
PHYSICAL REVIEW A 99, 032307 (2019)

Degradation of entanglement in Markovian noise
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The entanglement survival time is defined as the maximum time a system which is evolving under the action of
local Markovian, homogeneous-in-time noise is capable of preserving the entanglement it had at the beginning of
the temporal evolution. In this paper we study how this quantity is affected by the interplay between the coherent
preserving and dissipative contributions of the corresponding dynamical generator. We report the presence of a
counterintuitive, nonmonotonic behavior in such a functional, capable of inducing sudden death of entanglement
in models which, in the absence of unitary driving, are capable of sustaining entanglement for arbitrarily long
times.
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I. INTRODUCTION

Entanglement is a fundamental yet extremely fragile re-
source of quantum information processing [1]. Preventing
its degradation is a fundamental step in the development
of quantum technology. Starting from the seminal work on
quantum error correction [2], decoherence-free subspaces [3],
and dynamical decoupling [4], a number of methods have
been proposed to provide partial protection against such a
detrimental effect. Most of these approaches typically work
under the paradigm of mitigating the environmental noise
by properly intertwining the dynamics it induces with exter-
nal controls. Moreover, such controls usually correspond to
Hamiltonian corrections. The basic idea is to fight dissipative
and decoherence mechanisms through the action of driving
forces that drag the system in regions of the Hilbert space
where the former are not so effective. Interestingly enough
such external forces do not necessarily need to be coherence
preserving: indeed, while typically summing noise sources
tends to increase the speed at which entanglement gets lost
[5], it may occur that by properly alternating their actions the
entanglement survival time can be increased [6]. Similarly, it
is clear that coherence-preserving controls do not always help
in contrasting the noise: a not carefully designed Hamiltonian
driving might amplify the dissipation induced by the environ-
ment. Motivated by these observations, in the present paper
we study the maximum entanglement survival time τent for a
system evolving under the action of a local Markovian, time-
homogeneous noise [7]. In the general formalism established
by Gorini, Kossakowski, Sudarshan, and Lindblad [8,9], these
models are fully described by assigning a dynamical generator
L which includes two distinct contributions: a coherence-
preserving term associated with a Hamiltonian operator, and
a purely dissipative one associated with a Lindblad superop-
erator term. For assigned intensity of the latter our goal is
to determine how τent varies when increasing the intensity
of the former, in order to understand whether Hamiltonian

corrections always help in preserving entanglement, and more
generally to unveil the interplay between purely dissipative
and coherence-preserving contributions in the Lindblad gen-
erator. Naively one would expect that a predominance of
the Hamiltonian term would tend to increase the survival
time of the entanglement. However, for the schemes we have
considered this is not the case: the minimal value of τent is
reached for a non zero value of the Hamiltonian intensity.

In our analysis we formally identify τent with the smallest
time interval after which the dynamics associated with the
selected L becomes an entanglement-breaking (EB) quantum
channel [10,11]. This choice makes sure that, irrespective of
the initial conditions, no entanglement between the system of
interest and any possible ancillary system will survive after
τent. Conclusive results are presented for the case of qubit
systems and for continuous-variable systems evolving under
the action of Gaussian noise.

The presented material is organized as follows: We start
in Sec. II introducing the formal definition of entanglement
survival time for generic open quantum system dynamics and
review some basic properties of dynamical semigroups. After
presenting a detailed analysis of the general properties of the
entanglement survival time in Sec. III A, we focus on some
models. Notably, in Sec. IV we present some results dealing
with qubit systems while in Sec. IV D we extend the analysis
to the case of Gaussian Bosonic channels. Conclusions and
final remarks are presented in Sec. V, while technical deriva-
tions are presented in the Appendixes.

II. MAXIMUM ENTANGLEMENT SURVIVAL TIME

Consider a quantum system A that is evolving under the
noisy influence of an external environment E , whose action
we represent by means of a continuous, one-parameter family
{�t,0}t�0 of completely positive, trace-preserving (CPt) lin-
ear superoperators [12–14]. Assume next that at t = 0, A is
initialized into a (possibly entangled) joint state ρAB(0) with
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an ancillary system B which, without loss of generality, we
assume to be isomorphic with A, and which does not couple
with E . In this setting we define t∗(ρAB(0)) as the minimum
temporal evolution time t at which no entanglement can be
found in the associated evolved density matrix

ρAB(t ) = (�t,0 ⊗ idB)[ρAB(0)], (1)

(idB being the identity superoperator on B), i.e., the quantity

t∗(ρAB(0)) := min{t � 0 s.t. ρAB(t ) ∈ Ssep(HAB)}, (2)

with Ssep(HAB) the subset of separable states of AB. As
explicitly indicated by the notation the expression in Eq. (2)
is a function of the chosen initial state ρAB(0): it runs from the
minimum value zero (attained when ρAB(0) is an element of
Ssep(HAB)) to a maximum value

τent := max
ρAB (0)∈S(HAB )

t∗(ρAB(0)), (3)

which only depends upon the properties of the maps {�t,0}t�0

and which can be equivalently expressed as the smallest time
t for which �t,0 becomes EB, i.e.,

τent = min{t � 0 such that �t,0 ∈ EB}. (4)

Since it defines the maximum time interval on which we are
guaranteed to have some entanglement between A and B under
the evolution (1), we refer to τent as the “entanglement survival
time” (EST) of the selected dynamical process. Notice, how-
ever, that if the maps {�t,0}t�0 exhibit a strong non-Markovian
character inducing a significant backflow of information into
the system temporal evolution [15–19], nothing prevents the
possibility that entanglement between A and B will reemerge
at some time t greater than τent. The same effect, however, can-
not occur in the case of Markovian or weakly non-Markovian
models for which instead one has

�t,0 ∈ EB for all t � τent, (5)

meaning that the AB entanglement is lost forever at time τent.
Following the approach of Ref. [20] these two special classes
of processes are characterized by families {�t,0}t�0 whose
elements fulfill the CP-divisibility or P-divisibility condition
respectively, i.e.,

�t,0 = �t,t ′ ◦ �t ′,0 , ∀t � t ′ � 0 , (6)

where “◦” indicates the composition of superoperators and
where the connecting element �t,t ′ are CP (Markovian pro-
cesses) or simply positive transformations (weakly non-
Markovian processes). Equation (5) can then be derived by
setting t ′ = τent in Eq. (6) and exploiting the fact that the
composition of an EB channel with a CP, or just positive, map
is still EB.

An important subclass of Markovian (CP-divisible) pro-
cesses is provided by the so-called dynamical semigroups,
characterized by channels {�t,0}t�0 which are invariant un-
der translations of the time coordinates or, equivalently, by
connecting maps which are time homogeneous, i.e.,

�t,t ′ = �t−t ′,0 = �t−t ′,0 , ∀t � t ′. (7)

Accordingly defining �t := �t,0, Eq. (7) allows us to recast
Eq. (6) in terms of the following semigroup identity:

�t ◦ ��t = ��t ◦ �t = �t+�t , ∀t,�t � 0, (8)

which ultimately yields a first-order differential equation

�̇t = L ◦ �t , �0 = id, (9)

driven by a Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) generator L [8,9]. The latter admits a standard
decomposition in terms of two competing terms: a
coherence-preserving contribution gauged by a Hamiltonian
term governed by a self-adjoint operator H and by a purely
dissipative term D governing the irreversible process.
Specifically, we have

L[ · ] = γ D[ · ] − iω [H, · ]− , (10)

with

D[ · ] =
d2−1∑
j=1

(
Lj[ · ]L†

j − 1

2
[L†

j L j, · ]+

)
, (11)

the sum running over a set of no better specified (Lindblad)
operators {Lj} j , and the symbols [ , ]± indicating the com-
mutator (−) and anticommutator (+) brackets, respectively (d
being the dimension of A). In Eq. (10) the quantities ω, γ � 0
have dimension of a frequency and gauge of the time scale
and the relative strengths of the two competing dynamical
mechanisms that act on A: accordingly we refer ω as the
(unitary) driving parameter and to γ as the damping parameter
(herewith and in the following we set h̄ = 1 for the sake of
convenience).

As Eq. (9) admits a formal integration

�t = etL, (12)

it is clear that the EST of a dynamical semigroup must be a
functional of its generator, i.e.,

τent = τent (L). (13)

Analyzing such dependence is the aim of the present work.
More precisely, for fixed H and D we are interested in
studying in which way the parameters ω and γ that measure
the relative “strengths” of the Hamiltonian and the dissipative
contributions of L affect the value of τent. Intuitively one
would expect that larger incidence of the first mechanism
with respect to the second one would yield longer values
of the corresponding EST. Interestingly enough it turns out
that this is not always the case: as we explicitly see, in
some circumstances the presence of a nonzero value of the
Hamiltonian parameter ω induces a drastic reduction of the
EST of the model.

III. EVALUATING EST FOR DYNAMICAL SEMIGROUP

In this section we analyze a few examples of dynami-
cal semigroups and compute their associated EST. We start
in Sec. III A by presenting some general properties of the
functional (13). In Sec. III B we focus instead on the special
cases of qubit systems which allow for an almost complete
analytical treatment. Finally in Sec. IV D we discuss the
problem in the context of Gaussian Bosonic channels.

A. Preliminary observations

In the study of the functional (13) some structural
properties of the GKSL generator should be taken into
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consideration. First of all, an almost immediate consequence
of our definitions is the scaling law

τent (qL) = τent (L)/q (14)

that holds for all q � 0 and for all L. Hence for fixed H and
D we can write

τent (L) = Tent (κ )/γ , (15)

where

κ := ω/γ (16)

is the ratio of the driven and damping constants of the model,
and Tent (κ ) is a dimensionless quantity associated with the
(dimensionless) GKSL generator D[ · ] − iκ [H, · ]−. Next we
remind that the decomposition (10) is not unique because
H and the associated Lindblad operators {Lj} j can be freely
redefined according to the transformations

H → H ′ = H + 1

2iκ

∑
j

(c∗
j L j − c jL

†
j ) + b,

Lj → L′
j = Lj + c j, (17)

with c j being complex numbers and b being an arbitrary
real parameter [21], and where the ratio κ on the first term
accounts for the strength parameters γ and ω. While the
term b plays no role in the derivation (it gets canceled when
entering the commutation brackets), the coefficients c j induce
a nontrivial symmetry into the model that we fix by forcing
the Lj to be traceless.

A further symmetry of the problem arises from the fact that
local unitary transformations can neither create nor destroy
entanglement [22]. Accordingly the EST of an arbitrary (not
necessarily Markovian) process {�t,0}t�0 is invariant under
transformations of the form

�′
t,0 = Vt ◦ �t,0 ◦ Ut , (18)

where Ut [ · ] = Ut [ · ]U †
t and Vt = Vt [ · ]V †

t represent unitary
conjugations induced by the (possibly time-dependent) oper-
ators Ut and Vt , respectively. At the level of the dynamical
semigroup this translates into the identity

τent (L) = τent (U−1 ◦ L ◦ U ), (19)

that holds for a generic (time-independent) unitary conjuga-
tion U . Equation (19) can be easily verified by noticing that,
given the semigroup �t generated by L and the semigroup
�′

t generated by L′ = U−1 ◦ L ◦ U , the two are connected as
in Eq. (18) by setting Vt = U−1 and Ut = U . Notice also that
invariance of the EST under Eq. (18) can be used to explicitly
verify that in the evaluation of such a parameter it does not
matter whether we integrate Eq. (9) directly or by passing
through the standard interaction picture. Indeed by setting
Ut = id and identifying V−1

t with the evolution induced by
the Hamiltonian H of Eq. (10), the integration of Eq. (9) in the
standard interaction picture can be seen as a special instance
of Eq. (18), with �

′
t,0 being the nonhomogeneous Markovian

process characterized by the time-dependent generator L′
t =

Vt ◦ D ◦ V−1
t .

B. Qubit systems

In Ref. [10] it was established that determining whether
a given CPt map � is EB is equivalent to checking if its
associated Choi-Jamiołkowski state ρ

(�)
AB [23,24] is separable

or not. For finite-dimensional systems the latter is defined as
the output density matrix generated by � when acting locally
on a maximally entangled state, i.e.,

ρ
(�)
AB = (� ⊗ idB)[|
〉AB〈
|], (20)

|
〉AB := 1√
d

d∑
k=1

|k〉A ⊗ |k〉B, (21)

where d is the dimension of A, and where for Q = A, B,
{|k〉Q}k=1,...,d is an orthonormal basis of the system Q. A direct
consequence of this fact is that the maximum in Eq. (3) is
always attainable on the pure state (21), i.e., that τent (L) of a
semigroup {�t }t�0 can be found as the minimum value of t for
which ρ

(�t )
AB becomes separable. If A is a qubit, i.e., if d = 2,

we can address this task by exploiting the positive partial
transpose (PPT) criterion [25,26], which states that ρ

(�t )
AB is

separable if and only if its partial transposes (say, [ρ (�t )
AB ]TB )

are non-negative, i.e., if and only if all its eigenvalues are
greater than or equal to zero. By continuity, τent can then be
also identified as the smallest t which nullifies the determinant
of [ρ (�t )

AB ]TB , i.e.,

τent = min
{
t � 0, such that det

([
ρ

(�t )
AB

]TB
) = 0

}
, (22)

or, equivalently, as the smallest t which nullifies the corre-
sponding negativity of entanglement [27], i.e.,

τent = min
{
t � 0, such that N

(
ρ

(�t )
AB

) = 0
}
, (23)

where given ρAB is a generic state we have

N (ρAB) = 1

2

∑
�

(|λ�| − λ�), (24)

with {λ�}� being the eigenvalues of ρ
TB
AB. It is worth observing

that since the negativity of entanglement is an entanglement
monotone [28] (the higher its values the higher is the entan-
glement present in the system), the function N (ρ (�t )

AB ) can also
be used to monitor how the entanglement gets degraded before
completely disappearing at τent. Furthermore, we notice that
for d > 2 where the PPT criterion provides a sufficient but
not necessary condition for separability, the terms on the
right-hand side (rhs) of Eqs. (22) and (23) provide an upper
bound for τent.

Asymptotic analysis. While for d = 2 determining the
eigenvalues of [ρ (�t )

AB ]TB is always possible in principle, ex-
tracting τent from Eqs. (22) or (23) requires in general that
one solve a transcendental equation. As a result, only in a few
cases it is possible to carry out the entire analysis analytically
and one has to resort to numerical methods, for instance, to
the Newton-Raphson method, which we employ extensively
in the following sections (in particular in the plots shown in
Figs. 2–4). Yet by inspecting the asymptotic behavior of the
spectrum of [ρ (�t )

AB ]TB (a relatively simple task) it can often
be inferred whether the entanglement transmission time of a
given dynamical semigroup is finite or infinite. Consider in
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fact the case where the process admits a single relaxation state,
i.e.,

lim
t→∞ �t (ρA(0)) = ρ̄A, ∀ρA(0) ∈ S(HA), (25)

with ρ̄A being determined by the identity L[ρ̄A] = 0. Ac-
cordingly the Choi-Jamiołkowski state will converge to the
following separable state:

ρ
(�∞ )
AB := lim

t→∞ ρ
(�t )
AB = ρ̄A ⊗ 1B/2, (26)

which implies

det
([

ρ
(�∞ )
AB

]TB
) = det(ρ̄A)

4
� 0. (27)

Suppose hence that det(ρ̄A) > 0, which always happens un-
less the fixed point ρ̄A is a pure state. Then, considering that
for t = 0 one has det([ρ (�0 )

AB ]TB ) = det(|
〉AB〈
|TB ) = −1/16,
by a simple continuity argument it follows that the function
det([ρ (�t )

AB ]TB ) must cross zero at some finite time t which, via
Eq. (22), corresponds to the EST of the problem. If on the
contrary we have det(ρ̄A) = 0, i.e., if ρ̄A is pure, the continuity
argument cannot be applied and the system may exhibit a
divergent value of the EST; i.e., the associated dynamical
semigroup becomes EB only asymptotically. Borrowing from
the terminology introduced in Ref. [1] we can hence conclude
that the purity of the relaxation state ρ̄A provides a sufficient
criterion for determining whether the associated dynamical
semigroup induces entanglement sudden death (ESD):

ESD criterion. Dynamical semigroups admitting a nonpure
density matrix as a relaxation state are characterized by a finite
value of the EST.

We conclude by stressing that while explicitly discussed
for the qubit case scenario, it is clear that the above argument
holds true for system A of arbitrary dimension d , the only
difference being associated with the fact that now the rhs
terms of Eqs. (26) and (27) get replaced, respectively, by
ρ̄A ⊗ 1B/d and det(ρ̄A)/dd .

IV. MODELS

In this section we explicitly explore the behavior of the
τent for different prototypical models for finite- and infinite-
dimensional systems.

A. Phase-flip qubit channels

As a first example of a dynamical semigroup acting on a
qubit we consider the case of GKSL generators L [Eq. (10)]
having and arbitrary Hamiltonian term and a unique Lindblad
operator L which is Hermitian. For a proper choice of the drift
and the damping coefficients ω, γ , and invoking the gauge
freedom (17) to make L traceless, the most general example
of such processes can be described by setting L = Z/

√
2 and

taking H = n̂ · �σ with n̂ := (sin θ cos ϕ, sin θ sin ϕ, cos θ ) be-
ing a real unit vector, and with �σ := (X,Y, Z ) being the vector
of Pauli matrices. Equation (10) hence becomes

L[ · ] = γ

2
(Z[ · ]Z − id[ · ]) − iω [n̂ · �σ , · ]− , (28)

which, in the computational basis associated with the eigen-
vectors of Z , can be interpreted as a phase-flip noise process

[22] affecting the qubit A while the latter evolves in the
presence of a driving field in the n̂ direction. Invoking the
equivalence (19) the analysis can be further simplified by
observing that a proper unitary rotation along the z axis can be
used to bring n̂ into the xz plane while keeping the dissipator
component invariant. Accordingly, without loss of generality,
in our analysis we set equal to zero the azimuthal angle ϕ,
restricting the analysis to Hamiltonian driving of the form

n̂ = (sin θ, 0, cos θ ). (29)

As a preliminary step let us first consider the scenario
where no coherent driving is acting on the system (κ = 0), so
that L = γD. By explicit integration of the system dynamics
(see Appendix A) one can easily verify that in this case
the negativity of entanglement (24) of the associated Choi-
Jamiołkowski state (20) is equal to

N
(
ρ

(�t )
AB

)∣∣∣
κ=0

= e−γ t/2, (30)

which shows that the entanglement in the system is degraded
exponentially fast, even though it is never completely broken,
yielding a divergent value for the associated EST, i.e., using
Eqs. (16) and (15),

Tent (0) = ∞. (31)

The same result holds also for arbitrary ω and n̂ pointing
into the z axis, i.e., θ = 0. In this case in fact passing into
the interaction picture representation the driving term can be
eliminated without affecting the dissipator, making the former
completely irrelevant for the computation of the EST (see
comments at the end of Sec. III A).

The problem becomes more interesting when we take
n̂ as a unit vector that points into the x axis (θ = π/2),
i.e., H = X . Under these assumptions, in the operator basis
{E (00), E (10), E (01), E (11)} formed by the external products
E (i j) = |i〉〈 j| of the computational basis, the Lindbladian (28)
reads

L = γ

⎛
⎜⎜⎜⎝

0 −iκ iκ 0

−iκ −1 0 iκ

iκ 0 −1 −iκ

0 iκ −iκ 0

⎞
⎟⎟⎟⎠. (32)

By direct evaluation one can verify that for all κ > 0 it admits
as a unique zero eigenvector the completely mixed state
ρ̄A = 1A/2. Hence from the results of the previous section
we can conclude that in these cases, at variance with the
κ = 0 scenario (31), the corresponding EST must be finite,
yielding ESD [1]. This is a rather remarkable fact as it implies
that by adding a unitary (coherence-preserving) contribution
to the dissipative dynamics induced by the phase-flip noise
generator, we can end up with a “noisier” evolution which
becomes EB at a finite time. A more quantitative statement
can be obtained by studying the negativity of entanglement,
i.e.,

N
(
ρ

(�t )
AB

) = e−γ t/2

2
max{Qκ (γ t/2) − sinh(γ t/2), 0}, (33)
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FIG. 1. Temporal evolution of the negativity of entanglement
[Eq. (33)] of the phase-flip process [Eq. (28)] for different values
of the ratio κ = ω/γ and for θ = π/2, ϕ = 0.

with

Qκ (τ ) :=
√

cosh2(τ
√

1 − 16κ2) − 16κ2

1 − 16κ2
. (34)

The functional dependence of this quantity upon the param-
eter κ is rather involved, still; as evident from the plots
presented in Fig. 1 it clearly emerges that the entangle-
ment present in the model tends to degrade faster as the
driving/damping ratio increases. According to Eq. (23) the
associated EST can be determined by identifying the zeros
of Eq. (33), i.e., by solving the transcendental equation

Qκ (γ t/2) = sinh(γ t/2) , (35)

which admits a closed analytical solution for the two ex-
tremal cases κ = 0 and κ → ∞. In particular for κ = 0, since
Q0(τ ) = cosh(τ ), Eq. (35) allows us to recover the results
anticipated in Eqs. (30) and (31). For κ = ∞ instead one has
that Qκ (τ ) converges to 1, allowing us to replace Eq. (33) with

N
(
ρ

(�t )
AB

)∣∣∣
κ=∞

= e−γ t/2

2
max{1 − sinh(γ t/2), 0}, (36)

and yielding the following value for the associated rescaled
EST functional (15):

Tent (∞) = arcosh(3) . (37)

For the remaining choices of the driving/damping ratio κ an
approximate treatment of Eq. (35) allows us to write

Tent (κ ) 

⎧⎪⎪⎨
⎪⎪⎩

W (1/4κ2), κ  0

2.5 − 3.7
(
κ − 1

4

) + 10.6
(
κ − 1

4

)2
, κ  1

4

Tent (∞) + 1−cos(Tent (∞)
√

16κ2−1)
2
√

2(16κ2−1)
, κ  ∞,

(38)

where W is the Lambert function [29] (see Appendix C for
details). Furthermore, in the high driving regime κ � 1/4, the
following inequality can be established:

Tent (∞) � Tent (κ ) � arcosh

(
2 − 1 + 16κ2

1 − 16κ2

)
. (39)

In Fig. 2(a) we report a numerical solution of Eq. (35),
together with the bounds (39), which confirms the general
tendency of the model in translating a high level of unitary
driving into a stronger entanglement suppression. A similar
behavior is observed for intermediate values of θ in the
interval [0, π/2] until it eventually diverges everywhere when
θ approaches zero: a numerical evaluation of the associated
value Tent (κ ) is reported in Fig. 2.

B. Generalized amplitude damping process

As our next example we focus on the case where the dis-
sipator D describes a generalized amplitude damping process
(see, e.g., Ref. [30]) inducing bosonic thermalization effects
on the qubit dynamics. It can be expressed as in Eqs. (10), and
(11) by setting

L1 = √
N + 1 σ− , L2 =

√
N σ+ , (40)

with N being a non-negative number that gauges the mean
thermal photon number of the system environment and with
σ± = 1

2 (X ± iY ) being ladder operators.
In the absence of the driving term (i.e., ω = 0 or equiva-

lently κ = 0) the model can be easily integrated, the generator
taking the matrix form

L =

⎛
⎜⎜⎜⎝

−γ2 0 0 γ1

0 − 1
2 (γ1 + γ2) 0 0

0 0 − 1
2 (γ1 + γ2) 0

γ2 0 0 −γ1

⎞
⎟⎟⎟⎠, (41)

where for ease of notation γ1 and γ2 stand for γ1 = γ (N + 1)
and γ2 = γ N , respectively. In this limit the process admits the
density matrix

ρ̄A = 1

2N + 1

(
N + 1 0

0 N

)
(42)

as a unique stationary solution, which for N > 0 is always not
pure. For this choice of the parameter we can hence invoke the
ESD criterion to establish that the model must exhibit a finite
value of the EST parameter. The negativity of entanglement
can be computed as well, leading to

N
(
ρ

(�t )
AB

) = e−(2N+1)γ t/2

2
max{AN (γ t )

− sinh((2N + 1)γ t/2), 0}, (43)

where we have introduced the function

AN (τ ) =
√

1

2
+ 4N (N + 1) + cosh((2N + 1)τ )

2(2N + 1)2
. (44)

For N = 0 (purely lossy dynamics) the above expression
reduces to N (ρ (�t )

AB ) = e−γ t/2 and the process never reaches
the EB regime, yielding a divergent value of τent, i.e.,

Tent (0)
∣∣∣
N=0

= ∞ . (45)

For N > 0 instead, determining the zero of the r.h.s. term
of Eq. (43) shows that the EST is finite and expressed as in
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FIG. 2. (a) Plot of the rescaled EST functional Tent (κ ) of the phase-flip channel (28) for θ = π/2, ϕ = 0 as a function of the
driving/damping ratio κ (red solid line), together with the bounds (39) (blue dashed lines). (b) Three-dimensional (3D) plot of Tent (κ ) as
a function of κ and of the rotation parameter θ . Notice that again Tent (κ ) diverges for κ → 0 and approaches a stationary value for κ → ∞.
The solid red line in (a) and the 3D plot in (b) have been generated numerically, exploiting the Newton-Raphson method.

Eq. (15) with

Tent (0) = 1

2N + 1
arcosh

(
1 + (2N + 1)2

2N (N + 1)

)
. (46)

Let us now allow for a nonzero (ω > 0) driving term
H = n̂ · �σ . In analogy with the phase-flip process, if we set
n̂ = (0, 0, 1) the Hamiltonian part of L can be eliminated by
passing into the interaction picture representation; therefore,
the EST does not depend on ω. Also, exploiting the unitary
invariance (19), the azimuthal angle ϕ can be set to zero
without loss of generality, leaving us only with the depen-
dence on θ to be resolved. In Fig. 3 we report the entangle-
ment transmission curve for different values of the rotation
parameter θ and the mean number of photons,N . We notice
how once more the entanglement transmission time decreases
with the driving/damping ratio κ . The qualitative behavior
of the curves is similar to those observed for the phase-flip
model. In particular we notice that at fixed κ , the values of
Tent (κ ) develop a nontrivial minimum for intermediate values
of θ ∈]0, π/2[, the effect being more evident at large N .

C. The depolarizing process

The last example we consider is the depolarizing process
generated by a GKSL generator with the three Lindblad
operators

L1 = X/2 , L2 = Y/2 , L3 = Z/2 , (47)

leading to a dissipator of the form

D[ · ] = 1
4 (X [ · ]X + Y [ · ]Y + Z[ · ]Z − 3 id[ · ]). (48)

In this case due to the highly symmetric structure of Eq. (48)
any Hamiltonian contribution can be eliminated by passing
into the interaction picture without modifying the dissipator.
More precisely, one can show that any purely Hamiltonian
superoperator (i.e., one with γ = 0) commutes with Eq. 48).
This can be exploited so as to get rid of any functional
dependence of EST on ω, and ultimately on k as prescribed

by Eq. (14):

Tent (κ ) = Tent (0), (49)

for all κ . Neglecting hence H , in the basis of the elementary
matrices we observe that the generator becomes

L = γ

2

⎛
⎜⎜⎜⎝

−1 0 0 1

0 −2 0 0

0 0 −2 0

1 0 0 −1

⎞
⎟⎟⎟⎠, (50)

which, by direct exponentiation, leads to

�t = 1

2

⎛
⎜⎜⎜⎝

1 + e−γ t 0 0 1 − e−γ t

0 2e−γ t 0 0

0 0 2e−γ t 0

1 − e−γ t 0 0 1 + e−γ t

⎞
⎟⎟⎟⎠. (51)

Therefore, via a proper rearrangement of the above matrix
elements (divided by 2), the Choi-Jamiołkowski state reads

ρ
(�t )
AB = 1

4

⎛
⎜⎜⎜⎝

1 + e−γ t 0 0 2e−γ t

0 1 − e−γ t 0 0

0 0 1 − e−γ t 0

2e−γ t 0 0 1 + e−γ t

⎞
⎟⎟⎟⎠.

(52)

The negativity of entanglement can then be computed as

N
(
ρ

(�t )
AB

) = e−γ t/2

2
max{e−γ t/2 − sinh(γ t/2), 0}, (53)

showing that the entanglement of the system is degraded,
again, exponentially fast with rescaled EST value given by

Tent (0) = ln 3. (54)

D. Gaussian Bosonic channels

In this section we address the case of dynamical semi-
groups acting on infinite-dimensional systems (continuous-
variables regime). In particular we focus on the special class
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FIG. 3. Panel (a): Plot of the rescaled EST as a function of ratio κ for the amplitude damping process (N = 0), for several values of the
parameter θ that determines the orientation of the driving Hamiltonian term. Panels (b), (c), and (d): Rescaled EST as a function of κ and of
the rotation parameter θ associated to the generalized amplitude damping process, for different values of the environment mean of photons
number N . The plots shown in all the panels have been generated numerically employing the Newton-Raphson method.

of CPt maps which belongs to the set of Gaussian Bosonic
channels [13,31,32], that we briefly review in Appendix D.
Specifically, we consider the continuous-variables analog of
the generalized amplitude damping process introduced earlier.
This process is described by a GKSL generator (10) with two
Lindblad operators

L1 = √
N + 1 a , L2 =

√
N a†, (55)

with N � 0 representing the mean photon number of the
environment and a and a† being, respectively, the annihilation
and creation bosonic operators, fulfilling the canonical com-
mutation rule [a, a†] = 1. For the Hamiltonian part we take
instead the most general quadratic operator which, without
loss of generality, we parametrize as

H = i
(a†)2 − a2

2
sin θ + a†a cos θ, (56)

with θ measuring the relative intensity of the squeezing term.
Consider first the case where no driving contribution is

present (i.e., ω = 0). By explicit integration the associated
CPt transformation �t induced by L corresponds to a (single-
mode) Gaussian Bosonic channel which in the formalism

detailed in Appendix D is described by the 2 × 2 real matrices

Ft = e−γ t/2 I, Gt = (2N + 1)(1 − e−γ t ) I . (57)

This process belongs in the C class and we can determine its
associated EST by finding solutions to the following equation:

det

(
Gt − i

2

(
J + F T

t JFt
)) = 0 (58)

[see Eq. (D13).] By explicit computation this yields the value
for the rescaled functional of Eq. (15), i.e.,

Tent (κ = 0) = ln
4N + 3

4N + 1
, (59)

which, while being decreasing with N as its qubit counterpart
(46), at variance with the latter it does not diverge when N
approaches zero [see Eq. (45)].

Consider next the case of a nonzero driving/damping ratio,
κ > 0. For general θ , Eq. (58) yields for the EST an equa-
tion analogous to Eq. (35) which we report in Eq. (E11) of
Appendix E and whose numerical solution is exhibited in
Fig. 4.
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FIG. 4. Panels (a) and (c): Rescaled EST Tent as a function of the relative strength κ of dynamics associated to the Gaussian Bosonic
Channel model defined by Eqs. (55) and (56), for different values of the parameter θ . Panels (b) and (d): 3D plot of the rescaled EST as a
function of κ and of the rotation parameter θ . In all plots the values of Tent have been obtained by numerically solving Eq. (E12) of Appendix
E, with the Newton-Raphson method.

For κ  0 an approximate solution can be obtained in the
following form:

Tent (κ )  ln
4N + 3

4N + 1
+ κ2(2N + 1)(1 − cos 2θ )

×
[

4

(4N + 3)(4N + 1)
− T 2

ent (0)

]
. (60)

For large values of driving/damping ratio κ instead, Eq. (E11)
presents a critical behavior in θ (see Fig. 5). In particular
for θ ∈ [0, π/4) the form of Tent is similar to the finite-
dimensional case, exhibiting a drop-oscillate-stabilize pattern
which can be approximated by the function

Tent (κ )

 Tent (∞)

+a cos[2κ
√− cos 2θ Tent (∞)] + b − cosh(Tent (∞))

sinh(Tent (∞))
, (61)

with Tent (∞) being the asymptotic value defined as

Tent (∞) = arcosh
2(2N + 1)2 + (8N (N + 1) + 3) cos 2θ

2(2N + 1)2 + (8N (N + 1) + 1) cos 2θ
,

(62)

vanishing for N → +∞. For θ ∈ (π/4, π/2], where Eq. (61)
can have a nonzero imaginary part, instead the EST is mono-
tonically decreasing with κ , asymptotically vanishing in the
large-κ regime. Since for θ ∈ (π/4, π/2] Eq. (E11) changes
form, in this interval the functional dependence is approxi-
mated by the function

Tent (κ )  1

2κ
√| cos 2θ |arcosh

2 κ2 α(N, θ ) cos 2θ

(2N + 1)2(1 − cos 2θ )
,

(63)

where the dimensionful quantity α is given by

α(N, θ ) = 2γ 2(2N + 1)2 + γ 2[8N (N + 1) + 3] cos 2θ.

(64)
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FIG. 5. Asymptotic form of the entanglement survival time
[Eq. (62)] of the Gaussian Bosonic channel model defined by
Eqs. (55) and (56) as a function of θ for κ → ∞.

V. CONCLUSIONS

The present paper focuses on the study of the entanglement
transmission time, defined as the time at which a dynamical
process induced by the interaction with an external environ-
ment becomes entanglement breaking. For the special case of
time-homogeneous Markovian systems, we analyze how this
quantity is affected by the interplay between the dissipative
and the driving contributions of the GKSL generator of the
model. We provided both analytical and numerical results
for some relevant examples of qubit evolution, described by
the bit-flip and the amplitude damping channels. In the sim-
plest cases we evaluate also the negativity of entanglement,
which quantifies the entanglement content of the semigroup
output state, and therefore provide information also on the
rate at which entanglement is being corrupted. We noticed
that the dependency of the entanglement transmission time
from the damping and driving parameters reflects the form
of the eigenvalues of L, the GKSL generator of the quantum
dynamical semigroup. The precise form of such dependency
can be very complicated even in the simple cases considered,
but generally it has been found that oscillations can appear
in the entanglement transmission time. This happens in the
finite-dimensional case when the eigenvalues of the generator
acquire an imaginary part. In the infinite-dimensional case, we
observe an oscillatory behavior only for certain values of the
rotation parameter.

Somewhat contrary to common intuition, our results
clearly show that increasing the driving parameter, by tuning
the weight of the unitary dynamics, does not always provide
an advantage in the transmission of entanglement. Indeed,
in the study cases considered it appears to be detrimental,
making the transmission time drop, with the exception of a
special driving direction, which makes the driving ineffective.
An intuitive explanation of this effect can be attempted by
saying that the unitary rotations induced by the presence
of coherence-preserving contributions in the GKSL genera-
tor could effectively increase the detrimental effects of the
dissipative ones, by broadening the range of their action in
the phase space of the system. In other words, by exposing
the Hilbert space of the latter to attacks that can affect any

possible subspaces, these rotations boost the noise level, in-
ducing a “playing both sides of the fence” effect where the
system has no hidden places to store the coherence it needs to
maintain the entanglement with an eternal ancilla.
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APPENDIX A: FORMAL INTEGRATION OF THE
BIT-FLIP CHANNEL MODEL

Setting ω = 0 in the operator basis
{E (00), E (10), E (01), E (11)} formed by the external products
E (i j) = |i〉〈 j| of the computational basis, the Lindblad
superoperator of the phase=flip channel model takes the
matrix form

L = γ

⎛
⎜⎜⎜⎝

0 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 0

⎞
⎟⎟⎟⎠, (A1)

which gives

�t =

⎛
⎜⎜⎜⎝

1 0 0 0

0 e−γ t 0 0

0 0 e−γ t 0

0 0 0 1

⎞
⎟⎟⎟⎠, (A2)

as the associated semigroup maps [Eq. (12)]. Adopting hence
as the maximally entangled state Eq. (21) the one constructed
on the computational basis, i.e., |
〉AB〈
| = ∑

j, j′=0,1 E ( j j)
A ⊗

E ( j′ j′ )
B /4, which for d = 2 has the matrix form

|
〉AB〈
| = 1

2

⎛
⎜⎜⎜⎝

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎞
⎟⎟⎟⎠, (A3)

the partial transpose of the corresponding Choi-Jamiołkowski
state can likewise be expressed as

[
ρ

(�t )
AB

]TB = 1

2

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 e−γ t 0

0 e−γ t 0 0

0 0 0 1

⎞
⎟⎟⎟⎠, (A4)

having eigenvalues 1/2 (twice degenerate) and ±e−γ t/2
which leads to Eq. (30) when replaced into Eq. (24).

APPENDIX B: ENTANGLEMENT NEGATIVITY

In this Appendix we provide some details for the derivation
of negativity in the models described by the generator (28)
with n̂ = (1, 0, 0) and the generator (40) with ω = 0.

In the basis {E (00), E (10), E (01), E (11)} the Lindbladian (28)
is represented by the matrix (32). By means of Eq. (19),
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we can transform Eq. (28) into the equivalent generator

L = γ

⎛
⎜⎜⎜⎝

− 1
2 0 0 1

2

0 − 1
2 + 2iκ 1

2 0

0 1
2 − 1

2 − 2iκ 0
1
2 0 0 − 1

2

⎞
⎟⎟⎟⎠, (B1)

which makes our analysis simpler. By taking the exponential, we have

�t = e− 1
2 γ t

⎛
⎜⎜⎜⎜⎜⎝

cosh 1
2γ t 0 0 sinh 1

2γ t

0 cosh 1
2γ t

√
1 − 16κ2 + 4iκ sinh 1

2 γ t
√

1−16κ2
√

1−16κ2

sinh 1
2 γ t

√
1−16κ2

√
1−16κ2 0

0
sinh 1

2 γ t
√

1−16κ2
√

1−16κ2 cosh 1
2γ t

√
1 − 16κ2 − 4iκ sinh 1

2 γ t
√

1−16κ2
√

1−16κ2 0

sinh 1
2γ t 0 0 cosh 1

2γ t

⎞
⎟⎟⎟⎟⎟⎠ .

(B2)

Hence, by taking the partial transpose of the associated Choi-Jamiołkowski state, we can find the eigenvalues as functions of
time:

λ(t ) =
{ 1

2e−γ t/2(sinh(γ t/2)±Qκ (γ t/2))

1
2 e−γ t/2(cosh(γ t/2) ± Sκ (γ t/2)),

(B3)

where in order to simplify the notation we have defined the functions

Qκ (τ ) =
√

cosh2(τ
√

1 − 16κ2) − 16κ2

1 − 16κ2
, (B4)

Sκ (τ ) = sinh(τ
√

1 − 16κ2))√
1 − 16κ2

. (B5)

By summing up the negative part of the eigenvalues, formula (24) for the negativity of the bit-flip channel model follows. In the
same way, the Lindbladian (40) is represented by the matrix (41). By taking the exponential of matrix (41), we have

(2N + 1)�t =

⎛
⎜⎜⎜⎝

Ne−(2N+1)γ t + N + 1 0 0 (N + 1)(1 − e−(2N+1)γ t )

0 (2N + 1)e− 1
2 (2N+1)γ t 0 0

0 0 (2N + 1)e− 1
2 (2N+1)γ t 0

N (1 − e−(2N+1)γ t ) 0 0 (N + 1)e−(2N+1)γ t + N

⎞
⎟⎟⎟⎠ , (B6)

and therefore the associated Choi-Jamiołkowski state reads

(4N + 2)ρ (�t )
AB =

⎛
⎜⎜⎜⎝

Ne−(2N+1)γ t + N + 1 0 0 (2N + 1)e− 1
2 (2N+1)γ t

0 N (1 − e−(2N+1)γ t ) 0 0

0 0 (N + 1)(1 − e−(2N+1)γ t ) 0

(2N + 1)e− 1
2 (2N+1)γ t 0 0 (N + 1)e−(2N+1)γ t + N

⎞
⎟⎟⎟⎠ . (B7)

The eigenvalue equation for the partial transpose of the Choi-
Jamiołkowski state yields

λ(t ) =

⎧⎪⎨
⎪⎩

((N + 1)e−(2N+1)γ t + N )/(2N + 1)

(N + 1 + Ne−(2N+1)γ t )/(2N + 1)
1
2 e−(2N+1)γ t/2(sinh((2N + 1)γ t/2) ± AN (γ t )),

(B8)

where the function AN (τ ) was defined in Eq. (44). Summing
up the negative parts of the eigenvalues, formula (43) for
the negativity of the generalized amplitude channel model
follows.

APPENDIX C: PERTURBATIVE EXPANSION OF EST

Let us rewrite Eq. (35) in terms of adimensional variables

cosh(τ ) = 2 + cosh(τ
√

1 − 16κ2) − 16κ2

1 − 16κ2
, (C1)

where τ = γ t and κ = ω/γ . We now solve this equation in
three different regimes.

By expanding the equation in powers of κ and keeping only
the first nontrivial term, we have the equation

τ sinh(τ ) + 2(1 − cosh(τ ))  1

4κ2
. (C2)
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Furthermore, we know that for small values of κ , τent diverges
because the process is asymptotically EB. Therefore, by ex-
panding the equation for large τ ’s, we find

τeτ  1

2κ2
, ⇒ Tent  W

(
1

2κ2

)
. (C3)

We can now find corrections perturbatively. Let us introduce
the perturbative parameter ε and consider the deformed equa-
tion

ε cosh(τ ) + (1 − ε)τeτ

= 2ε + ε
cosh(τ

√
1 − 16κ2) − 16κ2

1 − 16κ2
+ (1 − ε)

2κ2
. (C4)

This equation interpolates between the known asymptotic
value of Tent at ε = 0 and the unknown value of Tent at ε = 1.
We therefore look for solutions to the above equation in the
form

τ (ε) =
∞∑

n=0

τn(κ )εn. (C5)

If the series converges, we have Tent (κ ) = ∑∞
n=0 τn(κ ). By

expanding Eq. (C4) in powers of ε and applying Eq. (C5)
to it, we can recursively determine the coefficients τn(κ ) by
imposing equality order-by-order in ε. The first correction to
Eq. (C3) turns out to be

τ1(κ ) = (1 − 2κ2W (1/2κ2))2 − 4κ2W (1/2κ2)

2(1 + W (1/2κ2))

+ 1 + (2κ2W (1/2κ2))1−16κ2

2
√

1 − 16κ2(2κ2W (1/2κ2))
√

1−16κ2−1
. (C6)

At the critical ratio τ = 1/4, Eq. (C1) simplifies consider-
ably, leaving us with

cosh(τ ) − 1 − τ 2

2
= 2 ⇒ Tent  2.5. (C7)

We can expand around this value by looking for solutions of
the form

Tent (κ ) =
∞∑

n=0

τn

(
κ − 1

4

)n

. (C8)

We can determine the coefficients τn recursively by plugging
the above expansion into Eq. (C1) and expanding it in power
of (τ − 1/4). The first few coefficients of the expansion read

τ0  2.5, (C9)

τ1 = − τ 4
0

3(sinh(τ0) − τ0)
 −3.7, (C10)

τ2 = τ 4
0

(
4τ 2

0 cosh2(τ0) − 5τ 4
0 cosh(τ0)

)
90(sinh(τ0) − τ0)3

+ 4τ 4
0

((
τ 2

0 − 15
)

sinh2(τ0) + 6τ0
(
τ 2

0 + 5
)

sinh(τ0)
)

90(sinh(τ0) − τ0)3

+ τ 2
0

(
27τ 2

0 + 64
)

90(sinh(τ0) − τ0)3
 10.6 . (C11)

By taking the limit κ → +∞ of Eq. (C1), we have the
simple solution

lim
κ→∞ Tent (κ ) = arcosh(3) := Tent (∞). (C12)

One might therefore think of looking for corrections by ex-
panding Tent as a Laurent series: Tent (κ ) = ∑∞

n=0
τ2n
κ2n . How-

ever, when κ is continued to the complex plane, Eq. (C1) has
an essential singularity at κ = ∞. As a result, an expansion
of the form above cannot be found. Instead, we can obtain a
perturbative series about infinity by introducing a perturbative
parameter ε, deforming Eq. (C1) into

cosh(τ ) = 2 + ε
cosh(τ

√
1 − 4κ2) − 4κ2

1 − 4κ2
+ 1 − ε. (C13)

We can thus perform a perturbative expansion similar to the
κ  0 regime:

τ (ε) =
∞∑

n=0

τn(κ )εn, (C14)

the first few coefficients of the expansion being

τ0(κ ) = Tent (∞), (C15)

τ1(κ ) = cosh(Tent (∞)
√

1 − 16κ2) − 1

2
√

2(1 − 16κ2)
. (C16)

APPENDIX D: INTRODUCTION TO GAUSSIAN
BOSONIC CHANNELS

A formal definition of Gaussian Bosonic channels can
be obtained by passing into the Heisenberg representation
[14] and assigning their action on the Weyl operators of the
system [33]. We remind that assuming the system of interest
is composed of n independent modes described by canonical
coordinates {Qj, Pj} j=1,...,n fulfilling the the canonical com-
mutation relations

[Qi, Pj] = i δi j, [Qi, Qj] = [Pi, Pj] = 0, (D1)

a generic Weyl operator is defined as the unitary transforma-
tion Wξ = eiξ ·R with ξ ∈ R2n and R = (Q1, P1, . . . , Qn, Pn). A
zero-mean Gaussian channel � can then be uniquely iden-
tified by two 2n × 2n real matrices F and G that, in the
Heisenberg representation, define the mapping

Wξ −→ WFξ e− i
2 ξT Gξ , ∀ξ . (D2)

The CPt condition imposes on F, G the inequality

G � i

2
(J − F T JF ), (D3)

where J is the standard symplectic metric of the system, i.e.,

J =
n⊕

i=1

(
0 1

−1 0

)
. (D4)

It can be proven [34] that a Gaussian channel (F, G) is EB if
and only if it admits a decomposition of the form G = μ + ν,
and such that

ν � i

2
J, μ � i

2
F T JF. (D5)
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Therefore, a necessary condition for (F, G) to be EB is

G � i

2
(J + F T JF ). (D6)

Let us now restrict our attention to one-mode Gaussian
channels (i.e., n = 1). For such channels, a complete charac-
terization can be given, based upon the Williamson theorem
[31,33]. As it turns out, depending on the value of the quantity
F T JF , there exists canonical unitary transformations U1,U2

such that, via the mapping

�(ρ) −→ U2 �(U1 ρ U †
1 )U †

2 , (D7)

the Gaussian channel �  (F, G) can be reduced to one of the
following normal forms:

(A) F T JF = 0. Then (F, G) can be reduced to the form

F = k E (00), G =
(

q + 1

2

)
I. (D8)

(B1) F T JF = J . Then (F, G) can be reduced to the form

F = I, G = 1
2 E (11). (D9)

(B2) F T JF = J . Then (F, G) can be reduced to the form

F = I, G = q I. (D10)

(C) F T JF = k2J , k > 0, k �= 1. Then (F, G) can be
reduced to the form

F = k I, G =
(

q + |1 − k2|
2

)
I. (D11)

(D) F T JF = −k2J , k > 0. Then (F, G) can be reduced
to the form

F = k Z, G =
(

q + 1 + k2

2

)
I, (D12)

where k is a real number and q � 0. Combining the above
result with Eq. (D5), we have the following EB conditions for
one-mode Gaussian channels [34]:

(A) � is EB (in fact, it is c-q).
(B1) � is not EB.
(B2) � is EB if and only if q � 1.
(C) � is EB if and only if q � min{1, k2}.
(D) � is EB.
Notice that the only channels which could either be EB

or non-EB, depending on k and q, are the ones in classes
B2 and C, and that for them Eq. (D6) is in fact equivalent to
the EB conditions (D5). Furthermore, by continuity, for these
maps the entanglement transmission time can be determined
studying the zeros of the following equation:

det

(
G − i

2
(J + F T JF )

)
= 0. (D13)

APPENDIX E: EST FOR THE GAUSSIAN AMPLITUDE
DAMPING CHANNEL

For the model described by the GKSL generator in
Eqs. (55) and (56), the matrices Ft and Gt can be expressed
as

Ft = exp

[
γ t

(
− 1

2 N + κ sin θ −κ cos θ

κ cos θ − 1
2 N − κ sin θ

)]
, (E1)

Gt = (2N + 1)γ
∫ t

0
ds FT

s Fs. (E2)

More explicitly, the matrix elements of Ft are

Ft |11 = i

2
e− 1

2 Nτ

[(
sin θ√
cos 2θ

− i

)
e−iκτ

√
cos 2θ

−
(

sin θ√
cos 2θ

+ i

)
eiκτ

√
cos 2θ

]
, (E3)

Ft |21 = cos θ√
cos 2θ

e− 1
2 Nτ sin(κτ

√
cos 2θ ), (E4)

Ft |12 = −Ft |21, (E5)

Ft |22 = − i

2
e− 1

2 Nτ

[(
sin θ√
cos 2θ

+ i

)
e−iκτ

√
cos 2θ

−
(

sin θ√
cos 2θ

− i

)
eiκτ

√
cos 2θ

]
, (E6)

where τ = γ t , while for the matrix Gt we have

Gt |11 = − (2N + 1) sec 2θ

1 + 4κ2 cos 2θ

[
e−τ κ2 − cos 2θ (1 + 2κ2

+ 2κ (κ cos 2θ + sin θ )) + 1

2
e−τ (2κ2 cos 4θ

+ cos 2θ (1 + 4κ2 + cos(2κτ
√

cos 2θ ))(1+4κ sin θ )

+ 2
√

cos 2θ sin θ (2κ sin θ + 1) sin(2κτ
√

cos 2θ ))

+ 2 sin2(κτ
√

cos 2θ )

]
, (E7)

Gt |21 = (2N + 1) tan 2θ

1 + 4κ2 cos 2θ
e−τ [2(1 − eτ )κ2 cos 2θ

+ κ
√

cos 2θ sin(κτ
√

cos 2θ ) + sin2(κτ
√

cos 2θ )],
(E8)

Gt |12 = Gt |21, (E9)

Gt |22 = − (2N + 1) sec 2θ

1 + 4κ2 cos 2θ

[
e−τ κ2 − cos 2θ (1 + 2κ2

+ 2κ (κ cos 2θ − sin θ )) + 1

2
e−τ (2κ2 cos 4θ

+ cos 2θ (1 + 4κ2 + cos(2κτ
√

cos 2θ ))(1−4κ sin θ )

+ 2
√

cos 2θ sin θ (2κ sin θ − 1) sin(2κτ
√

cos 2θ ))

+ 2 sin2(κτ
√

cos 2θ )

]
. (E10)
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Let us now set γ1 = γ (N + 1) and γ2 = γ N for the sake of
convenience. Equation (58) gives the following equation for
the EST:

cosh(τ ) − a(γ1, γ2, κ, θ ) cos(2τκ
√

cos 2θ ) = b(γ1, γ2, κ, θ ),

(E11)

where

a = 2(γ1 + γ2)2(1 − sec 2θ )

(3γ1 + γ2)(γ1 + 3γ2) + 4κ2β
, (E12)

b = 2(γ1 + γ2)2 sec 2θ + (
3γ 2

1 + 2γ1γ2 + 3γ 2
2

) + 4κ2α

(3γ1 + γ2)(γ1 + 3γ2) + 4κ2β
,

(E13)

α = (
γ 2

1 + γ 2
2

)
(2 + 3 cos 2θ ) + 2γ1γ2(2 + cos 2θ ), (E14)

β = (
γ 2

1 + γ 2
2

)
(2 + cos 2θ ) + 2γ1γ2(2 + 3 cos 2θ ). (E15)

The equation presents a critical behavior at θ = π/4, and
becomes

cosh(τ ) =
(γ1 − γ2)2 + 4(γ1 + γ2)2 + 4κ2(γ1 + γ2)2(2 + τ 2)

(3γ1 + γ2)(γ1 + 3γ2) + 8κ2(γ1 + γ2)2
, (E16)

while for κ = 0 it yields the purely dissipative EST value

Tent = ln
3γ1 + γ1

γ1 + 3γ2
, (E17)

which we have reported as Eq. (59) of the main text.

For small values of κ we look for solutions of the form

Tent (κ ) =
∞∑

n=0

τnκ
n. (E18)

The first corrections are

τ0 = ln
3γ1 + γ2

γ1 + 3γ2
, τ1 = 0 , (E19)

τ2 = γ1 + γ2

γ1 − γ2

[
4(γ1 − γ2)2

(3γ1 + γ2)(γ1 + 3γ2)
− ln2 3γ1 + γ2

γ1 + 3γ2

]

× (1 − cos 2θ ) , (E20)

and this is valid for all forms of the equation.
Let us now consider the behavior of the equation for large

κ . When 0 � θ < π/4, then by taking the limit we have

cosh(τ ) = lim
κ→∞ b(γ1, γ2, κ, θ ) (E21)

and therefore

lim
κ→+∞ Tent (κ ) = arcosh

α(γ1, γ2, θ )

β(γ1, γ2, θ )
. (E22)

Using the same deformation procedure employed for
Eq. (C13) we can find the first correction

a cos(2κ
√− cos 2θτ0) + b − b∞√

b2∞ − 1
, (E23)

where b∞ = lim
κ→∞ b(κ ), yielding Eq. (61) of the main text.

Instead for θ ∈ (π/4, π/2), we have asymptotically for κ →
+∞

Tent  1

2κ
√− cos 2θ

arcosh
2κ2α(γ1, γ2, θ )

(γ1 + γ2)2(sec 2θ − 1)
, (E24)

which coincides with Eq. (63) of the main text.
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