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Abstract
By considering a particular type of invariant Seifert sur-
faces we define a homomorphism Φ from the (topologi-
cal) equivariant concordance group of directed strongly
invertible knots ̃ to a new equivariant algebraic con-
cordance group ̃ℤ. We prove that Φ lifts both Miller
and Powell’s equivariant algebraic concordance homo-
morphism (J. Lond.Math. Soc. (2023), no. 107, 2025-2053)
and Alfieri and Boyle’s equivariant signature (Michi-
gan Math. J. 1 (2023), no. 1, 1–17). Moreover, we provide
a partial result on the isomorphism type of ̃ℤ and
obtain a new obstruction to equivariant sliceness, which
can be viewed as an equivariant Fox–Milnor condition.
We define new equivariant signatures and using these
we obtain novel lower bounds on the equivariant slice
genus. Finally, we show that Φ can obstruct equivariant
sliceness for knots with Alexander polynomial one.
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1 INTRODUCTION

A knot𝐾 ⊂ 𝑆3 is said to be invertible if there is an orientation-preserving homeomorphism 𝜌 of 𝑆3
such that 𝜌(𝐾) = 𝐾 and 𝜌 reverses the orientation on𝐾. If such a homeomorphism can be taken to
be a locally linear involution, we say that 𝐾 is strongly invertible. Kawauchi [16, Lemma 1] proved
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that the two notions agree for hyperbolic knots, however, there exist examples of invertible knots
that are not strongly invertible, see [12, Section 5].
As such an involution for a strongly invertible knot has always a nonempty fixed-point set, we

know that it is always conjugated to an element of SO(4) by the solution of the Smith conjecture
[3]. As a consequence, we can think of a strongly invertible knot as a knot that is invariant under a
𝜋-rotation around some unknotted axis in 𝑆3. The knot intersects the axis in two points, by which
the axis is separated into two half-axes.
In [25], Sakuma defined a notion of direction on a strongly invertible knot, which consists of an

orientation of the axis of the involution together with the choice of one of the half-axes. Using this
additional structure he was able to define unambiguously an operation of equivariant connected
sum between directed strongly invertible knots.
As strongly invertible knots are naturally equipped with an involution, it is natural to ask

whether a strongly invertible slice knot is also equivariantly slice, that is, it bounds a locally flat
slice disk in 𝐵4 which is invariant under a locally linear extension of the involution. Similarly to
the classical case, this leads to the definition of the equivariant concordance group ̃ as the set of
classes of directed strongly invertible knots up to an appropriate definition of equivariant concor-
dance. Recently, in [6] we proved that ̃ is not abelian†, which is in stark contrast with the classical
concordance group.
Several authors [1, 2, 5, 7, 23, 25] have found invariants and obstructions for the equivariant

concordance of strongly invertible knots. In particular, in [5] the authors define several invariants
for smooth equivariant concordance using knot Floer homology. Using the lower bounds on the
smooth equivariant slice genus g̃ 𝑠

4
provided by these invariants, they construct the first examples of

strongly invertible knots with g̃ 𝑠
4
(𝐾) − g 𝑠

4
(𝐾) arbitrarily large, where g 𝑠

4
(𝐾) is the classical smooth

slice genus, answering [2, Question 1.1].
Miller and Powell, in [23] introduce a notion of equivariant algebraic concordance, by studying

the action of the strong inversion on the Blanchfield pairing on theAlexandermodule of a strongly
invertible knot. In this way, they define a homomorphism

Ψ ∶ ̃ ⟶ ̃

from the equivariant concordance group to an equivariant algebraic concordance group ̃ of
equivariant Blanchfield pairings. From the equivariant Blanchfield pairings, they obtain new
lower bounds on the equivariant slice genus, and they provide examples of genus one slice knots
with arbitrarily large topological equivariant slice genus g̃4.
In [1, 2], the authors define an equivariant version of the classical knot signature for directed

strongly invertible knots, obtaining a group homomorphism

𝜎 ∶ ̃ ⟶ℤ.

In this paper, we define a notion of equivariant algebraic concordance for directed strongly
invertible knots, analogous to Levine’s algebraic concordance [17, 18], by considering a particu-
lar type of invariant Seifert surfaces. In Theorem 4.7, we construct a homomorphism Φ from the
equivariant concordance group ̃ to an equivariant algebraic concordance group ̃ℤ of equivariant
Seifert systems.

† The main result [6, Theorem 1.1.] of the paper relies on Donaldson’s diagonalization theorem, which is inherently a
smooth result. However, in [6, section 3.1] we give an alternate proof that ̃ is not abelian, relying on twisted Alexander
polynomials, which can be adapted in the topological category.
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EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS 3 of 44

The homomorphism Φ is able to detect valuable information about equivariant concordance.
For instance, it can be used to obstruct equivariant sliceness of knots with Alexander polynomial
one, see Example 4.13. However, it seems a hard task to give a complete description of the group
structure of ̃ℤ. In Subsection 4.2, we introduce a more manageable quotient ̃ℤ𝑟 of this group
that we call reduced equivariant algebraic concordance group and we denote byΦ𝑟 ∶ ̃ ⟶ ̃ℤ𝑟 the
homomorphism obtained by composition.
The main result of this paper is the following theorem, which sums up the results of

Theorems 4.12 and 5.13.

Theorem 1.1. The homomorphism Ψ and the equivariant signature 𝜎 factor through ̃ℤ𝑟 , that is,
they fit in the following commutative diagram.

Moreover, in Theorem 6.11 we obtain a partial result on the structure of ̃ℤ, determining the
isomorphism type of ̃ℚ𝑟 which is defined similarly to ̃ℤ𝑟 , by using rational equivariant Seifert
forms. In particular, we have a natural inclusion ̃ℤ𝑟 ↪ ̃ℚ𝑟 (see Lemma 6.1) and the following
theorem holds.

Theorem (6.11). The isomorphism type of the reduced rational equivariant algebraic concordance
group is given by

̃ℚ𝑟 ≅ ℤ∞ ⊕ ℤ∕2ℤ∞ ⊕ ℤ∕4ℤ∞ ⊕ ℤ∕8ℤ∞.

The same arguments used in the proof of Theorem 6.11 fail to be easily adapted to study the
(unreduced) group ̃ℤ. Therefore, we propose the following open problem that we would like to
address in the future.

Open Question A. Determine the full isomorphism type of the equivariant algebraic
concordance group ̃ℤ.

As pointed out in Remark 6.12 the composite map ̃ ⟶ ̃ℚ𝑟 is not surjective, as ̃
ℤ
𝑟 is a proper

subgroup. Hence, we ask the following question.

Open Question B. Determine the image of ̃ in ̃ℚ𝑟 . In particular, does there exist a directed
strongly invertible knot 𝐾 whose image has order 8 in ̃ℚ𝑟 ?

As a consequence of the investigation on the group structure of ̃ℚ𝑟 , in Theorem 6.13 we get the
following obstruction to equivariant sliceness, which can be seen as an equivariant Fox–Milnor
condition.

Theorem (6.13). Let 𝐾 be a strongly invertible knot and let Δ𝐾(𝑡) be its Alexander polynomial,
normalized so thatΔ𝐾(𝑡) = Δ𝐾(𝑡

−1) andΔ𝐾(1) = 1. If𝐾 is equivariantly slice thenΔ𝐾(𝑡) is a square.
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4 of 44 DI PRISA

Theorem6.13 is especially fascinating due to its intriguing resemblance to a result ofHartley and
Kawauchi [14] which states that if a knot 𝐾 is strongly positive amphichiral then Δ𝐾(𝑡) is a square.
While at the moment we are not able to formulate a precise conjecture, it would be interesting to
understand better the relation between being equivariantly slice and strongly positive amphichiral
for a strongly invertible knot.
The results of Section 6 suggest naturally the definition of new equivariant signatures {𝜎𝜆}𝜆∈ℝ

and equivariant signature jumps {𝐽𝜆}𝜆∈ℝ, which are homomorphisms

𝜎𝜆, 𝐽𝜆 ∶ ̃ ⟶ℤ

that we introduce in Section 7. In Proposition 7.3, we clarify the relation between 𝜎𝜆, the Levine–
Tristram signatures 𝜎𝜔 proving the following.

Proposition (7.3). Let𝐾 be a directed strongly invertible knot. Then for any 𝜆 ⩽ 0 and 𝜔 ∈ 𝑆1 such
that 𝜆(𝜔 − 1)2 = (𝜔 + 1)2 we have

𝜎𝜆(𝐾) = 𝜎𝜔(𝐾),

Although the equivariant signatures coincidewith the Levine–Tristram signatures for 𝜆 ⩽ 0, for
positive values of 𝜆 we actually get a new invariant of equivariant concordance (see Remark 7.11).
The main result of Section 7 is Theorem 7.7, which gives a new lower bound on the equivariant
slice genus g̃4 of a strongly invertible knot.

Theorem (7.7). Given a directed strongly invertible knot 𝐾, for every 𝜆 > 0, 𝜆 ≠ 1 we have

g̃4(𝐾) ⩾
|𝐽𝜆(𝐾)|
4

.

Theorem 7.7 can be used to obtain new examples of strongly invertible knotswith g̃4(𝐾) − g4(𝐾)

arbitrarily large (see Remark A.4), where g4(𝐾) is the classical (topological) slice genus.

Organization of the paper

In Section 2, we briefly recall some notions and results on equivariant concordance and on alge-
braic concordance, and we introduce the definition of 𝑛-butterfly link, which is a generalization of
the butterfly link [2]. Section 3 contains some results on the extension and transversality of equiv-
ariant maps, that are used in the next section. In Section 4, we use Proposition 4.3 to motivate
the definition of the equivariant algebraic concordance group ̃ℤ. In Section 5, we define a homo-
morphism from of ̃ℤ to an equivariant version𝑊(ℚ) of the Witt group of ℚ, and we show that
the equivariant signature [1] factors through𝑊(ℚ). Section 6 is dedicated to studying the group
structure of ̃ℚ𝑟 , which is a simpler variant of ̃

ℤ. Using these results, we introduce in Section 7 a
new equivariant signature function 𝜎𝜆 and we describe how it can be used to obtain lower bounds
on the equivariant slice genus.
Finally, in the Appendix, we provide a table of examples of application of Theorem 7.7 on a

family of 2-bridge knots with at most 12 crossings.
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EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS 5 of 44

Conventions

We work in the topological category (see [8, 23] for details) unless otherwise specified. More
precisely, we will implicitly consider:

∙ maps between manifolds to be continuous,
∙ submanifolds to be (properly) locally flat embedded,
∙ group actions (specifically involutions) on manifolds to be locally linear.

Throughout the paper, we will refer to and use some results appearing in [2, section 4] and [7].
Although in this paper such results are stated in the smooth category, we want to remark that the
proofs can be adapted to work in the topological category.

2 PRELIMINARIES

2.1 Directed strongly invertible knots

We recall the definition of directed strongly invertible knots and equivariant concordance group
following [2, 25].
Let (𝐾, 𝜌) be a strongly invertible knot. By the resolution of the Smith conjecture [3], we know

that 𝜌 acts on 𝑆3 as a rotation around the axis Fix(𝜌), which is an unknotted 𝑆1. As the restriction
of 𝜌 on 𝐾 is orientation-reversing, the fixed axis intersects 𝐾 in two points, which separate Fix(𝜌)
in two so-called half-axes.

Definition 2.1. A direction ℎ on a strongly invertible knot (𝐾, 𝜌) is the choice of one of the half-
axes ℎ and an orientation on Fix(𝜌). We say that (𝐾, 𝜌, ℎ) is a directed strongly invertible knot.

Definition 2.2. We say that two directed strongly invertible knots (𝐾𝑖, 𝜌𝑖, ℎ𝑖), 𝑖 = 0, 1 are equiv-
ariantly isotopic if there exists an orientation-preserving homeomorphism 𝜑 ∶ 𝑆3 ⟶ 𝑆3 such
that:

∙ 𝜑(𝐾0) = 𝐾1,
∙ 𝜑◦𝜌0 = 𝜌1◦𝜑,
∙ 𝜑(ℎ0) = ℎ1, preserving the chosen orientations on ℎ0 and ℎ1.

We will often omit to specify the choice of strong inversion and direction when it is not strictly
necessary to specify them.

Remark 2.3. A direction on (𝐾, 𝜌) induces an ordering on 𝐾 ∩ Fix(𝜌): we say that the first fixed
point of𝐾 is the initial point of the chosen half-axis, while the final point is the second fixed point.

Definition 2.4. Let𝐾 and 𝐽, be two directed strongly invertible knots. Their equivariant connected
sum𝐾#̃𝐽 is the directed strongly invertible knot obtained by cutting𝐾 at its second fixed point and
𝐽 at its first fixed point, gluing the two knots and axes equivariantly in a way that is compatible
with the orientations on the axes, and choosing the half-axis of the sum to be the union of the
half-axes of the two components, as depicted in Figure 1.
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6 of 44 DI PRISA

F IGURE 1 The equivariant connected sum of 𝐾 and 𝐽. The vertical axis (colored red) is the axis of the
strong inversion. The chosen half-axis is the solid one.

Definition 2.5. Let (𝐾, 𝜌, ℎ) be a directed strongly invertible knot. We define

∙ themirror of (𝐾, 𝜌, ℎ) by𝑚𝐾 = (𝑚𝐾, 𝜌, ℎ),
∙ the axis-inverse of (𝐾, 𝜌, ℎ) by 𝑖𝐾 = (𝐾, 𝜌, −ℎ), where −ℎ is the direction given by the half-axis
ℎ with the opposite orientation,

∙ the antipode of (𝐾, 𝜌, ℎ) by 𝑎𝐾 = (𝐾, 𝜌, ℎ′), where ℎ′ is the direction given by the oriented half-
axis complementary to ℎ.

Definition 2.6. Let (𝐾, 𝜌) be a strongly invertible knot.We say that𝐾 is equivariantly slice if there
exists a locally flat slice disk 𝐷 ⊂ 𝐵4 for 𝐾, invariant with respect to a locally linear involution of
𝐵4 extending 𝜌. We define the equivariant slice genus of (𝐾, 𝜌) as

g̃4(𝐾) = min
Σ
genus(Σ),

where Σ ranges among the orientable locally flat surfaces in 𝐵4 with boundary𝐾, invariant under
an involution extending 𝜌.

Definition 2.7. We say that two directed strongly invertible knots (𝐾𝑖, 𝜌𝑖, ℎ𝑖), 𝑖 = 0, 1

are equivariantly concordant if there exists a locally flat properly embedded annulus 𝐶 ≅
𝑆1 × 𝐼 ⊂ 𝑆3 × 𝐼, invariant with respect to some locally linear involution 𝜌 of 𝑆3 × 𝐼 such
that:

∙ 𝜕(𝑆3 × 𝐼, 𝐶) = (𝑆3, 𝐾0) ⊔ −(𝑆
3, 𝐾1),

∙ 𝜌 is in an extension of the strong inversion 𝜌0 ⊔ 𝜌1 on 𝑆3 × 0 ⊔ 𝑆3 × 1,
∙ the orientations of ℎ0 and −ℎ1 induce the same orientation on the annulus (see [23, Remark
2.12]), Fix(𝜌), and ℎ0 and ℎ1 are contained in the same component of Fix(𝜌) ⧵ 𝐶.

The operation of equivariant connected sum induces a group structure on the set ̃ of classes
of directed strongly invertible knots up to equivariant concordance. The class of the unknot gives
the group identity, while the inverse of 𝐾 can be represented by 𝐾−1 ∶= 𝑚(𝑖(𝐾)).
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EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS 7 of 44

F IGURE 2 The band move (in gray) that produces the 0-butterfly link of 4+
1
.

Notice that, while the direction is essential to define an equivariant connected sum,𝐾 is equiv-
ariantly slice if and only if 𝑖𝐾 or 𝑎𝐾 is so. Therefore, we can consider the mirror, axis-inverse, and
antipode as involutive maps from ̃ to itself.

2.2 Butterfly links

In [2], Boyle and Issa associate with a directed strongly invertible knot the so-called butterfly
link. Using this link they construct several invariants. In this section, we recall some of the
invariants defined in [2]. Additionally, we introduce the definition of 𝑛-butterfly link of a directly
strongly invertible knot, which is important in the following sections. The 𝑛-butterfly link is a
generalization of the butterfly link and it coincides with the definition in [2] for 𝑛 = 0.

Definition 2.8. Let (𝐾, 𝜌, ℎ) be a directed strongly invertible knot. Take an equivariant band
𝐵, parallel to the preferred half-axis ℎ, which attaches to 𝐾 at the two fixed points. Perform a
band move on 𝐾 along 𝐵 such that the result is a 2-component link. The linking number between
the components of such a link depends on the number of twists of 𝐵 (see, for example, Figure 2).
Observe that 𝜕𝐵 ⧵ 𝐾 consists of two arcs parallel to ℎ, whichwe orient as ℎ. The arcs lie in different
components of the link and we consider on each component the orientation induced from the
respective arc. The 𝑛-butterfly link 𝐿𝑛

𝑏
(𝐾), is the 2-components 2-periodic link (i.e., the involution

𝜌 exchanges its components) obtained from such a band move on 𝐾 so that the linking number
between its components is 𝑛.

Recall that a semi-orientation on a link 𝐿 is the choice of an orientation on each component of
𝐿, up to reversing the orientation on all components simultaneously.

Definition 2.9. Define �̂�𝑛
𝑏
(𝐾) to be the 𝑛-butterfly link of 𝐾 endowed with the opposite semi-

orientation. Observe that the semi-orientation on �̂�𝑛
𝑏
(𝐾)makes the band move along 𝐵 coherent

with the unique semi-orientation on 𝐾.
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8 of 44 DI PRISA

With a slight abuse of notation, we will also call �̂�𝑛
𝑏
(𝐾) the 𝑛-butterfly link of 𝐾.

Remark 2.10. Notice that the linking number between the components of �̂�𝑛
𝑏
(𝐾), taken with

respect to the chosen semi-orientation, is −𝑛.

Definition 2.11. Let (𝐿𝑖, 𝜌𝑖), 𝑖 = 0, 1, be two 2-component 2-periodic links. We say that (𝐿0, 𝜌0)
and (𝐿1, 𝜌1) are equivariantly concordant if they bound two disjoint properly embedded locally
flat annuli in 𝑆3 × 𝐼, which are invariant with respect to some locally linear involution of 𝑆3 × 𝐼
extending 𝜌0 ⊔ 𝜌1.

Proposition 2.12. Let (𝐾𝑖, 𝜌𝑖, ℎ𝑖), 𝑖 = 0, 1, be two equivariantly concordant directed strongly
invertible knots. Then, 𝐿𝑛

𝑏
(𝐾0) (resp., �̂�𝑛𝑏 (𝐾0)) is equivariantly concordant to 𝐿

𝑛
𝑏
(𝐾1) (resp., �̂�𝑛𝑏 (𝐾1)).

Proof. The proof is identical to the proof of [7, Proposition 2.6]. □

Remark 2.13. It follows from the proposition above that if 𝐾 is equivariantly slice then also �̂�0
𝑏
(𝐾)

is equivariantly slice, that is, it bounds two disjoint equivariant disks in 𝐵4. On the other hand, as
�̂�0
𝑏
(𝐾) is obtained by an equivariant bandmove from𝐾 (which can be seen as a genus 0 equivariant

cobordism) we have that if �̂�𝑏(𝐾) is equivariantly slice then so is 𝐾.

Despite Remark 2.13, it is not true in general that if 𝐿0
𝑏
(𝐾) is equivariantly concordant to 𝐿0

𝑏
(𝐽)

then 𝐾 is equivariantly concordant to 𝐽.

Definition 2.14 [2]. Let 𝐾 be a directed strongly invertible knot. Define

∙ 𝔟(𝐾) to be the knot given by one component of 𝐿0
𝑏
(𝐾),

∙ 𝔮𝔟(𝐾) to be the knot 𝐿0
𝑏
(𝐾)∕𝜌 in 𝑆3∕𝜌 ≅ 𝑆3.

As proven in [2], we have that 𝔟 induces a group homomorphism

𝔟 ∶ ̃ ⟶ ,

where ̃ is the classical (topological) knot concordance group.

Definition 2.15. Given an oriented knot 𝐾, its double 𝔯(𝐾) is the directed strongly invertible
knot given by 𝐾#𝑟(𝐾), with the involution 𝜌 that exchanges 𝐾 and 𝑟(𝐾) (the 𝜋-rotation around
the vertical axis in Figure 3). The direction on 𝔯(𝐾) is given as follows: the connected sum can be
performed by a suitable band move along some band 𝐵, in gray in the figure, in such a way that
Fix(𝜌) ∩ 𝐵 is the half-axis ℎ. We orient ℎ as the portion of 𝐵 lying on 𝐾 (note that ℎ is parallel to
𝐵 ∩ 𝐾).

As proven by Boyle and Issa [2], 𝔯 defines a homomorphism

𝔯 ∶  ⟶ ̃.

It is immediate from the definitions that given an oriented knot𝐾, the 0-butterfly link of 𝔯(𝐾) is
given by two split copies of𝐾 (see again [2] for details). Therefore, the composition 𝔟◦𝔯 ∶  ⟶ 

is the identity homomorphism.
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EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS 9 of 44

F IGURE 3 The directed strongly invertible knot 𝔯(𝐾). The chosen half-axis is the solid one.

Hence, we get that 𝔟 is surjective, 𝔯 is injective, and that 𝔯() is a copy of the classical concor-
dance group, contained in the center of ̃ (as noted in [25]). As a consequence, we observe the
following corollary.

Corollary 2.16. The equivariant concordance group splits as

̃ = ker(𝔟) ⊕ 𝔯().

2.3 Algebraic concordance

In [17, 18], Levine defined a surjective homomorphism from the classical concordance group to a
Witt group of Seifert forms, called the algebraic concordance group, which is given by

𝜑 ∶  ⟶ ℤ

[𝐾]⟼ [𝜃𝐹],

where 𝐹 is a Seifert surface for 𝐾 and 𝜃𝐹 is the Seifert form on𝐻1(𝐹, ℤ).
By taking the symmetrization of the Seifert form one obtains a group homomorphism

ℤ ⟶𝑊(ℚ)

[𝐴]⟼ [𝐴 + 𝐴𝑡],

where 𝑊(ℚ) is the Witt group of nondegenerate symmetric forms on finite-dimensional ℚ-
vector spaces. Denote by 𝜑𝑊 ∶  ⟶𝑊(ℚ) the composition. Clearly by composing 𝜑𝑊 with the
signature homorphism 𝜎 ∶ 𝑊(ℚ)⟶ ℤ one get the knot signature 𝜎(𝐾).
Given a (possibly nonorientable) spanning surface 𝐹 for a link 𝐿, Gordon and Litherland [10]

defined a bilinear form

𝐹 ∶ 𝐻1(𝐹, ℤ) × 𝐻1(𝐹, ℤ)⟶ ℤ

(𝑎, 𝑏)⟼ lk(𝑎, 𝑏)
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10 of 44 DI PRISA

given by the linking number of 𝑏 with 𝑎 pushed off 𝐹 “in both directions simultaneously”. This
form is bilinear and symmetric and if 𝐹 is oriented it coincides with the symmetrization of the
Seifert form.
In [10], Gordon and Litherland proved that it is possible to compute the signature of a knot

from the Gordon–Litherland form of any spanning surface, by introducing a corrective term. We
briefly recall some of the notation used in [10] and we observe in Proposition 2.19 how the results
of Gordon and Litherland allow us to compute not only the signature of a knot 𝐾 but the whole
Witt class 𝜑𝑊(𝐾), using any spanning surface. This fact is presumably known to the experts but
we could not find it in the literature.

Definition 2.17. Let 𝐹 be a spanning surface for a knot 𝐾 and let 𝐾𝐹 be a longitude of 𝐾 which
misses 𝐹. The relative Euler number of 𝐹 is defined as

𝑒(𝐹) = − lk(𝐾, 𝐾𝐹),

where 𝐾 and 𝐾𝐹 are coherently oriented.

Observe that as 𝐾𝐹 and 𝐹 are disjoint, [𝐾] = 0 ∈ 𝐻1(𝑆
3 ⧵ 𝐾𝐹, ℤ∕2ℤ). Hence, 𝑒(𝐹) is always an

even integer.

Definition 2.18. Let 𝐹1, 𝐹2 be two surfaces in 𝑆3 with 𝜕𝐹1 = 𝜕𝐹2 and suppose that there exists a
3-ball 𝐵3 = 𝐵1 × 𝐵2 ⊂ 𝑆3 ⧵ 𝜕𝐹𝑖 such that

∙ 𝐹1 ∩ 𝐵
3 = 𝜕𝐵1 × 𝐵2,

∙ 𝐹2 ∩ 𝐵
3 = 𝐵2 × 𝜕𝐵1,

∙ 𝐹1 ⧵ 𝐵
3 = 𝐹2 ⧵ 𝐵

3.

In this situation, we say that 𝐹2 is obtained from 𝐹1 by a 1-handle move.

Proposition 2.19. Let𝐹 be spanning surface for𝐾, and𝐴 amatrix representingGordon–Litherland
form 𝐹 on𝐻1(𝐹). Then, the Witt class of 𝐾 is represented by(

𝐴 0

0 𝜀𝐼𝑑

)
,

where 𝜀 = sign(𝑒(𝐹)) and the 𝐼𝑑 block has size 𝑛 × 𝑛 with 𝑛 = |𝑒(𝐹)|∕2.
Proof. Let𝐺 be a Seifert surface for𝐾 (in particular, 𝑒(𝐺) = 0). By [10, Theorem 11], we can obtain
𝐺 from 𝐹 by a finite sequence of the following moves (and their inverses):

∙ ambient isotopy,
∙ 1-handle moves,
∙ addition of a small half-twisted band at the boundary.

It is not difficult to check that the first two moves do not change the Witt class of the Gordon–
Litherland form. By attaching a half-twisted band the Gordon–Litherland form and the relative
Euler number change as

𝐴⟶

(
𝐴 0

0 𝜀

)
,
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EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS 11 of 44

F IGURE 4 The addition of a half-twisted band.

𝑒(𝐹)⟼ 𝑒(𝐹) − 2𝜀,

where 𝜀 = ±1 depends on the twist of the band, as in Figure 4. As the matrix
(
1 0

0 −1

)
is

metabolic, if we attach two bands with opposite half-twists, the overall move leaves the Witt class
unchanged. The conclusion follows by observing that, up to algebraic cancellation, one has to
attach 𝑛 = |𝑒(𝐹)|∕2 bands with the same half-twist. □

3 EXTENSION AND TRANSVERSALITY OF EQUIVARIANTMAPS

In this section, we show some results on the extension and transversality of equivariant maps. We
use these results to prove Lemma 3.2, which is fundamental for the constructions in Section 4.
Let 𝑋 be a connected manifold with boundary, such that the inclusion of 𝜕𝑋 in 𝑋 induces an

isomorphism 𝐻1(𝑋, ℤ)⟶ 𝐻1(𝜕𝑋, ℤ). As 𝑆1 is a 𝐾(ℤ, 1), every map 𝜕𝑋⟶ 𝑆1 can be extended
to a map 𝑋⟶ 𝑆1, which is unique up to homotopy.
Consider now the ℤ∕2ℤ-action on 𝑆1 given by

𝜄 ∶ 𝑆1 ⟶ 𝑆1

𝑧⟼ 𝑧,

and suppose that 𝑋 is endowed with a ℤ∕2ℤ-action, generated by 𝜌 ∶ 𝑋⟶ 𝑋.

Lemma 3.1. Let (𝑋, 𝜕𝑋, 𝜌) be as above. Let 𝑓 ∶ (𝜕𝑋, 𝜌)⟶ (𝑆1, 𝜄) be an equivariant map, that is,
𝑓 = 𝜄 ◦𝑓◦ 𝜌, and suppose there exists 𝑥0 ∈ 𝜕𝑋 such that 𝑓(𝑥0) = 1. Then 𝑓 admits an equivariant
extension 𝐹 ∶ (𝑋, 𝜌)⟶ (𝑆1, 𝜄).

Proof. Let 𝐺 ∶ 𝑋⟶ 𝑆1 be a (possibly nonequivariant) extension of 𝑓, and define 𝐻 ∶ 𝑋⟶ 𝑆1

as 𝐻 = 𝐺⋅ (𝜄 ◦𝐺◦ 𝜌), where ⋅ is the group operation on 𝑆1. By construction𝐻 is equivariant. As 𝑓
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12 of 44 DI PRISA

is equivariant, we have that 𝜄 ◦𝐺◦ 𝜌 is another extension of 𝑓, and hence that it is homotopic to
𝐺. Therefore, the induced maps are the same.

𝐺∗ = (𝜄 ◦𝐺◦ 𝜌)∗ ∶ 𝐻1(𝑋, ℤ)⟶ 𝐻1(𝑆
1, ℤ) = ℤ.

It follows that𝐻∗ = 𝐺∗ + (𝜄 ◦𝐺◦ 𝜌)∗ = 2𝐺∗ and then𝐻 can be lifted to the twofold covering.

Choose the lift 𝐹 such that 𝐹(𝑥0) = 1. Observe that as 𝑓 is equivariant, 𝐻|𝜕𝑋 = 𝑓 ⋅ 𝑓, then
𝐹|𝜕𝑋 = 𝑓. Therefore, we only need to prove that 𝐹 is equivariant. Notice that 𝐹◦𝜌 is a lift of𝐻◦𝜌 =
𝜄◦𝐻. Therefore, we have that (𝐹 ⋅ 𝐹 ⋅ (𝐹◦𝜌) ⋅ (𝐹◦𝜌)) = 𝐻 ⋅ 𝜄𝐻 ≡ 1 and hence 𝐹 ⋅ (𝐹◦𝜌) ≡ ±1. As
𝐹(𝑥0) = 𝑓(𝑥0) = 1 and 𝑓 is equivariant, we have that 𝐹(𝑥0) ⋅ 𝐹(𝜌(𝑥0)) = 1 and as 𝑋 is connected
𝐹 ⋅ (𝐹◦𝜌) ≡ 1, that is, 𝐹 = 𝜄◦𝐹◦𝜌. □

Lemma 3.2. Let 𝜌 ∶ 𝐵4 ⟶ 𝐵4 be an orientation preserving, locally linear involution, with fixed-
point set homeomorphic to a 2-disk 𝐷. Let 𝐹 ⊂ 𝑆3 and Σ ⊂ 𝐵4 be two oriented locally flat surfaces
with 𝐿 = 𝜕𝐹 = 𝜕Σ. Suppose that both 𝐹 and Σ are 𝜌-invariant and that 𝜌 reverses their orientations.
If both 𝐹 and Σ are disjoint from Fix(𝜌), then there exists a 𝜌-invariant, oriented, compact, locally
flat 3-manifold𝑀 ⊂ 𝐵4, disjoint from Fix(𝜌) and such that 𝜕𝑀 = 𝐹 ∪ Σ.

Proof. Let 𝑁(𝐷) and 𝑁(Σ) be equivariant, closed tubular neighborhoods of 𝐷 and Σ in 𝐵4. Let
𝑋 = 𝐵4 ⧵ (int𝑁(𝐷) ∪ int𝑁(Σ)).
Let 𝑌 be the complement in 𝑆3 of an equivariant tubular neighborhood of 𝜕𝐹 ∪ 𝜕𝐷. Let 𝑁 ≅

𝐹 × [−1, 1] be and equivariant tubular neighborhood of 𝐹 in 𝑌. Observe that the restriction of 𝜌
acts on 𝑁 as

𝜌 ∶ 𝑁⟶𝑁

(𝑥, 𝑡)⟼ (𝜌(𝑥), −𝑡).

Let 𝜑 ∶ ℝ⟶ ℝ be a smooth, odd map such that 𝜑′ ⩾ 0 and

𝜑(𝑥) =

{
𝑥 for |𝑥| ⩽ 1∕2
sign(𝑥) for |𝑥| ⩾ 2∕3 .

Then we can define an equivariant map

𝑓 ∶ (𝑁, 𝜌)⟶ (𝑆1, 𝜄)

(𝑥, 𝑡)⟼ 𝑒𝜋𝑖𝜑(𝑡)

and we can extend it to 𝑌 by setting 𝑓 to be −1 outside 𝑁.
Such𝑓 is topologically transverse to 1 ∈ 𝑆1 in the sense of [8, Definition 10.7] and𝑓−1(1) is given

by the union of 𝐹 and a nearby copy of Σ. Using Lemma 3.1 we can extend 𝑓 to an equivariant
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EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS 13 of 44

map

𝑓 ∶ (𝑋, 𝜌)⟶ (𝑆1, 𝜄),

which in turn gives us the equivariant map

id𝑋 ×𝑓 ∶ (𝑋, 𝜌)⟶ (𝑋 × 𝑆1, 𝜌 × 𝜄)

𝑥⟼ (𝑥, 𝑓(𝑥)).

Consider now the quotient spaces of 𝑋 and 𝑋 × 𝑆1 by the respective involutions. We have the
following commutative diagram

where the vertical maps are twofold regular covering maps, Observe that the map id𝑋 ×𝑓 induces
a map between the quotients

𝑓 ∶ 𝑋∕𝜌⟶ (𝑋 × 𝑆1)∕(𝜌 × 𝜄).

By construction 𝑓|𝜕(𝑋∕𝜌) is topologically transverse to (𝜕𝑋 × 1)∕(𝜌 × 𝜄). According to [8, Theorems
10.3 and 10.8], 𝑓 is homotopic relative to the boundary to a map g transverse to (𝑋 × 1)∕(𝜌 × 𝜄).
As g is homotopic to 𝑓, we can lift g to an equivariant map

g ∶ (𝑋, 𝜌)⟶ (𝑋 × 𝑆1, 𝜌 × 𝜄)

with g|𝜕𝑋 = id𝜕𝑋 ×𝑓 and g topologically transverse to 𝑋 × 1. Finally,𝑀 = g−1(𝑋 × 1) is an equiv-
ariant, compact, orientable, locally flat 3-dimensional submanifold of 𝑋 with 𝜕𝑀 = 𝐹 ∪ Σ. □

4 EQUIVARIANT ALGEBRAIC CONCORDANCE

In this section, we define an equivariant algebraic concordance group ̃ℤ and a homomorphism
Φ ∶ ̃ ⟶ ̃ℤ. We compare ̃ℤ with the equivariant algebraic concordance group ̃ defined
in [23]. Finally, we use ̃ℤ to obtain a lower bound on the equivariant slice genus of a strongly
invertible knot.

4.1 Equivariant Seifert systems

Definition 4.1. Let (𝐾, 𝜌, ℎ) be a directed strongly invertible knot. An invariant Seifert surface of
type 𝑛 for 𝐾 is a connected, orientable surface 𝐹 ⊂ 𝑆3 such that:

∙ 𝐹 is 𝜌-invariant, that is, 𝜌(𝐹) = 𝐹,
∙ ℎ = Fix(𝜌) ∩ 𝐹,
∙ the surface 𝐹 obtained from 𝐹 by equivariantly cutting along ℎ is a 𝜌-invariant Seifert surface
for �̂�𝑛

𝑏
(𝐾).
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14 of 44 DI PRISA

F IGURE 5 The invariant Seifert surface 𝐺 for the unknot.

Proposition 4.2. For any directed strongly invertible knot 𝐾 and every 𝑛 ∈ ℤ there exists an
invariant Seifert surface of type 𝑛.

Proof. From [13], we know that for any (𝐾, 𝜌, ℎ) there exists a 𝜌-invariant Seifert surface 𝐹 such
that Fix(𝜌) ∩ 𝐹 = ℎ. Cutting 𝐹 along ℎ we obtain a (possibly disconnected) orientable surface 𝐹
and the linking number between the components of 𝜕𝐹 would not be generally −𝑛. Now let 𝐺 be
the equivariant Seifert surface for the unknot described in Figure 5.
Observe that by cutting 𝐺 along the fixed-point set we obtain a Seifert surface for a link with

linking number +1 between its components. In other words, 𝐺 is an invariant Seifert surface of
type −1 for the unknot. Therefore, by taking the equivariant connected sum of 𝐹 with an appro-
priate number of copies of 𝐺 and/or its mirror image, we easily get an invariant Seifert surface of
type 𝑛 for 𝐾. □

As a consequence of Lemma 3.2, we have the following proposition.

Proposition 4.3. Let (𝐾, 𝜌, ℎ) be a directed strongly invertible knot and 𝐹 be an equivariant Seifert
surface for �̂�𝑛

𝑏
(𝐾). Suppose that �̂�𝑛

𝑏
(𝐾) bounds an orientable surfaceΣ ⊂ 𝐵4 invariant under an invo-

lution of 𝐵4 extending 𝜌 (which we still denote by 𝜌). Assume that 𝜌 has no fixed point on Σ ∪ 𝐹.
Denote by g𝐹 and gΣ the genus of 𝐹 and Σ, respectively. Then there exists a 𝜌∗-invariant submodule
𝐻 ⊂ 𝐻1(𝐹, ℤ) such that:

∙ rank𝐻 ⩾ g𝐹 − gΣ if Σ is connected and rank𝐻 ⩾ g𝐹 − gΣ + 1 if Σ is not connected,
∙ the Seifert form of 𝐹 vanishes on𝐻,
∙ for every 𝛼 ∈ 𝐻, the linking number between 𝛼 and the fixed axis is zero.

Proof. ByLemma3.2, there exists a𝜌-invariant oriented 3-manifold𝑀 ⊂ 𝐵4, such that 𝜕𝑀 = 𝐹 ∪ Σ

and𝑀 ∩ Fix(𝜌) = ∅.
Denote by 𝑉 the kernel of 𝐻1(𝜕𝑀,ℚ)⟶ 𝐻1(𝑀,ℚ). It is easy to see that 2 ⋅ dim𝑉 =

dim𝐻1(𝜕𝑀,ℚ) = genus(𝜕𝑀), by standard duality argument (half-lives, half-dies principle) or by
computing the Euler characteristic of the exact sequence of the couple (𝑀, 𝜕𝑀).
Suppose now that Σ is connected. Then it is easy to see that genus(𝜕𝑀) = g𝐹 + gΣ + 1 and that

themap induced by the inclusion 𝑖∗ ∶ 𝐻1(𝐹, ℚ)⟶ 𝐻1(𝜕𝑀,ℚ) is injective. As dim𝑉 = g𝐹 + gΣ +

 17538424, 2024, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.70006 by Scuola N
orm

ale Superiore D
i Pisa, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS 15 of 44

1 and dim𝐻1(𝐹,ℚ) = 2g𝐹 + 1, we have that the preimage𝑊 of 𝑉 in 𝐻1(𝐹,ℚ) has dimension at
least g𝐹 − gΣ.
Suppose now that Σ is not connected. Then genus(𝜕𝑀) = g𝐹 + gΣ and the map induced by

the inclusion 𝑖∗ ∶ 𝐻1(𝐹, ℚ)⟶ 𝐻1(𝜕𝑀,ℚ) has kernel of dimension 1. As dim𝑉 = g𝐹 + gΣ and
dim𝐻1(𝐹,ℚ) = g𝐹 + 1, we have that the preimage 𝑊 of 𝑉 in 𝐻1(𝐹,ℚ) has dimension at least
1 + g𝐹 − gΣ.
Define𝐻 ⊂ 𝐻1(𝐹, ℤ) to be

𝐻 = {𝑥 ∈ 𝐻1(𝐹, ℤ) | ∃𝑛 ∈ ℤ, 𝑛 ≠ 0, 𝑛𝑥 ∈ 𝑊}.

It is a well-known fact that the Seifert form of 𝐹 is identically zero on 𝐻. As all of the maps
considered are equivariant, we get that also 𝐻 is invariant under the action of 𝜌∗ on𝐻1(𝐹, ℤ).
By the considerations above, the rank of𝐻 satisfies the inequalities stated in the proposition.
Finally, let 𝛼 ∈ 𝐻 and let Δ ⊂ 𝑀 be a 2-chain such that 𝜕Δ = 𝑛𝛼 for some integer 𝑛 ≠ 0. As

𝑀 is disjoint from the disk 𝐷 of fixed points, it follows that lk(𝑛𝛼, 𝜕𝐷) = #(Δ ∩ 𝐷) = 0, hence
lk(𝛼, 𝜕𝐷) = 0. □

We use now the result given Proposition 4.3 to define a notion of equivariant algebraic
concordance for directed strongly invertible knots.

Definition 4.4. Let 𝑅 be a commutative and unital ring. An equivariant Seifert system is a tuple
(𝜃, 𝜌, ℎ, l̃k), where

∙ 𝜃 ∶ 𝑀 ×𝑀⟶ℤ is a bilinear form on a free ℤ-module𝑀 of even rank,
∙ 𝜌 ∶ 𝑀⟶𝑀 is a linear involution,
∙ 𝜃(𝜌(𝑥), 𝜌(𝑦)) = 𝜃𝑡(𝑥, 𝑦) ∶= 𝜃(𝑦, 𝑥) for every 𝑥, 𝑦 ∈ 𝑀,
∙ 𝜃 − 𝜃𝑡 is unimodular,
∙ ℎ, l̃k ∈ Hom(𝑀,ℤ),
∙ ℎ ◦ 𝜌 = −ℎ,
∙ l̃k ◦ 𝜌 = l̃k.

An equivariant Seifert system (𝜃, 𝜌, ℎ, l̃k) on 𝑀 is said to be equivariantly metabolic if there
exists a submodule𝐻 ⊂ 𝑀 such that

∙ rank𝑀 = 2 ⋅ rank𝐻
∙ 𝜌(𝐻) = 𝐻, that is,𝐻 is 𝜌-invariant,
∙ 𝜃 is identically zero on𝐻 ×𝐻,
∙ 𝐻 ⊂ ker(ℎ) ∩ ker(l̃k).

Let (𝐾, 𝜌, ℎ) be a directed strongly invertible knot and let 𝐹 be an invariant Seifert surface for
𝐾 of type 𝑛 for some 𝑛. Fix an auxiliary orientation on 𝐹.
We see now how 𝐹 determines an equivariant Seifert system. As 𝜌 reverses the orientation on

𝐹, it is immediate to check that 𝜃𝐹(𝜌∗(𝑥), 𝜌∗(𝑦)) = 𝜃𝐹(𝑦, 𝑥) for every 𝑥, 𝑦 ∈ 𝐻1(𝐹, ℤ), where 𝜃𝐹 is
the Seifert form of 𝐹. As ℎ ⊂ 𝐹, we have that ℎ represents a class in 𝐻1(𝐹, 𝜕𝐹, ℤ). By duality and
universal coefficients, we can consider ℎ as a homomorphism ℎ ∶ 𝐻1(𝐹, ℤ)⟶ ℤ, which maps
an oriented curve 𝑐 in 𝐹 to the algebraic intersection #(𝑐 ∩ ℎ). Finally, let 𝐴 be the oriented fixed
axis of 𝜌. Then we have a homomorphism

l̃k ∶ 𝐻1(𝐹, ℤ)⟶ ℤ
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16 of 44 DI PRISA

𝑐⟼ lk(𝑐+, 𝐴) + lk(𝑐−, 𝐴),

where the 𝑐± is a nearby copy of 𝑐 outside 𝐹 in the positive/negative direction. It is immediate
to check that the tuple (𝜃𝐹, 𝜌∗, ℎ, l̃k) is an equivariant Seifert system. We will denote by (𝐹) the
equivariant Seifert system determined by 𝐹.

Definition 4.5. Let (𝜃𝑖, 𝜌𝑖, ℎ𝑖, l̃k𝑖) for 𝑖 = 1, 2 be two equivariant Seifert systems defined over𝑀
and𝑁, respectively. Their orthogonal sum (𝜃1, 𝜌1, ℎ1, l̃k1) ⊕ (𝜃2, 𝜌2, ℎ2, l̃k2) is the tuple (𝜃, 𝜌, ℎ, l̃k)
defined by

𝜃 ∶ (𝑀 ⊕𝑁) × (𝑀 ⊕𝑁)⟶ ℤ

((𝑥1, 𝑥2), (𝑦1, 𝑦2))⟼ 𝜃1(𝑥1, 𝑦1) + 𝜃2(𝑥2, 𝑦2)

𝜌 ∶ 𝑀 ⊕𝑁⟶𝑀⊕𝑁

𝜌(𝑥, 𝑦) = (𝜌1(𝑥), 𝜌2(𝑦))

ℎ, l̃k ∶ 𝑀 ⊕𝑁⟶ℤ

ℎ(𝑥, 𝑦) = ℎ1(𝑥) + ℎ2(𝑦)

l̃k(𝑥, 𝑦) = l̃k1(𝑥) + l̃k2(𝑦).

We say that (𝜃𝑖, 𝜌𝑖, ℎ𝑖, l̃k𝑖), 𝑖 = 1, 2 are equivariantly concordant if the orthogonal sum between
(𝜃1, 𝜌1, ℎ1, l̃k1) and (−𝜃𝑡2, 𝜌2, ℎ2, l̃k2) is equivariantly metabolic.

Definition 4.6. We define the equivariant algebraic concordance group ̃ℤ to be the set of equiv-
alence classes of equivariant Seifert systems up to equivariant concordance. It is not difficult to
prove that the operation of orthogonal sum defines a group structure on ̃ℤ, by adapting the proof
of Levine [17, 18] in the case of the classical algebraic concordance.

Theorem 4.7. Let 𝐹 ⊂ 𝑆3 be an invariant Seifert surface of type 0 for a directed strongly invertible
knot (𝐾, 𝜌, ℎ) and choose an orientation on 𝐹. The class of the equivariant Seifert system (𝐹) in ̃ℤ
depends only on the equivariant concordance class of 𝐾. In particular, we have a well-defined group
homomorphism

Φ ∶ ̃ ⟶ ̃ℤ

[𝐾, 𝜌, ℎ]⟼ [(𝐹)].

Proof. Let 𝐺 be an invariant surface of type 0 for another directed strongly invertible knot 𝐽. We
can equivariantly perform the connected sum of 𝐹 and 𝐺 along their boundary so that 𝐹♮𝐺 is an
invariant Seifert surface of type 0 for the𝐾#̃𝐽. It is immediate to see that (𝐹♮𝐺) = (𝐹) ⊕ (𝐺).
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EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS 17 of 44

Therefore, to prove that the homomorphism Φ is well-defined it is sufficient to show that (𝐹) is
equivariantly metabolic whenever the knot 𝐾 = 𝜕𝐹 is equivariantly slice.
Let 𝐹 be the equivariant Seifert surface for �̂�0

𝑏
(𝐾) obtained by cutting 𝐹. By Proposition 4.3,

there exists a 𝜌∗-invariant submodule𝐻 of𝐻1(𝐹, ℤ), such that 2 rank𝐻 = rank𝐻1(𝐹, ℤ) + 1 and
the Seifert form of 𝐹 vanishes on it.
Observe that we can regard 𝐻1(𝐹, ℤ) as a 𝜌∗-invariant codimension 1 submodule in 𝐻1(𝐹, ℤ)

through the map induced by the inclusion. Moreover, 𝐻1(𝐹, ℤ) is easily identified with the
kernel of ℎ ∶ 𝐻1(𝐹, ℤ)⟶ ℤ. The restriction of the Seifert form of 𝐹 on 𝐻1(𝐹, ℤ) clearly coin-
cides with the Seifert form of 𝐹. Again by Proposition 4.3, the linking number homomorphism
l̃k ∶ 𝐻1(𝐹, ℤ)⟶ ℤ vanishes on𝐻. Therefore,𝐻 is an equivariantmetabolizer for the equivariant
Seifert system (𝐹). □

Remark 4.8. Let 𝐺 be the equivariant Seifert surface of type −1 for the unknot described in
Figure 5. Let 𝐹 be an invariant Seifert surface of type 𝑛 for a directed strongly invertible knot
(𝐾, 𝜌, ℎ). Then by the proof of Theorem 4.7 and Proposition 4.2 follows easily that we can compute
the equivariant algebraic concordance class of 𝐾 by

Φ(𝐾) = [(𝐹) + 𝑛(𝐺)] ∈ ̃ℤ.

Similarly, observe that in order to compute Φ(𝐾) it is not relevant in Definition 4.1 that 𝐹 ⧵ ℎ is
connected. In fact, suppose that 𝐹 ⧵ ℎ is not connected. Then 𝐹♮𝐺♮𝐺 is an equivariant Seifert
surface of type 0 for 𝐾, where 𝐺 is the mirror image of the surface 𝐺 in Figure 5. Hence, by
definitionΦ(𝐾) = [(𝐹♮𝐺♮𝐺)] = [(𝐹)] + [(𝐺)] + [(𝐺)]. As [(𝐺)] = −[(𝐺)], it follows that
Φ(𝐾) = [(𝐹)].

Proposition 4.9. Let be the concordance group of algebraically slice knots, that is, the kernel of
𝜑 ∶  ⟶ ℤ. Then the kernel of Φ ∶ ̃ ⟶ ̃ℤ contains a copy of, namely, 𝔯() ⊂ ker(Φ).

Proof. Let 𝐾 be an oriented knot representing a class in  and let 𝐹 be a Seifert surface for 𝐾.
Then we can compute Φ(𝔯(𝐾)) using as invariant surface 𝔯(𝐹) = 𝐹♮𝑟(𝐹), where analogously to
Definition 2.15, the involution of 𝔯(𝐾) exchange 𝐹 and 𝑟(𝐹).
Identifying 𝐻1(𝔯(𝐹), ℤ) ≅ 𝐻1(𝐹, ℤ) ⊕ 𝐻1(𝐹, ℤ), it is not difficult to see that the equivariant

Seifert system of 𝔯(𝐹) is of type (𝔯(𝐹)) = (𝜃, 𝜌, 0, 0), where

𝜃 =

(
𝜃𝐹 0

0 𝜃𝑡
𝐹

)
𝜌 =

(
0 id

id 0

)
.

Therefore, if 𝐻 ⊂ 𝐻1(𝐹, ℤ) is a metabolizer of 𝜃𝐹 then 𝐻 ⊕𝐻 ⊂ 𝐻1(𝔯(𝐹), ℤ) is an equivariant
metabolizer for (𝔯(𝐹)). As 𝔯 is injective (see Corollary 2.16), we have that ker(Φ) contains a copy
of. □

Remark 4.10. As a consequence, it follows from [15] that ker(Φ) contains a subgroup isomorphic
to ℤ∞, and from [19] that it contains a subgroup isomorphic to ℤ∞

2
.
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18 of 44 DI PRISA

4.2 Equivariant Blanchfield pairing

In this section,we show thatΦ ∶ ̃ ⟶ ̃ℤ lifts the homomorphismΨ ∶ ̃ ⟶ ̃ defined in [23].
In particular, Ψ factors through a reduced version ̃ℤ𝑟 of the equivariant algebraic concordance
group.

Definition 4.11. An equivariant Seifert form over a ring 𝑅 is a couple (𝜃, 𝜌), where

∙ 𝜃 ∶ 𝑀 ×𝑀⟶ 𝑅 is a bilinear form on a free 𝑅-module𝑀 of even rank,
∙ 𝜌 ∶ 𝑀⟶𝑀 is a 𝑅-linear involution,
∙ 𝜃(𝜌(𝑥), 𝜌(𝑦)) = 𝜃𝑡(𝑥, 𝑦) ∶= 𝜃(𝑦, 𝑥) for every 𝑥, 𝑦 ∈ 𝑀,
∙ 𝜃 − 𝜃𝑡 is unimodular, that is, induces an isomorphism between𝑀 and Hom(𝑀, 𝑅).

We say that an equivariant Seifert form (𝜃, 𝜌) on 𝑀 is equivariantly metabolic if there exists a
submodule𝐻 ⊂ 𝑀 such that

∙ rank𝑀 = 2 ⋅ rank𝐻
∙ 𝜌(𝐻) = 𝐻, that is,𝐻 is 𝜌-invariant,
∙ 𝜃 is identically zero on𝐻 ×𝐻.

Similarly to Definitions 4.5 and 4.6, we can define a notion of orthogonal sum between equiv-
ariant Seifert forms and construct the reduced equivariant algebraic concordance group ̃𝑅𝑟 as the
set of equivalence classes of equivariant Seifert forms over 𝑅 up to equivariant concordance.
In the following, we mainly focus on equivariant Seifert forms over ℤ and we will often omit to

specify the ring 𝑅, implying 𝑅 = ℤ. Only Section 6 will be mostly devoted to studying equivariant
Seifert forms over ℚ.
Clearly, there exists a forgetful homomorphism

𝑟 ∶ ̃ℤ ⟶ ̃ℤ𝑟 ,

which is surjective, as it admits a natural section

𝑠 ∶ ̃ℤ𝑟 ⟶ ̃ℤ

given by mapping an equivariant Seifert form (𝜃, 𝜌) to the equivariant Seifert system (𝜃, 𝜌, 0, 0).
In particular, ̃ℤ splits as

̃ℤ ≅ ̃ℤ𝑟 ⊕ ker(𝑟).

We will denote by Φ𝑟 the map given by the composition

Φ𝑟 ∶ ̃
Φ
w→ ̃ℤ

𝑟
w→ ̃ℤ𝑟 .

Levine [17, 18] showed that the algebraic concordance group is isomorphic to ℤ∞ ⊕ ℤ∞
2
⊕ ℤ∞

4
and that the knot concordance group surjects onto it. In Section 6, we provide a partial result,
similar to Levine’s one, on the structure of ̃ℤ𝑟 .
The results in Section 6 are obtained by adapting the arguments used in [17, 18] to the strongly

invertible setting. However, these ideas do not generalize easily to study ̃ℤ: while the restric-
tion on the equivariant metabolizers given by the homomorphism ℎ and l̃k provide valuable
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EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS 19 of 44

information (as shown in Example 4.13), it is not clear how to adapt these arguments to manage
these additional restrictions.
In [23], Miller and Powell study the action of the strong inversion 𝜌 of a strongly invertible

knot 𝐾 on its Alexander module ℤ(𝐾) and on the Blanchfield pairing on ℤ(𝐾). In particular,
they show that the action induced by 𝜌 on ℤ(𝐾) is an anti-isometry of the Blanchfield pairing
(Proposition 2.8). Moreover, they define an equivariant algebraic concordance group ̃ as the
Witt group of abstract equivariant Blanchfield pairings (Definition 4.3) and they prove that taking
the Blanchfield form of a strongly invertible knot (𝐾, 𝜌) together with the involution on ℤ(𝐾)

induced by 𝜌 defines a homomorphism (Proposition 4.6)

Ψ ∶ ̃ ⟶ ̃.

In [9], the authors prove that the Alexander module and the Blanchfield pairing of 𝐾 can be
expressed in terms of the Seifert form of a Seifert surface𝐹. If𝐴 is amatrix representing the Seifert
form of 𝐹, with respect to a basis, and genus(𝐹) = g thenℤ(𝐾) ≅ ℤ[𝑡±1]2g∕(𝑡𝐴 − 𝐴𝑡)ℤ[𝑡±1]2g

and under this identification the Blanchfield pairing is equivalent to

 ∶ ℤ(𝐾) ×ℤ(𝐾)⟶ ℚ(𝑡)∕ℤ[𝑡±1]

(𝑥, 𝑦)⟼ 𝑥(𝑡 − 1)(𝐴 − 𝑡𝐴𝑡)−1𝑦,

where ⋅ is the ℤ-linear involution given by 𝑡 ⟼ 𝑡−1. It is not difficult to see, as pointed out in
the examples in [23], that if 𝐹 is 𝜌-invariant and 𝑃 is the matrix representing the action of 𝜌 on
𝐻1(𝐹, ℤ) with respect to the basis , we have that the action of 𝜌 onℤ(𝐾) can be read as

𝜌∗ ∶ ℤ(𝐾)⟶ ℤ(𝐾)

𝑥⟼ 𝑃𝑥.

The same construction carried out for abstract equivariant Seifert forms and abstract
equivariant Blanchfield pairings proves the following theorem.

Theorem 4.12. There exists a natural group homomorphism

̃ℤ𝑟 ⟶ ̃

that makes the following diagram commutative

It follows from its definition that ̃ does not distinguish a directed strongly invertible knot
from its antipode. On the other hand, in Section 5 we prove that the equivariant signature [1] can
be retrieved from ̃ℤ𝑟 . As the equivariant signature depends on the choice of half-axis for a strongly
invertible knot, so is ̃ℤ𝑟 (see Remark 5.15).
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20 of 44 DI PRISA

F IGURE 6 The invariant surface 𝐹 with boundary 𝐾13𝑛1496. The chosen half-axis ℎ is the solid one. The
curves 𝛼, 𝛽, 𝛾, 𝛿 form a basis of𝐻1(𝐹, ℤ).

We conclude with the following example, which shows that the equivariant algebraic concor-
dance class of a knot is able to obstruct smooth as well as topological equivariant sliceness for
knots with trivial Alexander polynomial, contrary to ̃.

Example 4.13. Consider the knot𝐾13𝑛1496 as the directed strongly invertible knot (𝐾, 𝜌, ℎ) that
bounds the surface 𝐹 in Figure 6, where the strong inversion is given by the 𝜋-rotation around the
vertical axis and the chosen oriented half-axis is the red one in the figure.
One can easily check that𝐾 has trivial Alexander polynomial and hence that its image is trivial

in the equivariant algebraic concordance group ̃ defined in [23]. However, Boyle and Issa [2]
prove that 𝐾 is not equivariantly slice. We show that the same result can be obtained by using ̃ℤ.
The surface 𝐹 is an invariant Seifert surface for 𝐾, so we can use it to compute the class of 𝐾

in ̃ℤ. With respect to the basis {𝛼, 𝛽, 𝛾, 𝛿} of 𝐻1(𝐹, ℤ) the Seifert form and the involution 𝜌∗ are
represented by the matrices 𝐴 and 𝑃, respectively:

𝐴 =

⎛⎜⎜⎜⎜⎝
1 1 0 0

0 −1 −1 0

0 −1 −1 −1

0 0 0 −1

⎞⎟⎟⎟⎟⎠
𝑃 =

⎛⎜⎜⎜⎜⎝
1 1 0 0

0 −1 0 0

0 0 −1 0

0 0 1 1

⎞⎟⎟⎟⎟⎠
.
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EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS 21 of 44

The homomorphisms ℎ and l̃k are represented by the covectors:

ℎ =
(
0 −1 1 0

)
l̃k =

(
−2 −1 1 2

)
.

One can easily check that𝐻 = ⟨𝛼 + 𝛿, 2(𝛽 − 𝛾) − 𝛼 + 𝛿⟩ is a 𝜌∗-invariant submodule of rank 2 on
which the Seifert form of 𝐹 vanishes.
Therefore, the class of 𝐾 represents the identity also in the reduced equivariant algebraic

concordance group ̃ℤ𝑟 .
However,𝐻 = ker(ℎ) ∩ ker(l̃k) = ⟨𝛽 + 𝛾, 𝛼 + 𝛿⟩ has rank 2 but the Seifert form does not vanish

on𝐻, therefore the class of 𝐾 is nontrivial in ̃ℤ.

4.3 Lower bound on the equivariant slice genus

In [23], the authors obtain a lower bound on the equivariant slice genus of a strongly invertible
knot using the Blanchfield form. As Miller and Powell’s invariant factors through ̃ℤ, we can get
the same lower bound indirectly. However, we prove in this section that it is possible to obtain a
different lower bound on the equivariant slice genus using the additional information contained
in ̃ℤ.

Definition 4.14. LetΣ ⊂ 𝐵4 be a properly embedded orientable surface, with boundary a strongly
invertible knot (𝐾, 𝜌). Suppose that Σ is invariant under an involution of 𝐵4 which extends 𝜌, and
denote by 𝐷 ≅ 𝐷2 the fixed point set of 𝜌 in 𝐵4. Then intersection Σ ∩ 𝐷 consists of an arc joining
the two fixed points on 𝐾 and finite set Γ of fixed 𝑆1. We define the complexity of Σ as

𝑐(Σ) = genus(Σ) + |Γ|.
Then, we define the slice complexity of a strongly invertible knot (𝐾, 𝜌) as

𝑠𝑐(𝐾, 𝜌) = min
Σ
𝑐(Σ),

where Σ ranges among the orientable surfaces in 𝐵4 with boundary 𝐾, invariant under an
involution of 𝐵4 extending 𝜌.

Remark 4.15. By Smith theory (see [4]), we have that |Γ| ⩽ genus(Σ). Therefore, for every strongly
invertible knot (𝐾, 𝜌) the following inequalities hold

g̃4(𝐾) ⩽ 𝑠𝑐(𝐾) ⩽ 2 ⋅ g̃4(𝐾).

Let (𝐾, 𝜌, ℎ) be a directed strongly invertible knot, and let Σ ⊂ 𝐵4 an invariant surface for 𝐾 as
in Definition 4.14. Denote by 𝐷 the fixed point set in 𝐵4, oriented compatible with the half-axis ℎ.
Observe that𝐷 ⧵ Σ can be subdivided into two subsurfaces in a checkerboard fashion, as described
in Figure 7.
Let 𝑆 be the subsurface containing the chosen half-axis ℎ, and orient every 𝛾 ∈ Γ and the fixed

arc 𝛼 as the boundary of 𝑆.
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22 of 44 DI PRISA

F IGURE 7 An example of how to get the orientation of the fixed point set 𝐷.

Let𝐷 × 𝐷2 be an equivariant tubular neighborhood of𝐷 in 𝐵4. Pick an auxiliary orientation on
Σ and observe that Σ induces on every 𝛾 a nowhere vanishing section 𝑠𝛾 of 𝐷 × 𝐷2, which we can
regard as a map 𝑠𝛾 ∶ 𝛾 ≅ 𝑆1 ⟶ 𝑆1. We call the degree of 𝑠𝛾 the framing 𝑓(𝛾) ∈ ℤ of 𝛾. It is easy
to see that it does not depend on the auxiliary orientation on Σ.
Similarly, Σ induces on 𝛼 a nowhere zero section of 𝐷 × 𝐷2, which we complete to a sec-

tion on 𝛼 ∪ ℎ using the section induced on ℎ by a band 𝐵 ⊂ 𝑆3 which gives the 0-butterfly
link of 𝐾 (see Definition 2.8). Call the degree of the associated map 𝑆1 ⟶ 𝑆1 the framing 𝑓(𝛼)
of 𝛼.
Finally, we say that Σ is an invariant surface type 𝑛 for (𝐾, 𝜌, ℎ), where

𝑛 = 𝑓(𝛼) +
∑
𝛾∈Γ

𝑓(𝛾).

Proposition 4.16. LetΣ ⊂ 𝐵4 be an invariant surface of type 𝑛 for a directed strongly invertible knot
(𝐾, 𝜌, ℎ). Then, there exists an invariant oriented surface Σ̂ ⊂ 𝐵4 with boundary �̂�𝑛

𝑏
(𝐾), with no fixed

points and such that

genus(Σ̂) ⩽

{
𝑐(Σ) − 1 if Σ̂ is connected,
𝑐(Σ) if Σ̂ is not connected.

Proof. On the set of fixed circles 𝑋 = Γ ∪ {𝛼 ∪ ℎ} consider the partial order given by the nesting
of circles, seen as circles in the fixed disk 𝐷. First of all, we want to remove all of the fixed circles.
We do so by applying two moves.
Move 1: Suppose there exists a minimal element 𝛾 ∈ Γ ⊂ 𝑋 with framing zero. Let 𝐷𝛾 ⊂ 𝐷

be the disk bounded by 𝛾. As 𝑓(𝛾) = 0 the section induced by Σ on 𝛾 of the equivariant tubular
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EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS 23 of 44

F IGURE 8 An example of choice of the arcs 𝛽, in blue.

neighborhood of 𝐷 extends over 𝐷𝛾 to a nowhere vanishing section, which we can take to be
equivariant. Therefore, we can perform an equivariant surgery of Σ along 𝐷𝛾, obtaining a surface
Σ′ of the same type, with less genus and fixed circles. Replace Σ by Σ′.
Move 2: Let 𝛾 ∈ Γ be aminimal element with 𝑓(𝛾) ≠ 0 and let 𝜉 ∈ 𝑋 be a circle such that there

exists an arc 𝛽 ⊂ 𝐷 ⧵ Σ joining 𝛾 and 𝜉 (see Figure 8). Then, we can find an equivariant 𝐷1 × 𝐷2
inside an equivariant tubular neighborhood 𝐷1 × 𝐷3 of 𝛽 such that (𝜕𝐷1) × 𝐷2 ⊂ Σ. We perform
an equivariant surgery along𝐷1 × 𝐷2, obtaining a surface Σ′ with genus(Σ′) = genus(Σ) + 1. One
can check that the circles 𝛾 and 𝜉 were joined during the surgery into a new fixed circle with
framing 𝑓(𝛾) + 𝑓(𝜉). Therefore, Σ′ has the same type of Σ. Replace Σ by Σ′.
Applying Move 1 whenever possible and Move 2 in the other cases, we get an invariant surface

Σ′ of type 𝑛 with fixed-point set consisting of only one arc. Observe that we have to apply Move
2 at most #Γ times. As in Remark 2.13, we can consider the equivariant band move on 𝐾 along ℎ
that gives �̂�𝑛

𝑏
(𝐾) as an equivariant cobordism 𝐶 between 𝐾 and �̂�𝑛

𝑏
(𝐾). Now glue together 𝐶 and

Σ′ along 𝐾, obtaining a surface Σ′′, with genus(Σ′′) ⩽ 𝑐(Σ). By construction, the fixed point set of
the involution on Σ′′ consists of a single circle, with framing induced by Σ′′ equal to zero. Finally,
apply Move 1, obtaining an invariant surface Σ̂ with boundary �̂�𝑛

𝑏
(𝐾) and without fixed points.

Observe that if the finalMove 1 does not disconnect the surface, then genus(Σ̂) = genus(Σ′′) − 1 ⩽

𝑐(Σ) − 1. Otherwise genus(Σ̂) = genus(Σ′′) ⩽ 𝑐(Σ). □

Definition 4.17. Let  = (𝜃, 𝜌, ℎ, l̃k) be an equivariant Seifert system on 𝑀 ≅ ℤ2𝑚. A partial
metabolizer for  is a 𝜌-invariant submodule𝐻 ⊂ ker(ℎ) ∩ ker(l̃k) such that 𝜃𝐻×𝐻 ≡ 0. We define
the algebraic complexity of  as 𝑎𝑐() = 𝑚 − 𝑘, where

𝑘 = max{rank(𝐻) |𝐻 is a partial metabolizer of }.
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24 of 44 DI PRISA

Proposition 4.18. The algebraic complexity is constant on the equivariant algebraic concordance
classes. Therefore, it induces a well-defined map

𝑎𝑐 ∶ ̃ℤ ⟶ ℕ.

Proof. Let 𝑖 = (𝐴𝑖, 𝑃𝑖, ℎ𝑖, l̃k𝑖), 𝑖 = 0, 1 be two equivariant Seifert systems. To prove that the alge-
braic complexity does not depend on the representative of a class in ̃ℤ it is sufficient to show that
if 0 is equivariantly metabolic then 𝑎𝑐(0 ⊕ 1) = 𝑎𝑐(1). Let𝐻0 is a metabolizer for 0 and𝐻1

is a maximal rank partial metabolizer for 1 then 𝐻0 ⊕𝐻1 is a partial metabolizer for 0 ⊕ 1,
showing that

𝑎𝑐(0 ⊕ 1) ⩽ 𝑎𝑐(1).

For simplicity, consider the equivariant Seifert systems to be defined over ℚ coefficients. It can
be seen, as in the proof of Lemma 6.1, that passing from ℤ to ℚ coefficients does not change the
maximal rank of a partial metabolizer. Denote by 𝑉𝑖 the𝑚𝑖-dimensional vector space underlying
𝑖 . Let 𝐻 ⊂ 𝑉0 ⊕ 𝑉1 be a maximal partial metabolizer for 0 ⊕ 1, 𝐻0 be a metabolizer for 0
and𝑊 a complement of𝐻0, so that 𝑉0 = 𝐻0 ⊕𝑊. Denote by 𝑘 the dimension of𝐻 and let {𝛼𝑖 =
(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)}𝑖=1,…,𝑘 be a basis of 𝐻, where 𝑥𝑖 ∈ 𝐻0, 𝑦𝑖 ∈ 𝑊 and 𝑧𝑖 ∈ 𝑉1. Up to base change, we can
suppose that 𝑦1, … , 𝑦𝑟 are linearly independent and that 𝑦𝑟+1 = ⋯ = 𝑦𝑘 = 0. Denote by𝑌 the span
of 𝑦1, … , 𝑦𝑟. Therefore, for 𝑟 + 1 ⩽ 𝑖 ⩽ 𝑘 we have 𝛼𝑖 = (𝑥𝑖, 0, 𝑧𝑖). In particular, observe that the
subspace spanned by {𝛼𝑖}𝑟+1⩽𝑖⩽𝑘 is still invariant under the action of (𝑃0 ⊕ 𝑃1). Repeating the
process, we can assume after a change of basis that 𝑧𝑟+1, … , 𝑧𝑟+𝑠 are linearly independent and
that 𝑧𝑟+𝑠+1 =,… ,= 𝑧𝑘 = 0. Denote by 𝑍 the span of 𝑧𝑟+1, … , 𝑧𝑟+𝑠. Observe that 𝑍 is the projection
onto the 𝑉1 summand of ⟨𝛼𝑖 | 𝑟 + 1 ⩽ 𝑖 ⩽ 𝑘⟩, hence 𝑃1(𝑍) = 𝑍. Now for 𝑟 + 1 ⩽ 𝑖, 𝑗 ⩽ 𝑟 + 𝑠 we
have that

0 = (𝐴0 ⊕ 𝐴1)(𝛼𝑖, 𝛼𝑗) = 𝐴0(𝑥𝑖, 𝑥𝑗) + 𝐴1(𝑧𝑖, 𝑧𝑗) = 𝐴1(𝑧𝑖, 𝑧𝑗),

0 = ℎ0(𝑥𝑖) + ℎ1(𝑧𝑖) = ℎ1(𝑧𝑖),

0 = l̃k0(𝑥𝑖) + l̃k1(𝑧𝑖) = l̃k1(𝑧𝑖).

In other words, 𝑍 is a partial equivariant metabolizer of dimension 𝑠 for 1. Hence, it is now
sufficient to show that 𝑠 ⩾ 𝑘 − 𝑚0.
As for 𝑟 + 𝑠 + 1 ⩽ 𝑖 ⩽ 𝑘 we have that 𝛼𝑖 = (𝑥𝑖, 0, 0) are linearly independent, hence 𝑋 =⟨𝑥𝑖 | 𝑟 + 𝑠 + 1 ⩽ 𝑖 ⩽ 𝑘⟩ is a (𝑘 − 𝑠 − 𝑟)-dimensional subspace of𝐻0.Moreover, observe that𝑋 ⟂ 𝑌,

where⟂means orthogonal with respect to the skew-symmetric form𝐴0 − 𝐴
𝑡
0
. On the other hand,

𝑋 ⟂ 𝐻0 and𝐻0 ∩ 𝑌 = 0. As 𝐴0 − 𝐴𝑡0 is nondegenerate we have that

2𝑚0 − (𝑘 − 𝑟 − 𝑠) = dim𝑋⟂ ⩾ dim𝐻0 + dim𝑌 = 𝑚0 + 𝑟,

and therefore 𝑠 ⩾ 𝑘 − 𝑚0, that is, the opposite inequality 𝑎𝑐(0 ⊕ 1) ⩾ 𝑎𝑐(1) holds. □

Theorem 4.19. Let (𝐾, 𝜌, ℎ) be a directed strongly invertible knot and let Φ(𝐾) ∈ ̃ℤ be its
equivariant algebraic concordance class. Then the following inequality holds

2g̃4(𝐾) ⩾ 𝑠𝑐(𝐾) ⩾ min𝑛∈ℤ
𝑎𝑐(Φ(𝐾) + 𝑛(𝐺)),
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EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS 25 of 44

where 𝐺 is the invariant Seifert surface of type −1 for the unknot in Figure 5.

Proof. Let Σ ⊂ 𝐵4 be any invariant orientable surface with boundary 𝐾 and let 𝑛 be the type of Σ.
Let Σ̂ ⊂ 𝐵4 be the invariant orientable surface with boundary �̂�𝑛

𝑏
(𝐾) and no fixed points obtained

from Σ by Proposition 4.16. Take now an invariant Seifert surface 𝐹 ⊂ 𝑆3 of type 𝑛 for 𝐾. By
Proposition 4.3 there exists a partial metabolizer 𝐻 ⊂ 𝐻1(𝐹, ℤ), with rank𝐻 ⩾ g𝐹 − 𝑐(Σ). There-
fore, 𝑐(Σ) ⩾ g𝐹 − rank𝐻 ⩾ 𝑎𝑐((𝐹)) ⩾ min𝑛∈ℤ 𝑎𝑐(Φ(𝐾) + 𝑛(𝐺)). Taking the minimum over Σ,
we get

𝑠𝑐(𝐾) ⩾ min
𝑛∈ℤ

𝑎𝑐(Φ(𝐾) + 𝑛(𝐺)).

□

Remark 4.20. As the equivariant slice genus and the slice complexity do not depend on the choice
of the direction, one can replace (𝐾, 𝜌, ℎ) by its antipode (𝐾, 𝜌, ℎ′) in Theorem 4.19 to obtain a
(potentially) better lower bound (Figure 8).

5 EQUIVARIANT GORDON–LITHERLAND FORM

In this section, we define a homomorphism from ̃ℤ𝑟 to a simpler group𝑊(ℚ) of algebraic concor-
dance, namely an equivariant version of the Witt group of ℚ. Then we characterize the image of
a directed strongly invertible knot in𝑊(ℚ) in terms of classical Witt invariants. Finally, we prove
that the equivariant signature defined in [1] factors through𝑊(ℚ).

Definition 5.1. Let 𝔽 be a field. An equivariant symmetric form is a pair (𝑄, 𝜌) where 𝑄 is a
symmetric, bilinear, and nondegenerate form on a finite-dimensional 𝔽-vector space 𝑉 and 𝜌 is
a 𝑄-isometric involution of 𝑉. We say that (𝑄, 𝜌) is equivariantly metabolic if dim𝑉 is even and
there exists a half-dimensional 𝜌-invariant subspace𝑊 ⊂ 𝑉 such that 𝑄|𝑊×𝑊 ≡ 0.

Again, analogously toDefinitions 4.5 and 4.6we can define a notion of orthogonal sumand con-
cordance between equivariant symmetric forms and define the equivariant Witt group𝑊(𝔽) of 𝔽
to be the set of equivalence classes of equivariant symmetric forms up to equivariant concordance.
Given an equivariant Seifert form (𝜃, 𝜌) defined over a ℤ-module 𝑀, we can define an

equivariant symmetric form on𝑀 ⊗ℤ ℚ by (𝜃 + 𝜃𝑡, 𝜌).
It is immediate to see that this association induces a group homomorphism

̃ℤ𝑟 ⟶𝑊(ℚ).

Denote by Φ𝑊 ∶ ̃ ⟶𝑊(ℚ) the map given by the composition

̃ ⟶ ̃ℤ𝑟 ⟶𝑊(ℚ).

Notice that themapΦ𝑊maps the equivariant concordance class of a directed strongly invertible
knot (𝐾, 𝜌, ℎ), to the Witt class of the couple (𝐹, 𝜌∗), where 𝐹 is an invariant Seifert surface of
type 0 for 𝐾 and (𝐹, 𝜌∗) is the couple given by the Gordon–Litherland form on𝐻1(𝐹,ℚ) and the
action induced by 𝜌.
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26 of 44 DI PRISA

5.1 A characterization of the equivariant Witt class

Now we show that given a directed strongly invertible knot 𝐾, the equivariant Witt class Φ𝑊(𝐾)
depends only on the (classical) Witt class of 𝐾 and 𝔮𝔟(𝐾) (see Definition 2.14).

Remark 5.2. Let (𝑄, 𝜌) be an equivariant form over ℚ and let 𝐸𝜆 be the 𝜆-eigenspace of 𝜌, for
𝜆 = ±1. Given 𝑣 ∈ 𝐸1, 𝑤 ∈ 𝐸−1 clearly

𝑄(𝑣,𝑤) = 𝑄(𝑣, −𝑤) = −𝑄(𝑣, 𝑤)⟹ 𝑄(𝑣,𝑤) = 0.

Hence, 𝐸1 and 𝐸−1 are orthogonal and we can decompose the form as

(𝑄, 𝜌) = (𝑄|𝐸1 , id) ⊕ (𝑄|𝐸−1 , − id).
This gives us an isomophism

(𝜋+, 𝜋−) ∶ 𝑊(ℚ)⟶𝑊(ℚ) ⊕𝑊(ℚ)

[𝑄, 𝜌]⟶
([
𝑄|𝐸1
]
,
[
𝑄|𝐸−1

])
.

We will denote by Φ±
𝑊
= 𝜋±◦Φ𝑊 ∶ ̃ ⟶𝑊(ℚ) the induced homomorphisms.

Using the description above of𝑊(ℚ)we can give a new definition of the equivariant signature.

Definition 5.3. Denote by 𝜎 ∶ 𝑊(ℚ)⟶ ℤ the signature homomorphism. Define the equivari-
ant signature as 𝜎 = (𝜎◦Φ−

𝑊
− 𝜎◦Φ+

𝑊
) ∶ ̃ ⟶ℤ.

We show now how the invariants we just defined are related to some of the invariants defined
in [2] and [1].

Definition 5.4. Let 𝐴 be a nondegenerate symmetric 𝑛 × 𝑛 matrix and let 𝑘 be a nonzero inte-
ger. Define 𝑀𝑘(𝐴) = 𝑘 ⋅ 𝐴. Clearly, if 𝐴 is metabolic, 𝑀𝑘(𝐴) is so. Moreover 𝑀𝑘(𝐴) ⊕𝑀𝑘(𝐵) =

𝑀𝑘(𝐴 ⊕ 𝐵). Therefore, this induces a well-defined homomorphism

𝑀𝑘 ∶ 𝑊(ℚ)⟶𝑊(ℚ)

[𝐴]⟼ [𝑀𝑘(𝐴)].

It is immediate to see that𝑀𝑘◦𝑀𝑘 is the identity, hence𝑀𝑘 is an isomorphism.

Lemma 5.5. Let 𝐹 be an invariant Seifert surface of type 0 for a directed strongly invertible
knot (𝐾, 𝜌, ℎ) and let 𝐹 be the corresponding Seifert surface for �̂�0

𝑏
(𝐾). Then the quotient surface

𝐹 = 𝐹∕𝜌 ⊂ 𝑆3 = 𝑆3∕𝜌 is a spanning surface for 𝔮𝔟(𝐾) with zero relative Euler number 𝑒(𝐹) (see
Definition 2.17).

Proof. Pick a representative of the semi-orientation on �̂�0
𝑏
(𝐾) and denote the components of the

link by 𝐻 and 𝐽. Let 𝐻𝐹 be a nearby longitude of 𝐻 missing 𝐹. Then the projection 𝜋(𝐻𝐹) is a
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EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS 27 of 44

longitude of 𝔮𝔟(𝐾) missing 𝐹. To show that 𝑒(𝐹) = lk(𝔮𝔟(𝐾), 𝜋(𝐻𝐹)) = 0 it is sufficient to prove
that [𝐻𝐹] = 0 ∈ 𝐻1(𝑆

3 ⧵ 𝐻,ℤ). As𝐻𝐹 is disjoint from 𝐹, we have that lk(𝐻𝐹,𝐻) + lk(𝐻𝐹, 𝐽) = 0.
By definition of 0-butterfly link we have that lk(𝐻𝐹, 𝐽) = lk(𝐻, 𝐽) = 0, therefore lk(𝐻𝐹,𝐻) = 0.
In other words, [𝐻𝐹] = 0 ∈ 𝐻1(𝑆

3 ⧵ 𝐻,ℤ). □

Proposition 5.6. Let (𝐾, 𝜌, ℎ) be a directed strongly invertible knot. Then

Φ+𝑊(𝐾) = 𝑀2(𝜑𝑊(𝔮𝔟(𝐾)),

where 𝜑𝑊(𝔮𝔟(𝐾)) is the Witt class of 𝔮𝔟(𝐾).

Proof. Let 𝐹 be an invariant Seifert surface of type 0 for 𝐾 and let 𝐹 be the corresponding Seifert
surface for �̂�0

𝑏
(𝐾). First of all, observe that 𝐹 can be obtained from 𝐹 by attaching an equivariant

band 𝐵. As 𝜌 reverses the orientation of the core of 𝐵, it is not difficult to see that the dimen-
sion of the (−1)-eigenspace of 𝜌∗ increases by one going from 𝐻1(𝐹,ℚ) to 𝐻1(𝐹,ℚ). Hence, the
1-eigenspace of 𝜌∗ is fully contained in 𝐻1(𝐹). Let 𝜋 ∶ (𝑆3, 𝐹)⟶ (𝑆3, 𝐹) be the quotient projec-
tion, given by the action of 𝜌. The quotient surface 𝐹 is a spanning surface for 𝔮𝔟(𝐾). Observe
that the quotient projection 𝜋 is a twofold covering 𝐹⟶ 𝐹. Take now an oriented curve 𝑐 in 𝐹,
representing a class in 𝐻1(𝐹), and lift it to a class tr(𝑐) = 𝜋−1(𝑐) ∈ 𝐻1(𝐹). This defines a transfer
homomorphism (see [4] for details) tr ∶ 𝐻1(𝐹)⟶ 𝐻1(𝐹). By construction 𝜌∗(tr(𝑐)) = tr(𝑐), that
is, the image of the transfer map is contained in the 1-eigenspace 𝐸1 of 𝜌∗. The composition 𝜋∗◦ tr
is given by

𝜋∗◦ tr ∶ 𝐻1(𝐹)⟶ 𝐻1(𝐹)

𝑐⟼ 2𝑐,

hence tr is injective. Moreover, tr is clearly surjective on 𝐸1: given a 𝜌-invariant class 𝑑 ∈ 𝐸1,
we can project it by 𝜋∗ and lift it again, showing that 2𝑑 ∈ im(tr). Finally, we show that the
transfer map behaves well with respect to the Gordon–Litherland form. Given 𝑐, 𝑑 ∈ 𝐻1(𝐹) let
𝑆 be an oriented surface in 𝑆3 with 𝜕𝑆 = 𝑑, where 𝑑 is 𝑑 pushed out of 𝐹 “in both directions
simultaneously” (as in the definition of the Gordon–Litherlan form). In this way, we have that
𝐹(𝑐, 𝑑) = lk(𝑐, 𝑑) = #𝑆 ∩ 𝑐. Up to a small isotopy, we can suppose 𝑆 transverse to the branching
locus. The lift𝜋−1(𝑆) is an oriented surface in 𝑆3with boundary t̃r(𝑑) andwe can use it to calculate

lk(tr(𝑐), t̃r(𝑑)) = #(𝜋−1(𝑆) ∩ tr(𝑐)) = 2(#𝑆 ∩ 𝑐).

It follows that the Gordon–Litherland forms are related by

𝐹(tr(𝑐), tr(𝑑)) = 2 ⋅ 𝐹(𝑐, 𝑑).

Therefore, the transfer map gives an isometry

tr ∶ (𝐻1(𝐹), 2 ⋅ 𝐹)⟶ (𝐸1,𝐹).

Finally, by Lemma 5.5 we have that 𝑒(𝐹) = 0 and hence by Proposition 2.19 that the Gordon–
Litherland form on 𝐹 represents the Witt class of 𝔮𝔟(𝐾). □
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28 of 44 DI PRISA

As an immediate consequence, we get the following corollary.

Corollary 5.7. Let 𝐾 be a directed strongly invertible knot and let 𝐴 and 𝐵 be symmetric matrices
representing the (nonequivariant) Witt classes of 𝔮𝔟(𝐾) and 𝐾, respectively. Then the equivariant
Witt class of 𝐾 is represented by the couple

Φ𝑊(𝐾) =
⎡⎢⎢⎣
⎛⎜⎜⎝
2𝐴 0 0

0 −2𝐴 0

0 0 𝐵

⎞⎟⎟⎠ ,
⎛⎜⎜⎝
id 0 0

0 − id 0

0 0 − id

⎞⎟⎟⎠
⎤⎥⎥⎦.

5.2 The equivariant signature

We recall now the definition of equivariant signature introduced by Alfieri and Boyle [1] and we
prove that it is equivalent to the one in Definition 5.3.
Given a knot 𝐾 ⊂ 𝑆3 we denote by Σ(𝐾) the twofold cover of 𝑆3 branched over 𝐾. Given a

properly embedded and connected surface 𝐹 ⊂ 𝐵4, we denote by Σ(𝐹) the twofold cover of 𝐵4
branched over 𝐹, and by 𝜏 the covering transformation of Σ(𝐹).

Lemma 5.8 [2, Proposition 12]. Let 𝜌 be an orientation preserving involution of 𝐵4 such that Fix(𝜌)
is a 2-disk𝐷. Let 𝐹 ⊂ 𝐵4 be a properly embedded and connected 𝜌-invariant surface on which 𝜌 acts
nontrivially. Then, there exists a lift 𝜌 of 𝜌, that is, the following diagram commutes

In fact, there exist exactly two such lifts, namely 𝜌 and 𝜏𝜌.

Now let (𝐾, 𝜌, ℎ) be a directed, strongly invertible knot and let 𝐹 ⊂ 𝐵4 be a properly embed-
ded connected surface with 𝜕𝐹 = 𝐾 (not necessarily orientable), invariant with respect to some
extension of 𝜌 to 𝐵4 (which we still denote by 𝜌).
Before introducing the equivariant signature it is useful to better describe the fixed point set of

the lifts of 𝜌 given by Lemma 5.8. We do so in the following remark

Remark 5.9. Let 𝐷 be the fixed point disk of 𝐵4. The intersection 𝐷 ∩ 𝐹 = Fix(𝜌|𝐹) is the dis-
joint union of an arc joining the fixed point of 𝐾 and a finite number of 𝑆1 and isolated points.
Take𝑥 ∈ Fix(𝜌) and observe that𝜌◦𝜋(𝑥) = 𝜋◦𝜌(𝑥) = 𝜋(𝑥), thereforeFix(𝜌) ⊆ 𝜋−1(𝐷).Moreover,
note that 𝜌◦𝜏(𝑥) = 𝜏◦𝜌(𝑥) = 𝜏(𝑥), that is, Fix(𝜌) is 𝜏-invariant. Take now 𝑥 ∈ 𝜋−1(𝐹 ∩ 𝐷). Then
𝜌(𝑥) ∈ 𝜋−1(𝜌◦𝜋(𝑥)) = {𝑥, 𝜏(𝑥)} and as 𝜏(𝑥) = 𝑥 we have that 𝑥 ∈ Fix(𝜌), that is, 𝜋−1(𝐹 ∩ 𝐷) is
fixed pointwise by 𝜌. Let 𝐶1, … , 𝐶𝑛 the connected components of 𝐷 ⧵ 𝐹. As 𝜌|𝐶𝑖 is the identity,
𝜌 and 𝜏◦𝜌 act either as the identity or as 𝜏 on 𝜋−1(𝐶𝑖). Therefore, exactly one of the lifts fixes
pointwise the preimage of 𝐶𝑖 , while the other one has no fixed point in 𝜋−1(𝐶𝑖). Let 𝐶𝑖 and 𝐶𝑗 be
adjacent components, that is, separated by a circle or an arc in 𝐷 ∩ 𝐹. Then, 𝜋−1(𝐶𝑖) and 𝜋−1(𝐶𝑗)
cannot be both fixed pointwise by 𝜌. Otherwise, 𝜋−1(𝐶𝑖) and 𝜋−1(𝐶𝑗)would be two fixed surfaces,
both contained inFix(𝜌) and intersecting in a nontrivial way in their interior and this would imply
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EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS 29 of 44

that Fix(𝜌) has a component which is not a manifold. Therefore, if we decompose𝐷 ⧵ 𝐹 = 𝐴 ⊔ 𝐵,
where𝐴 and 𝐵 are union of nonadjacent components, we have that the fixed point sets of the two
lifts of 𝜌 are, respectively, 𝜋−1(𝐴) and 𝜋−1(𝐵).

Observe that by Remark 5.9 exactly one lift 𝜌 of 𝜌 to Σ(𝐹) fixes pointwise ℎ̃ = 𝜋−1(ℎ). The
fixed point set of 𝜌 is the disjoint union of a (eventually disconnected) surface Δ, with 𝜕Δ = ℎ̃,
and a finite set of points. Recall now that the 0-butterfly link 𝐿0

𝑏
(𝐾) is obtained by performing

a band move on 𝐾 along a band parallel to ℎ, in such a way that the linking number between
the components of 𝐿0

𝑏
(𝐾) is zero. Let 𝛾 be one of the arcs of this band parallel to ℎ. As the end-

points of 𝛾 meet the branching set, its preimage 𝛾 in Σ(𝐹) is a closed curve. Given a perturbation
Δ′ of Δ with 𝜕Δ′ = 𝛾 we define the relative Euler number 𝑒(Δ, 𝛾) as the algebraic intersection
#(Δ ∩ Δ′).

Definition 5.10 [1]. The equivariant signature of (𝐾, 𝜌, ℎ) is defined as

𝜎(𝐾) = 𝜎(Σ(𝐹), 𝜌) − 𝑒(Δ, 𝛾),

where 𝜎(Σ(𝐹), 𝜌) is the g-signature (see [1] or [11]) of the pair (Σ(𝐹), 𝜌).

Using the 𝐺-signature theorem [11], Alfieri and Boyle prove that the equivariant signature is a
well-defined invariant for equivariant concordance and in particular defines a homomorphism

𝜎 ∶ ̃ ⟶ℤ.

Remark 5.11. Actually, Alfieri and Boyle [1] define the equivariant signature slightly differently,
exchanging the role of the two half-axes ℎ and ℎ′. It is immediate to check that our definition
of equivariant signature for the directed strongly invertible knot (𝐾, 𝜌, ℎ) coincides with their
definition for the antipode (𝐾, 𝜌, ℎ′) = 𝑎(𝐾, 𝜌, ℎ). Hence, the two invariants are essentially the
same. However, it is easier to relate Definition 5.10 to the equivariant algebraic concordance group
(see Theorem 5.13).

In [1, section 6], the authors explain how to easily compute the relative Euler number for the
equivariant pushoff of a spanning surface in 𝐵4. Using the following proposition it is possible to
easily compute the equivariant signature from an equivariant spanning surface.

Proposition 5.12 [2, Proposition 13]. Let (𝐾, 𝜌, ℎ) be a directed strongly invertible knot in 𝑆3. Let 𝐹
be a connected spanning surface for𝐾, with 𝜌(𝐹) = 𝐹. We still denote by 𝜌 the radial extension of the
involution to 𝐵4. Let 𝐹 be the surface obtained by equivariantly pushing the interior of 𝐹 in 𝐵4 and
denote by 𝜌 the preferred lift of 𝜌 to Σ(𝐹). Then under the identification (𝐻1(𝐹),𝐹) ≅ (𝐻2(Σ(𝐹)), 𝑄)

the map of lattices 𝜌∗ ∶ (𝐻2(Σ(𝐹)), 𝑄)⟶ (𝐻2(Σ(𝐹)), 𝑄) is equivalent to:

∙ 𝜌∗ ∶ (𝐻1(𝐹),𝐹)⟶ (𝐻1(𝐹),𝐹) if ℎ ⊄ 𝐹,
∙ −𝜌∗ ∶ (𝐻1(𝐹),𝐹)⟶ (𝐻1(𝐹),𝐹) if ℎ ⊂ 𝐹.

Theorem 5.13. The equivariant signature introduced in Definition 5.3 coincides with the one given
in Definition 5.10.
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30 of 44 DI PRISA

Proof. Let𝐹 be an invariant Seifert surface of type 0 for a directed strongly invertible knot (𝐾, 𝜌, ℎ).
According to Definition 5.3, 𝜎(𝐾) is the equivariant signature of (𝐻1(𝐹),𝐹, −𝜌∗). By Lemma 5.8
and Proposition 5.12, this quantity coincides with the g-signature of the pair (Σ(𝐹), 𝜌), where Σ(𝐹)
is the twofold cyclic cover branched over a copy 𝐹 of 𝐹 radially pushed into 𝐵4 and 𝜌 is the pre-
ferred lift of the radial extension of 𝜌 to 𝐵4. Hence, it is sufficient to prove that the relative Euler
number vanishes. Let 𝛾 be a parallel copy of ℎ on 𝐹. As cutting 𝐹 along ℎ produces an equivariant
Seifert surface for �̂�0

𝑏
(𝐾), the lift 𝛾 of 𝛾 in Σ(𝐹) is the canonical longitude of ℎ̃. Let 𝐷,𝐷′ be the

traces of ℎ and 𝛾, respectively, along the radial isotopy that pushes the interior of 𝐹 in 𝐵4. As 𝐹 is
obtained from 𝐹 ⊂ 𝑆3, one can see that Fix(𝜌𝐹) consists solely on an arc joining the fixed points
of 𝐾.
Then by Remark 5.9 the fixed point set of 𝜌 consists of the lift Δ of 𝐷. The lift Δ′ of 𝐷′ is a

perturbation of Δ such that 𝜕Δ′ = 𝛾, and as they are disjoint we have

𝑒(Δ, 𝛾) = #(Δ ∩ Δ′) = 0

that is, the relative Euler number vanishes. □

Remark 5.14. As a consequence of Theorem 5.13 andCorollary 5.7, we obtain the following formula

𝜎(𝐾) = 𝜎(𝐾) − 2𝜎(𝔮𝔟(𝐾))

for the equivariant signature of a directed strongly invertible knot 𝐾 in terms of classical signa-
tures.

Remark 5.15. As shown byAlfieri and Boyle [1, Proposition 7.3], the equivariant signature depends
on the choice of the half-axis for a strongly invertible knot. For example, they show in the proof
of Proposition 7.2 that 𝜎(74𝑏+#̃𝑚74𝑏−) ≠ 0.
As the equivariant algebraic concordance homomorphism Ψ ∶ ̃ ⟶ ̃ defined in [23] does

not distinguish the choice of half-axis, we get that 74𝑏+#̃𝑚74𝑏− has trivial image in ̃.
On the other hand, as 𝜎 factors through ̃ℤ𝑟 , we get that the image of 74𝑏

+#̃𝑚74𝑏
− is nontrivial

in ̃ℤ𝑟 .

6 THE STRUCTURE OF THE EQUIVARIANT ALGEBRAIC
CONCORDANCE GROUP

In this section, we explore the structure of the reduced equivariant algebraic concordance group
̃ℤ𝑟 . To do so, we introduce the notion of symmetric structure and we describe the equivalence
between equivariant Seifert forms over ℚ and symmetric structures.

Lemma 6.1. The natural homomorphism ̃ℤ𝑟 ⟶ ̃ℚ𝑟 given by the extension of coefficients
is injective.

Proof. Let (𝜃, 𝜌) be an equivariant Seifert form over a free ℤ-module 𝑀, and denote by (𝜃ℚ, 𝜌ℚ)
its extension over𝑀 ⊗ℚ. Suppose𝐻 ⊂ 𝑀 ⊗ℚ is a 𝜌ℚ-invariant metabolizer for 𝜃ℚ and let𝐻ℤ =

𝐻 ∩𝑀. Then clearly𝐻ℤ is a 𝜌-invariant metabolizer for 𝜃. □
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EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS 31 of 44

The lemmaabove ensures that no information is lost by considering rational coefficients instead
of integral ones. We focus now on determining the group structure of ̃ℚ𝑟 . In the following, we will
implicitly consider the equivariant Seifert forms to be over ℚ.

Definition 6.2. A symmetric structure is a triple (𝑉, 𝛽, 𝑆), where

∙ 𝑉 is a ℚ-vector space,
∙ 𝛽 is a bilinear, symmetric and nondegenerate form on 𝑉,
∙ 𝑆 ∶ 𝑉⟶ 𝑉 is a linear isomorphism which is self-adjoint with respect to 𝛽.

We say that (𝑉, 𝛽, 𝑆) ismetabolic if dim𝑉 is even and there exists a 𝑆-invariant half-dimensional
subspace𝑊 ⊂ 𝑉 on which 𝛽 is identically zero.
We define the orthogonal sum of two symmetric structures 𝑖 = (𝑉𝑖, 𝛽𝑖, 𝑆𝑖), 𝑖 = 1, 2 as

1 ⊕ 2 = (𝑉1 ⊕ 𝑉2, 𝛽1 ⊕ 𝛽2, 𝑆1 ⊕ 𝑆2).

We say that 1 and 2 are concordant if −1 ⊕ 2 is metabolic, where −1 = (𝑉1, −𝛽1, 𝑆1).

Definition 6.3. We define the group 𝑠𝑦𝑚 of symmetric structures as the quotient of the set of
symmetric structures up to concordance, endowed with the operation of orthogonal sum.

Let (𝑉, 𝜃, 𝜌) be an equivariant Seifert form. Let 𝑇 be the endomorphism of 𝑉 given by the
composition

and let 𝛽 be the bilinear form 𝜃 + 𝜃𝑡. It is easy to check that the following facts hold:

∙ 𝑇 is anti-self-adjoint with respect to 𝛽,
∙ 𝜌◦𝑇 + 𝑇◦𝜌 = 0,
∙ 𝜃(𝑥, 𝑦) = 1

2
(𝛽(𝑥, 𝑦) + 𝛽(𝑇𝑥, 𝑦)).

In particular, the last property implies that any subspace𝐻 ⊂ 𝑉 is a 𝜌-invariant metabolizer for 𝜃
if and only if is a ⟨𝑇, 𝜌⟩-invariant metabolizer for 𝛽.
Denote now by𝑉± the eigenspace of 𝜌 relative to±1. As 𝜌◦𝑇 + 𝑇◦𝜌 = 0, we have that 𝑇(𝑉±) =

𝑉∓, and that 𝑉± is 𝑇2-invariant.
Suppose now 𝐻 ⊂ 𝑉 is a ⟨𝑇, 𝜌⟩-invariant metabolizer for 𝛽, and let 𝐻± = 𝐻 ∩ 𝑉±. As 𝜌 is a 𝛽-

isometry,𝑉+ and𝑉− are 𝛽-orthogonal and hence𝐻± is a metabolizer for 𝛽|𝑉± . As𝐻 is 𝑇-invariant
and 𝑇 and 𝜌 anticommute, we easily deduce that 𝑇(𝐻±) = 𝐻∓ and hence that𝐻± is 𝑇2-invariant.
Vice versa, let 𝐻+ ⊂ 𝑉+ be a 𝑇2-invariant metabolizer for 𝛽|𝑉+ . As 𝑇 is anti-self-adjoint with
respect to 𝛽, it is immediate to see that 𝐻 = 𝐻+ ⊕ 𝑇(𝐻+) is a ⟨𝑇, 𝜌⟩-invariant metabolizer for
𝛽.

Theorem 6.4. Using the notation above, we have that the following map from equivariant Seifert
forms to symmetric structures

(𝑉, 𝜃, 𝜌)⟼ (𝑉+, 𝛽|𝑉+, 𝑇2|𝑉+)
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32 of 44 DI PRISA

induces an isomorphism between the equivariant algebraic concordance group ̃ℚ𝑟 and the group of
symmetric structures 𝑠𝑦𝑚.

Proof. It is immediate to see that the map above is compatible with the orthogonal sum. From the
discussion above, we have that (𝑉, 𝜃, 𝜌) is metabolic if and only if (𝑉+, 𝛽|𝑉+, 𝑇2|𝑉+) is metabolic.
Therefore, thismap induces awell-defined and injective homomorphismbetween the two groups.
Vice versa, given a symmetric structure (𝑉, 𝛽, 𝑆), we can construct an equivariant Seifert form on
𝑉 ⊕ 𝑉, as follows:

𝜃 =
1

2

(
𝛽 𝛽 ⋅ 𝑆

−𝛽 ⋅ 𝑆 −𝛽 ⋅ 𝑆

)
,

𝜌 =

(
id 0

0 − id

)
.

It is easy to check that (𝑉 ⊕ 𝑉, 𝜃, 𝜌) has (𝑉, 𝛽, 𝑆) as associated symmetric structure. □

Let 𝜃 be a Seifert form on a space 𝑉. Recall that the Alexander polynomial of 𝜃 is defined as
Δ𝜃(𝑡) = det(𝐴 − 𝑡𝐴𝑡), where 𝐴 is a matrix representing 𝜃 with respect to some basis of 𝑉 (which
is well-defined up to squares in ℚ).

Definition 6.5. Let 𝑝(𝑡) ∈ ℚ[𝑡, 𝑡−1] be a width 2𝑑 symmetric polynomial (i.e., such that 𝑝(𝑡) =
𝑝(−𝑡)). We denote by 𝛿(𝑝)(𝑠) ∈ ℚ[𝑠] the polynomial obtained by the following substitution

𝛿(𝑝)(𝑠) =

((
1 − 𝜆2

)𝑑
𝑝

(
1 + 𝜆

1 − 𝜆

))
|𝑠=𝜆2 .

Observe that 𝛿 is multiplicative, meaning that 𝛿(𝑝 ⋅ 𝑞) = 𝛿(𝑝) ⋅ 𝛿(𝑞). Moreover, 𝛿 admits an
inverse: given 𝑞(𝑠) ∈ ℚ[𝑠] a polynomial of degree 𝑑 we can define

𝛿−1(𝑞)(𝑡) =
(𝑡 + 1)2𝑑

(4𝑡)𝑑
𝑞

((
𝑡 − 1

𝑡 + 1

)2)
,

and it is not difficult to see that 𝛿−1 is the inverse of 𝛿.

Remark 6.6. Let (𝑉, 𝜃, 𝜌) be an equivariant Seifert form, with Alexander polynomial Δ𝜃(𝑡). Let
(𝑉+, 𝛽, 𝑆) be the associated symmetric structure. Then, from the discussion above, we have that
up to units in ℚ and factors (𝑠 − 1), the characteristic polynomial of 𝑆 is given by 𝛿(Δ𝜃)(𝑠). In
the following, given a directed strongly invertible knot, we will denote by 𝛿𝐾(𝑠) the polynomial
obtained by the formula in Definition 6.5 applied to the Alexander polynomial Δ𝐾(𝑡) of 𝐾 (which
is well-defined if we require that Δ𝐾(𝑡) = Δ𝐾(𝑡

−1)).

Let (𝑉, 𝛽, 𝑆) be a symmetric structure and 𝑝(𝑠) ∈ ℚ[𝑠] be an irreducible polynomial. We define
the 𝑝-component of 𝑉 as

𝑉𝑝 =
⋃
𝑁>0

ker(𝑝(𝑆)𝑁).

Clearly, 𝑉𝑝 is an 𝑆-invariant subspace of 𝑉.

 17538424, 2024, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.70006 by Scuola N
orm

ale Superiore D
i Pisa, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS 33 of 44

Lemma 6.7. Let 𝑝 and 𝑞 be distinct irreducible polynomials. Then 𝑉𝑝 and 𝑉𝑞 are orthogonal with
respect to 𝛽.

Proof. Let 𝑁 > 0 be big enough so that 𝑉𝑞 = ker(𝑞(𝑆)𝑁). As 𝑝 is irreducible and 𝑝 ≠ 𝑞, we have
that the restriction of 𝑞(𝑆)𝑁 is an isomorphism from 𝑉𝑝 to itself. Given now 𝑣 ∈ 𝑉𝑝 and 𝑤 ∈ 𝑉𝑞,
there exists 𝑣′ ∈ 𝑉𝑝 such that 𝑣 = 𝑞(𝑆)𝑁𝑣′. We compute now

𝛽(𝑣, 𝑤) = 𝛽(𝑞(𝑆)𝑁𝑣′, 𝑤) = 𝛽(𝑣′, 𝑞(𝑆)𝑁𝑤) = 𝛽(𝑣′, 0) = 0,

therefore 𝑉𝑝 and 𝑉𝑞 are orthogonal. □

In particular, the restriction of 𝛽 on 𝑉𝑝 is nondegenerate and hence (𝑉𝑝, 𝛽|𝑉𝑝 , 𝑆|𝑉𝑝) is a
symmetric structure. The following theorem is an immediate consequence of the lemma above.

Theorem 6.8. Let ⊂ ℚ[𝑠] be the set of irreducible andmonic polynomials different from 𝑞(𝑠) = 𝑠.
Then the group 𝑠𝑦𝑚 splits as

𝑠𝑦𝑚 =
⨁
𝑝∈


𝑝
𝑠𝑦𝑚,

where 𝑝𝑠𝑦𝑚 is the subgroup of 𝑠𝑦𝑚 determined by symmetric structures with characteristic polyno-
mial given by a power of 𝑝(𝑠). In particular, the projection of a class (𝑉, 𝛽, 𝑆) ∈ 𝑠𝑦𝑚 onto 𝑝𝑠𝑦𝑚 is
given by (𝑉𝑝, 𝛽|𝑉𝑝 , 𝑆|𝑉𝑝).
Therefore, it is sufficient to study the summands 𝑝𝑠𝑦𝑚 separately.

Proposition 6.9. Let (𝑉, 𝛽, 𝑆) ∈ 
𝑝
𝑠𝑦𝑚. Then (𝑉, 𝛽, 𝑆) is concordant to (𝑉, 𝛽, 𝑆) so that 𝑉 =

ker 𝑝(𝑆).

Proof. Let 𝑁 ⩾ 0 be the least integer so that 𝑉 = ker(𝑝(𝑆)𝑁) and suppose 𝑁 ⩾ 2. Let 𝑊 =

im𝑝(𝑆)𝑁−1 and let𝑊⟂ be its orthogonal. Clearly,𝑊 is invariant under 𝑆, and so is𝑊⟂. Observe
that for 𝑣, 𝑤 ∈ 𝑉

𝛽(𝑝(𝑆)𝑁−1𝑣, 𝑝(𝑆)𝑁−1𝑤) = 𝛽(𝑣, 𝑝(𝑆)2𝑁−2𝑤) = 𝛽(𝑣, 0) = 0,

as 2𝑁 − 2 ⩾ 𝑁 for𝑁 ⩾ 2. Therefore,𝑊 ⊂ 𝑊⟂, and by definition𝑊 is the radical of 𝛽|𝑊⟂ . Hence,
𝛽 induces a symmetric nondegenerate form 𝛽 on the quotient 𝑉 = 𝑊⟂∕𝑊. Similarly, as𝑊 and
𝑊⟂ are 𝑆-invariant, we have an induced map 𝑆 on the quotient.
It is easy to check that (𝑉, 𝛽, 𝑆) is again a symmetric structure, and that by construction 𝑉 =

ker(𝑝(𝑆)𝑁−1)

Consider𝐻 = {(𝑤, [𝑤]) ∈ 𝑉 ⊕ 𝑉 | 𝑤 ∈ 𝑊⟂}. It is easy now to check that𝐻 is a metabolizer for
(𝑉, −𝛽, 𝑆) ⊕ (𝑉, 𝛽, 𝑆), showing that (𝑉, 𝛽, 𝑆) and (𝑆, 𝛽, 𝑆) are concordant. □

Theorem 6.10. Let 𝑝(𝑠) ∈ ℚ[𝑠] be an irreducible polynomial and consider the field 𝔽 =

ℚ[𝑠]∕(𝑝(𝑠)). Then, we have a natural isomorphism


𝑝
𝑠𝑦𝑚 ⟶𝑊(𝔽).
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34 of 44 DI PRISA

Proof. Take (𝑉, 𝛽, 𝑆) ∈ 
𝑝
𝑠𝑦𝑚. By Proposition 6.9, we can suppose that𝑉 = ker(𝑝(𝑆)). Therefore,𝑉

is naturally a 𝔽-vector space. Denote by tr ∶ 𝔽⟶ ℚ the trace map. As the symmetric ℚ-bilinear
form

𝔽 × 𝔽⟶ ℚ

(𝑥, 𝑦)⟼ tr(𝑥 ⋅ 𝑦)

is nondegenerate, for every 𝑢, 𝑣 ∈ 𝑉 there exists a unique 𝑒 ∈ 𝔽 such that for all 𝑓 ∈ 𝔽

𝛽(𝑓 ⋅ 𝑢, 𝑣) = tr(𝑒 ⋅ 𝑓).

This correspondence defines a symmetric 𝔽-bilinear form [−,−]𝛽 on 𝑉 such that

is a commutative diagram.
Now let𝐻 be aℚ-subspace of 𝑉. Then𝐻 is 𝑆-invariant if and only if is a 𝔽-subspace. Moreover,

it is easy to see that 𝛽 vanishes identically on a 𝔽-subspace𝐻 if and only if [−,−]𝛽 does. Therefore,
the homomorphism induced by this correspondence is an isomorphism. □

We can now summarize Theorems 6.8 and 6.10 in the following theorem on the structure of ̃ℚ𝑟 .

Theorem 6.11. The reduced equivariant algebraic concordance group ̃ℚ𝑟 is isomorphic to

̃ℚ𝑟 ≅
⨁
𝑝(𝑠)≠𝑠

p irreducible

𝑊(ℚ[𝑠]∕(𝑝(𝑠))).

Using classical results on the Witt groups of finite extension of ℚ (see [22] for details), one can
check that Theorem 6.11 implies that

̃ℚ𝑟 ≅ ℤ∞ ⊕ ℤ∕2ℤ∞ ⊕ ℤ∕4ℤ∞ ⊕ ℤ∕8ℤ∞,

where 𝐺∞ stands for the direct sum of countable many copies of 𝐺.

Remark 6.12. It would be very interesting to know whether there exists any directed strongly
invertible knot𝐾 whose image has order 8 in ̃ℚ𝑟 . However, we would like to point out that several
of the summands in Theorem 6.11 have trivial intersection with ̃ℤ𝑟 : it is not difficult to check that
many polynomials do not appear as factors of 𝛿𝐾(𝑠) for any knot 𝐾.
For example, suppose that 𝑝(𝑠) = 𝑠 − 10 appears as a factor of 𝛿𝐾(𝑠) = 𝑝(𝑠)𝑞(𝑠) for some knot𝐾

and some other polynomial 𝑞. Following Remark 6.6, we compute the Alexander polynomial of𝐾
(up to units) as 𝛿−1(𝛿𝐾(𝑠))(𝑡) = 𝛿−1(𝑝)(𝑡) ⋅ 𝛿−1(𝑞)(𝑡) = 1

4
(−9𝑡 − 22 − 9𝑡−1) ⋅ 𝛿−1(𝑞)(𝑡). Therefore,

Δ𝐾(𝑡) would be divisible by the primitive polynomial Δ(𝑡) = 9𝑡 + 22 + 9𝑡−1. As Δ(1) = 40, we get
a contradiction with the fact that Δ𝐾(1) = ±1.
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EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS 35 of 44

We conclude this section with a consequence of Theorem 6.11, which can be interpreted as an
equivariant Fox–Milnor condition.

Theorem 6.13. Let 𝐾 be a strongly invertible knot and let Δ𝐾(𝑡) be its Alexander polynomial,
normalized so thatΔ𝐾(𝑡) = Δ𝐾(𝑡

−1) andΔ𝐾(1) = 1. If𝐾 is equivariantly slice thenΔ𝐾(𝑡) is a square.

Proof. SupposeΔ𝐾(𝑡)does not satisfy the condition above. It follows that there exists an irreducible
polynomial g(𝑡) ≠ 𝑡 appearingwith an odd power in the prime decomposition ofΔ𝐾(𝑡). If g(𝑡−1) =
±𝑡𝑛g(𝑡) for some 𝑛, then one can easily see that Δ𝐾(𝑡) does not satisfy the (nonequivariant) Fox–
Milnor condition, therefore𝐾 is not even slice. On the other hand, if g(𝑡) ≠ ±𝑡𝑛g(𝑡), we know that
g(−𝑡) appears in the factorization ofΔ𝐾(𝑡)with the same exponent 2𝑘 + 1, asΔ𝐾 is symmetric. Let
𝑝(𝑠) = 𝛿(g(𝑡)g(𝑡−1))(𝑠). We prove that 𝑝(𝑠) is irreducible. Suppose that 𝑝(𝑠) = 𝑝1(𝑠)𝑝2(𝑠) is a non-
trivial decomposition. Then we would have a factorization of g(𝑡)g(𝑡−1) = 𝛿−1(𝑝1)(𝑡)𝛿

−1(𝑝2)(𝑡),
where 𝛿−1(𝑝𝑖)(𝑡) are nontrivial symmetric polynomials. But this is not possible as g(𝑡) and g(𝑡−1)
are nonsymmetric and irreducible. It follows that 𝑝(𝑠) appears in the irreducible factorization of
𝛿𝐾(𝑠) with exponent 2𝑘 + 1. Hence, the class of 𝐾 in ̃ℚ𝑟 is nontrivial (with respect to any choice
of direction), as its projection on the summand𝑊(ℚ[𝑠]∕(𝑝(𝑠))) is represented by a form of odd
rank. Therefore, 𝐾 is not equivariantly slice. □

Observe that Theorem 6.13 highlights an important difference between equivariant and
nonequivariant algebraic concordance. In fact, given a knot 𝐾, its nonequivariant algebraic con-
cordance class splits into components depending on the irreducible and symmetric factors of
Δ𝐾(𝑡), while nonsymmetric factors ofΔ𝐾(𝑡) do not contribute. On the other hand, if𝐾 is a strongly
invertible knot, its class in ̃ℚ𝑟 splits into components depending on all irreducible factors of 𝛿𝐾(𝑠),
and these factors can correspond to irreducible nonsymmetric factors of Δ𝐾(𝑡).

7 NEW EQUIVARIANT SIGNATURES

In this section, we introduce new equivariant signatures, dependent on a parameter 𝜆 ∈ ℝ. Then
we clarify the relation between 𝜎𝜆, the Levine–Tristram signatures and the equivariant signature
defined in [1]. Furthermore, we give an analysis of the discontinuities of these equivariant signa-
tures similar to the one in [21], and we use the signature jumps to obtain lower bounds on the
equivariant slice genus.
From now on, we always assume to work with coefficients in ℝ if not mentioned otherwise. In

particular, when we refer to equivariant Seifert form or symmetric structure, we always implicitly
consider their natural extensions given by tensoring with ℝ.

Definition 7.1. Let (𝐴, 𝑃) be an equivariant Seifert form. Given 𝜆 ∈ ℝ consider the hermitian
form

𝐴𝜆 =
(𝐴 + 𝐴𝑡)

2
((1 − 𝜆)𝐼 − (1 + 𝜆)𝑃) + 𝑖(𝐴 − 𝐴𝑡).

We define the equivariant signature in 𝜆 as

𝜎𝜆(𝐴, 𝑃) = lim
𝜀→0+

𝜎(𝐴𝜆+𝜖) + 𝜎(𝐴𝜆−𝜖)

2
,
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36 of 44 DI PRISA

and the equivariant signature jump in 𝜆 as

𝐽𝜆(𝐴, 𝑃) = lim
𝜀→0+

𝜎(𝐴𝜆+𝜖) − 𝜎(𝐴𝜆−𝜖)

2
.

It is immediate to see that 𝜎𝜆 and 𝐽𝜆 define homomorphisms

̃𝑟 ⟶ ℤ.

In the following, given a directed strongly invertible knot 𝐾, we will denote by 𝜎𝜆(𝐾) and 𝐽𝜆(𝐾)
the compositions of the homomorphisms above with the map ̃ ⟶ ̃ℤ𝑟 . In other words, 𝜎𝜆(𝐾) =
𝜎𝜆(𝐴, 𝑃) and 𝐽𝜆(𝐴, 𝑃), where (𝐴, 𝑃) is the equivariant Seifert form given by an equivariant Seifert
surface of type 0 for 𝐾.

Remark 7.2. Up to a base change, we can always suppose that

𝑃 =

(
id 0

0 − id

)
.

In such a base, we have that

𝐴 =

(
𝐵 𝐶

−𝐶𝑡 𝐷

)
.

and hence

𝐴𝜆 = 2

(
−𝜆𝐵 𝑖𝐶

−𝑖𝐶𝑡 𝐷

)
which is easily seen to be congruent to

2

(
−𝜆𝐵 − 𝐶𝐷−1𝐶𝑡 0

0 𝐷

)
.

Ifwe denote by (𝑉, 𝛽, 𝑆) the symmetric structure associatedwith (𝐴, 𝑃), wehave that 2𝐵 represents
𝛽, while 𝑆 is given by −𝐵−1𝐶𝑡𝐷−1𝐶. Therefore, it is easy to see that −2𝜆𝐵 − 2𝐶𝑡𝐷−1𝐶 represents
the symmetric bilinear form over 𝑉 given by

𝛽𝑆−𝜆 ∶ 𝑉 × 𝑉⟶ ℝ

(𝑥, 𝑦)⟼ 𝛽((𝑆 − 𝜆)𝑥, 𝑦).

It follows that 𝐴𝜆 is nondegenerate for every 𝜆 ∈ ℝ except when 𝜆 is a root of the characteris-
tic polynomial of 𝑆. When 𝐴𝜆 is nondegenerate then 𝐽𝜆(𝐴, 𝑃) = 0 and 𝜎𝜆(𝐴, 𝑃) is equal to the
signature of 𝐴𝜆. Moreover, for every 𝜆 ∈ ℝ we have that

𝐽𝜆(𝐴, 𝑃) = lim
𝜀→0+

𝜎(𝛽𝑆−𝜆−𝜖) − 𝜎(𝛽𝑆−𝜆+𝜖)

2
.

 17538424, 2024, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.70006 by Scuola N
orm

ale Superiore D
i Pisa, W

iley O
nline L

ibrary on [08/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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Finally, observe that

lim
𝜆→−∞

𝜎𝜆(𝐴, 𝑃) = 𝜎(𝐵) + 𝜎(𝐷) and lim
𝜆→+∞

𝜎𝜆(𝐴, 𝑃) = 𝜎(𝐷) − 𝜎(𝐵).

Therefore, given a directed strongly invertible knot 𝐾, we get from Theorem 5.13 that

lim
𝜆→−∞

𝜎𝜆(𝐾) = 𝜎(𝐾) and lim
𝜆→+∞

𝜎𝜆(𝐾) = 𝜎(𝐾).

Proposition 7.3. Let 𝐾 be a directed strongly invertible knot. Then for any 𝜆 < 0 and 𝜔 ∈ 𝑆1 such
that 𝜆(𝜔 − 1)2 = (𝜔 + 1)2 we have

𝜎𝜆(𝐾) = 𝜎𝜔(𝐾),

Proof. Let (𝐴, 𝑃) be an equivariant Seifert form associated with 𝐾. As in Remark 7.2, we can
suppose that

𝐴 =

(
𝐵 𝐶

−𝐶𝑡 𝐷

)
𝑃 =

(
id 0

0 − id

)
𝐴𝜆 = 2

(
−𝜆𝐵 𝑖𝐶

−𝑖𝐶𝑡 𝐷

)
.

As 𝜆 < 0, we have that
√
−𝜆 ∈ ℝ and hence 𝐴𝜆 is congruent to

2

(
𝐵 𝑖

√
−𝜆𝐶

−𝑖
√
−𝜆𝐶𝑡 𝐷

)
= (𝐴 + 𝐴𝑡) + 𝑖

√
−𝜆(𝐴 − 𝐴𝑡).

Finally, observe that (𝐴 + 𝐴𝑡) + 𝑖
√
−𝜆(𝐴 − 𝐴𝑡) is a positive multiple of 𝐴𝜔 = (1 − 𝜔)𝐴 + (1 −

𝜔)𝐴𝑡 for𝜔 = −1±𝑖
√
−𝜆

1∓𝑖
√
−𝜆
. Therefore, 𝜎𝜆(𝐾) = 𝜎(𝐴𝜔) = 𝜎𝜔(𝐾). Finally, observe that for a fixed 𝜆 < 0,

the solution to the equation 𝜆(𝜔 − 1)2 = (𝜔 + 1)2 are exactly 𝜔 = −1±𝑖
√
−𝜆

1∓𝑖
√
−𝜆
. □

Let (𝑉, 𝛽, 𝑆) be a symmetric structure. Given 𝜆 ∈ ℝ, we denote by 𝑉𝜆 =
⋃
𝑁>0 ker((𝑆 − 𝜆)

𝑁).
Similarly to Lemma 6.7, it is easy to check that if 𝜆 ≠ 𝜇 the 𝑉𝜆 and 𝑉𝜇 are 𝛽-orthogonal.

Lemma 7.4. Let (𝑉, 𝛽, 𝑆) be a symmetric structure. Suppose that 𝜆 ∈ ℝ is not a root of the
characteristic polynomial of 𝑆. Then for every 𝛼 ∈ ℝ we have

𝜎(𝑉𝛼, 𝛽𝑆−𝜆) = sign(𝛼 − 𝜆) ⋅ 𝜎(𝑉𝜆, 𝛽).

Proof. By a slight abuse of notation, we denote the restriction of 𝑆 and 𝛽 to 𝑉𝛼 again by 𝑆 and
𝛽. For 𝑡 ∈ [0, 1] let 𝑆𝑡 = (1 − 𝑡)𝑆 + 𝑡𝛼 id and 𝛽𝑆𝑡−𝜆(𝑥, 𝑦) = 𝛽((𝑆𝑡 − 𝜆)𝑥, 𝑦). Observe that the only
eigenvalue of 𝑆𝑡 is 𝛼 for every 𝑡 ∈ [0, 1], therefore we have that 𝑆𝑡 − 𝜆 id is nonsingular and 𝛽𝑆𝑡−𝜆
is nondegenerate for every 𝑡. It follows that the signature is constant in 𝑡, and hence

𝜎(𝑉𝛼, 𝛽𝑆−𝜆) = 𝜎(𝑉𝛼, (𝛼 − 𝜆)𝛽) = sign(𝛼 − 𝜆)𝜎(𝑉𝛼, 𝛽)

by evaluating at 𝑡 = 0 and 𝑡 = 1. □

Proposition 7.5. Let (𝐴, 𝑃) be an equivariant Seifert form, and let (𝑉, 𝛽, 𝑆) be the associated
symmetric structure. Then for every 𝜆 ∈ ℝ we have that 𝐽𝜆(𝐴, 𝑃) is equal to −𝜎(𝑉𝜆, 𝛽).
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Proof. It follows from Remark 7.2 that is sufficient to study how the signature of 𝛽𝑆−𝜆 varies in 𝜆.
Let𝑊 ⊂ 𝑉 the 𝛽-orthogonal to

⨁
𝜆∈ℝ 𝑉

𝜆. Observe that𝑊 is 𝑆-invariant and that 𝑆|𝑊 has no real
eigenvalues. Therefore, the signature of the restriction of 𝛽𝑆−𝜆 to𝑊 is constant in 𝜆.
As if 𝜇1 ≠ 𝜇2 then𝑉𝜇1 and𝑉𝜇2 are orthogonal with respect to 𝛽 and hence with respect to 𝛽𝑆−𝜆,

it is sufficient to consider the variation of the signature separately on every 𝑉𝛼.
Let now 𝜖 > 0 be small enough so that 𝜆 is the only eigenvalue of 𝑆 in [𝜆 − 𝜖, 𝜆 + 𝜖].
Then by Lemma 7.4 we have that 𝜎(𝑉𝜇, 𝛽𝑆−𝜆+𝜖) = 𝜎(𝑉𝜇, 𝛽𝑆−𝜆−𝜖) for every 𝜇 ≠ 𝜆, while

𝜎(𝑉𝜆, 𝛽𝑆−𝜆+𝜖) = −𝜎(𝑉𝜆, 𝛽𝑆−𝜆−𝜖) = −𝜎(𝑉𝜆, 𝛽).

As the signature of 𝛽𝑆−𝜆 varies only on the summand 𝑉𝜆, we get

𝐽𝜆(𝐴, 𝑃) = −𝜎(𝑉𝜆, 𝛽|𝑉𝜆). □

Corollary 7.6. Let 𝐾 be a directed strongly invertible knot, and let (𝐴, 𝑃) be an equivariant Seifert
form obtained from an equivariant Seifert surface for 𝐾 of any type. Then for every 𝜆 ∈ ℝ, 𝜆 ≠ 1

we have that 𝐽𝜆(𝐾) = 𝐽𝜆(𝐴, 𝑃), that is, for 𝜆 ≠ 1, 𝐽𝜆 does not depend on the type of the equivariant
Seifert surface.

Proof. Let (𝐴, 𝑃) be the equivariant Seifert form given by any equivariant Seifert surface 𝐹 for 𝐾,
and let (𝑉, 𝛽, 𝑆) be the associated symmetric structure. Recall that we can obtain a surface of type
0 for 𝐾 by performing a boundary connected sum of 𝐹 with the type −1 surface 𝐺 (or its mirror
image) as Lemma 4.2. Observe that the equivariant Seifert form given by 𝐺 is

𝐴𝐺 =

(
0 1

0 0

)
𝑃𝐺 =

(
0 1

1 0

)
,

and hence the associated symmetric structure is

𝛽𝐺 = (1) 𝑆𝐺 = (1).

It follows that adding some copies of (𝐴𝐺, 𝑃𝐺) to (𝐴, 𝑃) does not modify the 𝜆-eigenspace of 𝑆, for
𝜆 ≠ 1. Therefore, by Proposition 7.5 we can compute 𝐽𝜆(𝐾) with any equivariant Seifert surface,
for 𝜆 ≠ 1. □

Theorem 7.7. Given a directed strongly invertible knot 𝐾, for every 𝜆 ∈ ℝ, 𝜆 ≠ 1 we have that

g̃4(𝐾) ⩾
|𝐽𝜆(𝐾)|
4

.

Proof. Let = (𝐴, 𝑃, ℎ, l̃k) be the equivariant Seifert system associated with an equivariant Seifert
surface 𝐹 for 𝐾 of any type. It follows easily from Definitions 4.17 and 7.1 that for every 𝜆 ∈ ℝ

𝑎𝑐() ⩾ |𝜎𝜆(𝐴, 𝑃)|∕2,
and therefore

𝑎𝑐() ⩾ |𝐽𝜆(𝐴, 𝑃)|∕2.
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EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS 39 of 44

From Corollary 7.6, we know that for 𝜆 ≠ 1 the left-hand side in the inequality above does not
depend on the type of the surface 𝐹. Therefore, using Theorem 4.19 we get

g̃4(𝐾) ⩾
𝑠𝑐(𝐾)

2
⩾
|𝐽𝜆(𝐾)|
4

. □

Remark 7.8. Observe that the roots of 𝛿𝐾(𝑠) correspond to pairs of roots ofΔ𝐾(𝑡). First of all, notice
that −1, 0, 1 cannot be roots of Δ𝐾(𝑡). It follows from Definition 6.5 that if 𝑧 ∈ ℂ ⧵ {−1, 0, 1} is a
root of Δ𝐾(𝑡) then 𝜇(𝑧) is a root of 𝛿𝐾(𝑠), where

𝜇 ∶ ℂ ⧵ {−1, 0, 1}⟶ ℂ ⧵ {0, 1}

𝑧⟼
(
𝑧 − 1

𝑧 + 1

)2
.

It is not difficult to see that 𝜇(𝑧1) = 𝜇(𝑧2) if and only if 𝑧1 = (𝑧2)
−1 and that 𝜇(𝑧) ∈ ℝ if and only

if 𝑧 ∈ ℝ or 𝑧 ∈ 𝑆1. Therefore, if {𝜆1, 𝜆−11 , … , 𝜆𝑑, 𝜆
−1
𝑑
} is the set of roots of Δ𝐾(𝑡) (which come in

pairs because the polynomial is symmetric), we get that {𝜇(𝜆1), … , 𝜇(𝜆𝑑)} is the set of roots of
𝛿𝐾(𝑠), and this correspondence preserves themultiplicity. In particular, real negative roots of 𝛿𝐾(𝑠)
correspond to unitary roots of Δ𝐾(𝑡), while real positive roots of 𝛿𝐾(𝑠) correspond to real roots of
Δ𝐾(𝑡).

Using Theorem 7.7, we obtain the following result, which can be seen as a generalization of [23,
Theorem 5.7].

Theorem 7.9. Let𝐾 and 𝐽 be directed strongly invertible knots. Suppose that there existsΛ ∈ ℝ ∪ 𝑆1

such that

∙ Λ is a root of Δ𝐾(𝑡) with odd multiplicity,
∙ Λ is not a root of Δ𝐽(𝑡).

Then for every 𝑛,𝑚 ∈ ℤ, we have that g̃4(𝐾𝑛#̃𝐽𝑚) ⩾ |𝑛|∕4, where 𝐾𝑛#̃𝐽𝑚 is the connected sum of 𝑛
copies of 𝐾 and𝑚 copies of 𝐽 taken in any order.

Proof. Let (𝑉𝐾, 𝛽𝐾, 𝑆𝐾) and (𝑉𝐽, 𝛽𝐽, 𝑆𝐽) be any symmetric structures associated with 𝐾 and 𝐽,
respectively, and let 𝜆 = 𝜇(Λ). From Remark 7.8, we know that 𝜆 is a real root of 𝛿𝐾(𝑠) with odd
multiplicity. Therefore, dim(𝑉𝜆

𝐾
) is odd and |𝐽𝜆(𝐾)| ⩾ 1 by Proposition 7.5. Vice versa, eas 𝜆 is not

a root of 𝛿𝐽(𝑠), we have that dim(𝑉𝜆𝐽 ) = 0 and hence 𝐽𝜆(𝐽) = 0. It follows that |𝐽𝜆(𝐾𝑛#̃𝐽𝑚)| ⩾ |𝑛|,
and hence g̃4(𝐾𝑛#̃𝐽𝑚) ⩾ |𝑛|∕4 by Theorem 7.7. □

We conclude this section with an example of application of Theorem 7.9.

Example 7.10. Let {𝐾𝑖}𝑖∈𝐼 be a family of (algebraically) slice strongly invertible knots and {𝜆𝑖}𝑖∈𝐼 ⊂
ℝ such that:

(1) 𝜆𝑖 is a root of Δ𝐾𝑖 (𝑡) with odd multiplicity,
(2) Δ𝐾𝑗 (𝜆𝑖) ≠ 0 for 𝑖 ≠ 𝑗.

Endow each 𝐾𝑖 with any choice of direction and consider the subgroup 𝐺𝐼 ⊂ ̃ generated by
{𝐾𝑖}𝑖∈𝐼 . It follows immediately from Theorem 7.9 that the image of 𝐺𝐼 in ̃ℚ𝑟 has rank |𝐼|.
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40 of 44 DI PRISA

For example, take 𝐼 ⊂ ℤ[𝑡] to be an infinite family of irreducible, nonsymmetric polynomials
of odd degree, such that

∙ 𝑓(1) = 1 for all 𝑓 ∈ 𝐼,
∙ 𝑓(𝑡) ≠ 𝑡deg gg(𝑡−1) for all 𝑓, g ∈ 𝐼.

From [24], we know that for all 𝑓 ∈ 𝐼 there exists a strongly invertible knot 𝐾𝑓 with Alexan-
der polynomial Δ𝐾𝑓(𝑡) = 𝑓(𝑡)𝑓(𝑡−1). In particular, each 𝐾𝑓 is algebraically slice and the family
{𝐾𝑓}𝑓∈𝐼 satisfies the conditions above (as each 𝑓 has at least one real root with multiplicity one),
therefore it generates a subgroup of ̃ of infinite rank.

Remark 7.11. Let 𝐺𝐼 ⊂ ̃ be a subgroup defined as in Example 7.10, with 𝐼 a countable infinite set.
Observe that the equivariant signature defined by Alfieri and Boyle takes values in ℤ, hence it
vanishes on a subgroup 𝐻𝐼 ⊂ 𝐺𝐼 such that 𝐺𝐼∕𝐻𝐼 is either 0 or ℤ. Moreover, all Levine–Tristram
signatures vanish on𝐻𝐼 , as by hypothesis is spanned by algebraically slice knots. However, using
the equivariant signature jumps arguing as above, we have that 𝐻𝐼 surjects onto ℤ∞. In partic-
ular, this shows that the {𝐽𝜆}𝜆>0 are actually new invariants, independent from Levine–Tristram
and Alfieri–Boyle signatures. For other concrete examples regarding the independence of 𝐽𝜆 from
Levine–Tristram signatures, see the Appendix.

APPENDIX A: EQUIVARIANT SLICE GENUS OF 2-BRIDGE KNOTS
Recall that every 2-bridge knot is strongly invertible, see [25]. We already know from [7] that any
given 2-bridge knot is not equivariantly slice and that has infinite order in ̃†, independently of
the choice of strong inversion and direction.
In this appendix,‡ we apply the results of Section 7 to study the equivariant slice genus of 2-

bridge knots.

Definition A.1. Let 𝐾 be a directed strongly invertible knot. We denote the maximal signature
jump of 𝐾 by

𝐽(𝐾) = sup
𝜆≠1
|𝐽𝜆(𝐾)|.

Let  be the family of 2-bridge knots with crossing number less or equal to 12 and with (aver-
aged) Levine–Tristram signature function 𝜎𝜔 identically zero. For every knot 𝐾 in  , we report in
Table A1 its

∙ name,
∙ 2-bridge notation 𝑝∕𝑞,
∙ order in , denoted by 𝑂𝑟𝑑,
∙ maximal signature jump 𝐽§.

† This result is stated in the smooth category in [7]. However, all the arguments can be adapted to work in the
topological category.
‡Weused [20] to gather theAlexander polynomial, Levine–Tristram signature function and topological concordance order
of all knots considered in the Appendix.
§ See Lemma A.2.
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EQUIVARIANT ALGEBRAIC CONCORDANCE OF STRONGLY INVERTIBLE KNOTS 41 of 44

TABLE A1 Concordance orders and maximal signature jumps of some 2-bridge knots.

Name 𝒑∕𝒒 𝑶𝒓𝒅 𝑱 Name 𝒑∕𝒒 𝑶𝒓𝒅 𝑱

41 5∕2 2 1 12𝑎204 173∕76 ∞ 1
61 9∕7 1 1 12𝑎221 169∕66 1 1
63 13∕5 2 0 12𝑎243 133∕60 ∞ 1
77 21∕8 ∞ 0 12𝑎303 153∕64 ∞ 1
81 13∕11 ∞ 1 12𝑎307 157∕69 ∞ 1
83 17∕4 2 1 12𝑎385 161∕66 ∞ 1
88 25∕9 1 0 12𝑎425 81∕37 1 0
89 25∕7 1 1 12𝑎437 149∕65 ∞ 1
812 29∕12 2 1 12𝑎447 121∕43 1 1
813 29∕11 ∞ 0 12𝑎471 85∕38 2 1
914 37∕14 ∞ 0 12𝑎477 169∕70 1 1
919 41∕16 ∞ 0 12𝑎482 93∕22 ∞ 1
927 49∕19 1 1 12𝑎497 209∕81 ∞ 0
101 17∕15 ∞ 1 12𝑎499 233∕89 2 0
103 25∕6 1 1 12𝑎506 185∕68 2 1
1010 45∕17 ∞ 0 12𝑎510 193∕81 2 1
1013 53∕22 ∞ 1 12𝑎518 157∕34 ∞ 1
1017 41∕9 2 0 12𝑎550 149∕34 ? 1
1022 49∕36 1 1 12𝑎583 161∕45 ∞ 1
1026 61∕44 ∞ 1 12𝑎585 181∕50 ∞ 1
1028 53∕19 ∞ 0 12𝑎596 81∕14 ∞ 0
1031 57∕25 ∞ 0 12𝑎644 113∕30 ? 0
1033 65∕18 2 0 12𝑎650 165∕46 ∞ 1
1034 37∕13 ∞ 0 12𝑎690 89∕20 ? 1
1035 49∕20 1 1 12𝑎691 77∕12 ∞ 1
1037 53∕23 2 0 12𝑎715 169∕50 1 1
1042 81∕31 1 1 12𝑎744 61∕8 ∞ 0
1043 73∕27 2 1 12𝑎774 89∕16 ? 0
1045 89∕34 2 1 12𝑎792 85∕24 ∞ 0
11𝑎13 61∕28 ∞ 0 12𝑎803 21∕2 ∞ 1
11𝑎84 101∕57 ∞ 1 12𝑎1029 81∕19 1 0
11𝑎91 129∕50 ∞ 1 12𝑎1034 121∕32 1 0
11𝑎96 121∕50 1 1 12𝑎1039 137∕37 2 1
11𝑎98 77∕18 ∞ 0 12𝑎1127 97∕22 2 1
11𝑎110 97∕35 ∞ 1 12𝑎1129 105∕23 ∞ 0
11𝑎119 77∕34 ∞ 0 12𝑎1139 101∕18 ? 0
11𝑎180 89∕64 ∞ 0 12𝑎1140 97∕18 ? 1
11𝑎185 109∕30 ∞ 1 12𝑎1166 33∕4 ∞ 1
11𝑎190 85∕67 ∞ 1 12𝑎1273 61∕11 2 1
11𝑎195 53∕8 ∞ 0 12𝑎1275 149∕44 2 1
11𝑎210 73∕16 ∞ 0 12𝑎1277 121∕37 1 1

(Continues)
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42 of 44 DI PRISA

TABLE A1 (Continued)

Name 𝒑∕𝒒 𝑶𝒓𝒅 𝑱 Name 𝒑∕𝒒 𝑶𝒓𝒅 𝑱

11𝑎333 65∕14 ∞ 0 12𝑎1281 109∕33 2 1
12𝑎197 69∕32 ∞ 1 12𝑎1287 37∕6 2 1

The purpose of Table A1 is to show that given a directed strongly invertible knot 𝐾, the equiv-
ariant signature jumps can be used to prove that the (topological) equivariant slice genus of 𝐾𝑛
grows linearly in |𝑛| even when the Levine–Tristram signature function vanishes.
Given a knot 𝐾 in the family  , it is not possible to obtain a lower bound on the smooth or

topologically slice genus of 𝑛 ⋅ 𝐾, 𝑛 ∈ ℤ using the Levine–Tristram signatures, as 𝜎𝜔(𝐾) ≡ 0.
On the other hand, observe from Table A1 that for most of the knots in  , we have 𝐽(𝐾) = 1.

Therefore, we easily get the following lower bound on the topological equivariant slice genus of
𝐾𝑛

g̃4(𝐾
𝑛) ⩾ |𝑛|∕4,

by applying Theorem 7.7.
We rely on the following lemma in order to compute 𝐽(𝐾) for 𝐾 in  .

Lemma A.2. For any knot 𝐾 in  , we have

𝐽(𝐾) =

{
0 if Δ𝐾(𝑡) has no real root,
1 if Δ𝐾(𝑡) has at least one real root,

and in particular 𝐽(𝐾) does not depend on the choice of strong inversion nor of direction on 𝐾.

Proof. First of all we check that each root of Δ𝐾(𝑡) has multiplicity one. It follows that Δ𝐾(𝑡) has
no root 𝑧 ∈ 𝑆1, otherwise we would have a discontinuity of the signature function in 𝑧 and hence
𝜎𝜔(𝐾) ≠ 0 for some𝜔 ∈ 𝑆1. Using Remark 7.8 and arguing as in the proof of Theorem 7.7, one can
see that in this case 𝐽(𝐾) does not depend on the choice of strong inversion nor of direction on 𝐾,
and that

𝐽(𝐾) =

{
0 if Δ𝐾(𝑡) has no real root,
1 if Δ𝐾(𝑡) has at least one real root. □

Remark A.3. Observe that as each root of Δ𝐾(𝑡) has multiplicity one for 𝐾 in  , Δ𝐾(𝑡) cannot
be a square. Hence, using Theorem 6.13 we recover the result in [7]: none of the knots in  is
equivariantly slice.

RemarkA.4. In [5], the authors provide the first examples of strongly invertible knotswith smooth
equivariant slice genus arbitrarily larger than their smooth slice genus. Miller and Powell in [23]
find examples of knots on which the quantity g̃4(𝐾) − g4(𝐾) assume arbitrarily large values.
In the family  , we can find knots 𝐾 with smooth and topological order ⩽ 2 and such that

𝐽(𝐾) = 1 (89). As the smooth and topological slice genus of 𝐾𝑛 is bounded, applying Theorem 7.7
we get that both g̃4(𝐾

𝑛) − g4(𝐾
𝑛) grows linearly in |𝑛| and hence they provide new examples of

the phenomenon described above. The knot 89 is the simplest example of such knots in  that
does not fall into the examples in [5, 23].
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