M (t− φn(v))

∫︂ v

0
D2
N (φn(v) − φn(s))σ2(s)ds σ2(v)dv, (2.24)

F12(t) := 1
(2π)2

∫︂ 2π

0
F 2
M (t− φn(v))

∫︂ v

0

(︃∫︂ s

0
DN (φn(v) − φn(u))σ(u)dWu

)︃
(2.25)

×DN (φn(v) − φn(s))σ(s)dWs σ
2(v)dv.

We prove that, for any t ∈ (0, 2π) fixed, in probability it holds:

n

M
F11(t) → 1

3(1 + 2K(2c))σ4(t), (2.26)

where K(c) is equal to (2.10), and
n

M
F12(t) → 0. (2.27)
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We begin with (2.26). Let V := π(1 + 2K(2c)). We have:⃓⃓⃓⃓
n

M
F11(t) − V

2
3

1
2π σ4(t)

⃓⃓⃓⃓

=
⃓⃓⃓⃓
n

M

1
(2π)2

∫︂ 2π

0
F 2
M (t− φn(v))

∫︂ v

0
D2
N (φn(v) − φn(s))σ2(s)ds σ2(v)dv − V

2
3

1
2πσ

4(t)
⃓⃓⃓⃓

≤
⃓⃓⃓⃓

1
(2π)2

∫︂ 2π

0

1
M
F 2
M (t− φn(v))

(︃
n

∫︂ v

0
D2
N (φn(v) − φn(s))σ2(s)ds− V σ2(v)

)︃
σ2(v)dv

⃓⃓⃓⃓
(2.28)

+V
⃓⃓⃓⃓

1
(2π)2

∫︂ 2π

0

1
M
F 2
M (t− φn(v))σ4(v)dv − 2

3
1

2πσ
4(t)

⃓⃓⃓⃓
. (2.29)

Consider (2.28): it is less than

1
(2π)2

∫︂ 2π

0

1
M
F 2
M (t− φn(v))

⃓⃓⃓⃓
n

∫︂ v

0
D2
N (φn(v) − φn(s))σ2(s)ds− V σ2(v)

⃓⃓⃓⃓
σ2(v)dv

which is op(1) by virtue of Lemma 2.A.1 iv) and Lemma 2.A.4 ii).
Consider now (2.29): by Lemma 2.A.1 iv), it holds, in probability, that

lim
n,M→∞

⃓⃓⃓⃓
1

(2π)2

∫︂ 2π

0

1
M
F 2
M (t− φn(v))σ4(v)dv − 2

3
1

2πσ
4(t)

⃓⃓⃓⃓
= 0.

Finally, observe that V 2
3

1
2π = 1

3 (1 + 2K(2c)).
We prove now (2.27). Using the Itô isometry, we have:

n2E

[︄(︃∫︂ v

0

∫︂ s

0
DN (φn(v) − φn(u))σ(u)dWuDN (φn(v) − φn(s))σ(s)dWs

)︃2
]︄

≤ ∥σ2∥2
∞ n2

∫︂ v

0

∫︂ s

0
D2
N (φn(v) − φn(u))duD2

N (φn(v) − φn(s))ds.

Therefore, it is enough to observe that, as N/n ∼ c,

n

∫︂ v

0

(︃
n

∫︂ s

0
D2
N (φn(v) − φn(u))du

)︃
D2
N (φn(v) − φn(s))ds = o(1),

by combining Lemma 2.A.4 ii) and iii). Finally, we remark that 1
M

∫︁ 2π
0 F 2

M (t−φn(v))dv = O(1), by
Lemma 2.A.1 iii).

III) The last step of the proof concerns the orthogonality. The first result requires to prove the
convergence in probability of⟨︃√︃

n

M
(F1(t) + F2(t) +G1(t)),W

⟩︃
→ 0,

where F1 and F2 are defined, respectively, in (2.12) and (2.13), while G1 is defined in (2.17).
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Consider F1(t) (the term F2(t) is analogous). It holds that:⟨︃√︃
n

M
F1(t),W

⟩︃
=
√︃

n

M

1
2π

∫︂ 2π

0
FM (t− φn(v))

∫︂ v

0
DN (φn(v) − φn(s))σ(s)dWsσ(v)dv.

Consider the L1-norm:

E

[︃⃓⃓⃓⃓
1

2π

∫︂ 2π

0
FM (t− φn(v))

∫︂ v

0
DN (φn(v) − φn(s))σ(s)dWsσ(v)dv

⃓⃓⃓⃓]︃

≤ ∥σ∥∞
1

2π

∫︂ 2π

0
FM (t− φn(v))E

[︄(︃∫︂ v

0
DN (φn(v) − φn(s))σ(s)dWs

)︃2
]︄1/2

dv.

Moreover, we have

E

[︄(︃∫︂ v

0
DN (φn(v) − φn(s))σ(s)dWs

)︃2
]︄

≤ ∥σ2∥∞

∫︂ v

0
D2
N (φn(v) − φn(s))ds.

Thus √︃
n

M
E

[︃⃓⃓⃓⃓
1

2π

∫︂ 2π

0
FM (t− φn(v))

∫︂ v

0
DN (φn(v) − φn(s))σ(s)dWsσ(v)dv

⃓⃓⃓⃓]︃

≤ C

√︃
1
M

∫︂ 2π

0
FM (t− φn(v))

(︃
n

∫︂ v

0
D2
N (φn(v) − φn(s))ds

)︃1/2
≤ C

√︃
1
M

→ 0,

using Lemma 2.A.4 i).
Consider now the term G1(t) and note that it reduces to study the contribution of (2.20) and

(2.21). We give details of the proof for (2.21). It requires to prove the following convergence in
probability: √︃

n

M

1
2π

∑︂
0<|k|≤M

(︃
1 − |k|

M + 1

)︃
i
k

∫︂ t

t− 2π
M+1

γ(v)ϕdv → 0.

Consider: ⃓⃓⃓⃓
⃓⃓√︃ n

M

1
2π

∑︂
0<|k|≤M

(︃
1 − |k|

M + 1

)︃
i
k

∫︂ t

t− 2π
M+1

γ(v)ϕdv

⃓⃓⃓⃓
⃓⃓

≤ C

√︃
n

M

1
2π

∑︂
0<|k|≤M

(︃
1 − |k|

M + 1

)︃
1

|k|
2π

M + 1

(︃
γ

(︃
t− 2π

M + 1

)︃
+Op

(︃
1

M + 1

)︃)︃

≤ C

√︃
n

M

1
M + 1

M∑︂
k=1

(︃
1 − k

M + 1

)︃
1
k

∼ 1√
M

(︃
lnM + γ +O

(︃
1
M

)︃)︃
→ 0,

where γ is the Euler-Mascheroni constant. The proof is complete.

2.2.3 Asymptotic Normality in the presence of microstructure noise

We study the asymptotic normality for the estimator (2.2) when the price process is contaminated
by microstructure noise. The main result of this section shows that the spot volatility estimator
(2.2) reaches the optimal rate of convergence and asymptotic variance.

The following assumption on the noise process η is made.
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Chapter 2. The Fourier spot volatility estimator in the presence of noise

(N) (ηti)i≥0 is a family of i.i.d. random variables, independent of the log-price process p, with zero
mean and finite second and fourth moments, equal to ξ and ω, respectively.

Denote by ˜︁σ2
nNM (t) the Fourier spot volatility estimator in the presence of microstructure noise,

that is, ˜︁σ2
nNM (t) :=

∑︂
|k|≤M

(︃
1 − |k|

M + 1

)︃
eitkck(˜︁σ2

nN ), (2.30)

where ck(˜︁σ2
nN ) is the estimator of the k-th Fourier coefficient of the volatility process, obtained via

(2.3) using the discrete Fourier coefficients of the increments of the observed noisy log-price process

˜︁pti := pti + ηti . (2.31)

In the rest of the work, we will refer to p as the efficient log-price.

Theorem 2.2.7. Let assumptions (A.I), (A.II), (A.III) and (N) hold. Moreover, assume that
limN,n→∞ Nn−1/2 = c > 0. Then, for any fixed t ∈ (0, 2π), the following stable convergence in law
holds, as n,N,M → ∞:

- if limN,M→∞ M N−1/τ = a > 0, for 1 < τ < 2,

n1/4M−1/2 (︁˜︁σ2
nNM (t) − σ2(t)

)︁
→ N

(︃
0, 1
c

2
3σ

4(t) + c
8π
9 σ2(t)ξ + c3 4π2

15 ξ2
)︃

; (2.32)

- if limN,M→∞ M N−1/2 = a > 0,

n1/4M−1/2 (︁˜︁σ2
nNM (t) − σ2(t)

)︁
→ N

(︃
0, 1
c

2
3σ

4(t) + 1
a2c

2π
3 γ2(t) + c

8π
9 σ2(t)ξ + c3 4π2

15 ξ2
)︃
. (2.33)

Remark 2.2.8. (Convergence rate)
In the presence of microstructure noise, the convergence rate attained by the Fourier estimator in
(2.33) is the optimal one, that is, n1/8. This rate is also found for the spot volatility estimators
by Aït-Sahalia and Jacod (2014, Section 8.7) and Figueroa-López and Wu (2022, Theorem 2.2).
However, while in these cases pre-averaging and a bias correction are needed, the Fourier estimator
in (2.2) does not need any modification. The case in (2.32), which assumes MN−1/τ ∼ a > 0, for
1 < τ < 2, reaches a slightly sub-optimal rate; however, the resulting asymptotic variance is smaller
and does not depend on the volatility of volatility.

Remark 2.2.9. (Asymptotic Variance)
The asymptotic variance in (2.33) depends on the spot quarticity, the spot volatility of volatility,
and the variance of the noise. All these factors can be estimated; thus, in principle, a feasible
Central Limit Theorem is achievable. The same addends appear in the asymptotic variance of the
pre-averaging and bias-corrected kernel-type estimators by Aït-Sahalia and Jacod (2014), Figueroa-
López and Wu (2022). Notice that, as the condition N/n → 0 is in force, the quantity K(2c) in
(2.10), which arises from the discretization of the Dirichlet kernel, disappears (see Lemma 2.A.5).

It is worth noticing the role of the cutting frequency N , which is evident by comparing Theorems
2.2.7 and 2.2.1. In Theorem 2.2.7, N is chosen smaller than in the noise-less case, in line with the
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findings of Mancino and Sanfelici (2008). In fact, the role of N is that of filtering out the noise: the
high-frequency, or short-run, noise is ignored by cutting the highest frequencies in the construction
of the Fourier coefficients of the volatility ck(σ2

nN ).

2.2.4 Proof of Theorem 2.2.7

The notation introduced in Remark 2.2.6 for the proof of Theorem 2.2.1 still holds in the following.
For brevity, let ηi := ηti . Moreover, let εi := ηi+1 − ηi. For any t ∈ (0, 2π) we rewrite the

estimator error ˜︁σ2
nNM (t) − σ2(t) as:

1
2π

∫︂ 2π

0
(FM (t− φn(v)) − FM (t− v)) σ2(v)dv+F1(t)+F2(t)+G(t)+E1(t)+E2(t)+E3(t), (2.34)

where F1(t), F2(t) and G(t) are defined, respectively, in (2.12), (2.13) and (2.16), while E1(t), E2(t)
and E3(t) are defined as follows:

E1(t) := 1
2π

n−1∑︂
i=0

n−1∑︂
j=0

FM (t− tj)DN (tj − ti)δi(p)εj , (2.35)

E2(t) := 1
2π

n−1∑︂
i=0

n−1∑︂
j=0

FM (t− tj)DN (tj − ti)δj(p)εi, (2.36)

E3(t) := 1
2π

n−1∑︂
i=0

n−1∑︂
j=0

FM (t− tj)DN (tj − ti)εiεj . (2.37)

Using the decomposition in (2.34), the proof consists in the study of the following four components,
which are addressed in the next sections:

n
1
4M− 1

2

∫︂ 2π

0
(FM (t− φn(v)) − FM (t− v)) σ2(v)dv (2.38)

+n 1
4M− 1

2 (G(t) + F1(t) + F2(t)) (2.39)

+n 1
4M− 1

2 (E1(t) + E2(t)) (2.40)

+n 1
4M− 1

2 E3(t). (2.41)

No-noise component

The study of the terms (2.38) and (2.39) closely follows the study of the corresponding terms in
Theorem 2.2.1. However, due to the slower convergence rate considered here, some different constants
appear when computing the asymptotic variance contribution given by F1(t), F2(t) and G(t). Thus,
we argue only this point.

Consider the contribution to the asymptotic variance given by⟨︂
n

1
4M− 1

2 F1(t), n 1
4M− 1

2 F1(t)
⟩︂
.

Let F11(t) and F12(t) be defined as in (2.24) and (2.25). We prove that the following convergence
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in probability holds: √
n

M
F11(t) → 1

6
1
c
σ4(t).

Noting that
√
n/M ∼ N/(cM), we have:⃓⃓⃓⃓

1
c

N

M
F11(t) − 1

6c σ
4(t)

⃓⃓⃓⃓
=
⃓⃓⃓⃓
1
c

N

M

1
(2π)2

∫︂ 2π

0
F 2
M (t− φn(v))

∫︂ v

0
D2
N (φn(v) − φn(s))σ2(s)ds σ2(v)dv − 1

c

1
6 σ

4(t)
⃓⃓⃓⃓

≤ 1
c

1
(2π)2

∫︂ 2π

0

1
M
F 2
M (t− φn(v))

⃓⃓⃓⃓
N

∫︂ v

0
D2
N (φn(v) − φn(s))σ2(s)ds− π

2 σ
2(v)

⃓⃓⃓⃓
σ2(v)dv (2.42)

+1
c

⃓⃓⃓⃓
π

2
1

(2π)2

∫︂ 2π

0

1
M
F 2
M (t− φn(v))σ4(v)dv − 1

6 σ
4(t)

⃓⃓⃓⃓
. (2.43)

Using Lemma 2.A.5, as N/n → 0 (recall that N/
√
n ∼ c), then

lim
n,N→∞

N

∫︂ v

0
D2
N (φn(v) − φn(s))σ2(s)ds = π

2 σ
2(v).

Moreover, by Lemma 2.A.1 iv), as M/n → 0, it holds that

lim
n,M→∞

∫︂ 2π

0

1
M
F 2
M (t− φn(v))σ2(v)dv = 4π

3 σ4(t).

Therefore, (2.42) goes to 0. Analogously, (2.43) converges to 0.
We prove now the following convergence in probability:

√
n

M
F12(t) → 0. (2.44)

It is enough to study

N

M

∫︂ 2π

0
F 2
M (t− v)

∫︂ v

0

∫︂ s

0
DN (φn(v) − φn(u))σ(u)dWuDN (φn(v) − φn(s))σ(s)dWs σ

2(v)dv.

Using the Itô isometry, we have that

N2E

[︄(︃∫︂ v

0

∫︂ s

0
DN (φn(v) − φn(u))σ(u)dWuDN (φn(v) − φn(s))σ(s)dWs

)︃2
]︄

≤ ∥σ2∥∞ N2
∫︂ v

0
E

[︄(︃∫︂ s

0
DN (φn(v) − φn(u))σ(u)dWu

)︃2
]︄
D2
N (φn(v) − φn(s))ds

≤ ∥σ2∥2
∞ N2

∫︂ v

0

∫︂ s

0
D2
N (φn(v) − φn(u))duD2

N (φn(v) − φn(s))ds.

Therefore, it is enough to observe that

N

∫︂ v

0
N

∫︂ s

0
D2
N (φn(v) − φn(u))du D2

N (φn(v) − φn(s))ds = o(1),

by combining Lemmas 2.A.4 and 2.A.5 (remember thatN/n → 0). Finally, (1/M)
∫︁ 2π

0 F 2
M (t−v)dv =

O(1), which concludes the proof of (2.44).
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Further, note that the contribution to the variance of all these components remains the same
under the condition M/N−1/τ ∼ a > 0, for τ > 1.

Finally, as for the contribution of G(t) defined in (2.16), the proof follows in the same way as in
Theorem 2.2.1. It is enough to point out that, when studying G1(t), it holds:

√
n

M

1
(2π)2

∑︂
0<|k|≤M

(︃
1 − |k|

M + 1

)︃2 1
k2

∫︂ t+ 2π
M+1

t

γ2(s)ds

=
√
n

M

1
(2π)2

∑︂
0<|k|≤M

(︃
1 − |k|

M + 1

)︃2 1
k2

2π
M + 1

(︃
γ2(t) +Op

(︃
1

M + 1

)︃)︃

= 1
2π

1
M + 1

√
n

M

∑︂
0<|k|≤M

(︃
1 − |k|

M + 1

)︃2 1
k2

(︃
γ2(t) +Op

(︃
1

M + 1

)︃)︃
. (2.45)

Further, by the conditions MN−1/2 ∼ a and Nn−1/2 ∼ c, and the continuity of γ(t), we conclude
that (2.45) converges to

1
a2c

π

6 γ
2(t).

Noise component

In this section we compute the contribution to the asymptotic variance from the pure noise term
(2.37). We observe that, neglecting end-effects that will be studied later, the term

n−1∑︂
i=0

n−1∑︂
j=0

FM (t− tj)DN (ti − tj)εiεj

=
n−1∑︂
i=0

n−1∑︂
j=0

FM (t− tj)DN (ti − tj)(ηi+1ηj+1 − ηiηj+1 − ηi+1ηj + ηiηj)

can be expressed as follows:

n−1∑︂
i=0

n−1∑︂
j=0

FM (t− tj)DN (ti − tj)ηi+1ηj+1 −
n−1∑︂
i=0

n−1∑︂
j=0

FM (t− tj)DN (ti+1 − tj)ηi+1ηj+1 (2.46)

−
n−1∑︂
i=0

n−1∑︂
j=0

FM (t−tj+1)DN (ti−tj+1)ηi+1ηj+1 +
n−1∑︂
i=0

n−1∑︂
j=0

FM (t−tj+1)DN (ti+1 −tj+1)ηi+1ηj+1, (2.47)

plus the remaining end points equal to the following:

−
n−1∑︂
j=0

FM (t− tj)DN (t0 − tj)η0ηj+1 +
n−1∑︂
j=0

FM (t− tj)DN (tn − tj)ηnηj+1 (2.48)

−
n−1∑︂
j=0

FM (t− t0)DN (tj − t0)η0ηj+1 +
n−1∑︂
j=0

FM (t− tn)DN (tj − tn)ηnηj+1 (2.49)
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+
n−1∑︂
j=0

FM (t− tj)DN (t0 − tj)η0ηj −
n−1∑︂
j=0

FM (t− tj)DN (tn − tj)ηnηj (2.50)

+
n−1∑︂
j=0

FM (t− t0)DN (tj − t0)ηjη0 −
n−1∑︂
j=0

FM (t− tn)DN (tj − tn)ηjηn. (2.51)

We begin by studying the terms (2.46) and (2.47), that can be written as follows:

−
n−1∑︂
i=0

n−1∑︂
j=0

FM (t− tj) (DN (ti+1 − tj) −DN (ti − tj)) ηi+1ηj+1 (2.52)

+
n−1∑︂
i=0

n−1∑︂
j=0

FM (t− tj+1) (DN (ti+1 − tj+1) −DN (ti − tj+1)) ηi+1ηj+1. (2.53)

With ρ(n) = ti+1 − ti, using the Taylor formula, we express (2.52) and (2.53) as∑︂
i

∑︂
j

[FM (t− tj+1)D′
N (ti − tj+1) − FM (t− tj)D′

N (ti − tj)] ρ(n) ηi+1ηj+1 + o(ρ(n))

=
∑︂
i

∑︂
j

[F ′
M (t− tj)D′

N (ti − tj) + FM (t− tj)D′′
N (ti − tj)] ρ(n)2 ηi+1ηj+1 + o(ρ(n)2).

We study the contribution to the asymptotic variance of these two terms:

E31(t) := 1
2π
∑︂
i

∑︂
j

F ′
M (t− tj)D′

N (ti − tj) ρ(n)2 ηi+1ηj+1,

E32(t) := 1
2π
∑︂
i

∑︂
j

FM (t− tj)D′′
N (ti − tj) ρ(n)2 ηi+1ηj+1.

Consider E31(t). Given the assumptions that the noise and price processes are independent and
that the noise is zero-mean, conditionally on the price process, it holds:

E[(n1/4M−1/2 1
2π
∑︂
i

∑︂
j

F ′
M (t− tj)D′

N (ti − tj) ρ(n)2 ηi+1ηj+1)2]

=
√
n

M

1
(2π)2

∑︂
i

∑︂
j

(F ′
M (t− tj))2 |D′

N (ti − tj)|2 ρ(n)4E[η2
i+1η

2
j+1] (2.54)

+
√
n

M

1
(2π)2

∑︂
i

∑︂
i′ ̸=i

∑︂
j

∑︂
j′ ̸=j

F ′
M (t−tj)F ′

M (t−tj′)D′
N (ti−tj)D′

N (ti′ −tj′) ρ(n)4E[ηi+1ηi′+1ηj+1ηj′+1].

(2.55)
First, we study the term (2.54), which is equal to:

√
n

M

1
(2π)2

∑︂
i

|F ′
M (t− ti)|2 |D′

N (0)|2 ρ(n)4E[η4
j+1]

+
√
n

M

1
(2π)2

∑︂
i

∑︂
j ̸=i

|F ′
M (t− tj)|2 |D′

N (ti − tj)|2 ρ(n)4E[η2
i+1η

2
j+1].
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By adopting the continuous-time notation and using the fact that |D′
N (0)|2 = O(N), and that the

η’s are i.i.d. with fourth moment equal to ω, we can study:
√
n

M
ρ(n)3 N

1
(2π)2

∫︂ 2π

0
|F ′
M (t− φn(s))|2ds ω

+
√
n

M
2 ρ(n)2 1

(2π)2

∫︂ 2π

0
|F ′
M (t− φn(s))|2

∫︂ s

0
|D′

N (φn(s) − φn(u))|2 du ds ξ2

= 1
c
N2ρ(n)3 M2 1

(2π)2
1
M3

∫︂ 2π

0
|F ′
M (t− φn(s))|2 ds ω (2.56)

+1
c
N2 ρ(n)2 M2 2 1

(2π)2
1
M3

∫︂ 2π

0
|F ′
M (t− φn(s))|2 1

N

∫︂ s

0
|D′

N (s− φn(u))|2du ds ξ2. (2.57)

Consider the order of the two addends by using Lemmas 2.A.3 and 2.A.6. For (2.56), the order is:

N2ρ(n)3 M2 ω ∼ N2

n

M2

n2 = o(1).

For (2.57), we obtain:

N2ρ(n)2 M2ξ ∼ N2

n

M2

n
= o(1).

Therefore (2.54) goes to zero in probability.
Consider now (2.55). We distinguish four cases:

(I) i = j, i′ ̸= i, j′ ̸= j, i′ = j′,

(II) i = j, i′ ̸= i, j′ ̸= j, i′ ̸= j′,

(III) i ̸= j, i′ ̸= i, j′ ̸= j, i′ ̸= j′,

(IV ) i ̸= j, i′ ̸= i, j′ ̸= j, i′ = j′.

Observe that in the cases (II), (III) and (IV ) the conditional expectation is null because of the
independence of the η’s. Consider the case (I). Using that |D′

N (0)|2 = O(N) and the independence
property of the noise process, it is equal to

1
c

N2

M
ρ(n)4 1

(2π)2 2
∑︂
j

∑︂
j′<j

F ′
M (t− tj)F ′

M (t− tj′)E[η2
j+1]E[η2

j′+1]. (2.58)

Then it is equivalent to study

N2

M
ρ(n)2

⃓⃓⃓⃓∫︂ 2π

0
F ′
M (t− φn(s))

∫︂ s

0
F ′
M (t− φn(u)) du ds

⃓⃓⃓⃓
ξ2

≤ C
N2

M
ρ(n)2

∫︂ 2π

0
|F ′
M (t− φn(s))|2 ds = CN2M2ρ(n)2 = o(1),

therefore (2.55) goes to zero in probability.
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Now we study the contribution to the asymptotic variance from E32(t). It holds:

E[(n1/4M−1/2 1
2π
∑︂
i

∑︂
j

FM (t− tj)D′′
N (ti − tj) ρ(n)2 ηi+1ηj+1)2]

=
√
n

M
ρ(n)4 1

(2π)2

∑︂
i

∑︂
j

F 2
M (t− tj)|D′′

N (ti − tj)|2 E[η2
i+1η

2
j+1] (2.59)

+
√
n

M
ρ(n)4 1

(2π)2

∑︂
i

∑︂
i ̸=i′

∑︂
j

∑︂
j ̸=j′

FM (t− tj)D′′
N (ti − tj)FM (t− tj′)D′′

N (ti′ − tj′)E[ηiηjηi′+1ηj′+1].

(2.60)
First, consider (2.59). It is equal to

1
c

N

M
ρ(n)4 1

(2π)2

∑︂
j

F 2
M (t− tj)|D′′

N (0)|2 E[η4
j+1] (2.61)

+2
c

N

M
ρ(n)4 1

(2π)2

∑︂
j

∑︂
i<j

F 2
M (t− tj)|D′′

N (ti − tj)|2 E[η2
i+1η

2
j+1]. (2.62)

Consider the first addend (2.61). Given that |D′′
N (0)|2 = O(N4), it reduces to:

N

M
N4ρ(n)3

∫︂ 2π

0
F 2
M (t− φn(s)) dsω ∼ N4

n2
N

n
→ 0.

Consider the second addend (2.62). Thanks to Lemma 2.A.6, it holds:

2
c

N

M
ρ(n)2 1

(2π)2

∫︂ 2π

0
F 2
M (t− φn(s))

∫︂ s

0
|D′′

N (φn(s) − φn(u))|2 du ds ξ2

= 2
c
N4 ρ(n)2 1

(2π)2
1
M

∫︂ 2π

0
F 2
M (t− φn(s)) 1

N3

∫︂ s

0
|D′′

N (φn(s) − φn(u))|2 du ds ξ2 → c3 4π2

15 ξ2.

We now study (2.60). Using the properties of the noise process, it is enough to observe that

N

M
ρ(n)4

∑︂
j

∑︂
j′ ̸=j

FM (t− tj)|D′′
N (0)|2FM (t− tj′)E[η2

j+1η
2
j′+1]

= 2N
M
N4ρ(n)2

∫︂ 2π

0
FM (t− φn(s))

∫︂ s

0
FM (t− φn(u)) du ds ξ2.

= 4N
5

M
ρ(n)2

∫︂ 2π

t

FM (t− φn(s))
∫︂ s

0
FM (t− φn(u)) du ds ξ2

≤ C
N5

M
ρ(n)2

∫︂ t+ϵn

t

FM (t− φn(s)) ds = C
N4

n2
N

M
ϵn, for any sequence ϵn → 0.

Therefore, to have convergence to 0, it is sufficient to choose a sequence ϵn → 0 s.t. N
M ϵn → 0.

It remains to prove the asymptotic negligibility of the end points’ contribution. The terms are
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grouped as follows:

−
n−1∑︂
j=0

FM (t− tj)DN (tj)ηj+1η0 +
n−1∑︂
j=0

FM (t− tj)DN (tj)ηjη0 (2.63)

+
n−1∑︂
j=0

FM (t− tj)DN (tj)ηj+1ηn −
n−1∑︂
j=0

FM (t− tj)DN (tj)ηjηn (2.64)

−
n−1∑︂
j=0

FM (t)DN (tj)ηj+1η0 +
n−1∑︂
j=0

FM (t)DN (tj)ηjη0 (2.65)

+
n−1∑︂
j=0

FM (t)DN (tj)ηj+1ηn −
n−1∑︂
j=0

FM (t)DN (tj)ηjηn. (2.66)

We first consider (2.65). It can be written as

−
n−1∑︂
j=0

FM (t)DN (tj)ηj+1η0 +
n−1∑︂
j=0

FM (t)DN (tj+1)ηj+1η0

+FM (t)DN (t0)η2
0 − FM (t)DN (tn)ηnη0

= FM (t)
n−1∑︂
j=0

(DN (tj+1) −DN (tj)) ηj+1η0 + FM (t)η2
0 − FM (t)ηnη0,

where we used that DN (t0) = DN (0) = 1 = DN (2π) = DN (tn). Notice that, for the i.i.d property
of the noise, it holds:

n1/2M−1E

⎡⎢⎣
⎛⎝FM (t)

n−1∑︂
j=0

D′
N (tj)ρ(n) ηj+1η0 + FM (t)η2

0 − FM (t)ηnη0

⎞⎠2
⎤⎥⎦

= n1/2M−1

⎛⎝F 2
M (t)

n−1∑︂
j=0

|D′
N (tj)|2ρ(n)2 ξ2 + F 2

M (t)ω + F 2
M (t) ξ2

⎞⎠ .

Finally, observe that

n1/2M−1
(︃
F 2
M (t)ρ(n)

∫︂ 2π

0
|D′

N (φn(s))|2ds ξ2 + F 2
M (t)(ω + ξ2)

)︃
= O(n−1/2M−3N)+O(n1/2M−3) = o(1),

(2.67)
where we used the fact that, for any ε > 0 and ε ≤ t ≤ 2π − ε, FM (t) ≤ M−1 (sin(ε/2))−2, and
Lemma 2.A.5.

Consider now (2.63). With a similar decomposition as for (2.65), it can be written as

n−1∑︂
j=0

[ (F ′
M (t− tj)DN (tj) + FM (t− tj)D′

N (tj)) ρ(n) + o(ρ(n))]ηj+1η0 + FM (t)η2
0 − FM (t)η0ηn,

where we used that DN (t0) = DN (0) = 1 = DN (2π) = DN (tn). Then, for the i.i.d property of the
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noise, it holds:

n1/2M−1E

⎡⎢⎣
⎛⎝n−1∑︂
j=0

(F ′
M (t− tj)DN (tj) + FM (t− tj)D′

N (tj)) ρ(n)ηj+1η0 + FM (t)η2
0 − FM (t)η0ηn

⎞⎠2
⎤⎥⎦

= n1/2M−1

⎛⎝ n∑︂
j=0

(︁
|F ′
M (t− tj)|2D2

N (tj) + F 2
M (t− tj)|D′

N (tj)|2
)︁
ρ(n)2ξ2 + F 2

M (t)(ω + ξ2)

⎞⎠ .

The first two addends are studied as follows. For the first one, we have:

n1/2M−1ρ(n)
∫︂ 2π

0
|F ′
M (t− φn(s))|2D2

N (φn(s))ds ∼ n1/2M−1ρ(n)M3 D2
N (t),

where we have used Lemma 2.A.3. Moreover, using that for t ∈ (0, 2π), then D2
N (t) = O(N−1), this

term is
O(n−1/2M2N−1) = o(1).

For the second term, we study:

n1/2M−1ρ(n)
∫︂ 2π

0
F 2
M (t− φn(s))|D′

N (φn(s))|2ds ξ2.

Using Lemmas 2.A.1 and 2.A.6, this gives, for t ̸= 0, 2π, that

n1/2M−1ρ(n)M |D′
N (t)|2 = O(n−1/2N)o(1) = o(1).

Finally, consider the remaining term, which is equal to

n1/2M−1F 2
M (t)(ω + ξ2) = O(n1/2M−1M−2) = O(n−1/4).

The terms (2.64) and (2.66) are analogous.

Mixed noise-price component

Consider now the asymptotic variance contribution from the term (2.40). It comprises four analogous
terms. We focus on E1(t), defined in (2.35). We observe that the term E1(t) can be written as:

n−1∑︂
i=0

n−1∑︂
j=0

FM (t− tj)DN (tj − ti)δi(p)ηj+1 −
n−1∑︂
i=0

n−1∑︂
j=0

FM (t− tj+1)DN (tj+1 − ti) δi(p)ηj+1 (2.68)

plus the remaining end-terms equal to

−
n−1∑︂
i=0

FM (t− t0)DN (ti − t0) δi(p)η0 +
n−1∑︂
i=0

FM (t− tn)DN (ti − tn) δi(p)ηn. (2.69)
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Consider (2.68). It is equal to∑︂
i

∑︂
j

F ′
M (t− tj)DN (tj − ti) δi(p)ηj+1 ρ(n) + o(ρ(n)) (2.70)

+
∑︂
i

∑︂
j

FM (t− tj)D′
N (ti − tj) δi(p)ηj+1 ρ(n) + o(ρ(n)). (2.71)

Thus we first consider the term (2.70). It holds:⎛⎝n 1
4M− 1

2
1

2π
∑︂
i

∑︂
j

F ′
M (t− tj)DN (tj − ti) ρ(n) δi(p) ηj+1

⎞⎠2

=
√
n

M

1
(2π)2

∑︂
i

∑︂
j

|F ′
M (t− tj)|2D2

N (tj − ti) ρ(n)2 δ2
i (p) η2

j+1 (2.72)

+
√
n

M

1
(2π)2

∑︂
i

∑︂
i′ ̸=i

∑︂
j

∑︂
j′ ̸=j

F ′
M (t− tj)DN (tj − ti)F ′

M (t− tj′)DN (tj′ − ti′) ρ(n)2 δi(p)ηj+1δi′(p)ηj′+1.

(2.73)
Consider the conditional (with respect to the price process p) expectation of (2.72). Using the fact
that the noise process is independent from the price process, then it is equal to

1
c

N

M

1
(2π)2

∑︂
j

|F ′
M (t− tj)|2D2

N (0) ρ(n)2 δ2
j (p)E[η2

j+1] (2.74)

+2
c

N

M

1
(2π)2

∑︂
j

∑︂
i<j

|F ′
M (t− tj)|2D2

N (tj − ti) ρ(n)2 δ2
i (p)E[η2

j+1]. (2.75)

Because D2
N (0) = 1, then the first addend, (2.74), is equal to

1
c

N

M
M3 ρ(n)2 1

(2π)2

(︃
1
M3

∫︂ 2π

0
|F ′
M (t− φn(s))|2σ2(s)ds+ op(1)

)︃
ξ,

which converges to 0 by virtue of Lemma 2.A.3.
Consider the term (2.75). It is equal to

1
c

N

M
ρ(n) 1

(2π)2

(︃∫︂ 2π

0

∫︂ s

0
|F ′
M (t− φn(s))|2D2

N (φn(s) − φn(u))σ2(u)du ds+ op(1)
)︃
ξ. (2.76)

Using Lemmas 2.A.3 and 2.A.5, the following convergence in probability holds:∫︂ 2π

0

1
M3 |F ′

M (t− φn(s))|2 N
∫︂ s

0
D2
N (φn(s) − φn(u))σ2(u)du ds → Cσ2(t).

Therefore (2.76) has order ρ(n)M2, which converges to 0.
Then consider the term (2.71). It holds:⎛⎝n 1

4M− 1
2

1
2π
∑︂
i

∑︂
j

FM (t− tj)D′
N (ti − tj) ρ(n) δi(p) ηj+1

⎞⎠2
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=
√
n

M

1
(2π)2

∑︂
i

∑︂
j

F 2
M (t− tj)|D′

N (ti − tj)|2 ρ(n)2 δ2
i (p) η2

j+1 (2.77)

+
√
n

M

1
(2π)2

∑︂
i

∑︂
i′ ̸=i

∑︂
j

∑︂
j′ ̸=j

F 2
M (t− tj)|D′

N (ti − tj)|2 ρ(n)2 δi(p)δi′(p) ηjηj′+1. (2.78)

Consider (2.77). The conditional variance with respect to p gives

1
c

N

M
ρ(n)2 1

(2π)2

∑︂
j

F 2
M (t− tj)|D′

N (0)|2 δ2
j (p) ξ

+2
c

N

M
ρ(n)2 1

(2π)2

∑︂
j

∑︂
i<j

F 2
M (t− tj)|D′

N (ti − tj)|2 δ2
i (p) ξ.

The first addend converges to zero. Indeed, it holds that

N2 1
n2

(︃
1
M

∫︂ 2π

0
F 2
M (t− φn(s))σ2(s)ds+ op(1)

)︃
ξ = Op

(︃
N2

n2

)︃
= op(1).

Consider then the second one. Based on Lemmas 2.A.1 and 2.A.6, it holds:

2
c

N

M
ρ(n) 1

(2π)2

(︃∫︂ 2π

0
F 2
M (t− φn(s))

∫︂ s

0
|D′

N (φn(s) − φn(u)|2 σ2(u)du ds+ op(1)
)︃
ξ → c

2π
9 σ2(t)ξ.

As for the term (2.78), this gives zero contribution for the i.i.d property of the noise process and the
fact that it is zero-mean.

Consider now the end-points term in (2.69) and prove their asymptotic negligibility. Consider
the first addend: (︄

n1/4M−1/2
n−1∑︂
i=0

FM (t)DN (ti)δi(p)η0

)︄2

= n1/2M−1
n−1∑︂
i=0

F 2
M (t)D2

N (ti)(δi(p))2η2
0 (2.79)

+n1/2M−12
∑︂
i

∑︂
j<i

F 2
M (t)DN (ti)DN (tj)δi(p)δj(p)η2

0 . (2.80)

The conditional expectation with respect to p of (2.79) gives

n1/2M−1F 2
M (t)

(︃∫︂ 2π

0
D2
N (φn(u))σ2(u)du+ op(1)

)︃
ξ.

Noting that, for any ε > 0 and ε ≤ t ≤ 2π− ε, FM (t) ≤ M−1 (sin(ε/2))−2, and using Lemma 2.A.5,
then (2.79) has order n1/2M−3N−1 = o(1).

Consider now (2.80). Given the independence between the noise and price processes, we get:

n1/2M−1 2F 2
M (t)

∫︂ 2π

0

∫︂ s

0
DN (φn(u))σ(u)dWuDN (φn(s))σ(s)dWs ξ.
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It holds:

E

[︄(︃∫︂ 2π

0

∫︂ s

0
DN (φn(u))σ(u)dWuDN (φn(s))σ(s)dWs

)︃2]︄1/2

≤ C

∫︂ 2π

0
D2
N (u)du = C

2π
2N + 1 .

Therefore (2.80) has order Op(n1/2M−2N−1) = op(1).
For the second addend in (2.69) it is enough to observe that tn = 2π and use the periodicity of

the kernels and the properties of the noise process.

Asymptotic orthogonality

The last step needed to ensure the stable convergence requires proving the following convergence in
probability: ⟨︂

n1/4M−1/2 (F1(t) + F2(t) +G(t)),W
⟩︂

→ 0.

The proof is analogous to Step III) in Theorem 2.2.1, taking into account the relative rates of N
and M and using the fact that, by Lemma 2.A.4, it holds:

lim
n,N→∞

N

∫︂ v

0
D2
N (φn(v) − φn(u))σ2(u)du = π

2 σ
2(v).

Finally, with a conditional expectation argument and the fact that at least one of the terms in the
product has expectation equal to zero, it is easily seen that the covariance of F1(t) + F2(t) + G(t)
and E1(t) + E2(t) + E3(t) is asymptotically zero. The proof is now complete.

2.3 Finite-sample properties

We investigate the finite-sample properties of the Fourier estimator of the spot volatility defined in
(2.30) in four simulated scenarios, which generate incrementally more realistic microstructure noise
patterns. We begin with a stylized scenario (scenario I) where the additive noise is i.i.d. Gaussian
and independent of the price, the leverage parameter is constant, the volatility of volatility is a linear
function of the volatility and price observations are sampled on an equally-spaced grid. We then
progressively allow for stochastic leverage and volatility of volatility (scenario II), auto-correlated
and price-dependent noise, with t-distributed innovations (scenario III) and, finally, a random price-
sampling scheme (scenario IV). Firstly, we study the sensitivity of the estimator performance to the
cutting frequencies N and M , with a focus on the relationship between the (unfeasible) optimal
choice of the cutting frequencies and the level of the noise-to-signal ratio. Secondly, we introduce
a feasible adaptive method for selecting N and M , which optimizes the integrated asymptotic-
error variance in the rate-efficient case, see result (2.33) in Theorem 2.2.7, and test its robustness
when the hypotheses of Theorem 2.2.7 are partially violated. Finally, we compare the finite-sample
performance of the Fourier estimator with those of alternative noise-robust spot volatility estimators.

2.3.1 Simulation design

For each of the following scenarios, we simulate 104 daily trajectories of noisy log-price observations.
As we use the trading day as unit of time, the horizon T of the simulated trajectories is equal to 1.
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For simulating scenarios I, II and III we consider the equally-spaced price sampling grid with mesh
ρ(n) = T/n equal to 1 second, which implies n = 23400, as we assume the trading day to be 6.5-hour
long; for the simulation of scenario IV, we employ a random sampling scheme, which is detailed in
Section 2.3.1.

Scenario I

In the first scenario, we simulate the efficient log-price process using the classical model by Heston
(1993), whose dynamics satisfy Assumptions (A.I), (A.II) and (A.III). The model reads as⎧⎨⎩dp(t) = σ(t)dWt +

(︁
µ− 1

2σ
2(t)

)︁
dt

dσ2(t) = γσ(t)dZt + θ
(︁
α− σ2(t)

)︁
dt
, (2.81)

whereW and Z are two Brownian motions with constant correlation ρ and µ, p(0) ∈ R, γ, θ, α, σ2(0) >
0. For the simulation, we set (µ, θ, α, γ, ρ) = (0.001, 1, 0.3, 0.2,−0.8). Further, we set p(0) =
ln(100), while σ2(0) is drawn, trajectory-wise, from the stationary distribution of σ2, that is, from
Γ
(︂
u1 = 2θα

γ2 , u2 = γ2

2θ

)︂
, where u1 and u2 denote, respectively, the shape and scale parameters.

For simulating the additive noise, we assume that, for any i, ηti is independent of p and such
that ηti ∼i.i.d. N (0, ξ) and

√︁
ξ = ζ

√︁
αρ(n), where ζ denotes the noise-to-signal ratio, expressed as

the quotient between the standard deviation of the noise, i.e.,
√
ξ, and the steady-state standard

deviation of the efficient log-return sampled at the highest available frequency, i.e.,
√︁
αρ(n), with

ρ(n) fixed and equal to 1/23400. In the simulation, we adopt three increasing values of ζ, namely,
ζ = 1, 2, 3.

Scenario II

In the second scenario, we simulate efficient log-price observations from the following model:⎧⎪⎪⎪⎨⎪⎪⎪⎩
dp(t) = σ(t)dWt +

(︁
µ− 1

2σ
2(t)

)︁
dt

dσ2(t) = γ(t)dZt + θ1(α1 − σ2(t))dt

dγ2(t) = βγ(t)dYt + θ2(α2 − γ2(t))dt

, (2.82)

where W,Z and Y are three Brownian motions and µ, p(0) ∈ R, θ1, α1, θ2, α2, β, σ
2(0), γ2(0) > 0.

The correlations of the pairs (W,Z) and (Z, Y ) satisfy the model by Veraart and Veraart (2012),
that is, ⎧⎨⎩dWt = ϕ1(t)dZt +

√︁
1 − ϕ2

1(t)dZ⊥
t

dϕ1(t) = κ1
√︁

1 − ϕ2
1(t)dB(1)

t + λ1(ν1 − ϕ1(t))dt
(2.83)

and ⎧⎨⎩dZt = ϕ2(t)dYt +
√︁

1 − ϕ2
2(t)dY ⊥

t

dϕ2(t) = κ2
√︁

1 − ϕ2
2(t)dB(2)

t + λ2(ν2 − ϕ2(t))dt
, (2.84)

where: Z⊥ and Y ⊥ denote two Brownian motions that are independent of, respectively, Z and
Y ; B(1) and B(2) are two additional Brownian motions which are independent of each other and
independent of W,Z and Y ; for i = 1, 2, ki ∈ R, λi > 0, νi ∈ [−1, 1]. For the simulation, we set
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(µ, θ1, α1, β, θ2, α2) = (0.001, 8, 0.3, 0.5, 10, 0.1) and (κ1, λ1, ν1, κ2, λ2, ν2) = (0.1, 0.2,−0.6, 0.6, 1, 0.5).
The initial conditions are set as p(0) = ln(100), σ2(0) = α1, γ

2(0) = α2, ϕ1(0) = ν1 and ϕ2(0) = ν2.
Compared to the Heston model in (2.81), the model in (2.82-2.84) is capable of generating more

realistic dynamics of the efficient log-price. Specifically, it allows for a stochastic volatility of volatility
γ2, a stochastic leverage ϕ1 and a stochastic correlation between the volatility and the volatility of
volatility ϕ2. Empirical evidence supporting the existence of a stochastic leverage can be found, e.g.,
in Kalnina and Xiu (2017). Moreover, the empirical study by Toscano et al. (2022) supports the
existence of a mean-reverting stochastic volatility of volatility that displays a time-varying positive
correlation with the volatility.

The additive noise is simulated using the same specification adopted in scenario I, with, again,
ζ = 1, 2, 3.

Scenario III

In the third scenario, the efficient price process is simulated via the same model employed in scenario
II, that is, the model in (2.82)(2.83)-(2.84). Instead, for simulating the additive noise we use a
specification of the model introduced by Jacod et al. (2017). For any i, the specification reads as

ηti = ψtiχti , (2.85)

where: ψti is sampled from the continuous-time process ψ(t), whose dynamics satisfy

dψ(t) = θψ(αψ − ψ(t))dt+ σψdWt,

with ψ(0), αψ, θψ, σψ > 0; χti is a discrete-time process, independent of W , whose dynamics satisfy
an AR(1) model, that is, χti = aχti−1 +eti , where |a| < 1 and eti is an i.i.d. sequence of t-distributed
random variables with v > 4 degrees of freedom.
For the simulation of χ, we set a = 0.6 and v = 5. As for the simulation of ψ, we consider
three alternative choices for the parameter vector (αψ, θψ, σψ), namely: v1 := (0.0001, 10, 0.01),
v2 := (0.0002, 10, 0.02) and v3 := (0.0003, 10, 0.03). The initial condition is set as ψ(0) = αψ,
independently of the parameter vector chosen for ψ. Let ξ̄ := ν

ν−2
1

1−a2

(︂
α2
ψ + σ2

ψ

2θψ

)︂
denote the

steady-state variance of η. Hence, by imposing that
√︁
ξ̄ = ζ

√︁
α1ρ(n), with α1 denoting the

steady-state variance in (2.82) and ρ(n) = 1/23400, then v1, v2 and v3 correspond to a noise-to-
signal ratio ζ (approximately) equal to 1, 2 and 3, respectively.

The specification in (2.85) generates more realistic noise patterns, compared to the one adopted
in scenarios I and II, in that it allows for auto-correlation in the noise through χ and for dependence
between the efficient log-price and the noise through ψ, which is driven by the same Brownian motion
as the efficient log-price.

Scenario IV

The fourth scenario differs from the third only for the different price sampling scheme employed. As
outlined in Remark 2.1.2, the Fourier estimation methodology does not require equidistant obser-
vations as inputs. Accordingly, in the last scenario we adopt an irregular random sampling scheme
which assumes that observation times follow an non-homogeneous Poisson process. Denoting by ι
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the time-dependent rate, we set

ι(t) = 23400
(︃

1 + 1
2cos

(︃
2π
T
t

)︃)︃
. (2.86)

The specification in (2.86), which is also adopted in the simulation study by Li and Linton (2022),
mimics the clustering of trades in the beginning and the end of a trading day, which generates the
typical intra-day volatility U-shape.

2.3.2 Performance sensitivity to N and M

For the different noise-to-signal ratio ζ considered, we investigate the sensitivity of the finite-sample
performance of the Fourier spot volatility estimator to the cutting frequencies N and M . For
the implementation of the estimator, we use the entire sample of available high-frequency prices,
corresponding to n = 23400 in the case of regular sampling. As for N and M , based on the conditions
of the rate-efficient Central Limit Theorem, see (2.33) in Theorem 2.2.7, we set N = ⌊c

√
n⌋ and

M = ⌊a
√
N⌋. We then evaluate the sensitivity of the finite-sample performance to changes in

the constants c and a. Specifically, we allow c and a to vary, respectively, in the range [1, 10] and
[0.1, 0.5], with a step size equal to, respectively, 1 and 0.1. Following Mancino and Recchioni (2015,
Section 4.2), we reconstruct the spot volatility path on the sparser equally-spaced grid with mesh
equal to 1 minute.

The finite-sample performance is assessed based on the mean integrated squared error (MISE),

which is defined as MISE := E

[︃∫︁ T
0

(︂˜︁σ2
nNM (t) − σ2(t)

)︂2
dt

]︃
. Figure 2.1 shows the MISE as a

function of the pair (c, a) in the four scenarios, for the different noise intensities considered. Further,
Table 2.1 illustrates the values of the pair (c, a) that minimize the MISE, along with the resulting
optimized MISE values.

Figure 2.1: Scenario I: MISE as a function of (c, a) for the different values of the noise-to-signal
ratio ζ.

Based on Figure 2.1, the finite-sample efficiency of the estimator appears to be much more
sensitive to changes of c for a fixed a than viceversa. Moreover, the sensitivity to c appears to
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Figure 2.2: Scenario II: MISE as a function of (c, a) for the different values of the noise-to-signal
ratio ζ.

Figure 2.3: Scenario III: MISE as a function of (c, a) for the different values of the noise-to-signal
ratio ζ.

be amplified with the increase of the noise-to-signal ratio. In other words, in all the scenarios
considered, a sub-optimal selection of c appears to determine a larger performance deterioration
when the intensity of the noise is higher. Instead, the lack of sensitivity to a seems to be independent
of the noise intensity and the scenario.

Furthermore, Table 2.1 suggests that the optimal choice of c is smaller in correspondence of
a larger noise-to-signal ratio. Additionally, it is worth noting that the optimal values of c are
approximately halved when moving from an i.i.d. noise specification (scenarios I and II) to an auto-
correlated, price-dependent noise specification (scenarios III and IV). Instead, the optimal choice of a
appears to be noise- and scenario-insensitive, oscillating between 0.3 and 0.4. The results illustrated
in Table 2.1 are in line with the fact that, when the amount of noise present in the data is larger,
a smaller value of the cutting frequency N is needed, in the convolution formula (2.3), in order to
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Figure 2.4: Scenario IV: MISE as a function of (c, a) for the different values of the noise-to-signal
ratio ζ.

scenario ζ optimal (c, a) MISE
I 1 (8, 0.3) 1.4 · 10−3

2 (5, 0.3) 2.1 · 10−3

3 (3, 0.3) 2.5 · 10−3

II 1 (8, 0.4) 1.5 · 10−3

2 (5, 0.4) 2.2 · 10−3

3 (3, 0.4) 2.6 · 10−3

III 1 (4, 0.4) 2.2 · 10−3

2 (2, 0.4) 3.3 · 10−3

3 (2, 0.4) 3.8 · 10−3

IV 1 (4, 0.3) 2.5 · 10−3

2 (2, 0.3) 3.3 · 10−3

3 (1, 0.3) 4.0 · 10−3

Table 2.1: MISE-optimal selection of (c, a) and resulting MISE values in the different scenarios and
for the different values of the noise-to-signal ratio ζ.

efficiently filter out the noise and reconstruct the volatility coefficients.

2.3.3 Feasible method for selecting N and M

The feasible method for selecting the pair (N,M) that we propose aims at optimizing the conditional
MISE (c-MISE) of the Fourier spot volatility estimator under the constraint M < N < n, for the
given available sample size n. Define the c-MISE as

c-MISE := Eσ

[︄∫︂ T

0

(︂˜︁σ2
nNM (t) − σ2(t)

)︂2
dt

]︄
,
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where Eσ denotes the conditional expectation with respect to the filtration generated by (σt)t∈[0,T ].
As shown in Zu and Boswijk (2014, Section 3.4), the following decomposition holds:

c-MISE =
∫︂ T

0
Eσ
[︁˜︁σ2
nNM (t) − σ2(t)

]︁2
dt+

∫︂ T

0
V arσ

[︁˜︁σ2
nNM (t) − σ2(t)

]︁
dt,

where V arσ denotes the conditional variance with respect to the filtration generated by (σt)t∈[0,T ].
Under the hypotheses that yield the rate-efficient result in Theorem 2.2.7, Equation (2.33), for a
sufficiently large n, the c-MISE is approximated by the conditional asymptotic integrated mean
squared error (c-AMISE). After scaling the unit of time, so that the estimation horizon becomes
[0, T ], the c-AMISE reads as

c-AMISE = M

N

2
3

∫︂ T

0
σ4(t) dt+ 1

M

T

3

∫︂ T

0
γ2(t) dt+M N

n

4T
9 ξ

∫︂ T

0
σ2(t) dt+N3M

n2
T 3

15 ξ
2. (2.87)

The c-AMISE in (2.87) depends on the integrated volatility IVT :=
∫︁ T

0 σ2(t)dt, the integrated
quarticity IQT :=

∫︁ T
0 σ4(t)dt, the integrated volatility-of-volatility IV VT :=

∫︁ T
0 γ2(t)dt and the

noise variance ξ. All these quantities can be estimated with high-frequency prices and thus the c-
AMISE can be treated as observable. Specifically, for estimating IVT , IQT and IV VT we propose to
use Fourier-transform based estimators. We refer the reader to, respectively, Mancino and Sanfelici
(2008), Mancino and Sanfelici (2012) and Sanfelici et al. (2015) for the study of the finite-sample
efficiency of the Fourier estimators of IVT , IQT and IV VT in the presence of noise and guidance
on the practical implementation thereof with high-frequency prices. Moreover, for estimating ξ, one
can use the estimator proposed in Bandi and Russell (2006, Section 3).

For brevity, denote the c-AMISE in (2.87) as a function of (N,M) by Ψ(N,M). Moreover, letˆ︁Ψ(N,M) indicate the estimator obtained by plugging the Fourier estimators of IVT , IQT and IV VT ,
along with the estimator of ξ by Bandi and Russell (2006), into (2.87), in place of the respective true
latent quantities. The feasible selection of (N,M) for a given n amounts to solving the constrained
optimization problem

min
(N,M)∈S

ˆ︁Ψ(N,M),

where S =
[︁
N,N

]︁
×
[︁
M,M

]︁
⊂ R+ × R+ is such that M < N < n. To do so, we propose to use the

following adaptive method, based on the gradient-descent algorithm (see, e.g., Ruder (2017)).

Adaptive method for the selection of the pair (N,M)
Given the initial condition (N0 = N,M0 = M), for k = 1, ...,K, follow the update rulea

Nk =
(︄
N ∨ Nk−1 − λ

∂ ˆ︁Ψ
∂N

(Nk−1,Mk−1)
)︄

∧N,

Mk =
(︄
M ∨ Mk−1 − λ

∂ ˆ︁Ψ
∂M

(Nk−1,Mk−1)
)︄

∧M,

where λ is a positive constant, typically referred to as the learning rate parameter. The
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optimal value (N∗,M∗) is achieved as soon as the marginal absolute change of the objective
function falls below a given threshold ϑ, i.e., in correspondence of the smallest k such that

δk :=

⃓⃓⃓ ˆ︁Ψ(Nk,Mk) − ˆ︁Ψ(Nk−1,Mk−1)
⃓⃓⃓

ˆ︁Ψ(Nk−1,Mk−1)
< ϑ.

Instead, if δk > ϑ ∀k, make the final selection (N∗,M∗) = (NK ,MK).

aThe notation ∂ ˆ︁Ψ
∂x

(u, v) is shorthand for ∂ ˆ︁Ψ(N,M)
∂x

⃓⃓⃓
N=u,M=v

.

For a given n, the implementation of the proposed adaptive method for selecting (N,M) requires
the selection of the constraint region S and the vector of optimization parameters (λ, ϑ,K). In this
regard, for the largest n available3, we set

S =
[︂
⌊2−1n1/4⌋, ⌊10n1/4⌋

]︂
×
[︂
⌊n1/2⌋, ⌊20n1/2⌋

]︂
(2.88)

and
(λ, ϑ,K) = (∝ ξ̂

−1
, 10−4, 104). (2.89)

The choice of S is rather conservative, as it allows for a fairly large range of variation for N and
M . The selection of ϑ and K is also conservative, since it ensures that the stopping rule δk < ϑ

is always satisfied for some k ≤ K in the simulation study. In general, the choice of the learning
rate λ is known to play a crucial role in determining the accuracy of the gradient-descent algorithm,
see Ruder (2017) and the references therein. With regard to the specific optimization algorithm
presented in this section, numerical evidence suggests that selecting a value for λ which is inversely
proportional to the (estimated) variance of the noise (that is, to the order of magnitude of the tick-
by-tick variance of the noisy log-returns) may yield satisfactory estimation accuracy. Specifically,
after setting

λ = cλ ξ̂
−1
, (2.90)

we numerically evaluated the efficiency of the adaptive method for different values of cλ in the region
[0.1, 10] and found that the MISE is optimized if cλ is chosen in a neighborhood of cλ = 5 in the case
of scenarios I and II, or in a neighborhood of cλ = 1 in the case of scenarios III and IV. Based on the
higher degree of realism of scenarios III and IV, for empirical applications (see Section 2.4) we thus
recommend the choice cλ = 1. As for robustness, it is worth noting that MISE values appear to be
rather stable for cλ ∈ [3, 7] in scenarios I and II, while in scenarios III and IV stability is achieved
only on a much smaller window, that is, only if cλ ∈ [0.5, 1.5].

The efficiency of the feasible adaptive method for selecting N and M is summarized in Table 2.2.
Compared to the unfeasible results reported in Table 2.1, the feasible results illustrated in Table
2.2 appear to be satisfactory. Indeed, based on the values of ∆MISE , which denotes the relative
change in the MISE compared to the corresponding unfeasible MISE reported in Table 2.1, the
loss of efficiency ranges between 4% and 18%. The average c produced by the feasible parameter
selection method (c̄ in Table 2.2) is smaller than the optimal value of c reported in Table 2.1, except

3Recall that n is equal to 23400 in scenarios I, II and III, in which we adopt the equally-spaced one-second sampling
grid. Instead, in scenario IV, n is random, with expected value equal to 23400, see (2.86).
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in scenario II, for ζ = 2, and in scenario III, for ζ = 2, 3. The average value of the feasible optimal
a, denoted by ā, is instead close to the unfeasible optimal value, as it stays in the range [0.3, 0.4].
Finally, note that the feasible method for selecting N and M provides a satisfactory performance
also when the assumptions of Theorem 2.2.7 are partially violated, that is, in scenarios II, III and
IV, thereby showing robustness in view of empirical applications.

scenario ζ (c̄, ā) MISE ∆MISE

I 1 (5.3, 0.4) 1.6 · 10−3 +14%
2 (3.2, 0.4) 2.3 · 10−3 +10%
3 (2.6, 0.4) 2.6 · 10−3 +4%

II 1 (5.7, 0.3) 1.7 · 10−3 +13%
2 (3.3, 0.3) 2.5 · 10−3 +14%
3 (2.7, 0.4) 2.9 · 10−3 +12%

III 1 (3.4, 0.4) 2.4 · 10−3 +9%
2 (2.7, 0.4) 3.6 · 10−3 +9%
3 (1.7, 0.3) 4.3 · 10−3 +13%

IV 1 (3.4, 0.3) 2.6 · 10−3 +4%
2 (2.3, 0.3) 3.9 · 10−3 +18%
3 (1.7, 0.3) 4.7 · 10−3 +18%

Table 2.2: MISE values produced by the feasible adaptive method for selecting N and M , in the
different scenarios and for the different values of the noise-to-signal ratio ζ considered.
Letting N = c

√
n and M = a

√
N , c̄ and ā denote the sample averages of, respectively,

the values of c and the values of a produced by the feasible procedure. Moreover, ∆MISE

denotes the relative change in the MISE compared to its unfeasible values reported in
Table 2.1.

2.3.4 Performance comparison

We compare the finite-sample performance of the Fourier spot volatility estimator with that of three
alternative noise-robust estimators, namely the Smoothed Two-Scale estimator (STS) by Mykland
et al. (2019), the Pre-Averaging Kernel estimator by Figueroa-López and Wu (2022) (PAK) and the
Pre-Averaging ReMeDI (PAR) estimator by Li and Linton (2022). Differently from the Fourier esti-
mator, these estimators are local estimators based on the numerical differentiation of the estimated
integrated variance. Moreover, they all rely on price pre-averaging and a bias correction. We briefly
recall their definitions.

The STS estimator is defined as

˜︁σ2
STS(t) := 1

sn

(︂
ˆ︁⟨p, p⟩t+sn − ˆ︁⟨p, p⟩t

)︂
,

where {sn}n≥1 denotes a sequences of positive numbers such that sn → 0 as n → ∞ and ˆ︁⟨p, p⟩t
indicates the integrated STS estimator on [0, t]. Specifically, consider the grid S = {τn,0 = 0 < τn,1 <

... < τn,nb = T} and let n∗
b(t) = sup {1 ≤ i ≤ nb : τn,i ≤ t} and Mn,i = #{j : tj ∈ (τn,i−1, τn,i]}. It

holds that
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ˆ︁⟨p, p⟩t = 1
(1 − (K + J)/nb)(K − J)

(︂
K[˜︁P̄ , P̄ ](K)

t − J [˜︁P̄ , P̄ ](J)
t

)︂
,

where

K[˜︁P̄ , P̄ ](K)
t =

⎛⎝1
2

J∑︂
i=1

+
n∗
b (t)−(K+J)∑︂
i=J+1

+1
2

n∗
b (t)−K∑︂

i=n∗
b

(t)−(K+J)+1

⎞⎠×
(︁
P̄ τi+K − P̄ τi

)︁2
, (2.91)

P̄ τn,i = 1
Mn,i

∑︂
tj∈(τn,i−1,τn,i]

p̃tj

and J [˜︁P̄ , P̄ ](JK)
t is obtained by switching K and J in (2.91). For the implementation of the STS

estimator, we set S = {iT/nb, i = 0, 1, ..., nb} and select nb, sn, J and K using as guidance the
analysis presented in Section 6.3 of Chen et al. (2020).

The PAK estimator reads

˜︁σ2
PAK(t) := 1

ϕkn(g)

n−kn+1∑︂
i=1

1
mnρ(n) K

(︃
ti − t

mnρ(n)

)︃(︃
P̄

2
ti − 1

2
ˆ︁Pti)︃ ,

where kn = ⌊1/
(︂
ck
√︁
ρ(n)

)︂
⌋, mn = cmρ(n)−3/4, K(x) is a kernel function satisfying Assumption 2

of Figueroa-López and Wu (2022) and

P̄ ti = −
kn∑︂
j=1

(︃
g

(︃
j

kn

)︃
− g

(︃
j − 1
kn

)︃)︃ ˜︁pti+j−2 , (2.92)

ˆ︁Pti =
kn∑︂
j=1

(︃
g

(︃
j

kn

)︃
− g

(︃
j − 1
kn

)︃)︃2
δi+j−2(˜︁p)2, ϕkn(g) =

kn∑︂
j=1

g

(︃
j

kn

)︃2
,

where g denotes a real-valued weight function on [0, 1] which is continuous and piece-wise C1, with
piece-wise Lipschitz derivative g′ and such that g(0) = g(1) = 0,

∫︁ 1
0 g

2(s)ds = 1. In order to apply
the PAK estimator, we select K(x) = 1

2 e−|x|, based on the discussion in Figueroa-López and Wu
(2022, Section 3). As for the function g, we select g(x) = x ∧ (1 − x), as in Jacod et al. (2009).
Further, we choose the constants ck and cm following Figueroa-López and Wu (2022, Section 3).

The PaReMeDI estimator is defined as

˜︁σ2
PAR(t) = 1

dn(t)hnϕ
n
0

n(t)+ln−hn∑︂
i=n(t)

P̄
2
ti − 1

dn(t)h2
nϕ

n
0

n(t)+ln−hn∑︂
i=n(t)+kn

∑︂
|l|≤ln

ϕ̃
n

l

(︂
p̃ti+l − p̃ti+l+kn

)︂(︂
p̃ti − p̃ti−kn

)︂

where {hn}n≥1, {ln}n≥1, {kn}n≥1 are sequences of integers, n(t) denotes the number of observations
up to time t, dn(t) = n(t + ln) − n(t), P̄ (ti) is given in (2.92), the function g is the same as in the
case of the PAK estimator and, finally,

ϕn0 = 1
hn

∑︂
i∈Z

g

(︃
i

hn

)︃2
, ϕ̃

n

l = hn
∑︂
i∈Z

g̃ni g̃
n
i−l, g̃ni =

(︃
i+ 1
hn

)︃
− g

(︃
i

hn

)︃
.

For the implementation of the PAR estimator, we choose again g(x) = x ∧ (1 − x), as in Li and
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Linton (2022), and select hn, kn and ln based on the discussion in Li and Linton (2022, Section 5).

The MISE values resulting from the application of the STS, PAK and PAR estimators on the
1-minute estimation grid are shown in Table 2.3. Based on the comparison of Table 2.3 with Table
2.2, the feasible application of the Fourier estimator yields the lowest MISE in every scenario and for
every noise-to-signal ratios considered, with the only exception of scenario I, where, for ζ = 2, 3, the
PAK estimator shows a slightly better performance. These numerical evidences may be explained
by the fact that the Fourier estimation method is based on the computation of integrated quantities
(namely, the Fourier coefficients of the volatility process) rather than on a differentiation procedure,
with benefits in terms of improved numerical stability, as already remarked in Malliavin and Mancino
(2002) and Malliavin and Mancino (2009). It is also worth noticing that the Fourier method is
relatively more parsimonious, compared to alternative methods considered, since it is based on the
selection of only two parameters, N and M . In other words, by requiring no pre-averaging and no
bias-correction, the efficient implementation of the Fourier method in the presence of noise entails
only the careful reduction of N , without the need to select any additional parameters or auxiliary
functions.

scenario ζ STS PAK PAR
I 1 5.1 · 10−3 1.8 · 10−3 3.0 · 10−3

2 5.0 · 10−3 2.2 · 10−3 3.2 · 10−3

3 4.9 · 10−3 2.4 · 10−3 4.4 · 10−3

II 1 7.5 · 10−2 3.5 · 10−3 4.4 · 10−3

2 8.2 · 10−2 4.1 · 10−3 4.7 · 10−3

3 9.2 · 10−2 4.4 · 10−3 5.2 · 10−3

III 1 8.7 · 10−3 4.7 · 10−3 5.3 · 10−3

2 8.7 · 10−3 7.9 · 10−3 8.2 · 10−3

3 9.5 · 10−3 8.1 · 10−3 8.8 · 10−3

IV 1 8.9 · 10−3 5.2 · 10−3 6.5 · 10−3

2 9.0 · 10−3 8.7 · 10−3 8.5 · 10−3

3 9.3 · 10−2 9.0 · 10−3 8.6 · 10−3

Table 2.3: MISE values produced by the STS, PAK and PAR estimators in the different scenarios
and for the different values of the noise-to-signal ratio ζ.

2.4 Empirical study

The accuracy of spot volatility estimates can be investigated empirically by testing the distribution
of high-frequency standardized log-returns, see Mancino and Recchioni (2015, Section 4). We briefly
recall the testing procedure. Define the standardized log-return on [t, t+ h], h > 0, as

zh(t) := rh(t)√︁
σ2(t)h

, (2.93)

where rh(t) := p(t + h) − p(t). Moreover, denote by ẑh(t) the estimated standardized log-return,
obtained by replacing σ2(t) in (2.93) with an estimate thereof. Under Assumption (A.I), if h is
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sufficiently small, the sequence {zh(t)}t∈τ , τ = {0, h, 2h, ..., (⌊T/h⌋ − 1)h}, approximates a sequence
of i.i.d. standard Normal random variables. Thus, by testing the empirical distribution of the esti-
mated standardized log-returns {ẑh(t)}t∈τ for Gaussianity, one can obtain insight into the accuracy
of spot volatility estimates.

We empirically implement the Fourier spot volatility estimator in (2.30) using high-frequency
prices of three US stocks, Intel (INTC), Comcast (CMCSA) and Starbucks (SBUX), sampled over
the period December 1, 2022 - December 30, 2022, which corresponds to 21 trading days. During
this period, the average trading volume of INTC, CMCSA and SBUX is approximately equal to,
respectively, 14, 7 and 2 million shares, reflecting three different liquidity levels.

Spot volatility paths are estimated on the daily horizon, that is, on the interval from 9:30 a.m.
to 4:00 p.m. We measure time in trading days, hence we set T = 1. The Fourier estimator is
implemented using tick-by-tick log-returns. As a consequence, the sample size n employed changes
from day to day, reflecting the number of ticks available on each day. For the given n available, on
each day we select N and M using the adaptive method described in Section 2.3.3. The rectangle S
and the optimization parameters λ, ϑ,K are chosen as in, respectively, (2.88) and (2.89). Specifically,
we set cλ = 1, as in (2.90).

Price jumps are identified using the test by Lee and Mykland (2012) and removed from the
sample employed for the estimation4. Overnight returns, that is, the difference between the opening
log-price and the closing log-price of the previous day, are not employed in the estimation, as they
often contain jumps due to the fact that market-related news are typically released when the market
is closed.

To compute the sequence of the standardized log-returns, one needs to select a value for the
interval h which is, at the same time, small enough to satisfactorily approximate their true distribu-
tion and large enough to make the impact of micro-structure noise negligible. Based on a common
practice adopted in the literature, we select h equal to 5 minutes. Accordingly, Fourier estimates
of the spot volatility are obtained on the equally-spaced grid with mesh size equal to 5 minutes.
However, it is worth stressing that the Fourier method allows selecting an arbitrary grid for the
estimation of the volatility path and that the selection of the 5-minute grid is only convenient for
the purpose of the testing of the distribution of the reconstructed standardized log-return. The
sequences of the estimated daily volatility paths of INTC, CMCSA and SBUX is displayed in Figure
2.5.

To evaluate the accuracy of estimates we perform the tests by Jarque and Bera (1987) and
Anderson and Darling (1952) at the 95% confidence level on the 21 daily sub-samples of estimated
standardized log-returns. Table 2.4 illustrates the number of rejections of the null hypothesis of
Gaussianity and the average p-values.

The results in Table 2.4 suggest that the daily empirical distributions of the reconstructed stan-
dardized log-returns approximate a Gaussian distribution quite well for each of the three stocks
considered, thereby suggesting that the Fourier spot volatility estimates obtained are accurate un-
der the different liquidity levels considered.

4As in Lee and Mykland (2012, Section 6), we apply the jump test at the 99% confidence level on seven intra-day
sub-intervals (namely, 9.30-10, 10-11, 11-12, 12-13, 13-14, 14-15 and 15-16) and, if the null hypothesis of absence of
jumps is rejected on a given sub-interval, we replace the highest log-return in absolute value on that interval with a
zero log-return. For each sub-interval the procedure is iterated until the test does not reject the null. Overall, we find
evidence of the presence of jumps for 9 days (CMCSA), 9 days (INTC) and 12 days (SBUX).
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Figure 2.5: Sequences of the estimated daily volatility paths of CMCSA, INTC and SBUX in De-
cember 2022, on the 5-minute grid.

JB test AD test
stock rej. freq. av. p-value rej. freq. av. p-value
INTC 2/21 0.520 1/21 0.584

CMCSA 1/21 0.498 1/21 0.488
SBUX 1/21 0.433 2/21 0.408

Table 2.4: Rejection frequencies and average p-values of the Jarque-Bera test (JB) and the Anderson-
Darling (AD) test, performed at the 95% confidence level on the 21 daily samples of
5-minute reconstructed standardized returns referring to the period December 1, 2022 -
December 30, 2022.

A similar analysis has also been carried on considering a stock index, and using in particular
the S&P500 high-frequency trade prices, sampled over the period March, 2018 - April, 2018. The
removal of intra-day jumps is carried out using the test by Lee and Mykland (2012), as describe
above, and the sequence of the reconstructed daily volatility paths at the frequency of 5 minutes is
displayed in Figure 2.6.

At the 95% confidence level, the null hypothesis of Gaussianity was never rejected over the 41
daily samples of reconstructed standardized log-returns. The average p-value was equal to 0.374.
Moreover, Table 2.5 reports the averages and standard deviations, over the 41 daily samples analyzed,
of the sample mean, variance, skewness and kurtosis of the reconstructed standardized log-returns.
The averages are very close to the theoretical moments of a standard Normal, while the standard
deviations are relatively small. Overall, the results of the Gaussanity tests, along with the empirical
evidence on the sample moments, suggest that the daily empirical distributions of the reconstructed
standardized log-returns approximate a standard normal quite well, thereby supporting the accuracy
of the Fourier spot volatility estimates obtained also on this S&P500 data set.
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Figure 2.6: S&P500 (March, 2018 - April, 2018): sequence of the reconstructed daily volatility paths
on the 5-minute grid.

average std. dev.
mean -0.005 0.132

variance 1.008 0.182
skewness 0.006 0.222
kurtosis 2.940 0.268

Table 2.5: S&P500 (March, 2018 - April, 2018): averages and standard deviations, over the 41 daily
samples analyzed, of the sample statistics of the reconstructed standardized log-returns.
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Appendix

Appendix 2.A Properties of the Dirichlet and Féjèr kernels

This Appendix resumes some results about the rescaled Dirichlet kernel and the Féjèr kernel, re-
spectively defined as in Equations 2.4 and 2.6. This results are needed for the proofs of Theorems
2.2.1 and 2.2.7.

Lemma 2.A.1. i) For any M , ∫︂ π

−π
FM (x)dx = 2π.

Moreover, under the assumption limn,M→∞
Mτ

n = a, for a constant a > 0 and for some τ > 1, it
holds:

lim
n,M→∞

∫︂ π

−π
FM (φn(x))dx = 2π

and, in particular, ⃓⃓⃓⃓∫︂ π

−π
FM (φn(x))dx−

∫︂ π

−π
FM (x)dx

⃓⃓⃓⃓
≤ C

M

n
.

ii) For any M ≥ 1, ∫︂ π

2π
M+1

FM (x)dx ≤ C

M
.

iii) Under the assumption limn,M→∞
Mτ

n = a, for a constant a > 0 and for some τ > 1, it holds:

lim
M→∞

∫︂ π

−π

1
M
F 2
M (x)dx = lim

M,n→∞

∫︂ π

−π

1
M
F 2
M (φn(x))dx = 4π

3 . (2.94)

iv) If limn,M→∞
Mτ

n = a, for a constant a > 0 and for some τ > 1, and f is Hölder continuous with
parameter α ∈ (0, 1], then

lim
n,M→∞

1
M

∫︂ π

−π
F 2
M (x− φn(y))f(y)dy = lim

M→∞

∫︂ π

−π

1
M
F 2
M (x− y)f(y)dy = 4π

3 f(x). (2.95)

Proof. See Cuchiero and Teichmann (2015, Lemma 5.1).

Remark 2.A.2. As observed in Cuchiero and Teichmann (2015, Remark 5.2), all above results
similarly hold true on [0, T ].

Lemma 2.A.3. Suppose that limn,M→∞
Mτ

n = a, for some constant a > 0 and τ > 1. Then, it
holds that:

lim
n,M→∞

∫︂ π

−π

1
M3 |F ′

M (φn(x))|2 dx = lim
M→∞

∫︂ π

−π

1
M3 |F ′

M (x)|2 dx = 2
15π, (2.96)
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lim
n,M→∞

∫︂ π

−π

1
M5 |F ′′

M (φn(x))|2 dx = lim
M→∞

∫︂ π

−π

1
M5 |F ′′

M (x)|2 dx = 4
105π. (2.97)

Proof. See Toscano et al. (2022, Lemma 8.1).

Lemma 2.A.4. i) If limn,N→∞
N
n = c > 0, then for any p > 1 there exists a constant Cp such that

lim
n,N→∞

n sup
x∈[0,2π]

∫︂ 2π

0
Dp
N (φn(x) − φn(y))dy ≤ Cp.

ii) If limn,N→∞
N
n = c > 0, it holds that

lim
n,N→∞

n

∫︂ x

0
D2
N (φn(x) − φn(y))dy = π(1 + 2K(2c))

and, for any α-Hölder continuous function f with α ∈ (0, 1],

lim
N,n→∞

n

∫︂ x

0
D2
N (φn(x) − φn(y))f(y)dy = π(1 + 2K(2c)) f(x),

where
K(c) := 1

2c2 r(c)(1 − r(c)),

being r(c) = c− [c], with [c] denoting the integer part of c.
iii) If limn,N→∞

N
n = c > 0, then for any s ∈ [0, 2π) and for any ε > 0,

lim
n,N→∞

n

∫︂ x−ε

0
D2
N (φn(x) − φn(y))dy = 0.

Proof. See Clement and Gloter (2011, Lemma 3).

Lemma 2.A.5. If limN,n→∞
Nτ

n = c, for a constant c > 0 and some τ > 1, then

lim
n,N→∞

N

∫︂ x

0
D2
N (φn(x) − φn(y))dy = lim

N→∞
N

∫︂ x

0
D2
N (x− y)dy = π

2 .

Proof. See Cuchiero and Teichmann (2015), Lemma 5.1, using the fact that

D2
N (x) = (2N + 1)−1F2N (x).

Lemma 2.A.6. Under the condition limN,n→∞
Nτ

n = c, for a constant c > 0 and some τ > 1, it
holds:

i) lim
n,N→∞

1
N

∫︂ 2π

0
|D′

N (φn(x))|2dx = lim
N→∞

1
N

∫︂ 2π

0
|D′

N (x)|2dx = π

3 .

ii) lim
n,N→∞

1
N3

∫︂ 2π

0
|D′′

N (φn(x))|2dx = lim
N→∞

1
N3

∫︂ 2π

0
|D′′

N (x)|2dx = π

5 .

Proof. For i) see Mancino and Toscano (2022). As for ii), it holds that:

1
N3

∫︂ 2π

0
|D′′

N (x)|2 dx = 1
N3

2π
(2N + 1)2

∑︂
|k|≤N

k4 = 2π
15
N(N + 1)(3N2 + 3N − 1)

N3(2N + 1) → π

5 .
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Chapter 3

From Zero-Intelligence to Queue-Reactive:
Limit-Order-Book modeling for high-frequency
volatility estimation and optimal execution

As shown in the previous chapter high-frequency data provide, in principle, the possibility of ob-
taining very precise estimates of the volatility; moreover availability of efficient estimates of the
volatility of financial assets may be crucial for a number of applications, such as model calibration,
risk management, derivatives pricing, high-frequency trading and optimal execution. The (infill)
asymptotic theory of volatility estimators is usually derived, as we have seen, under the assumption
that the (efficient) asset price follows an Itô semimartingale (see also Chapter 3 of Aït-Sahalia and
Jacod (2014)). The Itô semimartingale hypothesis ensures the absence of arbitrage opportunities
(see Delbaen and Schachermayer (1994)) and, at the same time, is rather flexible, as it does not
require to specify any parametric form for the dynamics of the asset price. To account for empirical
evidences that indicate that the prices of financial assets do not conform to the semimartingale hy-
pothesis at high frequencies, due to the presence of microstructure phenomena such as, e.g., bid-ask
bounces or price rounding, we introduced in Section 2.2.3 an additive noise component, following
the most established approach present in the recent literature (see Chapter 7 of Aït-Sahalia and
Jacod (2014)). In its most basic form, the noise due to microstructure can be assumed to be i.i.d.
and independent of the semimartingale driving the price dynamics (i.e., the so-called efficient price,
see Section 2.2), however, as introduced in Section 2.3, more sophisticated forms have been studied,
such as, for instance, an additive noise which is auto-correlated or correlated with the efficient price
(see, e.g., Hansen and Lunde (2006)).

As mentioned, the literature on the estimation of the volatility in the presence of noise is very rich.
In fact, there exists a number of alternative methodologies making an efficient use of high-frequency
prices to reconstruct both the integrated and the spot volatility. In addition to the Fourier method
these include for example, among others, the two-scale and multi-scale approach by, respectively,
Zhang et al. (2005) and Zhang (2006), the kernel-based method, originally proposed in Barndorff-
Nielsen et al. (2008), and the pre-averaging approach by Jacod et al. (2009). Given this variety of
alternative methodologies, it is not straightforward to establish which specific noise-robust estimator
should be preferred for high-frequency financial applications, being the finite sample performances
not necessarily in line with the asymptotic properties of each estimator.
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Gatheral and Oomen (2010) proposed to compare the finite-sample performance of different high-
frequency estimators via simulations based on a market simulator which is able to reproduce the
actual mechanism of price formation at high frequencies with sufficient realism. In this regard, the
authors used simulations obtained via the zero-intelligence (ZI) limit order book model by Smith
et al. (2003) to compare the performance of different integrated volatility estimators. However, the
ZI model is based on several simplistic assumptions on the dynamics of the limit order book, and
thus it may fail to replicate the actual behavior of high frequency financial data and microstructure
noise with satisfactory accuracy. For example, under the ZI model, the order flow is described by
independent Poisson processes, while it is well-known that the order flow is a long-memory process
(see Lillo and Farmer (2004)) and the different components of the order flow are lead-lag cross-
correlated (Eisler et al. (2012)). Moreover, as pointed out by Bouchaud et al. (2018), the ZI model
leads to systematically profitable market making strategies. These properties are likely to have an
effect on the dynamics of the volatility and market microstructure noise, and thus an analysis based
on a more realistic limit order book model is needed.

In this chapter, instead, we use a more realistic limit order book model, namely the queue-reactive
(QR) model by Huang et al. (2015). Under this model, the arrival rates of orders depend on the
state of the limit order book. This implicitly introduces auto- and cross-correlations of the book
components, thereby generating more realistic dynamics for the price process at high-frequencies.
Secondly, we compare not only the performance of a number of estimators of the integrated volatility
(expanding the collection of estimators considered in the study by Gatheral and Oomen (2010)), but
also that of different estimators of the spot volatility.

For what concerns the integrated variance, we find that the pre-averaging estimator by Jacod
et al. (2009) is favorable in terms of bias minimization. Instead, when looking at the optimization
of the mean squared error, the situation appears to be more nuanced. Indeed, the Fourier estimator
by Malliavin and Mancino (2009) obtains the best average ranking across the considered price
series (mid-, micro- and trade- prices) without actually achieving the best ranking for any of these
individual series. The best rankings are instead achieved by the unified volatility estimator by Li
et al. (2018) (for mid- and micro-prices) and by the alternation estimator by Large (2011) (for trade-
prices). Instead, for what concerns the spot variance, the Fourier estimator provides the relative best
performance for the three prices series, both in terms of bias and mean-squared-error optimization.

Finally, we investigate, via simulations of the QR model, how the use of different volatility
estimators affects the inference of the variance of the cost of the execution strategy. To do so, we
consider the instance where the trader is set to execute a volume-weighted average price (VWAP)
strategy and assumes that market impact is described by the Almgren and Chriss (Almgren and
Chriss (2001)) model. We compare the empirical variance of the implementation shortfall of the
simulated executions with the corresponding model-based prediction, evaluated with different spot
volatility estimators. As a result, we find that the estimator that yields the optimal performance
in terms of bias and mean-squared-error optimization, namely the Fourier estimator, also gives the
optimal forecast of the cost variance. More generally, our results suggest that the choice of the spot
estimator is not irrelevant, as it may lead to significantly different forecasts of the variance of the
implementation shortfall.

The chapter is organized as follows. In Section 3.1 we recall the main characteristics of the ZI and
QR limit-order-book models, discuss their calibration on empirical data and compare their ability
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to reproduce realistic volatility and noise features. In Section 3.2 we illustrate the estimators of the
integrated and spot variance, while in Section 3.3 we evaluate their finite-sample performance with
simulated data from the QR model. Finally, Section 3.4 contains the study of the impact of efficient
volatility estimates on optimal execution.

3.1 Limit-order-book models: zero-intelligence vs queue-reactive

Electronic financial markets are often based on a double auction mechanism, with a bid (buy) side
and an ask (sell) side. The limit order book (LOB) is the collection of all the outstanding limit
orders, which are orders of buying or selling a given quantity of the asset at a given price, expressed
as a multiple of the tick size (i.e., the minimum price movement allowed) of the asset. Other two
types of orders can be placed: a cancellation, that erases a limit order previously inserted by the
same agent, thereby reducing the volume at a given price level, and a market order, that is, an order
to immediately buy/sell the asset at the best possible price. The best bid is the highest price at
which there is a limit order to buy, and the best ask is the lowest price at which there is a limit
order to sell. The spread is the difference between the best ask and the best bid, and is typically
expressed in tick size. For a detailed overview of the LOB see Abergel et al. (2016).

In the following, we will be interested in three price series that can be retrieved from LOB data:
the mid-price, the micro-price and the trade price.

Definition 3.1.1. We define the mid-price pmid and the micro-price pmicro of an asset at time t
as, respectively, the arithmetic average and the volume-weighted average of the best bid and best ask
quotes at time t, i.e.,

pmid(t) := pb(t) + pa(t)
2 , pmicro(t) := pb(t)va(t) + pa(t)vb(t)

vb(t) + va(t) ,

where pb, pa, vb and va denote, respectively, the best bid, the best ask, the volume (i.e., the number
of outstanding limit orders) at the best bid and the volume at the best ask. Finally, the trade price
ptrade series is defined as the series of prices arising from the execution of market orders.

An example of the different behavior of the three series considered is shown in Figure 3.1, where
the trajectories are obtained simulated the evolution of the LOB with the QR model by Huang et al.
(2015).

In our study, we will consider two models for the simulation of the LOB. The simplistic ZI model
by Smith et al. (2003) and the more sophisticated QR model by Huang et al. (2015). In the next
paragraphs we briefly recall the main characteristics of the two models. Please refer to the original
papers for a more thorough description.

3.1.1 Model descriptions

The zero-intelligence model

The ZI model, originally proposed by Smith et al. (2003), is a statistical representation of the double
action mechanism used in most stock markets. Despite its simplicity, the model is able to generate
a relatively complex dynamic for the order book. It is based on three parameters: the intensity of
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Figure 3.1: Sample trajectory for a simulated LOB: the mid-, micro- and trade-price. Simulations
obtained using the QR model.

limit orders, λL, the intensity of cancel orders, λC , and the intensity of market orders, λM . The
three components of the order flow follow independent Poisson processes, thus the type of order
extracted at each time is independent of the previous orders and the current state of the LOB, and
orders may arrive at every price level with the same probability. Each order is assumed to have
unitary size. For a detailed discussion about the flexibility of this model, see Gatheral and Oomen
(2010).

As mentioned, the ZI model may be deemed as too simplistic. Indeed, the assumptions that
the intensities of order arrival are independent of the state of the book and that the intensities are
equal for each price level are highly unrealistic. Moreover, this model produces purely endogenous
order-book dynamics, without considering the effect of exogenous information. Further, as shown in
Bouchaud et al. (2018), under the ZI model the market impact of new orders is such that profitable
market-making opportunities can be created, even if they are usually absent in real markets. Some
of the weakness of the ZI model are overcome by the QR model.

The queue-reactive model

The QR model (Huang et al. (2015)) is a LOB model suitable to describe large tick assets, i.e.,
assets whose bid-ask spread is almost always equal to one tick. This model is able to reproduce a
richer and more realistic behavior of the LOB, compared to the ZI model. In other words, the QR
model attempts to fix some of the flaws of the ZI model. This is achieved, in the first place, by
assuming different intensities for each level of the LOB. Moreover, the degree of realism is increased
by introducing a correlation not only between order-arrival intensities and the corresponding queue
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size at each level, but also between intensities and the queue size at the corresponding level at the
opposite side of the book. Further, a dependence between the volume at the best level and order
arrivals at the other levels is assumed. Finally, differently form the ZI model, the QR model allows
for exogenous dynamics by taking into account the flow of exogenous information that hits the
market.

Following Huang et al. (2015), under the QR model the LOB is described by a 2K−dimensional
vector, with K denoting the number of available price levels at the bid and ask sides of the book.
At the level Q±i, i = 1, ...,K, the corresponding price is equal to p ± i(tick), where p denotes the
center of the 2K dimensional vector. Precisely, Q−i denotes a level order at the bid side and Qi

denotes a level order at the ask side. Moreover, q±i denotes the volume at the level Q±i.
The process X(t) = (q−K(t), ..., q−1(t), q1(t), ..., qK(t)) is a continuous-time Markov process with

the following infinitesimal generator matrix Q:

Qq,q+ei = fi(q),

Qq,q−ei = gi(q),

Qq,q = −
∑︂
p ̸=q

Qq,p,

Qq,q = 0 otherwise,

with q = (q−K , ..., q−1, q1, ..., qK) and ei denoting the i− th vector of the standard base of R2K .
Thus, with different intensities at each queue, we have that

fi(q) = λL(qi, Sm,l(q−i)),

gi(q) = λC(qi, Sm,l(q−i)) + λMbuy1bestask(q)=i, if i > 0,

gi(q) = λC(qi, Sm,l(q−i)) + λMsell1bestbid(q)=i, if i < 0,

where the function Sm,l(q−i) is responsible for the interaction between the bid and the ask side of
the book, that is,

Sm,l(q−i) = Q0 if q−i = 0,

Sm,l(q−i) = Q− if 0 < q−i ≤ m,

Sm,l(q−i) = Q̄ if m < q−i ≤ l,

Sm,l(q−i) = Q+ if q−i > l,

being m and l two fixed thresholds. For example, given a certain volume at the bid side, a new
bid limit order has different intensities depending on whether the volume at the ask is, e.g., qi = 0,
0 < qi ≤ 5, 5 < qi ≤ 10 or qi > 10. Market orders may arrive only at the best quote. Moreover, we
assume that λLi and λCi are also functions of 1q±1≥0, for i ̸= ±1, to allow for interactions between
the best level and the dynamics far from the best level.

Conditionally on the LOB state, the arrival of different orders at a given limit is assumed to be
independent, and follows a Poisson distribution, with intensity equal to λ. However, since the queue
sizes depend on the order flow, the model reproduces some auto- and cross-correlations between the
components of the order flow, as observed in empirical data.
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Contrary to the ZI model, the QR gives a dynamic that is not entirely driven by the orders
arriving on the LOB. To achieve this, two additional parameters are introduced, θref and θreinit.
Whenever the mid-price changes, an auxiliary (not observed) price, called the reference price and
denoted by pref , changes in the same direction with probability θref and by an amount equal to the
tick size of the asset. Moreover, when pref changes, the LOB state is redrawn from its invariant
distribution around the new value of pref , with probability θreinit. In fact, as the authors explain,
the parameter θreinit captures the percentage of price changes due to exogenous information.

In the following we address the procedures that we followed to estimate the two LOB models and
discuss the differences between them in terms of ability of reproducing realistic features of empirical
high-frequency data.

3.1.2 Calibration procedures

For the calibration of the ZI and QR models, we used order-book data of the stock Microsoft (MSFT)
over the period April 1, 2018 - April 30, 2018. Data were retrieved from the LOBSTER database.
Microsoft is a very liquid stock with an average spread approximately equal to 1.25 ticks and thus
can be considered a large tick asset, suitable to be modeled by the queue-reactive design.

Before the calibration, for each day we removed from the sample the first hour of trading activity
after the market opening and the last 30 minutes before the market closure; this is a standard
procedure adopted when working with high-frequency data, since during these two moments of the
day the trading activity is known to be more intense and volatile, thereby possibly leading to a
violation of the large tick asset hypothesis, even for a liquid stock like Microsoft. Given the average
spread observed, and being the activity almost fully concentrated at the best limits, we implemented
the ZI and QR models using two limits, Q±1 and Q±2. This is in line with Huang et al. (2015).

To estimate the intensities of order arrivals under the QR model, the following inputs are needed:

• the type of each event, i.e., limit order, cancel order or market order;

• the time between events that happen at Q1 and Q2, along with the queue sizes q1 and q2 before
each event;

• the size of each event, as qi is expressed as a multiple of the median event size.

The estimation of the intensities is performed via maximum likelihood, as in Huang et al. (2015).
The parameters m and l that capture the bid-ask dependence are set equal to the the 33% lower
and upper quantiles of the q−i’s (conditional on positive values). Given the symmetry property of
the LOB, intensities are computed for just one side.

The parameters θref and θreinit are calibrated using the mean-reversion ratio ζ̄ of the mid-price,
which is defined as

ζ̄ := nc
2na

,

where nc is the number of continuations (i.e., the number of consecutive price moves in the same
directions) and na is the number of alternations (i.e., the number of consecutive price moves in
opposite directions). For more details about the relation between the mean-reversion ratio and the
microstructure of large tick assets, see Robert and Rosenbaum (2011).

We carried out the calibration using a two-step generalized method of moments (GMM), which
is more robust than the heuristic approach proposed by Huang et al. (2015). Denote by σemp and
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ζ̄
emp the empirical estimates of the standard deviation and mean-reversion ratio of the mid-price

returns, computed at the 1-second frequency using the last tick rule. Further, denote by σt(θ̄) and
ζ̄t(θ̄) the quantities estimated in simulation t, with t = 1, ..., T , and θ̄ = (θref, θreinit).

Two-step GMM-based procedure for the calibration of θ̄.

Step 1. Obtain a consistent estimate of θ̄ via the estimator

θ̄1 := arg min
θ̄∈[0,1]×[0,1]

1
T 2

⎡⎣(︄∑︂
t

gσt (θ̄)
)︄2

+
(︄∑︂

t

gζ̄t (θ̄)
)︄2
⎤⎦ ,

where gσt (θ̄) = σt(θ̄)
σemp

− 1, gζ̄t (θ̄) = ζ̄t(θ̄)
ζ̄
emp − 1.

Step 2. Obtain the GMM-estimate of θ̄

θ̄GMM := arg min
θ̄∈[0,1]×[0,1]

(︄
1
T

∑︂
t

ḡt(θ̄)
)︄′

W

(︄
1
T

∑︂
t

ḡt(θ̄)
)︄
,

where ḡt(θ̄) = (gσt (θ̄), gζ̄t (θ̄)) and W−1 = 1
T

∑︂
t

(ḡt(θ̄1))′(ḡt(θ̄1)).

The estimator is asymptotically efficient in the GMM class. For the implementation we used
T = 100 simulations with an horizon of one trading day. The tick size was set equal to the minimum
bid-ask spread recorded in the data, namely 1 cent. As a final estimate, we obtained θref = 0.6 and
θreinit = 0.85.

The asymptotic distribution of the queue size, needed for the re-initialization of the LOB state,
was obtained following the approach proposed by Huang et al. (2015). For each simulated path, the
starting LOB state was randomly chosen using the asymptotic distribution of the queue size.

For the calibration of the ZI model, one only needs to reconstruct the intensities of order arrivals.
To do that, the only information needed involves the type of order, the order arrival time and the
order size. The ensuing estimators read

λL = #L
#O∆t

, λC = #C
#O∆t

, λM = #M
#O∆t

where #O = #L + #C + #M and #L, #C, #M denote, respectively, the total number of limit,
cancel and market orders arriving at the best quotes or between the spread, while ∆t is the average
elapsed time between two consecutive orders.

3.1.3 Comparison of volatility and noise features

As pointed out by Gatheral and Oomen (2010), neither the efficient price nor its volatility are well-
defined under the ZI model. The same holds under the QR model. However, if one assumes constant
model parameters, thanks to the ergodicity of the processes (see Huang et al. (2015)), the variance
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of the efficient price can be defined, following Gatheral and Oomen (2010), as

σ2 := lim
m→∞

1
m
E
[︂
(p(m) − p(0))2

]︂
, (3.1)

where p may denote any price process among those considered, that is, the mid-price, the micro-price
and the trade price.

Based on (3.1), given the (calibrated) values of the LOB parameters, it is possible to estimate
the true value of σ2 via simulations. Specifically, in our study, given the LOB parameters calibrated
on the Microsoft sample data, numerical results over 2500 simulations show that for m > 18000 the
volatility of mid-prices, micro-prices and trade-prices stabilizes around the value σ2 = 1.039 · 10−8

in the case of the QR model.
Since the knowledge of the value of σ2 is crucial to compare the finite-sample performance of

volatility estimators, we wish to verify whether the two order-book models give similar results. The
estimates of σ2 for the two models and for the three price series considered are compared in Table
3.1. The levels of variance obtained with the ZI model and the QR are significantly different, even
when considering the error in the estimation procedure, with the ZI producing a level about 50%
higher than the one observed for the QR model. This highlights a first fact to be considered: the
choice of the LOB model is not irrelevant for applications involving the volatility parameter. In fact,
it is known that the ZI model calibrated on real data only partially reproduces the actual empirical
variance, with a bias which depends on the relative magnitude of the intensities (see, e.g., Bouchaud
et al. (2018)).

Order-book model statistics mid-price micro-price trade price
ZI model Variance 1.539 · 10−8 1.539 · 10−8 1.539 · 10−8

Std. error 1.259 · 10−9 2.434 · 10−9 2.587 · 10−9

QR model Variance 1.039 · 10−8 1.039 · 10−8 1.039 · 10−8

Std. error 3.336 · 10−10 3.330 · 10−10 3.319 · 10−10

Table 3.1: Comparison of the estimated variance reconstructed via Eq. (3.1) using simulations of
the ZI and the QR models.

Moreover, since we are interested in comparing the performance of noise-robust volatility esti-
mators, we wish to discriminate between the two LOB models on the basis of how well they mimic
the noise accumulation observable in empirical data at different frequencies. To do so, we use the
Hausman test for the null hypothesis of the absence of noise by Aït-Sahalia and Xiu (2019a). In
particular, we use the formulation of the test in Equation (16) of Aït-Sahalia and Xiu (2019a), which
is coherent with the use of LOB models with a constant variance parameter.

Tables 3.2 illustrates the frequencies (in seconds) at which the Hausman test rejects the null
hypothesis of the absence of noise with a significance level of 5% (⋆) and the frequencies at which
the null is instead not rejected (d) for, respectively, the MSFT sample and the simulated samples
from the ZI and QR models. The results of Hausman test suggest that the noise accumulation
mechanism at different frequencies under the QR model is more realistic than the one observed
under the ZI model, based on the comparison with the noise-detection pattern in the MSFT sample.
This aspect is clearly relevant when analyzing the finite-sample performance of noise-robust volatility
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estimators, and adds empirical support to the use of the QR model for that purpose.

1 sec. 2 sec. 5 sec. 10 sec. 15 sec. 30 sec. 60 sec.
Microsoft (April 2018)

Mid-price ⋆ ⋆ ⋆ ⋆ ⋆ d d
Micro-price ⋆ ⋆ ⋆ ⋆ ⋆ d d
Trade-price ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ d

ZI model
Mid-price ⋆ ⋆ ⋆ ⋆ d d d
Micro-price ⋆ ⋆ ⋆ d d d d
Trade-price ⋆ ⋆ ⋆ d d d d

QR model
Mid-price ⋆ ⋆ ⋆ ⋆ ⋆ d d
Micro-price ⋆ ⋆ ⋆ ⋆ ⋆ d d
Trade-price ⋆ ⋆ ⋆ ⋆ ⋆ d d

Table 3.2: Hausman test results at different frequencies (in seconds) for Microsoft (April 2018), the
ZI model and the QR model. The symbol ⋆ (d) indicates that the null of absence of noise
is rejected (not rejected) with a significance level of 5%.

Lastly, we look at the average spread that the two order-book models are able to generate. This
aspect is of paramount importance, being the spread a crucial characteristic of LOB and one of
the main sources of market microstructure noise. Table 3.3 suggests that, even though both the
ZI and the QR models generate an average spread lower than the one empirically observed, the
underestimation is less severe in the case of the QR. The underestimation of spread under the ZI
model has been documented in Bouchaud et al. (2018).

Data Average spread
MSFT sample 1.25
ZI simulations 1.03
QR simulations 1.14

Table 3.3: Comparison of the average spread (expressed in ticks) computed from the empirical MSFT
sample with the corresponding values obtained from simulations of the ZI and QR samples.

3.2 Volatility estimators

In this section, we briefly describe the noise-robust integrated- and spot-volatility estimators whose
performance will be studied in the next section. The formulae for the tuning parameters involved in
the computation of the estimators that optimize the mean squared error (MSE) are also reported.

Preliminary notation

We consider the estimation horizon [t, t+h], t, h > 0, and assume that the price p is sampled on the
equally-spaced grid with mesh h/n, where n denotes the number of price observations. The quantity

53



Chapter 3. Volatility estimation over the LOB and optimal execution

pi denotes the log-price of the asset at time ti := t + ih/n, i = 0, 1, ..., n. Note that p may refer
indifferently to the trade-, mid- or micro-price.

The spot volatility at time t is denoted by σ2(t) and

IVt,u :=
∫︂ t+u

t

σ2(s)ds

denotes the integrated volatility on [t, t + u], u ≤ h. Clearly, in a setting with constant volatility
σ2(t) = σ2 for all t, the latter simplifies to σ2u.

As an auxiliary quantity for the implementation of some estimators, we will need to estimate the
integrated quarticity, that is,

IQt,u :=
∫︂ t+u

t

σ4(s)ds.

In the rest of the chapter, we drop the subscript of both IV and IQ as we always refer to the
interval [t, t+ h].

Furthermore, we recall that the asymptotic properties of high-frequency volatility estimators are
typically derived under a setting analogous to the one presented in Section 2.2, that we briefly recall.
For all t, the observable price p̃ is decomposed as

p̃(t) = p(t) + η(t),

where p denotes the efficient price, whose dynamics follow an Itô semimartingale, while η is an
i.i.d. zero-mean noise due to the market microstructure. As additional auxiliary quantities, we need
estimates of the second moment of η, i.e.,

ξ = E[η2].

Finally, we denote the floor function as ⌊·⌋ and the rounding to the nearest integer as [·].

3.2.1 Integrated volatility

Bias-corrected realized variance

The realized variance, that is, the sum of squared log-returns over a given time horizon, represents
the most natural rate-efficient estimator of the integrated volatility in the absence of noise. However,
in the presence of noise, as it is typically the case for high-frequency settings, the realized variance
is biased. The bias-corrected realized variance by Zhou (1996) corrects for the bias due to noise by
taking into account the first order auto-covariance of the log-returns. The estimator reads:

IVBC := c

q−1∑︂
j=0

(︄
c2∑︂
i=1

(p̃iq+j − p̃(i−1)q+j

)︄2

+ 2
c2−1∑︂
i=1

(p̃iq+j − p̃(i−1)q+j)(p̃(i+1)q+j − p̃iq+j),

where c = n
n−q+1

1
q and c2 = ⌊(n− j + 1)/q⌋.

The MSE-optimal value of q is attained as

q∗ = max
(︃

1,
[︃

2nξ
IV

√
3

]︃)︃
.
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Fourier estimator

Introduced by Malliavin and Mancino (2002) and Malliavin and Mancino (2009), the Fourier es-
timator of the integrated volatility relies on the computation of the zero-th Fourier coefficient of
the volatility, given the Fourier coefficients of the log-returns. The noise is filtered out by suitably
selecting the cutting frequency N . If one uses the Fejér (respectively, Dirichlet) kernel to weight the
convolution product, the estimator is defined as

IV FejF := (2π)2

N + 1
∑︂

|k|≤N

(︃
1 − |k|

N + 1

)︃
ck(dp̃n)c−k(dp̃n),

and
IV DirF := (2π)2

2N + 1
∑︂

|k|≤N

ck(dp̃n)c−k(dp̃n),

where ck(dp̃n), i.e. the k-th discrete Fourier coefficient of the log-return, is defined as in Equation
2.1.

The optimal value of the integer N in the presence of noise can be selected by performing a
feasible minimization of the MSE, see Mancino and Sanfelici (2008).

In this analysis, we implemented IV FejF , as unreported simulations suggest that it performs
better than IV DirF .

Maximum likelihood estimator

The maximum-likelihood estimator by Aït-Sahalia et al. (2005) is based on the assumption that
noisy log-returns follow an MA(1) model, consistently with the seminal microstructure model for
the bid-ask spread by Roll (1984). under the MA(1) assumption, it holds that

δi(p) = wi + ϕwi−1, (3.2)

and the maximum-likelihood estimator reads

IVML := nσ̂2
w(1 + ϕ̂)2,

where the pair (ϕ̂, σ̂2
w) is the result of the standard maximum-likelihood estimation of the MA(1)

model.

Two-scale estimator

The two-scale realized variance by Zhang et al. (2005) eliminates the noise-induced bias of the
realized variance by combining two different realized variance values, one computed at a higher
frequency and one computed at a lower frequency. The estimator reads:

IVTS := c

⎛⎝1
q

q−1∑︂
j=0

⌊(n−j+1)/q⌋∑︂
i=1

(p̃iq+j − p̃(i−1)q+j)2 − n− q + 1
nq

n−1∑︂
i=0

δi(p̃)2

⎞⎠ ,

where c =
(︂

1 − n−q+1
nq

)︂−1
. The MSE-optimal value of q is equal to

55



Chapter 3. Volatility estimation over the LOB and optimal execution

q∗ = n2/3
(︃

12ξ2

IQ

)︃1/3

.

Multi-scale estimator

Zhang (2006) also proposed a more sophisticated combination of realized variances at various fre-
quencies that smooths out the effect of microstructure noise. The multi-scale estimator reads:

IVMS :=
q∑︂
j=1

aj
j

j−1∑︂
k=0

⌊(n−k+1)/j⌋∑︂
i=1

(p̃ij+k − p̃(i−1)j+k)2,

where
aj = j(1 − 1/q2)−1

(︃
12(1/q − 1/2)

q2 − 6
q3

)︃
.

The MSE-optimal q is given by

q∗ =
√
n

(︄
β +

√︄
β2 + 144ξ2

104/35IQ

)︄1/2

,

where β = 48/5ξ(IV + ξ2/2)
208/35IQ .

Kernel estimator

Kernel-based estimators, originally introduced by Barndorff-Nielsen et al. (2008), correct for the
bias due to noise of the realized variance by taking into account the autocorrelation of returns at
different lags, suitably weighted by means of a kernel function k(·). The estimator reads:

IVK :=
n−1∑︂
i=0

δi(p)2 + 2
q∑︂
j=1

k

(︃
j − 1
q

)︃ n−1−j∑︂
i=0

δi(p̃)δi+j(p̃).

Moreover, the MSE-optimal value of q is equal to

q∗ =
√
n

(︄
β +

√︄
β2 + cξ2

aIQ

)︄1/2

,

where β = bξ(IV + ξ/2)
2aIQ , a = 4

∫︂ 1

0
k(x)2dx, b = −8

∫︂ 1

0
k(x)k

′′
(x)dx, c = 12(k

′′′
(0)+

∫︂ 1

0
k(x)k

′′′
(x)dx.

In this exercise we implemented this estimator by using the Tukey Hanning 2 kernel, i.e., we
set k(x) = sin2(π/2(1 − x)2). This kernel was shown to perform satisfactorily, compared to other
kernels (see Barndorff-Nielsen et al. (2008)).

Pre-averaging estimator

The pre-averaging estimator, proposed by Jacod et al. (2009), relies on the averaging of the price
values over a window h to compute the realized variance, together with a bias-correction term. The
estimator is as follows:
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IVPA := 6
h

n−h+1∑︂
s=0

⎛⎝ 1
h/2

h/2−1∑︂
s′=0

p̃s+s′+h/2 − 1
h/2

h/2−1∑︂
s′=0

p̃s+s′

⎞⎠2

− 6
h2

n−1∑︂
i=0

δi(p̃)2.

Jacod et al. (2009) suggest that the estimator is robust to the choice of h; in our simulation
study we set h to obtain a window of approximately 4 minutes, in line with Li et al. (2021).

Alternation estimator

Proposed by Large (2011), the alternation estimator corrects the realized variance with a factor
dependent on the number of alternations and continuations in the sample, that is, the estimator
reads

IVAlt := nc
na

n−1∑︂
i=0

δi(p̃)2,

where nc is the number of consecutive price movements in the same direction, while na the number
of consecutive price movement in the opposite direction.

MinRV and MedRV estimators

Andersen et al. (2012) introduced two jump-robust estimators of the integrated variance which
consist, respectively, in the (scaled) sum of the minimum or the median between consecutive returns,
that is,

IVMin = π

π − 2

(︃
n

n− 1

)︃ n−2∑︂
i=0

min(|δi(p̃)|, |δi+1(p̃)|)2;

IVMed = π

6 − 4
√

3 + π

(︃
n

n− 2

)︃ n−2∑︂
i=1

med(|δi−1(p̃)|, |δi(p̃)|, |δi+1(p̃)|)2.

To make the estimators robust to the presence of microstructure noise, pre-averaging may be
applied to price observations, as shown in Andersen et al. (2012), Appendix B. Accordingly, in this
comparison we used the noise-robust version of IVMin and IVMed with price pre-averaging.

Range estimator

The main idea behind the range estimator by Vortelinos (2014) is to substitute the simple returns
with the difference between the maximum and minimum observed price over a given window, to
obtain the estimator

IVRG := 1
4 log(2)

n/q∑︂
i=1

(maxqi −minqi)2,

where maxqi = max(p̃(i−1)q, ..., p̃iq) and minqi = min(p̃(i−1)q, ..., p̃iq). The MSE-optimal frequency
is

q∗ =
(︃
IQ

ξ2

)︃1/3
.
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Unified estimator

Li et al. (2018) proposed a unified approach to volatility estimation, obtaining an estimator which
is consistent not only in the presence of the typical i.i.d. noise, but also when the noise comes from
price rounding. The estimators is defined as follows:

IVU :=
m∑︂
l=1

(︄
1
m

− n̄
nl − n̄∑︁L

j=1 n
2
j − hn̄2

)︄
1
ql

ql−1∑︂
k=0

nl∑︂
i=1

(p̃(k+i)ql − p̃k+(i−1)ql)
2,

where n̄ = (
∑︁m
l=1 nl)/h, nl = n/ql and ql+1 = q1 + l, l = 1, ...,m− 1. The optimal q1 and h can be

selected via the data-driven procedure detailed in Li et al. (2018).

3.2.2 Spot volatility

Fourier estimator

As outined in Chapter 2 the Fourier method allows reconstructing the trajectory of the volatility
as a function of time on a discrete grid, and a consistent and asymptotically unbiased estimator in
presence of noise is the one defined in Section 2.1, provided that the cutting frequencies N and M

are properly chosen.
Note that, differently from the other estimators detailed below, the Fourier estimator is global,

in the sense that it estimates the entire volatility function on a discrete grid over the interval [0, 2π]1,
instead of a local value at a specific time t.

The selection of N and M for this exercise is performed based on the numerical results given
Mancino and Recchioni (2015).

Regularized estimator

Proposed by Ogawa (2008), the regularized estimator is based on a regularization procedure that
involves data around the estimation point. The estimator reads

σ2
REG(t) := 3s2

q
√︁

[n/q](3sq − q2 + 1)

[n/q]−1∑︂
i=0

δt+i(p̄)2,

where here p̄ is given by

p̄t = 1
s

s∑︂
j=1

p̃tq−j+1,

Following Ogawa and Sanfelici (2011), for the implementation we set q = [n/nt] and s = 2q,
where nt is the number of points on which the spot variance trajectory is reconstructed.

Kernel estimator

Fan and Wang (2008) (see also Kristensen (2010)) proposed an estimator of the spot variance based
on the localization of the kernel-weighted realized variance over a window of length q, which reads

1By suitably re-scaling the unit of time, the estimator can be applied to any arbitrary interval.
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σ2
K(t) := 1

q

t+q∑︂
ti=t−q

k

(︃
ti − t

q

)︃
δti(p̃)2,

with
q = [

√
n/ logn].

For the implementation, we used the Fejér kernel, following Mancini et al. (2015).

Pre-averaging estimator

The pre-averaging estimator of the spot volatility by Jing et al. (2014) and Li et al. (2021) relies on
the localization of the pre-averaging integrated estimator on a window of length h and reads

σ2
PA(t) := n

q

12
s

q−s+1∑︂
j=0

1
2

⎛⎝ 1
s/2

s/2−1∑︂
j′=0

p̃t+j+j′+s/2 − 1
s/2

s/2−1∑︂
j′=0

p̃t+j+j′

⎞⎠2

− n

q

6
s

q∑︂
j=0

δt+j(p̃)2,

with q = [c1n
3/4] and s = [c2n

1/2].
The constants c1 and c2 can be chosen based on the numerical results in Li et al. (2021).

Two-scale estimator

The localized two-scale estimator, proposed by Zu and Boswijk (2014), reads

σ2
TS(t) := 1

s

t∑︂
j=t−s

(p̃j − p̃j−q)2

q
− n̄

n

1
s

t∑︂
j=t−s

δj(p̃)2,

where n̄ = ns−q+1
qs . The MSE-optimal values of s and q are given by

q∗ = q0n2/3 s∗ = s0n−1/6,

where

q0 =
(︃

12ξ2

IQ

)︃1/3

and

s0 = n

(︃8ξ2/(q0)2 + 4
3q

0IQ
1
3γ

)︃1/2

,

with

γ =
n−1∑︂
i=0

(δi(σ2))2, σ2(ti) = 1
s

s−1∑︂
j=0

δt+j(p̃)2.

Optimal candlestick estimator

The optimal candlestick estimator proposed by Li et al. (2022) relies on candlestick data, i.e., the
opening, closing, highest and lowest prices within a given interval. Formally, denote by In,i :=
{(i − 1)ρ(n), iρ(n)} the interval associated with the ith candlestick, where ρ(n) → 0 as n → ∞.
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Moreover, let Oi, Ci, Hi and Li denote, respectively, the opening, closing, highest and lowest prices
on In,i. The estimator reads

σ2
OK(t) = (λ1|Oi − Ci| + λ2(Hi − Li))2

ρ(n) , t ∈ In,i

where λ1 and λ2 are constants. For the implementation, we set ρ(n) = 1 minute (see Section 3.3)
and selected (λ1, λ2) based on the optimality conditions detailed in Li et al. (2022), Section 2.2.

Pre-averaging kernel estimator

Figueroa-López and Wu (2022) proposed an estimator of the spot variance which consists in a local-
ization of the realized kernel estimator with pre-averaging, i.e., the pre-averaging kernel estimator
already defined and discussed in Section 2.3.4, that again we chose to implement and apply following
the optimal criterion as outlined in Figueroa-López and Wu (2022).

3.2.3 Feasible selection of tuning parameters

The feasible implementation of the optimization formulae for the tuning parameters which appear
in the previous section may require the estimation of IV , IQ and ξ. In this regard, we use the
following estimators, as in Gatheral and Oomen (2010):

ˆ︂IV = n

n− q + 1
1
q

q−1∑︂
s=0

⌊(n−s+1)/q⌋∑︂
i=1

(p̃iq+s − p̃(i−1)q+s)2

ˆ︂IQ =
(︃

n

n− q + 1

)︃2 26
q

q−1∑︂
s=0

⌊(n−s+1)/q⌋∑︂
i=1

(p̃iq+s − p̃(i−1)q+s)4

ξ̂ = −ϕ̂σ̂2
w, ξ̂

2 = (ξ̂)2,

where the pair (σ̂2
w, ϕ̂) is obtained as in (3.2).

Note that q is selected in correspondence of the 5-minute (noise-free) sampling frequency.

3.3 Comparative performance study of volatility estimators

In this section we present the results of a study of the finite-sample performance of the volatility
estimators described in the previous section, which is based on simulations of the QR model. In the
study, we considered two alternative scenarios. In the first scenario, we assumed constant values
of the parameters θref and θreinit, which translate into a constant volatility parameter. Instead,
in the second scenario we allowed θref and θreinit to change, so that the volatility parameter is no
longer constant. We emphasize the fact that this second scenario introduces a novelty compared
to the study by Gatheral and Oomen (2010), where the volatility parameter is constant. In fact, a
scenario with time-varying volatility offers a more realistic framework to assess the performance of
estimators.

For each scenario, we simulated 2500 daily paths. For each couple (θref, θreinit) considered,
the corresponding true value of the volatility parameter was obtained via additional simulations
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exploiting Equation 3.1, as described in Subsection 3.1.3. Estimators were computed using 1-second
price observations. The integrated volatility was estimated on daily intervals, while for the spot
volatility we reconstructed daily trajectories on the 1-minute grid. The selection of the tuning
parameters involved in the computation of the different estimators was performed based on the
feasible formulae and the suggestions reported in the previous section.

3.3.1 Constant θref and θreinit

In the first scenario, simulations were performed with θref and θreinit constant and equal to, respec-
tively, 0.6 and 0.85, that is, the parameter values calibrated on the MSFT sample (see Section 3.1).
We recall that the resulting reference value of the spot variance parameter is σ2 = 1.0387 · 10−8 (see
Subsection 3.1.3).

Tables 3.4-3.7 display the ranking of the estimators for the three series of mid-price, micro-price
and trade-price in terms of their finite-sample performance. The latter is evaluated by means of,
resp., the relative bias and MSE for the integrated volatility and the relative integrated bias and
MSE for the spot volatility. In each table, the estimators are ordered based on the average ranking,
obtained as the arithmetic mean of the rankings for the three prices series.

For what concerns integrated estimators, the pre-averaging estimator and the Fourier estimator
provide the relative best performance in terms, resp., of bias and MSE minimization, based on the
average ranking. However, note that the Fourier estimator achieves the best MSE average ranking
without resulting the first in the ranking for any price series. Indeed, the unified volatility estimator,
which is robust to i.i.d. noise and rounding, yields the best performance for mid- and micro-prices,
while the best result for trade-prices is achieved by the alternation estimator, which is robust to
price discreteness and rounding (see Large (2011)). Overall, this may suggest that robustness to
rounding may be crucial to optimize the mean squared error. Instead, the pre-averaging estimator
is more clearly favorable in terms of bias reduction, given the fact that it results the first in terms of
bias minimization for micro- and trade-price series and the second for mid-price series. Moreover, it
is worth noticing that the Min RV and Med RV, which are also computed from pre-averaged data,
occupy the second and third places in the average ranking for the bias.

As for spot estimators, simulations indicate that the Fourier estimator outperforms the other
estimators considered, both in terms of bias and MSE optimization, for all the price series considered.
Only the regularized estimator is capable of obtaining comparable performances in terms of bias. The
Fourier estimator differs from the other spot estimators considered in that it relies on the integration
of the Fourier coefficients of the volatility rather than on the differentiation of the (estimated)
integrated variance, and this appears to represent a solid numerical advantage. Figure 3.2 shows
sample trajectories of the spot estimators computed from the mid-price series, along with the true
volatility value, to help better understand the difference in performance among the estimators.
Appendix 3.B contains the analogous figures for the micro-price and the trade-price.

Finally, in the case of both integrated and spot estimators we investigated whether the volatility
values obtained using different methods were statistically different. To this end, for each pair of
estimators, we performed a t-test of the null hypothesis that the mean value of the estimated
volatility is the same. As a result, we found that all average estimations are pairwise significantly
different at the 1% confidence level. Moreover, to better assess the differences in the performances of
estimators, we also applied the model confidence set (MCS) procedure by Hansen et al. (2011), with
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a significance level of 1%. Following Patton (2011), for the MCS we used the qlike loss function.
As a result, the MCS procedure always chooses as the optimal model set the one containing only
the estimator with the best ranking in terms of MSE (see Tables 3.5 and 3.7), thus supporting the
soundness of our results. Overall, the results of the t-tests and the MCS offer additional support to
the fact that the careful selection of the estimation method is not irrelevant.

Integrated variance estimators - relative bias
Estimator mid-price rank micro-price rank trade-price rank av. rank

Pre-averaging -0.01106 2 -0.00643 1 -0.00534 1 1.33
Min RV 0.01071 1 0.01050 2 0.01181 3 2
Med RV 0.01367 3 0.01348 3 0.01456 4 3.33
Unified 0.05518 4 0.04679 4 0.11442 7 5
Fourier 0.09154 6 0.08290 5 0.09234 6 5.66
Range -0.09196 7 -0.08302 6 -0.06997 5 6

Alternation 0.06799 5 0.11612 12 -0.06226 2 6.33
Kernel 0.12679 8 0.10075 8 0.24836 8 8

Maximum likelihood 0.13990 12 0.10011 7 0.27243 9 9.33
Two-scale RV 0.12827 9 0.10465 9 0.32015 10 9.66

Multi-scale RV 0.12841 10 0.10478 10 0.32030 11 10.33
Bias-corrected RV 0.12852 11 0.10489 11 0.32042 12 11.33

Table 3.4: Performance and ranking of the integrated variance estimators for the series of mid-price,
micro-price and trade-price, according to the relative bias. The average ranking is reported
in the last column.

Integrated variance estimators - relative MSE
Estimator mid-price rank micro-price rank trade-price rank av. rank

Fourier 0.00981 3 0.00658 2 0.01039 2 2.33
Unified 0.00433 1 0.00346 1 0.01446 6 2.66

Alternation 0.00593 2 0.01145 5 0.00485 1 2.66
Med RV 0.01075 4 0.01174 6 0.01181 3 4.33
Min RV 0.01275 5 0.012754 7 0.01282 4 5.33

Maximum likelihood 0.01647 7 0.01112 3 0.07564 9 6.33
Kernel 0.01726 9 0.01128 4 0.06314 8 7

Pre-averaging 0.01566 6 0.015653 11 0.01568 7 8
Multi-scale RV 0.01648 8 0.012070 8 0.10401 11 9

Range 0.01794 12 0.016448 12 0.01304 5 9.66
Two-scale RV 0.01757 10 0.012901 10 0.10391 10 10

Bias-corrected RV 0.01734 11 0.012094 9 0.10409 12 10.66

Table 3.5: Performance and ranking of the integrated variance estimators for the series of mid-price,
micro-price and trade-price, according to the relative mean squared error. The average
ranking is reported in the last column.
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Spot variance estimators - relative integrated bias
Estimator mid-price rank micro-price rank trade-price rank av. rank

Fourier 0.00362 1 0.00299 1 0.00713 1 1
Regularized 0.00676 2 0.00663 2 0.00802 2 2

Optimal candlestick -0.16165 3 -0.12525 3 -0.07430 3 3
Pre-averaging kernel -0.14755 4 -0.13462 4 -0.08459 4 4

Pre-averaging 0.19939 5 0.19923 5 0.19936 6 5.33
Kernel 0.22205 6 0.23801 6 0.73200 7 6.33

Two-scale -0.24781 7 -0.26271 7 -0.11798 5 6.33

Table 3.6: Performance and ranking of the spot variance estimators for the series of mid-price,
micro-price and trade-price, according to the relative integrated bias. The average ranking
is reported in the last column.

Spot variance estimators - relative integrated MSE
Estimator mid-price rank micro-price rank trade-price rank av. rank

Fourier 0.03095 1 0.03060 1 0.03128 1 1
Pre-averaging kernel 0.13392 2 0.13745 2 0.09148 2 2

Regularized 0.20632 3 0.20628 3 0.20635 3 3
Optimal candlestick 0.31790 4 0.31436 4 0.33429 4 4

Kernel 0.46111 5 0.47095 5 0.84365 5 5
Two-scale 1.62190 6 1.59843 6 2.24599 6 6

Pre-averaging 2.59134 7 2.59064 7 2.59247 7 7

Table 3.7: Performance and ranking of the spot variance estimators for the series of mid-price,
micro-price and trade-price, according to the relative integrated mean squared error. The
average ranking is reported in the last column.
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Figure 3.2: Constant θref and θreinit: sample trajectories of spot variance estimators computed from
mid-prices (in blue) and true volatility (in red).
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3.3.2 Variable θref and θreinit

A nice feature of the QR model, compared to the ZI model, is the flexibility introduced by the
parameters θref and θreinit. In the second scenario we assessed the effect of time-varying values
of θref and θreinit on the accuracy of volatility estimators. Specifically, we allowed for piece-wise
constant volatility dynamics, which might describe a regime-shifting scenario driven, for example,
by the flow of information hitting the market.

We considered two sub-scenarios, with increasing variability of the volatility parameter. In the
first one, the LOB follows five regimes (each with length equal to 1/5 of a day), which translate into
a double u-shaped pattern for the volatility parameter, as illustrated in Table 3.8.

Period θref θreinit σ2

I 0.7 0.6 1.473 · 10−8

II 0.4 0.6 8.553 · 10−9

III 0.6 0.85 1.039 · 10−8

IV 0.4 0.9 7.195 · 10−9

V 0.8 0.9 1.366 · 10−8

Table 3.8: θref and θreinit values used for the simulations with five regimes and the corresponding
values of σ2.

In the second sub-scenario, we allowed for ten regimes (each with length equal to 1/10 of a day),
which recreate a u-shape pattern for the volatility parameter, see Table 3.9.

Period θref θreinit σ2 Period θref θreinit σ2

I 0.7 0.6 1.473 · 10−8 VI 0.3 0.5 4.813 · 10−9

II 0.8 0.9 1.366 · 10−8 VII 0.4 0.9 7.195 · 10−9

III 0.8 0.7 1.281 · 10−8 VIII 0.4 0.6 8.553 · 10−9

IV 0.5 0.5 7.753 · 10−9 IX 0.6 0.85 1.039 · 10−8

V 0.2 0.8 3.068 · 10−9 X 0.9 0.4 1.469 · 10−8

Table 3.9: θref and θreinit values used for the simulations with ten regimes and the corresponding
values of σ2.

Tables 3.10 and 3.11 illustrate the average performance rankings in the second scenario2. Specif-
ically, average rankings in correspondence of five and ten intra-day regimes are compared with
the case of a unique regime (i.e., the case with constant θref and θreinit illustrated in the previous
subsection). Full performance results in terms of bias and MSE are detailed in Appendix 3.A.

Overall, it appears that the introduction of time-varying parameters does not significantly affect
the performance rankings previously obtained with constant parameters. In other words, most of
the rankings are quite stable (with a few exceptions, see, e.g., the average ranking for the MSE of the
Range and Pre-averaging estimators), compared to the first scenario. The stability is more evident
for spot variance estimators.

2In Tables 3.10 and 3.11 the estimators are presented in the same order in which they appear in Section 3.2, i.e.,
in the chronological order of publication, since the average ranking may change when moving from the bias to the
MSE and from one simulating scenario to the other.
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As a further investigation, it might be interesting to study whether the performance ranking
remains similar also when the volatility path has infinite regimes, for example when the evolution
of θref and θreinit is driven by stochastic differential equations. This would require to build a precise
mapping between the volatility and θref and θreinit in order to simulate the LOB for each value of
the simulated volatility. This interesting investigation is beyond the scope of this work and is left
for future research.

As in the previous subsection, to help better understand the difference in performance among the
estimators in the second scenario, Figures 3.3 and 3.4 contain sample trajectories of the spot vari-
ance estimators computed from mid-price observations, together with the path of the true variance
parameter; the analogous figures for micro- and trade-prices are in Appendix 3.B.

Average rankings for different volatility regimes (integrated variance)
relative bias relative MSE

Estimator 1 regime 5 regimes 10 regimes 1 regime 5 regimes 10 regimes
Pre-averaging 1.33 1 2 8 4 4.33

Fourier 5.66 6.33 6.33 2.33 3 3.33
Med RV 3.33 2 1 4.33 5.33 6.66
Min RV 2 3 3.33 5.33 7 8.66
Unified 5 6 5.66 2.66 3 3.33
Range 6 4 5 9.66 3 3.33

Alternation 6.33 7.66 6.33 2.66 5 4.33
Maximum likelihood 9.33 8.66 8 6.33 7.66 6.33

Kernel 8 8.33 9 7 8 8
Two-scale RV 9.66 9.33 9.33 10 9.66 9.66

Multi-scale RV 10.33 10.33 10.66 9 10.66 9
Bias-corrected RV 11.33 11.66 11.66 10.66 11.66 11

Table 3.10: Average rankings of integrated variance estimators for an increasing number of intra-day
volatility regimes.

Average rankings for different volatility regimes (spot variance)
relative int. bias relative int. MSE

Estimator 1 regime 5 regimes 10 regimes 1 regime 5 regimes 10 regimes
Fourier 1 1 1 1 1 1

Regularized 2 2 2 3 3 3
Pre-averaging kernel 4 3 3 2 2 2
Optimal candlestick 3 4 4.33 4 4 4

Kernel 6.33 6 5.66 5 5 5
Pre-averaging 5.33 5 5.66 7 7 6.66

Two-scale 6.33 7 7 6 6 6.33

Table 3.11: Average rankings of spot variance estimators for an increasing number of intra-day
volatility regimes.
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Figure 3.3: Variable θref and θreinit (5 regimes): sample trajectories of spot variance estimators
computed from mid-prices (in blue) and true volatility (in red).
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Figure 3.4: Variable θref and θreinit (10 regimes): sample trajectories of spot variance estimators
computed from mid-prices (in blue) and true volatility (in red).
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3.4 The impact of efficient volatility estimates on optimal
execution

In this section, we discuss the results of a study which aims at providing insights into the impact
of the use of efficient volatility estimates on the prediction of the variance of the cost of a VWAP
execution.

Consider the following problem. A trader has S shares to buy within the interval [0, T ]. The
interval is divided into Nτ time periods of length τ = T/Nτ and vk, k = 1, ..., Nτ , denotes the
(signed) number of shares to be traded in interval k. Clearly,

∑︁Nτ
k=1 vk = S. Moreover, let p̃k be

the price at which the investor trades in interval k (in general different from the average price in
the interval, pk) and p0 the price before the start of the execution. The objective function is the
Implementation Shortfall (IS), defined as

C(v) ≡
Nτ∑︂
k=1

vkp̃k − Sp0 (3.3)

i.e., as the difference between the cost and the cost in an infinitely liquid market. The IS is in general
a stochastic variable, therefore one often wishes to minimize

E[C(v)] + λV ar[C(v)]

where λ measures the risk aversion of the trader.
Let us consider a traders which models markt impact according to the Almgren and Chriss model

(Almgren and Chriss (2001)). In this model, the price of the stock at step k is equal to the previous
price plus a linear permanent market impact term and a random shock, that is,

pk = pk−1 + ϑvk + uk uk ∼ IID(0, σ2τ), (3.4)

where σ2 is instantaneous volatility of the unaffected price. Moreover, the actual price paid p̃k is
different from the average price pk in the interval and reads

p̃k = pk + ρvk, (3.5)

where ρvk represents a linear temporary impact.
The expected cost of an execution is then given by

E[C(v)] = (ϑ+ ρ)
Nτ∑︂
k=1

v2
k + ϑ

∑︂
i>j

vivj

and its variance is equal to
V ar[C(v)] = σ2τvTBv,
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where

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 ...

1 2 2 2 ...

1 2 3 3 ...

1 2 3 4 ...

... ... ... ... ...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that the variance does not depend on the impact parameters ρ and ϑ, but only on the volatility.
Further, note that the above expression is more general, as it remains valid also when the temporary
impact is nonlinear, see Guéant (2016) for more details.

For the sake of simplicity we assume that the trader performs a VWAP execution (i.e., v =
S
Nτ

(1, 1, ..., 1)T ), so that the variance of the cost is equal to

V ar[CVWAP ] = σ2S2

N2
τ

τ

Nτ−1∑︂
k=0

(2k + 1)(Nτ − k) = S2σ2τ
1

6Nτ
(2N2

τ + 3Nτ + 1) (3.6)

This expression shows that, in order to estimate the variance of the execution cost, the traders
must have a reliable estimation of σ. We investigate whether the availability of an efficient estimate
of the latent volatility parameter could allow the trader to reliably infer the variance of the cost
of the strategy. More specifically, we are interested in assessing whether the use of a specific spot
volatility estimator, among those studied in Section 3.3, leads to a gain in the accuracy of such
inference.

To this aim, we use Monte Carlo scenarios of the QR model to simulate a VWAP execution
and we compare the variance of the cost of the simulated executions with the corresponding value
predicted by the Almgren and Chriss model (see Equation 3.6), evaluated with the (average) value
of σ2 obtained through a specific estimator. Since it is not obvious that the Almgren-Chriss model
faithfully describes the market impact in the QR model, we opted for a more robust comparison
that considers the ratio of the aforementioned quantities in correspondence of two different values
of the couple (θref, θreinit), i.e. of the volatility. In this way, the effect of the strategy parameters
S, τ and Nτ in Equation 3.6, that depend on the specific market-impact model, disappear.

For the simulation of the execution strategy, we set T = 3 hours and 20 minutes, τ = 10 minutes
and S = 60, so that Nτ = 20 and v = (3, ..., 3)T . The strategy was simulated on top of QR dynamics
simulated in two different scenarios with parameters (θref, θreinit) equal to (0.6, 0.85) and (0.4, 0.6).
We considered 100 VWAP executions and we computed the empirical variance of their execution
cost. The average spot variance values were retrieved from the study of Section 3.3.

Table 3.12 compares the ratios between the empirical variance cost when (θref, θreinit) = (0.6, 0.85)
and when (θref, θreinit) = (0.4, 0.6)) for all estimators. As stated above, we employ a ratio for the
purpose of eliminating the constants appearing in Equation 3.6, which depend on the setting of the
specific execution.

Results in Table 3.12 suggest that the Fourier estimator and the regularized estimator produce
the relative best forecasts of the variance of the strategy costs, as they are associated to a ratio
approximately equal to 1.23, which is the closest to the benchmark value of 1.397. As these two
estimators provide also the relative best performance in terms of bias and MSE (see Section 3.3), our
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Ratios of variances of the VWAP execution cost
Empirical variance 1.397

Fourier 1.235
Regularized 1.234

Pre-averaging kernel 1.563
Optimal candlestick 1.566

Pre-averaging 1.208
Kernel 1.186

Two-scale 1.030

Table 3.12: Ratios of variances of the VWAP implementation shortfall in correspondence of, respec-
tively, (θref, θreinit) = (0.6, 0.85) (numerator) and (θref, θreinit) = (0.4, 0.6) (denomina-
tor).

study suggests that efficient volatility estimates may be linked to a better forecast of the variance
of the execution cost. Furthermore, note that the range of variation of the ratios in Table 3.12
suggests that the the choice of the estimator is not irrelevant and may lead to significant differences
in the forecast of the execution strategy. It seems however that, in general, the use of the formula in
Equation. 3.6 leads to a certain underestimation of the the variance of the implementation shortfall
of the considered strategy.
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Appendix

Appendix 3.A Additional results for variable θref and θreinit

Integrated variance estimators - relative bias
Estimator mid-price rank micro-price rank trade-price rank av. rank

Pre-averaging 0.02365 1 0.02519 1 0.02364 1 1
Med RV -0.03787 2 -0.03778 2 -0.03738 2 2
Min RV -0.03828 3 -0.03821 3 -0.03782 3 3
Range -0.07194 4 -0.05015 4 -0.06590 4 4
Unified 0.092375 5 0.08478 5 0.16468 7 6
Fourier 0.12680 7 0.10451 6 0.12580 6 6.33

Alternation 0.09803 6 0.19524 12 0.09607 5 7.66
Kernel 0.17164 9 0.14899 8 0.31278 8 8.33

Maximum likelihood 0.16986 8 0.14813 7 0.41152 11 8.66
Two-scale RV 0.17577 10 0.15552 9 0.41140 9 9.33

Multi-scale RV 0.17592 11 0.15569 10 0.41152 10 10.33
Bias-corrected RV 0.17606 12 0.15583 11 0.41164 12 11.66

Table 3.13: Performance and ranking of the integrated variance estimators for the series of mid-
price, micro-price and trade-price with 5 regimes of θref and θreinit, according to the
relative bias. The average ranking is reported in the last column.

Integrated variance estimators - relative MSE
Estimator mid-price rank micro-price rank trade-price rank av. rank

Unified 0.01002 1 0.00864 1 0.02881 7 3
Fourier 0.01525 3 0.01251 2 0.01823 4 3
Range 0.01769 4 0.01253 3 0.01029 2 3

Pre-averaging 0.01888 5 0.01691 4 0.01685 3 4
Alternation 0.01020 2 0.03927 12 0.00332 1 5

Med RV 0.02022 6 0.02022 5 0.02010 5 5.33
Min RV 0.02511 7 0.02510 8 0.02492 6 7

Maximum likelihood 0.03008 8 0.02311 6 0.12163 9 7.66
Kernel 0.03075 9 0.02334 7 0.10014 8 8

Two-scale RV 0.03211 10 0.02534 9 0.17089 10 9.66
Multi-scale RV 0.032161 11 0.02539 10 0.17098 11 10.66

Bias-corrected RV 0.03222 12 0.02543 11 0.17102 12 11.66

Table 3.14: Performance and ranking of the integrated variance estimators for the series of mid-
price, micro-price and trade-price with 5 regimes of θref and θreinit, according to the
relative mean square error. The average ranking is reported in the last column.
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Spot variance estimators - relative integrated bias
Estimator mid-price rank micro-price rank trade-price rank av. rank

Fourier -0.00099 1 -0.00083 1 -0.00597 1 1
Regularized -0.00904 2 -0.00912 2 -0.00877 2 2

Pre-averaging kernel -0.06324 3 -0.04842 3 -0.05288 3 3
Optimal candlestick -0.16978 4 -0.12938 4 -0.07699 4 4

Pre-averaging 0.17632 5 0.17629 5 -0.11810 5 5
Kernel 0.20633 6 0.26122 6 0.27361 6 6

Two-scale -0.24749 7 0.26543 7 0.81305 7 7

Table 3.15: Performance and ranking of the spot variance estimators for the series of mid-price,
micro-price and trade-price with 5 regimes of θref and θreinit, according to the relative
integrated bias. The average ranking is reported in the last column.

Spot variance estimators - relative integrated MSE
Estimator mid-price rank micro-price rank trade-price rank av. rank

Fourier 0.035801 1 0.03585 1 0.03616 1 1
Pre-averaging kernel 0.19077 2 0.19206 2 0.14159 2 2

Regularized 0.21590 3 0.21592 3 0.21582 3 3
Optimal candlestick 0.31354 4 0.31110 4 0.32879 4 4

Kernel 0.42691 5 0.49152 5 0.82784 5 5
Two-scale 1.62405 6 1.61549 6 2.38642 6 6

Pre-averaging 2.52237 7 2.52255 7 2.52422 7 7

Table 3.16: Performance and ranking of the spot variance estimators for the series of mid-price,
micro-price and trade-price with 5 regimes of θref and θreinit, according to the relative
integrated mean square error. The average ranking is reported in the last column.
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Integrated variance estimators - relative bias
Estimator mid-price rank micro-price rank trade-price rank av. rank
Med RV 0.06614 1 0.06609 1 0.06660 1 1

Pre-averaging 0.07184 2 0.07182 2 0.07237 2 2
Min RV 0.07669 3 0.07667 3 0.07680 4 3.33
Range -0.12325 5 -0.11637 5 0.13146 5 5
Unified 0.12626 6 0.11419 4 0.19885 7 5.66
Fourier 0.16911 7 0.14236 6 0.17286 6 6.33

Alternation 0.09319 4 0.16445 12 -0.0741 3 6.33
Maximum likelihood 0.18492 8 0.15720 7 0.37057 9 8

Kernel 0.18758 10 0.15928 8 0.34518 8 9
Two-scale RV 0.18740 9 0.16030 9 0.43099 10 9.33

Multi-scale RV 0.18759 11 0.16048 10 0.43118 11 10.66
Bias-corrected RV 0.18773 12 0.16061 11 0.43131 12 11.66

Table 3.17: Performance and ranking of the integrated variance estimators for the series of mid-
price, micro-price and trade-price with 10 regimes of θref and θreinit, according to the
relative bias. The average ranking is reported in the last column.

Integrated variance estimators - relative MSE
Estimator mid-price rank micro-price rank trade-price rank av. rank

Unified 0.01742 2 0.01447 1 0.04113 7 3.33
Fourier 0.02189 3 0.02270 2 0.03208 5 3.33
Range 0.02660 4 0.02659 4 0.02070 2 3.33

Alternation 0.01003 1 0.02796 11 0.00111 1 4.33
Pre-averaging 0.02732 5 0.02632 5 0.02734 3 4.33

Maximum likelihood 0.03541 7 0.02586 3 0.13900 9 6.33
Med RV 0.02881 6 0.02712 10 0.02987 4 6.66
Kernel 0.03641 10 0.02655 6 0.12112 8 8

Min RV 0.03572 8 0.03674 12 0.03674 6 8.66
Multi-scale RV 0.03639 9 0.02689 8 0.18767 10 9
Two-scale RV 0.03642 11 0.02684 7 0.18770 11 9.66

Bias-corrected RV 0.03645 12 0.02694 9 0.18779 12 11

Table 3.18: Performance and ranking of the integrated variance estimators for the series of mid-
price, micro-price and trade-price with 10 regimes of θref and θreinit, according to the
relative mean square error. The average ranking is reported in the last column.
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Spot variance estimators - relative integrated bias
Estimator mid-price rank micro-price rank trade-price rank av. rank

Fourier -0.02342 1 -0.02412 1 -0.01745 1 1
Regularized -0.02472 2 -0.02471 2 -0.02438 2 2

Pre-averaging kernel -0.08816 3 -0.09235 3 -0.07796 3 3
Optimal candlestick -0.20641 5 -0.15948 4 -0.0838 4 4.33

Pre-averaging 0.24979 6 0.24976 5 0.24958 5 5.33
Kernel 0.20568 4 0.25983 6 0.79978 6 5.66

Two-scale -0.27408 7 -0.28400 7 -0.28864 7 7

Table 3.19: Performance and ranking of the spot variance estimators for the series of mid-price,
micro-price and trade-price with 10 regimes of θref and θreinit, according to the relative
integrated bias. The average ranking is reported in the last column.

Spot variance estimators - relative integrated MSE
Estimator mid-price rank micro-price rank trade-price rank av. rank

Fourier 0.05523 1 0.05527 1 0.05618 1 1
Pre-averaging kernel 0.19695 2 0.19833 2 0.15153 2 2

Regularized 0.23490 3 0.23502 3 0.23458 3 3
Optimal candlestick 0.31762 4 0.31529 4 0.34982 4 4

Kernel 0.57819 5 0.68831 5 0.79963 5 5
Two-scale 1.61446 6 1.65113 6 2.78745 7 6.33

Pre-averaging 2.49265 7 2.49293 7 2.49131 6 6.66

Table 3.20: Performance and ranking of the spot variance estimators for the series of mid-price,
micro-price and trade-price with 10 regimes of θref and θreinit, according to the relative
integrated mean square error. The average ranking is reported in the last column.
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Appendix 3.B Sample daily volatility trajectories of spot vari-
ance estimates for micro-price and trade-price

0 50 100 150 200 250 300

Minutes

0

0.5

1

S
p
o
t 
v
a
ri
a
n
c
e

10
-7 Fourier estimator

0 50 100 150 200 250 300

Minutes

0

0.5

1

S
p
o
t 
v
a
ri
a
n
c
e

10
-7 Kernel estimator

0 50 100 150 200 250 300

Minutes

0

0.5

1

S
p
o
t 
v
a
ri
a
n
c
e

10
-7 Pre-averaging estimator

0 50 100 150 200 250 300

Minutes

0

0.5

1

S
p
o
t 
v
a
ri
a
n
c
e

10
-7 Pre-averaging kernel estimator

0 50 100 150 200 250 300

Minutes

0

0.5

1

S
p
o
t 
v
a
ri
a
n
c
e

10
-7 Regularized estimator

0 50 100 150 200 250 300

Minutes

0

0.5

1

S
p
o
t 
v
a
ri
a
n
c
e

10
-7 Two-scale estimator

0 50 100 150 200 250 300

Minutes

0

0.5

1

S
p
o
t 
v
a
ri
a
n
c
e

10
-7 Optimal candlestick estimator

Figure 3.5: Constant θref and θreinit: sample trajectories of spot variance estimators computed from
micro-prices (in blue) and true volatility (in red).

0 50 100 150 200 250 300

Minutes

0

0.5

1

S
p
o
t 
v
a
ri
a
n
c
e

10
-7 Fourier estimator

0 50 100 150 200 250 300

Minutes

0

0.5

1

S
p
o
t 
v
a
ri
a
n
c
e

10
-7 Kernel estimator

0 50 100 150 200 250 300

Minutes

0

0.5

1

S
p
o
t 
v
a
ri
a
n
c
e

10
-7 Pre-averaging estimator

0 50 100 150 200 250 300

Minutes

0

0.5

1

S
p
o
t 
v
a
ri
a
n
c
e

10
-7 Pre-averaging kernel estimator

0 50 100 150 200 250 300

Minutes

0

0.5

1

S
p
o
t 
v
a
ri
a
n
c
e

10
-7 Regularized estimator

0 50 100 150 200 250 300

Minutes

0

0.5

1

S
p
o
t 
v
a
ri
a
n
c
e

10
-7 Two-scale estimator

0 50 100 150 200 250 300

Minutes

0

0.5

1

S
p
o
t 
v
a
ri
a
n
c
e

10
-7 Optimal candlestick estimator

Figure 3.6: Constant θref and θreinit: sample trajectories of spot variance estimators computed from
trade-prices (in blue) and true volatility (in red).
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Figure 3.7: Variable θref and θreinit (5 regimes): sample trajectories of spot variance estimators
computed from micro-prices (in blue) and true volatility (in red).
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Figure 3.8: Variable θref and θreinit (5 regimes): sample trajectories of spot variance estimators
computed from trade-prices (in blue) and true volatility (in red).
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Figure 3.9: Variable θref and θreinit (10 regimes): sample trajectories of spot variance estimators
computed from micro-prices (in blue) and true volatility (in red).
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Figure 3.10: Variable θref and θreinit (10 regimes): sample trajectories of spot variance estimators
computed from trade-prices (in blue) and true volatility (in red).
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Chapter 4

Symmetric positive semi-definite Fourier es-
timator of instantaneous variance-covariance
matrix

While in the previous chapters the focus was on estimation of volatility of one asset, empirical studies
have pointed out the importance of considering distinct time variations in correlations between asset
prices, thus considering a multivariate setting. In particular in the last years, several studies have
addressed the issue of efficiently estimating covariances using high frequency data asynchronously
sampled across different assets. While the literature is becoming rich as it concerns the estimation
of integrated covariances, it is still sparse for the spot covariances estimation. In contrast with the
other estimators which rely on a pre-processing of data in order to make them synchronous, such as
linear interpolation, piecewise constant (previous-tick) interpolation or the refresh-time procedure
proposed by Barndorff-Nielsen et al. (2011), the Fourier estimator, as clear from Equation 2.5,
uses all the available data, being based on an integration procedure. The possibility of using all
data, avoiding any preliminary manipulation of them (such as pre-averaging), translates into the
direct use of unevenly sampled returns and even asynchronous data in the multivariate case. The
estimator proposed by Hayashi and Yoshida (2005) proposes to circumvent the drawbacks caused
by asynchronicity by considering the contribution of the product of the price increments only if the
corresponding observation intervals are overlapping. The Pre-averaged All-Overlapping estimator
by Christensen et al. (2010) builds on the same idea, with the aim to render the estimator by Hayashi
and Yoshida (2005) robust to microstructure noise.

Apart from the asymptotic properties such as the rate of convergence to their asymptotic dis-
tributions and the finite-sample accuracy, a third factor must now be taken into consideration: the
fact that the estimated covariance matrix preserves its symmetry and positive semi-definiteness is a
primary issue. This property has important consequences in several contexts, such as the recently
developed field of principal component analysis with high-frequency data (Liu and Ngo (2017), Aït-
Sahalia and Xiu (2019b), Chen et al. (2020)) or the asset allocation framework (see, e.g., Engle and
Colacito (2006)). While this point has been addressed by some authors for the integrated covariances
estimators (see, e.g, Barndorff-Nielsen et al. (2011), Mancino and Sanfelici (2011) Park et al. (2016),
Cui et al. (2019)), at the best of our knowledge the estimator of spot covariances proposed in the
present work is the first to guarantee positive semi-definiteness of the estimation itself, a problem
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that so far has not been addressed in the literature. For example, when dealing with spot volatil-
ity, Chen et al. (2020) integrate the estimations before computing the eigenvalues of the covariance
matrix, while in Bu et al. (2022) positive semi-definiteness is imposed applying suitable shrinkage
techniques to the estimation, thus introducing a manipulation of the estimated matrix.

Also the Fourier spot estimator, however, due to lack of symmetry in the Fejèr kernel, may fail
to provide positive semi-definite estimations when the asset prices are observed on asynchronous
grids. To guarantee that the estimations are symmetric and positive semi-definite, in this chapter
we introduce a modified version of the Fourier estimator, which we call Positive-Definite Fourier
(hereafter PDF) estimator, and we prove that indeed fulfill the desired property.

The proposed estimator relies on two parameters: the cutting frequency N , and the localization
M . The question of how to optimally choose them in order to minimize the error is assessed via a
simulation study, where a grid of possible values is tested against several different model specification.
We find that the optimal cutting frequency N is stable between different models for the volatility
process, and in absence of noise N = 1

2n
3/4 should be chosen, while in presence of noise a value of

N = 1
2n

2/3 is more suitable, in line with the other Fourier-type estimators. In both cases, choosing
N < n/2, i.e. smaller than the Nyquist frequency, leads to a reduced error. The parameter M
seems not to be significantly affected by microstructure noise, and the optimal value appears to be
M = N4/9 or M = N1/2 depending on the model for volatility, with small differences between the
two choices for the cases analyzed in our study.

In addition to that, the sensitivity of N is further studied in a dedicated simulation exercise,
where we specifically analyze the impact of introducing asynchronicity, in comparison to a scenario
with synchronous sampling. The above-mentioned choice of N is confirmed as preferable to the
Nyquist frequency, since when the correlation between the two assets is smaller than 1 both the
absolute bias and the mean square error increase for large values of N in presence of asynchronicity,
showing however that exists an interval of values of N that emerges substantially unaffected.

Thereafter, to evaluate the finite-sample performance of the proposed PDF estimator, we compare
its accuracy and the percentage of positive semi-definite estimations that it is able to produce with
the ones obtained employing alternative estimators able to manage asynchronous observations. First
of all we consider a case in absence of market microstructure noise; secondly we focus on the level of
asynchronicity, considering different intensities of the Poisson processes that drives the observation
frequency; last we analyze the presence of noise, considering noise coming from rounding, i.i.d
noise, autocorrelated noise, noise correlated with the efficient price process and heteroskedastic
noise. It is shown that, in this exercise, the PDF estimator is the only one to consistently produce
positive semi-definite estimations in 100% of the cases, while maintaining an hedge with respect
to the competitors in terms of mean square error. Moreover, while the issue of dimensionality in
the literature has been mainly considered in relation to PCA, through the comparison we consider
whether increasing dimension may change the empirical distribution of the eigenvalues to the point
of invalidate the ability of estimators to produce positive semi-definite matrices. As a result, the
competing estimators are shown to produce a lower proportion of positive semi-definite matrices
when the number of assets considered increases.

The robustness of all the simulation results are confirmed changing the model for the efficient price
process; in particular we consider: an Heston Stochastic Volatility model, a One Factor Volatiltiy
model, a Two Factor Volatility model (Chernov et al. (2003)) and a Rough Heston model (El Euch
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and Rosenbaum (2019)), getting in each case comparable results.
Finally, a technique to reduce the computational cost of the estimator is presented, and the trade-

off between accuracy and speed of execution that arises is analyzed with respect to the parameters
of the estimator and the dimension of the considered price series.

The remainder of this chapter is organized as follows. In Section 4.1 the positive semi-definite
Fourier estimator of spot covariance is introduced, and its positivity is proved. Section 4.2 contains
the simulation study, and the comparison between the proposed estimator and alternative estimators,
in which accuracy and ability to produce positive semi-definite matrices are considered. Section 4.3
discuss an alternative version of the estimator, in which a randomization technique is used to reduce
the execution time of the estimation algorithm.

4.1 The positive semi-definite estimator

Contrary to what done in Chapter 2 and 3, in the following we consider a multivariate setting with
multiple assets. In particular, let the logarithmic price process p = (p1, ..., pd) be a d-dimensional
Itô semimartingale of the form

pj(t) = pj(0) +
d∑︂
k=1

∫︂ t

0
σjk(s)dW k

s +
∫︂ t

0
bj(s)ds, j = 1, ..., d

where W = (W 1, ...,W d) is a d-dimensional Brownian motion on the filtered probability space
(Ω, (Ft)t∈[0,T ], P ) and bj and σjk are adapted processes.

In this work, we are interested in the non-parametric estimation of the d×d instantaneous (spot)
covariance matrix V (t), with entries

V j,j
′
(t) :=

d∑︂
k=1

σjk(t)σj′k(t), for j, j′ = 1, ..., d and t ∈ [0, T ].

We assume, similarly to what was done in Chapter 2, that the prices are observed on discrete,
possibly irregular and asynchronous time grids

0 = tj0 ≤ tj1 ≤, ...,≤ tjnj = 2π for j = 1, ..., d,

where we remark that the assumption T = 2π is done for simplicity of notation and is not restrictive.
In line with the one dimension case, δji (p) denotes the discrete return pj(ti+1)−pj(ti) for j = 1, ..., d
and i = 0, ..., nj − 1.

In this setting, we propose the following estimator of spot covariance.

Definition 4.1.1. Let K be a finite subset of Z, S := {S(k) ⊂finite Z2 : k ∈ K, (s, s′) ∈ S(k) =⇒
s+ s′ = k}, and c be a complex function on K; we define the estimator for V j,j′(t) as:

V̂
j,j′

K,S(t) =
nj−1∑︂
i=0

nj′ −1∑︂
i′=0

∑︂
k∈K

c(k)eikt
∑︂

(s,s′)∈S

e−istj
i eis

′tj
′

i′ δji (p)δ
j′

i′ (p). (4.1)

Remark 4.1.2. If we take K = {0,±1,±2, ...,±M} for some positive integer M and S(k) =
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{(s, s′)|s+ s′ = k, s = 0,±1,±2, ...,±N} for some positive integer N , and

c(k) = 1
2π

(︃
1 − |k|

M + 1

)︃
1

2N + 1 ,

we obtain:

V̂
j,j′

K,S(t) =
M∑︂

k=−M

(︃
1 − |k|

M + 1

)︃
eikt

N∑︂
s=−N

nj−1∑︂
i=0

nj′ −1∑︂
i′=0

e−istj
i ei(k−s)tj

′

i′ δji (p)δ
j′

i′ (p)

Using the rescaled Dirichlet and the Féjèr kernels defined respectively in Equation 2.4 and Equation
2.6, the estimator can be written as follows:

V̂
j,j′

K,S(t) = 1
2π

nj−1∑︂
i=0

nj′ −1∑︂
i′=0

FM (t− tji )DN (tji − tj
′

i′ )δji (p)δ
j′

i′ (p),

and the estimator (4.1) coincides with the Fourier spot covariance estimator introduced by Malliavin
and Mancino (2009), whose asymptotic properties (in th case of d = 1) have been studied in Mancino
and Recchioni (2015) (in the absence of noise) and, both in the presence and in the absence of
noise, in Chapter 2. However, while the positivity of the corresponding estimator of the integrated
covariance matrix is proved in Mancino and Sanfelici (2011), the spot covariance estimator may
fail in producing symmetric positive semi-definite estimations, being FM (t − tji )DN (tji − tj

′

i′ ) not
symmetric in j, j′, leading to complex eigenvalues in V̂ K,S(t).

The main theoretical result of this work concerns the positive semi-definiteness of the proposed
estimator, and is stated in the following theorem.

Theorem 4.1.3. Suppose that K = {0,±1,±2, ...,±2N} for some positive integer N , c(k) is a
positive semi-definite function on K and

S(k) =

⎧⎨⎩{(−N + k + v,N − v) : v = 0, ..., 2N − k} 0 ≤ k ≤ 2N

{(N + k − v,−N + v) : v = 0, ..., 2N + k} −2N ≤ k < 0.

Then, V̂ K,S(t) defined in (4.1) is symmetric and positive semi-definite.

The proof of Theorem 4.1.3 is reported in Section 4.1.1.
Moreover, it emerges that V̂ K,S(t) can be rewritten as:

V̂
j,j′

N (t) = 1
2π

nj−1∑︂
i=0

nj′ −1∑︂
i′=0

N∑︂
u=−N

N∑︂
u′=−N

c(u− u′)eiu(t−tj
i
)e−iu′(t−tj

′

i′
)δji (p)δ

j′

i′ (p), (4.2)

for two asset j and j′ and t ∈ (0, 2π), where c(k) is still a positive semi-definite function.

Remark 4.1.4. The positive semi-definite Fourier (PDF) estimator defined above is a consistent
estimator for the spot covariance, as proved in Akahori et al. (2023), if the function c(k) is properly
chosen. In particular, a Gaussian kernel is sufficient to ensure consistency, and our choice for
t ∈ (0, 2π) is:

c(k) = 1
2N + 1e

− 2π2k2
M , with M → ∞ as N → ∞.
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To underline the presence of the localization parameter M , the left side of Equation (4.2) can be
written as V̂

j,j′

N,M (t); insights about the sensitivity of the proposed estimator to the choice of the
parameters N and M are reported in Sections 4.2.2 and 4.2.3.

Remark 4.1.5. By Bochner’s theorem, we know that for each positive semi-definite function c,
there exists a bounded measure µ on R such that

c(x) =
∫︂

R
e2πiyxµ(dy).

Therefore, we may also rewrite the PDF estimator (4.2) using the measure µ instead of the positive
semi-definite function c(k), and obtain

V̂
j,j′

N,M (t) = 2N + 1
2π

nj−1∑︂
i=0

nj′ −1∑︂
i′=0

∫︂
R
DN (t− tji + y)DN (t− tj

′

i′ + y)µM (dy)δji (p)δ
j′

i′ (p). (4.3)

The choice of density should aligned with the choice of c(k) discussed in Remark 4.1.4, for a more
detailed description of the assumptions on µ, see Akahori et al. (2023).

4.1.1 Proof of Theorem 4.1.3

Let aj for j = 1, 2, 3 be arbitrary functions on Z, from the definitions of K and S(k) we notice that:

∑︂
k∈K

∑︂
(s,s′)∈S(k)

a1(k)a2(s)a3(s′)

=
2N∑︂
k=0

2N−k∑︂
v=0

a1(k)a2(−N + k + v)a3(N − v) +
−1∑︂

k=−2N

2N+k∑︂
v=0

a1(k)a2(N + k − v)a3(−N + v) =: A+B.

For the first term we have:

A =
2N∑︂
k=0

N∑︂
u=k−N

a1(k)a2(k − u)a3(u)

=
N∑︂

u=−N

u+N∑︂
k=0

a1(k)a2(k − u)a3(u)

=
N∑︂

u=−N

N∑︂
u′=−N

a1(u+ u′)a2(u′)a3(u),

where we set u = N − v in the first line, changed the order of the summations in the second line,
and put u′ = k − u. Similarly, using the convention that

∑︁−1
u=0 = 0, for the second term we have:
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B =
−1∑︂

k=−2N

N+k∑︂
u=−N

a1(k)a2(k − u)a3(u)

=
N∑︂

u=−N

−1∑︂
k=u−N

a1(k)a2(k − u)a3(u)

=
N∑︂

u=−N

−u−1∑︂
u′=−N

a1(u+ u′)a2(u′)a3(u).

Thus we see that

∑︂
k∈K

∑︂
(s,s′)∈S(k)

a1(k)a2(s)a3(s′) =
N∑︂

u=−N

N∑︂
u′=−N

a1(u+ u′)a2(u′)a3(u).

When a1(k) = c(k)eikt, a2(s) = e−istj
′

i′ and a3(s′) = e−istj
i , using the change of variable u− →

−u′, we obtain:

V̂
j,j′

N (t) =
nj−1∑︂
i=0

nj′ −1∑︂
i′=0

N∑︂
u=−N

N∑︂
u′=−N

c(u− u′)eiu(t−tj
i
)e−iu′(t−tj

′

i′
)δji (p)δ

j′

i′ (p).

Then, for x ∈ Cd

∑︂
j,j′

V̂
j,j′

N (t)xjxj′

=
N∑︂

u=−N

N∑︂
u=−N

c(u− u′)

⎛⎝ d∑︂
j=1

xj

nj−1∑︂
i=o

eiu(t−tj
i
)δji (p)

⎞⎠⎛⎝ d∑︂
j′=1

xj

nj′ −1∑︂
i′=0

e−iu(t−tj
′

i′
)δj

′

i′ (p)

⎞⎠
=

N∑︂
u=−N

N∑︂
u′=−N

c(u− u′)f(u)f(u′) ≥ 0.

with f(u) :=
∑︁d
j=1 xj

∑︁nj−1
i=0 eiu(t−tj

i
)δji (p). The proof is complete.

4.2 Simulation study

4.2.1 Simulation settings

In this section we present an extensive numerical simulated study. The aim of this study is twofold:
first in Section 4.2.2 we analyze the sensitivity of the estimator to the choice of the parameters N and
M and, with an unfeasible optimization, we find out how much the optimal choice changes in different
scenarios. Secondly, in Section 4.2.4 we evaluate the accuracy of the proposed PDF estimator and
its ability to produce symmetric and positive semi-definite estimations in a comparison with two
alternative estimators that are present in the literature.

To give robustness to the results of our study, in the above-mentioned exercises we consider many
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different simulation scenarios, focusing on both the two components of high-frequency financial data:
the efficient price and the additive noise component given by market microstructure, so that the
observed price p̃ is the multivariate analogous of Equation 2.31, i.e., :

p̃jti = pjti + ηjti , j = 1, ..., d (4.4)

with η being the noise component.
In particular, for the efficient price process we consider the following specifications:

• Heston stochastic volatility model by Heston (1993);

• the One Factor stochastic volatility model (SVF1) used, e.g., in Huang and Tauchen (2005);

• Two Factor stochastic volatility model (SVF2) by Chernov et al. (2003);

• the Rough Heston model (RH) by El Euch and Rosenbaum (2019);

while for the additive microstructure noise we take into account the following possibilities:

• no noise;

• noise coming from rounding;

• i.i.d. noise;

• autocorrelated noise;

• noise correlated with the efficient price process;

• heteroskedastic noise.

Since in the different cases when noise is present we analyze respectively 2, 4, 3, 3, and 3 differ-
ent levels of rounding, noise intensity, noise autocorrelation, noise correlation and maximum noise
intensity, in our simulated analysis we study a total of 64 different scenarios.

For simplicity of the computations, through Sections 4.2.2 - 4.2.4, all the simulated analysis is
conducted on the interval [0, 1]; for that reason, and in light of Remark 4.1.4, the PDF estimator is
given by:

V̂
j,j′

N,M (t) = 1
2N + 1

nj−1∑︂
i=0

nj′ −1∑︂
i′=0

N∑︂
u=−N

N∑︂
u′=−N

e− 2π2(u−u′)2
M eiu(t−tj

i
)e−iu′(t−tj

′

i′
)δji (p̃)δ

j′

i′ (p̃), (4.5)

Where not stated otherwise, the simulations consist of K = 500 daily trajectories, considering a
trading day of length 6.5 hours, and are carried out on an equally spaced grid of width 2 seconds. To
introduce asynchronicity in the data, observations are drawn from a Poisson process with intensity
∆̄t = 10, i.e. a process that produces on average one observation every 10 seconds. Moreover, where
not explicitly stated, the correlation between Brownian motions driving the efficient processes of
different assets, following Bibinger et al. (2019), is fixed to mimic the median estimated realized
correlation of the Nasdaq components, i.e:

⟨︁
W j ,W i

⟩︁
= 0.312, j, i = 1, ..., d, j ̸= i.
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In Sections 4.2.1 and 4.2.1 we define the models used for the efficient price process and the mi-
crostructure noise.

Efficient price process

Heston model

The Heston stochastic volatility model by Heston (1993). The multivariate version of Equation 2.81
takes the form: ⎧⎨⎩dpj(t) = (µ− 1

2 (σj(t))2)dt+ σj(t)dW j
t

d(σj(t))2 = θ(α− (σj(t))2)dt+ γσj(t)dZjt ,

with
⟨︁
W j , Zj

⟩︁
= λ to account for the leverage effect, and

⟨︁
W j , Zi

⟩︁
= 0 for i ̸= j.

The parameters are set to be:

(µ, θ, α, γ, λ) = (0.05/252, 5/252, 0.1, 0.5/252,−0.5),

that is the same choice made by Zu and Boswijk (2014), Mancino and Recchioni (2015) and Figueroa-
López and Wu (2022).

Factor volatility models

Factor volatility models have been long used in the literature, see for example Huang and Tauchen
(2005). First we consider the One Factor Stochastic Volatility model (SV1F) of the form:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dpj(t) = bdt+ σj(t)dW j
t

σj(t) = eβ0+β1τ
j(t)

dτ j(t) = ατ j(t) + dZjt

for j = 1, ..., d, with
⟨︁
W j , Zj

⟩︁
= λ , and

⟨︂
Zj , Zj

′
⟩︂

= 0 for j ̸= j′. The simulation is conducted
using as parameters:

(µ, β1, α, β0, λ) = (0.03, 0.125,−0.025, β1/(2α),−0.3)

that are the parameters used also in Zu and Boswijk (2014), Mancino and Recchioni (2015) and
Figueroa-López and Wu (2022).

Second, we consider the Two Factors Stochastic Volatility model (SV2F), proposed by Chernov
et al. (2003), and able to reproduce higher values of volatility of volatility. It has the form:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dpj(t) = bdt+ s-exp[β0 + β1τ
j,1(t) + β2τ

j,2(t)]dW j
t

dτ j,1(t) = α1τ
j,1(t) + dZj,1t

dτ j,2(t) = α2τ
j,2(t) + (1 + βvτ

j,2(t))dZj,2t

84



Chapter 4. The positive semi-definite Fourier estimator of spot covariance matrix

with

s-exp(x) =
{︄

exp(x), if x ≤ x0 = log(1.5)
ex0√
x0

√︁
x0 − x2

0 + x2, otherwise

for j = 1, ..., d, with
⟨︁
W j , Zj,1

⟩︁
=
⟨︁
W j , Zj,2

⟩︁
= λ , and

⟨︂
Zj,i, Zj

′,i′
⟩︂

= 0 for j ̸= j′ or i ̸= i′,
i, i′ = 1, 2. For the parameters our choice is to use:

(µ, β0, β1, β2, βv, α1, α2, λ) = (0.03,−1.1, 0.04, 0.3,−0.003,−0.6, 0.25).

Rough volatility

A new strand of financial econometric literature has grown considering dynamics of the volatility
process that are not driven by a standard Brownian motion, but instead are driven by a fractional
Brownian motion, with Hurst index H < 0.5, see Alòs et al. (2007), Gatheral et al. (2018) and
El Euch and Rosenbaum (2018). The proposed PDF estimator is consistent even in presence of
rough volatility, see Akahori et al. (2023).

Rough volatility may also be modeled through stochastic Volterra equation, as in the Rough
Heston model studied by El Euch and Rosenbaum (2019) and that we intend to use in this analysis:⎧⎨⎩pj(t) = pj(0) +

∫︁ t
0 p

j(s)σ(s)jdW j
s

(σj(t))2 = (σj(0))2 +
∫︁ t

0 K(t− s)
(︁
(θ − γ(σj(s))2)ds+ νσj(s)dZjs

)︁
with

⟨︁
W j , Zj

⟩︁
= λ and K(t) = CtH− 1

2 for a Hurst index H ∈
(︁
0, 1

2
)︁

and a constant C. In order to
simulate the rough Heston model we apply the discrete-time Euler-type scheme studied in Richard
et al. (2023), referring in particular to Equation (8) thereof. The parameters of the model are set
to ensure that in the exercise the simulated volatility process does not exhibits negative values, and
in particular they take values:

(θ, γ, ν, λ,H) = (0.2, 0.3, 0.2,−0.7, 0.1),

where the choice for the Hurst parameters is driven by the empirical evidence present in the literature;
see, e.g., Gatheral et al. (2018).

Market microstructure noise specifications

In the following analysis we consider some of the most used specification on market microstructure
noise that have been proposed in the literature so far. While the basic ideas underlying each model
for noise (e.g. presence or absence of correlation with the price process) may be common to the
four scenarios presented in the simulated analysis in Section 2.3, the specific forms chosen for this
exercise may differ, thus we introduce again each of them separately.

Noise coming form rounding

In presence of rounding the observed price process has the following form:

p̃jt = log([exp(pjt )/r]r),
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where X denotes the efficient price process. We consider two levels of rounding, corresponding to
r = 1 or 5 cents, which are the most used in financial markets.

Noise i.i.d.

The most widely used characterization of noise is to consider it the i.i.d. additive component as in
Section 2.2.3, with mean equal to zero and a given variance:

p̃jt = pjt + ηjt , (4.6)

ηj ∼ i.i.d. E[ηj ] = 0, E[(ηj)2] = std(δj10sec(p))ζ,

where pj10sec denotes the regularly-spaced series obtained sampling the simulated series every 10
seconds.

Here we specify a Gaussian distribution for the noise, and we set its variance proportional to
the average time between two consecutive observations ∆̄t, to avoid that the noise is wiped out by
subsampling effect. We consider four values for the noise-to-signal ratio: ζ = 1, 1.5, 2, 2.5.

Autocorrelated noise.

In this case, autocorrelation is introduced in the noise component and the noise, while maintaining
the additive form of Equation (4.6), is modeled through an Ornstein-Uhlenbeck process defined as:

dηj(t) = −θηηj(t)dt+ σηdE
j
t ,

where E is a standard Brownian motion independent of W . Three different levels of autocorrelation
are considered, using θη = 0.2, 0.3, 0.4. σ2

η is set to obtain the same level of variance as the second
case in the previous scenario.

Noise correlated with the efficient price process

A natural generalization of the previous specification of the noise is to allow for correlation between
the Brownian motion that drives the noise component and the one behind the efficient price dynamic:

dηj(t) = −θηηj(t)dt+ σηdE
j
t ,

⟨︁
W j , Ej

⟩︁
= ρη

where ρη is a constant. In light of the empirical evidence present in the literature (see, e.g. Hansen
and Lunde (2006)), we impose ρη to be negative, with three considered values: -0.1, -0.3, -0.5, and
we consider a level of noise equal to the one obtained in the i.i.d. case with noise to signal ratio
equal to 2, and absence of autocorrelation in the noise process is assumed.

Heteroskedastic noise

In the last formulation for MMN we allow for the variance of noise to be time changing over the
interval. In particular, to reproduce the stylized fact observed by Kalnina and Linton (2008) that
the noise is higher at the beginning and at the end of the trading day, following Bu et al. (2022), we
use the function:
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ση(t) = σ̄η

(︃
1
2(cos(2πt) + 1)0.9 + 0.1

)︃
choosing σ̄η = 3, 3.5, 4. For the noise we maintain for this case the Ornstein-Uhlenbeck formulation
stated above, considering also the presence of both autocorrelation and dependence between noise
and efficient price process, with θ = 0.3 and ρn = −0.3.

This last formulation allow for a quite general form of microstructure noise, that includes the
stylized facts observed in the literature. In a last, unreported, exercise, we add also a rounding of 1
cent to this simulation scheme, without significant changes in the results.

4.2.2 Selection of frequencies N and M

In this section we want to evaluate the sensitivity of the estimator to the choice of the frequencies N
and M appearing in the definition of the PDF estimator. The performance of the estimator for each
couple of parameters is evaluated in order to search for the optimal parameters over the entire time
interval, across the K simulated independent trajectories considered in our unfeasible optimization
exercise. In all the following analysis the spot variance trajectory is reconstructed on a regular grid
of width 20 minutes.

In this optimization study we let the values of the cutting frequency N to be dependent on n,
while the localization parameter M takes values that depend on N itself, building a grid of couples
(N,M), with values:

N = nα

2 , α = 1, 5
6 ,

3
4 ,

2
3 ,

1
2 ,

1
3 ,

M = Nβ , β = 5
6 ,

3
4 ,

2
3 ,

1
2 ,

4
9 ,

where the choice for the possible values of N relies on the known fact that, as for all the other
Fourier-type estimators, in order to avoid aliasing effects, the cutting frequency must be smaller
than the Nyquist frequency, i.e., N ≤ n/2.

For each scenario, in a setting with d = 2, on the grid of values described above, we look at
the error made in estimating the variance V̂

1,1 and the covariance V̂
1,2, using in particular the

integrated error:

MISEj = (K)−1
K∑︂
k=1

∫︂ 1

0
(V̂ 1,j

k (t) − V 1,j
k (t))2dt, j = 1, 2 (4.7)

and choosing as optimal the pair that minimize

0.1 ·MISE1 + 0.9 ·MISE2,

where a higher weight is given to the estimation of the covariance, being the dominant component
of a generic variance-covariance matrix.

Table 4.1 shows the optimal couple of N and M for each scenario. The first thing to notice is
that the optimal value for N seems to be pretty stable across the different model for the efficient
price process, and it is always smaller than the Nyquist frequency n/2, even in absence of noise.
When the data are more heavily affected by noise, the optimal N is smaller, coherently with what is
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known for the other Fourier-type estimators of both integrated and spot volatility, see, e.g., Mancino
et al. (2017). Moreover, the choice of N , while being sensitive to the intensity of noise, does not
seems to be dependent of its correlation structure. For what concerns the parameter M , it seems
to have almost the same optimum in all the scenarios considered in this exercise. Moreover, for
the four models for the efficient price, the difference between M = N4/9 and M = N1/2 seems to
be negligible, as shown in Table 4.2, in which MISE2 on the defined grid is reported for selected
scenarios. From Table 4.2 it is also clear that, overall, the estimator is much more sensible to the
choice of N than to the choice of M , and changes in the former cause higher shifts in the estimation
error; even if, for sake of simplicity, Table 4.2 shows the figures only for the Heston and the SVF2
models, the behavior for the remaining models is analogous. It is important stress that, in line with
what observed also for the original spot Fourier estimator in Chapter 2, the removal of the noise is
carried out with an appropriate choice of the cutting frequency N . In fact, N controls the number
of Fourier coefficients of the asset returns to be considered in the convolution to obtain the Fourier
coefficient of the covariance process. It is well know that by reducing the number of frequencies N ,
the noise is filtered out (see Mancino and Recchioni (2015).

Heston SVF1 SVF2 RH
/ No noise
/ 3/4, 4/9 3/4, 4/9 3/4, 1/2 3/4, 1/2
r Noise from rounding

0.01 3/4, 4/9 3/4, 4/9 3/4, 1/2 3/4, 1/2
0.05 3/4, 4/9 3/4, 4/9 3/4, 1/2 3/4, 1/2
ζ I.i.d. noise
1 3/4, 4/9 3/4, 4/9 3/4, 1/2 3/4, 1/2

1.5 3/4, 4/9 3/4, 4/9 3/4, 1/2 3/4, 1/2
2 2/3, 4/9 2/3, 4/9 2/3, 1/2 2/3, 1/2

2.5 2/3, 4/9 2/3, 4/9 2/3, 1/2 2/3, 1/2
θ Autocorrelated noise

0.2 2/3, 4/9 2/3, 4/9 2/3, 1/2 2/3, 1/2
0.3 2/3, 4/9 2/3, 4/9 2/3, 1/2 2/3, 1/2
0.4 2/3, 4/9 2/3, 4/9 2/3, 1/2 2/3, 1/2
ρη Noise correlated with p

-0.1 2/3, 4/9 2/3, 4/9 2/3, 1/2 2/3, 1/2
-0.3 2/3, 4/9 2/3, 4/9 2/3, 1/2 2/3, 1/2
-05 2/3, 4/9 2/3, 4/9 2/3, 1/2 2/3, 1/2
σ̄η Heteroskedastic noise
3 2/3, 4/9 2/3, 4/9 2/3, 1/2 2/3, 1/2

3.5 2/3, 4/9 2/3, 4/9 2/3, 1/2 2/3, 1/2
4 2/3, 4/9 2/3, 4/9 2/3, 1/2 2/3, 1/2

Table 4.1: Optimal couple of α, β in the considered grid across the different models for volatility and
microstructure noise.

Remark 4.2.1. While in this exercise and in the following analysis, focusing on obtaining the best
level of performance for the whole variance-covariance matrix for a single couple of parameters N
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Heston - No noise
α/β 5/6 3/4 2/3 1/2 4/9

1 1.0386e-03 1.0204e-03 1.0069e-03 9.9026e-04 9.8691e-04
5/6 2.3748e-04 2.0522e-04 1.7974e-04 1.4534e-04 1.3932e-04
3/4 2.3898e-04 1.9593e-04 1.6083e-04 1.1666e-04 1.1096e-04
2/3 3.3382e-04 2.8090e-04 2.3916e-04 1.9747e-04 1.9399e-04
1/2 7.4551e-04 7.0530e-04 6.8504e-04 6.7519e-04 6.7487e-04
1/3 2.0294e-03 2.0282e-03 2.0278e-03 2.0277e-03 2.0277e-03

SVF2 - No noise
α/β 5/6 3/4 2/3 1/2 4/9

1 1.4352e-03 1.4189e-03 1.4101e-03 1.4065e-03 1.4081e-03
5/6 4.0236e-04 3.7224e-04 3.5338e-04 3.3913e-04 3.4125e-04
3/4 3.6879e-04 3.2276e-04 2.9026e-04 2.6256e-04 2.6423e-04
2/3 4.2664e-04 3.7789e-04 3.4306e-04 3.2132e-04 3.2378e-04
1/2 8.8461e-04 8.5025e-04 8.3790e-04 8.4012e-04 8.4159e-04
1/3 2.9639e-03 2.9649e-03 2.9659e-03 2.9668e-03 2.9669e-03

Heston - I.i.d. noise, ση = 2.5
α/β 5/6 3/4 2/3 1/2 4/9

1 6.6533e-03 5.2534e-03 4.2323e-03 2.9124e-03 2.6191e-03
5/6 1.7481e-03 1.3619e-03 1.0611e-03 6.6181e-04 5.9198e-04
3/4 7.3901e-04 6.0224e-04 4.9336e-04 3.5747e-04 3.3973e-04
2/3 4.7485e-04 3.9982e-04 3.4147e-04 2.8342e-04 2.7856e-04
1/2 7.7739e-04 7.3628e-04 7.1565e-04 7.0578e-04 7.0548e-04
1/3 2.0670e-03 2.0658e-03 2.0654e-03 2.0653e-03 2.0653e-03

SVF2 - I.i.d. noise, ση = 2.5
α/β 5/6 3/4 2/3 1/2 4/9

1 9.3093e-03 7.1797e-03 5.5577e-03 3.4186e-03 2.9621e-03
5/6 2.8428e-03 2.2971e-03 1.8831e-03 1.3697e-03 1.2876e-03
3/4 1.2835e-03 1.0975e-03 9.5587e-04 7.9035e-04 7.7287e-04
2/3 6.1650e-04 5.3221e-04 4.6916e-04 4.2024e-04 4.2082e-04
1/2 9.1933e-04 8.8559e-04 8.7380e-04 8.7665e-04 8.7821e-04
1/3 3.0359e-03 3.0369e-03 3.0380e-03 3.0390e-03 3.0391e-03

Table 4.2: Error in estimating covariance over the considered grid, for selected scenarios.

and M , a higher weight is given to covariance estimation, it is worth noting that, when dealing
with estimating variance alone (i.e. in an univariate setting) the optimal choice is usually different
from the one obtained for covariance, for the differences in the fluctuations of the two quantities. In
particular, as Table 4.3 shows for the case of the Rough Heston model, in absence of noise the best
choice is obtained for higher values of N and M (in particular setting α = 1), while in presence of
noise the differences are reduced, leading to a best choice of α = 2/3 and β = 5/6. The values for N
are in line with the one observed in similar experiments for the traditional Fourier estimator of spot
volatility, see, e.g., Mancino and Recchioni (2015), while the impact of M is confirmed to be less
pronounced also in this case. More insights on the differences in optimizing variance and covariance
in presence of asynchronicity are given in the next section.

Rough Heston - No noise
α/β 5/6 3/4 2/3 1/2 4/9

1 6.4138e-03 6.7283e-03 7.1840e-03 8.0398e-03 8.8810e-03
5/6 7.5422e-03 7.8732e-0.3 8.2934e-03 9.3735e-03 9.8061e-03
3/4 8.4182e-03 8.7230e-03 9.1001e-03 1.0076e-02 1.0431e-02
2/3 9.5777e-03 9.7728e-03 1.0058e-03 1.0887e-02 1.1144e-02
1/2 1.3381e-02 1.3525e-02 1.3756e-02 1.4132e-02 1.4190e-02
1/3 2.5303e-02 2.5353e-02 2.5384e-02 2.5407e-02 2.5409e-02

Rough Heston - noise
α/β 5/6 3/4 2/3 1/2 4/9

1 4.6703e+00 4.6520e+00 4.6384e+00 4.6204e+00 4.6161e+00
5/6 4.1665e-01 4.1473e-01 4.1331e-01 0.41143-01 4.1117e-01
3/4 6.2516e-02 6.2070e-02 6.1793e-02 6.1843e-02 6.2042e02
2/3 1.3675e-02 1.3813e-02 1.4038e-02 1.4408e-02 1.4464e-02
1/2 1.4980e-02 1.4994e-02 1.5127e-02 1.5778e-02 1.6012e-02
1/3 2.6021e-02 2.6071e-02 2.6102e-02 2.6125e-02 2.6127e-02

Table 4.3: Error in estimating variance over the considered grid, for the Rough Heston model.

4.2.3 The impact of introducing asynchronicity in covariance estimation

In this section we study more in detail how much the effect of asynchronicity in the data affects the
optimal choice of the cutting frequency N , since introduction of asynchronicity might influence the
efficiency of spot variance estimation, as shown in Park et al. (2016), and may lead to a different
optimal value for the parameters of a Fourier-type estimator, as shown in Mancino et al. (2017)
for the case of integrated variance. While in this section we compare the synchronous and the
asynchronous case to evaluate the impact on the choice of N , an additional analysis on the influence
of sampling schemes on the error of estimation is presented in Section 4.2.4.

We work here in a simplified environment along the lines of Mancino et al. (2017), and we maintain
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in this section a fixed M = N4/9, in light of the results of the previous section. In particular we
consider two asset, whose prices p1 and p2 are equal to two standard Brownian Motions W 1 and
W 2, with

⟨︁
W 1,W 2⟩︁ = ρ. To induce asynchronicity in the observations here we simply introduce

two distinct vectors of observation times:

t1i = i/n for i = 0, ..., n and

t2i = i/n+ 0.5/n for i = 1, ..., n− 1,

with t20 = 0 and t2n = 1. We set n = 500 and we consider a set of 10000 simulated price paths, on
which we estimate the covariance between W 1 and W 2 considering two scenarios for the sampling
scheme: the first one in which the two assets are observed synchronously on to the time grid t1, and
the second in which the the two assets are observed respectively on t1 and t2. V̂ 1,2

N (t) is computed
for N = 0, ..., n and for t = 0.5 (i.e. in the middle of the time window), to evaluate the performance
of the estimators while varying the parameter N . The analysis is carried out considering multiple
values of correlation between W 1 and W 2, namely ρ = {0.2,±0.3,±0.5,±0.7,±1}, so that, under
this point of view, we expand the range possibilities with respect to the previous section, where a
single value for the correlation between assets was taken into account.

Figure 4.1 - 4.5 show the results of this analysis. In particular, each figure show the plot of
the relative mean square error and relative bias of the estimation against the number of Fourier
coefficients N , for one value of correlation ρ, in the two cases of synchronous and asynchronous
observations. The results appear to be consistent across the different values of correlation, with the
exception of the case in which two perfectly correlated assets are considered.

It is interesting to notice that while in presence of perfect correlation the introduction of asyn-
chronicity seems to have barely any effect, this is not the case when correlation between the two
assets decreases. In particular we can notice that setting ρ ̸= 1 leads to an increased mean square
error for large values of N (in particular for values above the Nyquist frequency, as expected, but
also in an interval on the left of n/2), while the observed increase in th mean square error for the very
small values of N seems to be due to a finite sample effect of the change in the correlation. There
is, however, a region for which the mean square error appears to be stable when asynchronicity is
introduced, and the starting point of this region seems to be close to the value N = 1

2n
3/4, that

we found to be optimal in absence of noise in the previous analysis. Moreover, the introduction of
asynchronicity seems to induce a significant bias for large values of N , and therefore the choice of a
smaller N also improves the quality of estimation under this point of view. This exercise shows that
choice previously adopted seems to be influenced by the presence of asynchronicity in the data, and
is robust to different choices of ρ.

While a central limit theorem for the estimator is left for future work, the similar behavior that
emerges for different values of correlation appears to be coherent with an asymptotic distribution that
does not depend on the estimated quantity itself, as usually happens for high frequency estimators,
see, e.g., Aït-Sahalia and Jacod (2014).

4.2.4 Comparison

After having assessed the sensibility of our estimator to the choice of its parameters, in this section
we replicate the extensive simulation study adopted in Section 4.2.2 to evaluate the accuracy and
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Figure 4.1: Mean square error (first row) and bias (second row) for ρ = 1.
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Figure 4.2: Mean square error (first row) and bias (second row) for ρ = 0.7.
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Figure 4.3: Mean square error (first row) and bias (second row) for ρ = 0.5.
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Figure 4.4: Mean square error (first row) and bias (second row) for ρ = 0.3.
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Figure 4.5: Mean square error (first row) and bias (second row) for ρ = 0.2.

the ability of the proposed PDF estimator in comparison with the ones of two competing estimators
that are present in the literature. Focusing on the estimators able to manage irregularly spaced and
asynchronous observations, here we consider:

• the modified Fourier estimator proposed in this chapter (PDF);

• the smoothed two-scale spot estimator, by Mykland et al. (2019) (STS), that is the multivariate
analogous of the one defined in Section 2.3.4;

• the local method of moments spot estimators, by Bibinger et al. (2019) (LMM), defined as:

vec
(︂
V̂ (t)

)︂
= (Ut − Lt + 1)−1

Ut∑︂
k=Lt

Jn∑︂
z=1

Ŵ z × vec
(︂
SzkS

′
zk − π2z2h−2Ĥk

)︂
with the optimal weights W proportional to the local Fisher information matrix

Wz = I−1
k Izk,

where Izk is the Fisher information matrix associated with the k-th block and the spectral
frequency i, and Ik =

∑︁Jn
z=1 Izk, computed an an auxiliary pre-estimation with sub-optimal

weights

vec
(︂
V̂ (t)pre

)︂
= (Ut − Lt + 1)−1

Ut∑︂
k=Lt

J−1
J∑︂
z=1

vec
(︂
SzkS

′
zk − π2z2h−2Ĥk

)︂
.
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Ĥk denotes the block-wise constant diagonal matrix of the intensity of noise, with elements
obtained as, given an estimate of the nose variance ξ̂j :

Ĥ
jj

k = ξ̂
j

h

∑︂
kh≤ti≤(k+1)h

δi(tj)2,

while to obtain the block-wise covariance matrix the spectral statistics Szk is used

Szk = πzh−1
n

(︄
nj−1∑︂
i=0

δji (p̃))Φzk

(︄
tji + tji+1

2

)︄)︄
1≤j≤d

,

with Φ the orthogonal sine function with frequency z:

Φzk(x) =
√

2h
zπ

sin
(︁
zπh−1(x− kh)

)︁
1[kh,(k+1h))(x)

Finally, we have Jn = O(log(n)) and hn = O(log(n)n1/2). For more details on the construction
of the estimator and on how Lt, Ut, and J should be set, see Bibinger et al. (2019).

Remark 4.2.2. The kernel-based estimators proposed by Bu et al. (2022), while it may be extended
to manage irregularly spaced and asynchronous observations, relies on specifically tuned shrinkage
techniques to impose positive semi-definiteness of the estimation, and is therefore not considered in
this analysis.

The analysis is carried out considering a maximum of d = 40 assets, and the performances of
each estimator are evaluated according to the mean integrated square error (MISE) and its relative
counterpart (RMISE), defined for the volatility matrix as

MISE = (Kd2)−1
K∑︂
k=1

∫︂ 1

0

d∑︂
j,i=1

(V̂ ijk (t) − V ijk (t))2dt,

RMISE = (Kd2)−1
K∑︂
k=1

∫︂ 1

0

d∑︂
j,i=1

(V̂ ijk (t) − V ijk (t))2/V ijk (t)2dt.

Unreported results show that using a different loss function, in particular the Frobenius norm,
the Euclidean norm or the 1-norm of the difference between the estimated and the real spot volatility
matrix, does not affect the rankings that emerge from Tables 4.4-4.10. Most importantly, in this
analysis we give particular attention to the percentage of symmetric positive semi-definite (psd)
variance-covariance matrix that each estimator is able to produce in the different scenarios.

For the LMM estimator, we use the parameters that where found to be optimal in the numerical
analysis by Bibinger et al. (2019), while for the STS estimator we choose the parameters in a
neighborhood of the one used by Chen et al. (2020), minimizing the mean square error obtained on
auxiliary simulations.
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Absence of noise

In Sections 4.2.4 and 4.2.4 we report the results of the comparison, in terms of MISE and % of psd
estimations produced by the three competing estimators, when the efficient price process follows the
Heston model. In this settings, the results in terms of RMISE are analogous. We begin considering
noise-free data, and focusing on two major features of high-frequency covariance matrix estimation:
the dimensionality of the matrix and the frequency of observations.

It is known that the spectral distribution of a sample covariance matrix depends on the dimension
of the matrix itself (or, better, on the ratio between the number of observations and the dimension of
the observed random vector); see, e.g, Bai and Silverstein (2010) for theory of spectral distribution
of random matrices. The impact of matrix dimension is relevant also on applications, for example in
principal component analysis (the so-called "curse of dimensionality" and its impact on estimation of
eigenvalues, see, e.g., Chen et al. (2020)). However, for what concerns the spot variance estimators
considered in this work, nothing is known about the spectral density of the estimated matrices,
and the estimated matrices (for the alternative estimators) are not even guaranteed to be positive
semi-definite. While addressing the issue of studying in detail the spectral distribution of estimated
matrices (that may be useful to build, for example, a finite-sample PCA framework that relies on
spot covariance matrices), goes beyond the aim of this work, it is of interest here to assess whether
changing the dimension of the problem influence the proportion of positive semi-definite estimations
obtained with the considered estimators, hence considering a spectral distribution with possibly
negative support. This issue is addressed in all the following exercises considering varying levels of
d, i.e., an increasing number of assets.

Table 4.4 shows the results for data not considered by noise, looking at matrices of dimension
d = 2, 5, 10, 15, 20, 25, 30, 40. In this exercise, our modified Fourier estimator is the top performer
in terms of mean square error, for any dimension of the volatility matrix, when the efficient price
process is observed. The effectiveness of the smoothed two-scale estimator to produce positive semi-
definite estimations seems to decrease while the number of assets increase, in particular with d > 20,
while the other two estimators both produce 100% of psd matrices. For the important role that
plays in estimating variance-covariance matrices, and for the influence that it has on the positivity
of the estimation, dimensionality will always be taken into consideration in the remaining analysis.
For sake of simplicity, the dimension considered in the following are limited to d = 5, 10, 15, 20.

In a setting of absence of noise we take into consideration the presence of different sampling
schemes for the data. To do so, we study the changes in the performances when the average time
between two consecutive observations increases; in particular we extract the observation from the
simulated trajectories according to Poisson processes that produce on average one observation every
15, 30 and 40 seconds. Table 4.5 shows that, still maintaining an edge in terms of MISE with respect
to the competitors, the PDF estimator is the only one that is able to produce psd estimations in
100% of the cases, while both the STS and the LMM estimator may fails with increased frequency
when ∆̄t increase, even though the impact of this kind of changes seems to be quite small in terms
of percentage of positive estimation obtained. It also seems that the accuracy of all the estimators
decreases with higher values of ∆̄t; this is of course in line with the fact that the consistency of these
estimators is an asymptotic property.
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Estimator MISE % PSD MISE % PSD
d=2 d=20

PDF 1.8453e-04 100% 6.5495e-04 100%
LMM 5.2131e-04 100% 1.6008e-03 100%
STS 8.2259e-04 100% 2.5759e-03 100%

d=5 d=25
PDF 5.7567e-04 100% 6.1793e-04 100%
LMM 1.5514e-03 100% 1.5090e-03 100%
STS 2.3805e-03 100% 2.4401e-03 99.20%

d=10 d=30
PDF 8.3119e-04 100% 6.8819e-04 100%
LMM 2.0574e-03 100% 1.6779e-03 100%
STS 3.3500e-03 100% 2.7116e-03 98.56%

d=15 d=40
PDF 6.9991e-04 100% 6.3139e-04 100%
LMM 1.7120e-03 100% 1.5390e-03 100%
STS 2.7634e-03 100% 2.4887e-03 33.10%

Table 4.4: Accuracy (MISE) and % of psd matrix produced by each estimator, when the dimension
d of V increase.

Estimator MISE % PSD MISE % PSD MISE % PSD
d=5, ∆̄t = 15 d=5, ∆̄t = 30 d=5, ∆̄t = 40

PDF 7.7661e-04 100% 1.2284e-03 100% 1.5871e-03 100%
LMM 1.5937e-03 100% 2.0398e-03 100% 2.3025e-03 99.83%
STS 2.5185e-03 100% 3.4587e-03 100% 4.3867e-03 100%

d=10, ∆̄t = 15 d=10, ∆̄t = 30 d=10, ∆̄t = 40
PDF 1.1008e-03 100% 1.7661e-03 100% 2.2329e-03 100%
LMM 2.2549e-03 100% 2.7865e-03 100% 3.0841e-03 99.66%
STS 3.4760e-03 100% 4.8142e-03 100% 6.4107e-03 100%

d=15, ∆̄t = 15 d=15, ∆̄t = 30 d=15, ∆̄t = 40
PDF 9.0624e-04 100% 1.4832e-03 100% 1.8593e-03 100%
LMM 1.8481e-03 100% 2.2859e-03 100% 2.5646e-03 98.62%
STS 2.8926e-03 100% 4.0185e-03 99.98% 5.3583e-03 99.75 %

d=20, ∆̄t = 15 d=20, ∆̄t = 30 d=20, ∆̄t = 40
PDF 8.5236e-04 100% 1.3852e-03 100% 1.8593e-03 100%
LMM 1.7170e-03 100% 2.1356e-03 99.96% 2.5646e-03 98.62%
STS 2.6941e-03 99.98% 3.7669e-03 98.83% 5.3583e-03 99.08 %

Table 4.5: Accuracy and % of psd matrix produced by each estimator, when the average time between
consecutive observations ∆̄t changes.
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Data contaminated by MMN

In this section we run our comparison considering the noise specification described in Section 4.2.1.
It is useful to remark that, while the LMM estimator entails an explicit noise correction and the
STS estimator relies on pre-averaging of the data, for the proposed PDF estimator, in line with
the original Fourier estimator of spot volatility, there is no need to manipulate data or correct the
estimator to manage the presence of noise, but it is sufficient to cut the frequency N , as shown in
Section 4.2.2.

Table 4.6 shows that the presence of rounding seems not to affect significantly the accuracy of
the estimators and the positive semi-definiteness of the estimations. This effect may be due to the
scheme adopted to simulate irregularly sampled data, that implies a subsampling with respect to
the rounded simulated series, reducing the intensity of this source of noise.

Estimator MISE % PSD MISE % PSD
d=5, r=0.01 d=5, r=0.05

PDF 5.6886e-04 100% 5.8434e-04 100%
LMM 1.4588e-03 100% 1.4744e-03 100%
STS 2.4015e-03 100% 2.4342e-03 100%

d=10, r=0.01 d=10, r=0.05
PDF 8.2010e-04 100% 8.2171e-04 100%
LMM 2.0337e-03 100% 2.0445e-03 100%
STS 3.3250e-03 100% 3.3612e-03 100%

d=15, r=0.01 d=15, r=0.05
PDF 6.7300e-04 100% 6.7597e-04 100%
LMM 1.6870e-03 100% 1.6806e-03 100%
STS 2.7879e-03 100% 2.7996e-03 100%

d=20, r=0.01 d=20, r=0.05
PDF 6.3197e-04 100% 6.3562e-04 100%
LMM 1.5806e-03 100% 1.5791e-03 100%
STS 2.6104e-03 100% 2.6063e-03 100%

Table 4.6: Accuracy and % of psd matrix produced by each estimator, when a rounding of 1 or 5
cents is present.

Table 4.7 shows that i.i.d. noise, especially with high ζ, is able to negatively affect the ability of
the LMM and STS estimators to produce psd estimations, with a stronger impact as the dimension
of the estimated matrix grows. Also, the accuracy of all the estimators deteriorates with higher
noise, with the PDF confirmed as the top performer also in this scenario. Since i.i.d. noise, form
a market microstructure perspective, is usually linked to the presence bid-ask spread as modelled,
e.g., as in Roll (1984), and being the bid-ask spread usually related to the liquidity of an asset, the
ability of managing this kind of noise may be regarded as the ability to estimate correctly covariance
also for illiquid assets.

Table 4.8 shows that autocorrelation is able to significantly effect the ability of the STS estimators
to produce psd matrices, in particular with low values of θη; also the LMM estimator is affected,
even if more slightly, Low values of θη also reduce the accuracy of all the three estimators, while
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Estimator MISE % PSD MISE % PSD MISE % PSD MISE % PSD
d=5, ζ = 1 d=5, ζ = 1.5 d=5, ζ = 2 d=5, ζ = 2.5

PDF 5.8957e-04 100% 1.2411e-03 100% 2.1739e-03 100% 3.5475e-03 100%
LMM 1.4774e-03 100% 2.0615e-03 100% 3.2557e-03 99.91% 5.5029e-03 98.18%
STS 2.4258e-03 100% 3.0744e-03 100% 3.9064e-03 99.95% 5.1760e-03 97.85%

d=10, ζ = 1 d=10, ζ = 1.5 d=10, ζ = 2 d=10, ζ = 2.5
PDF 8.3152e-04 100% 1.7158e-03 100% 2.4388e-03 100% 3.5411e-03 100%
LMM 2.0447e-03 100% 2.6918e-03 100% 3.6557e-03 99.56% 5.5120e-03 91.14%
STS 3.3806e-03 100% 4.3057e-03 99.83% 5.4130e-03 90.31% 7.0991e-03 52.19 %

d=15, ζ = 1 d=15, ζ = 1.5 d=15, ζ = 2 d=15, ζ = 2.5
PDF 6.8032e-04 100% 1.4012e-03 100% 1.8502e-03 100% 2.5615e-03 100%
LMM 1.6911e-03 100% 2.1709e-03 99.98% 2.8183e-03 99.20% 3.9896e-03 80.66%
STS 2.8036e-03 99.87% 3.5990e-03 91.42% 5.8970e-03 34.15 % 6.5234e-03 26.37%

d=20, ζ = 1 d=20, ζ = 1.5 d=20, ζ = 2 d=20, ζ = 2.5
PDF 6.3538e-04 100% 1.3026e-03 100% 1.6698e-03 100% 2.2492e-03 100%
LMM 1.5694e-03 100% 2.0025e-03 99.96% 2.5535e-03 97.44% 3.5224e-03 64.45%
STS 2.6111e-03 97.51% 3.3587e-03 42.48% 4.1644e-03 11.71 % 5.4918e-03 0.50%

Table 4.7: Accuracy and % of psd matrix produced by each estimator, when the data is contaminated
by i.i.d. noise.

maintaining their ranking unchanged.

Estimator MISE % PSD MISE % PSD MISE % PSD
d=5, θη = 0.2 d=5, θη = 0.3 d=5, θη = 0.4

PDF 5.6169e-03 100% 2.8806e-03 100% 2.1414e-03 100%
LMM 1.0856e-02 100% 4.8943e-03 100% 3.3544e-03 100%
STS 8.5059e-03 97.31% 5.1553e-03 99.08% 4.1302e-03 99.92%

d=10, θη = 0.2 d=10, θη = 0.3 d=10, θη = 0.4
PDF 5.1481e-03 100% 3.0019e-03 100% 2.3519e-03 100%
LMM 9.7818e-03 100% 5.0765e-03 99.77% 3.7482e-03 100%
STS 1.0814e-02 60.36% 6.8148e-03 90.08% 5.6242e-03 91.37%

d=15, θη = 0.2 d=15, θη = 0.3 d=15, θη = 0.4
PDF 3.5769e-03 100% 2.2202e-03 100% 1.8000e-03 100%
LMM 6.6905e-03 92.90% 3.7483e-03 95.98% 2.8798e-03 96.80%
STS 8.7234e-03 3.70% 5.6586e-03 29.92% 4.6585e-03 35.03%

d=20, θη = 0.2 d=20, θη = 0.3 d=20, θη = 0.4
PDF 3.0654e-03 100% 1.9632e-03 100% 1.6249e-03 100%
LMM 5.6948e-03 93.90% 3.3182e-03 92.98% 2.6127e-03 95.48%
STS 8.0435e-03 4.87% 5.2368e-03 9.65% 4.3666e-03 8.23%

Table 4.8: Accuracy and % of psd matrix produced by each estimator, when the data is contaminated
by autocorrelated noise.

Table 4.9 shows that introducing correlation between E and W , i.e. between the Brownian
motions that drives the noise and the one that drives the dynamic of the efficient price, does not
seem to influence particularly the positive semi-definiteness of the estimations. Moreover, it seems
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that the accuracy on slightly increase for all the estimators, with respect to the baseline i.i.d. case;
this is due to the fact that a negative autocorrelation between efficient price and noise may induce
a bias with opposite sign whit respect to the bias induced by uncorrelated noise; this is usually
observed using volatility signature plots, as done in Hansen and Lunde (2006).

Estimator MISE % PSD MISE % PSD MISE % PSD
d=5, ρη = −0.1 d=5, ρη = −0.3 d=5, ρη = −0.5

PDF 2.0352e-03 100% 1.9671e-03 100% 1.9375e-03 100%
LMM 3.1654e-03 100% 3.0462e-03 100% 2.9484e-03 100%
STS 3.9369e-03 99.81% 3.8525e-03 99.96% 3.8145e-03 99.92%

d=10, ρη = −0.1 d=10, ρη = −0.3 d=10, ρη = −0.5
PDF 2.2896e-03 100% 2.3440e-03 100% 2.2369e-03 100%
LMM 3.5607e-03 99.94% 3.4779e-03 99.92% 3.4024e-03 99.98%
STS 5.3662e-03 91.56% 5.2421e-03 94.05% 5.1648e-03 95.49%

d=15, ρη = −0.1 d=15, ρη = −0.3 d=15, ρη = −0.5
PDF 1.7608e-03 100% 1.7866e-03 100% 1.7255e-03 100%
LMM 2.7502e-03 98.62% 2.7090e-03 99.44% 2.6483e-03 99.79%
STS 4.4396e-03 37.17% 4.3377e-03 44.13% 4.2908e-03 53.57%

d=20, ρη = −0.1 d=20, ρη = −0.3 d=20, ρη = −0.5
PDF 1.6065e-03 100% 1.6253e-03 100% 1.5582e-03 100%
LMM 2.5180e-03 98.35% 2.4725e-03 98.89% 2.3988e-03 95.84%
STS 4.1353e-03 0.82% 4.0389e-03 2.92% 3.9787e-03 5.43%

Table 4.9: Accuracy and % of psd matrix produced by each estimator, when the data is contaminated
by noise correlated with the efficient price process.

Table 4.10 shows the results for the last specification of noise that we consider, with noise autoco-
variance, correlation with the efficient price and time-varying noise variance. Our results show that,
in this setting, both the LMM and the STS estimators may have difficulties in reaching satisfactory
percentages of psd estimations, depending on the intensity of the microstructure component. We
confirm once again the ability of the PDF estimator to produce variance-covariance matrix with the
desired property, and with relatively low estimation error.

4.2.5 Alternative volatility models

In the previous sections we have exposed the results of our comparison for what concerns simulation of
the efficient price process made with an Heston model. Even though the error produced by the three
estimators may be different changing the simulation model behind our analysis, and in particular the
differences in MISE between the PDF and the LMM estimators are reduced when using the SVF2
or the Rough Heston model, the results are substantially confirmed: the PDF estimator remain the
only one able to consistently produce positive semi-definite estimations, and is the best performer
in terms of mean square error in almost any scenario. Table 4.11 shows the percentage of psd
estimations obtained under the alternative volatility models, in absence of microstructure noise. We
can see that, in this exercise, it seems that, moving to the SV1F, to the SV2F or Rough Heston, does
not influence significantly the ability of the estimators of producing positive matrices, and the LMM
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Estimator MISE % PSD MISE % PSD MISE % PSD
d=5, σ̄η = 3 d=5, σ̄η = 3.5 d=5, σ̄η = 4

PDF 4.7998e-03 100% 7.8667e-03 100% 1.3212e-02 100%
LMM 6.8314e-03 100% 1.1376e-02 98.81% 1.8293e-02 93.86%
STS 8.6164e-03 84.19% 1.3869e-02 71.84% 2.0190e-02 61.96%

d=10, σ̄η = 3 d=10, σ̄η = 3.5 d=10, σ̄η = 4
PDF 4.5443e-03 100% 6.9249e-03 100% 1.1111e-02 100%
LMM 6.7069e-03 99.89% 1.0364e-02 95.89% 1.6497e-02 83.48%
STS 1.1635e-02 52.86% 1.7614e-02 36.65% 2.6044e-02 30.51%

d=15, σ̄η = 3 d=15, σ̄η = 3.5 d=15, σ̄η = 4
PDF 3.2065e-03 100% 4.7542e-03 100% 7.2763e-03 100%
LMM 4.8670e-03 99.37% 7.2946e-03 89.26% 1.1172e-02 68.90%
STS 9.4853e-03 35.25% 1.4449e-02 24.56% 2.1268e-02 19.98%

d=20, σ̄η = 3 d=20, σ̄η = 3.5 d=20, σ̄η = 4
PDF 2.7842e-03 100% 4.0233e-03 100% 6.0704e-03 100%
LMM 4.2737e-03 98.14% 6.2574e-03 80.82% 9.4823e-03 54.03%
STS 8.7501e-03 25.69% 1.3279e-02 16.33% 1.9663e-02 11.38%

Table 4.10: Accuracy and % of psd matrix produced by each estimator, when the data is contaminated
by heteroskedastic noise process.

estimator shows the same ability of producing psd matrices than the PDF estimator. More extensive
results about the alternative models in the presence of microstructure noise, showing in particular
the percentage of psd estimations in the cases with i.i.d., autocorrelated and heteroskedastic noise,
are reported Tables 4.12 - 4.14, whose results broadly confirms the previous findings under those
alternative settings. It is worth underlying, as final consideration, that the results in terms or RMISE
always see the PDF estimator as the top performer, and also the ranking in terms of MISE remains
unchanged in most of the cases, when moving to the alternative models.
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Estimator SV1F SV2F RH SV1F SV2F RH
d=2 d=20

PDF 100% 100% 100% 100% 100% 100%
LMM 100% 100% 100% 100% 100% 100%
STS 100% 100% 100% 99.86% 99.86% 100%

d=5 d=25
PDF 100% 100% 100% 100% 100% 100%
LMM 100% 100% 100% 100% 100% 100%
STS 100% 100% 100% 98.45% 97.20% 96.54%

d=10 d=30
PDF 100% 100% 100% 100% 100% 100%
LMM 100% 100% 100% 100% 100% 100%
STS 100% 100% 100% 94.25% 92.80 29.72%

d=15 d=40
PDF 100% 100% 100% 100% 100% 100%
LMM 100% 100% 100% 100% 100% 100%
STS 100% 100% 100% 34.04% 32.12% 27.71%

Table 4.11: % of psd matrix produced by each estimator, when the efficient price process is produced
by alternative models.

Estimator SV1F SV2F RH SV1F SV2F RH SV1F SV2F RH SV1F SV2F RH
d=5, ζ = 1 d=5, ζ = 1.5 d=5, ζ = 2 d=5, ζ = 2.5

PDF 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
LMM 100% 100% 100% 100% 100% 100% 100% 99.85% 99.68% 97.28% 93.98% 94.98%
STS 100% 100% 100% 100% 100% 100% 99.77% 99.77% 99.79% 97.95% 97.33% 97.70%

d=10, ζ = 1 d=10, ζ = 1.5 d=10, ζ = 2 d=10, ζ = 2.5
PDF 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
LMM 100% 100% 100% 99.96% 100% 100% 99.70% 99.25% 95.26 90.03% 85.48% 87.11%
STS 100% 100% 100% 99.60% 99.69% 99.54% 90.91% 89.16% 91.10 52.28% 49.62% 54.59%

d=15, ζ = 1 d=15, ζ = 1.5 d=15, ζ = 2 d=15, ζ = 2.5
PDF 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
LMM 100% 100% 100% 99.96% 99.80% 99.80% 99.25% 97.85% 98.02% 79.28% 75.16% 77.98%
STS 100% 99.90% 99.96% 90.52% 88.66% 90.81% 37.21% 29.88% 39.24% 23.72% 15.64% 18.25%

d=20, ζ = 1 d=20, ζ = 1.5 d=20, ζ = 2 d=20, ζ = 2.5
PDF 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
LMM 100% 100% 100% 99.96% 98.27% 98.82% 97.95% 95.23% 95.88% 65.91% 63.84% 65.95%
STS 97.37% 96.68% 97.14% 42.42% 49.39% 44.44% 28.56% 22.64% 25.84% 1.80% 0.28% 0.02%

Table 4.12: % of psd matrix produced by each estimator, when the efficient price process is produced
by alternative models, in presence of i.i.d. noise.
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Estimator SV1F SV2F RH SV1F SV2F RH SV1F SV2F RH
d=5, θη = 0.2 d=5, θη = 0.3 d=5, θη = 0.4

PDF 100% 100% 100% 100% 100% 100% 100% 100% 100%
LMM 100% 99.96% 100% 100% 100% 100% 100% 100% 100%
STS 97.39% 97.20% 97.83% 99.21% 99.14% 99.83% 99.77% 99.25% 99.73%

d=10, θη = 0.2 d=10, θη = 0.3 d=10, θη = 0.4
PDF 100% 100% 100% 100% 100% 100% 100% 100% 100%
LMM 99.85% 98.20% 100% 98.16% 96.90% 100% 100% 100% 100%
STS 49.23% 47.87% 53.55% 73.25% 71.10% 73.25% 90.39% 88.34% 89.65%

d=15, θη = 0.2 d=15, θη = 0.3 d=15, θη = 0.4
PDF 100% 100% 100% 100% 100% 100% 100% 100% 100%
LMM 99.12% 97.90% 96.55% 99.85% 99.73% 98.16% 99.88% 95.36% 97.22%
STS 10.22% 10.63% 9.36% 11.32% 15.38% 14.64% 21.32% 20.44% 20.89%

d=20, θη = 0.2 d=20, θη = 0.3 d=20, θη = 0.4
PDF 100% 100% 100% 100% 100% 100% 100% 100% 100%
LMM 98.52% 97.50% 96.55% 98.63% 99.20% 98.25% 99.85% 96.17% 96.82%
STS 1.83% 1.32% 3.74% 4.57% 3.22% 4.72% 8.94% 8.55% 9.33%

Table 4.13: % of psd matrix produced by each estimator, when the efficient price process is produced
by alternative models, in presence of autocorrelated noise.

Estimator SV1F SV2F RH SV1F SV2F RH SV1F SV2F RH
d=5, σ̄η = 3 d=5, σ̄η = 3.5 d=5, σ̄η = 4

PDF 100% 100% 100% 100% 100% 100% 100% 100% 100%
LMM 100% 99.96% 99.96% 99.25% 98.95% 99.18% 92.79% 91.65% 91.31%
STS 89.60% 82.73% 84.52% 72.26% 72.97% 74.06% 61.17% 60.53% 63.01%

d=10, σ̄η = 3 d=10, σ̄η = 3.5 d=10, σ̄η = 4
PDF 100% 100% 100% 100% 100% 100% 100% 100% 100%
LMM 99.85% 99.73% 99.77% 95.78% 95.74% 95.61% 79.97% 80.03% 81.27%
STS 45.15% 44.82% 45.95% 36.34% 36.11% 36.38% 30.33% 29.74% 30.45%

d=15, σ̄η = 3 d=15, σ̄η = 3.5 d=15, σ̄η = 4
PDF 100% 100% 100% 100% 100% 100% 100% 100% 100%
LMM 99.12% 98.02% 99.25% 90.68% 89.58% 91.22% 67.04% 66.54% 68.96%
STS 30.58% 29.88% 30.81% 23.92% 23.39% 23.66% 19.40% 19.32% 18.94%

d=20, σ̄η = 3 d=20, σ̄η = 3.5 d=20, σ̄η = 4
PDF 100% 100% 100% 100% 100% 100% 100% 100% 100%
LMM 97.58% 97.09% 97.58% 83.06% 80.64% 83.44% 52.92% 51.88% 55.24%
STS 21.37% 21.37% 21.30% 15.77% 15.66% 15.31% 11.09% 11.05% 10.99%

Table 4.14: % of psd matrix produced by each estimator, when the efficient price process is produced
by alternative models, in presence of heteroskedastic noise.

Remark 4.2.3. After having analyzed how much the different specifications for noise may affect
the ability of some spot volatility estimator to produce positive semi-definite estimations in finite
samples, we would like to point out, as a final remark on the performance comparison, that, even
applying some manipulations to the estimated matrices useful to overcome this shortcoming, the gap
in the estimation error is not reduced. To this extent we follow the seminal work by Higham (1988),
in which it is shown how to obtain the nearest symmetric positive semi-definite matrix to an arbitrary
real-valued matrix, where the distance is measured in the Frobenius norm. In particular, the unique
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positive approximant of a matrix V̂ is:

(V̂ 1 + V̂ 2)/2 (4.8)

where V̂ 1 = (V̂ + V̂
′)/2 and V̂ 2 is the symmetric positive semi-definite matrix coming form the polar

decomposition V̂ 1 = AV̂ 2 with A′A = I.
Table 4.15 show, as an example in which we use the SVF2 model to simulate the efficient price

process, that, even though applying this technique to the estimated matrix obtained with the STS
estimator allows to recover a matrix with the desired positivity, this seems to have a negligible impact
on the MISE across the different scenarios for the noise, thus not being able to produce a final results
that attains the same level of accuracy of the PDF estimator which, in turn, does not need any post
manipulation of the output, whose impact on the asymptotic properties of the estimators is, in
principle, unknown.

PDF STS STSPSD
ζ I.i.d. noise
1 6.5931e-04 1.2245e-03 1.3075e-03

1.5 7.7088e-04 1.2458e-03 1.2445e-03
2 9.0900e-04 1.5532e-03 1.5397e-03

2.5 1.0126e-03 2.1353e-03 2.0746e-03
θη Autocorrelated noise
0.2 1.4802e-03 2.7254e-03 2.6464e-03
0.3 9.0024e-04 1.6698e-03 1.6373e-03
0.4 8.5164e-04% 1.5723e-03 1.5587e-03
ρη Noise correlated with p

-0.1 8.9725e-04 1.5249 e-03 1.5105e-03
-0.3 8.7500e-04 1.5096e-03 1.4992e-03
-0.5 8.5526e-04 1.5041e-03 1.4554e-03
σ̄η Heteroskedastic noise
3 1.3781e-03 2.9249e-03 2.7322e-03

3.5 1.8631e-03 4.0452e-03 4.0321e-03
4 2.5679e-03 5.8471e-03 5.1773e-03

Table 4.15: MISE for the PDF estimator, the STS estimator and its nearest psd matrix (TSPSD)
computed according to Equation 4.8, under different noise scenarios, for the SVF2 model
and d = 20.

4.3 Randomization

One additional aspect to consider when dealing with an estimator for high-frequency data, apart
from the asymptotic properties such as the speed of convergence and the asymptotic error (analyzed
for example for the Fourier spot volatility estimator in Chapter 2), the finite sample performance in
terms, e.g., of mean square error (as done in greater detail in Chapter 3 for both integrated and spot
volatility estimators) and the ability to produce some desirable characteristic of the output (that was
is the main topic of this chapter), is the computational time needed to perform the estimation itself.
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This issue is particularly relevant when high frequency data are employed, being the number of
operation required by the implementation algorithm of each estimator a non-decreasing function of
the number of observations n. The problem may be even more relevant when the estimation of spot
volatility is involved since, on the contrary of what happens for integrated volatility, many different
estimations are needed for each trading day, depending on the grid on which the volatility process is
reconstructed. Finally, in the multivariate setting, when at each point in time we need to estimate
not only one value, but a full volatility matrix, controlling the speed of execution of the estimation
algorithms acquires the utmost importance, with an execution time that will increase also with the
dimension of the matrix d. The aim of this section is to propose an alternative formulation of the
PDF estimator that, while maintaining the property of producing positive semi-definite estimations,
allows to increase the speed of execution of the estimation routine.

Form Remark 4.1.5 we know that the PDF estimator can be rewritten as in Equation 4.3. The
idea of the alternative version, called Randomized PDF or RPDF, is to approximate the integral
over the (gaussian) measure µ that appear in Equation 4.3 with an average over K random shifts Y
sampled form a gaussian distribution, so that the RPDF estimator, for t ∈ (0, 2π), reads as:

V̂
j,j′

N,M,K(t) = 2N + 1
2πK

K∑︂
k=1

nj−1∑︂
i=0

nj′ −1∑︂
i′=0

DN (t− tji + Yk)DN (t− tj
′

i′ + Yk)δji (p)δ
j′

i′ (p), (4.9)

with K ≥ 0 and Yk ∼ N (0, 1/M). The estimator defined in this way is still symmetric and
positive semi-definite, while the impact of the randomization on the execution time and the accuracy
of the estimator is analyzed in the next section.

Remark 4.3.1. The computational effort needed for the PDF estimator, similarly to what happens
to the Fourier spot volatility estimator, is mainly due to the computation of all the discrete Fourier
coefficients that appear in the convolution. As noted in Mancino et al. (2017), the burden of this
operation may be reduced using Fast Fourier Transform algorithm or,in presence of irregularly spaced
observations, Non-uniform Fast Fourier Transform, as done by Chang et al. (2020). The proposed
randomization is an alternative, simple scheme to reduce the computational burden.

Another aspect to consider, as noted in Chang et al. (2020), is the possibility of vectorization of
the code, but a full vectorization of the the cross products appearing in the definition of the estimators
may lead, however, to filling the memory of the machine for high values of n and, for the seek of the
following analysis, we avoided full vectorization of the code.

4.3.1 Accuracy and speed of execution

We use the following simple stochastic volatility model to generate the trajectories of d = 2 loga-
rithmic stock prices and their volatility:

dpj(t) = σj(t)dW j
t j = 1, 2

dσj(t) = ασj(t)dZjt j = 1, 2

with ⟨W j , Zj⟩ = λj for j = 1, 2 and ⟨W 1,W 2⟩ = ρ.
The simulations are performed using Euler scheme on an equally-spaced grid with step corre-

sponding to 1
2 a second, for on horizon of 23400 seconds, corresponding to 6.5 hours of market activity.
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Irregularly spaced and asynchronous observations are obtained as before by drawing random times
obtained by uniform Poisson process with intensity set to obtain an average of n̄ observations for each
trajectory. Sampling is performed according to the previous tick method. Moreover, simulations are
carried out considering the following set of parameters:

(α1, α2, λ1, λ2, ρ) = (0.2, 0.25,−0.3,−0.7, 0.5)

while the initial price is fixed to X0 = log(100) for both assets.
The main aim of our numerical analysis is to assess if, how much, and under which conditions the

RPDF estimator may give an advantage, in terms of time required to compute the estimation,with
respect to the implementation of the standard PDF estimator1.

The performance are compared considering the minimum execution time over K = 100 replica-
tion, while looking at accuracy, we consider the relative mean integrated square error that, analo-
gously to Equation 4.7 is, defined as in Section 4.2.4.

We start by focusing on the frequency N and the parameters of the design of the exercise that
may influence the speed of execution, considering in particular:

• the parameter α = 1, 3/4, 2/3 for the PDF and RPDF estimator, recalling that α is related to
the choice of N via N = nα

2 ;

• the average number of observations n̄ = 2340, 11700, 23400, 46800, corresponding to an average
of respectively one observation every 10, 2 and 1 and 0.5 seconds;

• the number of points #τ = 78, 390 on which the trajectory of the spot volatility matrix is
reconstructed, corresponding to an equally-spaced grid of width 5 and 1 minutes respectively.

The results are presented in Table 4.16, where we fixed K = 250, and show that indeed the
RPDF is able to reduce the execution time in all the scenarios, and in particular for high values of
n or when we need to chose a high value of α (see Section 4.2.2), being the speed of the RPDF not
dependent on level of α.

Table 4.17 show how the situation changes when varying the value of K, considering in this case
also the accuracy of the estimators in terms of RMISE. It appears that there is a clear trade-off
for the RPDF estimator between speed and accuracy, with the latter converging to the one of the
PDF as K increase, as expected, and the former linearly decreasing in K. The parameter K should
then be chosen according to the needs of the statistician, depending on whether of the two aspects
is considered more valuable.

Finally the parameters M , which is present in both the two estimators and is set as in the
previous sections as M = Nβ , as we can see from Equations 4.5 and 4.9, should no real influence in
the execution speed the two estimators. This is confirmed by Table 4.18, that shows execution time
and RMISE for the PDF and RPDF for a range of values of β. The results in terms of RMISE, for
a small dimension d = 2, confirms the behavior underlined in Remark 4.2.1.

1Benchmarking is done using 2.30GHz clock speed Intel i7-11800H with 16GB RAM on Arcolinux kernel 6.2.7-
arch1-1 with Python 3.9.12.
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Execution Time
n̄ = 2340 n̄ = 11700 n̄ = 23400 n̄ = 46800

α 1 3/4 2/3 1 3/4 2/3 1 3/4 2/3 1 3/4 2/3
Estimator #τ = 78

PDF 49.05 2.16 0.90 1060 14.45 4.30 3600+ 35.46 9.01 3600+ 95.99 20.42
RPDF 0.68 0.69 0.68 3.57 3.56 3.58 6.49 6.48 6.43 13.50 13.85 13.52

Estimator #τ = 390
PDF 229.6 10.36 4.44 3600+ 67.85 19.99 3600+ 167.11 40.48 3600+ 426.03 90.85

RPDF 3.76 3.77 3.77 17.50 17.64 17.87 32.18 32.28 32.62 66.89 66.53 67.86

Table 4.16: Execution time (in seconds) of PDF and RPDF estimators in different simulation set-
tings, with K = 250.

Accuracy and speed over K for RPDF
K 50 100 150 200 250 300 350 400 450 500 750 1000

Time 1.35 2.72 3.94 5.30 6.48 7.82 9.25 10.70 12.06 13.28 19.08 23.57
RMISE 8.877 4.465 3.820 3.396 2.521 2.453 2.329 2.307 2.266 1.750 1.789 1.644

Reference for PDF
Time 35.46

RMISE 1.475

Table 4.17: RMISE and execution time of RPDF for varying values of K. Values for RMISE are of
order 10−2.

Accuracy and speed over β for RPDF
PDF RPDF

β Time RMISE Time RMISE
1/2 35.25 2.414 6.46 3.516
2/3 35.39 1.888 6.48 3.216
3/4 35.35 1.663 6.49 3.108
3/4 35.35 1.316 6.50 2.654
5/6 35.30 1.475 6.48 2.521

Table 4.18: RMISE and execution time of PDF and RPDF for varying values of β. Values for
RMISE are of order 10−2.
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Conclusions

In this work we analyze the behavior of the Fourier spot volatility estimator introduced by Malliavin
and Mancino (2002), focusing in particular on two of the main features of high-frequency data:
microstructure noise and trade asynchronicity.

While realized-type estimators of the spot volatility typically require the manipulation of price
observations and a bias-correction to become efficient and robust in the presence of microstructure
noise, in this work we show that the Fourier estimator of the spot volatility can be efficient and robust
at high-frequencies without the need for any manipulation of the original data or bias-correction. In
fact, for this purpose it is sufficient to carefully reduce the value of the cutting frequency N , which
controls the number of log-return coefficients to be used in the convolution formula that yields the
Fourier coefficients of the volatility.

Specifically, we address both asymptotic and finite-sample efficiency. Firstly, we prove two rate-
efficient Central Limit Theorems in the absence and in the presence of noise. Secondly, we derive
a feasible procedure for selecting estimation parameters with high-frequency samples, based on
the minimization of the integrated asymptotic-error variance. Further, we numerically show the
robustness of this feasible procedure in more realistic scenarios, in which the hypotheses of the
Central Limit Theorem are partially violated. Moreover we test this feasible procedure with tick-
by-tick prices of three US stocks, characterized by different degrees of liquidity, and one US stock
index, obtaining empirical evidence that supports its accuracy.

Additionally, we perform a comparative simulation study of the finite-sample performance of the
Fourier estimator with that of alternative noise-robust spot volatility estimators and obtain numer-
ical evidences that suggest that the use of the Fourier estimator may lead to a gain in finite-sample
efficiency. This gain appears to be larger in scenarios characterized by more realistic microstructure
noise patterns.

To extend this comparative analysis we focus our attention also on statistical models for the
Limit Order Book, able to generate price trajectories in a way that closely mimic the functioning of
electronic financial markets. Using this simulation setting to address the performance of a compre-
hensive selection fo volatility estimator we extend the work by Gatheral and Oomen (2010) in two
directions. First, we use a more sophisticated LOB simulator compared to the ZI model, namely the
QR model, which, by introducing correlations between the current state of the LOB and the inten-
sities of order arrival, and thanks to a more complex re-initialization mechanism, is able to produce
more realistic market microstructure dynamics, and we show with test statistics the superior ability
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of the QR model to reproduce the noise pattern observed in empirical data.
For what concerns the comparison, we address not only integrated volatility estimators, but also

spot volatility estimators. For what concerns integrated estimators, we find that the pre-averaging
estimator by Jacod et al. (2009) appears to be favorable in terms of bias optimization. Instead, when
looking at the minimization of the MSE, the situation is more nuanced, with the Fourier estimator
obtaining the best average ranking across the three different price series considered without actually
achieving the best ranking for any of the individual series. Specifically, the MSE is optimized by
the unified estimator by Li et al. (2018) (in the case of mid- and micro-prices) and the alternation
estimator by Large (2011) (in the case of trade-prices). As for the spot volatility, the Fourier
estimator appears to yield the optimal accuracy both in terms of bias and MSE, outperforming
the other estimators considered, confirming our previous findings in a more challenging simulation
environment.

Moreover, as a financial application, we show that the careful choice of the spot volatility estima-
tor may be relevant for optimal execution. Specifically, we investigate the impact of different spot
volatility estimators on the prediction of the variance of the cost of a VWAP strategy and find that
the use of the Fourier estimator, which gives the relative most accurate volatility estimates, leads
also to a significant gain in predicting the cost variance.

After having analyzed the asymptotic and finite-sample properties of the Fourier spot volatility
estimator in the univariate setting, we focus on the multivariate case, considering in particular the
relevant case of asynchronous observation, being the synchronous case analogous to the univariate
one. In particular, being the original estimator cursed by possible asymmetry in the estimation, we
propose a modified version of the Fourier estimator, called PDF estimator, to overcame the difficulty
of obtaining symmetric and positive semi-definite estimation of the spot variance-covariance matrix.

The proposed estimator is know to be consistent (Akahori et al. (2023)), and here we prove its
positive semi-definiteness. A numerical study is carried out to evaluate the optimal choice of the
frequencies N and M in a variety of settings. The optimal couple seems to be quite stable, and,
as for the original spot Fourier estimator, if the data is heavily contaminated by noise N should
be reduced. Based on those findings, a thorough simulation study is conducted to evaluate the
accuracy of the PDF estimator and its actual ability in producing psd estimations. Comparing the
results with the ones of two alternative estimators present in the literature, that are not proven to
be positive semi-definite, we found out that the proposed PDF estimator usually outperforms the
competitors in terms of mean square error, showing that it is possible to obtain desirable properties
of the estimated spot volatility matrix without reducing the accuracy of the estimation. Moreover,
the proposed estimator is found to be robust to a variety of specification of market microstructure
noise, via an appropriate choice of the cutting frequency N . The robustness of our results are finally
confirmed using alternative data generating processes.

As a last issue we also consider the possibility of reducing the computational time required
by the PDF estimator, introducing an alternative randomization algorithm, that may significantly
improve the execution time, at the cost of reducing the accuracy of the estimation, while maintaining
the desired positivity of te volatility matrix. The trade-off between execution speed and accuracy
is analyzed in detail, considering the impact of the different parameters of the two estimators in
relation to the number of available observations.
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