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a b s t r a c t

A Smoluchowski type model of coagulation in a turbulent fluid is given, first expressed by means of
a stochastic model, then in a suitable scaling limit as a deterministic model with enhanced diffusion
in the velocity component. A precise link between mean intensity of the turbulent velocity field and
coagulation enhancement is obtained by numerical simulations, and a formula for the mean velocity
difference, in agreement with the gas-kinetic model, is proved by a new method.
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1. Introduction

Turbulence increases the relative velocity of particles sus-
ended into a fluid, favors their collision and thus increases the
ollision rate. A key factor of the collision rate is the average
elative velocity between particles of mass m1 and m2:

m1,m2 = ⟨|v1 − v2|⟩ . (1)

This quantity is of major importance since it relates the properties
of particles and fluid to the intensity of the aggregation and thus
it has been extensively investigated in several works, based on
various arguments and models of turbulence, see for instance [1–
17]. We shall add more specific comments below on some of
these results in connection with our own.

We propose a new modeling approach here. Many ingredients
are classical, like the fact that we use an inertial model for particle
motion (instead of a model when particles are transported) where
each particle moves following Stokes’ law

dx
dt

= v,
dv
dt

= γ (U (t, x) − v) (2)
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(here γ is the damping coefficient and U (t, x) is the fluid veloc-
ity), and Smoluchowski equations with a kernel depending on the
relative velocity

⏐⏐v − v′
⏐⏐ to describe macroscopically the system.

The novelty is that we introduce a Boussinesq hypothesis, namely
the fact that a small-scale turbulence acts on particles as a dissi-
pation. And the key feature is that it acts as a dissipation in the
velocity component, namely it spreads the distribution of particles
in velocity (not or not only in space). This spread increases the
value of Rm1,m2 and thus the collision rate.

In order to describe the equations we use and the results, let
us recall a few quantities associated to the particles and to the
fluid. The damping coefficient γ appearing in Eq. (2) is given by
Stokes’ law 6πrµ

m where r,m are the particle radius and mass and
is the dynamic viscosity of the fluid. If we denote by τP and τU

the relaxation times of the particle and of the fluid respectively,
we have γ = τ−1

P and we define the Stokes number as St =

τP/τU = 1/ (γ τU). When we want to stress the dependence
of the damping coefficient γ from the mass m, we write γm;
and similarly for Stm. Two relevant quantities of the fluid for
our study are the turbulence kinetic energy kT =

1
2

⏐⏐U⏐⏐2 and
the turbulent viscosity νT = τUkT . Our model is based on the
dealization that the turbulent small-scale fluid is white noise in
ime, space-homogeneous, with intensity σ (precisely, as a vector
ield, its space-covariance matrix C (x) is assumed to have the
uto-covariance C (0) equal to σ 2Id). As explained in Appendix B,
he link between these fluid quantities is

σ 2
=

2
τUkT =

2
νT . (3)
2 d d
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The first main result of our work is that we derive the fol-
lowing Smoluchowski-type system for the particle densities of
masses m = 1, 2, . . .
∂ fm (t, x, v)

∂t
+ v · ∇xfm (t, x, v) − γm divv (vfm (t, x, v)) (4)

−
γ 2
mσ 2

2
∆v fm (t, x, v) =

(
Q+

m − Q−

m

)
(f, f)(t, x, v)

where f := (f1, f2, . . .), x ∈ Td (the d-dimensional torus), v ∈ Rd

and the collision kernels are given by

Q+

m(f, f)(t, x, v) :=

m−1∑
n=1

∫∫
{nv′+(m−n)v′′=mv}

sn,m−n (5)

·|v′
− v′′

|fn(t, x, v′)fm−n(t, x, v′′)dv′dv′′,

Q−

m(f, f)(t, x, v) := 2fm (t, x, v)
∞∑
n=1

∫
sn,m

· |v − v′
|fn

(
t, x, v′

)
dv′ (6)

with sn,m defined in (8).
This equation proposes a change of viewpoint. In previous

works, the central problem was determining the correct collision
kernel which takes into account the fact that the fluid is turbu-
lent. Here we use the original collision kernel depending on the
relative velocity

⏐⏐v − v′
⏐⏐, without modifying its coefficients, but

incorporate the presence of a small-scale turbulent background
by adding the dissipative operator in the velocity variable. Colli-
sion and aggregation is not due to a stronger collision kernel, in
this model, but to the spread-in-v of densities, produced by the
additional diffusion term.

We explain the derivation of this Smoluchowski-type system
in Sections 4 and 5 and in Appendix A. This derivation is heuristic
but reasonable in analogy with rigorous results proved recently
for other models [18–20]. From the viewpoint of the Physical
validity of the result, let us stress that the rigorous proof would
require very small τU, with γm having a finite limit. Therefore St
must be large.

We analyze this new model both using approximate analytical
computations and numerically. In Section 6 we prove, up to some
approximation, the formula

Rm1,m2 =
2

√
π

√
γm1 + γm2σ =

4
√
3π

√
kT
Stm1

+
kT
Stm2

, (7)

in the physical dimension d = 3. In the large St regime, which is
the regime of validity of our results, this formula confirms known
results (see the discussion in [16]) and it is known as the gas-
kinetic model, after [1]. Let us notice that it is obtained without
any use of dimensional analysis; it is derived from basic equa-
tions, except for the stochastic model of the turbulent fluid. It is
not immediately clear, however, if we may modify our approach
to incorporate the concentration effects related to singularities
described in [5,8,16].

In Section 7, finally, we investigate numerically the Smolu-
chowski equations, quantifying in various ways the efficiency of
aggregation of the turbulence model.

2. The microscopic model

The model used below will be of Smoluchowski type with
random transport. However, the description of its microscopic
origin may help. Call D ⊂ Rd, d = 1, 2, 3, the space domain
of the system, occupied by the fluid and by small rain droplets.
The number N (t) of droplets changes in time due to coalescence.
Droplet motion is described in a Newtonian way by position and
velocity

(
xi t , vi t

)
, i = 1, . . . ,N (t). Droplets have masses
( ) ( )

2

mi (t) taking values in the positive integers {1, 2, . . .}. During the
intertime between a collision and the next one, the motion is
given by

dxi

dt
= vi,

dvi

dt
= γmi

(
U

(
t, xi

)
− vi

)
here U (t, x) is the fluid velocity; we adopt a Stokes law for the

particle-fluid interaction and denote by

γmi = α(mi)(1−d)/d

the damping rate, α a positive constant (including the dynamic
viscosity coefficient of the fluid), and the term

(
mi

)1/d playing the
role of the radius of the particle.

The rule of coalescence is crucial, see [4,5,7,10,12]. There are
two typical mathematical models: one is based on deterministic
coalescence, the other on probability rates. The first one is easier
to describe: when two particles meet, they become a new single
particle with mass given by the sum of the masses and mo-
mentum given by conservation of momentum. For mathematical
investigation of the macroscopic limit, this scheme is usually
more difficult. Easier is thinking in terms or rate of coalescence:
when two particles are below a certain small distance one from
the other, they have a certain probability per unit of time to
become a new single particle, with the mass and momentum
law as above. The kernels in Smoluchowski equations are the
macroscopic footprint of rates.

The model based on rates has a flaw precisely in connection
with the turbulence background we want to investigate here.
Since coalescence happens due to a probability per unit of time, if
the time spent by two particles, at the prescribed distance of po-
tential coalescence, is small, the probability that their encounter
leads to coalescence is smaller. This is in sharp contrast with
the deterministic model where coalescence always happens, at
a certain distance, independently of the time spent nearby. In
other words, in the model based on rates, without employing an
approximating strategy to compute terminal velocity, coalescence
is facilitated by slow motion, which is false in practice and goes
in the opposite direction of understanding whether turbulence
enhances coalescence.

To avoid this bias towards slow motion, of say particles i
and j, and leave velocity as a studied attribute of the system,
we maintain in their coalescence rate the factor |vi − vj|. This
factor multiplied by the time spent nearby is constant, on average,
hence the probability of coalescence is roughly constant.

Finally, since the probability of coalescence should depend
on the particle surface, main factor involved in the collision, we
multiple the rate by the surface factor

smi,mj =

((
mi)1/d

+
(
mj)1/d)d−1

. (8)

Hence, summarizing, in our work the adopted point of view is
consistent with the case of hydrodynamic motion, as in e.g. [5,8],
where the coagulation kernel is

E(i, j)smi,mj |vi − vj|, (9)

and the scalar E(i, j) can be regarded as collision efficiency be-
tween real droplets i and j. For simplicity, we set E(i, j) = 1 in
our phenomenological study.

3. The Smoluchowski-type model

A rigorous study of the link between the microscopic model
and the macroscopic one is under investigation, following [9,
21–23] where similar models have been already treated. How-
ever, following the mean field paradigm we may safely choose
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⟨

he following macroscopic model as a good one for the density
volution.
Denote by fm (t, x, v), m = 1, 2, . . ., the density of droplets of

ass m at position x ∈ D having velocity v ∈ Rd. Then (dropping
he time variable) the density satisfies

∂ fm (x, v)
∂t

+ divx (vfm (x, v))

+ γm divv ((U (t, x) − v) fm (x, v)) = Q+

m − Q−

m (10)

where γm = αm(1−d)/d, and Q+
m and Q−

m are the two collision
terms as given in (5). Crucial is the kernel |v′

− v′′
|, as described

bove. The first collision term describes the amount of new par-
icles of mass m created by collision of smaller ones, with the
omentum conservation rule

v′
+ (m − n)v′′

= mv. (11)

he second collision term gives us the percentage of the density
m (x, v) of particles of mass m which disappears by coalescence
into larger particles.

In the next section, we explain how this model can be studied
using techniques from passive scalars, thus obtaining in (4) a sim-
plified coagulation equation in which the velocity of the particles
is still a driving component of the coalescence process. We post-
pone to Appendix A (see also [24]) for a more rigorous heuristic of
the scaling limit from a coagulating microscopic particle system
subjected to a common noise, to a stochastic partial differential
equation (SPDE), that eventually gives rise to the PDE (4). Although
t is not yet fully rigorous, we believe that it justifies the interest
f this equation. The eddy diffusion now occurs in the velocity
ariable.

. Stochastic model of turbulent velocity field

Similarly to a large body of simplified modeling of passive
calars, we consider a model of velocity fluid which is delta-
orrelated in time, namely a white noise with suitable space
ependence. We may write

(t, x) dt =

∑
k∈K

σk (x) dW k
t (12)

here σk (x) are smooth divergence free deterministic vector
ields on D and W k

t are independent one-dimensional Brownian
otions; K is a finite index set (or countable, with some care
n summability assumptions). In this case the term γmU (t, x) ·

∇v fm (x, v) must be interpreted as a Stratonovich integral (still
written here in differential form for sake of clarity)

γm

∑
k∈K

σk (x) · ∇v fm (x, v) ◦ dW k
t .

By the rules of stochastic calculus, it is given by an Itô–
Stratonovich corrector plus an Itô integral; precisely, the previous
term is given by

−
γ 2
m

2

∑
k∈K

σk (x) · ∇v (σk (x) · ∇v fm (x, v)) dt + dL (t, x, v)

where L (t, x, v) is a (local) martingale, the Itô term. The Itô–
Stratonovich corrector takes also the form

−
γ 2
m

2
divv (C (x, x) ∇v fm (x, v)) dt

here C (x, y) is the matrix-valued function given by the space-
covariance function of the noise

C (x, y) =

∑
σk (x) ⊗ σk (y) . (13)
k∈K

3

Summarizing, the stochastic model, in Itô form, is

dfm (x, v) + (v · ∇xfm (x, v) − γm divv (vfm (x, v))) dt

−
γ 2
m

2
divv (C (x, x) ∇v fm (x, v)) dt

=
(
Q+

m − Q−

m

)
dt − dL (t, x, v) . (14)

lso for later reference, let us mention an example of noise, in-
roduced by R. Kraichnan [25,26], relevant to our analysis. For the
ake of simplicity of exposition, assume we are in full space Rd,
ut modifications in other geometries are possible. Its covariance
unction is space-homogeneous, C (x, y) = C (x − y), with the
orm

(z) = σ 2kζ

0

∫
k0≤|k|<k1

1
|k|

d+ζ
eik·z

(
I −

k ⊗ k
|k|

2

)
dk. (15)

he case ζ > 0 includes Kolmogorov 41 case ζ = 4/3. In this
ase, take k1 = +∞. Then

(0) = Aσ 2

here the constant A is given by∫
1≤|k|<∞

1
|k|

d+ζ

(
I −

k ⊗ k
|k|

2

)
dk.

. The deterministic scaling limit

Following [18–20], we may consider small-scale turbulent ve-
ocity fields depending on a scaling parameter and take their
caling limit. In the case of Kraichnan model above, choose

0 = kN0 → ∞

The result C (0) = Aσ 2Id is independent of N , so that the
Itô–Stratonovich corrector becomes equal to (without loss of
generality we set A = 1)
1
2
γ 2
mσ 2∆v fm (x, v) ;

nd simultaneously we may have that the Itô term goes to zero.
he final equation is deterministic, and precisely given by

∂ fm (x, v)
∂t

+ v · ∇xfm (x, v) − γm divv (vfm (x, v))

−
γ 2
mσ 2

2
∆v fm (x, v) = Q+

m − Q−

m.

Now, for sake of numerical simplicity, we assume that all
densities are uniform in x. Then we have

∂ fm (v)
∂t

−γm divv (vfm (v)) −
γ 2
mσ 2

2
∆v fm (v)

= (Q+

m − Q−

m)(f, f)(v)
(16)

here now the collision term Q+
m − Q−

m includes only functions
f v. This is our final equation for the density of droplets. It is
arametrized by σ 2, the intensity of noise covariance which, in
he approximation of this white noise model, corresponds to the
oncept of turbulence kinetic energy, cf. [27]. Even though (16) is of
ariable v only, it is fundamentally different from a Smoluchowski
quation with only x variable, due to the presence of velocity
ifference |v − v′

| in the nonlinearity. This term is the source that
urns diffusion enhancement into coagulation enhancement.

. Formula for the average relative velocity

In order to approximate analytically the average value
|v − v |⟩ we adopt the mean field viewpoint of Smoluchowski
1 2
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quations, where particles are independent. Therefore, if pm (v) is
he probability density of velocity of mass m, we have

m1,m2 =

∫∫
|v1 − v2| pm1 (v1) pm2 (v2) dv1dv2. (17)

he natural choice of pm (v) is the normalized density
m (v) /

∫
fm (w) dw where fm (v) is a solution of Smoluchowski

quation. However, we have to avoid a dependence on the initial
onditions. We make the following heuristic argument. In the
moluchowski system, the linear terms

m divv (vfm (v)) +
γ 2
mσ 2

2
∆v fm (v)

re associated with the transient phase which moves the initial
istribution towards a certain limit shape. Simultaneously and
fterwards, the nonlinear terms shift mass from lower to higher
evels, but their impact on the modification of shape is minor.
herefore we take, as pm (v) the invariant distribution of the
inear part, which is a centered Gaussian with covariance matrix
1
2γmσ 2Id (Id is the identity matrix):

pm ∼ N
(
0,

1
2
γmσ 2Id

)
.

The difference of two independent centered Gaussians, with co-
variances 1

2γm1σ
2Id and 1

2γm2σ
2Id is a centered Gaussian with

ovariance 1
2

(
γm1 + γm2

)
σ 2Id. Therefore the random quantity

v1 − v2 has this law. By properties of Gaussians,

v1 − v2
(d)
=

√
1
2

(
γm1 + γm2

)
σZ

where Z is distributed as N(0, Id), and

|Z|⟩ =
√
2
Γ ( d+1

2 )

Γ ( d2 )

ince |Z| has a Chi distribution with parameter d. Thus we have

m1,m2 = ⟨|v1 − v2|⟩ =
Γ ( d+1

2 )

Γ ( d2 )

√
γm1 + γm2σ .

y (3), σ 2
=

4
d τUkT and taking d = 3, Γ (2) = 1, Γ ( 32 ) =

√
π

2 , we
rrive at

m1,m2 =

√
4
3

2
√

π

√
(γm1τU + γm2τU)kT

=
4

√
3π

√
kT
Stm1

+
kT
Stm2

,

as announced in (7).
Up to the multiplicative constant, this also agrees with the

formula obtained by Abrahamson [1]. Indeed, in [1] the energy
dissipation rate ϵ ∼ kT/τU, clear from the energy balance of
Navier–Stokes equation since all three quantities correspond to
the turbulent fluid:
∂

∂t

(
1
2
|U|

2
)

= −ϵ + other terms.

. Numerical results

For the convenience of numerical simulations, we consider
rom now on only finitely many mass levels. That is, we truncate
16) into a finite system of PDE-s whose solution is (f1, f2, . . . , fM ),
or some integer M . This amounts to replacing the

∑
∞

n=1 in
he loss term Q−

m (5) by
∑M

n=1, with everything else unchanged.
orrespondingly, in the particle system (2), each particle’s mass is
estricted to m ∈ {1, 2, . . . ,M}. The interpretation is that when
i

4

the mass of a rain droplet exceeds the threshold M , it falls down
and hence exits the system.

To understand the effect of the turbulent velocity field on
coagulation, we identify and build on a key quantity, Mσ

1 (t)
below, which is essentially the first moment of the mass in the
system at time t . SinceM < ∞ in the truncated model, eventually
all masses leave the system, hence we measure the efficiency of
coagulation by looking at how fast this first moment decays in
time, with respect to different values of σ . In the last part of this
section, using results on the total mass, we will build a procedure
to estimate the mean Collision Rate (see Section 6), validating our
theoretical results in simple settings.

7.1. Total mass

To this end, we define

Mσ
1 (t) :=

M∑
m=1

m
∫

fm(t, v) dv , (18)

hich we also call ‘‘total mass’’ for simplicity. Analyzing the
onlinearity of our PDE, we notice that
M∑

m=1

∫
m(Q+

m − Q−

m) dv ≤ 0, ∀t (19)

mplying that dMσ
1 (t)/dt ≤ 0, that is, the function (18) is non-

ncreasing in time. Moreover, for the infinite system M = ∞,
quality is achieved in (19), hence we see that the mass deficiency
n the finite system is not lost at all and it is simply sent to higher
rder (> M) of mass-type densities.
Indeed, in view of the form of the negative part of coagulation

perator Q−
m , every coagulation at the level of fm, fn, with m +

> M , represents a decrease in mass that, ideally, increases the
ensity fm+n that is outside of our system. In particular, fixing

< ∞, in the framework of rain formations, is equivalent to
aying that such a threshold represents the largest droplets that
re falling outside of the cloud and do not interact any more
ith the system. As such M = ∞ is just the precise abstract
etting in which no rainfall is present and serves as a limiting
ehavior for the single mass m ∈ N, and as a right derivation
f the conserved mass in the system as all: both for the falling
articles and the ones remaining in the cloud. Hence, the more
nd faster the quantity Mσ

1 (t) decreases over time, the faster and
icher the coagulation to higher mass-type is achieved.

.2. Faster barrier exit time

The second quantity we consider is closely linked to the en-
anced coagulation due to turbulence that we will establish with
he ‘‘total mass’’ and gives more quantitative information. We will
onsider the same numerical setting as we will do above, and
stimate a decay law that links the first time that the total mass

σ
1 (t) drops below a certain level to the turbulence parameter σ .

pecifically, let
T
0 := inf

t∈[0,T ]

M0
1(t)

nd define a sequence of ‘‘barrier exit times’’ (τσ )σ≥0

σ := inf
{
t ≥ 0, Mσ

1 (t) ≤ mT
0

}
∧ T . (20)

ince t ↦→ M0
1(t) is decreasing, we have that τ0 = T . Since Mσ

1 (t)
s expected to decay faster as σ increases, σ ↦→ τσ should be
ecreasing.
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Fig. 1. M = 1; Decay of Mσ
1 (t) for t ∈ [0, 1], with maximal mass level M = 1,

nitial density f1(0, v) of mass m = 1 concentrated on the set v ∈ [−1/2, 1/2].
he parameter σ 2 ranges from a sample in the set 0.05 to 10 (around 30 points).
visible increase in coagulation is present at the increase of σ 2 .

.2.1. On a limiting behavior: M = 1
We perform a numerical simulation of the system (16) for

imension d = 1, maximal mass level M = 1 and time window
0, 2], with a semi-implicit method to compute its solutions, with
ime step dt ∼ 10−4 and spatial step dv ∼ 10−2. Thanks to the
ast decay to zero as |v| → ∞ of the solution [24], we truncate
he velocity variable in the range v ∈ [−20, 20] both for the
umerical integration of the nonlinearity and for the total mass
18).

In Fig. 1, we plot the function (18) for different values of the
urbulence parameter σ 2 that range from 0.05, that we refer to as
he non-turbulent case, to 10, which represents an intense eddy
iffusivity. It shows a faster decay correlated to the increase of
urbulence, and a speedup coagulation process.

For fixed σ 2
= 6 we performed a log–log plot in time window

0, 2] as shown in Fig. 2 that shows t ↦→ Mσ
1 (t) is of inverse

ower 1, after a transient time period.
We see from Figs. 3 and 4 that the expected behavior on

he barrier time is obtained, and the curve exhibits a power like
ecay, with an asymptotic limit to zero. In Fig. 3, we performed a
og–log plot and regression taking T = 1 and it yields τσ ∝ σ−2/3

here and in the sequel ∝ denotes proportional to), whereas the
ame analysis in Fig. 4 taking T = 2 and considering only those
xit times that are in the interval [1, 2] yields τσ ∝ σ−1.
We conjecture that the function (18) can be expressed as (for

suitably large, say t > 1 in our simulations)

σ
1 (t) ∼

1
Ad(σ )t + Mσ

1 (0)
−1 , (21)

or some function Ad that depends on dimension d, and that
1(σ ) ∝ σ . Here and in the sequel, ∼ denotes asymptotically for
arge t .

A rough explanation of the numerical findings may be the
ollowing one, that will be explored more closely in a future work,
ince – as shown below – our understanding is still incomplete.
hen M = 1, the density f (t, v) of the unique level m = 1

atisfies the identity
d
dt

∫
f (t, v) dv = −

∫∫ ⏐⏐v − v′
⏐⏐ f (t, v) f

(
t, v′

)
dvdv′

ecause the differential terms cancel by integration by parts.
ssume that, at least after a transient time (confirmed by Fig. 2),
p to a small approximation,

(t, v) ∼ α (t) f0 (v)

amely the decay of f (t, v) is self-similar [28]. Then (up to
pproximation) α′

= −σ0α
2 where

σ0 =

∫∫ ⏐⏐w − w′
⏐⏐ f0 (w) f0

(
w′

)
dwdw′
b

5

is an average variation of velocity under f0, namely

α (t) ∼
1

σ0t + C
fter an initial transient period. Moreover, speculating that the
tandard deviation of f0 should be of order σ (since the dispersion
roduced by the linear differential operator is proportional to σ ),
e expect that σ0 increases linearly with σ . The numerical results
f Figs. 3 and 4 show that this looks the trend for sufficiently
arge time but for a short time another power, σ 2/3, emerges,
hat should be understood. As for the behavior in time, since this
omputation can be carried out for every d > 1, when M = 1, we
elieve that the decay in time is dimension-independent.

.2.2. Localized mass concentration: M > 1
When considering M > 1, we can expect two natural settings

o investigate: the one where initially all the mass is concentrated
n the first level, i.e. m = 1, and the one that follows the theo-
etical assumptions of [22–24]. Concerning the first setting, we
erform a numerical simulation of the system (16) for dimension
= 1, maximal mass level M = 3 and time window [0, 2].
In Fig. 5, we plot the function (18) for different values of the

urbulence parameter σ 2 that ranges from 0.05, that we refer to
s the non-turbulent case, to 10, which represents an intense
ddy diffusivity. As in the case of M = 1, it shows a faster
ecay correlated to the increase of turbulence, and a speedup
oagulation process.
For fixed σ 2

= 10, we perform a log–log plot in time window
0, 2] as shown in Fig. 6 that shows t ↦→ Mσ

1 (t) is of inverse
ower approximately of 0.8, after a transient time period. Thus,
e see a difference in the behavior of the ‘‘total mass’’ when
increases: this is not unexpected when all the initial mass

s concentrated in the first layer m = 1. In fact, analyzing the
oagulation operator (5), we see that Q+

m is responsible for the
eneration of bigger particles in higher mass-levels and it is
ominant when all the mass of the system is selected as a single
ype. Therefore, for a transient period, we see an increase in mass
or m ̸= 1 and as such a slower decay of Mσ

1 (t), the total mass.
For this reason, as shown in Fig. 7, we study the decay of the

ingle mass m ∈ {1, 2, 3}, where analogous to (18), the single
ass at level m = k is defined as

σ
1 (t)|m=k := k

∫
fk(t, v) dv. (22)

he figure shows the regression curves plotted with dashed lines.
s in Fig. 2, for m = 1 we maintain a relation of inverse power
n time, approximately of 1, after a transient time period. As a
urther exploration, we see from Fig. 8 that the same behavior
s present, and the curve exhibits a power like decay, with an
symptotic limit to zero.
Concerning the behavior of the barrier time, we see from

igs. 9 and 10 that the curve exhibits a power like decay, with
n asymptotic limit to zero. In Fig. 9, we perform a log–log plot
nd regression taking T = 1 and it yields τσ ∝ σ−2/3, whereas
he same analysis in Fig. 10 taking T = 2 and considering only
hose exit times that are in the interval [1, 2] yields τσ ∝ σ−1.

Thus, when M > 1, and the initial mass is located on a single
evel, we lose the conjectured behavior of Section 7.2.1, and we
an only expect that the function (18) has the same asymptotic
imit as

σ
1 (t) ≳

1
Ad(σ )t + Mσ

1 (0)
−1 ,

for some function Ad that depends on dimension d, and that
A1(σ ) ∝ σ . A rough explanation of this numerical finding may
e the following one: when M > 1 and the density f 0, v is
( )
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Fig. 2. M = 1; On the left, a plot of log
(
Mσ

1 (t)
)
versus log(t) in the time window [0, 2] at fixed σ 2

= 6, and on the right a close-up in the time window [1, 2],
uggests that t ↦→ Mσ

1 (t) is of inverse power 1. However, for small time, the dependence is different and could represent a transient behavior.
Fig. 3. M = 1; A plot of the barrier exit time τσ with respect to the turbulence parameter σ , and the corresponding log–log regression in the time window [0, 1]
ields τσ ∝ σ−2/3 .
1
1
s

f

A
s
b

n the unique level m = 1, from (5) we see that the positive
art Q+

m is greater than the negative part Q−
m for a transient

eriod of time in which, for m > 1 mass should increase before
ecay, suggesting a delay, and as such a reported slower decay,
f the ‘‘total mass’’. Also supporting this idea are the numerical
imulations performed on the rapidity of decay for level m = 1.
ere Q+

1 = 0, and we see the same behavior as the limiting case
n which only one type of mass is considered.

.2.3. Diffused mass concentration: M > 1
Here we propose a first analysis of the aforementioned sec-
nd setting: the one that follows the theoretical assumptions as i

6

in [22–24]. In detail, the initial mass is not concentrated only
in one layer, but is generated according to two probability dis-
tributions so that P(m1(0) = m) = r(m) with

∑M
m=1 r(m) =

, and deterministic probability densities functions gm(v), m =

, 2, . . . ,M , satisfying suitable regularity and decay assumptions,
uch that
0
m(v) = r(m)gm(v), ∀m. (23)

s such, we select initial conditions compactly supported in a
mall range of velocity, i.e. [−1/2, 1/2], to better look at the
ehavior of the mass decay through time. We note here that this

s the natural setting that generalizes the case of M = 1. We
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Fig. 4. M = 1; A plot of the barrier exit time τσ with respect to the turbulence parameter σ , and the corresponding log–log regression in the time window [0, 2],
taking into consideration only those exit times in the interval [1, 2], yields τσ ∝ σ−1 .
M

f

t

Fig. 5. M = 3; Decay of Mσ
1 (t) for t ∈ [0, 2], with maximal mass level M = 3,

nitial density f1(0, v) of mass m = 1 concentrated on the set v ∈ [−1/2, 1/2],
j(0, v) = 0, j ̸= 1. The parameter σ 2 ranges from a sample in the set 0.05 to 10
around 30 points). A visible increase in coagulation is present at the increase
f σ 2 .

erform a numerical simulation of the system (16) for dimension
= 1, maximal mass level M = 3 and time window [0, 2].
In Fig. 11, we plot the function (18) for different values of

he turbulence parameter σ 2 that ranges from 0.05, that we refer
o as the non-turbulent case, to 10, which represents an intense
ddy diffusivity. As in the case of M = 1, it shows a faster
ecay correlated with the increase of turbulence, and a speedup
oagulation process. Plotted with dotted lines we show the decay
f mass m = 1. This behavior is analogous for m = 1, 2, 3.
7

For fixed σ 2
= 10 we perform a log–log plot in time window

[0, 2] as presented in Fig. 13. It shows that t ↦→ Mσ
1 (t) is of

inverse power approximately 1, after a transient time period de-
pendent on the finiteness of the initial condition. As conjectured
in the case M = 1, we see a consistency in the behavior of
the ‘‘total mass’’ when M increase: the initial condition is active
everywhere, maintaining the structure of a probability density,
thus making the results not unexpected. In fact, analyzing the
coagulation operator (5), we see thatQ+ is not dominant when all
the masses of the system are spread over all the analyzed layers.
Therefore, we see an immediate decrease in mass for m ̸= 1 and
as such a maintained global decay of Mσ

1 (t), the total mass.
For this reason, as shown in Fig. 12, we study the decay of the

single mass m ∈ {1, 2, 3}. The figure shows the regression curves
plotted with dashed lines. As in Fig. 2, we maintain a relation of
inverse power in time, approximately of 1, after a transient time
period. As a further exploration, we see that the same behavior
is present, and the curve exhibits a power like decay, with an
asymptotic limit to zero.

Concerning the behavior of the barrier exit time, we see from
Figs. 14 and 15 that the curve exhibits a power like decay, with
an asymptotic limit to zero. In Fig. 14, we perform a log–log plot
and regression taking T = 1 and it yields τσ ∝ σ−2/3, whereas
the same analysis in Fig. 15 taking T = 2 and considering only
those exit times that are in the interval [1, 2] yields τσ ∝ σ−1.
Thus, when M > 1, and the initial mass is spread over all the
mass levels, we are close to the conjectured behavior of previous
section, and we can expect that the function (18) has the same
asymptotic limit as

Mσ
1 (t) ∼

1
Ad(σ )t + Mσ

1 (0)
−1 , (24)

σ
1 (t)|m=1 ∼

1
A1
d(σ )t + Mσ

1 (0)|
−1
m=1

, (25)

or some function Ad that depends on dimension d, and that
A1(σ ) ∝ σ . A rough explanation of this numerical finding may be
he following one: when M > 1 and the density f (t, v) is spread
over all levels m = 1, . . . ,M , from (5) we see that the positive
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Fig. 6. M = 3; On the left, a plot of log
(
Mσ

1 (t)
)
versus log(t) in the time window [0, 2] at fixed σ 2

= 10, and on the right a close-up in the time window [1, 2],
suggests that t ↦→ Mσ (t) is of inverse power 0.8. However, for small time, the dependence is different and could represent a transient behavior.
1

t
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Fig. 7. M = 3; Decay of Mσ
1 (t) for the total mass, and the single behavior

σ
1 (t)|m=k of each lever k ∈ {1, 2, 3} in the case σ 2

= 10. With the dashed
lines, one can see the expected limiting behaviors of each curve and their relative
power. This suggests a log–logistic behavior of the full system with M < ∞.

art Q+
m is already negligible with respect to that of Q−

m , for all
m. In particular, the masses are drawn immediately to masses
> M , that we interpret as falling rain outside of our system.
Supporting this we see in Fig. 12 no transient period of time in
which, for m > 1, mass increases before decaying, suggesting no
delay, and as such the decay of the ‘‘total mass’’ is maintained.
Note that Q+

1 = 0 and, as expected, we see the same behavior as
the limiting case in which only one type of mass is considered.

We summarize in Table 1 the precise fitting obtained through
non-linear regression for all the analyzed quantities. The table
 p

8

Table 1
Table showing precise fitting parameters, on a log–log scale, for the decay in
time of Mσ (t)

1 and for the exit barrier τσ .

M = 1 M = 3 localized M = 3 diffused

τσ [0,1] −0.66 −0.69 −0.68
τσ [1,2] −0.94 −0.92 −0.91
Mσ

1 (σ
2

= 10) −0.96 −0.81 −0.94

shows accordance with our proposed decay behavior and sug-
gests a future analysis for different initial conditions and higher
dimensions.

7.2.4. Mean collision rate
Finally, in this segment we propose numerical simulations that

validate the theoretical behavior proposed in Section 6.
In particular, we have analyzed the same setting as in (18),

which either M = 1 or M = 3. Computed with the procedure
hat we will explain below, all the cases agree with equation (17)
nd the theory proposed in 6. As such, for visual clarity, here
e illustrate results in the simpler case M = 1, with m = 1,
nd compute the behavior of R1,1 and its law with respect to the
luctuation parameter of the velocity, σ .

The same simulations, with M = 3, focusing on different mass
evel m ∈ {1, 2, 3} and different initial conditions are briefly
discussed in Appendix C, Fig. 19. There, computed limiting value
Rm1,m2 show accordance with the simulations with M = 1.

From here on, we fix γ = 1 since objective of the paper is the
understanding of the dependence on the turbulent kinetic energy
of collision rate Rm,m. However, we note that this parameter is
important to the complete understanding of the behavior of this
kind of systems, thanks to is relation with Stokes Number, and as
such would be subject of future studies.

We know from (17) that a candidate estimation for Rm1,m2 is
obtained throughout the steady state density of the system. For
this reason, concerning the simulation, independently on M , we
selected a concentrated initial condition with moderate velocity
and we let the system evolve in the time frame t ∈ [0, 4],

σ
roducing solution (fm (t, v))m.
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Fig. 8. M = 3, m = 1; On the left, a plot of log
(
Mσ

1 (t)|m=1
)
versus log(t) in the time window [0, 2] at fixed σ 2

= 10, and on the right a close-up in the time
indow [1, 2], suggests that t ↦→ Mσ

1 (t)|m=1 is of inverse power 1. This is consistent with the case M = 1.
Fig. 9. M = 3; A plot of the barrier exit time τσ with respect to the turbulence parameter σ , and the corresponding log–log regression in the time window [0, 1]
ields τσ ∝ σ−2/3 .
a
a
r
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Since no mass conservation is present for the finite system
< ∞, and density is moved to higher levels not preserving the

tarting probability, we normalize at each time step the density
σ (t, v), solution of our Smoluchowski equation, i.e. we consider

σ
1 (t, v) := f σ

1 (t, v)
(∫

f σ
1 (t, v)dv

)−1
n

9

nd, with this, the product probability ξ1(v)dv ⊗ ξ1(w)dw. We
re able to compute a time dependent, mean in velocity, collision
ate:

g(t, σ) :=

∫∫
|v − w|ξσ

1 (t, v)ξ
σ
1 (t,w)dvdw

In Fig. 16, is shown the result for M = 1, m = 1 and this re-
ormalizes collision rate. Each of the curves Rξ (σ ) as an inverse
g
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N

Fig. 10. M = 3; A plot of the barrier exit time τσ with respect to the turbulence parameter σ , and the corresponding log–log regression in the time window [0, 2],
taking into consideration only those exit times in the interval [1, 2], yields τσ ∝ σ−1 .
Fig. 11. M = 3; Decay of Mσ
1 (t), t ∈ [0, 2]. Initial density fj(0, v), j = 1, 2, 3

concentrated on v ∈ [−1/2, 1/2], following [23]. The parameter σ 2 ranges in
the set 0.05 to 10. A visible increase in coagulation is present. Dashed lines are
the single mass for m = 1, Mσ

1 (t)|m=1 .

behavior of a log–logistic function with exponent 1 in σ , suggest-
ing a plateau in time. As such, this time dependent probability
distribution on the product space of the velocity domains as a
limiting density and we can argue that

Rg(t, σ) = Em,m[|v − w|] →t→∞ RM
1,1.

In fact, as shown in Appendix C, Fig. 20, the computed quantity
ξ (T , v) approximates the theoretical limiting density p1(v) ∼

(0, σ 2), for this reason we initialize the evolving system with
10
Fig. 12. M = 3; Mσ
1 (t) for the total mass and the single levels Mσ

1 (t)|m=k ,
k ∈ {1, 2, 3} for σ 2

= 10. In dashed lines we see the expected limiting behaviors
and the relative power of order ≈ 1, suggesting consistent log–logistic behaviors
as conjectured for system with M < ∞.

the proposed steady state condition f 10 (t, v) := ξ (T , v), for differ-
ent σ .

This means that we expect ξ (T , v, σ ) to be closer to the steady
state distribution after a small time and the computed Rg(t, σ)
will be ∝ Rmi,mj . As such, we restart the system with this new
initial condition. To take into account that the velocity is spread,
with value greater than one, and the total density near this
high value is not negligible in comparison with the concentrated
initial condition that we used throughout our experiment, we
enlarged the velocity domain and the time domain to produce
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Fig. 13. M = 3; On the left, a plot of log
(
Mσ

1 (t)
)
versus log(t) in the time window [0, 2] at fixed σ 2

= 10, and on the right a close-up in the time window [1, 2],
suggests that t ↦→ Mσ

1 (t) is of inverse power ≈ 1. A transient behavior is present due to the finite initial condition.
Fig. 14. M = 3; A plot of the barrier exit time τσ with respect to the turbulence parameter σ , and the corresponding log–log regression in the time window [0, 1]
yields τσ ∝ σ−2/3 .
stable results on the decay of the masses and also on the mean
rate Rg (t, σ ).

In Fig. 17 we show result on the re-started system, confirming
the asymptotic limit of the collision rate and an increase in σ ,
the turbulent parameter of the system. We see a small fluctuating
period in which the rate is not increasing and than a fast stabi-
lization that is linked to the velocity displacement of the steady
state solution. In fact the new initial density condition produces,
11
as expected, the same decay in the mass (since this depends only
on σ and integral of the initial condition), but for a transient
period the interaction kernel Qm(f ) is much stronger than the
speed in which diffusion of the Laplacian act, since the new initial
condition is not negligible for high value of velocity. As such the
plateau, which agrees with Fig. 16, is reached after a small period
of activation of the diffusion parameter.
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d
ξ

Fig. 15. M = 3; A plot of the barrier exit time τσ with respect to the turbulence parameter σ , and the corresponding log–log regression in the time window [0, 2],
taking into consideration only those exit times in the interval [1, 2], yields τσ ∝ σ−1 .
s

8

S

Fig. 16. M = 1; concentrated initial condition f0(v). The re-normalized time
ependent collision rate Rg(t, σ)|[0,2] obtained with the new probability density
σ
1 ⊗ ξσ

1 .

Concluding, in Fig. 18 we see that a linear relation with σ is
present with angular coefficient near 1, validating the expected
behavior of R1,1 with theoretical equation (17). This is expected
and in line with the previous reasoning and also with the small
transient initialization.
12
Fig. 17. M = 1; Initial condition f0(v) = ξ (T , v) approximation of stationary
density. The re-normalized time dependent collision rate Rg(t, σ) shows
tationary behavior. Darker line corresponds to higher sigma in the set [0.05, 10].

. Conclusion

In this article, we presented a new kinetic model of a modified
moluchowski PDE system with discrete and finite mass levels,

that takes advantage of small scale turbulence and eddy diffusion
in the velocity variable to enhance coagulation. We presented
the derivation of the PDE system from a particle–fluid model sub-
jected to a transport-type noise, and we analyzed numerically the
behavior of its solutions. We showed that coagulation efficiency



A. Papini, F. Flandoli and R. Huang Physica D 448 (2023) 133726

p
M

s

w

W

L

Fig. 18. M = 1; Initial condition f0(v) = ξ (T , v) re-normalized ending point of
the simulation. Plotted limit in time Rg (t, σ ) show increase with σ . A linear
regression in σ is performed with mean error 0.001.

increases steadily with the increase of turbulence and, moreover,
a power-law decay in time and in the turbulence parameter is
present. Concluding, we have presented analytic and numerical
presentation to understand the key factor of the collision rate as
the average relative velocity between particles.
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Appendix A. Derivation of (4) from particle–fluid interaction

We present the sketch of the scaling limit to an SPDE from
article-fluid interaction for the truncated model (at threshold
).
For any d ≥ 1 and N,M ∈ N, consider an interacting particle

ystem with space variable xNi (t) in Td, velocity variable vNi (t)
in Rd, mass variable mN (t) in a finite set {1, . . . ,M}, and initial
i

13
cardinality N(0) = N . Between coagulation events, the motion of
an individual active particle obeys (recall (2))⎧⎪⎪⎪⎨⎪⎪⎪⎩

dxNi (t) = vNi (t)dt,
dvNi (t)

=
α

(mN
i (t))1−1/d

[∑
k∈K

σk(xNi (t)) ◦ dW k
t − vNi (t)dt

]
, i ∈ N (t), (A.1)

here

• σk(x) : Td
→ Rd, k ∈ K is a given (at most countably infinite)

collection of smooth, deterministic, divergence-free vector
fields.

• {W k
t }k∈K is a given collection of standard Brownian motions

in R.
• ◦ denotes Stratonovich integration, according to Wong–

Zakai principle [29].
• α is a positive constant that appears in Stokes’ law, that

includes the dynamic viscosity coefficient of the fluid.
• N (t) ⊂ {1, 2, . . . ,N} is the set of indices of particles that

are still active at time t , with N (0) = {1, 2, . . . ,N}.

After each coagulation, the index set N (t) will change (decrease),
and the velocity of a still-active particle i will be reset accord-
ing to the conservation of momentum, to be described a few
paragraphs below.

We note again that the velocity component of the dynam-
ics (A.1) obeys Stokes’ law for the frictional force exerted on a
spherical particle immersed in a fluid, cf. [8,16], with the fluid
velocity idealized by the white noise velocity field U(t, x) (12)
(that acts simultaneously on all particles). This goes in the spirit
of Kraichnan’s model [30,31].

We denote the d × d spatial covariance matrix of U(t, x) by

C(x, y) :=

∑
k∈K

σk(x) ⊗ σk(y).

Moreover, for any fixed x ∈ Td we denote the second-order
divergence form elliptic operator, acting on suitable functions on
Rd

(LC,x
v f )(v) :=

1
2
divv (C(x, x)∇v f (v)) .

ith suitable choice of {σk}k∈K , see [18,20,32], we can have that

C,x
v ≡

σ 2

2
∆v, ∀x. (A.2)

Each particle i ∈ N (t) has a mass mN
i (t) ∈ {1, 2, . . . ,M} which

changes over time according to a stochastic coagulation rule to be
described below. The initial mass mi(0), i = 1, . . . ,N , are chosen
i.i.d. (independent and identically distributed) from {1, 2, . . . ,M}

according to a probability distribution so that P(m1(0) = m) =

r(m) with
∑M

m=1 r(m) = 1. We are also given deterministic
probability density functions gm(x, v) : Td

× Rd
→ R+, m =

1, 2, . . . ,M , satisfying suitable regularity and decay assumptions,
such that if mi(0) = m then the initial distribution of (xi(0), vi(0))
is chosen with probability density gm(x, v), independently across
i. We denote

f 0m(x, v) := r(m)gm(x, v), ∀m. (A.3)

The rule of coagulation between pairs of particles is as follows.
Let θ (x) : Rd

→ R+ be a given smooth symmetric probability
density function in Rd, that is,

∫
θdx = 1, with compact support

in B(0, 1) (the unit ball around the origin in Rd) and θ (0) = 0.
Then, for any ϵ ∈ (0, 1), denote θ ϵ(x) : Td

→ R+ by

θ ϵ(x) := ϵ−dθ (ϵ−1x), x ∈ Td.
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Fig. 19. M = 3; Plotted estimated Rm1,m2 (σ ) with mj ∈ {1, 2, 3}. A linear
ependence in σ is performed with mean error between 10−2 and 10−3 .

uppose the current configuration of the particle system is

= (x1, v1,m1, x2, v2,m2, . . . , xN , vN ,mN )

∈ (Td
∪ ∅)N × (Rd

∪ ∅)N × {1, . . . ,M, ∅}
N

where (xi, vi,mi) denotes the position, velocity and mass of parti-
le i, by convention if particle i0 is no longer active in the system,
e set xi0 = vi0 = mi0 = ∅ (a cemetery state). Independently for
ach pair (i, j) of particles, where i ̸= j run over the index set of
ctive particles in η, with a rate (derived from the collision kernel
s in [5], compare with (9))

mN
i ,mN

j

|vi − vj|
N

θ ϵ(xi − xj) (A.4)

e remove (xi, vi,mi, xj, vj,mj) from the configuration η, and
hen in case mi + mj ≤ M , we add

xi,
mivi + mjvj
mi + mj

,mi + mj, ∅, ∅, ∅

)
with probability mi

mi+mj
, and instead add

∅, ∅, ∅, xj,
mivi + mjvj
mi + mj

,mi + mj

)
with probability mj

mi+mj
. We call the new configuration obtained

his way by S1ijη and S2ijη respectively. On the other hand, in case
mi +mj > M , then after removing (xi, vi,mi, xj, vj,mj) from η we
do not add a new element.

In words, if (i, j) coagulates, we decide randomly which of xi
and xj is the new position of the mass-combined particle, pro-
vided that the combined mass does not exceed the threshold M .
If the position chosen is xi, then we consider j as being eliminated
(no longer active) and the new particle has index i; whereas if
the position chosen is xj, then we consider i as being eliminated
and the new particle has index j. On the other hand, the velocity
of the mass-combined particle is obtained by the conservation of
momentum as in perfectly inelastic collisions.

Note that the form of the coagulation rate (A.4) is such that
a pair (i, j) can coagulate only if |xi − xj| ≤ ϵ, that is, their

spatial positions have to be ϵ -close. We are interested in the a
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case when ϵ = ϵ(N) → 0 as N → ∞, so that the interaction
is not of mean-field type, but local. Correspondingly, the final
equation we get (see ) is local in the x variable. In particular,
choosing ϵ = O(N−1/d) ensures that each particle typically inter-
acts with a bounded number of others at any given time, which
is the analogue in our continuum context, of nearest-neighbor
or bounded-range interactions common in interacting particle
systems defined on lattices, see [33] and references therein.

The essential feature of our coagulation rate is the presence of
|vi − vj|, which results in the same velocity difference appearing
in the limit PDE (4). Although such rates are widely accepted in
the physics literature on rain formations, our approach views v as
an active variable; we do not approximate it by a constant that
depends on other physical parameters. Diffusion enhancement
feeds back on coagulation enhancement through the presence of
this velocity difference. As such, our Smoluchowski equation is
new with respect to existing literature.

For each N ∈ N, T ∈ (0, ∞) and m ∈ {1, . . . ,M}, we
denote the process of empirical measure on position and velocity
of mass-m particles in the system by

µ
N,m
t (dx, dv) : =

1
N

∑
i∈N (t)

δ(
xNi (t),vNi (t)

)(dx, dv)1
{mN

i (t)=m}

∈ M1,+(Td
× Rd) (A.5)

where M1,+ := M1,+(Td
× Rd) denotes the space of subprob-

ability measures on Td
× Rd equipped with weak topology. The

choice of the initial conditions for our system implies that P-a.s.

µ
N,m
0 (dx, dv) ⇒ f 0m(x, v)dxdv, as N → ∞

or m = 1, . . . ,M , where ⇒ indicates weak convergence of prob-
bility measures, and the limit f 0m (A.3) is absolutely continuous.
e conjecture that, under the assumption of local interaction, i.e.

lim
N→∞

ϵ(N) = 0, lim sup
N→∞

ϵ(N)−d

N
< ∞, (A.6)

for every finite T , the collection of empirical measures{
µN

t (dx, dv) : t ∈ [0, T ]
}M
m=1 converges in probability, as N → ∞,

in D
(
[0, T ],M1,+

)⊗M , where D
(
[0, T ],M1,+

)
is the space of

càdlàg functions taking values in M1,+ equipped with the Skoro-
hod topology, towards an absolutely continuous limit
{fm(t, x, v) : t ∈ [0, T ]}

M
m=1. which is the pathwise unique weak

solution to a Smoluchowski-type SPDE system . The latter SPDE

degenerates to the PDE system we study in this paper (4) when the
Itô term is switched off. Through recent progresses in stochastic
fluid mechanics, cf. [18,20,32,34,35], there exist specific limiting
procedures that allow, in principle, to obtain the PDE from the SPDE

by carefully choosing the vector fields {σk(x)}k∈K . While we do
not provide a rigorous proof here, we think that this heuristic
argument is sufficient to justify our interest in studying our PDE

system.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dfm(t, x, v) = (−v · ∇x + γmdivv (v·)

+
γ 2
mσ 2

2
∆v

)
fm(t, x, v)dt

−γm
∑

k∈K σk(x) · ∇v fm(t, x, v) dW k
t

+
(
Q+

m − Q−
m

)
(f, f)(t, x, v).

fm(·, x, v)|t=0 = f 0m(x, v), m = 1, . . . ,M.

(A.7)

ppendix B. Explanation of the link (3)

Recall the stochastic equation (10). In real turbulent fluids,
he fluid vector field U(t) is not exactly white in time, but has
correlation length approximately τ . Alleviating notations, let
U
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Fig. 20. Solid line ξ (T , σ ) where darker colors mean higher σ . Dashed lines are the Gaussian densities N (0, σ 2). The supremum norm and the L2 norm of the
ifference differ from zero around 5% to 10% respectively.
s only analyze the transport term involving U(t) and introduce
time delay of duration τU:

m divv ((U(t)) fm(t)) = γmU(t)∇v fm(t)
= γmU(t)∇v fm(t − τU) + γmU(t)∇v (fm(t) − fm(t − τU))
= γmU(t)∇v fm(t − τU)

− γmU(t)∇v

(∫ t

t−τU

γmU(s)∇v fm(s)ds
)

+ other terms, (B.1)

where the first equality is due to U(t) independent of v, and in the
last line we applied Eq. (10) a second time (assuming the other
terms are minor).

In the limit τU → 0, U(t) approaches white noise in time, the
first term of (B.1) yields a local-martingale, the Itô term. From the
second term of (B.1) emerges a second-order elliptic operator

−γ 2
m∇v

(∫ t

t−τU

U(t) ⊗ U(s)∇v fm(s)ds
)

that in the limit τU → 0 is expected to converge to

−
1
2
γ 2
mdivv (C(0)∇v fm(t)) = −

1
2
γ 2
mσ 2∆v fm(t).

Since the turbulence kinetic energy kT is the half-trace of the
velocity covariance tensor [27], idealizing the tensor structure of
U(t) ⊗ U(s) with |t − s| ≤ τU, we may have that

1
2
U(t) ⊗ U(s) ∼

kT
d
Id, |t − s| ≤ τU

nd consequently,

1
2

∫ t

t−τU

U(t) ⊗ U(s)ds ∼ τU
kT
d
Id.

his yields σ2

2 =
2τUkT

d as claimed in (3).
In the above argument, it is crucial that we can take τU very

mall while having γ of order 1. With St = 1/(γ τU), the argument
hus works only when St is very large, and the regime where
St is of order 1 requires a different analysis, consistent with the
findings of [1,5,8,16].
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Appendix C. Mean collision rate M > 1 and guassianity as-
sumption

Using the same method proposed in Section 7, we obtain
analogous result for M = 3. We analyzed two initial condition:
a localized one in the mass m = 1, and a theoretical one
following [23]. In both of these cases we used the restarting
limiting density ξT either averaged {

1
M ξ 1

T , 1
M ξ 2

T , 1
M ξ 3

T } or localized
{ξ 1

T , 0, 0} obtaining analogous results. In Fig. 19, the case of lo-
calized density is shown with all combination of Collision Rate,
showing agreement with the theory.

Finally, in Fig. 20, we show the comparison between expected
steady state probability and computed starting stationary solu-
tion ξT (v), in the case M = 1 and T = 4. The difference in L2
norm of the two function is less then 10−1, as per the difference
between theoretical Rmi,mj and computed Rmi,mj (T ) estimated in
less than 10−2, showing the same linear behavior.
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