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Abstract

We consider the vorticity form of the 2D Euler equations which is perturbed by a
suitable transport type noise and has white noise initial condition. It is shown that, under
certain conditions, this equation converges to the 2D Navier–Stokes equation driven by the
space-time white noise.
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1 Introduction

Navier–Stokes equations in dimension 2 with additive space-time white noise

du+ (u · ∇u+∇p) dt = ν∆udt+ α dW,

div u = 0
(1.1)

have been the object of several investigations, [8, 10, 4, 17, 5, 14, 18] among others and, with its
first-stage renormalization, even contributed to the development of some of the ideas around
Regularity Structures. One of the main features is the Gaussian invariant measure formally
given by

µ (dω) = Z−1 exp
(

− β‖ω‖2L2

)

dω (1.2)

(β > 0 related to the constants of equations (1.1) and the domain) where we have denoted by
ω the vorticity associated to the velocity field u and where ‖ω‖2L2 denotes the enstrophy (hence
µ is often called enstrophy measure). This equation is well posed in suitable function spaces,
even in the strong probabilistic sense. For the purpose of the next description, it is convenient
to reformulate the equation in vorticity form

dω + u · ∇ω dt = ν∆ω dt+ α∇⊥ · dW, (1.3)

where, as said above, ω = ∇⊥ · u and, for a vector field v, ∇⊥ · v denotes ∂2v1 − ∂1v2. Here W
is a solenoidal vector valued cylindrical Brownian motion.
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A related model is 2D Euler equations, that in vorticity form is

∂tω + u · ∇ω = 0

with ω = ∇⊥ · u, div u = 0. In the sense described in [2, 11], the enstrophy measure µ
is invariant also for this equation (for every β > 0, in this case). The same fact holds for a
stochastic version of 2D Euler equations, but with transport type noise, as described in [12, 13]:

dω + u · ∇ω dt =
∑

k

σk · ∇ω ◦ dW k,

where σk(x) are divergence free vector fields andW
k independent Brownian motions. We focus

our discussion on the 2D torus T2 = R
2/Z2 and choose, to fix notations,

σk(x) =
1√
2

k⊥

|k|γ ek(x), k ∈ Z
2
0,

where Z
2
0 = Z

2 \ {0} and ek(x) is the orthonormal basis of sine and cosine functions, see (2.1)
below. In [12, 13] the problem has been studied for γ > 2.

The purpose of this paper is to present a rather unexpected link between these two subjects.
Based on [12, 13], it is interesting to ask what happens when γ = 2, limiting case where certain
terms diverge. For instance, the Itô–Stratonovich correction of the multiplicative noise above
diverges proportionally to

∑

|k|≤N
1

|k|2 as N → ∞. We therefore investigate whether this

divergence may be compensated by an infinitesimal coefficient in front of the noise:

dω + u · ∇ω dt = 2
√
ν εN

∑

|k|≤N

k⊥

|k|2
ek · ∇ω ◦ dW k, (1.4)

where εN =
(
∑

|k|≤N
1

|k|2
)−1/2 ∼ 1√

logN
. The result, described below, is that this model,

hyperbolic in nature, converges to the parabolic equation (1.3) above with α =
√
2ν, provided

that ν is not too small.
Let us explain a vague physical intuition about this result, which however is not sufficient

to state a firm conjecture, without a due detailed investigation. Transport multiplicative noise
∑

k σk · ∇ω ◦ dW k provokes a random Lagrangian displacement of “fluid particles”. Assume
that the space-covariance of the Gaussian field

∑

k σk (x)W
k
t is concentrated around zero, as it

is in the scaling limit investigated in this work. Look at fluid particles as an interacting system
of particles; the effect of the Gaussian field on different particles is almost independent, when
the distance between particles is not too small (see [7, Introduction] for related discussions).
Thus, approximatively, it is like driving each particle with an independent noise, and we know
from mean field theories that independent Brownian perturbation of particles reflects into a
Laplacian in the limit PDE. This intuitively explains the presence of the Laplacian in the limit
equation, but the presence also of a white noise is less clear.

Let us also emphasize another nontrivial aspect that could be misunderstood. Technically
speaking, a Laplacian (or a more complicated second order differential operator) arises when
rewriting a Stratonovich multiplicative transport noise in Itô’s form (see Section 2 below). But
this does not mean that the original equation, with transport noise, is parabolic. The original
equation is hyperbolic, and the solution (when smooth enough) is the stochastic Lagrangian
transport of the initial condition. Thus it is a nontrivial fact that a truly parabolic equation is
obtained in the scaling limit investigated in the present work.

This paper is organized as follows. In Section 2 we prove the main result (Theorem 2.12)
which states that, under suitable conditions, the white noise solutions of a sequence of stochastic
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Euler equations converge weakly to the solution of the Navier–Stokes equation driven by space-
time white noise. We solve in Section 3 the corresponding Kolmogorov equation by using the
Galerkin approximation. Finally, in the first part of Section 4 we recall a decomposition formula
which plays an important role in the proof, and in Section 4.2 we prove the coincidence of two
different definitions of the nonlinear part in the Euler equation.

2 Convergence of the equations (1.4)

First, we introduce some notations. We denote by

ek(x) =
√
2

{

cos(2πk · x), k ∈ Z
2
+,

sin(2πk · x), k ∈ Z
2
−,

x ∈ T
2, (2.1)

where Z
2
+ =

{

k ∈ Z
2
0 : (k1 > 0) or (k1 = 0, k2 > 0)

}

and Z
2
− = −Z

2
+. Then {ek : k ∈ Z

2
0}

constitute a CONS of L2
0(T

2), the space of square integrable functions with zero mean. Define

σk(x) =
1√
2

k⊥

|k|2 ek(x), k ∈ Z
2
0, (2.2)

with k⊥ = (k2,−k1). Let ν > 0 be fixed and, for N ≥ 1, define ΛN = {k ∈ Z
2
0 : |k| ≤ N}. We

rewrite the equation (1.4) as

dωN
t + uNt · ∇ωN

t = 2
√
2ν εN

∑

k∈ΛN

σk · ∇ωN
t ◦ dW k

t . (2.3)

Here ωN
t = ∇⊥ · uNt and conversely, uNt is represented by ωN

t via the Biot–Savart law:

uNt (x) =
(

ωN
t ∗K

)

(x) =
〈

ωN
t ,K(x− ·)

〉

,

with K the Biot–Savart kernel on T
2:

K(x) = 2πi
∑

k∈Z2
0

k⊥

|k|2 e
2πik·x = −2π

∑

k∈Z2
0

k⊥

|k|2 sin(2πk · x).

We assume that the initial data ωN
0 of (2.3) is a white noise on T

2; namely, ωN
0 is a random

variable defined on some probability space (Θ,F ,P), taking values in the space of distributions
C∞(T2)′ on T

2, such that, for any φ ∈ C∞(T2),
〈

ωN
0 , φ

〉

is a centered Gaussian random variable
with variance ‖φ‖2L2(T2). From the definition, we easily deduce that

E
〈

ωN
0 , φ

〉〈

ωN
0 , ψ

〉

= 〈φ,ψ〉L2(T2) for any φ,ψ ∈ C∞(T2).

We denote the law of ωN
0 by µ, which is also called the enstrophy measure with the heuristic

expression (1.2). It is not difficult to show that µ is supported by H−1−(T2) = ∩s>0H
−1−s(T2),

where, for any r ∈ R, Hr(T2) is the usual Sobolev space on T
2.

For any fixed N ≥ 1, following the proof of [12, Theorem 1.3], we can show that the
equation (2.3) has a white noise solution ωN ∈ C

(

[0, T ],H−1−(T2)
)

(possibly defined on a new
probability space); namely, for any t ∈ [0, T ], ωN

t is distributed as the white noise measure µ,
and for any φ ∈ C∞(T2),

〈

ωN
t , φ

〉

=
〈

ωN
0 , φ

〉

+

∫ t

0

〈

ωN
r ⊗ ωN

r ,Hφ

〉

dr − 2
√
2ν εN

∑

k∈ΛN

∫ t

0

〈

ωN
r , σk · ∇φ

〉

dW k
r

+ 4νε2N
∑

k∈ΛN

∫ t

0

〈

ωN
r , σk · ∇(σk · ∇φ)

〉

dr.

(2.4)
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Moreover, it is easy to show that ωN is a stationary process, which is a consequence of the same
result for the stochastic point vortex dynamics proved in [12, Proposition 2.3]. Our purpose is
to show that, if ν is not too small, the equations (2.3) converge in some sense to

dωt + ut · ∇ωt dt = ν∆ωt dt+
√
2ν∇⊥ · dWt, ω0

d∼ white noise on T
2. (2.5)

Remark 2.1. Some explanations for the nonlinear term in (2.4) are necessary. For φ ∈
C∞(T2),

Hφ(x, y) :=
1

2
K(x− y) · (∇φ(x)−∇φ(y)), x, y ∈ T

2,

with K the Biot–Savart kernel and the convention that Hφ(x, x) = 0. It is well known that, for
all x ∈ T

2 \ {0}, K(−x) = −K(x) and |K(x)| ≤ C/|x| for some constant C > 0; thus Hφ is
symmetric and

‖Hφ‖∞ ≤ C‖∇2φ‖∞. (2.6)

Since ωN
r is a white noise on T

2 for any r ∈ [0, T ], the quantity
〈

ωN
r ⊗ ωN

r ,Hφ

〉

is well defined
as a limit in L2(Θ,P) of an approximating sequence, see [11, Theorem 8] for details. According
to the arguments in Section 4.2, this definition is consistent with that defined by the Galerkin
approximation; the latter will be used in Section 3.

First we follow the arguments in [12, Section 3] to show that the family of distributions
{

QN
}

N≥1
of ωN on X := C

(

[0, T ],H−1−(T2)
)

is tight. To this end, we need to apply the

compactness criterion proved in [15, p. 90, Corollary 9]. We state it here in our context.
Take δ ∈ (0, 1) and κ > 5 (this choice is due to estimates below) and consider the spaces

X = H−1−δ/2(T2), B = H−1−δ(T2), Y = H−κ(T2).

Then X ⊂ B ⊂ Y with compact embeddings and we also have, for a suitable constant C > 0
and for

θ =
δ/2

κ− 1− δ/2
, (2.7)

the interpolation inequality

‖ω‖B ≤ C‖ω‖1−θ
X ‖ω‖θY , ω ∈ X.

These are the preliminary assumptions of [15, p. 90, Corollary 9]. We consider here a particular
case:

S = Lp0(0, T ;X) ∩W 1/3,4(0, T ;Y ),

where for 0 < α < 1 and p ≥ 1,

Wα,p(0, T ;Y ) =

{

f : f ∈ Lp(0, T ;Y ) and

∫ T

0

∫ T

0

‖f(t)− f(s)‖pY
|t− s|αp+1

dtds <∞
}

.

The next result is taken from [12, Lemma 3.1].

Lemma 2.2. Let δ ∈ (0, 1) and κ > 5 be given. If

p0 >
12(κ − 1− 3δ/2)

δ
,

then S is compactly embedded into C
(

[0, T ],H−1−δ(T2)
)

.
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Proof. Recall that θ is defined in (2.7). In our case, we have s0 = 0, r0 = p0 and s1 = 1/3, r1 =
4. Hence sθ = (1− θ)s0 + θs1 = θ/3 and

1

rθ
=

1− θ

r0
+

θ

r1
=

1− θ

p0
+
θ

4
.

It is clear that for p0 given above, it holds sθ > 1/rθ, thus the desired result follows from the
second assertion of [15, Corollary 9].

Next, since H−1−(T2) is endowed with the Fréchet topology, one can prove

Lemma 2.3. The family
{

QN
}

N≥1
is tight in X if and only if it is tight in C

(

[0, T ],H−1−δ(T2)
)

for any δ > 0.

The proof is similar to Step 1 of the proof of [12, Proposition 2.2] and we omit it here. In
view of the above two lemmas, it is sufficient to prove that

{

QN
}

N≥1
is bounded in probability

in W 1/3,4
(

0, T ;H−κ(T2)
)

and in each Lp
(

0, T ;H−1−δ(T2)
)

for any p > 0 and δ > 0.
Before moving further, we recall some properties of the white noise which will be frequently

used below.

Lemma 2.4. Let ξ : (Θ,F ,P) → C∞(T2)′ be a white noise on T
2. Then for any p > 1 and

δ > 0, there exist Cp > 0, Cp,δ > 0 such that

(1) E
(

|〈ξ, φ〉|p
)

≤ Cp‖φ‖p∞ for all φ ∈ C∞(T2);

(2) E
(

‖ξ‖p
H−1−δ

)

≤ Cp,δ;

(3) E
(

|〈ξ ⊗ ξ,Hφ〉|p
)

≤ Cp‖∇2φ‖p∞ for all φ ∈ C∞(T2).

Proof. The first assertion follows from the fact that 〈ξ, φ〉 is a centered Gaussian random
variable with variance ‖φ‖2L2(T2). Applying this result to φ = ek, we can deduce the second

estimate from the definition of the Sobolev norm ‖ · ‖H−1−δ .
We turn to prove the last one. Let Hn

φ , n ≥ 1 be the smooth approximations of Hφ

constructed in [11, Remark 9], satisfying

‖Hn
φ‖∞ ≤ ‖Hφ‖∞ ≤ C‖∇2φ‖∞,

where the last inequality is due to (2.6). By [11, Corollary 6(i)], we have

E
(

|〈ξ ⊗ ξ,Hn
φ 〉|p

)

≤ Cp‖Hn
φ‖p∞ ≤ C ′

p‖∇2φ‖p∞.

This implies the family {〈ξ ⊗ ξ,Hn
φ 〉}n≥1 is bounded in any Lp(Θ,P), p > 1, which, combined

with the fact that 〈ξ⊗ ξ,Hn
φ 〉 converges to 〈ξ⊗ ξ,Hφ〉 in L2(Θ,P) (see [11, Theorem 8]), yields

the desired result.

We first note that, for any p > 1 and δ > 0, by (2) of Lemma 2.4,

E

[
∫ T

0

∥

∥ωN
t

∥

∥

p

H−1−δ dt

]

=

∫ T

0
E
[
∥

∥ωN
t

∥

∥

p

H−1−δ

]

dt ≤ Cp,δT, for all N ≥ 1. (2.8)

Next, similar to [12, Lemma 3.3], we can prove

Lemma 2.5. There exists C > 0 such that for any φ ∈ C∞(T2), we have

E
[〈

ωN
t − ωN

s , φ
〉4] ≤ C(t− s)2

(

‖∇φ‖4∞ + ‖∇2φ‖4∞
)

.
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Proof. The proof is almost the same as that of [12, Lemma 3.3]. By (2.4), we have

〈

ωN
t − ωN

s , φ
〉

=

∫ t

s

〈

ωN
r ⊗ ωN

r ,Hφ

〉

dr − 2
√
2ν εN

∑

k∈ΛN

∫ t

s

〈

ωN
r , σk · ∇φ

〉

dW k
r

+ 4νε2N
∑

k∈ΛN

∫ t

s

〈

ωN
r , σk · ∇(σk · ∇φ)

〉

dr.

(2.9)

First, Hölder’s inequality leads to

E

[(
∫ t

s

〈

ωN
r ⊗ ωN

r ,Hφ

〉

dr

)4]

≤ (t− s)3E

[
∫ t

s

〈

ωN
r ⊗ ωN

r ,Hφ

〉4
dr

]

≤ (t− s)3
∫ t

s
C‖∇2φ‖4∞ dr = C(t− s)4‖∇2φ‖4∞,

(2.10)

where in the second step we used the fact that ωN
r is a white noise and Lemma 2.4(3).

Next, by Burkholder’s inequality,

E

[(

εN
∑

k∈ΛN

∫ t

s

〈

ωN
r , σk · ∇φ

〉

dW k
r

)4]

≤ Cε4NE

[(
∫ t

s

∑

k∈ΛN

〈

ωN
r , σk · ∇φ

〉2
dr

)2]

≤ Cε4N (t− s)

∫ t

s
E

[(

∑

k∈ΛN

〈

ωN
r , σk · ∇φ

〉2
)2]

dr.

We have by Cauchy’s inequality and Lemma 2.4(1) that

E

[(

∑

k∈ΛN

〈

ωN
r , σk · ∇φ

〉2
)2]

=
∑

k,l∈ΛN

E
[〈

ωN
r , σk · ∇φ

〉2〈
ωN
r , σl · ∇φ

〉2]

≤
∑

k,l∈ΛN

[

E
〈

ωN
r , σk · ∇φ

〉4]1/2[
E
〈

ωN
r , σl · ∇φ

〉4]1/2

≤ C

(

∑

k∈ΛN

‖σk · ∇φ‖2∞
)2

≤ C̃‖∇φ‖4∞
(

∑

k∈ΛN

‖σk‖2∞
)2

.

Note that, by (2.2),
∑

k∈ΛN

‖σk‖2∞ =
∑

k∈ΛN

1

|k|2 = ε−2
N ,

hence,

E

[(

∑

k∈ΛN

〈

ωN
r , σk · ∇φ

〉2
)2]

≤ C‖∇φ‖4∞ ε−4
N .

This implies

E

[(

εN
∑

k∈ΛN

∫ t

s

〈

ωN
r , σk · ∇φ

〉

dW k
r

)4]

≤ C(t− s)2‖∇φ‖4∞. (2.11)

Finally, by Hölder’s inequality,

E

[(

ε2N
∑

k∈ΛN

∫ t

s

〈

ωN
r , σk · ∇(σk · ∇φ)

〉

dr

)4]

≤ ε8N (t− s)3
∫ t

s
E

[(

∑

k∈ΛN

〈

ωN
r , σk · ∇(σk · ∇φ)

〉

)4]

dr.

6



Since σk · ∇σk ≡ 0, we have σk · ∇(σk · ∇φ) = Tr
[

(σk ⊗ σk)∇2φ
]

. Therefore, by Lemma 2.6
below,

∑

k∈ΛN

σk · ∇(σk · ∇φ) =
1

4
ε−2
N ∆φ.

As a result,

E

[(

ε2N
∑

k∈ΛN

∫ t

s

〈

ωN
r , σk · ∇(σk · ∇φ)

〉

dr

)4]

≤ C(t− s)3
∫ t

s
E
[〈

ωN
r ,∆φ

〉4]
dr

≤ C(t− s)4‖∆φ‖4∞.
Combining this estimate together with (2.9)–(2.11), we obtain the desired estimate.

Lemma 2.6. It holds that
∑

k∈ΛN

σk ⊗ σk =
1

4
ε−2
N I2,

where I2 is the two dimensional identity matrix.

Proof. We have

QN (x) :=
∑

k∈ΛN

σk(x)⊗ σk(x) =
∑

k∈ΛN∩Z2
+

k⊥ ⊗ k⊥

|k|4
[

cos2(2πk · x) + sin2(2πk · x)
]

=
∑

k∈ΛN∩Z2
+

1

|k|4
(

k22 −k1k2
−k1k2 k21

)

=
1

2

∑

k∈ΛN

1

|k|4
(

k22 −k1k2
−k1k2 k21

)

.

So QN is independent on x. First, we have

Q1,2
N = −1

2

∑

k∈ΛN

k1k2
|k|4 = 0

since we can sum the four terms involving (k1, k2), (−k1, k2), (k1,−k2), (−k1,−k2) at one time.
Next,

Q1,1
N =

1

2

∑

k∈ΛN

k22
|k|4 =

1

2

∑

k∈ΛN

k21
|k|4 = Q2,2

N

since the points (k1, k2) and (k2, k1) appear in pair. Therefore,

Q1,1
N = Q2,2

N =
1

4

∑

k∈ΛN

k21 + k22
|k|4 =

1

4

∑

k∈ΛN

1

|k|2 =
1

4
ε−2
N .

The proof is complete.

Applying Lemma 2.5 with φ(x) = ek(x) leads to

E
[∣

∣

〈

ωN
t − ωN

s , ek
〉∣

∣

4] ≤ C(t− s)2|k|8, k ∈ Z
2
0.

As a result, by Cauchy’s inequality,

E
(
∥

∥ωN
t − ωN

s

∥

∥

4

H−κ

)

= E

[(

∑

k

(

1 + |k|2
)−κ∣

∣

〈

ωN
t − ωN

s , ek
〉
∣

∣

2
)2]

≤
(

∑

k

(

1 + |k|2
)−κ

)

∑

k

(

1 + |k|2
)−κ

E
[∣

∣

〈

ωN
t − ωN

s , ek
〉∣

∣

4]

≤ C̃(t− s)2
∑

k

(

1 + |k|2
)−κ|k|8 ≤ Ĉ(t− s)2,

7



since 2κ− 8 > 2 due to the choice of κ. Consequently,

E

[
∫ T

0

∫ T

0

∥

∥ωN
t − ωN

s

∥

∥

4

H−κ

|t− s|7/3 dtds

]

≤ Ĉ

∫ T

0

∫ T

0

|t− s|2
|t− s|7/3 dtds <∞.

The proof of the boundedness in probability of
{

QN
}

N≥1
inW 1/3,4

(

0, T ;H−κ(T2)
)

is complete.

Combining this result with (2.8) and the discussions below Lemma 2.3, we conclude that
{QN}N≥1 is tight in X = C

(

[0, T ],H−1−(T2)
)

.
Since we are dealing with the SDEs (2.3), we need to consider QN together with the

distribution of Brownian motions. Although we use only finitely many Brownian motions in
(2.3), here we consider for simplicity the whole family

{

(W k
t )0≤t≤T : k ∈ Z

2
0

}

. To this end, we

assume R
Z2
0 is endowed with the metric

dZ2
0
(a, b) =

∑

k∈Z2
0

|ak − bk| ∧ 1

2|k|
, a, b ∈ R

Z2
0 .

Then
(

R
Z2
0 , dZ2

0

)

is separable and complete (see [6, p. 9, Example 1.2]). The distance in

Y := C
(

[0, T ],RZ2
0

)

is given by

dY(w, ŵ) = sup
t∈[0,T ]

dZ2
0
(w(t), ŵ(t)), w, ŵ ∈ Y,

which makes Y a Polish space. Denote by W the law on Y of the sequence of independent
Brownian motions

{

(W k
t )0≤t≤T : k ∈ Z

2
0

}

.
To simplify the notations, we write W· = (Wt)0≤t≤T for the whole sequence of processes

{

(W k
t )0≤t≤T : k ∈ Z

2
0

}

in Y. Denote by PN the joint law of
(

ωN
· ,W·

)

on X ×Y, N ≥ 1. Since
the marginal laws

{

QN
}

N∈N and {W} are respectively tight on X and Y, we conclude that
{

PN
}

N∈N is tight on X×Y. By Skorokhod’s representation theorem, there exist a subsequence

{Ni}i∈N of integers, a probability space
(

Θ̃, F̃ , P̃
)

and stochastic processes
(

ω̃Ni· , W̃Ni·
)

on this

space with the corresponding laws PNi , and converging P̃-a.s. in X ×Y to a limit
(

ω̃·, W̃·
)

. We
are going to prove that ω̃· solves equation (2.5) with a suitable cylindrical Brownian motion.

First, we have the following simple result.

Lemma 2.7. The process ω̃· is stationary and for every t ∈ [0, T ], the law µt of ω̃t on H
−1−(T2)

is the white noise measure µ.

Proof. Recall that, for every i ≥ 1, ω̃Ni· has the same law as the stationary process ωNi· which
solves (2.3) with N = Ni, and has white noise measure µ as their marginal distributions. For
every m ≥ 1 and F ∈ Cb

(

(H−1−(T2))m
)

, 0 ≤ t1 < · · · < tm ≤ T and h > 0 such that
tm + h ≤ T , since ω̃Ni· converges to ω̃· a.s. in C

(

[0, T ],H−1−(T2)
)

, one has

Ẽ
[

F (ω̃t1 , · · · , ω̃tm)
]

= lim
i→∞

Ẽ
[

F
(

ω̃Ni
t1 , · · · , ω̃

Ni
tm

)]

= lim
i→∞

Ẽ
[

F
(

ω̃Ni
t1+h, · · · , ω̃Ni

tm+h

)]

= Ẽ
[

F
(

ω̃t1+h, · · · , ω̃tm+h

)]

,

where Ẽ is the expectation on
(

Θ̃, F̃ , P̃
)

. Hence ω̃· is stationary. Similarly, for any F ∈
Cb

(

H−1−(T2)
)

,

∫

F (ω) dµt(ω) = Ẽ
[

F (ω̃t)
]

= lim
i→∞

Ẽ
[

F
(

ω̃Ni
t

)]

=

∫

F (ω) dµ(ω).
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Next, we show that
(

ω̃Ni· , W̃Ni·
)

satisfies an equation similar to that for
(

ωNi· ,W·
)

. By (2.4)
and Lemma 2.6,

〈

ωNi
t , φ

〉

=
〈

ωNi
0 , φ

〉

+

∫ t

0

〈

ωNi
r ⊗ ωNi

r ,Hφ

〉

dr + ν

∫ t

0

〈

ωNi
r ,∆φ

〉

dr

− 2
√
2ν εNi

∑

k∈ΛNi

∫ t

0

〈

ωNi
r , σk · ∇φ

〉

dW k
r .

(2.12)

For any φ ∈ C∞(T2), let
{

Hn
φ

}

n≥1
⊂ H2+(T2 × T

2) be an approximation of Hφ satisfying (cf.

[11, Remark 9])

lim
n→∞

∫

T2

∫

T2

(

Hn
φ −Hφ

)2
(x, y) dxdy = 0 and

∫

T2

Hn
φ (x, x) dx = 0, n ≥ 1.

Note that
(

ω̃Ni· , W̃Ni·
)

has the same law as
(

ωNi· ,W·
)

, and the latter satisfies the equation
(2.12), therefore, it is easy to show that

Ẽ

{

sup
t∈[0,T ]

∣

∣

∣

∣

〈

ω̃Ni
t , φ

〉

−
〈

ω̃Ni
0 , φ

〉

−
∫ t

0

〈

ω̃Ni
r ⊗ ω̃Ni

r ,Hφ

〉

dr − ν

∫ t

0

〈

ω̃Ni
r ,∆φ

〉

dr

+ 2
√
2ν εNi

∑

k∈ΛNi

∫ t

0

〈

ω̃Ni
r , σk · ∇φ

〉

dW̃Ni,k
r

∣

∣

∣

∣

}

≤ Ẽ

{

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

〈

ω̃Ni
r ⊗ ω̃Ni

r ,Hφ −Hn
φ

〉

dr

∣

∣

∣

∣

}

+ E

{

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

〈

ωNi
r ⊗ ωNi

r ,Hφ −Hn
φ

〉

dr

∣

∣

∣

∣

}

,

which, since both ω̃Ni
r and ωNi

r are distributed as the white noise measure µ, is dominated by

2TEµ

∣

∣

〈

ω ⊗ ω,Hφ −Hn
φ

〉
∣

∣ ≤ 2
√
2T

(
∫

T2

∫

T2

(

Hn
φ −Hφ

)2
(x, y) dxdy

)1/2

,

where the inequality can be found in the proof of [11, Theorem 8]. Letting n → ∞ yields,
P̃-a.s., for all t ∈ [0, T ],

〈

ω̃Ni
t , φ

〉

=
〈

ω̃Ni
0 , φ

〉

+

∫ t

0

〈

ω̃Ni
r ⊗ ω̃Ni

r ,Hφ

〉

dr + ν

∫ t

0

〈

ω̃Ni
r ,∆φ

〉

dr

− 2
√
2ν εNi

∑

k∈ΛNi

∫ t

0

〈

ω̃Ni
r , σk · ∇φ

〉

dW̃Ni,k
r .

(2.13)

Remark 2.8. Using the a.s. convergence of ω̃Ni to ω̃ in C
(

[0, T ],H−1−(T2)
)

, we can show

that the quantities in the first line of (2.13) converge respectively in L2
(

Θ̃, P̃
)

to

〈ω̃t, φ〉, 〈ω̃0, φ〉,
∫ t

0

〈

ω̃r ⊗ ω̃r,Hφ

〉

dr,

∫ t

0
〈ω̃r,∆φ〉dr,

see [12, Proposition 3.6] for details. However, the term involving stochastic integrals does not
converge strongly to the last term of (2.5). Therefore, we can only seek for a weaker form of
convergence.
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Before proceeding further, we introduce some notations. By Λ ⋐ Z
2
0 we mean that Λ is

a finite set. Let ΠΛ : H−1−(T2) → span{ek : k ∈ Λ} be the projection operator: ΠΛω =
∑

l∈Λ〈ω, el〉el. We shall use the family of cylindrical functions below:

FC2
b =

{

F (ω) = f(〈ω, el〉; l ∈ Λ) for some Λ ⋐ Z
2
0 and f ∈ C2

b

(

R
Λ
)}

,

where R
Λ is the (#Λ)-dimensional Euclidean space. To simplify the notations, sometimes

we write the cylindrical functions as F = f ◦ ΠΛ, and for l,m ∈ Λ, fl(ω) = (∂lf)(ΠΛω) and
fl,m(ω) = (∂l∂mf)(ΠΛω). Denote by L∞ the generator of the equation (2.5): for any cylindrical
function F = f ◦ ΠΛ with Λ ⋐ Z

2
0,

L∞F = 4νπ2
∑

l∈Λ
|l|2

[

fl,l(ω)− fl(ω)〈ω, el〉
]

− 〈u(ω) · ∇ω,DF 〉, (2.14)

where the drift part

〈u(ω) · ∇ω,DF 〉 = −
∑

l∈Λ
fl(ω)

〈

ω ⊗ ω,Hel

〉

.

Finally we introduce the notation

Ck,l =
k⊥ · l
|k|2 , k, l ∈ Z

2
0. (2.15)

Now we prove that the limit ω̃ is a martingale solution of the operator L∞.

Proposition 2.9. For any F ∈ FC2
b ,

M̃F
t := F (ω̃t)− F (ω̃0)−

∫ t

0
L∞F (ω̃s) ds (2.16)

is an F̃t = σ(ω̃s : s ≤ t)-martingale.

Proof. Recall the CONS defined in (2.1). Taking φ = el in (2.13) for some l ∈ Z
2
0, we have

d
〈

ω̃Ni
t , el

〉

=
〈

ω̃Ni
t ⊗ ω̃Ni

t ,Hel

〉

dt− 4νπ2|l|2
〈

ω̃Ni
t , el

〉

dt

− 2
√
2ν εNi

∑

k∈ΛNi

〈

ω̃Ni
t , σk · ∇el

〉

dW̃Ni,k
t . (2.17)

Therefore, for l,m ∈ Z
2
0,

d
〈

ω̃Ni
t , el

〉

· d
〈

ω̃Ni
t , em

〉

= 8νε2Ni

∑

k∈ΛNi

〈

ω̃Ni
t , σk · ∇el

〉〈

ω̃Ni
t , σk · ∇em

〉

dt.

Direct computation leads to σk · ∇el =
√
2πCk,leke−l; hence

〈

ω̃Ni
t , σk · ∇el

〉〈

ω̃Ni
t , σk · ∇em

〉

= 2π2Ck,lCk,m

〈

ω̃Ni
t , eke−l

〉〈

ω̃Ni
t , eke−m

〉

= 2π2Ck,lCk,m

[

〈

ω̃Ni
t , eke−l

〉〈

ω̃Ni
t , eke−m

〉

− δl,m

]

+ 2π2δl,mC
2
k,l.

As a result,

d
〈

ω̃Ni
t , el

〉

· d
〈

ω̃Ni
t , em

〉

= 16νπ2ε2Ni

∑

k∈ΛNi

Ck,lCk,m

[

〈

ω̃Ni
t , eke−l

〉〈

ω̃Ni
t , eke−m

〉

− δl,m

]

dt

+ 8νπ2δl,m|l|2 dt,
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where in the last step we have used Lemma 4.1. To simplify the notations, we denote by

Rl,m

(

ω̃Ni
t

)

= 8νπ2
∑

k∈ΛNi

Ck,lCk,m

[

〈

ω̃Ni
t , eke−l

〉〈

ω̃Ni
t , eke−m

〉

− δl,m

]

.

Recall that ω̃Ni
t is a white noise for any t ∈ [0, T ], thus by the second assertion of Proposition

4.3, Rl,m

(

ω̃Ni
t

)

is bounded in any Lp
(

[0, T ]× Θ̃
)

, p > 1. Finally, we get

d
〈

ω̃Ni
t , el

〉

· d
〈

ω̃Ni
t , em

〉

= 2ε2Ni
Rl,m

(

ω̃Ni
t

)

dt+ 8νπ2δl,m|l|2 dt. (2.18)

By the Itô formula and (2.17), (2.18),

dF
(

ω̃Ni
t

)

= df
(〈

ω̃Ni
t , el

〉

; l ∈ Λ
)

=
∑

l∈Λ
fl
(

ω̃Ni
t

)

[

〈

ω̃Ni
t ⊗ ω̃Ni

t ,Hel

〉

− 4νπ2|l|2
〈

ω̃Ni
t , el

〉

]

dt

− 2
√
2ν εNi

∑

l∈Λ
fl
(

ω̃Ni
t

)

∑

k∈ΛNi

〈

ω̃Ni
t , σk · ∇el

〉

dW̃Ni,k
t

+
∑

l,m∈Λ
fl,m

(

ω̃Ni
t

)[

ε2Ni
Rl,m

(

ω̃Ni
t

)

+ 4νπ2δl,m|l|2
]

dt.

Recalling the operator L∞ defined in (2.14), the above formula can be rewritten as

dF
(

ω̃Ni
t

)

= L∞F
(

ω̃Ni
t

)

dt+ ε2Ni
ζ̃Ni
t dt+ dM̃Ni

t , (2.19)

where
ζ̃Ni
t =

∑

l,m∈Λ
fl,m

(

ω̃Ni
t

)

Rl,m

(

ω̃Ni
t

)

is bounded in Lp
(

[0, T ] × Θ̃
)

for any p > 1, and the martingale part

dM̃Ni
t = −2

√
2ν εNi

∑

l∈Λ
fl
(

ω̃Ni
t

)

∑

k∈ΛNi

〈

ω̃Ni
t , σk · ∇el

〉

dW̃Ni,k
t .

Note that M̃Ni
t is a martingale w.r.t. the filtration

F̃Ni
t = σ

(

ω̃Ni
s , W̃Ni

s : s ≤ t
)

,

where we denote by W̃Ni
s =

{

W̃Ni,k
s

}

k∈Z2
0

.

Next, we show that the formula (2.19) converges as i→ ∞ in a suitable sense. To this end,
we follow the argument of [9, p. 232]. Fix any 0 < s < t ≤ T . Take a real valued, bounded
and continuous function ϕ : C

(

[0, s],H−1− ×R
Z2
0

)

→ R. By (2.19), we have

Ẽ

[(

F
(

ω̃Ni
t

)

− F
(

ω̃Ni
s

)

−
∫ t

s
L∞F

(

ω̃Ni
r

)

dr − ε2Ni

∫ t

s
ζ̃Ni
r dr

)

ϕ
(

ω̃Ni
· , W̃Ni

·
)

]

= 0.

Since F ∈ FC2
b and ω̃Ni

t is a white noise, all the terms in the bracket belong to Lp
(

P̃
)

for any

p > 1. Recalling that, P̃-a.s.,
(

ω̃Ni· , W̃Ni·
)

converges to
(

ω̃·, W̃·
)

in C
(

[0, T ],H−1− ×R
Z2
0

)

, thus,
letting i→ ∞ in the above equality yields

Ẽ

[(

F (ω̃t)− F (ω̃s)−
∫ t

s
L∞F (ω̃r) dr

)

ϕ
(

ω̃·, W̃·
)

]

= 0.
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The arbitrariness of 0 < s < t and ϕ : C
(

[0, s],H−1− × R
Z2
0

)

→ R implies that M̃F
· is a

martingale with respect to the filtration G̃t = σ
(

ω̃s, W̃s : s ≤ t
)

, t ∈ [0, T ]. For any 0 ≤ s < t ≤
T , we have F̃s ⊂ G̃s, thus

Ẽ
(

M̃F
t

∣

∣F̃s

)

= Ẽ

[

Ẽ
(

M̃F
t

∣

∣G̃s

)
∣

∣F̃s

]

= Ẽ
[

M̃F
s

∣

∣F̃s

]

= M̃F
s ,

since M̃F
s is adapted to F̃s.

Next we show that ω̃· solves (2.5) in a weak sense, cf. [8, Definition 4.1].

Proposition 2.10. There exists a family of independent standard Brownian motions
{

W̃ k
t :

t ≥ 0
}

k∈Z2
0

such that (ω̃·, W̃·) solves (2.5), where W̃t =
∑

k∈Z2
0
W̃−k

t ek
k⊥

|k| .

Proof. In order to identify the process ω̃t, we take some special cylinder functions F . First, let
F (ω) = 〈ω, el〉 for some l ∈ Z

2
0, then

L∞F (ω) = −4νπ2|l|2〈ω, el〉 − 〈u(ω) · ∇ω, el〉.

Thus, by Proposition 2.9, we have the martingales

M̃
(l)
t := 〈ω̃t, el〉 − 〈ω̃0, el〉+

∫ t

0

(

4νπ2|l|2〈ω̃s, el〉+ 〈u(ω̃s) · ∇ω̃s, el〉
)

ds, l ∈ Z
2
0.

In particular,

d〈ω̃t, el〉 = dM̃
(l)
t −

(

4νπ2|l|2〈ω̃t, el〉+ 〈u(ω̃t) · ∇ω̃t, el〉
)

dt, l ∈ Z
2
0. (2.20)

Therefore, for l,m ∈ Z
2
0, l 6= m,

d[〈ω̃t, el〉〈ω̃t, em〉] = 〈ω̃t, em〉dM̃ (l)
t − 〈ω̃t, em〉

(

4νπ2|l|2〈ω̃t, el〉+ 〈u(ω̃t) · ∇ω̃t, el〉
)

dt

+ 〈ω̃t, el〉dM̃ (m)
t − 〈ω̃t, el〉

(

4νπ2|m|2〈ω̃t, em〉+ 〈u(ω̃t) · ∇ω̃t, em〉
)

dt

+ d
〈

M̃ (l), M̃ (m)
〉

t
.

Equivalently, denoting by M̃t the martingale part,

〈ω̃t, el〉〈ω̃t, em〉 = 〈ω̃0, el〉〈ω̃0, em〉+ M̃t − 4νπ2(|l|2 + |m|2)
∫ t

0
〈ω̃s, el〉〈ω̃s, em〉ds

−
∫ t

0

[

〈ω̃s, em〉〈u(ω̃s) · ∇ω̃s, el〉+ 〈ω̃s, el〉〈u(ω̃s) · ∇ω̃s, em〉
]

ds

+
〈

M̃ (l), M̃ (m)
〉

t
.

(2.21)

On the other hand, taking F (ω) = 〈ω, el〉〈ω, em〉, we have

L∞F (ω) = 〈ω, em〉
(

− 4νπ2|l|2〈ω, el〉 − 〈u(ω) · ∇ω, el〉
)

+ 〈ω, el〉
(

− 4νπ2|m|2〈ω, em〉 − 〈u(ω) · ∇ω, em〉
)

= −4νπ2(|l|2 + |m|2)〈ω, el〉〈ω, em〉 − 〈ω, em〉〈u(ω) · ∇ω, el〉 − 〈ω, el〉〈u(ω) · ∇ω, em〉.

Therefore, by (2.16), we also have the martingale

M̃
(l,m)
t = 〈ω̃t, el〉〈ω̃t, em〉 − 〈ω̃0, el〉〈ω̃0, em〉+ 4νπ2(|l|2 + |m|2)

∫ t

0
〈ω̃s, el〉〈ω̃s, em〉ds

+

∫ t

0

[

〈ω̃s, em〉〈u(ω̃s) · ∇ω̃s, el〉+ 〈ω̃s, el〉〈u(ω̃s) · ∇ω̃s, em〉
]

ds.
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Comparing this equality with (2.21), we obtain

〈

M̃ (l), M̃ (m)
〉

t
= 0, l 6= m. (2.22)

Next, by (2.20), we have

d
(

〈ω̃t, el〉2
)

= 2〈ω̃t, el〉
[

dM̃
(l)
t −

(

4νπ2|l|2〈ω̃t, el〉+ 〈u(ω̃t) · ∇ω̃t, el〉
)

dt
]

+ d
〈

M̃ (l)
〉

t
,

which implies

〈ω̃t, el〉2 = 〈ω̃0, el〉2 + 2

∫ t

0
〈ω̃s, el〉dM̃ (l)

s +
〈

M̃ (l)
〉

t

− 2

∫ t

0
〈ω̃s, el〉

(

4νπ2|l|2〈ω̃s, el〉+ 〈u(ω̃s) · ∇ω̃s, el〉
)

ds.

(2.23)

Similarly, taking F (ω) = 〈ω, el〉2, one has

L∞F (ω) = −2〈ω, el〉〈u(ω) · ∇ω, el〉 − 8νπ2|l|2
(

〈ω, el〉2 − 1
)

.

Substituting this into (2.16) gives us the martingale

M̃
(l,l)
t = 〈ω̃t, el〉2 − 〈ω̃0, el〉2 + 2

∫ t

0
〈ω̃s, el〉〈u(ω̃s) · ∇ω̃s, el〉ds+ 8νπ2|l|2

∫ t

0

(

〈ω̃s, el〉2 − 1
)

ds.

Comparing this identity with (2.23) yields

〈

M̃ (l)
〉

t
= 8νπ2|l|2t. (2.24)

According to the equalities (2.22) and (2.24), if we define

W̃ l
t =

1

2
√
2νπ|l|

M̃
(l)
t , l ∈ Z

2
0.

Then
{

W̃ l
}

l∈Z2
0

is a family of independent standard Brownian motions. Now the formula (2.20)

becomes

d〈ω̃t, el〉 = 2
√
2νπ|l|dW̃ l

t −
(

4νπ2|l|2〈ω̃t, el〉+ 〈u(ω̃t) · ∇ω̃t, el〉
)

dt, l ∈ Z
2
0.

The above equations are the component form of the equation below

dω̃t + u(ω̃t) · ∇ω̃t dt = ν∆ω̃t dt+
√
2ν∇⊥ · dW̃t, (2.25)

where W̃t is the vector valued white noise defined in the statement of the proposition. Therefore,
ω̃t solves the vorticity form of the Navier–Stokes equation driven by space-time white noise.

We can rewrite (2.25) in the velocity-pressure variables as follows:

dũ+ ũ · ∇ũdt+∇p̃dt = ν∆ũdt+
√
2ν dW̃ . (2.26)

An L1-uniqueness result was proved in [14] for the Kolmogorov operator LNS associated to
(2.26), but on the torus [0, 2π]2 = R

2/(2πZ2). In order to apply this result, we need to
transform our equation to that case. Let H be the subspace of L2

(

[0, 2π]2,R2
)

consisting of
periodic and divergence free vector fields with vanishing mean.
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Lemma 2.11. For (t, ξ) ∈ R+ × [0, 2π]2, let u(t, ξ) = 2π ũ(t, ξ/(2π)), p(t, ξ) = 4π2p̃(t, ξ/(2π))
and W (t, ξ) = (2π)−1W̃ (t, ξ/(2π)). Then W (t, ξ) is a cylindrical Brownian motion on H and

du+ u · ∇udt+∇p dt = 4π2ν∆udt+ 4
√
2π4ν dW.

Proof. For l ∈ Z
2
0, set

vl(ξ) =
1√
2π

l⊥

|l|

{

cos(l · ξ), l ∈ Z
2
+;

sin(l · ξ), l ∈ Z
2
−.

Then {vl}l∈Z2
0
is a CONS of H and

W (t, ξ) =
1

2π
W̃ (t, ξ/(2π)) =

∑

l∈Z2
0

W̃−l(t)vl(ξ). (2.27)

Since
{

W̃−l
}

l∈Z2
0

is a family of independent standard Brownian motions, we obtain the first

result. The second assertion follows from (2.26) and the definitions of u, p and W :

du+ u · ∇udt+∇p dt = 2π
[

dũ+ ũ · ∇ũdt+∇p̃dt
]

(t, ξ/(2π))

= 2π
[

ν∆ũ+
√
2ν dW̃

]

(t, ξ/(2π))

= 4π2[ν∆u+
√
2ν dW ].

The proof is complete.

Recall that ωN
t is the white noise solution of (2.3), and {QN}N≥1 are the distributions of

(

ωN
t

)

0≤t≤T
on C

(

[0, T ],H−1−(T2)
)

. Now we can prove the main result of this paper.

Theorem 2.12. Denote by

S =
∑

k∈Z2
0

1

|k|4 < +∞

and assume that

ν >
2
√
5S

π2
.

Then the whole sequence {QN}N≥1 converges weakly to the distribution of solution to (2.25).

Proof. Substitute ν and σ in [14, (2)] by 4π2ν and 4
√
2π4ν, respectively, and take C = 0

(i.e. the Coriolis force vanishes). Note that the measure µσ,ν defined in [14, (4)] coincides
with N

(

0, 4π2A−1
)

, where A is the Stokes operator. Under our condition, Assumption A on
p. 572 of [14] is satisfied, thus by Corollary 1 on the same page, the operator (LNS ,FC2

b) is
L1-unique. Here, by an abuse of notation, we denote also by FC2

b the cylindrical functions
corresponding to the Navier–Stokes equation driven by space-time white noise. This implies
that its closure

(

LNS ,D(LNS )
)

generates a C0-semigroup of contractions {Pt}t≥0 in L1(µσ,ν)
and µσ,ν is invariant for Pt. According to [17, Remark 1.2], the martingale problem associated
to (LNS ,FC2

b) has a unique solution. This implies the uniqueness of the martingale solution
to the original operator (L∞,FC2

b) associated to (2.25).
Recall that we have shown the tightness of the family {QN}N≥1. Thus we deduce the

assertion from the uniqueness of martingale problem associated to (L∞,FC2
b).
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Remark 2.13. (i) We have

S =
∑

k∈Z2
0

1

|k|4 ≈
∫

|x|≥1/2

dx

|x|4 =

∫ ∞

1/2
2π

dr

r3
= 4π.

Hence,
2
√
5S

π2
≈ 4

√
5

π3/2
≈ 1.6062760546.

(ii) For other weaker uniqueness results on (LNS ,FC2
b), see e.g. [3, 16, 1]. A similar L1-

uniqueness result was proved in [17, Theroem 1.1] with less precise estimate on the lower
bound of ν.

3 The Kolmogorov equation corresponding to (2.5)

The purpose of this section is to solve the Kolmogorov equation associated to the vorticity
form of the Navier–Stokes equation (2.5) driven by the space-time white noise. To simplify
notations we write H−1− instead of H−1−(T2). The main result is

Theorem 3.1. Let ρ0 ∈ L2(H−1−, µ). Then there exists ρ ∈ L∞(

0, T ;L2(H−1−, µ)
)

which
solves

∂tρt = L∗
∞ρt, ρ|t=0 = ρ0. (3.1)

More precisely, for any cylindrical function F = f ◦ ΠΛ and α ∈ C1
(

[0, T ],R
)

satisfying
α(T ) = 0, one has

0 = α(0)

∫

Fρ0 dµ+

∫ T

0

∫

ρt
(

α′(t)F − α(t)〈u(ω) · ∇ω,DF 〉
)

dµdt

+ 4νπ2
∑

l∈Λ
|l|2

∫ T

0

∫

α(t) ρt
[

fl,l(ω)− fl(ω)〈ω, el〉
]

dµdt.

(3.2)

Remark 3.2. Unlike [13, Theorem 1.1], we do not have result on 〈σk · ∇ω,Dρt〉, see Remark
3.6 below for details.

We can prove Theorem 3.1 by following the line of arguments in [13]. Due to a technical
problem which will become clear in the proof of Theorem 3.1, as in [13, Section 4], we consider
an equation slightly different from (2.3):

dωN
t + uNt · ∇ωN

t = 2
√
2ν ε̃N

∑

k∈ΓN

σk · ∇ωN
t ◦ dW k

t . (3.3)

where ΓN = {k ∈ Z
2
0 : |k| ≤ N/3} and

ε̃N =

(

∑

k∈ΓN

1

|k|2
)−1/2

. (3.4)

The generator of (3.3) is

LNF (ω) = 4νε̃2N
∑

k∈ΓN

〈

σk · ∇ω,D〈σk · ∇ω,DF 〉
〉

− 〈u(ω) · ∇ω,DF 〉, F ∈ FC2
b . (3.5)
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Now we need the decomposition formula proved in Proposition 4.3 (replacing ΛN there by
ΓN ). For any cylindrical function F ∈ FC2

b , we denote by

L0
NF (ω) :=

1

2

∑

k∈ΓN

〈

σk · ∇ω,D〈σk · ∇ω,DF 〉
〉

, (3.6)

then
LNF (ω) = 8νε̃2NL0

NF (ω)− 〈u(ω) · ∇ω,DF 〉.
The assertions of Proposition 4.3 immediately yield

Proposition 3.3. For any F ∈ FC2
b , it holds that

lim
N→∞

LNF = L∞F in L2
(

H−1−, µ
)

.

With this result in hand, we will define the Galerkin approximation of the operator L∞ for
which we need some notations (see [13, Section 2] for details). Let HN = span{ek : k ∈ ΛN}
and ΠN : H−1−(T2) → HN be the projection operator, which is an orthogonal projection when
restricted to L2(T2). We project the drift term u(ω) · ∇ω in (3.5) as follows:

bN (ω) := ΠN

(

u(ΠNω) · ∇(ΠNω)
)

, ω ∈ H−1−(T2),

where u(ΠNω) is obtained from the Biot–Savart law:

u(ΠNω)(x) =

∫

T2

K(x− y)(ΠNω)(y) dy.

We shall consider bN as a vector field on HN whose generic element is denoted by ξ =
∑

k∈ΛN
ξkek. Thus

bN (ξ) = ΠN

(

u(ξ) · ∇ξ
)

, ξ ∈ HN .

Analogously, we define the projection of the diffusion coefficient σk · ∇ω in (3.5):

Gk
N (ξ) = ΠN

(

σk · ∇ξ
)

, ξ ∈ HN .

It can be shown that bN and Gk
N are divergence free with respect to the standard Gaussian

measure µN on HN . With the above preparations, we can define the Galerkin approximation
of the operator L∞ as

L̃Nφ(ξ) = 4νε̃2N
∑

k∈ΓN

〈

Gk
N ,∇N

〈

Gk
N ,∇Nφ

〉

HN

〉

HN

(ξ)− 〈bN ,∇Nφ〉HN
(ξ).

Consider the Kolmogorov equation on HN :

∂tρ
N
t = L̃∗

Nρ
N
t , ρN |t=0 = ρN0 ∈ C2

b (HN ), (3.7)

where L̃∗
N is the adjoint operator of L̃N with respect to µN . We slightly abuse the notation

and denote by ρNt (ω) = ρNt (ΠNω), N ≥ 1. It is easy to show that, for all t ∈ [0, T ],

∥

∥ρNt
∥

∥

2

L2(µ)
+ 8νε̃2N

∑

k∈ΓN

∫ t

0

∫

H−1−

〈

σk · ∇(ΠNω),Dρ
N
s

〉2

L2(T2)
dµds =

∥

∥ρN0
∥

∥

2

L2(µ)
. (3.8)

For k /∈ ΓN , we set
〈

σk · ∇(ΠNω),Dρ
N
s

〉2

L2(T2)
≡ 0. Here are two simple observations.
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Proposition 3.4. (1)
{

ρN
}

N∈N is a bounded sequence in L∞(

0, T ;L2(H−1−, µ)
)

;

(2) the family

{

ε̃N
〈

σk · ∇(ΠNω),Dρ
N
t

〉

L2(T2)
: (k, t, ω) ∈ Z

2
0 × [0, T ]×H−1−}

N∈N

is bounded in the Hilbert space L2
(

Z
2
0× [0, T ]×H−1−,#⊗dt⊗µ

)

, where # is the counting
measure on Z

2
0.

As a consequence, we obtain

Corollary 3.5. Assume ρ0 ∈ L2(H−1−, µ). Then the family
{

ρN
}

N∈N has a subsequence

which converges weakly-∗ to some measurable function ρ ∈ L∞(

0, T ;L2(H−1−, µ)
)

.

Remark 3.6. Unlike [13, Theorem 3.2], we are unable to show that 〈σk · ∇ω,Dρt〉 exists in
the distributional sense, and the gradient estimate below holds:

∑

k∈Z2
0

∫ T

0

∫

〈σk · ∇ω,Dρt〉2 dµdt ≤ ‖ρ0‖2L2(µ).

We repeat the proof of [13, Theorem 3.2] to see the difference. Recall that, by convention,

〈

σk · ∇(ΠNω),Dρ
N
s

〉2

L2(T2)
≡ 0, k /∈ ΓN .

By Proposition 3.4, there exists a subsequence {Ni}i∈N such that

(a) ρNi converges weakly-∗ to some ρ in L∞(

0, T ;L2(H−1−, µ)
)

;

(b) ε̃Ni

〈

σk ·∇(ΠNiω),Dρ
Ni
t

〉

L2(T2)
converges weakly to some ϕ ∈ L2

(

Z
2
0× [0, T ]×H−1−,#⊗

dt⊗ µ
)

.

Let α ∈ C([0, T ],R) and β ∈ L2
(

Z
2
0 ×H−1−,#⊗ µ

)

such that βk ∈ FC2
b for all k ∈ Z

2
0. By

the assertion (b),

lim
i→∞

∑

k∈Z2
0

∫ T

0

∫

ε̃Ni

〈

σk · ∇(ΠNiω),Dρ
Ni
t

〉

L2(T2)
α(t)βk dµdt =

∑

k∈Z2
0

∫ T

0

∫

ϕk(t)α(t)βk(t) dµdt.

Fix some k ∈ Z
2
0, we assume that βj ≡ 0 for all j 6= k and βk = βk ◦ΠΛ for some Λ ⋐ Z

2
0. Then

the above limit reduces to

lim
i→∞

ε̃Ni

∫ T

0

∫

〈

σk · ∇(ΠNiω),Dρ
Ni
t

〉

L2(T2)
α(t)βk dµdt =

∫ T

0

∫

ϕk(t)α(t)βk dµdt. (3.9)

For Ni big enough, we have

∫ T

0

∫

〈

σk · ∇(ΠNiω),Dρ
Ni
t

〉

L2(T2)
α(t)βk(ω) dµdt

=

∫ T

0

∫

HNi

〈

Gk
Ni
,∇Niρ

Ni
t

〉

HNi

(ξ)α(t)βk(ξ) dµNidt

= −
∫ T

0

∫

HNi

ρNi
t (ξ)α(t)

〈

Gk
Ni
,∇Niβk

〉

HNi

(ξ) dµNidt

= −
∫ T

0

∫

ρNi
t (ω)α(t)

〈

σk · ∇(ΠNiω),Dβk
〉

L2(T2)
dµdt.
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Therefore, by [13, Lemma 3.3],

ε̃Ni

∫ T

0

∫

〈

σk · ∇(ΠNiω),Dρ
Ni
t

〉

L2(T2)
α(t)βk dµdt = −ε̃Ni

∫ T

0

∫

ρNi
t α(t)

〈

σk · ∇ω,Dβk
〉

dµdt

→ −0 ·
∫ T

0

∫

ρt α(t)
〈

σk · ∇ω,Dβk
〉

dµdt

= 0,

where the second step is due to (a). Combining this limit with (3.9) yields

∫ T

0

∫

ϕk(t)α(t)βk dµdt = 0.

By the arbitrariness of α ∈ C([0, T ]) and βk ∈ FC2
b , we see that

ϕk(t) = 0

for all k ∈ Z
2
0.

Now we are ready to present

Proof of Theorem 3.1. Recall that µN is the standard Gaussian measure on HN . Let F ∈ FC2
b

and α ∈ C1
(

[0, T ],R
)

satisfying α(T ) = 0. Multiplying both sides of (3.7) by α(t)F and
integrating by parts with respect to µN , we obtain

0 = α(0)

∫

HN

FρN0 dµN +

∫ T

0

∫

HN

ρNs
[

α′(s)F + α(s)L̃NF
]

dµNds.

We transform the integrals to those on H−1−(T2) and obtain

0 = α(0)

∫

FρN0 dµ+

∫ T

0

∫

ρNs
[

α′(s)F − α(s)
〈

u(ΠNω) · ∇(ΠNω),DF
〉]

dµds

+ 4νε̃2N
∑

k∈ΓN

∫ T

0

∫

ρNs α(s)
〈

σk · ∇(ΠNω),D
〈

σk · ∇(ΠNω),DF
〉

〉

dµds.
(3.10)

Assume F has the form f ◦ ΠΛ; in this case we say that F is measurable with respect
to HΛ = span{ek : k ∈ Λ}, or HΛ-measurable. Of course, F is also HΛ′-measurable for any
Λ′ ⊃ Λ. When N is big enough, we have Λ ⊂ ΓN = ΛN/3. For all k ∈ ΓN ,

〈

σk · ∇(ΠNω),DF
〉

= −
〈

ΠNω, σk · ∇(DF )
〉

= −
〈

ω, σk · ∇(DF )
〉

= 〈σk · ∇ω,DF 〉.

We see that 〈σk · ∇ω,DF 〉 is HΛ2N/3
-measurable. In the same way, we have

〈

σk · ∇(ΠNω),D
〈

σk · ∇(ΠNω),DF
〉

〉

=
〈

σk · ∇(ΠNω),D〈σk · ∇ω,DF 〉
〉

=
〈

σk · ∇ω,D〈σk · ∇ω,DF 〉
〉

,

which is HΛN
-measurable. Therefore, by (3.6),

1

2

∑

k∈ΓN

〈

σk · ∇(ΠNω),D
〈

σk · ∇(ΠNω),DF
〉

〉

= L0
NF (ω),
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and (3.10) becomes

0 = α(0)

∫

FρN0 dµ+

∫ T

0

∫

ρNs
[

α′(s)F − α(s)
〈

u(ΠNω) · ∇(ΠNω),DF
〉]

dµds

+ 8νε̃2N
∑

k∈ΓN

∫ T

0

∫

ρNs α(s)L0
NF (ω) dµds.

By Proposition 4.3, changing N into Ni and letting i→ ∞, we arrive at

0 = α(0)

∫

Fρ0 dµ+

∫ T

0

∫

ρs
[

α′(s)F − α(s)〈u(ω) · ω,DF 〉
]

dµds

+ 4νπ2
∑

l∈Λ
|l|2

∫ T

0

∫

α(s) ρs
[

fl,l(ω)− fl(ω)〈ω, el〉
]

dµds.

The proof is complete.

4 Appendices

4.1 Decomposition of the diffusion part (4.4)

For the reader’s convenience, we recall some useful results which were proved in [13]. First,
recall that Ck,l is defined in (2.15) and ΛN = {k ∈ Z

2
0 : |k| ≤ N}. The following identity is

taken from [13, Lemma 3.4].

Lemma 4.1. It holds that

∑

k∈ΛN

C2
k,l =

1

2
ε−2
N |l|2 with εN =

(

∑

k∈ΛN

1

|k|2
)−1/2

. (4.1)

Proof. Denoting by Dk,l =
k·l
|k|2 , then

C2
k,l +D2

k,l =
(k⊥ · l)2
|k|4 +

(k · l)2
|k|4 =

1

|k|2
[(

k⊥

|k| · l
)2

+

(

k

|k| · l
)2]

=
|l|2
|k|2 .

The transformation k → k⊥ is 1-1 on the set ΛN = {k ∈ Z
2
0 : |k| ≤ N}, and preserves the norm

| · |. As a result,

∑

k∈ΛN

C2
k,l =

∑

k∈ΛN

(k⊥ · l)2
|k|4 =

∑

k∈ΛN

((k⊥)⊥ · l)2
|k⊥|4 =

∑

k∈ΛN

(k · l)2
|k|4 =

∑

k∈ΛN

D2
k,l.

Combining the above two equalities, we obtain

∑

k∈ΛN

C2
k,l =

1

2

∑

k∈ΛN

(

C2
k,l +D2

k,l

)

=
1

2
|l|2

∑

k∈ΛN

1

|k|2 =
1

2
ε−2
N |l|2.

Next, we recall a decomposition formula of the operator

L0
NF (ω) =

1

2

∑

k∈ΛN

〈

σk · ∇ω,D〈σk · ∇ω,DF 〉
〉

, F ∈ FC2
b ,

which was proved in [13, Proposition 4.2]. To this end, we need the following simple result.
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Lemma 4.2. Assume that F = f ◦ ΠΛ for some finite set Λ ⊂ Z
2
0. We have

L0
NF (ω) = π2

∑

k∈ΛN

∑

l,m∈Λ
Ck,lCk,m fl,m(ω)〈ω, eke−l〉〈ω, eke−m〉

− π2
∑

k∈ΛN

∑

l∈Λ
C2
k,l fl(ω)

〈

ω, e2kel
〉

.
(4.2)

Proof. Note that DF (ω) =
∑

l∈Λ(∂lf)(ΠΛω)el =
∑

l∈Λ fl(ω)el; therefore,

〈σk · ∇ω,DF 〉 =
∑

l∈Λ
fl(ω)〈σk · ∇ω, el〉 = −

∑

l∈Λ
fl(ω)〈ω, σk · ∇el〉

= −
√
2π

∑

l∈Λ
Ck,l fl(ω)〈ω, eke−l〉.

Furthermore,

D〈σk · ∇ω,DF 〉 = −
√
2π

∑

l∈Λ
Ck,l

(

〈ω, eke−l〉D[fl(ω)] + fl(ω)eke−l

)

= −
√
2π

∑

l,m∈Λ
Ck,l〈ω, eke−l〉fl,m(ω)em −

√
2π

∑

l∈Λ
Ck,l fl(ω)eke−l.

As a result,

〈

σk · ∇ω,D〈σk · ∇ω,DF 〉
〉

= −
√
2π

∑

l,m∈Λ
Ck,l fl,m(ω)〈ω, eke−l〉〈σk · ∇ω, em〉

−
√
2π

∑

l∈Λ
Ck,l fl(ω)〈σk · ∇ω, eke−l〉.

(4.3)

We have 〈σk · ∇ω, em〉 = −〈ω, σk · ∇em〉 = −
√
2πCk,m〈ω, eke−m〉 and

〈σk · ∇ω, eke−l〉 = −〈ω, σk · ∇(eke−l)〉 = −
√
2πCk,−l

〈

ω, e2kel
〉

=
√
2πCk,l

〈

ω, e2kel
〉

.

Substituting these facts into (4.3) and summing over k yield the desired result.

Now we can rewrite L0
NF (ω) as the sum of two parts, in which one part is convergent while

the other is in general divergent.

Proposition 4.3. It holds that

L0
NF (ω) = π2

∑

l,m∈Λ
fl,m(ω)

∑

k∈ΛN

Ck,lCk,m

(

〈ω, eke−l〉〈ω, eke−m〉 − δl,m
)

+
1

2
π2ε−2

N

∑

l∈Λ
|l|2

[

fl,l(ω)− fl(ω)〈ω, el〉
]

.
(4.4)

Moreover, for any l,m ∈ Z
2
0, the quantity

Rl,m(N) =
∑

k∈ΛN

Ck,lCk,m

(

〈ω, eke−l〉〈ω, eke−m〉 − δl,m
)

(4.5)

is a Cauchy sequence in Lp(H−1−, µ) for any p > 1.
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Proof. The proof of the second assertion is quite long and can be found in the appendix of [13].
Here we only prove the equality (4.4). We have, by Lemma 4.1,

∑

k∈ΛN

∑

l,m∈Λ
Ck,lCk,m fl,m(ω)〈ω, eke−l〉〈ω, eke−m〉

=
∑

l,m∈Λ
fl,m(ω)

∑

k∈ΛN

Ck,lCk,m

(

〈ω, eke−l〉〈ω, eke−m〉 − δl,m
)

+
1

2
ε−2
N

∑

l∈Λ
|l|2fl,l(ω).

(4.6)

Next, note that C−k,l = −Ck,l and e
2
k + e2−k ≡ 2 for all k ∈ Z

2
0, we have

∑

k∈ΛN

C2
k,l

〈

ω, e2kel
〉

=
∑

k∈ΛN ,k∈Z2
+

[

C2
k,l

〈

ω, e2kel
〉

+ C2
−k,l

〈

ω, e2−kel
〉]

=
∑

k∈ΛN ,k∈Z2
+

2C2
k,l〈ω, el〉 =

1

2
ε−2
N |l|2〈ω, el〉,

where the last step is due to Lemma 4.1. Therefore,

∑

k∈ΛN

∑

l∈Λ
C2
k,lfl(ω)

〈

ω, e2kel
〉

=
1

2
ε−2
N

∑

l∈Λ
|l|2fl(ω)〈ω, el〉.

Combining this equality with (4.2) and (4.6) leads to the identity (4.4).

4.2 Coincidence of nonlinear parts

Our purpose in this part is to show that the nonlinear term in the vorticity form of the
Euler equation defined in [11, Theorem 8] agrees with that defined by Galerkin approximation;
therefore, we can freely use any of them. Let {ẽk}k∈Z2 be the canonical complex orthonormal
basis of L2

(

T
2,C

)

; then {ẽk ⊗ ẽl}k,l∈Z2 is an orthonomal basis of L2
(

(T2)2,C
)

.

Lemma 4.4. Assume f ∈ C∞(

(T2)2,R
)

is symmetric and
∫

T2 f(x, x) dx = 0. Then

〈ω ⊗ ω, f〉 =
∑

k,l∈Z2

fk,l〈ω, ẽk〉〈ω, ẽl〉 holds in L2
(

H−1−, µ
)

,

where

fk,l = 〈f, ẽk ⊗ ẽl〉 =
∫

(T2)2
f(x, y)ẽk(x)ẽl(y) dxdy.

Proof. Denote by
Λ̂N = {k ∈ Z

2 : |k| ≤ N} = ΛN ∪ {0}. (4.7)

Since f ∈ C∞((T2)2), the partial sum of the Fourier series

fN(x, y) :=
∑

k,l∈Λ̂N

fk,l ẽk(x)ẽl(y)

converges to f , uniformly on (T2)2 and in L2((T2)2). In particular,

lim
N→∞

∫

T2

fN(x, x) dx =

∫

T2

f(x, x) dx = 0. (4.8)
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It is obvious that fN (x, y) is smooth and symmetric. By [11, Corollary 6, ii), iii)],

Eµ

[

(

〈ω ⊗ ω, f − fN 〉+
∫

T2

fN(x, x) dx
)2

]

= 2

∫

(T2)2
(f − fN )2(x, y) dxdy.

As a result,

Eµ

[

〈ω ⊗ ω, f − fN 〉2
]

≤ 4

∫

(T2)2
(f − fN )2(x, y) dxdy + 2

(
∫

T2

fN (x, x) dx

)2

. (4.9)

Next, note that

〈ω ⊗ ω, fN 〉 =
∑

k,l∈Λ̂N

fk,l〈ω, ẽk〉〈ω, ẽl〉.

Therefore, by (4.9),

Eµ

[

(

〈ω ⊗ ω, f〉 −
∑

k,l∈Λ̂N

fk,l〈ω, ẽk〉〈ω, ẽl〉
)2

]

≤ 4

∫

(T2)2
(f − fN )2(x, y) dxdy + 2

(
∫

T2

fN(x, x) dx

)2

.

Thanks to (4.8), the desired result follows by letting N → ∞.

We need the following simple equality.

Lemma 4.5. Let {ak,l}k,l∈Λ̂N
⊂ C be satisfying ak,l = al,k, ak,l = a−k,−l. Then

Eµ

[
∣

∣

∣

∣

∑

k,l∈Λ̂N

ak,l〈ω, ẽk〉〈ω, ẽl〉 −
∑

k∈Λ̂N

ak,−k

∣

∣

∣

∣

2]

= 2
∑

k,l∈Λ̂N

|ak,l|2. (4.10)

Proof. It is clear that
∑

k,l∈Λ̂N
ak,l〈ω, ẽk〉〈ω, ẽl〉 is real and

∑

k∈Λ̂N

ak,−k = Eµ

(

∑

k,l∈Λ̂N

ak,l〈ω, ẽk〉〈ω, ẽl〉
)

.

Following the arguments of [13, Lemma 5.1], we can prove the desired equality.

Recall the expression of Hφ for φ ∈ C∞(T2) in Remark 2.1. Now we can prove the inter-
mediate result below.

Proposition 4.6. For any j ∈ Z
2
0, the following identity holds in L2

(

H−1−, µ
)

:

〈ω ⊗ ω,Hej 〉 =
∑

k,l∈Z2

〈Hej , ẽk ⊗ ẽl〉〈ω, ẽk〉〈ω, ẽl〉,

where ej is defined in (2.1).

Proof. Let Hn
ej be the functions constructed in [11, Remark 9], which satisfy the conditions in

Lemma 4.4. Recall the definition of Λ̂N in (4.7). To simplify the notations, we introduce

ω̂N = Π̂Nω =
∑

k∈Λ̂N

〈ω, ẽk〉ẽk, ω ∈ H−1−.
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Then
〈ω̂N ⊗ ω̂N ,Hej〉 =

∑

k,l∈Λ̂N

〈Hej , ẽk ⊗ ẽl〉〈ω, ẽk〉〈ω, ẽl〉

is the partial sum of the series. We have

Eµ

[(

〈ω ⊗ ω,Hej〉 − 〈ω̂N ⊗ ω̂N ,Hej〉
)2]

≤ 3Eµ

[

〈ω ⊗ ω,Hej −Hn
ej〉2

]

+ 3E
[(

〈ω ⊗ ω,Hn
ej〉 − 〈ω̂N ⊗ ω̂N ,H

n
ej 〉

)2]

+ 3Eµ

[

〈ω̂N ⊗ ω̂N ,H
n
ej −Hej〉2

]

.

(4.11)

We estimate the three terms one-by-one. By the proof of [11, Theorem 8],

Eµ

[

〈ω ⊗ ω,Hej −Hn
ej〉2

]

≤ 2

∫

(T2)2

(

Hej −Hn
ej

)2
(x, y) dxdy. (4.12)

Next, by Lemmas 4.7 and 4.9 below (see also [13, Lemma 5.3]), we have Eµ〈ω̂N ⊗ ω̂N ,Hej 〉 = 0.
Moreover, for any fixed n ≥ 1, Lemma 4.4 implies

Eµ

[(

〈ω̂N ⊗ ω̂N ,H
n
ej 〉 − 〈ω ⊗ ω,Hn

ej 〉
)2] → 0 as N → ∞. (4.13)

It remains to deal with the last term on the r.h.s. of (4.11). As a result of (4.13),

lim
N→∞

Eµ〈ω̂N ⊗ ω̂N ,H
n
ej〉 = Eµ〈ω ⊗ ω,Hn

ej 〉 =
∫

T2

Hn
ej(x, x) dx = 0, (4.14)

where the second step is due to [11, Corollary 6, ii)]. By (4.10),

Eµ

[(

〈ω̂N ⊗ ω̂N ,H
n
ej −Hej〉 − Eµ〈ω̂N ⊗ ω̂N ,H

n
ej −Hej〉

)2]

=2
∑

k,l∈Λ̂N

∣

∣

〈

Hn
ej −Hej , ẽk ⊗ ẽl

〉
∣

∣

2 ≤ 2

∫

(T2)2

(

Hn
ej −Hej

)2
(x, y) dxdy.

Therefore,

Eµ

[

〈ω̂N ⊗ ω̂N ,H
n
ej −Hej〉2

]

≤ 4

∫

(T2)2

(

Hn
ej −Hej

)2
(x, y) dxdy + 2

[

Eµ〈ω̂N ⊗ ω̂N ,H
n
ej −Hej〉

]2

=4

∫

(T2)2

(

Hn
ej −Hej

)2
(x, y) dxdy + 2

[

Eµ〈ω̂N ⊗ ω̂N ,H
n
ej〉

]2
,

where we used again Eµ〈ω̂N ⊗ ω̂N ,Hej〉 = 0. Thanks to (4.14),

lim sup
N→∞

E
[

〈ω̂N ⊗ ω̂N ,H
n
ej −Hej〉2

]

≤ 4

∫

(T2)2

(

Hn
ej −Hej

)2
(x, y) dxdy.

Combining the above inequality with (4.11)–(4.13), first letting N → ∞ in (4.11) yield

lim sup
N→∞

E
[(

〈ω ⊗ ω,Hej〉 − 〈ω̂N ⊗ ω̂N ,Hej〉
)2] ≤ 18

∫

(T2)2

(

Hn
ej −Hej

)2
(x, y) dxdy.

We finish the proof by sending n→ ∞.
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Recall that we have defined the projection

ωN = ΠNω =
∑

k∈ΛN

〈ω, ẽk〉ẽk.

According to (4.7), we have ω̂N = ωN + 〈ω, 1〉. Taking into account Lemma 4.7 below, we
conclude that, for any j ∈ Z

2
0,

〈ω̂N ⊗ ω̂N ,Hej〉 = 〈ωN ⊗ ωN ,Hej〉 for all N ≥ 1. (4.15)

It remains to prove

Lemma 4.7. For any j ∈ Z
2
0,

〈Hej , ẽk ⊗ ẽl〉 = 0 for k = 0 or l = 0.

Proof. We have

Hej(x, y) = π(e−j(x)− e−j(y)) j ·K(x− y), (x, y) ∈ T
2 × T

2. (4.16)

Without loss of generality, we assume j ∈ Z
2
+ thus −j ∈ Z

2
− and

e−j(x) =
1√
2 i

[

ẽ−j(x)− ẽj(x)
]

. (4.17)

Recall that

ẽk ∗K = 2πi δk 6=0
k⊥

|k|2 ẽk for all k ∈ Z
2. (4.18)

Case 1: k = l = 0. We have
∫

(T2)2
Hej(x, y) dxdy = πj ·

∫

(T2)2
(e−j(x)− e−j(y))K(x− y) dxdy = −2πj ·

∫

T2

(e−j ∗K)(x) dx.

Using (4.17) and (4.18), we obtain

∫

(T2)2
Hej(x, y) dxdy = −2πj ·

∫

T2

1√
2 i

(

2πi
(−j)⊥
|j|2 ẽ−j(x)− 2πi

j⊥

|j|2 ẽj(x)
)

dx = 0.

Case 2: k = 0 and l 6= 0. Then

〈Hej , ẽ0 ⊗ ẽl〉 =
∫

(T2)2
Hej(x, y)ẽl(y) dxdy = πj ·

∫

(T2)2
(e−j(x)− e−j(y))K(x− y)ẽl(y) dxdy.

We divide the r.h.s. into two terms I1 and I2. We have, by (4.18),

I1 = πj ·
∫

T2

e−j(x)(K ∗ ẽl)(x) dx = 2π2i
j · l⊥
|l|2

∫

T2

e−j(x)ẽl(x) dx.

According to (4.17), it is clear that if l 6= ±j, then I1 = 0. On the other hand, if l = j or
l = −j, we still have I1 = 0.

Next, we deal with I2. Again by (4.17),

I2 = − π√
2 i
j ·

∫

(T2)2

[

ẽ−j(y)− ẽj(y)
]

K(x− y)ẽl(y) dxdy

= − π√
2 i
j ·

∫

T2

[

(K ∗ ẽl−j)(x) − (K ∗ ẽl+j)(x)
]

dx.

(4.19)
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If l = j, then by (4.18),

I2 =
π√
2 i
j ·

∫

T2

2πi
(2j)⊥

|2j|2 ẽ2j(x) dx = 0.

Similarly, I2 = 0 if l = −j. Finally, if l 6= ±j, then we deduce easily from (4.18) and (4.19)
that I2 = 0.

Summarizing these computations, we conclude that 〈Hej , ẽ0 ⊗ ẽl〉 = 0 for all l ∈ Z
2
0.

Case 3: k 6= 0 and l = 0. The arguments are similar as in the second case and we omit it
here. We can also deduce the result by using the symmetry property of Hej .

Now we can prove the first main result of this part.

Theorem 4.8. For any j ∈ Z
2
0,

〈ω ⊗ ω,Hej 〉 = lim
N→∞

〈ωN ⊗ ωN ,Hej〉 holds in L2
(

H−1−, µ
)

.

Moreover,

E
[

〈ω ⊗ ω,Hej〉2
]

= 2

∫

(T2)2
H2

ej(x, y) dxdy = 2
∑

k,l∈Z2
0

|〈Hej , ẽk ⊗ ẽl〉|2. (4.20)

Proof. The first assertion follows from Proposition 4.6 and (4.15). Next, by Lemma 4.9 below,

〈Hej , ẽk ⊗ ẽ−k〉 = 0 for all k ∈ Z
2.

Hence, Lemma 4.5 and (4.15) imply

E
[

〈ωN ⊗ ωN ,Hej〉2
]

= E

[∣

∣

∣

∣

∑

k,l∈ΛN

〈Hej , ẽk ⊗ ẽl〉〈ω, ẽk〉〈ω, ẽl〉
∣

∣

∣

∣

2]

= 2
∑

k,l∈ΛN

|〈Hej , ẽk ⊗ ẽl〉|2.

Letting N → ∞ yields the second result.

In the following, we denote formally by

b(ω) = u(ω) · ∇ω, bN (ω) = ΠN

[

u(ωN ) · ∇ωN

]

. (4.21)

We shall prove that b is well defined as an element in L2
(

H−1−(T2), µ;H−2−(T2)
)

and bN → b
w.r.t. the norm of this space as N → ∞. This assertion is consistent with [8, Proposition 3.1]
and [4, Proposition 3.2].

For any j ∈ Z
2
0, by Theorem 4.8,

〈b(ω), ej〉 = −〈ω ⊗ ω,Hej 〉 = −
∑

k,l∈Z2
0

〈Hej , ẽk ⊗ ẽl〉〈ω, ẽk〉〈ω, ẽl〉. (4.22)

We need the following preparation.

Lemma 4.9. For all j, k, l ∈ Z
2
0,

〈Hej , ẽk ⊗ ẽl〉 =
√
2π2

(

j · l⊥
|l|2 +

j · k⊥
|k|2

)

×
{

δj,k+l − δj,−k−l, j ∈ Z
2
+;

i (δj,k+l + δj,−k−l), j ∈ Z
2
−.
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Proof. Assume j ∈ Z
2
+. By (4.16),

〈Hej , ẽk ⊗ ẽl〉 = πj ·
∫

T2

e−j(x)ẽk(x)(K ∗ ẽl)(x) dx+ πj ·
∫

T2

e−j(y)ẽl(y)(K ∗ ẽk)(y) dy.

We denote the two terms by J1 and J2. By (4.18) and (4.17),

J1 = 2π2i
j · l⊥
|l|2

∫

T2

e−j(x)ẽk(x)ẽl(x) dx =
√
2π2

j · l⊥
|l|2 (δj,k+l − δj,−k−l).

Similarly,

J2 =
√
2π2

j · k⊥
|k|2 (δj,k+l − δj,−k−l).

The proof is complete.

Lemma 4.9 implies that

|〈Hej , ẽk ⊗ ẽl〉|2 = 2π4
(

j · l⊥
|l|2 +

j · k⊥
|k|2

)2

(δj,k+l + δj,−k−l) = 2π4δj,±(k+l)

(

j · l⊥
|l|2 +

j · k⊥
|k|2

)2

.

Using the fact j = ±(k + l), we obtain

|〈Hej , ẽk ⊗ ẽl〉|2 = 2π4δj,±(k+l)(j · k⊥)2
(

1

|l|2 − 1

|k|2
)2

. (4.23)

The next estimate will play a key role in the sequel.

Lemma 4.10. There exists C > 0 such that for all |j| ≥ 2,

∑

k,l∈Z2
0

|〈Hej , ẽk ⊗ ẽl〉|2 ≤ C|j|2 log |j|.

Proof. Thanks to (4.23), we have

∑

k,l∈Z2
0

|〈Hej , ẽk ⊗ ẽl〉|2 =2π4
∑

k∈Z2
0
\{j}

(j · k⊥)2
(

1

|j − k|2 − 1

|k|2
)2

+ 2π4
∑

k∈Z2
0
\{−j}

(j · k⊥)2
(

1

|j + k|2 − 1

|k|2
)2

which is easily seen to be convergent. We denote the two quantities on the r.h.s. by I1 and I2,
respectively. Note that

(

1

|j − k|2 − 1

|k|2
)2

=
(|j|2 − 2j · k)2
|j − k|4|k|4 ≤ 2

|j|4 + 4(j · k)2
|j − k|4|k|4 ,

thus

I1 ≤ 4π4|j|4
∑

k∈Z2
0
\{j}

(j · k⊥)2
|j − k|4|k|4 + 16π4

∑

k∈Z2
0
\{j}

(j · k⊥)2(j · k)2
|j − k|4|k|4 =: I1,1 + I1,2.

We have

I1,1 = 4π4|j|4
∑

k∈Z2
0
\{j}

((j − k) · k⊥)2
|j − k|4|k|4 ≤ 4π4|j|4

∑

k∈Z2
0
\{j}

1

|j − k|2|k|2 ≤ C|j|2 log |j|,
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where the last step is due to [4, Proposition A.1]. Similarly,

I1,2 = 16π4
∑

k∈Z2
0
\{j}

(j · (k − j)⊥)2(j · k)2
|j − k|4|k|4 ≤ 16π4|j|4

∑

k∈Z2
0
\{j}

1

|j − k|2|k|2 ≤ C|j|2 log |j|.

Therefore, we obtain
I1 ≤ C|j|2 log |j|. (4.24)

In the same way, we have I2 ≤ C|j|2 log |j| which, together with (4.24), implies the result.

Remark 4.11. Recall the definition of L∞. The above estimate shows that the nonlinear part
in L∞ is not dominated by the diffusion part. Indeed, taking F (ω) = 〈ω, ej〉, |j| ≥ 2, then by
(4.22), Theorem 4.8 and Lemma 4.10,

Eµ

[

〈b(ω),DF 〉2
]

= Eµ

[

〈ω ⊗ ω,Hej 〉2
]

≤ C|j|2 log |j|.

Note that the factor log |j| cannot be eliminated. On the other hand, regarding the diffusion
part LD

∞ in L∞, we have
−Eµ

[

FLD
∞F

]

= 4π2|j|2.
As a result, the Lions approach does not work here to give us the uniqueness of solutions to
(3.1).

Now we can prove the second main result of this part.

Theorem 4.12. For any δ > 0,

lim
N→∞

Eµ

(

‖bN (ω)− b(ω)‖2H−2−δ(T2)

)

= 0.

Proof. Note that

‖bN (ω)− b(ω)‖2H−2−δ(T2) =
∑

j∈Z2
0

1

|j|4+2δ

(

〈bN (ω), ej〉 − 〈b(ω), ej〉
)2

and by (4.21),

〈bN (ω), ej〉 = −1ΛN
(j)〈ωN ⊗ ωN ,Hej〉 = −1ΛN

(j)
∑

k,l∈ΛN

〈Hej , ẽk ⊗ ẽl〉〈ω, ẽk〉〈ω, ẽl〉.

Therefore,

‖bN (ω)− b(ω)‖2H−2−δ(T2) =
∑

j∈ΛN

1

|j|4+2δ

(

〈bN (ω), ej〉 − 〈b(ω), ej〉
)2

+
∑

j∈Λc
N

〈b(ω), ej〉2
|j|4+2δ

.

Denote the two quantities by J1,N and J2,N respectively.
First, by Theorem 4.8 and (4.22), we have

EJ2,N =
∑

j∈Λc
N

E〈b(ω), ej〉2
|j|4+2δ

= 2
∑

j∈Λc
N

1

|j|4+2δ

∑

k,l∈Z2
0

|〈Hej , ẽk ⊗ ẽl〉|2 ≤ C
∑

j∈Λc
N

log |j|
|j|2+2δ

,

where the last inequality follows from Lemma 4.10. Therefore,

lim
N→∞

EJ2,N = 0. (4.25)
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Recalling (4.22) and denoting by Λc
N,N = (Z2

0 × Z
2
0) \ (ΛN × ΛN ), we arrive at

〈bN (ω), ej〉 − 〈b(ω), ej〉 =
∑

(k,l)∈Λc
N,N

〈Hej , ẽk ⊗ ẽl〉〈ω, ẽk〉〈ω, ẽl〉, j ∈ ΛN .

Analogous to (4.20),

E
(

〈bN (ω), ej〉 − 〈b(ω), ej〉
)2

= 2
∑

(k,l)∈Λc
N,N

|〈Hej , ẽk ⊗ ẽl〉|2.

As a result,

EJ1,N = 2
∑

j∈ΛN

1

|j|4+2δ

∑

(k,l)∈Λc
N,N

|〈Hej , ẽk ⊗ ẽl〉|2 ≤ 2
∑

j∈Z2
0

1

|j|4+2δ

∑

(k,l)∈Λc
N,N

|〈Hej , ẽk ⊗ ẽl〉|2.

By Lemma 4.10 and the dominated convergence theorem, we obtain

lim
N→∞

EJ1,N = 0.

Combining this limit with (4.25), we complete the proof.
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