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Abstract

Several studies investigated the linguistic in-

formation implicitly encoded in Neural Lan-

guage Models. Most of these works focused

on quantifying the amount and type of in-

formation available within their internal rep-

resentations and across their layers. In line

with this scenario, we proposed a different

study, based on Lasso regression, aimed at

understanding how the information encoded

by BERT sentence-level representations is ar-

ranged within its hidden units. Using a suite of

several probing tasks, we showed the existence

of a relationship between the implicit knowl-

edge learned by the model and the number of

individual units involved in the encodings of

this competence. Moreover, we found that it

is possible to identify groups of hidden units

more relevant for specic linguistic properties.

1 Introduction

The rise of contextualized word representations

(Peters et al., 2018; Devlin et al., 2019) has led

to signicant improvement in several (if not ev-

ery) NLP tasks. The main drawback of these ap-

proaches, despite the outstanding performances, is

the lack of interpretability. In fact, high dimen-

sional representations do not allow for any insight

of the type of linguistic properties encoded in these

models. Therefore this implicit knowledge can

only be determined a posteriori, by designing tasks

that require a specic linguistic skill to be tackled

(Linzen and Baroni, 2020) or by investigating to

what extent certain information is encoded within

contextualized internal representations, e.g. den-

ing probing classier trained to predict a variety

of language phenomena (Conneau et al., 2018a;

Hewitt and Manning, 2019; Tenney et al., 2019a).

In line with this latter approach and with re-

cent works aimed at investigating how the informa-

tion is arranged within neural models representa-

tions (Baan et al., 2019; Dalvi et al., 2019; Lakretz

et al., 2019), we proposed an in-depth investigation

aimed at understanding how the information en-

coded by BERT is arranged within its internal rep-

resentation. In particular, we dened two research

questions, aimed at: (i) investigating the relation-

ship between the sentence-level linguistic knowl-

edge encoded in a pre-trained version of BERT and

the number of individual units involved in the en-

coding of such knowledge; (ii) understanding how

these sentence-level properties are organized within

the internal representations of BERT, identifying

groups of units more relevant for specic linguistic

tasks. We dened a suite of probing tasks based on

a variable selection approach, in order to identify

which units in the internal representations of BERT

are involved in the encoding of similar linguistic

properties. Specically, we relied on a wide range

of linguistic tasks, which resulted to successfully

model different typology of sentence complexity

(Brunato et al., 2020), from very simple features

(such as sentence length) to more complex prop-

erties related to the morphosyntactic and syntactic

structure of a sentence (such as the distribution of

specic dependency relations).

The paper is organized as follows. In Sec. 2

we present related work, then we describe our ap-

proach (Sec. 3), with a focus on the model and the

data used for the experiments (Sec. 3.1) and the

set of probing tasks (Sec. 3.2). Experiments and

results are discussed in Sec. 4 and 5. To conclude,

we summarize the main ndings of our work in

Sec. 6.

2 Related work

In the last few years, a number of recent works

have explored the inner mechanism and the lin-

guistic knowledge implicitly encoded in Neural

Language Models (NLMs) (Belinkov and Glass,

2019). The most common approach is based on
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the development of probes, i.e. supervised mod-

els trained to predict simple linguistic properties

using the contextual word/sentence embeddings of

a pre-trained model as training features (Conneau

et al., 2018b; Zhang and Bowman, 2018; Miaschi

et al., 2020). These latter studies demonstrated that

NLMs are able to encode a wide range of linguistic

information in a hierarchical manner (Blevins et al.,

2018; Jawahar et al., 2019; Tenney et al., 2019b)

and even to support the extraction of dependency

parse trees (Hewitt and Manning, 2019). For in-

stance, Liu et al. (2019) quantied differences in

the transferability of individual layers between dif-

ferent models, showing that higher layers of RNNs

(ELMo) are more task-specic (less general), while

transformer layers (BERT) do not exhibit this in-

crease in task-specicity.

Other works also investigated the importance of

individual neurons within models representations

(Qian et al., 2016; Bau et al., 2019; Baan et al.,

2019). Dalvi et al. (2019) proposed two methods,

Linguistic Correlations Analysis and Cross-model

correlation analysis, to study whether specic di-

mensions learned by end-to-end neural models are

responsible for specic properties. For instance,

they showed that open class categories such as

verbs and location are much more distributed across

the network compared to closed class categories

(e.g. coordinating conjunction) and also that the

model recognizes a hierarchy of linguistic propri-

eties and distributes neurons based on it. Lakretz

et al. (2019), instead, proposed a detailed study of

the inner mechanism of number tracking in LSTMs

at single neuron level, showing that long distance

number information (from the subject to the verb)

is largely managed by two specic units.

Differently from those latter work, our aim was

to combine previous approaches based on probes

and on the study on individual units in order to pro-

pose an in-depth investigation on the organization

of linguistic competence within NLM contextual-

ized representations.

3 Approach

To study how the information used by BERT to

implicitly encode linguistic properties is arranged

within its internal representations, we relied on a

variable selection approach based on Lasso regres-

sion (Tibshirani, 1996), which aims at keeping as

few non-zero coefcients as possible when solving

specic regression tasks. Our aim was to identify

which weights within sentence-level BERT inter-

nal representations can be set to zero, in order to

understand the relationship between hidden units

and linguistic competence and whether the infor-

mation needed to perform similar linguistic tasks is

encoded in similar positions. We relied on a suite

of 68 sentence-level probing tasks, each of which

corresponds to a specic linguistic feature captur-

ing characteristics of a sentence at different levels

of granularity. In particular, we dened a Lasso re-

gression model that takes as input layer-wise BERT

representations for each sentence of a gold standard

Universal Dependencies (UD) (Nivre et al., 2016)

English dataset and predicts the actual value of

a given sentence-level feature. Lasso regression

consists in adding an L1 penalization to the usual

ordinary least square loss. To do so, one of the most

relevant parameters is λ, which tunes how relevant

the L1 penalization is for the loss function. We

performed a grid search with cross validation for

each feature-layer pair, in order to identify the best

suited value for λ according to each task. Speci-

cally, our goal was to nd the most suited value for

seeking the best performance when having as few

non-zero coefcients as possible.

3.1 Model and data

We used a pre-trained version of BERT (BERT-

base uncased, 12 layers). In order to obtain the

representations for our sentence-level tasks we ex-

perimented with the activation of the rst input

token ([CLS]) and the mean of all the word embed-

dings for each sentence (Mean-pooling).

With regard to the data used for the regression

experiments, we relied on the Universal Dependen-

cies (UD) English dataset. The dataset includes

three UD English treebanks: UD English-ParTUT,

a conversion of a multilingual parallel treebank con-

sisting of a variety of text genres, including talks,

legal texts and Wikipedia articles (Sanguinetti and

Bosco, 2015); the Universal Dependencies version

annotation from the GUM corpus (Zeldes, 2017);

the English Web Treebank (EWT), a gold standard

universal dependencies corpus for English (Silveira

et al., 2014). Overall, the nal dataset consists of

23,943 sentences.

3.2 Linguistic features

As already mentioned, we dened a suite of prob-

ing tasks relying on a wide set of sentence-level

linguistic features automatically extracted from the

parsed sentences in the UD dataset. The set of
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Level of Annotation Linguistic Feature Label

Raw Text
Raw Text Properties

Sentence Length sent length
Word Length char per tok

Vocabulary
Vocabulary Richness

Type/Token Ratio for words and lemmas ttr form, ttr lemma

POS tagging

Morphosyntactic information

Distibution of UD and language–specic POS upos dist *, xpos dist *
Lexical density lexical density

Inectional morphology

Inectional morphology of lexical verbs and auxiliaries xpos VB-VBD-VBP-VBZ, aux *

Dependency Parsing

Verbal Predicate Structure

Distribution of verbal heads and verbal roots verbal head dist, verbal root perc
Verb arity and distribution of verbs by arity avg verb edges, verbal arity *

Global and Local Parsed Tree Structures

Depth of the whole syntactic tree parse depth
Average length of dependency links and of the longest link avg links len, max links len
Average length of prepositional chains and distribution by depth avg prep chain len, prep dist *
Clause length avg token per clause

Order of elements

Order of subject and object subj pre, obj post
Syntactic Relations

Distribution of dependency relations dep dist *
Use of Subordination

Distribution of subordinate and principal clauses principal prop dist, subordinate prop dist
Average length of subordination chains and distribution by depth avg subord chain len, subordinate dist 1
Relative order of subordinate clauses subordinate post

Table 1: Linguistic Features used in the experiments.

features is based on the ones described in Brunato

et al. (2020) which are acquired from raw, morpho-

syntactic and syntactic levels of annotation and

can be categorised in 9 groups corresponding to

different linguistic phenomena. As shown in Ta-

ble 1, these features model linguistic phenomena

ranging from raw text one, to morpho–syntactic

information and inectional properties of verbs, to

more complex aspects of sentence structure model-

ing global and local properties of the whole parsed

tree and of specic subtrees, such as the order of

subjects and objects with respect to the verb, the

distribution of UD syntactic relations, also includ-

ing features referring to the use of subordination

and to the structure of verbal predicates.

4 Linguistic competence and BERT units

As a rst analysis, we investigated the relationship

between the implicit linguistic properties encoded

in the internal representations of BERT and the

number of individual units involved in the encod-

ing of these properties. Figure 1 and 2 report lay-

erwise R
2 results for all the probing tasks along

with the number of non-zero coefcients obtained

with the sentence representations computed with

the [CLS] token and the Mean-pooling strategy re-

spectively. As a rst remark, we can notice that

the Mean-pooling method proved to be the best

one for almost all the probing features across the

12 layers. Moreover, in line with Hewitt and Man-

ning (2019), we noticed that there is high variabil-

ity among different tasks, whereas less variation

occurs among the model layers. In general, we

observe that best scores are related to features be-

longing to raw text and vocabulary proprieties, such

as sentence length and Type/Token Ratio. Never-

theless, BERT representations implicitly encode

information also related to more complex syntactic

features, such as the order of the subject (subj pre)

or the distribution of several dependency relations

(e.g. dep dist det, dep dist punct). Interestingly,

the knowledge about POS differs when we consider

more granular distinctions. For instance, within the

broad categories of verbs and nouns, worse predic-

tions were obtained by sub-specic classes of verbs

based on tense, person and mood features (see es-

pecially past participle, xpos dist VBN). Similarly,

within the verb predicate structure properties, we

observe that lower R2 scores were obtained by

features related to sub-categorization information

about verbal predicates, such as the distribution of

verbs by arity (verbal arity *).

Focusing instead on the relationship between R2

scores and number of non-zero coefcients, we

can notice that although best scores are achieved

at lower layers (between layers 12 and 8 for both

congurations), the highest number of non-zero

coefcients occurs instead at layers closer to the

output. This is particularly evident for the results

achieved using the [CLS] token, for which we ob-

serve a continuous increase across the 12 layers in

the number of units used by the the probing models.

For both congurations, features more related

to the structure of the whole syntactic tree are



51

Figure 1: Layerwise R2 results for all the probing tasks (left heatmap) along with the number of non-zero coef-

cients (right heatmap) obtained with the sentence representations computed using the [CLS] token.

those for which less units were set to zero dur-

ing regression (e.g. max links len, parse depth,

n prepositional chains), while properties belong-

ing to word–based properties (i.e. features related

to POS and dependency labels) were predicted re-

lying on less units. Moreover, we can clearly no-

tice that features related to specic POS and de-

pendency relationships are also those that gained

less units through the 12 layers (e. g. xpos dist .,

xpos dist AUX). On the contrary, features belong-

ing to the structure of the syntactic tree tend to

acquire more non-zero units as the output layer is

approached. This is particularly evident for the

linguistic features predicted using sentence repre-

sentations computed using the [CLS] token (e.g.

subj pre, parse depth, n prepositional chains). We

believe this is due to the fact that the interdepen-

dence between different units in each representa-

tion tend to increase across layers, thus making

the information less localized especially for those

features that belong to the whole structure of the

syntactic tree. This is coherent with the fact that

using theMean-pooling strategy a higher number

of non-zero coefcients was preserved also in the

very rst input layers, suggesting that this strategy

increases the interdependence between each unit

and makes the extraction of localized information

more complex.

In order to focus more closely on the relationship

between R2 scores and non-zero units, we reported

in Figures 3a and 3b average R2 scores versus av-

erage number of non-zero coefcients, along with

the line of best t, for each layer and according

to the [CLS] token and to theMean-pooling strat-

egy respectively. Interestingly, for both [CLS] and

Mean-pooling representations, R2 scores tend to

improve as the number of non-zero coefcients in-

creases. Moreover, when considering sentence rep-

resentations computed with the [CLS] token, this

behaviour becomes more pronounced as the output
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Figure 2: Layerwise R2 results for all the probing tasks (left heatmap) along with the number of non-zero coef-

cients (right heatmap) obtained with the sentence representations computed with the Mean-pooling strategy.

layer is reached. This is in line with what we al-

ready noticed, namely that the interdependence be-

tween different units tend to increase across layers,

especially when taking into account representations

extracted without using a mean-pooling strategy.

In order to investigate more in depth the be-

haviour of BERT hidden units when solving the

probing tasks, we focused more closely at how the

different units in the internal representations are

kept and lost across subsequent layers. Figure 4

reports the average number of non-zero coefcients

in a layer that are set to zero in the following one

(4a), the average number of zero coefcients in a

layer that are set to non-zero in the following one

(4b) and the average value of the difference be-

tween the number of non-zero coefcients at pairs

of consecutive layers (4c). As it can be observed,

there is high coherence between each layer and its

subsequent one, meaning that the variation in the

number of selected coefcient is stable (4c). How-

ever, the rst two plots also show that there is a

higher variation when considering non-zero coef-

cients in the same positions between pairs of layers.

This underlines the fact that the information is not

localized within BERT’s internal representations,

since the algorithm shows a degree of freedom in

which units can be zeroed and which cannot.

In Figure 5 we report instead how many times

each individual unit in the [CLS] (5a) and Mean-

pooling (5b) internal representations has been kept

non-zero when solving the 68 probing tasks for

all the 12 BERT layers (816 regression task). In

general, we can observe that the regression tasks

performed using sentence-level representations ob-

tained with theMean-pooling strategy tend to use

more hidden units with respect to the [CLS] ones.

It is also interesting to notice that there is a highly

irregular unit (number 308) that has been kept dif-

ferent from zero in a number of tasks and layers

much higher than the average. This could suggest

that this unit is particularly relevant for encoding

almost all the linguistic properties devised in our

probing tasks.
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(a) (b)

Figure 3: Average R
2 scores versus average number of non-zero coefcients, along with the line of best t, for

each layer and according to [CLS] (a) and Mean-pooling (b) strategy.

(a) (b)

(c)

Figure 4: In (a) the average number of non-zero coefcients in a layer that are set to zero in the following one

(average number of dropped coefcients), in (b) the average number of zero coefcients in a layer that are set to

non-zero in the following one (average number of gained coefcients) and in (c) the value of the difference between

the number of non-zero coefcients at pairs of consecutive layers (average number of changed coefcients).

5 Is information linguistically arranged

within BERT representations?

Once we have investigated the relationship between

the linguistic knowledge implicitly encoded by

BERT and the number of individual units involved

in it, we veried whether we can identify groups of

units particularly relevant for specic probing tasks.

To this end, we clustered the 68 probing features

according to the weights assigned by the regression
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(a)

(b)

Figure 5: Number of times in which each BERT indi-

vidual unit (computed with [CLS] token in (a) and with

Mean-pooing aggregation strategy in (b)) has been kept

as non-zero when solving all the probing tasks for all

the 12 layers.

models to each BERT hidden unit. Specically, we

perform hierarchical clustering using correlation

distance as distance metric. Figure 6 and 7 report

the hierarchical clustering obtained with the [CLS]

and Mean-pooling internal representations at lay-

ers 12, 8 and 1. We chose layers 12 and 1 in order

to study differences of the clustering of linguistic

features taking into account the representations that

were more distant and more closer to the language

modeling task respectively, while layer 8 was cho-

sen since it was the layer after which BERT’s repre-

sentations tend to lose their precision in encoding

our set of linguistic properties.

As a general remark, we can notice that, despite

some variations, the linguistic features are orga-

nized in a similar manner across the tree layers

and for both the conguration. This is to say that,

despite the number of non-zero coefcients varies

signicantly between layers and according to the

strategy for extracting the internal representations,

the way in which linguistic properties are arranged

within BERT embeddings is quite consistent. This

suggests that there is a coherent organization of lin-

guistic features according to non-zero coefcients

that is independent from the layer and the aggrega-

tion techniques taken into account.

Focusing on specic groups of features, we ob-

serve that, even if the traditional division with

respect to the linguistic annotation levels (see

Table 1) has not been completely maintained,

it is possible to identify different clusters of

features referable to the same linguistic phe-

nomena for all the 3 layers taken into account

and for both congurations. In particular, we

can clearly observe groups of features related

to the length of dependency links and preposi-

tional chains (e.g. max links len, avg links len,

n prepositional chains), to vocabulary richness

(ttr form, ttr lemma), to properties related to ver-

bal predicate structure and inectional morphology

of auxiliaries (e.g. xpos dist VBD, xpos dist VBN

aux form dist Fin, aux tense dist pres) and to

the use of punctuation (xpos dist ., xpos dist ,,

dep dist punct) and subordination (e.g. subor-

dinate dist 1, subordinate post). Interestingly

enough, BERT representations also tend to put to-

gether features related to each other but not nec-

essarily belonging to the same linguistic macro-

category. This is the case, for instance, of charac-

teristics corresponding to functional properties (e.g.

upos dist ADP, dep dist det).

6 Conclusions

In this paper we proposed an in-depth investigation

aimed at understanding how BERT embeddings

encode and organize linguistic competence. Re-

lying on a variable selection approach applied on

a suite of 68 probing tasks, we showed the exis-

tence of a relationship between the implicit lin-

guistic knowledge encoded by the NLM and the

number of individual units involved in the encod-

ing of this knowledge. We found that, according to

the strategy for obtaining sentence-level represen-

tations, the amount of hidden units devised to en-

code linguistic properties varies differently across

BERT layers: while the number of non-zero units

used in theMean-pooling strategy remains more or

less constant across layers, the [CLS] representa-

tions show a continuous increase in the number of
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Figure 6: From top to bottom, the hierarchical clustering for the [CLS] setting of all the tasks respectively at layers

12, 8 and 1.

used coefcients. Moreover, we noticed that this

behaviour is particularly signicant for linguistic

properties related to the whole structure of the syn-

tactic tree, while features belonging to POS and

dependency tags tend to acquire less non-zero units

across layers.

Finally, we found that it is possible to identify

groups of units more relevant for specic linguis-

tic tasks. In particular, we showed that clustering

our set of sentence-level properties according to

the weights assigned by the regression models to

each BERT unit we can identify clusters of fea-

tures referable to the same linguistic phenomena

and this, despite some variations, is true for both

the congurations and for all the BERT layers.
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