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faces we define a homomorphism @ from the (topologi-

invertible knots C to a new equivariant algebraic con-
cordance group GZ. We prove that @ lifts both Miller
and Powell’s equivariant algebraic concordance homo-
morphism (J. Lond. Math. Soc. (2023), no. 107, 2025-2053)
and Alfieri and Boyle’s equivariant signature (Michi-
gan Math. J. 1 (2023), no. 1, 1-17). Moreover, we provide
a partial result on the isomorphism type of GZ and
obtain a new obstruction to equivariant sliceness, which
can be viewed as an equivariant Fox-Milnor condition.
We define new equivariant signatures and using these
we obtain novel lower bounds on the equivariant slice
genus. Finally, we show that ® can obstruct equivariant

sliceness for knots with Alexander polynomial one.
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1 | INTRODUCTION

AknotK C S3issaid to be invertible if there is an orientation-preserving homeomorphism p of S3
such that p(K) = K and p reverses the orientation on K. If such a homeomorphism can be taken to
be a locally linear involution, we say that K is strongly invertible. Kawauchi [16, Lemma 1] proved

© 2024 The Author(s). Journal of Topology is copyright © London Mathematical Society. This is an open access article under the terms of
the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work
is properly cited.

J. Topol. 2024;17:e70006. wileyonlinelibrary.com/journal/jtop 1of 44
https://doi.org/10.1112/topo.70006


https://orcid.org/0000-0001-5833-1820
mailto:alessio.diprisa@sns.it
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/jtop
https://doi.org/10.1112/topo.70006
http://crossmark.crossref.org/dialog/?doi=10.1112%2Ftopo.70006&domain=pdf&date_stamp=2024-11-12

20f44 | DI PRISA

that the two notions agree for hyperbolic knots, however, there exist examples of invertible knots
that are not strongly invertible, see [12, Section 5].

As such an involution for a strongly invertible knot has always a nonempty fixed-point set, we
know that it is always conjugated to an element of SO(4) by the solution of the Smith conjecture
[3]. As a consequence, we can think of a strongly invertible knot as a knot that is invariant under a
7-rotation around some unknotted axis in S*. The knot intersects the axis in two points, by which
the axis is separated into two half-axes.

In [25], Sakuma defined a notion of direction on a strongly invertible knot, which consists of an
orientation of the axis of the involution together with the choice of one of the half-axes. Using this
additional structure he was able to define unambiguously an operation of equivariant connected
sum between directed strongly invertible knots.

As strongly invertible knots are naturally equipped with an involution, it is natural to ask
whether a strongly invertible slice knot is also equivariantly slice, that is, it bounds a locally flat
slice disk in B* which is invariant under a locally linear extension of the involution. Similarly to
the classical case, this leads to the definition of the equivariant concordance group C as the set of
classes of directed strongly invertible knots up to an appropriate definition of equivariant concor-
dance. Recently, in [6] we proved that Cis notabelian’, which is in stark contrast with the classical
concordance group.

Several authors [1, 2, 5, 7, 23, 25] have found invariants and obstructions for the equivariant
concordance of strongly invertible knots. In particular, in [5] the authors define several invariants
for smooth equivariant concordance using knot Floer homology. Using the lower bounds on the
smooth equivariant slice genus g provided by these invariants, they construct the first examples of
strongly invertible knots with g;(K) — ¢;(K) arbitrarily large, where g;(K) is the classical smooth
slice genus, answering [2, Question 1.1].

Miller and Powell, in [23] introduce a notion of equivariant algebraic concordance, by studying
the action of the strong inversion on the Blanchfield pairing on the Alexander module of a strongly
invertible knot. In this way, they define a homomorphism

v:C— AC

from the equivariant concordance group to an equivariant algebraic concordance group AC of
equivariant Blanchfield pairings. From the equivariant Blanchfield pairings, they obtain new
lower bounds on the equivariant slice genus, and they provide examples of genus one slice knots
with arbitrarily large topological equivariant slice genus g,.

In [1, 2], the authors define an equivariant version of the classical knot signature for directed
strongly invertible knots, obtaining a group homomorphism

g:C— Z.

In this paper, we define a notion of equivariant algebraic concordance for directed strongly
invertible knots, analogous to Levine’s algebraic concordance [17, 18], by considering a particu-
lar type of invariant Seifert surfaces. In Theorem 4.7, we construct a homomorphism ® from the
equivariant concordance group C to an equivariant algebraic concordance group G” of equivariant
Seifert systems.

" The main result [6, Theorem 1.1.] of the paper relies on Donaldson’s diagonalization theorem, which is inherently a
smooth result. However, in [6, section 3.1] we give an alternate proof that C is not abelian, relying on twisted Alexander
polynomials, which can be adapted in the topological category.
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EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS | 30f44

The homomorphism @ is able to detect valuable information about equivariant concordance.
For instance, it can be used to obstruct equivariant sliceness of knots with Alexander polynomial
one, see Example 4.13. However, it seems a hard task to give a complete description of the group
structure of GZ. In Subsection 4.2, we introduce a more manageable quotient Q of this group
that we call reduced equivariant algebraic concordance group and we denote by @, : ¢ — Qr the
homomorphism obtained by composition.

The main result of this paper is the following theorem, which sums up the results of
Theorems 4.12 and 5.13.

Theorem 1.1. The homomorphism ¥ and the equivariant signature G factor through érz that is,
they fit in the following commutative diagram.

SN

7 <—

&fﬁﬁl

— AC

Moreover, in Theorem 6.11 we obtain a partial result on the structure of c?, determining the
isomorphism type of Q? which is defined similarly to C;Z by using rational equivariant Seifert

forms. In particular, we have a natural inclusion @drz < 69 (see Lemma 6.1) and the following
theorem holds.

Theorem (6.11). The isomorphism type of the reduced rational equivariant algebraic concordance
group is given by

CRZ®@Z[27° ®Z/AZ™ & Z/3Z%.

The same arguments used in the proof of Theorem 6.11 fail to be easily adapted to study the
(unreduced) group GZ. Therefore, we propose the following open problem that we would like to
address in the future.

Open Question A. Determine the full isomorphism type of the equivariant algebraic
concordance group GZ.

As pointed out in Remark 6.12 the composite map C —> 69 is not surjective, as CVZ is a proper
subgroup. Hence, we ask the following question.

Open Question B. Determine the image of Cin g~“3 In particular, does there exist a directed
strongly invertible knot K whose image has order 8 in G*?

As a consequence of the investigation on the group structure of @Q, in Theorem 6.13 we get the
following obstruction to equivariant sliceness, which can be seen as an equivariant Fox-Milnor
condition.

Theorem (6.13). Let K be a strongly invertible knot and let Ax(t) be its Alexander polynomial,
normalized so that A (t) = Ag(t71) and Ax (1) = 1. IfK is equivariantly slice then A (t) is a square.
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Theorem 6.13 is especially fascinating due to its intriguing resemblance to a result of Hartley and
Kawauchi [14] which states that if a knot K is strongly positive amphichiral then Ag(t) is a square.
While at the moment we are not able to formulate a precise conjecture, it would be interesting to
understand better the relation between being equivariantly slice and strongly positive amphichiral
for a strongly invertible knot.

The results of Section 6 suggest naturally the definition of new equivariant signatures {5, },cr
and equivariant signature jumps {J;}, g, which are homomorphisms

5&, T/'t . 5—)2

that we introduce in Section 7. In Proposition 7.3, we clarify the relation between G, the Levine-
Tristram signatures o, proving the following.

Proposition (7.3). Let K be a directed strongly invertible knot. Then for any A < 0 and w € S* such
that A(w — 1)? = (w + 1)? we have

a:/l(K) = Jm(K)a

Although the equivariant signatures coincide with the Levine-Tristram signatures for 1 < 0, for
positive values of 1 we actually get a new invariant of equivariant concordance (see Remark 7.11).
The main result of Section 7 is Theorem 7.7, which gives a new lower bound on the equivariant
slice genus g, of a strongly invertible knot.

Theorem (7.7). Given a directed strongly invertible knot K, for every 1 > 0, A # 1 we have

1T, (K|

u(K) > .
94(K) 2

Theorem 7.7 can be used to obtain new examples of strongly invertible knots with §,(K) — ¢,(K)
arbitrarily large (see Remark A.4), where g,(K) is the classical (topological) slice genus.

Organization of the paper

In Section 2, we briefly recall some notions and results on equivariant concordance and on alge-
braic concordance, and we introduce the definition of n-butterfly link, which is a generalization of
the butterfly link [2]. Section 3 contains some results on the extension and transversality of equiv-
ariant maps, that are used in the next section. In Section 4, we use Proposition 4.3 to motivate
the definition of the equivariant algebraic concordance group G”. In Section 5, we define a homo-
morphism from of GZ to an equivariant version W(Q) of the Witt group of @, and we show that
the equivariant signature [1] factors through W(Q). Section 6 is dedicated to studying the group
structure of 5? which is a simpler variant of 2. Using these results, we introduce in Section 7 a
new equivariant signature function 6; and we describe how it can be used to obtain lower bounds
on the equivariant slice genus.

Finally, in the Appendix, we provide a table of examples of application of Theorem 7.7 on a
family of 2-bridge knots with at most 12 crossings.
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Conventions

We work in the topological category (see [8, 23] for details) unless otherwise specified. More
precisely, we will implicitly consider:

* maps between manifolds to be continuous,
* submanifolds to be (properly) locally flat embedded,
* group actions (specifically involutions) on manifolds to be locally linear.

Throughout the paper, we will refer to and use some results appearing in [2, section 4] and [7].
Although in this paper such results are stated in the smooth category, we want to remark that the
proofs can be adapted to work in the topological category.

2 | PRELIMINARIES
2.1 | Directed strongly invertible knots

We recall the definition of directed strongly invertible knots and equivariant concordance group
following [2, 25].

Let (K, p) be a strongly invertible knot. By the resolution of the Smith conjecture [3], we know
that p acts on S3 as a rotation around the axis Fix(p), which is an unknotted S*. As the restriction
of p on K is orientation-reversing, the fixed axis intersects K in two points, which separate Fix(p)
in two so-called half-axes.

Definition 2.1. A direction h on a strongly invertible knot (K, p) is the choice of one of the half-
axes h and an orientation on Fix(p). We say that (K, p, h) is a directed strongly invertible knot.

Definition 2.2. We say that two directed strongly invertible knots (X;, p;, h;), i = 0,1 are equiv-
ariantly isotopic if there exists an orientation-preserving homeomorphism ¢ : S* — S3 such
that:

* 9(Kp) =Ky,
* PoPy = P1°¢,
* ¢(hy) = hy, preserving the chosen orientations on h, and h;.

We will often omit to specify the choice of strong inversion and direction when it is not strictly
necessary to specify them.

Remark 2.3. A direction on (K, p) induces an ordering on K N Fix(p): we say that the first fixed
point of K is the initial point of the chosen half-axis, while the final point is the second fixed point.

Definition 2.4. Let K and J, be two directed strongly invertible knots. Their equivariant connected
sum K#17 is the directed strongly invertible knot obtained by cutting K at its second fixed point and
J at its first fixed point, gluing the two knots and axes equivariantly in a way that is compatible
with the orientations on the axes, and choosing the half-axis of the sum to be the union of the
half-axes of the two components, as depicted in Figure 1.
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6 of 44 DI PRISA

FIGURE 1 The equivariant connected sum of K and J. The vertical axis (colored red) is the axis of the
strong inversion. The chosen half-axis is the solid one.

Definition 2.5. Let (K, p, h) be a directed strongly invertible knot. We define

* the mirror of (K, p, h) by mK = (mK, p, h),

* the axis-inverse of (K, p, h) by iK = (K, p, —h), where —h is the direction given by the half-axis
h with the opposite orientation,

* the antipode of (K, p, h) by aK = (K, p, h"), where k' is the direction given by the oriented half-
axis complementary to h.

Definition 2.6. Let (K, p) be a strongly invertible knot. We say that K is equivariantly slice if there
exists a locally flat slice disk D C B* for K, invariant with respect to a locally linear involution of
B* extending p. We define the equivariant slice genus of (K, p) as

74(K) = min genus(2),

where X ranges among the orientable locally flat surfaces in B with boundary K, invariant under
an involution extending p.

Definition 2.7. We say that two directed strongly invertible knots (K;,p;,h;), i=0,1
are equivariantly concordant if there exists a locally flat properly embedded annulus C =
S'x I c S*xI, invariant with respect to some locally linear involution p of S3x1I such
that:

« 3(S3x1I,C) = (S3,Ky) u—(S3,K)),

* pisin an extension of the strong inversion p, LI p; on S> x 0L S3 X 1,

* the orientations of h, and —h, induce the same orientation on the annulus (see [23, Remark
2.12]), Fix(p), and h; and h, are contained in the same component of Fix(p) \ C.

The operation of equivariant connected sum induces a group structure on the set C of classes
of directed strongly invertible knots up to equivariant concordance. The class of the unknot gives
the group identity, while the inverse of K can be represented by K~ := m(i(K)).
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FIGURE 2 The band move (in gray) that produces the 0-butterfly link of 4;.

Notice that, while the direction is essential to define an equivariant connected sum, K is equiv-
ariantly slice if and only if iK or aK is so. Therefore, we can consider the mirror, axis-inverse, and
antipode as involutive maps from C to itself.

2.2 | Butterfly links

In [2], Boyle and Issa associate with a directed strongly invertible knot the so-called butterfly
link. Using this link they construct several invariants. In this section, we recall some of the
invariants defined in [2]. Additionally, we introduce the definition of n-butterfly link of a directly
strongly invertible knot, which is important in the following sections. The n-butterfly link is a
generalization of the butterfly link and it coincides with the definition in [2] for n = 0.

Definition 2.8. Let (K, p, h) be a directed strongly invertible knot. Take an equivariant band
B, parallel to the preferred half-axis h, which attaches to K at the two fixed points. Perform a
band move on K along B such that the result is a 2-component link. The linking number between
the components of such a link depends on the number of twists of B (see, for example, Figure 2).
Observe that 9B \ K consists of two arcs parallel to h, which we orient as k. The arcs lie in different
components of the link and we consider on each component the orientation induced from the
respective arc. The n-butterfly link L; (K), is the 2-components 2-periodic link (i.e., the involution
p exchanges its components) obtained from such a band move on K so that the linking number
between its components is .

Recall that a semi-orientation on a link L is the choice of an orientation on each component of
L, up to reversing the orientation on all components simultaneously.

Definition 2.9. Define fZ(K) to be the n-butterfly link of K endowed with the opposite semi-

orientation. Observe that the semi-orientation on /L\Z(K) makes the band move along B coherent
with the unique semi-orientation on K.
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With a slight abuse of notation, we will also call fZ(K ) the n-butterfly link of K.

Remark 2.10. Notice that the linking number between the components of fZ(K), taken with
respect to the chosen semi-orientation, is —n.

Definition 2.11. Let (L;, p;), i = 0, 1, be two 2-component 2-periodic links. We say that (L, o)
and (L,, p;) are equivariantly concordant if they bound two disjoint properly embedded locally
flat annuli in S3 X I, which are invariant with respect to some locally linear involution of S3 x I
extending p, LI p;.

Proposition 2.12. Let (K;,p;,h;), i =0,1, be two equivariantly concordant directed strongly
invertible knots. Then, L} (K,) (resp., fz (Ky)) is equivariantly concordant to Ly (K ) (resp., fl’;(K1 ).

Proof. The proof is identical to the proof of [7, Proposition 2.6]. O

Remark 2.13. 1t follows from the proposition above that if K is equivariantly slice then also fg (K)
is equivariantly slice, that is, it bounds two disjoint equivariant disks in B*. On the other hand, as
fg (K)is obtained by an equivariant band move from K (which can be seen as a genus 0 equivariant

cobordism) we have that if fb (K) is equivariantly slice then so is K.

Despite Remark 2.13, it is not true in general that if Lg (K) is equivariantly concordant to Lg(] )
then K is equivariantly concordant to J.
Definition 2.14 [2]. Let K be a directed strongly invertible knot. Define

* b(K) to be the knot given by one component of Lg(K),
+ qb(K) to be the knot Lg(K)/p inS3/p ~S3.

As proven in [2], we have that b induces a group homomorphism
b:C—C,
where C is the classical (topological) knot concordance group.

Definition 2.15. Given an oriented knot K, its double r(K) is the directed strongly invertible
knot given by K#r(K), with the involution p that exchanges K and r(K) (the z-rotation around
the vertical axis in Figure 3). The direction on r(K) is given as follows: the connected sum can be
performed by a suitable band move along some band B, in gray in the figure, in such a way that
Fix(p) N B is the half-axis h. We orient h as the portion of B lying on K (note that h is parallel to
BNK).

As proven by Boyle and Issa [2], © defines a homomorphism
t:C— C.
It is immediate from the definitions that given an oriented knot K, the O-butterfly link of v(K) is

given by two split copies of K (see again [2] for details). Therefore, the composition bor : ¢ — C
is the identity homomorphism.
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FIGURE 3 The directed strongly invertible knot ©(K). The chosen half-axis is the solid one.

Hence, we get that b is surjective, ¢ is injective, and that ©(C) is a copy of the classical concor-
dance group, contained in the center of C (as noted in [25]). As a consequence, we observe the
following corollary.

Corollary 2.16. The equivariant concordance group splits as

C = ker(b) & t(C).

2.3 | Algebraic concordance

In [17, 18], Levine defined a surjective homomorphism from the classical concordance group to a
Witt group of Seifert forms, called the algebraic concordance group, which is given by

p:C—G*

[K] +— [6F],

where F is a Seifert surface for K and 6y, is the Seifert form on H,(F, Z).
By taking the symmetrization of the Seifert form one obtains a group homomorphism

¢¢ — W@
[A] — [A+ A'],

where W(Q) is the Witt group of nondegenerate symmetric forms on finite-dimensional Q-
vector spaces. Denote by ¢y, : C — W(Q) the composition. Clearly by composing ¢y, with the
signature homorphism ¢ : W(Q) — Z one get the knot signature o(K).

Given a (possibly nonorientable) spanning surface F for a link L, Gordon and Litherland [10]
defined a bilinear form

Cr : H|(F,Z)xH(F,Z) — Z

(a,b) — 1k(a,b)

A 'v 'v20e ‘versesLT

"00SUIeLUPUO//:SaNY WOy

38UBD| 7 SUOLIWOD BARERID 3|gedtjdde ays Aq pauenob s sapne YO '8Sn JO s3I oy ARl 8auluQ A8]1AA UO (SUORIPUCD-PUR-SUBI/LI0D A3 1M A eIq U1 UO//SUNY) SUORIPUOD PUe SWB | A3 89S *[GZ02/T0/80] U0 ARiqiauluO AB]IA ‘esd 10 2101ednS 3eWION Blonos Aq 90002 0d0y/ZTTT"0T/I0p/wod A3 |im AReiqpul|



10 of 44 | DI PRISA

given by the linking number of b with a pushed off F “in both directions simultaneously”. This
form is bilinear and symmetric and if F is oriented it coincides with the symmetrization of the
Seifert form.

In [10], Gordon and Litherland proved that it is possible to compute the signature of a knot
from the Gordon-Litherland form of any spanning surface, by introducing a corrective term. We
briefly recall some of the notation used in [10] and we observe in Proposition 2.19 how the results
of Gordon and Litherland allow us to compute not only the signature of a knot K but the whole
Witt class ¢y, (K), using any spanning surface. This fact is presumably known to the experts but
we could not find it in the literature.

Definition 2.17. Let F be a spanning surface for a knot K and let K* be a longitude of K which
misses F. The relative Euler number of F is defined as

e(F) = —Ik(K,K"),
where K and K¥' are coherently oriented.

Observe that as K and F are disjoint, [K] = 0 € H,(S*> \ K¥', Z/27). Hence, e(F) is always an
even integer.

Definition 2.18. Let F;, F, be two surfaces in S® with dF, = dF, and suppose that there exists a
3-ball B3> = B! x B? C S? \ dF; such that

* F,NB*=0B! x B2,
* F,NB*=B?X4B!,
« F,\B>=F,\B.

In this situation, we say that F, is obtained from F; by a I-handle move.

Proposition 2.19. Let F be spanning surface for K, and A a matrix representing Gordon-Litherland
form G on H,(F). Then, the Witt class of K is represented by

A 0
0 eId)’
where € = sign(e(F)) and the Id block has size n X n with n = |e(F)|/2.
Proof. Let G be a Seifert surface for K (in particular, e(G) = 0). By [10, Theorem 11], we can obtain

G from F by a finite sequence of the following moves (and their inverses):

* ambient isotopy,
* 1-handle moves,
* addition of a small half-twisted band at the boundary.

It is not difficult to check that the first two moves do not change the Witt class of the Gordon-
Litherland form. By attaching a half-twisted band the Gordon-Litherland form and the relative

Euler number change as
A A 0 ’
0 ¢
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e
s

FIGURE 4 The addition of a half-twisted band.

e(F) — e(F) — 2¢,

. R . (1 0.
where ¢ = +1 depends on the twist of the band, as in Figure 4. As the matrix (O 1) is

metabolic, if we attach two bands with opposite half-twists, the overall move leaves the Witt class
unchanged. The conclusion follows by observing that, up to algebraic cancellation, one has to
attach n = |e(F)|/2 bands with the same half-twist. O

3 | EXTENSION AND TRANSVERSALITY OF EQUIVARIANT MAPS

In this section, we show some results on the extension and transversality of equivariant maps. We
use these results to prove Lemma 3.2, which is fundamental for the constructions in Section 4.
Let X be a connected manifold with boundary, such that the inclusion of dX in X induces an
isomorphism H'(X, Z) — H'(0X,Z). As S' is a K(Z, 1), every map X —> S! can be extended
to a map X — S', which is unique up to homotopy.
Consider now the Z/2Z-action on S' given by

1St — 8t

and suppose that X is endowed with a Z/2Z-action, generated by p : X — X.

Lemma 3.1. Let (X,0X, p) be as above. Let f : (0X,p) — (S',1) be an equivariant map, that is,
f =to fop, and suppose there exists x, € 0X such that f(x,) = 1. Then f admits an equivariant
extension F : (X, 0) — (S1,0).

Proof. LetG : X — S! be a (possibly nonequivariant) extension of f, and define H : X — S*!
as H = G- (10 Go p), where - is the group operation on S!. By construction H is equivariant. As f
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is equivariant, we have that ¢ o Go p is another extension of f, and hence that it is homotopic to
G. Therefore, the induced maps are the same.

G,=(toGop), : H(X,Z) — H,(S*,72) = Z.

It follows that H, = G, + (to Go p), = 2G,, and then H can be lifted to the twofold covering.

Choose the lift F such that F(x,) = 1. Observe that as f is equivariant, Hjzx = f - f, then
F|sx = f.Therefore, we only need to prove that F is equivariant. Notice that Fop is a lift of Hop =
toH. Therefore, we have that (F - F - (Fop) - (Fop)) = H-tH =1 and hence F - (Fop) = +1. As
F(x,) = f(x,) = 1 and f is equivariant, we have that F(x,) - F(o(x,)) = 1 and as X is connected
F - (Fop) =1, thatis, F = toFop. [l

Lemma 3.2. Let p : B* — B* be an orientation preserving, locally linear involution, with fixed-
point set homeomorphic to a 2-disk D. Let F C S* and £ C B* be two oriented locally flat surfaces
with L = 0F = 0%. Suppose that both F and X are p-invariant and that p reverses their orientations.
If both F and X are disjoint from Fix(p), then there exists a p-invariant, oriented, compact, locally
flat 3-manifold M C B*, disjoint from Fix(p) and such that OM = F U X.

Proof. Let N(D) and N(Z) be equivariant, closed tubular neighborhoods of D and X in B*. Let
X = B*\ (int N(D) Uint N(Z)).

Let Y be the complement in S* of an equivariant tubular neighborhood of dF U dD. Let N =
F X [—1,1] be and equivariant tubular neighborhood of F in Y. Observe that the restriction of p
actson N as

p:N—N
(x, 1) — (p(x), —1).

Let ¢ : R — R be a smooth, odd map such that ¢’ > 0 and

x for [x] < 1/2
) =4
sign(x) for |x| > 2/3
Then we can define an equivariant map
f . (NHO) — (Slat)
(x, 1) — ™%
and we can extend it to Y by setting f to be —1 outside N.

Such f is topologically transverse to 1 € S in the sense of [8, Definition 10.7] and f~1(1) is given
by the union of F and a nearby copy of X. Using Lemma 3.1 we can extend f to an equivariant
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EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS 13 of 44

map
f : (Xuo) — (Slil)’
which in turn gives us the equivariant map
idy Xf @ (X,0) — (X xS, px0)

x — (x, f(x)).

Consider now the quotient spaces of X and X x S! by the respective involutions. We have the
following commutative diagram

XxS! — 3 X
Js Jr

X xSH/(ext) —> X/p

where the vertical maps are twofold regular covering maps, Observe that the map idy X f induces
a map between the quotients

fiX/p— XxSH/(px0).

By construction ]_”| a(x /p) 18 topologically transverse to (0X X 1)/(p X t). According to [8, Theorems

10.3 and 10.8], f is homotopic relative to the boundary to a map g transverse to (X X 1)/(p X ¢).
As ¢ is homotopic to f, we can lift g to an equivariant map

g:(X,p) — (X xS, px0)

with g3x = idsx Xf and g topologically transverse to X X 1. Finally, M = g H(X x 1) is an equiv-
ariant, compact, orientable, locally flat 3-dimensional submanifold of X with 0M = F U X. O

4 | EQUIVARIANT ALGEBRAIC CONCORDANCE

In this section, we define an equivariant algebraic concordance group G” and a homomorphism
® : C — G”. We compare G” with the equivariant algebraic concordance group AC defined
in [23]. Finally, we use G” to obtain a lower bound on the equivariant slice genus of a strongly
invertible knot.

4.1 | Equivariant Seifert systems

Definition 4.1. Let (K, p, h) be a directed strongly invertible knot. An invariant Seifert surface of
type n for K is a connected, orientable surface F C S3 such that:

* F is p-invariant, that is, p(F) = F,

* h=Fix(p)NF,

+ the surface F obtained from F by equivariantly cutting along h is a p-invariant Seifert surface
for L}(K).
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N

FIGURE 5 The invariant Seifert surface G for the unknot.

Proposition 4.2. For any directed strongly invertible knot K and every n € Z there exists an
invariant Seifert surface of type n.

Proof. From [13], we know that for any (K, p, h) there exists a p-invariant Seifert surface F such
that Fix(o) N F = h. Cutting F along h we obtain a (possibly disconnected) orientable surface F
and the linking number between the components of dF would not be generally —n. Now let G be
the equivariant Seifert surface for the unknot described in Figure 5.

Observe that by cutting G along the fixed-point set we obtain a Seifert surface for a link with
linking number +1 between its components. In other words, G is an invariant Seifert surface of
type —1 for the unknot. Therefore, by taking the equivariant connected sum of F with an appro-
priate number of copies of G and/or its mirror image, we easily get an invariant Seifert surface of
type n for K. O

As a consequence of Lemma 3.2, we have the following proposition.

Proposition 4.3. Let (K, p, h) be a directed strongly invertible knot and F be an equivariant Seifert
surface for fZ(K ). Suppose that fl’)‘ (K) bounds an orientable surface £ C B* invariant under an invo-
lution of B* extending p (which we still denote by p). Assume that p has no fixed point on = U F.
Denote by gr and gs the genus of F and X, respectively. Then there exists a p,.-invariant submodule
H c H,(F, Z) such that:

* rank H > gp — g5 if 2 is connected and rank H > gp — g5 + 1 if Z is not connected,
* the Seifert form of F vanishes on H,
* forevery a € H, the linking number between o and the fixed axis is zero.

Proof. By Lemma 3.2, there exists a p-invariant oriented 3-manifold M C B, suchthatoM = FU
and M n Fix(p) = @.

Denote by V the kernel of H,(6M,Q) — H,(M,Q). It is easy to see that 2-dimV =
dim H,(6M, Q) = genus(dM), by standard duality argument (half-lives, half-dies principle) or by
computing the Euler characteristic of the exact sequence of the couple (M, dM).

Suppose now that X is connected. Then it is easy to see that genus(0M) = gr + g5 + 1 and that
the map induced by the inclusion i, : H,(F,Q) — H;(dM, Q) isinjective. AsdimV = gp + g5 +
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1 and dim H,(F, Q) = 2¢y + 1, we have that the preimage W of V in H,(F, Q) has dimension at
least g — gs.

Suppose now that X is not connected. Then genus(dM) = gr + g5 and the map induced by
the inclusion i, : H,(F,Q) — H,(0M, Q) has kernel of dimension 1. As dimV = gp + g5 and
dim H,(F, Q) = gr + 1, we have that the preimage W of V in H,(F, Q) has dimension at least
1+ 9p = 95-

Define H ¢ H,(F, Z) to be

H={x€eH|(F,z)|dne Z,n#0,nx € W}.

It is a well-known fact that the Seifert form of F is identically zero on H. As all of the maps
considered are equivariant, we get that also H is invariant under the action of p,, on H,(F, Z).

By the considerations above, the rank of H satisfies the inequalities stated in the proposition.

Finally, let « € H and let A C M be a 2-chain such that A = na for some integer n # 0. As
M is disjoint from the disk D of fixed points, it follows that lk(na,dD) = #(A N D) = 0, hence
lk(«, D) = 0. O

We use now the result given Proposition 4.3 to define a notion of equivariant algebraic
concordance for directed strongly invertible knots.

Definition 4.4. Let R be a commutative and unital ring. An equivariant Seifert system is a tuple
(6, p, h,1k), where

* 6 : M XM — Zis abilinear form on a free Z-module M of even rank,
* p: M — M isalinear involution,

* 0(p(x), p(»)) = 6'(x,y) :=6(y,x) for every x,y € M,

* 9 — 08! is unimodular,

s hilke Hom(M, 7Z),

* hop=—h,

¢« kop=Ik.

An equivariant Seifert system (6, p, h, lT() on M is said to be equivariantly metabolic if there
exists a submodule H € M such that

* rankM =2 -rankH

* p(H) = H, thatis, H is p-invariant,
* Qisidentically zeroon H X H,

* H c ker(h) n ker(Ik).

Let (K, p, h) be a directed strongly invertible knot and let F be an invariant Seifert surface for
K of type n for some n. Fix an auxiliary orientation on F.

We see now how F determines an equivariant Seifert system. As p reverses the orientation on
F, it is immediate to check that 85 (p,.(x), 0.(y)) = 6z (y, x) for every x,y € H,(F, Z), where O is
the Seifert form of F. As h C F, we have that h represents a class in H, (F,0F, Z). By duality and
universal coefficients, we can consider & as a homomorphism h : H,(F,Z) — Z, which maps
an oriented curve c in F to the algebraic intersection #(c N h). Finally, let A be the oriented fixed
axis of p. Then we have a homomorphism

k:H/(F,2)—z
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c+— lk(ct, A) + 1k(c, A),
where the c* is a nearby copy of ¢ outside F in the positive/negative direction. It is immediate
to check that the tuple (6, p,, h, 1k) is an equivariant Seifert system. We will denote by S(F) the
equivariant Seifert system determined by F.
Definition 4.5. Let (6;, p;, h;,1k;) for i = 1,2 be two equivariant Seifert systems defined over M

and N, respectively. Their orthogonal sum (8,, p,, hy,1K,) @ (65, p,, h,, Ik,) is the tuple (6, p, 1, Ik)
defined by

6. MON)X(M®N)— Z

((x15%2), 1, ¥2)) = 01(x1,y1) + 6,(x5, ¥,)

p:M®N —>M®N

p(x,y) = (p1(x), p2(»))

hik: M®ON —Z

h(x,y) = hy(x) + hy(y)
Ik(x, ) = Ty () + Ty ().

We say that (6;, p;, h;, ﬁ%), i = 1,2 are equivariantly concordant if the orthogonal sum between
(61,01, hy,1ky) and (=65, p, hy, 1k,) is equivariantly metabolic.

Definition 4.6. We define the equivariant algebraic concordance group G* to be the set of equiv-
alence classes of equivariant Seifert systems up to equivariant concordance. It is not difficult to
prove that the operation of orthogonal sum defines a group structure on GZ, by adapting the proof
of Levine [17, 18] in the case of the classical algebraic concordance.

Theorem 4.7. Let F C S be an invariant Seifert surface of type 0 for a directed strongly invertible
knot (K, p, h) and choose an orientation on F. The class of the equivariant Seifert system S(F) in G*
depends only on the equivariant concordance class of K. In particular, we have a well-defined group
homomorphism

®:C— CZ
[K, p, h] — [S(F)].

Proof. Let G be an invariant surface of type 0 for another directed strongly invertible knot J. We
can equivariantly perform the connected sum of F and G along their boundary so that FiiG is an
invariant Seifert surface of type 0 for the K#J. It is immediate to see that S(FIG) = S(F) @ S(G).
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EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS | 17 of 44

Therefore, to prove that the homomorphism @ is well-defined it is sufficient to show that S(F) is
equivariantly metabolic whenever the knot K = JF is equivariantly slice.

Let F be the equivariant Seifert surface for fg(K) obtained by cutting F. By Proposition 4.3,
there exists a p,-invariant submodule H of H; (F, Z), such that 2rank H = rank H 1 (F,7)+1and
the Seifert form of F vanishes on it.

Observe that we can regard H,; (F,2)as a p.-invariant codimension 1 submodule in H,(F, Z)
through the map induced by the inclusion. Moreover, H,(F, Z) is easily identified with the
kernel of h : H,(F,Z) — Z. The restriction of the Seifert form of F on Hl(ﬁ ,Z) clearly coin-
cides with the Seifert form of F. Again by Proposition 4.3, the linking number homomorphism
k:H 1(F,Z) — Zvanishes on H. Therefore, H is an equivariant metabolizer for the equivariant
Seifert system S(F). O

Remark 4.8. Let G be the equivariant Seifert surface of type —1 for the unknot described in
Figure 5. Let F be an invariant Seifert surface of type n for a directed strongly invertible knot
(K, p, h). Then by the proof of Theorem 4.7 and Proposition 4.2 follows easily that we can compute
the equivariant algebraic concordance class of K by

®(K) = [S(F) + nS(G)] € G~.

Similarly, observe that in order to compute ®(K) it is not relevant in Definition 4.1 that F \ h is
connected. In fact, suppose that F \ & is not connected. Then F HGHG is an equivariant Seifert
surface of type 0 for K, where G is the mirror image of the surface G in Figure 5. Hence, by
definition ®(K) = [S(FEGEG)] = [S(F)] + [S(G)] + [S(G)]. As[S(G)] = —[S(G)], it follows that
O(K) = [S(F)].

Proposition 4.9. Let A be the concordance group of algebraically slice knots, that is, the kernel of
@ : C —> G~. Then the kernel of ® : C —> G* contains a copy of A, namely, t(A) C ker(®).

Proof. Let K be an oriented knot representing a class in .4 and let F be a Seifert surface for K.
Then we can compute ®(x(K)) using as invariant surface ©(F) = Fhr(F), where analogously to
Definition 2.15, the involution of ©(K) exchange F and r(F).

Identifying H,(x(F),Z) = H,(F,Z) ® H,(F, Z), it is not difficult to see that the equivariant
Seifert system of t(F) is of type S(x(F)) = (6, p, 0,0), where

_(6r O
9‘(0 e;)
(0 id
P=\id o)

Therefore, if H C H,(F,Z) is a metabolizer of 8, then H @ H Cc H,(x(F), Z) is an equivariant
metabolizer for S(x(F)). As t is injective (see Corollary 2.16), we have that ker(®) contains a copy
of A. Ol

Remark 4.10. As a consequence, it follows from [15] that ker(®) contains a subgroup isomorphic
to Z%, and from [19] that it contains a subgroup isomorphic to Z%°.
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4.2 | Equivariant Blanchfield pairing

In this section, we show that ® : C — CZ lifts the homomorphism ¥ : C — AC defined in [23].
In particular, ¥ factors through a reduced version @}Z of the equivariant algebraic concordance

group.

Definition 4.11. An equivariant Seifert form over a ring R is a couple (6, p), where

e 8 : M XM — Ris abilinear form on a free R-module M of even rank,
* p : M — M is a R-linear involution,

* 8(p(x), p()) = 6'(x,y) := 6(y, x) for every x,y € M,
» 0 — 6! is unimodular, that is, induces an isomorphism between M and Hom(M, R).

We say that an equivariant Seifert form (6, p) on M is equivariantly metabolic if there exists a
submodule H C M such that

e rankM =2 -rank H
* p(H) = H, thatis, H is p-invariant,
» Qisidentically zero on H X H.

Similarly to Definitions 4.5 and 4.6, we can define a notion of orthogonal sum between equiv-
ariant Seifert forms and construct the reduced equivariant algebraic concordance group Cf as the
set of equivalence classes of equivariant Seifert forms over R up to equivariant concordance.

In the following, we mainly focus on equivariant Seifert forms over Z and we will often omit to
specify the ring R, implying R = Z. Only Section 6 will be mostly devoted to studying equivariant
Seifert forms over Q.

Clearly, there exists a forgetful homomorphism

which is surjective, as it admits a natural section
515 — &

given by mapping an equivariant Seifert form (9, p) to the equivariant Seifert system (6, p, 0, 0).
In particular, GZ splits as

G~ C? @ ker(r).

We will denote by ®, the map given by the composition

o oL
Levine [17, 18] showed that the algebraic concordance group is isomorphic to Z* @& Z° @ Z°
and that the knot concordance group surjects onto it. In Section 6, we provide a partial result,
similar to Levine’s one, on the structure of Crz
The results in Section 6 are obtained by adapting the arguments used in [17, 18] to the strongly
invertible setting. However, these ideas do not generalize easily to study G: while the restric-
tion on the equivariant metabolizers given by the homomorphism h and Ik provide valuable
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information (as shown in Example 4.13), it is not clear how to adapt these arguments to manage
these additional restrictions.

In [23], Miller and Powell study the action of the strong inversion p of a strongly invertible
knot K on its Alexander module .A%(K) and on the Blanchfield pairing on A% (K). In particular,
they show that the action induced by p on .A%(K) is an anti-isometry of the Blanchfield pairing
(Proposition 2.8). Moreover, they define an equivariant algebraic concordance group AC as the
Witt group of abstract equivariant Blanchfield pairings (Definition 4.3) and they prove that taking
the Blanchfield form of a strongly invertible knot (K, p) together with the involution on .A%(K)
induced by p defines a homomorphism (Proposition 4.6)

IP:C~—>XC'.

In [9], the authors prove that the Alexander module and the Blanchfield pairing of K can be
expressed in terms of the Seifert form of a Seifert surface F. If A is a matrix representing the Seifert
form of F, with respect to a basis B, and genus(F) = g then A%(K) = Z[t*']%9 /(tA — A")Z[t*']9
and under this identification the Blanchfield pairing is equivalent to

BL : AZ(K) x AZ(K) — Q()/Z[t*']

(x, ) — x(t = 1)(A - tA)'Y,

where * is the Z-linear involution given by ¢ — ¢~!. It is not difficult to see, as pointed out in
the examples in [23], that if F is p-invariant and P is the matrix representing the action of p on
H,(F, Z) with respect to the basis /3, we have that the action of p on .A%(K) can be read as

p. ¢ AXK) — AX(K)

x — PXx.

The same construction carried out for abstract equivariant Seifert forms and abstract
equivariant Blanchfield pairings proves the following theorem.

Theorem 4.12. There exists a natural group homomorphism
& — Ic
that makes the following diagram commutative

C 2y o7 &7
\\L
AC.

It follows from its definition that AC does not distinguish a directed strongly invertible knot
from its antipode. On the other hand, in Section 5 we prove that the equivariant signature [1] can
be retrieved from CVZ As the equivariant signature depends on the choice of half-axis for a strongly
invertible knot, so is C‘VZ (see Remark 5.15).
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FIGURE 6 The invariant surface F with boundary K13n1496. The chosen half-axis / is the solid one. The
curves a, 3, , 8 form a basis of H, (F, Z).

We conclude with the following example, which shows that the equivariant algebraic concor-
dance class of a knot is able to obstruct smooth as well as topological equivariant sliceness for
knots with trivial Alexander polynomial, contrary to .AC.

Example 4.13. Consider the knot K13n1496 as the directed strongly invertible knot (X, p, h) that
bounds the surface F in Figure 6, where the strong inversion is given by the zz-rotation around the
vertical axis and the chosen oriented half-axis is the red one in the figure.

One can easily check that K has trivial Alexander polynomial and hence that its image is trivial
in the equivariant algebraic concordance group AC defined in [23]. However, Boyle and Issa [2]
prove that K is not equivariantly slice. We show that the same result can be obtained by using G~

The surface F is an invariant Seifert surface for K, so we can use it to compute the class of K
in GZ. With respect to the basis {«, 8, ¥, 8} of H,(F, Z) the Seifert form and the involution p,, are
represented by the matrices A and P, respectively:

1 1 0 O
A= 0 -1 -1 0
0o -1 -1 -1
o 0 o0 -1
1 1 0 O
p= 0 -1 0 O .
0 0 -1 0
0 O 1 1
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The homomorphisms /4 and Ik are represented by the covectors:

h

(0 -1 1 0)
k=(-2 -1 1 2).

One can easily check that H = (a + 6,2(8 — y) — o + §) is a p,.-invariant submodule of rank 2 on
which the Seifert form of F vanishes.

Therefore, the class of K represents the identity also in the reduced equivariant algebraic
concordance group C;Z

However, H = ker(h) nker(Ik) = (8 + y, @ + &) has rank 2 but the Seifert form does not vanish
on H, therefore the class of K is nontrivial in GZ.

4.3 | Lower bound on the equivariant slice genus

In [23], the authors obtain a lower bound on the equivariant slice genus of a strongly invertible
knot using the Blanchfield form. As Miller and Powell’s invariant factors through GZ, we can get
the same lower bound indirectly. However, we prove in this section that it is possible to obtain a
different lower bound on the equivariant slice genus using the additional information contained
in CZ

Definition 4.14. Let = C B* be a properly embedded orientable surface, with boundary a strongly
invertible knot (K, p). Suppose that £ is invariant under an involution of B* which extends p, and
denote by D = D? the fixed point set of p in B*. Then intersection = N D consists of an arc joining
the two fixed points on K and finite set I of fixed S'. We define the complexity of T as

c(Z) = genus(X) + |T.
Then, we define the slice complexity of a strongly invertible knot (K, p) as

se(K, p) = minc(Z),

where T ranges among the orientable surfaces in B* with boundary K, invariant under an
involution of B* extending p.

Remark 4.15. By Smith theory (see [4]), we have that |T'| < genus(Z). Therefore, for every strongly
invertible knot (K, p) the following inequalities hold

74(K) < sc(K) € 2 g4(K).

Let (K, p, h) be a directed strongly invertible knot, and let £ C B* an invariant surface for K as
in Definition 4.14. Denote by D the fixed point set in B*, oriented compatible with the half-axis h.
Observe that D \ X can be subdivided into two subsurfaces in a checkerboard fashion, as described
in Figure 7.

Let S be the subsurface containing the chosen half-axis &, and orient every y € T and the fixed
arc a as the boundary of S.
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FIGURE 7 Anexample of how to get the orientation of the fixed point set D.

Let D X D? be an equivariant tubular neighborhood of D in B*. Pick an auxiliary orientation on
Z and observe that ¥ induces on every y a nowhere vanishing section s, of D X D?, which we can
regard asamap s, : y = S' — S'. We call the degree of s, the framing f(y) € Z of y. It is easy
to see that it does not depend on the auxiliary orientation on .

Similarly, £ induces on a a nowhere zero section of D x D2, which we complete to a sec-
tion on a U h using the section induced on h by a band B C S* which gives the 0-butterfly
link of K (see Definition 2.8). Call the degree of the associated map S' — S! the framing f(«)
of a.

Finally, we say that X is an invariant surface type n for (K, p, h), where

n=f@+ ) f@).

yer

Proposition 4.16. Let > C B* be an invariant surface of type n for a directed strongly invertible knot
(K, p, h). Then, there exists an invariant oriented surface $ ¢ B*with boundary fZ(K ), with no fixed
points and such that

a cX)-1if S is connected,
genus(%) < -
c(2) if ¥ is not connected.
Proof. On the set of fixed circles X = I' U {or U h} consider the partial order given by the nesting
of circles, seen as circles in the fixed disk D. First of all, we want to remove all of the fixed circles.
We do so by applying two moves.
Move 1: Suppose there exists a minimal element y € ' C X with framing zero. Let D,cD
be the disk bounded by y. As f(y) = 0 the section induced by X on y of the equivariant tubular
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FIGURE 8 An example of choice of the arcs 3, in blue.

neighborhood of D extends over D, to a nowhere vanishing section, which we can take to be
equivariant. Therefore, we can perform an equivariant surgery of ¥ along D, obtaining a surface
¥/ of the same type, with less genus and fixed circles. Replace T by 2.

Move 2: Let y € T be a minimal element with f(y) # 0 and let £ € X be a circle such that there
exists an arc B C D \ X joining y and & (see Figure 8). Then, we can find an equivariant D! x D?
inside an equivariant tubular neighborhood D! x D3 of § such that (D) x D? C =. We perform
an equivariant surgery along D! x D?, obtaining a surface =’ with genus(Z’) = genus(Z) + 1. One
can check that the circles y and € were joined during the surgery into a new fixed circle with
framing f(y) + f(&). Therefore, ¥’ has the same type of =. Replace = by ¥’.

Applying Move 1 whenever possible and Move 2 in the other cases, we get an invariant surface
¥/ of type n with fixed-point set consisting of only one arc. Observe that we have to apply Move
2 at most #I" times. As in Remark 2.13, we can consider the equivariant band move on K along h
that gives fZ(K) as an equivariant cobordism C between K and fZ(K). Now glue together C and
¥’ along K, obtaining a surface £/, with genus(Z’) < ¢(Z). By construction, the fixed point set of
the involution on X" consists of a single circle, with framing induced by ' equal to zero. Finally,
apply Move 1, obtaining an invariant surface 3 with boundary fl’)’(K ) and without fixed points.
Observe that if the final Move 1 does not disconnect the surface, then genus(Z) = genus(2”) — 1 <
¢(Z) — 1. Otherwise genus(f) = genus(Z") < c(2). O

Definition 4.17. Let S = (8, p, h,1k) be an equivariant Seifert system on M =~ Z*". A partial
metabolizer for S is a p-invariant submodule H C ker(h) N ker(lk) such that 6, ;; = 0. We define
the algebraic complexity of S as ac(S) = m — k, where

k = max{rank(H) | H is a partial metabolizer of S}.
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Proposition 4.18. The algebraic complexity is constant on the equivariant algebraic concordance
classes. Therefore, it induces a well-defined map
ac . GZ — N.

Proof. LetS; = (A;,P;, h;,1k;), i = 0,1 be two equivariant Seifert systems. To prove that the alge-
braic complexity does not depend on the representative of a class in G it is sufficient to show that
if S, is equivariantly metabolic then ac(S, @ S;) = ac(S;). Let H, is a metabolizer for S, and H;
is a maximal rank partial metabolizer for S; then H, @ H, is a partial metabolizer for S, @ S;,
showing that

ac(Sy & Sy) < ac(Sy).

For simplicity, consider the equivariant Seifert systems to be defined over Q coefficients. It can
be seen, as in the proof of Lemma 6.1, that passing from Z to Q coefficients does not change the
maximal rank of a partial metabolizer. Denote by V; the m;-dimensional vector space underlying
S;. Let H C V|, @ V, be a maximal partial metabolizer for S, @ S,;, H, be a metabolizer for S,
and W a complement of H,, so that V; = H, @ W. Denote by k the dimension of H and let {«; =
(X;» ¥i>Zi)}i=1,.. x be a basis of H, where x; € H, y; € W and z; € V. Up to base change, we can
suppose that y,, ..., y, are linearly independent and that y,, ; = --- = y;, = 0. Denote by Y the span
of y,...,¥,. Therefore, for r + 1 < i < k we have a; = (x;,0, z;). In particular, observe that the
subspace spanned by {a;}, 1<« is still invariant under the action of (P, @ P;). Repeating the
process, we can assume after a change of basis that z, 4, ..., z,, are linearly independent and
thatz, .., =,..,= z, = 0. Denote by Z the span of z, 1, ..., z, ;. Observe that Z is the projection
onto the V; summand of («; | ¥ +1 <i < k), hence P,(Z) =Z. Now for r + 1 <i,j <r+s we
have that

0=(4 ®A1)(06i,0(j) = Ao(xi,xj) +A1(Zi,zj) = Al(Zi,zj),
0 = hy(x;) + hy(z;) = hy(z)),
0 = Iky(x;) + Ik, (z) = Ik, (z)).

In other words, Z is a partial equivariant metabolizer of dimension s for S;. Hence, it is now
sufficient to show that s > k — m,.

As for r+s+1<i<k we have that a; = (x;,0,0) are linearly independent, hence X =
(x; |r+s+1<i<k)isa(k — s —r)-dimensional subspace of H,. Moreover, observe thatX 1Y,
where 1 means orthogonal with respect to the skew-symmetric form A, — Af). On the other hand,
X L Hyand HyNY = 0. As A; — A} is nondegenerate we have that

2my — (k —r —s) =dimX* > dimHy, + dimY = m + 7,
and therefore s > k — m,, that is, the opposite inequality ac(S, @ S;) > ac(S;) holds. O

Theorem 4.19. Let (K,p,h) be a directed strongly invertible knot and let ®(K) € G be its
equivariant algebraic concordance class. Then the following inequality holds

294(K) > se(K) > min ac(®(K) + nS(G)),
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where G is the invariant Seifert surface of type —1 for the unknot in Figure 5.

Proof. Let = C B* be any invariant orientable surface with boundary K and let n be the type of =.
Let 3 C B* be the invariant orientable surface with boundary f; (K) and no fixed points obtained
from T by Proposition 4.16. Take now an invariant Seifert surface F C S* of type n for K. By
Proposition 4.3 there exists a partial metabolizer H C H,(F, Z), with rank H > g — c(Z). There-
fore, ¢(X) > g —rank H > ac(S(F)) > min,,c, ac(®(K) + nS(G)). Taking the minimum over X,
we get

sc(K) = rnnelg ac(®(K) + nS(G)).

g

Remark 4.20. As the equivariant slice genus and the slice complexity do not depend on the choice
of the direction, one can replace (K, p, h) by its antipode (K, p, k') in Theorem 4.19 to obtain a
(potentially) better lower bound (Figure 8).

5 | EQUIVARIANT GORDON-LITHERLAND FORM

In this section, we define a homomorphism from C? to a simpler group W(Q) of algebraic concor-
dance, namely an equivariant version of the Witt group of Q. Then we characterize the image of
a directed strongly invertible knot in W(Q) in terms of classical Witt invariants. Finally, we prove
that the equivariant signature defined in [1] factors through W(Q).

Definition 5.1. Let [ be a field. An equivariant symmetric form is a pair (Q, p) where Q is a
symmetric, bilinear, and nondegenerate form on a finite-dimensional F-vector space V and p is
a Q-isometric involution of V. We say that (Q, p) is equivariantly metabolic if dim V is even and
there exists a half-dimensional p-invariant subspace W C V such that Q. = 0.

Again, analogously to Definitions 4.5 and 4.6 we can define a notion of orthogonal sum and con-
cordance between equivariant symmetric forms and define the equivariant Witt group W(F) of F
to be the set of equivalence classes of equivariant symmetric forms up to equivariant concordance.

Given an equivariant Seifert form (6, ) defined over a Z-module M, we can define an
equivariant symmetric form on M ®, Q@ by (6 + 6%, p).

It is immediate to see that this association induces a group homomorphism
G — W(a.

r

Denote by @y, : C — W(Q) the map given by the composition

¢ — QZ — W(Q).

Notice that the map @y, maps the equivariant concordance class of a directed strongly invertible
knot (K, p, h), to the Witt class of the couple (G, p,), Where F is an invariant Seifert surface of
type 0 for K and (G, p,.) is the couple given by the Gordon-Litherland form on H,(F, @) and the
action induced by p.
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5.1 | A characterization of the equivariant Witt class

Now we show that given a directed strongly invertible knot K, the equivariant Witt class @y, (K)
depends only on the (classical) Witt class of K and qb(K) (see Definition 2.14).

Remark 5.2. Let (Q, p) be an equivariant form over @ and let E; be the 1-eigenspace of p, for
A =+1.Givenv € E|, w € E_, clearly

Q(v,w) = Qv, —w) = —Q(v,w) = Qv,w) = 0.
Hence, E; and E_, are orthogonal and we can decompose the form as
@Q,p) = (Qg,,id) ® (Qp_,, —id).
This gives us an isomophism

(., 7)) W(Q) — W(Q) @& W(Q)

Q.01 — ([Qe ] [Qe])-

We will denote by @}, = 7, 0Py : C — W(Q) the induced homomorphisms.
Using the description above of W(Q) we can give a new definition of the equivariant signature.

Definition 5.3. Denote by o : W(Q) — Z the signature homomorphism. Define the equivari-
ant signature as ¢ = (co®;, — aoCD;V) :C— Z.

We show now how the invariants we just defined are related to some of the invariants defined
in [2] and [1].

Definition 5.4. Let A be a nondegenerate symmetric n X n matrix and let k be a nonzero inte-
ger. Define M, (A) = k - A. Clearly, if A is metabolic, M;(A) is so. Moreover M; (A) & M;(B) =
M, (A @ B). Therefore, this induces a well-defined homomorphism

M, : W(Q) — W(Q)

[A] — [M; (A)].
It is immediate to see that M, oM, is the identity, hence M, is an isomorphism.

Lemma 5.5. Let F be an invariant Seifert surface of type O for a directed strongly invertible
knot (K, p, h) and let F be the corresponding Seifert surface for fg(K). Then the quotient surface

F=F/pcC $3 =53 /p is a spanning surface for qb(K) with zero relative Euler number e(F) (see
Definition 2.17).

Proof. Pick a representative of the semi-orientation on fg(K ) and denote the components of the
link by H and J. Let H Fpea nearby longitude of H missing F. Then the projection 7(H F )isa
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longitude of qb(K) missing F. To show that e(F) = Ik(qb(K), 7(H F )) = 0 it is sufficient to prove
that [HF | = 0 € H,(S3 \ H, Z). As HF is disjoint from F, we have that Ik(HF, H) + lk(HF N =0.
By definition of 0-butterfly link we have that 1k(H", Fy ) =1k(H,J) = 0, therefore 1Ik(H", F H )=0.
In other words, [Hf | = 0 € H,(S3 \ H, Z). O

Proposition 5.6. Let (K, p, h) be a directed strongly invertible knot. Then

‘Da/ (K) = M,(py (qb(K)),

where @y, (qb(K)) is the Witt class of qb(K).

Proof. Let F be an invariant Seifert surface of type 0 for K and let F be the corresponding Seifert
surface for fg (K). First of all, observe that F can be obtained from F by attaching an equivariant
band B. As p reverses the orientation of the core of B, it is not difficult to see that the dimen-
sion of the (—1)-eigenspace of p, increases by one going from H,(F, Q) to H,(F, Q). Hence, the
1-eigenspace of p, is fully contained in H,(F). Let v : (S3,F) — (S3, F) be the quotient projec-
tion, given by the action of p. The quotient surface F is a  spanning surface for qb(K). Observe
that the quotient projection 7 is a twofold covering F — F. Take now an oriented curve c in F,
representing a class in Hl(F), and lift it to a class tr(c) = 7~ '(c) € H,(F). This defines a transfer
homomorphism (see [4] for details) tr : H,(F) — H,(F). By construction p, (tr(c)) = tr(c), that
is, the image of the transfer map is contained in the 1-eigenspace E; of p,.. The composition 7o tr
is given by

m.otr : Hy(F) — H,(F)

c+— 2c,

hence tr is injective. Moreover, tr is clearly surjective on E;: given a p-invariant class d € E,
we can project it by 7z, and lift it again, showing that 2d € im(tr). Finally, we show that the
transfer map behaves well with respect to the Gordon-Litherland form. Given c,d € H; (F) let
S be an oriented surface in § with S = J where d is d pushed out of F “in both directions
simultaneously” (as in the definition of the Gordon-Litherlan form). In this way, we have that
Gr(c, d) = Ik(c, d) = #S n c. Up to a small isotopy, we can suppose S transverse to the branching

locus. The lift 7~1(S) is an oriented surface in S3 with boundary tr(d) and we can use it to calculate
Ik(tr(c), tr(d)) = #(z~1(S) N tr(c)) = 2(#S N c).
It follows that the Gordon-Litherland forms are related by
Gg(tr(c), tr(d)) = 2 - G(c, d).
Therefore, the transfer map gives an isometry
r: (H,(F),2- Gz) — (E1,Gp).

Finally, by Lemma 5.5 we have that e(F) = 0 and hence by Proposition 2.19 that the Gordon-
Litherland form on F represents the Witt class of qb(K). O
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As an immediate consequence, we get the following corollary.

Corollary 5.7. Let K be a directed strongly invertible knot and let A and B be symmetric matrices
representing the (nonequivariant) Witt classes of qb(K) and K, respectively. Then the equivariant
Witt class of K is represented by the couple

24 0 0)(d 0 0
oK)=l 0o —24 ol,Jo —id o
o o BJlo o -id

5.2 | The equivariant signature

We recall now the definition of equivariant signature introduced by Alfieri and Boyle [1] and we
prove that it is equivalent to the one in Definition 5.3.

Given a knot K C S we denote by Z(K) the twofold cover of S branched over K. Given a
properly embedded and connected surface F C B4, we denote by %(F) the twofold cover of B*
branched over F, and by 7 the covering transformation of Z(F).

Lemma 5.8 [2, Proposition 12]. Let p be an orientation preserving involution of B* such that Fix(p)
is a 2-disk D. Let F C B* be a properly embedded and connected p-invariant surface on which p acts
nontrivially. Then, there exists a lift p of p, that is, the following diagram commutes

S(F) —5 (F)
Iz Iz

B* —2 5 B4
In fact, there exist exactly two such lifts, namely p and tp.

Now let (K, p, h) be a directed, strongly invertible knot and let F C B* be a properly embed-
ded connected surface with 0F = K (not necessarily orientable), invariant with respect to some
extension of p to B* (which we still denote by p).

Before introducing the equivariant signature it is useful to better describe the fixed point set of
the lifts of p given by Lemma 5.8. We do so in the following remark

Remark 5.9. Let D be the fixed point disk of B*. The intersection DN F = Fix(p|p) is the dis-
joint union of an arc joining the fixed point of K and a finite number of S' and isolated points.
Take x € Fix() and observe that porr(x) = mop(x) = m(x), therefore Fix(p) C 7~ (D). Moreover,
note that gor(x) = 70p(x) = 7(x), that is, Fix(9) is r-invariant. Take now x € 7~ '(F n D). Then
2(x) € 1 (pom(x)) = {x,7(x)} and as t(x) = x we have that x € Fix(p), that is, 77 1(F n D) is
fixed pointwise by p. Let Cy, ..., C,, the connected components of D \ F. As p|c, is the identity,
7 and top act either as the identity or as 7 on 7~(C;). Therefore, exactly one of the lifts fixes
pointwise the preimage of C;, while the other one has no fixed point in 77!(C;). Let C; and C j be
adjacent components, that is, separated by a circle or an arc in D N F. Then, 7~!(C;) and 7~!(C )

cannot be both fixed pointwise by p. Otherwise, 7~1(C;) and 7—1(C ;) would be two fixed surfaces,
both contained in Fix(p) and intersecting in a nontrivial way in their interior and this would imply
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that Fix(p) has a component which is not a manifold. Therefore, if we decompose D \ F = A U B,
where A and B are union of nonadjacent components, we have that the fixed point sets of the two
lifts of p are, respectively, 7~ 1(A) and 7~ (B).

Observe that by Remark 5.9 exactly one lift g of p to X(F) fixes pointwise h = 7~ 1(h). The
fixed point set of p is the disjoint union of a (eventually disconnected) surface A, with A = h,
and a finite set of points. Recall now that the 0-butterfly link Lg(K) is obtained by performing
a band move on K along a band parallel to &, in such a way that the linking number between
the components of Lg(K) is zero. Let y be one of the arcs of this band parallel to h. As the end-
points of y meet the branching set, its preimage ¥ in Z(F) is a closed curve. Given a perturbation
A’ of A with A’ =7 we define the relative Euler number e(A,7) as the algebraic intersection
#(ANA).

Definition 5.10 [1]. The equivariant signature of (K, p, h) is defined as
G(K) = a(Z(F),p) — e(A, 7),

where o(Z(F), p) is the g-signature (see [1] or [11]) of the pair (Z(F), 9).

Using the G-signature theorem [11], Alfieri and Boyle prove that the equivariant signature is a
well-defined invariant for equivariant concordance and in particular defines a homomorphism

g:.C—Z.

Remark 5.11. Actually, Alfieri and Boyle [1] define the equivariant signature slightly differently,
exchanging the role of the two half-axes h and h’. It is immediate to check that our definition
of equivariant signature for the directed strongly invertible knot (K, p, h) coincides with their
definition for the antipode (K, p, h’) = a(K, p, h). Hence, the two invariants are essentially the
same. However, it is easier to relate Definition 5.10 to the equivariant algebraic concordance group
(see Theorem 5.13).

In [1, section 6], the authors explain how to easily compute the relative Euler number for the
equivariant pushoff of a spanning surface in B*. Using the following proposition it is possible to
easily compute the equivariant signature from an equivariant spanning surface.

Proposition 5.12 [2, Proposition 13]. Let (K, p, h) be a directed strongly invertible knot in S3. Let F
be a connected spanning surface for K, with p(F) = F. We still denote by p the radial extension of the
involution to B*. Let F be the surface obtained by equivariantly pushing the interior of F in B* and
denote by p the preferred lift of p to Y(F). Then under the identification (H,(F), Gp) = (H 2(2(}@"\)), Q)
the map of lattices p, : (HZ(E(ﬁ)), Q) — (Hz(Z(ﬁ)), Q) is equivalent to:

s o, (H{(F),Gp) — (H{(F),Gp)ifh ¢ F,
* _p* : (HI(F)’QF) — (HI(F)’QF) lfh CF.

Theorem 5.13. The equivariant signature introduced in Definition 5.3 coincides with the one given
in Definition 5.10.
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Proof. Let F be an invariant Seifert surface of type 0 for a directed strongly invertible knot (K, p, h).
According to Definition 5.3, 6(K) is the equivariant signature of (H,(F), Gy, —p..). By Lemma 5.8
and Proposition 5.12, this quantity coincides with the g-signature of the pair (Z(F), B), where 3(F)
is the twofold cyclic cover branched over a copy F of F radially pushed into B* and 7 is the pre-
ferred lift of the radial extension of p to B*. Hence, it is sufficient to prove that the relative Euler
number vanishes. Let y be a parallel copy of h on F. As cutting F along h produces an equivariant
Seifert surface for fg(K), the lift 7 of y in 3(F) is the canonical longitude of h. Let D, D’ be the
traces of h and y, respectively, along the radial isotopy that pushes the interior of F in B*. As F is
obtained from F C S3, one can see that Fix(pp) consists solely on an arc joining the fixed points
of K.

Then by Remark 5.9 the fixed point set of g consists of the lift A of D. The lift A’ of D’ is a
perturbation of A such that A’ = 7, and as they are disjoint we have

e(A,Y)=#(ANA)=0
that is, the relative Euler number vanishes. O

Remark 5.14. As aconsequence of Theorem 5.13 and Corollary 5.7, we obtain the following formula
a(K) = a(K) — 20(qb(K))

for the equivariant signature of a directed strongly invertible knot K in terms of classical signa-
tures.

Remark 5.15. As shown by Alfieri and Boyle [1, Proposition 7.3], the equivariant signature depends
on the choice of the half-axis for a strongly invertible knot. For example, they show in the proof
of Proposition 7.2 that 5(7,b* #m7,b™) # 0.

As the equivariant algebraic concordance homomorphism ¥ : ¢ — AC defined in [23] does
not distinguish the choice of half-axis, we get that 7,b*#m7,b~ has trivial image in AC.

On the other hand, as & factors through arz, we get that the image of 7,b* #m7,b~ is nontrivial
in QZ

r

6 | THE STRUCTURE OF THE EQUIVARIANT ALGEBRAIC
CONCORDANCE GROUP

In this section, we explore the structure of the reduced equivariant algebraic concordance group
@;Z. To do so, we introduce the notion of symmetric structure and we describe the equivalence
between equivariant Seifert forms over Q and symmetric structures.

Lemma 6.1. The natural homomorphism @? — G‘} given by the extension of coefficients
is injective.

Proof. Let (8, p) be an equivariant Seifert form over a free Z-module M, and denote by (8¢, pg)
its extension over M ® Q. Suppose H C M ® Q is a py-invariant metabolizer for 6, and let H, =
H n M. Then clearly H, is a p-invariant metabolizer for 6. O
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The lemma above ensures that no information is lost by considering rational coefficients instead
of integral ones. We focus now on determining the group structure of g?. In the following, we will
implicitly consider the equivariant Seifert forms to be over Q.

Definition 6.2. A symmetric structure is a triple (V, 8, S), where

* V is a Q-vector space,
* B is a bilinear, symmetric and nondegenerate form on V,
* S : V — Visalinear isomorphism which is self-adjoint with respect to £5.

We say that (V, 8, S) is metabolic if dim V is even and there exists a S-invariant half-dimensional
subspace W C V on which g is identically zero.
We define the orthogonal sum of two symmetric structures S; = (V, 8;,S;),i = 1,2 as

S1@S, =@V, ®B,5 @5,
We say that S; and S, are concordant if —S; @ S, is metabolic, where —S; = (V, —1, S1)-

Definition 6.3. We define the group G, of symmetric structures as the quotient of the set of
symmetric structures up to concordance, endowed with the operation of orthogonal sum.

Let (V,6, p) be an equivariant Seifert form. Let T be the endomorphism of V' given by the
composition

+6)

v 28y e

and let 3 be the bilinear form 6 + 6. It is easy to check that the following facts hold:

T is anti-self-adjoint with respect to 3,
* poT +Top =0,
* 0(x,) = 5 (B(x,y) + B(TX, ).

In particular, the last property implies that any subspace H C V is a p-invariant metabolizer for 8
if and only if is a (T, p)-invariant metabolizer for (.

Denote now by V, the eigenspace of p relative to +1. As poT + Top = 0, we have that T(V, ) =
V., and that v is T*-invariant.

Suppose now H C V is a (T, p)-invariant metabolizer for 8, andlet H, = HNV, . Aspisa §3-
isometry, V, and V_ are B-orthogonal and hence H., is a metabolizer for §|;, . As H is T-invariant
and T and p anticommute, we easily deduce that T(H, ) = H-. and hence that H . is T?-invariant.
Vice versa, let H, C V, be a T?-invariant metabolizer for Bv,- As T is anti-self-adjoint with
respect to 3, it is immediate to see that H = H, @ T(H, ) is a (T, p)-invariant metabolizer for

B.

Theorem 6.4. Using the notation above, we have that the following map from equivariant Seifert
forms to symmetric structures

V,6,p) — (V+"8|V+’T|2V+)
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induces an isomorphism between the equivariant algebraic concordance group G;Q and the group of
symmetric structures Gg,,,,,.

Proof. 1tis immediate to see that the map above is compatible with the orthogonal sum. From the
discussion above, we have that (V, 6, p) is metabolic if and only if (V, 5|v+, T|2v ) is metabolic.
+

Therefore, this map induces a well-defined and injective homomorphism between the two groups.
Vice versa, given a symmetric structure (V/, 8, S), we can construct an equivariant Seifert form on

V @V, as follows:
o_L1( B B:S
2\-B-S -B-S)°

_fid 0
P=\o —id)
It is easy to check that (V @ V, 0, p) has (V, 3, S) as associated symmetric structure. O

Let 6 be a Seifert form on a space V. Recall that the Alexander polynomial of 6 is defined as
Ap(t) = det(A — tA"), where A is a matrix representing 6 with respect to some basis of V (which
is well-defined up to squares in Q).

Definition 6.5. Let p(t) € Q[t,t'] be a width 2d symmetric polynomial (i.e., such that p(t) =
p(—t)). We denote by 8(p)(s) € Q[s] the polynomial obtained by the following substitution

5<p)(s>=((1—zz)dp(%>> |
[s=A2

Observe that § is multiplicative, meaning that §(p - q) = 6(p) - 6(q). Moreover, § admits an
inverse: given g(s) € Q[s] a polynomial of degree d we can define

_ @+ DM [ —1)\2
o0 = q<<t+1> )

and it is not difficult to see that ! is the inverse of 8.

Remark 6.6. Let (V,0, p) be an equivariant Seifert form, with Alexander polynomial Ag4(¢). Let
(V,., B, S) be the associated symmetric structure. Then, from the discussion above, we have that
up to units in @ and factors (s — 1), the characteristic polynomial of S is given by §(Ag)(s). In
the following, given a directed strongly invertible knot, we will denote by §x(s) the polynomial
obtained by the formula in Definition 6.5 applied to the Alexander polynomial Ag(t) of K (which
is well-defined if we require that Ag(t) = Ag(t™1)).

Let (V, 3, S) be a symmetric structure and p(s) € Q[s] be an irreducible polynomial. We define
the p-component of V' as

v, = [ ker(p(s)™).

N>0

Clearly, V, is an S-invariant subspace of V.
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Lemma 6.7. Let p and q be distinct irreducible polynomials. Then V , and V , are orthogonal with
respect to 3.

Proof. Let N > 0 be big enough so that V, = ker(q(S)N). As p is irreducible and p # g, we have
that the restriction of g(S)" is an isomorphism from Vp toitself. Givennowv € V,andw € V,
there exists v’ € V, such that v = g(S)v'. We compute now

B, w) = Bg(SH V', w) = BV, q(S)Vw) = B, 0) = 0,

therefore v, and V, are orthogonal. O

In particular, the restriction of 8 on V, is nondegenerate and hence (Vp’BIVp’SIVp) isa
symmetric structure. The following theorem is an immediate consequence of the lemma above.

Theorem 6.8. Let F C Q[s] be the set of irreducible and monic polynomials different from q(s) = s.
Then the group Gg,,,, splits as

gsym = @ gfym’

PEF

where nym is the subgroup of Gg,,,, determined by symmetric structures with characteristic polyno-

mial given by a power of p(s). In particular, the projection of a class (V, 3, S) € Gy, onto nym is
given by (V p, 5|vp,5|vp)~

D

Therefore, it is sufficient to study the summands G ,,, separately.

Proposition 6.9. Let (V,53,S) € nym. Then (V,(3,S) is concordant to (i7, [_3,5) so that V =
ker p(§).

Proof. Let N >0 be the least integer so that V = ker(p(S)") and suppose N > 2. Let W =
im p(S)N~! and let W+ be its orthogonal. Clearly, W is invariant under S, and so is W+. Observe
thatforv,w e V

B(p(SN v, p(HN'w) = Bv, p($)*N *w) = B(v,0) =0,

as2N — 2 > N for N > 2. Therefore, W ¢ W+, and by definition W is the radical of 6|Wi. Hence,

B induces a symmetric nondegenerate form [_3 on the quotient V = W+ /W. Similarly, as W and
W+ are S-invariant, we have an induced map S on the quotient.

It is easy to check that (V, E, S) is again a symmetric structure, and that by construction V=
ker(p(S)¥1)

Consider H = {(w, [w]) € V@V | w € W}. It is easy now to check that H is a metabolizer for
WV,-,5 v, [_3, S), showing that (V, 8, S) and (S, ,E, S) are concordant. O

Theorem 6.10. Let p(s) € Q[s] be an irreducible polynomial and consider the field F =
Q[s]/(p(s)). Then, we have a natural isomorphism

¢ — W(F).

sym
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Proof. Take (V,(,S) € nym. By Proposition 6.9, we can suppose that V' = ker(p(S)). Therefore, V
is naturally a F-vector space. Denote by tr : F — Q the trace map. As the symmetric Q-bilinear

form

FXF— Q

(X, y) = tr(x - y)

is nondegenerate, for every u,v € V there exists a unique e € F such that for all f € F

B(f - u,v) = tr(e - f).

This correspondence defines a symmetric F-bilinear form [—, —]z on V such that

[F
[—y
I

VXVTQ

is a commutative diagram.

Now let H be a Q-subspace of V. Then H is S-invariant if and only if is a F-subspace. Moreover,
itis easy to see that 8 vanishes identically on a F-subspace H if and only if [—, —] does. Therefore,
the homomorphism induced by this correspondence is an isomorphism. O

We can now summarize Theorems 6.8 and 6.10 in the following theorem on the structure of 69

Theorem 6.11. The reduced equivariant algebraic concordance group @Q is isomorphic to

Gl @ walsl/(ps)).
p(s)#s

pirreducible

Using classical results on the Witt groups of finite extension of @ (see [22] for details), one can
check that Theorem 6.11 implies that
CRx7°@7/27% §Z/AZ° & 7/8Z°,

r =

where G* stands for the direct sum of countable many copies of G.

Remark 6.12. It would be very interesting to know whether there exists any directed strongly
invertible knot K whose image has order 8 in @P . However, we would like to point out that several
of the summands in Theorem 6.11 have trivial intersection with CZ : it is not difficult to check that
many polynomials do not appear as factors of 5 (s) for any knot K.

For example, suppose that p(s) = s — 10 appears as a factor of 5 (s) = p(s)q(s) for some knot K
and some other polynomial q. Following Remark 6.6, we compute the Alexander polynomial of K
(up to units) as 5 1(5x ())(t) = 6~ (p)(t) - X (g)(t) = i(—9t —22 -9t - §71(g)(t). Therefore,
A (t) would be divisible by the primitive polynomial A(t) = 9t + 22 + 9t~1. As A(1) = 40, we get
a contradiction with the fact that Ax(1) = +1.
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‘We conclude this section with a consequence of Theorem 6.11, which can be interpreted as an
equivariant Fox-Milnor condition.

Theorem 6.13. Let K be a strongly invertible knot and let A (t) be its Alexander polynomial,
normalized so that A (t) = A (t71) and A (1) = 1. IfK is equivariantly slice then A (t) is a square.

Proof. Suppose A (t) does not satisfy the condition above. It follows that there exists an irreducible
polynomial g(t) # t appearing with an odd power in the prime decomposition of A (¢). If g(t 1) =
+t"¢(t) for some n, then one can easily see that A (¢) does not satisfy the (nonequivariant) Fox-
Milnor condition, therefore K is not even slice. On the other hand, if g(t) # +t" ¢(t), we know that
g(—t) appears in the factorization of Ax(¢) with the same exponent 2k + 1, as Ay is symmetric. Let
p(s) = 8(g(t)g(t™1))(s). We prove that p(s) is irreducible. Suppose that p(s) = p,(s)p,(s) is a non-
trivial decomposition. Then we would have a factorization of g()g(t=1) = 61 (p;)(1)~1(p,)(t),
where 6~!(p;)(t) are nontrivial symmetric polynomials. But this is not possible as g(t) and g(t~')
are nonsymmetric and irreducible. It follows that p(s) appears in the irreducible factorization of
dx(s) with exponent 2k + 1. Hence, the class of K in 59 is nontrivial (with respect to any choice
of direction), as its projection on the summand W(Q[s]/(p(s))) is represented by a form of odd
rank. Therefore, K is not equivariantly slice. O

Observe that Theorem 6.13 highlights an important difference between equivariant and
nonequivariant algebraic concordance. In fact, given a knot K, its nonequivariant algebraic con-
cordance class splits into components depending on the irreducible and symmetric factors of
Ak (t), while nonsymmetric factors of Ag(t) do not contribute. On the other hand, if K is a strongly
invertible knot, its class in 69 splits into components depending on all irreducible factors of 5, (s),
and these factors can correspond to irreducible nonsymmetric factors of Ag(t).

7 | NEW EQUIVARIANT SIGNATURES

In this section, we introduce new equivariant signatures, dependent on a parameter A € R. Then
we clarify the relation between &, the Levine-Tristram signatures and the equivariant signature
defined in [1]. Furthermore, we give an analysis of the discontinuities of these equivariant signa-
tures similar to the one in [21], and we use the signature jumps to obtain lower bounds on the
equivariant slice genus.

From now on, we always assume to work with coefficients in R if not mentioned otherwise. In
particular, when we refer to equivariant Seifert form or symmetric structure, we always implicitly
consider their natural extensions given by tensoring with R.

Definition 7.1. Let (A, P) be an equivariant Seifert form. Given 4 € R consider the hermitian
form

_ (A+ AYH

A
& 2

(1=DI =1 +P)+i(A—A".

We define the equivariant signature in 1 as

og(A +o(A
5,(A,P) = lim (Aze) + o “),
4 =0t 2

A 'v 'v20e ‘versesLT

"00SUIeLUPUO//:SaNY WOy

38UBD| 7 SUOLIWOD BARERID 3|gedtjdde ays Aq pauenob s sapne YO '8Sn JO s3I oy ARl 8auluQ A8]1AA UO (SUORIPUCD-PUR-SUBI/LI0D A3 1M A eIq U1 UO//SUNY) SUORIPUOD PUe SWB | A3 89S *[GZ02/T0/80] U0 ARiqiauluO AB]IA ‘esd 10 2101ednS 3eWION Blonos Aq 90002 0d0y/ZTTT"0T/I0p/wod A3 |im AReiqpul|



36 of 44 | DI PRISA

and the equivariant signature jump in 1 as

- (A —0(A;_
T,(A,P) = lim (Aire) — (A1)
-0+ 2

It is immediate to see that &; and J; define homomorphisms

G — Z.

In the following, given a directed strongly invertible knot K, we will denote by &;(K) and T,(K)
the compositions of the homomorphisms above with the map ¢ — Crz In other words, 7;(K) =
0,(A,P) and T, 1(A, P), where (A, P) is the equivariant Seifert form given by an equivariant Seifert
surface of type O for K.

Remark 7.2. Up to a base change, we can always suppose that

id o
P= <o —id)'

In such a base, we have that
and hence

which is easily seen to be congruent to

5 —-AB—-CD!C' 0
0 D)’

Ifwe denote by (V, 3, S) the symmetric structure associated with (A, P), we have that 2B represents
B, while S is given by —B~1C'!D~!C. Therefore, it is easy to see that —2AB — 2C'D~!C represents
the symmetric bilinear form over V' given by

‘85_1 N VXV_)[R

(x,y) — B((S — Dx, y).

It follows that A, is nondegenerate for every 1 € R except when 4 is a root of the characteris-
tic polynomial of S. When A, is nondegenerate then J,(A, P) = 0 and G,(A, P) is equal to the
signature of A;. Moreover, for every 4 € R we have that

~ T U(l@S—/l—e) - 0(65—/1+€)
a4, P) = 81—1>r(§l+ 2 )
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Finally, observe that

/llir_n 0,(A,P) =0(B) +o(D) and /llirf 0,(A,P) = o(D) — o(B).

Therefore, given a directed strongly invertible knot K, we get from Theorem 5.13 that
lim &;(K) = o(K) and lim &;(K) = &(K).
1o—00 A=+
Proposition 7.3. Let K be a directed strongly invertible knot. Then for any 2 < 0 and w € S such
that A(w — 1)? = (w + 1)? we have
5, (K) = 0,(K),

Proof. Let (A, P) be an equivariant Seifert form associated with K. As in Remark 7.2, we can
suppose that

B C id o —AB iC
A‘(—c‘ D> P‘(o —id) Aﬂ‘z(—icf D)'

As 1 < 0, we have that v/—1 € R and hence A, is congruent to

B iv-1C
2 =(A+A)+iV-4A-A".
<—i\/—_/1cf D > ( ) ( )

Finally, observe that (A + A") + i\/—A(A — A!) is a positive multiple of A, = (1 —w)A+ (1 —
w)A! forw = —T—'i—\/__}‘. Therefore, 5;(K) = 0(A,) = 0,,(K). Finally, observe that for a fixed 4 < 0,

Fiv-A
1+iv/—1 0
15iV-2

the solution to the equation A(w — 1)? = (w + 1)? are exactly w = —

Let (V,$3,S) be a symmetric structure. Given 1 € R, we denote by V4 = Unso ker((S — M.
Similarly to Lemma 6.7, it is easy to check that if 1 # u the V* and V# are S-orthogonal.

Lemma 7.4. Let (V,B,S) be a symmetric structure. Suppose that A € R is not a root of the
characteristic polynomial of S. Then for every « € R we have

a(V%, Bs_z) = sign(a — 1) - o(V*, B).

Proof. By a slight abuse of notation, we denote the restriction of S and 8 to V* again by S and
B.Fort e[0,1]let S, = (1 —1)S +taid and le_l(x,y) = B((S; — A)x,y). Observe that the only
eigenvalue of S, is « for every ¢ € [0, 1], therefore we have that S, — Aid is nonsingular and g _,
is nondegenerate for every t. It follows that the signature is constant in ¢, and hence

o(V*, Bs_1) = o(VE, (a — DB) = sign(a — D)o (V¥ B)

by evaluatingatt =0and ¢t = 1. O

Proposition 7.5. Let (A, P) be an equivariant Seifert form, and let (V,[3,S) be the associated
symmetric structure. Then for every A € R we have that T, (A, P) is equal to —o(V*, B).
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Proof. It follows from Remark 7.2 that is sufficient to study how the signature of 85_; variesin 1.
Let W C V the B-orthogonal to @, V*. Observe that W is S-invariant and that S|y has no real
eigenvalues. Therefore, the signature of the restriction of 85_; to W is constant in 4.

Asif u; # u, then VA1 and V* are orthogonal with respect to 8 and hence with respect to 55_;,
it is sufficient to consider the variation of the signature separately on every V<.

Let now € > 0 be small enough so that 4 is the only eigenvalue of S in [1 — ¢, 4 + €].

Then by Lemma 7.4 we have that o(V¥, B5_;,.) = o(V¥,Bs_,_.) for every u # A, while

o(V4, Bs_4e) = —0(VH, Bs_z_) = —o(V4, B).
As the signature of B_, varies only on the summand V*#, we get
Ti(A,P) = —=a(V*, B,2). [

Corollary 7.6. Let K be a directed strongly invertible knot, and let (A, P) be an equivariant Seifert
form obtained from an equivariant Seifert surface for K of any type. Then for every A € R, 1 # 1
we have that J,(K) = J,(A, P), that is, for 2 # 1, T, does not depend on the type of the equivariant
Seifert surface.

Proof. Let (A, P) be the equivariant Seifert form given by any equivariant Seifert surface F for K,
and let (V, 3, S) be the associated symmetric structure. Recall that we can obtain a surface of type
0 for K by performing a boundary connected sum of F with the type —1 surface G (or its mirror
image) as Lemma 4.2. Observe that the equivariant Seifert form given by G is

0 1 0 1
A = P =
=(0a) 7= )
and hence the associated symmetric structure is
Bo=@1)  Sg=(.

It follows that adding some copies of (A, P) to (A, P) does not modify the 1-eigenspace of S, for
1 # 1. Therefore, by Proposition 7.5 we can compute J,(K) with any equivariant Seifert surface,
for 1 # 1. O

Theorem 7.7. Given a directed strongly invertible knot K, for every 1 € R, 1 # 1 we have that

17,

7K >
!]4() 2

Proof. Let S = (A, P, h, Ik) be the equivariant Seifert system associated with an equivariant Seifert
surface F for K of any type. It follows easily from Definitions 4.17 and 7.1 that for every 1 € R

ac(S) = [6,(4,P)|/2,
and therefore

ac(S) > Ty(A, P)|/2.
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From Corollary 7.6, we know that for 4 # 1 the left-hand side in the inequality above does not
depend on the type of the surface F. Therefore, using Theorem 4.19 we get

~ se(K) _ [T(K)|
K)y> —=> ——.

94(K) 2 n O

Remark 7.8. Observe that the roots of 8, (s) correspond to pairs of roots of Ag(¢). First of all, notice

that —1,0, 1 cannot be roots of Ag(t). It follows from Definition 6.5 thatif z € C \ {-1,0,1}is a

root of Ag(t) then u(z) is a root of §x(s), where

u: C\{~1,0,1} — €\ {0, 1}

(53)

Z—> .

z+1

It is not difficult to see that u(z,) = u(z,) if and only if z; = (z,)~! and that u(z) € R if and only
if z € R or z € S!. Therefore, if {/11,/11‘1, ,Ad,/lgl} is the set of roots of Ag(t) (which come in
pairs because the polynomial is symmetric), we get that {u(41,), ..., u(44)} is the set of roots of
dx(s), and this correspondence preserves the multiplicity. In particular, real negative roots of 5 (s)
correspond to unitary roots of Ar(t), while real positive roots of §(s) correspond to real roots of
Ay (B).

Using Theorem 7.7, we obtain the following result, which can be seen as a generalization of [23,
Theorem 5.7].

Theorem 7.9. Let K and J be directed strongly invertible knots. Suppose that there exists A € R U S
such that

* Ais a root of Ag(t) with odd multiplicity,
* Aiisnotaroot of Aj(t).

Then for every n,m € Z, we have that Ag}(K";EJ’”) > |n|/4, where K"#J™ is the connected sum ofn
copies of K and m copies of J taken in any order.

Proof. Let (Vi,Bx,Sk) and (V;, 8;,S;) be any symmetric structures associated with K and J,
respectively, and let 4 = u(A). From Remark 7.8, we know that A is a real root of §(s) with odd
multiplicity. Therefore, dim(VI’}) is odd and |7;(K)| > 1 by Proposition 7.5. Vice versa, eas A is not
a root of &;(s), we have that dim(V#) = 0 and hence J;(J) = 0. It follows that |T;(K"#I™)| > |n|,
and hence ¢,(K"#J™) > |n|/4 by Theorem 7.7. O

We conclude this section with an example of application of Theorem 7.9.
Example 7.10. Let {K;};; be afamily of (algebraically) slice strongly invertible knots and {4,};c; C

R such that:

(1) 4;isarootof A Ki(t) with odd multiplicity,
(2) Ag,(4) #0fori# j.

Endow each K; with any choice of direction and consider the subgroup G; C C generated by
{K;}ics- It follows immediately from Theorem 7.9 that the image of G; in 69 has rank |I|.
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For example, take I C Z[¢] to be an infinite family of irreducible, nonsymmetric polynomials
of odd degree, such that

s f(Q)=1forall f €1,
o f(t) #£tdeog(t N forall f,g e1.

From [24], we know that for all f € I there exists a strongly invertible knot K ¥ with Alexan-
der polynomial AKf(t) = f(t)f(¢t~1). In particular, each K  is algebraically slice and the family
{K f} fel satisfies the conditions above (as each f has at least one real root with multiplicity one),
therefore it generates a subgroup of C of infinite rank.

Remark 7.11. Let G; C C be a subgroup defined as in Example 7.10, with I a countable infinite set.
Observe that the equivariant signature defined by Alfieri and Boyle takes values in Z, hence it
vanishes on a subgroup H; C G; such that G;/H; is either 0 or Z. Moreover, all Levine-Tristram
signatures vanish on Hj, as by hypothesis is spanned by algebraically slice knots. However, using
the equivariant signature jumps arguing as above, we have that H; surjects onto Z*. In partic-
ular, this shows that the {J;},., are actually new invariants, independent from Levine-Tristram
and Alfieri-Boyle signatures. For other concrete examples regarding the independence of J; from
Levine-Tristram signatures, see the Appendix.

APPENDIX A: EQUIVARIANT SLICE GENUS OF 2-BRIDGE KNOTS
Recall that every 2-bridge knot is strongly invertible, see [25]. We already know from [7] that any
given 2-bridge knot is not equivariantly slice and that has infinite order in C', independently of
the choice of strong inversion and direction.

In this appendix,” we apply the results of Section 7 to study the equivariant slice genus of 2-
bridge knots.

Definition A.1. Let K be a directed strongly invertible knot. We denote the maximal signature
jump of K by

J(K) = sup [T, (K)|.
A#1

Let F be the family of 2-bridge knots with crossing number less or equal to 12 and with (aver-
aged) Levine-Tristram signature function o, identically zero. For every knot K in 7, we report in
Table Al its

* name,
* 2-bridge notation p/q,

 order in C, denoted by Ord,
* maximal signature jump J*.

This result is stated in the smooth category in [7]. However, all the arguments can be adapted to work in the
topological category.

#We used [20] to gather the Alexander polynomial, Levine-Tristram signature function and topological concordance order
of all knots considered in the Appendix.

§See Lemma A.2.
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TABLE Al

Name

104,
10,3
10,
10y,
10,6
10,4
105
1033
105,
1055
104,
104,
1043
10,5
1la;
1lag,
11aq,
11ay,
1lagg
11a,y,
11a,
1la,
1lag;s
11a,4,
11a,ys

11a,,,

Concordance orders and maximal signature jumps of some 2-bridge knots.

p/q
5/2
9/7
13/5
21/8
13/11
17/4
25/9
25/7
29/12
29/11
37/14
41/16
49/19
17/15
25/6
45/17
53/22
41/9
49/36
61/44
53/19
57/25
65/18
37/13
49/20
53/23
81/31
73/27
89/34
61/28
101/57
129/50
121/50
77/18
97/35
77/34
89/64
109/30
85/67
53/8
73/16

Ord

PR T g Mg g8 T g8 T8 T8 88N T ®g g R

~ 8 8 8

8 8 8 8 8 8 8 8

©c o 2 oo+ o B Fro+rPFrPrFrPrOoOFRr OO OO+ FPR oK ORRKHEFP,OOO®RRKFEORROOR R N

Name
12a504
12a;,
120y
12a30;
12a3y,
12a55
12a,4s
12a,3;
12a,,,
12a,7,
12a,7;
12a,5,
12a,9;
12a,99
12as506
12a5)
12a55
12455
12asg;
12asgs
12as96
12a6,,
12a450
12a499
12a4,
12a7,5
12a744
12a;74
12a,q,
12ag;
12a,0p9
12a,034
12a,459
12a,y,;
12ay)5
12ayy3
124,149
12a;166
12a,y73
12a,575

12a,,7;

p/q
173/76

169/66
133/60
153/64
157/69
161/66
81/37
149/65
121/43
85/38
169/70
93/22
209/81
233/89
185/68
193/81
157/34
149/34
161/45
181/50
81/14
113/30
165/46
89/20
77/12
169/50
61/8
89/16
85/24
21/2
81/19
121/32
137/37
97/22
105/23
101/18
97/18
33/4
61/11
149/44
121/37

Ord

— 8 8 8 8

Y g M Mg g TN TR

~ 8 — 8 Y8 Y8 8 8

8 8

'\"'\"8[\)N>—ﬂ>—t

’—‘Nl\)g

~ P B 2 2 O O P O OFRF OO O KFH P KFEF OO KRR P KFE KPP OOREKFERRFERFEORRRRR &P g

(Continues)
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TABLE A1 (Continued)

Name D/q ord J Name Dp/q Oord J
11as, 65/14 o 0 12,5, 109/33 2 1
12a,y; 69/32 [} 1 12a,,4; 37/6 2 1

The purpose of Table Al is to show that given a directed strongly invertible knot K, the equiv-
ariant signature jumps can be used to prove that the (topological) equivariant slice genus of K"
grows linearly in |n| even when the Levine-Tristram signature function vanishes.

Given a knot K in the family 7, it is not possible to obtain a lower bound on the smooth or
topologically slice genus of n - K, n € Z using the Levine-Tristram signatures, as o, (K) = 0.

On the other hand, observe from Table Al that for most of the knots in 7, we have J( (K)=1.
Therefore, we easily get the following lower bound on the topological equivariant slice genus of
K}’l

(K" > |nl/4,

by applying Theorem 7.7.
We rely on the following lemma in order to compute J(K) for K in F.

Lemma A.2. Forany knot K in F, we have

F(K) = 0 if Ag(t) hasno real root,
1 if Ag(t) hasatleast one real root,

and in particular J(K) does not depend on the choice of strong inversion nor of direction on K.

Proof. First of all we check that each root of Ag(t) has multiplicity one. It follows that A (¢) has
no root z € S1, otherwise we would have a discontinuity of the signature function in z and hence
o,(K) # 0 for some w € S'. Using Remark 7.8 and arguing as in the proof of Theorem 7.7, one can
see that in this case J(K) does not depend on the choice of strong inversion nor of direction on K,
and that

TK) = 0 if Ag(t) hasno realroot,
11 if Ar(t) has at least one real root. O

Remark A.3. Observe that as each root of Ag(t) has multiplicity one for K in F, Ag(t) cannot
be a square. Hence, using Theorem 6.13 we recover the result in [7]: none of the knots in F is
equivariantly slice.

Remark A.4. In [5], the authors provide the first examples of strongly invertible knots with smooth
equivariant slice genus arbitrarily larger than their smooth slice genus. Miller and Powell in [23]
find examples of knots on which the quantity g,(K) — ¢,(K) assume arbitrarily large values.

In the family 7, we can find knots K with smooth and topological order < 2 and such that
J(K) = 1(8). As the smooth and topological slice genus of K" is bounded, applying Theorem 7.7
we get that both g, (K™) — g,(K") grows linearly in |n| and hence they provide new examples of
the phenomenon described above. The knot 8, is the simplest example of such knots in 7 that
does not fall into the examples in [5, 23].
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