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In Brief
Protein arginine methylation is an
important post-translational
modification whose high-
throughput identification by
mass spectrometry is hampered
by a high false discovery rate.
We developed hmSEEKER 2.0 to
identify methyl-sites from heavy
methyl SILAC data through a
machine learning–based
algorithm. We generated
ProMetheusDB, the largest
comprehensive database of
high-confidence protein
methylations. The functional
analysis of ProMetheusDB
suggests a role of arginine
methylation in processes such
as metabolism, immunity,
protein–protein interactions, and
functional crosstalk with
phosphorylation.
Highlights
• hmSEEKER 2.0 identifies methyl-peptides from hmSILAC data through machine learning.• Arginine methylation plays a role in modulating protein–protein interactions.• Arginine methylations occur more frequently in proximity of phosphorylation sites.• hmSEEKER 2.0 was used to identify methylations occurring on nonstandard amino acids.
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TECHNOLOGICAL INNOVATION AND RESOURCES
ProMetheusDB: An In-Depth Analysis of the
High-Quality Human Methyl-proteome
Enrico Massignani1,2, Roberto Giambruno1,3,4 , Marianna Maniaci1,2 , Luciano Nicosia1,
Avinash Yadav1, Alessandro Cuomo1, Francesco Raimondi1,5 , and Tiziana Bonaldi1,6,*
Protein arginine (R) methylation is a post-translational
modification involved in various biological processes,
such as RNA splicing, DNA repair, immune response,
signal transduction, and tumor development. Although
several advancements were made in the study of this
modification by mass spectrometry, researchers still face
the problem of a high false discovery rate. We present a
dataset of high-quality methylations obtained from several
different heavy methyl stable isotope labeling with amino
acids in cell culture experiments analyzed with a machine
learning–based tool and show that this model allows for
improved high-confidence identification of real
methyl-peptides. Overall, our results are consistent with
the notion that protein R methylation modulates protein–
RNA interactions and suggest a role in rewiring protein–
protein interactions, for which we provide experimental
evidence for a representative case (i.e., NONO [non-POU
domain–containing octamer-binding protein]–
paraspeckle component 1 [PSPC1]). Upon intersecting
our R-methyl-sites dataset with the PhosphoSitePlus
phosphorylation dataset, we observed that R methylation
correlates differently with S/T-Y phosphorylation in
response to various stimuli. Finally, we explored the
application of heavy methyl stable isotope labeling with
amino acids in cell culture to identify unconventional
methylated residues and successfully identified novel
histone methylation marks on serine 28 and threonine 32
of H3. The database generated, named ProMetheusDB, is
freely accessible at https://bioserver.ieo.it/shiny/app/
prometheusdb.

Protein methylation is a widespread post-translational
modification (PTM) that consists of the addition of one or
more methyl (CH3) groups to a residue, most frequently an
arginine (R) or lysine (K). R can be monomethylated (mono-
methyl-arginine [MMA]) or dimethylated, and the dimethylation
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can be symmetrical (symmetric dimethyl-arginine [SDMA]) if
the two methyl groups are bound to different nitrogen atoms
of the guanidino group or asymmetrical (asymmetric dimethyl-
arginine [ADMA]) if they are bound to the same atom. Overall,
methylation does not change the charge state of R but alters
their steric hindrance and reduces their ability to form
hydrogen bonds with other molecules, thus affecting their
interactions with other biomolecules, both positively and
negatively (1). Along this line, the distinction between ADMA
and SDMA is crucial, because the two modifications are
recognized by distinct readers and can lead to completely
different functional outcomes, as exemplified by asymmetrical
and symmetrical dimethylation on R3 of histone H4 (H4R3)
that are associated to transcriptional activation and repres-
sion, respectively (2).
In mammals, the transfer of methyl groups from the bio-

logical donor SAM to R is carried out by the nine members of
the protein arginine methyltransferase (PRMT) family that are
classified into three groups: type I PRMTs catalyze the for-
mation of MMA and ADMA; type II PRMTs catalyze the for-
mation of MMA and SDMA; and PRMT7, which is the only type
III PRMT, leads to MMA only (3). PRMT1 is the most active
enzyme among type I PRMTs and PRMTs in general, being
overall responsible for ~85% of the methylation events in the
human cell (4), whereas PRMT5 is the most active type II
PRMT (5).
While methylation of histones and its implication in tran-

scriptional regulation has been extensively studied in several
model systems and functional states (6), the concept that R
methylation is widespread on non-histone proteins is sup-
ported by more recent studies (7–11). PRMT1, PRMT3,
PRMT4, PRMT5, and PRMT7 have all been reported to cata-
lyze methylation on RNA-binding proteins (RBPs), modulating
their interactions with RNAs and thus impacting on biological
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Comprehensive Analysis of the Human Methyl-proteome
processes, such as mRNA splicing, miRNA maturation,
translation, and ribonucleoprotein (RNP) granules assembly
(8, 12–17). Importantly, PRMTs are often aberrantly expressed
in cancer (18, 19) and in neurodegenerative and metabolic
disorders (20, 21). Hence, there is a great interest in devel-
oping therapies based on the pharmacological modulation of
these enzymes, with some PRMT inhibitors already in clinical
trials (identifiers NCT03573310, NCT02783300,
NCT03614728, and NCT03666988) (19, 22).
Recent studies on protein methylation took advantage of

the progress made by LC–MS/MS–based proteomics tech-
nology. Several mass spectrometry (MS)–based studies have
annotated progressively larger methyl-proteomes, yet it was
shown that the proteome-wide identification of methyl-sites
through LC–MS/MS is prone to a high false discovery rate
(FDR) (23). In fact, the chemical methylesterification of an
acidic residue (aspartate and glutamate) and some
conservative amino acid substitutions (alanine to valine and
aspartate to glutamate) can be erroneously identified as in vivo
methylations on nearby R residues by peptide search engines.
To address this issue, Ong and Mann (24) proposed the heavy
methyl stable isotope labeling with amino acids in cell culture
(hmSILAC) metabolic labeling strategy, whereby cells are
grown in the presence of either natural methionine (M0) or
[13CD3]-methionine (M4) to isotopically label the methyl
groups. Upon mixing the heavy and light samples, methylated
peptides can be detected by MS as pairs of MS1 peaks
separated by a specific mass difference. The identification of
these doublets allows distinguishing naturally occurring
methyl-peptides from false positives, which cannot exist in
heavy form since the isotopically heavy methyl groups can
derive only from in vivo enzymatic methylation; hence, hmSI-
LAC has been proposed as a strategy to orthogonally validate
true methyl-site annotations by MS.
Until recently, the application of hmSILAC was held back by

the lack of computational tools for the data analysis, given that
common peptide search engines cannot handle isotopic la-
beling encoded by a PTM. To overcome this limitation, Tay
et al. (25) developed MethylQuant, and we published
hmSEEKER (26), two computational tools that operate down-
stream of a traditional peptide search engines [MaxQuant, (Max
Planck Institute of Biochemistry) (27) in the case of hmSEEKER]
by matching heavy- and light-labeled methyl-peptides to their
counterparts. Since the release of the first version of
hmSEEKER, we undertook an effort to improve its perfor-
mance: following a strategy similar to that described in (26), we
trained a machine learning (ML) model to recognize hmSILAC
doublets generated by M-containing peptides, which was then
used to reanalyze all the hmSILAC experiments collected in our
laboratory so far in order to generate a comprehensive dataset
of high-confidence protein methylations.
While the majority of MS-based methyl-proteomics studies

have traditionally focused only on R and K methylation,
growing evidence suggests that methylation can naturally
1 Mol Cell Proteomics (2022) 21(7) 100243
occur also on aspartate (D), glutamate (E), asparagine (N),
glutamine (Q), serine (S), threonine (T), histidine (H), cysteine
(C), and protein N and C termini (28). This bias is mainly
because of the lack of methods for the affinity enrichment of
these unconventional methylations and the limited knowl-
edge about the enzymes that set or remove them.
Overall, our MS-proteomics workflow and the improved

computational analysis of the MS data have produced what, at
the time of writing, is the largest orthogonally validated
MS-based methyl-proteomics dataset. We then integrated
this dataset with a list of R-methyl-sites that are significantly
regulated in perturbed SILAC experiments, thus generating
the ProMetheus database (ProMetheusDB) of high-confidence
protein methylation sites.
The in-depth analysis of ProMetheusDB not only confirmed

the role of R methylation in different aspects of RNA meta-
bolism but also suggested its involvement in novel cellular
processes, such as antigen processing and presentation,
macrophage metabolism, and immunity. We also investigated
the potential crosstalk between R methylation and S/T-Y
phosphorylation and carried out a structural analysis of
R-methyl-sites at protein–protein interaction (PPI) interfaces.
In this context, we confirmed the computational prediction
that R methylation of the protein non-POU domain–containing
octamer-binding protein (NONO) positively affects its binding
to paraspeckle component 1 (PSPC1).
ProMetheusDB and the functional analysis associated can

serve as a precious resource for all scientists focusing on this
important PTM and on the enzymes responsible of their
dynamic regulation, many of which represent promising
pharmacological targets for treatment of various diseases,
from neurological disorders to cancer (19, 22).
EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale

The annotation of ProMetheusDB was obtained by combining
datasets derived from two distinct proteomics strategies. The majority
of the methylations were annotated from hmSILAC experiments that
allow this PTM to be orthogonally validated, as described (24). This
initial list was then integrated with a second list of regulated
methyl-peptides derived from MS-proteomics experiments where the
biochemical protocol to separate and affinity-enrich methyl-peptides
was coupled to metabolic labeling with standard SILAC amino acids
(K/R) and stimulation of cells with different perturbations. Each SILAC
experiment was done in duplicates (forward and reverse), and only
peptides whose regulation was reproducible in at least one pair of
experiments were considered significantly regulated. Significantly
upregulated or downregulated were determined as described previ-
ously (13, 16, 29, 30): briefly, for each SILAC experiment, the mean
and standard deviation of the unmodified peptide SILAC log2 ratios
distribution were calculated; then, these values were used to calculate
the z-scores of the methyl-peptide SILAC ratios; finally, a peptide was
classified as significantly regulated in a given experiment if its z-score
was >2 or <−2 in both the forward and reverse replicates of that
experiment. The analyzed experiments are described in supplemental
Table S1.
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Extraction and Protease Digestion of hmSILAC-Labeled Histones
Before LC–MS Analysis

hmSILAC-labeled HeLa S3 cells (L and H channels mixed in 1:1
ratio) were resuspended in lysis buffer (10% sucrose, 0.5 mM EGTA,
60 mM KCl, 15 mM NaCl, 15 mM Hepes, 0.5 mM PMSF, 5 μg/ml
aprotinin, 5 μg/ml leupeptin, 1 mM DTT, 5 mM sodium butyrate, 5 mM
NaF, 30 μg/ml spermine, 30 μg/ml spermidine, and 0.5% Triton X-100),
and nuclei were separated from cytoplasm by centrifugation on a
sucrose cushion (20 ml lysis buffer, 10% sucrose) for 30 min at 3695g,
4 ◦C. Histones were then extracted through 0.4 M hydrochloric acid
for 5 h at 4 ◦C and dialyzed overnight in 100 mM CH3COOH. Dialyzed
histones were then lyophilized and either kept at −80 ◦C until use or
directly resuspended in milliQ water before sample processing prior to
MS analysis. To maximize the protein sequence coverage, four
different aliquots of 5 μg histones each were in-solution digested
overnight using different proteases, such as ArgC, trypsin, Lysargi-
Nase, and LysC. Proteolytic peptides were then desalted and
concentrated by microchromatography onto SCX and C18 Stage Tips
microcolumn, prior to LC–MS/MS analysis.

LC–MS/MS Analysis

Peptide mixtures were analyzed by online nano-flow LC–MS/MS
using an EASY-nLC 1000 or 1200 (Thermo Fisher Scientific) con-
nected to a Q Exactive instrument (Thermo Fisher Scientific) through a
nanoelectrospray ion source. The nano-LC system was operated in
one column set up with a 50 cm analytical column (75 μm inner
diameter) packed with C18 resin (EASY-Spray PEPMAP RSLC C18
2 μm 50 cm × 75 μm; Thermo Fisher Scientific). Solvent A was 0.1%
formic acid, and solvent B was 0.1% formic acid in 80% acetonitrile.
Samples were injected in an aqueous 0.1% TFA solution at a flow rate
of 500 nl/min. Peptides were separated with a gradient of 5 to 40%
solvent B over 90 min followed by a gradient of 40 to 60% for 10 min
and 60 to 80% over 5 min at a flow rate of 250 nl/min in the EASY-nLC
system. Histone peptides were separated with a gradient of 5 to 35%
solvent B over 100 min followed by a gradient of 35 to 95% for 10 min
and 60 to 80% over 8 min at a flow rate of 250 nl/min in the EASY-nLC
system. The Q Exactive was operated in the data-dependent acqui-
sition mode to automatically switch between full-scan MS and MS/MS
acquisition. Survey full-scan MS spectra (from m/z 300 to 1150) were
analyzed in the Orbitrap detector with resolution R = 35,000 at m/z
400. The 10 most intense peptide ions with charge states ≥2 were
sequentially isolated to a target value of 3 × 106 and fragmented by
higher energy collision dissociation with a normalized collision energy
setting of 25%. The maximum allowed ion accumulation times were
20 ms for full scans and 50 ms for MS/MS, and the target value for
MS/MS was set to 106. The dynamic exclusion time was set to 20 s.

MS Raw Data Processing with MaxQuant

MS raw data were analyzed with the integrated MaxQuant software,
version 1.3.0.5 or version 1.5.2.8 (for SILAC) or version 1.6.2.10 (for
hmSILAC), using the Andromeda search engine (27, 31). In all Max-
Quant searches, the estimated FDR of all peptide identifications was
set to a maximum of 1%. The mass tolerance for precursor ions was
set to 20 ppm during the first search and to 4.5 ppm during the main
search. The mass tolerance for fragment ions was set to 20 ppm. A
maximum of three missed cleavages was permitted, and the minimum
peptide length was fixed at six amino acids. The minimum modified
peptide score was set to 1 (identifications were subsequently filtered
during hmSEEKER analysis). The 2021_01 version of the Human
UniProt–SwissProt reference proteome (UP000005640; 42,371
entries) was used for peptide identification. Other parameters were
different, according to the experiment and the sample to be analyzed.
For the hmSILAC experiments, each MS raw data file was analyzed
twice to identify heavy and light methyl-peptides separately. In the
“light” analysis, monomethylation of K/R (+14.016 Da), dimethylation
of K/R (+28.031 Da), trimethylation of K (+42.047 Da), and oxidation of
M (+15.995 Da) were specified as variable modifications; carbamido-
methylation of Cys (+57.021 Da) was specified as fixed modification.
In the “heavy” analysis, heavy monomethylation of K/R (+18.038 Da),
heavy dimethylation of K/R (+36.076 Da), heavy trimethylation of K
(+54.114 Da), and oxidation of M were specified as variable modifi-
cations; carbamydomethylation of cysteine (C) and isotope-labeled
methionine (MS) (+4.022 Da) were specified as fixed modifications.
Enzyme specificity was set to either trypsin/P or LysargiNase. For the
standard SILAC methyl-proteomics experiments, we indicated K8 +
R10 and/or K4 + R6 as SILAC labels. N-terminal acetylation
(+42.010 Da), M oxidation, monomethyl-K/R and dimethyl-K/R were
set as variable modifications; carbamidomethylation of C was set as
fixed modification. Enzyme specificity was set to trypsin/P. For histone
hmSILAC experiments, MS raw data were also analyzed twice.
Monomethylation (light or heavy) was allowed on K, R, D, E, H, Q, N, S,
and T, and we included K acetylation (+42.011 Da) as a variable
modification. Enzyme specificity was set to trypsin/P, ArgC, LysC, or
LysargiNase. A database containing only human histone sequences
was used as reference.

Validation of Methyl-peptides with hmSEEKER 2.0

Identification of light and heavy methyl-peptide doublets was car-
ried out with hmSEEKER (26). The input of hmSEEKER consists of the
“msms.txt” and “allPeptides.txt” generated by MaxQuant.
Methyl-peptide identifications reported in “msms.txt” were filtered to
only retain peptides with Andromeda score >25, Delta score >12 and
localization probability of the methylation sites >0.9. hmSILAC dou-
blets were then reconstructed based on the MS1 peaks reported in
“allPeptides.txt.” Initially, hmSILAC v1.0 called a methyl-peptide
doublet when two peaks had the same charge, |ME| <2 ppm, |dRT|
<0.5 min, and |LogRatio| <1. The ML model developed in this study
within hmSEEKER, v2.0 is a logistic regression model trained with
Python package Scikit-learn, v0.23.1, as described in the Results
section. To avoid biases in the model, the true positive and true
negative doublets were obtained by re-analyzing a subset of MS raw
data that was representative of all hmSILAC experiments we
performed (supplemental Table S1).

Functional and Structural Analysis of the ProMetheusDB

Motif analysis was done using pLogo (University of Connecticut)
(32). Sequence windows centered on regulated (or unchanging)
R-methyl-sites were submitted as foreground; sequence windows
centered on all identified R-methyl-sites (including nonquantified ones)
were submitted as background; the resulting position weight matrices
were then downloaded and visualized with the Logomaker Python
package (33). Functional enrichment analysis was performed using the
“gprofiler2” R package (34); terms from Gene Ontology (GO): Biolog-
ical Processes (GO:BP), cellular component (GO:CC), molecular
function (GO:MF), Reactome (REAC), Kyoto Encyclopedia of Genes
and Genomes pathways, and CORUM complexes were used as data
sources; only the most significant nonredundant terms are reported in
the figures (full lists of enriched terms are reported in supplemental
Table S2). Overlap of the annotated modification sites with InterPro
domains (35) was performed with an in-house Python script; the
InterPro database was filtered to include only regions classified as
“domain” or “homologous superfamily.” Overlap of modification sites
with disordered regions predicted by AlphaFold (36) was performed as
previously described (37). Mapping of modification sites on interaction
surfaces was performed with the Mechismo (University of Heidelberg)
web application (38), with the stringency threshold set to “medium.”
Mol Cell Proteomics (2022) 21(7) 100243 2
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The database of currently annotated phosphorylation sites was
downloaded on May 28, 2019 from PhosphoSitePlus (39). Protein–
protein functional interaction networks were generated within Cyto-
scape (Institute for Systems Biology) (40) using the ReactomeFI PlugIn
plugin (41), the same plugin was also used to perform the clustering;
protein–protein physical interactions were downloaded from the IMEx
database (42); network analysis was performed with Cytoscape and
the Python package Pyntacle (43). The dataset of random R-sites was
extracted from the 2021_01 version of the Human UniProt–SwissProt
reference proteome. Fisher’s exact tests were performed with the
Scipy package in Python. The ProMetheusDB web interface was
implemented in R using the Shiny, ShinyFiles, and DataTable libraries.

Protein Immunoprecipitation of NONO and Western blot Analysis
of its R Methylation State and Co-immunoprecipitation of PSPC1

Immunoprecipitation (IP) of NONO was performed starting from
1 mg of HeLa whole-cell extract (WCE). Briefly, 30 × 106 HeLa cells
were harvested, washed twice with cold PBS, and resuspended in two
volumes of radioimmunoprecipitation assay buffer (10 mM Tris [pH 8],
150 nM NaCl, 0.1% SDS, 1% Triton, 1 mM EDTA, 0.1% sodium
deoxycholate, 1 mM PMSF, 1 mM DTT, and 1× Protease and Phos-
phatase Inhibitor Cocktails [Roche], supplemented with 10 kU of
benzonase [Merck Life Science]). The suspension was rotated on a
wheel for 45 min at room temperature (RT) (vortex every 10 min),
centrifuged at 12,000g for 1 h at 4 ◦C, and the supernatant was
transferred into a new Eppendorf tube. Proteins were quantified by
bicinchoninic acid colorimetric assay (Pierce Bicinchoninic Acid Pro-
tein assay kit), and 1 mg of WCE was used for the IP, 8% of which was
saved as input (80 μg to be divided into four SDS-PAGE gels). The
WCE used for the IP was rotated at 4 ◦C overnight with 4 μg of anti-
NONO/p54 (catalog no.: sc-376865; Santa Cruz). G protein–coupled
magnetic beads (Dynabeads; Thermo Fisher Scientific) were satu-
rated with a blocking solution (0.5% bovine serum albumin) and
rotated at 4 ◦C overnight on a wheel. The following day, the beads
were added to the lysate in 1:100 proportion with the primary anti-
bodies and incubated for 3 h at 4 ◦C on the wheel; the captured
complexes were washed four times with the radioimmunoprecipitation
assay buffer and then incubated 10 min at 95◦ with LDS sample buffer
(2×) supplemented with 100 mM DTT to elute the immunoprecipitated
proteins. Equal protein amounts were separated by SDS-PAGE elec-
trophoresis (NuPAGE Novex 4–12% Bis–Tris Gel 1.5 mm; Thermo
Fisher Scientific) and transferred on transfer membrane (Immobilon-P;
Merck Millipore) by wet-transfer method. Membrane blocking was
performed with 10% bovine serum albumin/Tris-buffered saline and
0.1% Tween-20 for 1 h at RT and followed by overnight incubation
with the selected primary antibodies and subsequent incubation with
the horseradish peroxidase–conjugated secondary antibodies (Cell
Signaling Technology) for 1 h at RT. Proteins were detected by
enhanced chemiluminescence (Bio-Rad). For the Western blot anal-
ysis, the following primary antibodies were used: (i) anti-NONO (cat-
alog no.: SC-376865; 1:500 dilution) purchased from Santa Cruz; (ii)
anti-ADMA (catalog no.: ASYM24 07-414; 1:1000 dilution) and anti-
SDMA (catalog no.: SYM10 07-412; 1:2000 dilution) purchased from
Millipore; (iii) anti-MMA (catalog no.: D5A12; 1:1000 dilution) pur-
chased from Cell Signaling Technology; (iv) anti-PSPC1 (catalog no.:
A302-461; 1:5000 dilution) purchased from Bethyl Laboratories; and
(v) anti-GAPDH (catalog no.: Ab9484; 1:3000 dilution) purchased from
Abcam. Quantification of the signal intensity for each band was per-
formed by Fiji software (44), and signal intensity was normalized at
four different levels: (i) quantification of NONO in the input was
normalized on GAPDH (as loading control); (ii) quantification of NONO
in its IP was normalized on the previous normalized input for each
condition; (iii) R methylation (MMA, ADMA, or SDMA) and PSPC1
signals were normalized on the amount of normalized NONO in the IP;
3 Mol Cell Proteomics (2022) 21(7) 100243
and (iv) signal intensity in MS023 condition was normalized on
dimethyl sulfoxide (untreated).
RESULTS

Implementation of ML in hmSEEKER v2.0 to Improve the
Detection of Methyl-peptide Doublets from hmSILAC Data

During the first implementation of hmSEEKER (26), we
defined empirical cutoff values to distinguish true hmSILAC
doublets from false positives. However, these criteria were not
only conservative and resulted in a very low FDR but also a
suboptimal sensitivity. We addressed this point by training a
logistic regression ML model to discriminate between putative
true and putative false hmSILAC doublets (Fig. 1A). This
model allowed us to increase the number of hmSILAC-
validated methyl-peptides in our dataset without compro-
mising the FDR and provides more rigorous criteria for the
identification of hmSILAC doublets compared with the original
ones, which were estimated empirically. To obtain a dataset
for model training, we followed the same strategy employed
(26) to determine optimal cutoffs. Specifically, we analyzed
MS raw files from a subset of hmSILAC experiments that were
representative of all the cell lines and enrichment methods
employed, then we used MaxQuant to search nonmethylated
peptides that contained one or more methionine (M) residues:
in fact, the labeling with M0 (“light”) or M4 (“heavy”) causes
M-containing peptides to generate hmSILAC doublets that
have the same properties as those generated by
methyl-peptides. Thus, we used M-containing peptides as
“mock methyl-peptides.” To model true negatives, we also
included in the dataset peptides without M and randomly
assigned methylations to them to mimic an erroneous identi-
fication by MaxQuant (Fig. 1B). The peptides in the dataset
were processed with hmSEEKER using the following cutoffs: |
mass error (ME)| <100 ppm, |retention time difference (dRT)|
<5 min, and |log2 H/L intensity ratio (LogRatio)| <25. These
cutoffs allowed us to retrieve as many putative doublets as
possible, to have enough data for the training of the model.
Doublets generated by a “mock methyl-peptide” were then
filtered to only include “matched” doublets (i.e., those where
both the heavy and light peptides are identified) and labeled
“1” (n = 4434); doublets generated by a “true negative” pep-
tide were labeled “0” (n = 3618). In total, the dataset used to
train the predictor consisted of 8052 doublets (supplemental
Fig. S1A).
The independent variables (features) used within the logistic

regression model were the ME, dRT, and LogRatio; the
dependent variable was whether the doublet was a true
hmSILAC doublet (“1”) or a random peak pair (“0”). The model
was trained on 6000 doublets (3000 true + 3000 false;
supplemental Fig. S1A) using stratified fivefold cross-
validation. To reduce the impact of potential outliers, we
applied a quantile transformation to the features, which were
then normalized based on their median and interquartile range



FIG. 1. Rationale of hmSEEKER, development of the machine learning (ML) model and analysis of hmSILAC data. A, schematic
representation of the hmSEEKER workflow upon metabolic labeling with stable isotope–encoded methionine (M). Cells grown in “light” (M0) and
“heavy” (M4) media are mixed in 1:1 proportion, and then proteins are extracted, digested, and analyzed by LC–MS/MS. MS spectra are
analyzed with MaxQuant to obtain peptide and PTM identifications. The hmSEEKER software reads MaxQuant peptide identifications and, for
each methyl-peptide that passes the quality filters, finds its corresponding MS1 peak, then searches the corresponding heavy/light counterpart.
A peak doublet is defined by the difference in the retention time (dRT), the log-transformed intensity ratio (LogRatio), and the deviation between
expected and observed m/z delta (mass error [ME]); these parameters are used to predict if the peak pair is a true hmSILAC doublet or a false
positive. B, schematic examples of true positive and true negative doublets. C, receiving operator characteristic (ROC) curves obtained by
testing the models trained by using either the raw or absolute value of the features. D, representation of the ML model weights with (blue) and
without (red) taking the absolute values of the features. E, comparison of the performance of hmSEEKER before and after the introduction of the
ML predictor (*MCC = Matthew's correlation coefficient). F, summary of hmSILAC experiments analyzed to produce the orthogonally validated
methyl-proteome. A detailed description of these experiments is available in supplemental Table S1. G, composition of the high-confidence
hmSILAC R-methyl-proteome before (left) and after (right) the implementation of the ML model. hmSILAC, heavy methyl stable isotope label-
ing with amino acids in cell culture; MS, mass spectrometry; PTM, post-translational modification.

Comprehensive Analysis of the Human Methyl-proteome
values. Moreover, we observed that taking the absolute values
of the features improved the performance of the model,
allowing it to reach an area under the receiving operator
characteristic curve >0.99 (Fig. 1C). Upon validation of the
model on the remaining 2052 doublets, we found that less
than 2% of the doublets were incorrectly labeled by the lo-
gistic regression (supplemental Fig. S1B). Inspection of the
logistic regression coefficients revealed that ME was the most
important feature as it had the largest absolute weight
(−5.393), followed by LogRatio (weight = −3.067), whereas
dRT (weight = −0.927) appeared to be the least important
(Fig. 1D).
We then tested whether the inclusion of the ML model
improved hmSEEKER v1.0 performance by comparing it to the
default cutoffs previously defined (26): the entire set of 8052
doublets used for the training of the model was reanalyzed
twice, first with the default cutoffs (i.e., |ME| <2 ppm, |dRT|
<0.5 min, and |LogRatio| <1) and then by using the model
predictions. The logistic regression showed an increase in
sensitivity and accuracy; the metrics F1 score and Matthew’s
correlation coefficient were also improved upon applying the
model (Fig. 1E). We also checked in detail how each doublet in
the training dataset was classified by applying the original
cutoffs or the ML model. Indeed, we observed that the original
Mol Cell Proteomics (2022) 21(7) 100243 4
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cutoffs were biased toward “negative” doublets (supplemental
Fig. S1C) and that the ML model, by defining less stringent
criteria to call a positive doublet, allows hmSEEKER to recover
768 true positive doublets from those previously classified as
false negative (corresponding to 90% of the total false nega-
tives found with the default cutoffs). Because of the less
stringent criteria, the number of false positives increased by
100, a relatively low amount compared with the 768 new true
positives. In conclusion, we believe that the unbiased and
data-driven nature of ML was able to find the optimal
compromise between sensitivity and specificity, whereas the
human-defined cutoffs tended to be conservative.

Reannotation of the Largest High-Quality Human
Methyl-proteome

We first applied hmSEEKER v1.0 as described (26) to our
hmSILAC data. Briefly, the data consisted of samples from
four different cell lines (HeLa, SK-OV-3, NB4, and U2OS),
which were subjected to different biochemical pipelines prior
to LC–MS/MS, such as immunoenrichment of methyl-pep-
tides with CST PTMScan kits or immunoenrichment of pro-
teins with antibodies against methyl-R, methyl-K, or
components of the Large Drosha Complex. These enrichment
methods were combined with separation techniques such as
PAGE, isoelectric focusing, and high-pH reversed-phase
liquid chromatography to reduce sample complexity and
further boost the identification of methyl-peptides (Fig. 1F and
supplemental Table S1). Samples were then acquired on a Q
Exactive mass spectrometer, and the resulting MS raw data
were processed with MaxQuant to identify R-methyl-peptides
and K-methyl-peptides.
The high-confidence methyl-proteome obtained from

hmSEEKER v1.0 contained 1724 methyl-peptides, mapping to
476 different proteins, which carried a total of 1198 methyl-
sites and 1491 methylation events (Fig. 1G, left). By rean-
alyzing the hmSILAC dataset with hmSEEKER v2.0, we
annotated 2154 methyl-peptides (+25% compared with
hmSEEKER v1.0) mapping on 660 proteins and 1882
methylation events (1551 on R and 331 on K; +26% compared
with v1.0) distributed on 1561 methyl-sites (1266 R-sites and
295 K-sites; +30% compared with v1.0) (Fig. 1G, right).
We then set to expand further this experimental dataset by

including the methyl-peptides that resulted as upregulated or
downregulated in response to a certain biological stimulus
(Fig. 2A and supplemental Table S1). The inclusion of these
peptides in the repository was performed under the assump-
tion that methyl-peptides displaying significant changes upon
a stimulus are likely to be enzymatic, whereas amino acid
substitutions and chemical artifacts should remain unaffected
by any kind of perturbation. The significantly regulated methyl-
peptides were extrapolated from previous studies carried out
by our group, whereby R methylation changes were profiled
through standard SILAC labeling in response to: (i) PRMT1
overexpression or knockdown (13); (ii) cell treatment with the
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PRMT5 inhibitor GSK591 or with the PRMT type I inhibitor
MS023 (16, 29); and (iii) cell treatment with cisplatin (CDDP)
(30). We thus obtained a final dataset consisting of 2246
methyl-peptides, 672 methyl-proteins, 1599 methyl-sites, and
1933 methylation events (Fig. 2B, left), which we named
ProMetheusDB, a repository of high-quality K/R-methyl-pep-
tides from human cancer cell lines (https://bioserver.ieo.it/
shiny/app/prometheusdb).
To facilitate the accessibility and dissemination of our

data, we set ProMetheusDB as an open access repository
that can be browsed via a web interface. This interface
consists of an interactive modification-centric table dis-
playing all the unique methylation events within ProM-
etheusDB, which can be filtered by protein, cell line,
modified residue, methylation degree, or by searching a
motif of interest within the site sequence windows. For each
modification row, it is possible to visualize a peptide-centric
child table that contains the list of identified peptides
bearing it; within these child tables, the source of the
methyl-peptide identification (hmSILAC or normal SILAC) is
indicated, as well as their regulation state in the different
quantitative experiments, where applicable.

Analysis of the Composition of ProMetheusDB

To characterize the features of ProMetheusDB, we first
checked its composition in terms of K and R methylation
events. Despite enriching for R methylation in most of our
samples, we identified proteins bearing K-methyl-sites or
combinations of K- and R-methyl-sites (supplemental
Fig. S2A), although peptides on which K and R methylation
coexist were overall rare (only 53, supplemental Fig. S2B),
suggesting that K- and R-methyl-sites occur in distinct protein
regions. While K methylation was included in the MS data
analysis to avoid erroneous assignment of R methylation
events to K and vice versa, the coverage of the R-methyl-
peptides in ProMetheusDB is much larger than that of
K-methyl-peptides, because of the employment of anti–pan-
methyl-R antibodies in most of our experiments. Hence, we
subsequently focused on the R-methyl-proteome, which
comprises 1909 R-methyl-peptides, 548 proteins, 1303
R-sites, and 1599 R-modifications (Fig. 2B, right).
We first compared the R-methyl-sites in ProMetheusDB to

the hmSILAC-validated R-methyl-sites in PhosphoSitePlus
(Fig. 2C) and found that 716 (55%) of the sites present in
ProMetheusDB are already annotated, whereas the remaining
587 (45%) are novel. So, our repository significantly expands
the annotation of this PTM in the human proteome.
We then compared monomethyl-sites and dimethyl-sites

and observed that, of the total 1303 R sites, 753 are only
monomethylated, 254 are only dimethylated, and 296 are
identified in both forms (Fig. 2D). Since previous studies
reported ADMA as the most abundant methylation mark (45),
we sought to verify if these counts of monomethylated and
dimethylated R residues reflect the natural situation or a bias

https://bioserver.ieo.it/shiny/app/prometheusdb
https://bioserver.ieo.it/shiny/app/prometheusdb


FIG. 2. Integration of the hmSILAC and SILAC data. A, summary of SILAC experiments used to expand the high-confidence
methyl-proteome. A detailed description of these datasets and the linked experiments is available in supplemental Table S1. B, composition
of the R-methyl-proteome upon the inclusion of dynamically modulated SILAC methyl-peptides, representing the ProMetheusDB. C, Venn
diagram comparing R-methyl-peptides in ProMetheusDB and annotated in PhosphoSitePlus. D, Venn diagram comparing R-methyl-sites
identified as monomethylated or dimethylated. hmSILAC, heavy methyl stable isotope labeling with amino acids in cell culture.
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in the sample preparation procedure. We grouped our ex-
periments based on the presence or not of the antibody-
based affinity-enrichment step with the PTMScan Motif anti-
body kits (CST) in the protocol and observed that, in the
datasets deriving from experiments where no affinity enrich-
ment was performed, the number of dimethyl-R-sites tends to
be greater than (supplemental Fig. S2C, R-methyl-protein IP
and protein IP) or similar to the number of monomethyl-R-sites
(supplemental Fig. S2C, input and K-methyl-protein IP). This
result confirmed the possible bias in the antibody specificity
and suggests caution when extrapolating conclusions on the
different methylation degree representativeness.

Functional Analysis of the R-methyl-proteome Suggests
New Roles of R Methylation in Inflammation and Immunity

To explore the possible impact of protein R methylation on
cellular processes, we generated a network of functional PPIs,
starting from the full list of R-methyl-proteins included in
ProMetheusDB. This analysis highlighted the presence of five
subnetworks enriched for distinct biological pathways (Fig. 3,
A and B). Cluster 1 is enriched for DNA repair, Fc gamma
receptor–dependent phagocytosis, and peroxisome
proliferator–activated receptor (PPARα)–mediated gene acti-
vation; cluster 2 is enriched for functional terms related to
mitosis; cluster 3 contains several components of the
spliceosome; cluster 4 displays an enrichment for the term
Antigen processing; and finally, cluster 5 contains proteins
related to translational regulation.
Since our group previously observed a strong trend of

methylated proteins to be part of multisubunit complexes (9),
we asked whether this observation still held true in this
expanded dataset: we found that hypermethylated proteins
(bearing five or more R-methyl-sites) presented significantly
higher node degree and network centrality compared with
nonmethylated proteins detected in the input samples
(Fig. 3C). Several of the high-centrality and hypermethylated
proteins are known RBPs, such as RBMX, various ribosomal
proteins, nucleolin, and heterogeneous nuclear RNPs (46).
Mol Cell Proteomics (2022) 21(7) 100243 6



FIG. 3. Functional analysis of the R-methyl-protein network. A, protein clusters identified in the Reactome functional interaction network of
R-methyl-proteins. Node size is proportional to the number of methyl-sites annotated on that protein; red borders highlight proteins bearing
regulated methyl-sites. B, top five most enriched functional GO terms per each protein cluster. C, topology analysis performed on the Reactome
interaction network displaying the increase in degree and centrality of proteins with increasing numbers of R-methyl-sites (p values are
calculated with Mann–Whitney test). GO, Gene Ontology.
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However, the presence of R-methyl-proteins in cellular path-
ways related to PPARα (a regulator of lipid metabolism) (47),
cytoskeleton organization, and phagocytosis was particularly
interesting. Among these proteins we found G3BP1, which is
on the one hand linked to stress granule formation and on the
other hand has been shown to participate in DNA/RNA-
sensing pathways implicated in the regulation of innate
immunity (48, 49); the cytoskeletal protein actin (ACTB); the
nuclear receptors NCOA2 and NCOA3, which are involved in
metabolism, inflammation, and adipocyte differentiation (50);
CUL1, a component of several E3 ubiquitin–protein ligase
complexes (51); SMARCA5, a helicase with nucleosome-
remodeling activity that has a role in transcription, phos-
phorylation of H2AX, and maintenance of chromatin structures
during DNA replication (52). Taken together, these proteins
and pathways suggest a role of R methylation in innate and
adaptive immunity that is not limited to PRMT1-mediated
transcriptional regulation (53–55). Moreover, our analysis
revealed novel R-methyl-sites on protein already annotated as
7 Mol Cell Proteomics (2022) 21(7) 100243
methylated on other residues, such as NONO (R142),
SMARCA5 (R616), HSP90B1 (R51, R557), and ACTB (R206,
R312).
As a further investigation, we integrated the network of

protein interactions with the quantitative data on methylation
dynamics obtained from the SILAC experiments to identify
which proteins present at least one R-methyl-site that is
significantly regulated in at least one SILAC experiment (i.e.,
regulated in the same way in one pair of matched forward and
reverse replicates). Proteins featuring one or more regulated
R-sites (circled in red in Fig. 3A) showed higher node degree
and centrality in the network (Fig. 4A). Moreover, we observed
that proteins not bearing regulated methylations were not
enriched for any specific functional term, whereas proteins
whose sites were regulated were mainly associated to RNA
binding and splicing (Fig. 4B). This suggests the existence of
two categories of R-methyl-sites: “dynamic” methyl-sites,
which are predominant on protein binding to or modifying
RNA and whose changes may exert effects on protein–RNA



FIG. 4. Functional analysis of dynamically regulated R methylations. A, topology analysis performed on the Reactome network reveals that
proteins bearing at least one significantly regulatedR-methyl-site have significantly higher degree and network centrality than thosewithout regulated
R-methyl-sites (p values are calculated with Mann–Whitney test). B, functional enrichment performed on proteins bearing at least one regulated
R-methyl-site (top) orno regulatedR-methyl-sites (bottom).C, intersectionofPhaSepDBandProMetheusDBshows that 60%ofR-methyl-proteinsare
involved in the process of liquid–liquid phase separation (LLPS). D, motif analysis performed on significantly regulated (top) and unchanging (bottom)
R-sites. Logos were generated using the full list of identified methyl-sites as background.
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interactions, and “structural” or “constitutive” methyl-sites,
which are overall refractory to modulation and occur on a
more heterogenous set of proteins.
Since RBPs are frequently involved in the process of liquid–

liquid phase separation (LLPS), we asked whether a link could
exist between R methylation and LLPS. We intersected
ProMetheusDB with PhaSepDB, a database of proteins
involved in LLPS, and found that 60% of the proteins in our
dataset were annotated as part of at least one membrane-less
organelle (Fig. 4C). This observation was corroborated by a
very recent study published by our group showing that R
methylation is involved in the assembly of membrane-less
organelles through the modulation of RBP–RNA interaction
(17).
Finally, a motif analysis showed that, on the one hand, the

regulated sites are surrounded by Gs (Fig. 4D, top), an
observation consistent with the notion that the major type I
and II PRMTs (PRMT1 and PRMT5, respectively) preferentially
target sites in glycine- and arginine-rich motifs; on the other
hand, the unchanging R-methyl-sites did not produce a sig-
nificant enrichment for any consensus motif (Fig. 4D, bottom):
this result suggest that unchanging methylations are catalyzed
by methyltransferases other than the best-known ones
possibly recognizing different sequence motifs, still
uncharacterized.

Structural Survey of R Methylation Highlights Novel
Biological Mechanisms

In the last 2 decades, it has been reported that intrinsically
disordered regions of proteins play a role in different pro-
cesses (such as PPI and protein–nucleic acid interactions and
LLPS) and are often R-methylated (9, 56, 57). In addition,
methylated R can serve as docking sites for the recruitment of
other proteins and the formation of multiprotein complexes;
two examples of such “readers” are represented by the Tudor
domain, present in several proteins linked to RNA processing
(58), and the WD40 repeat domain, found on a wide range of
scaffolding proteins (59).
To study the link between protein structure and R methyl-

ation, we intersected the R-methyl-sites in the ProMetheusDB
with disordered regions and domains annotated in MobiDB
(60) and confirmed that the vast majority (77%) of the R-
methyl-sites are indeed located in disordered regions (Fig. 5A).
When we carried out the same analysis on a subset of 1500
nonmethylated R sites randomly extracted from the human
proteome, we observed a more even distribution between
structured domains and disordered regions. As a matter of
fact, when performing a Fisher's exact test on the counts of
methylated or unmodified R located in structured or disor-
dered regions, we found that the distribution was not random
(Fig. 5A, top), which corroborates previous evidence that
R-methyl-sites tend to occur much more frequently within low
complexity and disordered regions. Interestingly, when we
performed the same analysis on methylated and unmethylated
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K, we found that K methylation is instead more frequent on
structured domains (Fig. 5A, bottom). This result was further
corroborated by two additional analyses: first, we expanded
our strategy to K ubiquitination, K sumoylation, K acetylation,
and S/T-Y phosphorylation sites that were downloaded from
PhosphoSitePlus (supplemental Fig. S3A); second, we applied
a recently described approach that identifies disordered re-
gions based on AlphaFold predictions (36, 37) (supplemental
Fig. S3B). The results showed that the occurrence of R
methylation in disordered protein regions is not a feature
generically common to all PTMs (supplemental Fig. S3).
Despite being a minority, we focused on the 308 R-methyl-

sites located in structured regions and mapped them onto
InterPro (35) domains to investigate their possible association
to specific protein domains: most R-methyl-sites localize
within RNA-binding domains, K homology domains, like-Sm
(LSM) domains, and P-loop NTPase domains (Fig. 5B). In
addition to the “RBD,” whose enrichment is expected, the K
homology domain is also mainly located in RBPs (specifically
heterogeneous RNPs (61)), the domains belonging to the LSM
family are often found on protein related to RNA biogenesis
(62), and the P-loop NTPase fold is one of the most common
nucleotide-binding domains; hence, these results are consis-
tent with the notion that RNA binding and processing are
mechanisms highly dependent on this PTM.
We then investigated the possible role of R methylation in

regulating the interaction of proteins with other types of bio-
molecules. To do so, we analyzed ProMetheusDB using
Mechismo, a web application that maps alterations of amino
acid residues (induced by mutations or PTMs) onto protein
crystal structures, to identify modified sites that are putatively
involved in physical interactions with different kinds of bio-
molecules (38, 63). We found that 32 methylated R residues
were involved in a total of 46 interactions with nucleic acid (n =
14), chemical compounds (n = 15), copies of the same protein
(n = 4), and other proteins (n = 13) (Fig. 5C). The presence of
few interactions with nucleic acids is somewhat unexpected,
but it can be explained by the fact that many RBPs bind RNA
through low-complexity regions, for which crystal structures
are currently unavailable. Still, these data support the
hypothesis that R methylation can also modulate interactions
with other biomolecules, such as protein–protein and protein–
chemical interactions.
We followed up the R-methyl-sites indicated by Mechismo

analysis as putatively involved in PPIs. Based on reports that
methylation of the guanidine group of R can exert distinct
effects on PPIs by reducing the number of hydrogen bond
donors on this amino acid, while at the same time increasing
its hydrophobicity (1), we hypothesized that methylation could
on the one hand enhance interactions between Rs and
hydrophobic residues and on the other hand inhibit the
interactions between Rs and negatively charged amino acids.
An interesting case study highlighted by this structural

analysis was represented by the protein pair NONO–PSPC1,



FIG. 5. Structural analysis of R-methylated protein regions. A, counts of R-methyl-sites (top) and K-methyl-sites (bottom) that occur in
regions that are annotated as either domains or disordered in the MobiDB database. Counts of random R and K sites are also included as a
comparison. p Value between methyl-site counts and random site counts was calculated with Fisher's exact test. B, counts of R-methyl-sites
occurring on specific protein domains, as annotated in the InterPro database. Domains linked to RNA-binding proteins such as RNA-binding

Comprehensive Analysis of the Human Methyl-proteome

Mol Cell Proteomics (2022) 21(7) 100243 10



Comprehensive Analysis of the Human Methyl-proteome
where R256 of NONO is located at the interface of interaction
with PSPC1 (Fig. 5D). We hypothesized that methylation of
R256 would increase its hydrophobicity, thus stabilizing the
NONO–PSPC1 interaction interface, which also entails apolar
residues, such as L222 of PSPC1. To verify this prediction, we
set up the NONO IP in HeLa cells and profiled PSCP1 co-IP
efficiency, both in basal conditions and upon treatment with
the PRMT type I inhibitor MS023 (64), which typically leads to
ADMA reduction and MMA/SDMA increase (30, 65, 66). When
we profiled both NONO methylation and its interaction with
PSPC1, we observed that MS023 induced the decrease of
ADMA on NONO, with a parallel increase of MMA and, to a
minor extent, of SDMA; in parallel, a mild increase of the
amount of PSPC1 coimmunoprecipitated was also observed,
confirming our prediction (Fig. 5E). In contrast, we suggest
that methylation of R154 of SRSF1 disrupts the hydrogen
bonds that this residue can form with E543 and Y549 of
SRPK1, leading to a reduced binding of SRSF1 with SRPK1
(supplemental Fig. S5A). This could have important implica-
tions on the splicing of various gene transcripts and the
consequent production of alternative protein isoforms,
including, for example, vascular endothelial growth factor (67).
Finally, a third interesting interaction suggested by Mechismo
involves R264 of SAM synthase (MAT2A); this modification is
located at the interface between the two subunits forming the
active dimer of the enzyme, where it contacts E57 of the other
MAT2A monomer, ATP, and metal ions serving as cofactors
(supplemental Fig. S5B) (68). Based on structural modeling, it
is possible to hypothesize that R264 methylation of MAT2A
could impact on the catalytic activity of the enzyme, serving as
a mechanism of regulation of overall SAM levels in the cell.

R-Methyl-Sites Located Near to and Distant from
Phosphorylation Sites Show Distinct Responses to Stimuli

The crosstalk between R methylation and S/T-Y phos-
phorylation has already been described in the literature and
linked to subcellular localization of proteins (69) and the
promotion of stem-like properties in cancer (70). Interest-
ingly, these two PTMs share some features like their prefer-
ential localization in intrinsically disordered regions
(supplemental Fig. S3A) and their role in modulating protein–
RNA interactions and LLPS (14, 71, 72). To elaborate on this
aspect, we determined 15-amino acid windows centered on
each R-methyl-site annotated in ProMetheusDB and
assessed if phosphorylated residues are preferentially
domain and K homology domain are the most represented. C, network
etheusDB and their interaction partners. DNA/RNA and chemicals are h
indicated by a green border. Self-loops indicated proteins that form a dim
(i.e., MAT2A). D, crystal structure of NONO (orange) and PSPC1 (green
suggest a possible role in the interaction between the two proteins. E
coenrichment, in HeLa cells treated with either DMSO (negative control) o
was performed as described in the Experimental Procedures section.
domain–containing octamer-binding protein; PSPC1, paraspeckle comp
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enriched within these windows. We found that 764 (49.0%) of
the 1559 R-methyl-sites present an S, T, or Y phosphoryla-
tion site within their 15-amino acid window; by repeating this
analysis on 1500 R residues randomly selected from the
human proteome, we observed that the percentage of sites
featuring a phosphorylation site in the same amino acid
window was more than halved (328 sites, 21.9%; Fig. 6A),
indicating a statistically significant co-occurrence of these
PTMs.
We then asked whether this co-occurrence was linked to a

specific biological process: by performing GO analysis on the
protein displaying such PTM, we found an even stronger
enrichment of terms linked to RNA binding and post-
transcriptional regulation compared with the proteins in
ProMetheusDB (Fig. 6B). To assess whether R-methyl-sites
co-occurring with phosphosites are more likely subject to
regulation in response to external cues, we intersected the
results of the PTM crosstalk analysis with the dynamic infor-
mation from the SILAC experiments. Notably, we found that
the MS023-regulated methyl-sites occur significantly more
frequently in the proximity of phospho-Y and phospho-S than
the nonregulated ones (Fig. 6, C and D); the opposite is true
for other stimuli, with R-methyl-sites regulated by CDDP or
PRMT1 depletion significantly more distant from phospho-Y
and phospho-T sites (Fig. 6, E and F). The opposite
responses to these stimuli suggest that these PTMs can
functionally interact in multiple ways and, more in general,
hints toward the widespread existence of a molecular barcode
of PTMs across the cellular proteome, similar to the one
extensively described on histones.
We then expanded the analysis of possible crosstalk of R

methylation with other PTMs and found that R-methyl-sites
seem to significantly anticorrelate with nearby K ubiquitina-
tion sites, when compared with the dataset of randomly
selected R sites (supplemental Fig. S4A). Instead, the asso-
ciations between R methylation and K acetylation or K
sumoylation are not statistically significant (supplemental
Fig. S4, B and C). Because the numbers of K acetylation, K
ubiquitination, and K sumoylation sites annotated in Phos-
phoSitePlus are at least one order of magnitude lower than
that of phosphosites, these results should be taken with
caution; nevertheless, they seem to corroborate the speci-
ficity of crosstalk between R methylation and S/T-Y phos-
phorylation, which is not generically applicable to every
annotated PTM.
obtained from Mechismo, showing the methylated proteins in ProM-
ighlighted in orange and blue, respectively. R-methylated proteins are
er and present a methylation site at the interface of the two monomers
) showing how R256 of NONO interacts with L222 of PSPC1, which
, IP and WB profiling of NONO, its R methylation state, and PSPC1
r 10 μMMS023 for 48 h. Quantification of signal intensity for each band
DMSO, dimethyl sulfoxide; IP, immunopreipitation; NONO, non-POU
onent 1; WB, Western blot.



FIG. 6. Crosstalk of R methylation and S/T-Y phosphorylation. A, counts of R-methyl-sites that occur in proximity of a phosphorylated site.
As a control, counts of randomly sampled R sites from the human proteome are shown, and the comparison indicates a significant correlation
between R methylation and S/T-Y phosphorylation (p values are calculated by Fisher’s exact test). B, functional terms enriched from proteins
bearing proximal R methylation and S/T-Y phosphorylation sites. C–F, counts of R-methyl-sites classified based on their regulation state upon
external stimuli and their proximity to S/T-Y phosphorylation sites (p values are calculated by Fisher’s exact test).
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Methylation Beyond Arginine: hmSILAC-based Detection
of Noncanonical Methylation Sites for High-Confidence
Annotation of Novel Histone H3 Methylation Marks

Protein methylation has been observed not only on K and R
but also on aspartate (D), glutamate (E), asparagine (N),
glutamine (Q), serine (S), threonine (T) and histidine (H).
However, the systematic study on these noncanonical meth-
ylated residues by MS is hindered, not only by the high FDR
that already plagues R methylation analysis but also by the
difficulty in pinpointing the PTM to the exact residue when
Mol Cell Proteomics (2022) 21(7) 100243 12



FIG. 7. Explorative analysis of noncanonical methylation sites. A, number of methyl-sites detected upon the reanalysis of the input MS
data, grouped by residue. B, Gene Ontology terms, pathways, and complexes significantly enriched among proteins bearing methylations on
non-K/R residues. C, UpSets plot representation of the co-occurrence of methylated residues on different proteins. D, MS/MS spectrum of the
histone H3 27 to 40 peptide methylated on S28 and T32. MS, mass spectrometry.
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multiple putative methyl-sites are present on the same pep-
tide. In this context, we set to assess to what extent the
hmSILAC strategy could help filling this gap in knowledge,
with the rationale that all enzyme-driven methylations should
use SAM as the universal methyl-group donor. We thus
reanalyzed all the MS-raw data from hmSILAC-labeled
non-affinity-enriched samples with the Andromeda search
engine of MaxQuant, allowing monomethylation to occur on R,
K, D, E, N, Q, S, T, and H. The MaxQuant output data were
then processed with hmSEEKER v2.0 using the same criteria
applied for high-quality R-methyl-sites identification, to pro-
duce a list of 86 orthogonally validated methylation sites in
total, 22 of which occurring on noncanonical residues
(Fig. 7A), located on 16 individual proteins. These novel
modifications mainly occur on proteins functionally linked to
mRNA splicing and RNPs (Fig. 7B). Most proteins only present
one type of methylated residue (most commonly R), with very
few proteins bearing combinations of up to four different
methylated residues (Fig. 7C), such as EEF1A1, PRPF8, and
HNRNPU.
13 Mol Cell Proteomics (2022) 21(7) 100243
This exploratory analysis also revealed the presence of two
unconventional novel methyl-sites on H3, on S28 (H3S28me)
and T32 (H3T32me). We were prompted to focus on nonca-
nonical methylation on histones by this initial experimental
evidence, together with two considerations: first, histone
methylation is widely regarded as a core component of the
histone code, hence the detection of novel methyl-sites may
help dissecting this molecular language; second, since stan-
dard database search engines produce suboptimal results
when multiple (>5) PTMs are searched in a large protein
database (73), the strategy of limiting the analysis to histones
could be a reasonable trade-off between expanding our
methylation search to noncanonical methyl-residues and
handling the explosion of false positives and negatives, linked
to the expansion of the search space.
We thus applied an optimized biochemical and analytical

pipeline to a set of hmSILAC-labeled histone samples: from a
biochemical point of view, we took advantage of multiple
proteases (i.e., trypsin, LysC, ArgC, and LysargiNase) diges-
tion of histones to generate overlapping peptides and
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maximize protein coverage; from the computational point of
view, the MS raw data were searched with MaxQuant using a
filtered version of the UniProt Human protein database that
included only histone sequences, using the same search pa-
rameters selected for the global methylation search. The
subsequent analysis with hmSEEKER v2.0 for methyl-pep-
tides pair matching and orthogonal validation of novel methyl-
sites allowed us to unambiguously reidentify monomethylation
on H3S28 and H3T32 (Figs. 7D and S6).

DISCUSSION

In this work, we describe ProMetheusDB, our current
hmSILAC-validated repository of protein methylation sites,
annotated upon the reanalysis of previous hmSILAC experi-
ments with an updated version of the hmSEEKER bioinfor-
matics tool. Doublets of light and heavy methyl-peptides were
evaluated by an ML model that was trained on doublets
generated by M-containing peptides, which, unlike proper
methyl-peptides, can be easily identified by database search
engines and therefore provide a reliable positive control to our
tool. After training the model, we observed that the dRT
parameter of the doublets was the least important for
discriminating true and false peptide pairs; this is in contrast
with the first iteration of hmSEEKER, where dRT and ME were
the main predictors of methyl-peptide doublets, and the H/L
ratio parameter was introduced later. This choice of features
also differentiates our ML model from the one adopted by
MethylQuant (25), which scores methyl-peptide pairs based
on the isotope distribution and elution profile correlation of the
two peaks. Moreover, while we set the initial cutoffs with
the aim of minimizing the number of false positives, the pre-
dictions produced by the ML model allowed us to find a
compromise between false positives and false negatives, by
recovering 768 false negatives versus the introduction of only
100 new false positives, thus keeping the FDR of hmSEEKER
at 2.4% (precision = 0.976).
Functional analysis performed on R-methyl-sites revealed

that proteins carrying multiple R-methyl-sites and/or dynami-
cally regulated ones are more strongly interconnected in pro-
tein interaction networks, thus representing potential hubs of
PPIs. In linewith the current literature, we found thatmost of the
regulated R-methyl-sites occurs in glycine and arginine–rich
regions and on RBPs. However, when we analyzed the subset
of methyl-sites that did not respond to the biological stimuli, we
observed no significant enrichment; we therefore argue that
these unchanging (“structural”) methyl-sites could represent a
heterogeneous set of sites that is methylated by currently
uncharacterized PRMTs with different motif preferences.
Interestingly, the protein clusters emerging from the

network analysis suggest a potential role of R methylation in
the immune response, as exemplified by the “FCGR-depen-
dent phagocytosis” cluster. While it is known that PRMT1-
mediated H4R3me2a promotes the expression of PPARα, a
transcription factor regulating monocyte differentiation (53),
our results expand the role of R methylation in immunity
beyond mere transcriptional regulation, showing that several
methyl-proteins are involved in antigen processing and
exogenous DNA/RNA-sensing pathways (such as CUL1 and
G3BP1, respectively). Other clusters that might be connected
to this biological process are the ones related to cytoskeleton
dynamics and lipid metabolism. In fact, anti-inflammatory
macrophages metabolize lipids as a source of energy,
whereas inflammatory ones use fatty acids to produce signal
molecules like prostaglandins and leukotrienes (74, 75). The
impact of R methylation on proteins of the cytoskeleton has
been already described in neuronal development, where
PRMTs regulate the formation of both the axon and the
dendrites; it is possible PRMTs control cytoskeleton dy-
namics also in macrophages and, potentially, other cell
types.
By mapping the R-methyl-sites annotated in ProM-

etheusDB onto protein structures, we confirmed that this
PTM mostly occurs in unstructured low-complexity regions,
characterized by short linear motifs that can mediate PPIs
(76). This observation, together with the notion that
R-methyl-proteins are central nodes of PPI networks, sug-
gests a functional link between R methylation and PPI
modulation. Indeed, by inspecting available 3D complexes,
we also found a small number of sites where R methylation
could modulate PPIs by increasing or reducing the hydro-
phobicity and hydrogen-bonding capability of R situated at
protein interfaces. In particular, our data show that NONO
can be methylated at R256; moreover, recent study by Xiang-
Bo Wan et al. (77) identified R251 of NONO as a methylation
target of PRMT1. Both residues are predicted by Mechismo
to interact with apolar residues of PSPC1 (L222 and L171,
respectively). Moreover, the amino acid substitution of
NONO R256 with isoleucine (I), an apolar residue, is a mu-
tation associated with colorectal cancer in the Active-
DriverDB database (78) and is predicted by Mechismo to
enhance NONO–PSPC1 interaction; similarly, a hypothetical
R251I substitution is also predicted to strengthen the bind-
ing. Overall, these observations suggest a model where an
increase in the hydrophobicity of NONO, caused by either an
amino acid substitution or by PRMT1-mediated hyper-
methylation, can elicit an oncogenic effect (at least in colo-
rectal cancer) by modulating the interaction between NONO
and PSPC1.
The observation that an R-methyl-site is involved in SRSF1–

SRPK1 interaction is also intriguing, as Ngo et al. (67) have
recently shown that disrupting this interaction promotes
alternative splicing events triggering the translation of a
vascular endothelial growth factor isoform that displays anti-
angiogenic properties. In this study, the authors used a PPI
inhibitor to modulate SRSF1–SRPK1 interaction; along this
line, based on our result, it will be interesting to assess
whether pharmacological modulation of PRMTs can elicit the
same functional effect.
Mol Cell Proteomics (2022) 21(7) 100243 14
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Mechismo suggested another interesting interaction
potentially targeted by R methylation that involves R264 of
SAM synthase (MAT2A). The observation that the enzyme that
synthesizes SAM, the methyl-group donor, can also be
methylated in a pocket relevant for its catalytic activity is
remarkable, because it suggests the possible existence of a
regulatory feedback loop controlling SAM levels in the cell. It
has already been reported that the RNA methyltransferase
METTL16 binds and methylates the 3′-UTR region of MAT2A
mRNA to prevent its translation. When SAM levels are low, the
mRNA of MAT2A cannot be methylated because of lack of the
methyl donor and the protein is translated (79). Thus, MAT2A
protein methylation at R264 could represent an additional
layer of regulation of the enzyme activity.
Phosphorylation and methylation sites colocalize on disor-

dered SRGG motifs of some proteins, where the two PTMs are
mutually exclusive because the presence of negative charges
inhibits the binding of PRMTs to their recognitionmotifs (69). By
overlapping ProMetheusDB with the PhosphoSitePlus phos-
phoproteomics dataset, we confirmed that methylated R are
significantly more likely to not only occur in the proximity of a
phospho-S but also expand this observation to phospho-T and
phospho-Y residues. Furthermore, the analysis of co-
occurrence of these two PTMs in the context of dynamic
regulation suggests the existence of a link between the regu-
lation of an R-methyl-site and its proximity to a phosphosite.
Stimuli such as the use of type I PRMTs inhibitorMS023 cause a
change in the methylation of R-sites that are close to phos-
phosites; instead, depletion of PRMT1 by RNA interference and
the treatment with cisplatin affect R-methyl-sites that are
distant fromphosphosites. This result highlights the importance
of developing, in the future, experimental pipelines enabling the
simultaneous profiling of these two (or even more) PTMs, a
strategy that is currently still at a pioneering stage (71). Our
analysis, for instance, focused exclusively on methyl-sites,
whereas the datasets of phosphorylation, acetylation, ubiq-
uitination, andsumoylation sitesweremostly derived fromother
studies focused on one individual PTM at a time; as such, we
cannot be sure which modifications truly coexist and which are
mutually exclusive.
The application of the hmSILAC-based biochemical and

analytical pipeline led to the annotation of methyl-sites also on
amino acids that are traditionally excluded from proteome with
MS-based analysis, such as D, E, N, Q, S, T, and H, which also
included the identification of a few putative novel methylation
marks on histones (i.e., H3S28, H3T32). These two PTMs
occurring on the peptide 27 to 40 of histone H3 are particularly
interesting for their potential crosstalk with functionally rele-
vant modifications on K27 and K36. For instance, methylation
of H3K27 is a repressive mark (80), whereas H3K36me2 is
found in transcribed regions (81). Our experimental data
showed that the S28me mark could coexist with K27me and
T32me, whereas peptides carrying simultaneously K27me and
T32me, or bearing S28me/T32me in combination with K36me,
15 Mol Cell Proteomics (2022) 21(7) 100243
were not detected (supplemental Fig. S5). A more in-depth
analysis of this peptide and its numerous differentially modi-
fied isoforms is needed to corroborate this observation:
measuring the relative abundance of the H3K27me/S28me
and H3S28me/T32me peptide isoforms could allow devel-
oping some hypotheses about their biological role and
possible crosstalk with other epigenetic marks. Similarly, it
would be interesting to confirm whether H3S28me/T32me are
mutually exclusive with K36 methylation or to find how these
novel methylation marks are associated with neighboring
acetylation and phosphorylation.
We argue that our analysis of noncanonical methylation

sites could be linked to our previous analysis on PTM cross-
talk. A recent article from the Eyers’ group (82) explored the
field of noncanonical phosphorylations and identified several
of these modifications on R, K, D, E, H, and C. Interestingly,
these residues overlap with the putative noncanonical
methyl-residues we have investigated here: it is, therefore,
possible to envisage that the crosstalk of methylation and
phosphorylation is not limited to proximal sites but could also
occur through the physical competition for the same sub-
strates. An intriguing case study emerging from our study is
H3S28, a known phosphosite that we found methylated in the
hmSILAC histone dataset. Phosphorylation of H3S28 can
occur in response to extracellular stress and is proposed to
override repressive epigenetic marks to temporarily express
genes that would normally be silenced (83). We hypothesize
that methylation of H3S28 may cooperate with methylation of
H3K27 in silencing genes (80), which would explain why we
did not detect H3S28 in combination with the aforementioned
active transcription marks H3K36me2/me3 and H3K27ac (84).
As a future perspective, since H3S28ph is also necessary for
chromatin condensation (85), we could investigate how this
residue is modified specifically during mitosis.
Some major points remain to be addressed in the

methyl-proteomics field. First, there is a need for more effi-
cient workflows that allow to annotate R-methyl-proteomes
through sensibly smaller scale experiments, as the prereq-
uisite for the investigation of this PTM in more relevant model
systems, such as primary cells, tissues, organoid, similarly to
what was made possible in the phosphoproteomics field (86).
In fact, while this work describes how the R-methyl-prote-
omics can be improved at the level of MS-data processing,
yet the sample preparation and LC–MS/MS acquisition steps
are still prone to relevant limitations because methyl-peptides
tend to be less abundant than unmodified peptides and thus
less likely to be selected for MS/MS analysis. One solution to
reduce the identification bias toward more abundant peptides
and thus increase the coverage of the methyl-proteome
could be the incorporation of data-independent acquisition
methods into methyl-proteomics workflows (87). Along the
same line, and more urgently, better strategies for the
biochemical or affinity-enrichment of methylated peptides are
needed; in particular, more efficient affinity-reagents
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recognizing dimethyl-R-peptides would allow addressing the
bias toward R monomethylation introduced by the use of the
CST anti-MMA kit currently available, as suggested by the
evidence that monomethyl- and dimethyl-R-sites are more
evenly represented in the datasets deriving from experiments
when no affinity-enrichment steps through the CST kits were
performed (i.e., fractionated WCE, protein IPs; supplemental
Fig. S2C). Similarly, efficient antibodies for the enrichment
of K-methyl-peptides are also essential to map the non-his-
tone K-methyl-proteome, which remains essentially
unexplored.
Besides the annotation of the steady-state methyl-prote-

ome, we recognize a need to accelerate the acquisition of
dynamic data. In the near future, it would be useful to apply
isobaric mass tags to MS-based methyl-proteomics profiling
to overcome the limited throughput of SILAC.
From the analytical point of view, some future de-

velopments can also be conceived: first, spectral library
searching (88) is faster than conventional database searching;
however its application to methyl-proteomics was limited by
the low number of high-confidence methyl-peptide spectra
available. The MS/MS spectra of methyl-peptides that were
orthogonally validated by hmSILAC could be used to build a
spectral library to be used as reference, thus speeding up the
analysis of new data. Second, it is crucial to separately
analyze ADMA and SDMA, which can be distinguished by
searching for their diagnostic neutral loss ions within the MS/
MS spectra (29, 89). While tools to detect neutral losses are
available (90), they are hard to apply successfully because of
the aforementioned scarcity of high-confidence spectra. Thus,
it is recommended to visually inspect the MS/MS spectra of
dimethyl-R-peptides, which is impractical for large datasets
such as ProMetheusDB.
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